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Preface 

This book is intended for statisticians, operations researchers. and all those 
who use simulation in their work and need a comprehensive guide to the 
current state of knowledge about simulation methods. Stochastic simulation 
has developed rapidly in the last decade, and much of the folklore about the 
subject is outdated or fallacious. This is indeed a subject in which "a little 
knowledge is a dangerous thing !" Although this is a comprehensive guide, 
most of the chapters contain explicit recommendations of methods and 
algorithms. (To encourage their use, Appendix B contains a selection of 
computer programs.) Thus, this book can also serve as an introduction. and 
no prior knowledge of the subject is assumed. 

Simulation is one of the easiest things one can do with a stochastic model, 
which may help to explain its popularity. Although easy to perform. some 
of the "tricks" used are subtle, and the analysis of what has been done can be 
much more complicated than is apparent at first sight. Simulation is best 
regarded as mathematical experimentation, and needs all the care and plan- 
ning that are regarded as a normal part of training in experimental sciences. 
The general mathematical level of this book is elementary, involving no more 
than a first course in probability and statistics. A notable exception is those 
parts of Chapter 2 that deal with the theoretical behavior of random-number 
generators, which contain a number of applications of number theory. All 
the necessary mathematics is developed there, but some prior knowledge of 
pure mathematics will help a great deal. Random-number generators are so 
fundamental that the reader should eventually tackle Chapter 2 unless he or 
she is suw that all the generators he or she uses are adequate (that is. have 
been checked by someone who understands that chapter). It might be dis- 
astrous to believe in your computer manufacturer! 

Chapters 3 and 4 cover drawing realizations from standard probability 
distributions and stochastic processes. The emphasis is on methods that 
are easy to program (compact and with a simple logic. therefore easy to 
check). These are particularly suitable for personal computers. A small 
number of workers have specialized in developing faster and increasingly 
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more complex algorithms. These are referenced but, in general. not de- 
scribed in detail. The coverage of methods was comprehensive at the time of 
writing. 

Even statisticians often fail to treat simulations seriously as experiments. 
Even more is possible in the way of design since the randomness was intro- 
duced by the experimenter and hence is under his or her complete control. 
Such techniques are described in Chapter 5 under the heading of “variance 
reduction.” A general knowledge of the statistical design of experiments is 
helpful here and essential to a competent practitioner of simulation. 
The analysis of the output of many simulation experiments, for example 
queueing systems, is also more complicated than many users suppose, 
although not as difficult as the literature makes out! This topic is discussed 
in Chapter 6. 

Chapter 7 discusses many novel uses of simulation. It can be used, for 
example, in optimizing designs of integrated circuits and in fundamentally 
new ideas in statistical inference. 

The literature on simulation is vast, and I have made no attempt to cite 
comprehensively. There are several published bibliographies, but a lot of 
the work has been superseded or is misleading. 

The exercises vary considerably in difficulty. Some are routine exercises 
in developing algorithms from general theory or in providing illustrative 
examples. Others are of an open-ended nature; they suggest experiments to 
be done and demand access to a computer (although the humblest personal 
computer would suffice). 

Simulation has long been a Cinderella subject, particularly in statistics. 
I hope this book shows that it raises fascinating mathematical and statistical 
problems that demand attention. 

BRIAN D. RIPLEY 
Glusgoic. 
Ocroher I986 
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C H A P T E R  1 

Aims of Simulation 

The terminology of our subject can be confusing, with some authors insisting 
on shades of meaning that do not have widespread agreement. A dictionary 
definition of “to simulate” is 

Feign, . . . , pretend to be, act like, resemble, wear the guise of, mimic,. . . 
imitate conditions of (situation etc.) with model, for convenience or 
training. . . . 

Concise Oxford Dictionary, 1976 ed. 

In everyday usage “simulated” has a derogatory ring, but the value of simu- 
lators in training pilots is also recognized. In its technical sense simulation 
involves using a model to produce results. rather than experiment with the 
real system under study (which may not yet exist). For example, simulation is 
used to the explore the extraction of oil from an oil reserve. If the model has 
a stochastic element, we have stochastic simulation, the subject of this 
monograph. 

Another term, the Monte-Curlo method, arose during World War I1 for 
stochastic simulations of models of atomic collisions (branching processes). 
Sometimes it is used synonymously with stochastic simulation, but sometimes 
it carries a more specialized meaning of “doing something clever and sto- 
chastic with simulation.” This may involve simulating a different system 
from that under study, perhaps even using a stochastic model for a deter- 
ministic system (as in Monte-Carlo integration). We will not use Monte 
Carlo except in the conventional terms “Monte-Carlo integration” and 
“M onte-Carl o test .” 

Simulation can have many aims, which makes it impossible to give uni- 
versal guidelines to good practice. Tocher (1963) wrote one of the first texts 
on the subject. His title was The Art ofSirnulation, and simulation is still an 
art despite a much greater understanding of the simulator’s toolkit. The aim 
of this volume is to display those tools in their most useful form with guid- 
ance about their use. 

1 
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2 AIMS OF SIMULATION 

1.1. THE TOOLS 

The first thing needed for a stochastic simulation is a source of random- 
ness. This is often taken for granted but is of fundamental importance. 
Regrettably many of the so-called random functions supplied with the most 
widespread computers are far from random, and many simulation studies 
have been invalidated as a consequence. 

Digital computers cannot easily be interfaced to a truly random phenom- 
enon such as the electronic noise in a diode. All random functions in common 
use are in fact pseudo-random, which is to say that they are deterministic, 
but mimic the properties of a sequence of independent uniformly distributed 
random variables. Their essence is unpredictability. Consider for example the 
following sequence 

13, 8, 1, 2, 11, 14, 7, 12, 13, 12, 17, 2, 11, 10, 3, 

It is generated by a simple deterministic rule, but no one had guessed what 
the rule was or what the next number is at the time of writing. (Exercise 1.1 
will give the game away, but try to guess first.) The algorithms commonly 
used are similar, and much mathematical analysis has gone into the question 
of how well they do mimic a random sequence. 

Only occasionally does one want independent, uniformly distributed 
random variables. However, they are a useful source of randomness that 
can be turned into anything else. Chapters 3 and 4 consider tools to make 
samples of all the standard distributions and stochastic processes from this 
source of randomness. 

Simulation for us is about sampling from stochastic models. Too much 
emphasis has been placed in the literature on producing the samples and 
too little on what is done with those samples. Any stochastic simulation 
involves observing a random phenomenon and so is a statistical experiment. 
Statisticians, even experts in the design of experiments, are notoriously bad 
at designing their own experiments! There is even more scope for designing 
a simulation experiment than a real one, for the randomness and the model 
are under our complete control. Thus techniques for the design and analysis 
of simulation experiments are important tools and still an under-researched 
area. 

1.2. MODELS 

A stochastic simulation is of a model, and the aims of simulation are closely 
connected to those of modeling. So, why model? Within the scope of sta- 
stistics and operations research we can usefully identify two principal 
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reasons: 

1. 

2. 

To summarize data. A very common example is the general linear 
model of statistics as used in regression and the analysis of variance. 
To predict observations. A regression equation can be used to predict 
a response under new conditions or to find a combination of control 
variables giving an optimum response. This “what if”  use of models 
is the basis of much of operations research. 

It is also useful to consider two classes of a model. Models can either be 
mechanistic or conoenient. For example, the general linear model is merely 
convenient whereas the models ofgenetics are thought to represent the actual 
mechanisms. The models of the physical world used by engineers are usually 
both deterministic and mechanistic, whereas most stochastic models are 
convenient. Either type of model can be used to help understand, to predict, 
or to aid decision-making. An example of the latter is the “convenient” 
models of errors in agricultural field trials which are used to help disentangle 
the true differences in fertility of plant varieties from the fertilities of the 
plots in which they were grown. 

To make use of a model one has two choices: 

1. To bring mathematical analysis to bear to try to understand the 
model’s behavior. This is very easy for a general linear model but 
nigh impossible for a complex queueing system or for the equations 
of fluid flow in a complex structure such as a rock. The work involved 
is usually laborious (although if one is lucky it may already have been 
done). There are also likely to be necessary approximations and 
questionable assumptions. 

2. To experiment with the model. For a stochastic model the response 
will vary, and we will want to create a number of realizations (sets of 
artificial data) for each set of parameters. 

Sometimes one of these choices may be unfruitful. We might not be able to 
make progress by analytical means or might not have the resources to simu- 
late the model. (It is almost always possible to simulate a well-defined model 
given sufficient resources.) 

The choice of analysis or simulation will depend on the purpose of 
modeling. Simulation is good at answering specific “what if” questions 
whereas analysis almost always deepens understanding of the model. One 
neglected use of simulation is a hybrid approach: do a simulation experi- 
ment, analyze it to produce a “convenient” model, and use this model for 
predictions and decisions. 

The cost analysis is rapidly tilting in favor of simulation as computer time 
becomes ever cheaper and mathematicians remain scarce. It may be incred- 
ible to younger readers that Cox and Smith (1961) reported a simulation 
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performed with the aid of a slide rule (a mechanical device to perform multi- 
plications and evaluate standard functions) and a table of random numbers. 
Nowadays (1984/5) desktop computers are further revolutionizing the ease 
of mathematical experimentation. 

1.3. SIMULATION AS EXPERIMENTATION 

We have stressed that simulation is experimental mathematics and that 
simulation studies should be designed carefully, a process often termed 
oariance reduction in this field. Their classification as experiments also has 
repercussions for the reporting of simulation studies. It is essential that 
enough details are given for the experiments to be repeated and the results 
checked. Hoaglin and Andrews (1975) gave some standards on reporting 
which seem to have been followed only exceptionally. In view of the pre- 
ceding warnings on the deficiencies of certain pseudo-random-number 
generators, it is important to report the generator used. 

Good design is the key to reducing the cost of the study when this is neces- 
sary. The cost of generating random variables and sampling from stochastic 
models is usually a tiny part of the cost of the study, so the main aim should 
be to make best use of a small number of replications. 

The analysis of simulation experiments also needs care, because the 
observations may not be independent. This can either occur deliberately as 
part of the design or because one is simulating a stochastic process through 
time. (The problems of analyzing observations of a simulated stochastic 
process apply equally to observing real processes, but this is done much less 
intensely.) Chapter 6 considers various ways to include dependence in the 
analysis or to select independent sets of observations. 

1.4. SIMULATION IN INFERENCE 

Simulation has recently become popular as part of statistical inference. The 
advantages are again the need to make fewer approximations, although 
interpretation may be more difficult. Monte-Carlo tests compare the data 
with simulated data from the supposed model. The similarity of real and 
simulated data provides a test of goodness-of-fit. Bootstrap methods re- 
sample from the data, using the data as a reference distribution to assess the 
variability or bias of an estimator. Both are discussed in Chapter 7. 
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1.5. EXAMPLES 

5 

Checking Distribution Theory 

“Student” (1908) when deriving his t distribution carried out a small simu- 
lation experiment. He had 3000 physical measurements on humans which 
were known to be approximately normally distributed. These were shuffled 
and divided into 750 sets of (XI, X 2 ,  X3, X4). From each sample of size four 
the t statistic was calculated, giving 750 realizations to compare with the 
theoretical density. (This was done for each of two measurements.) 

We can repeat this experiment with very much less effort. Figure 1.1 
shows a simple BASIC program to do so. The 750 numbers can be compared 
with a t distribution in any way we choose. Perhaps the simplest thing to do 
is to compare some moments with their population values. Each run of this 
program on a BBC microcomputer took 130 sec. (Appendix A gives details 
of the computers used in this work.) 

Simulation is often useful to check theoretical calculations. For example, 
the author was asked to check the solution to Sylvester’s problem (Kendall 

10  DIM X(4) 
20 FOR I%= 1 TO 750 
30 FOR J%= 1 TO 3 STEP 2 
40 U = 2 * R N D ( 1 ) - 1  
50 V=2*RND(1) - 1 
60 W = U*U +V*V 
70 IF W > 1 THEN 40 

90 X(J%) = C+U 
100 X(J% + 1) = C*V 
110 NEXT J% 
120SUM=O 
130 FOR J%=1 TO 4 
140 SUM = SUM +X(J%) 
150 NEXT J% 
160 XBAR = SUM/4 
170SUM=O 
180 FOR J % = l  TO 4 
190 SUM = SUM + (X(J%) - XBAR)-2 
200 NEXT J% 
210 S=SQR(SUM/3) 
220 T = SQR(4)*XBAR/S 
230 PRINT T 
240 NEXT I% 

80 C = SQR ( (  - 2*LN (W) ) /W)  

Figure 1.1. A BASIC program to repeat Student‘s simulations. The function RND(1) returns 
a pseudo-random number, Lines 40 to 100 code algorithm 3.9 to produce normal variates. 
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and Moran, 1963; Solomon, 1978). Four points are placed at  random in a 
disc and their convex hull found. What is the probability that it is a triangle? 
The theoretical value is 35/12z2. A simulation study was performed with 
100,OOO replications. In 29,432 cases the convex hull was a triangle, giving a 
95% confidence interval for the probability of (0.291 50.2971) and confirming 
the theoretical value, 0.2955. The whole study took half an hour, using a 
VAXl1/782 (including programming). 

Much of statistical practice is based on asymptotic distributions, and 
simulation is much used to check the accuracy of asymptotic results for small 
samples. Ripley and Silverman (1978) considered the distribution of d,  the 
smallest distance between any pair of n random points in the unit square. 
Their asymptotic result is that n(n - l)d2 has an exponential distribution 
with mean 2/z (see also Theorem 2.6). Large values of d provide the rejection 
region of a test of inhibition between points, so we will count the number 
of values of T = n(n - l)d2 2 1.907, the 95% point of the asymptotic 
distribution. Figure 1.2 shows the program and Table 1 .1  gives the results. 
The count has a binomial (10,000,0.05) distribution on the asymptotic theory, 
so the acceptance region of a 5% test is (457, 543) (using a normal approxi- 
mation). Thus our experiment gives us no reason to doubt the asymptotic 
theory even for sample sizes as small as n = 10. 

1 0  1NPUT"N". N% 

30 INPUT "Reps". R% 
40 CNT = 0 
50 D C = I  9 0 7 / ( N % * ( N % - l ) )  
60 FOR L% = 1 TO R% 
70 FOR I%= 1 TO N% 
80 X(l%) = RND(1)  

20 D I M  X(N?'o). Y(N%) 

9 0 Y ( I % ) = R N D ( 1 )  
100 NEXT I% 
110 D = 2  
120 FOR I% = 2 TO N% 
1 30 X I  = X( I%) Y1 = Y (I%) 
140 FOR J % = l  TO I % - 1  
150 DD = ( X I  - X(J%))-2 + (Y1 - Y ( J % ) ) ) ^  2 
1 6 0 I F D D  < C T H E N D = D D  
170 NEXT J%, I% 
1 8 0 I F D > D C T H E N C N T = C N T + l  
190 NEXT I% 
200 PRINT "Count=", CNT 

Figure 1.2. BASIC program to check exponential distribution for n(n - l)d' 
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Table 1.1. Results from Figure 1.2 

n CNT out of R”/, Time (min) 

10 516 10,000 103 
15 516 10,000 221 
20 509 10,000 405 

This experiment was run overnight on a personal computer and so was 
free. Nevertheless we should still consider whether we could have obtained 
more information from the experiment. [In fact we only used the fact that 
at least one or no pairs (x, y) had n(n - l)d(x, y) < 1.907, so we could have 
stopped searching as soon as one was found.] Clearly we could have checked 
other percentage points with the same data. Could we make use of the actual 
values of T ?  One possibility is to assume that the tail of the distribution of T 
isexponential ofunknown mean iK1, and toestimate P(T > 1.907) = P - ’ ” ’ ~  

for an estimate 2 of i,, say obtained from the observations with T > 1. 
Exercise 1.4 shows that this idea is worthwhile only in the extreme tail. 

Comparing Estimators 

Andrews et al. (1972) report a large simulation experiment that used variance 
reduction very effectively. Consider a location-parameter estimation 
problem : 

Estimate H in ( f ( x  - 8)  1 ZT E R 1 from x!,  . . . , x,, 

The density f is symmetric and is similar to the normal density. The idea is 
to find estimators that perform well across a wide class of possible densities 
,f Some obvious estimators of 8 are the sample mean and the sample median, 
and a trimmed mean (the mean of all except the r largest and r smallest 
values). Let T ( x )  be such an estimator. All the estimators considered were 
location equivariant (xi + x i  + c implies T --t T + c) and many were scale 
equivariant ( x i  -+ .$xi implies T -+ sT). Our examples are both location 
and scale equivariant. 

The key to the variance reduction was that all simulations were done for 
.f’ belonging to the so-called normal/independent family. That is, f is the 
density of X = Z / S ,  where Z - N(0 ,  1) and S > 0 is independent of Z. 
Consider first conditioning on S, = sl, . . . , S, = s,. Then X i  - N ( 0 ,  1/$), 
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and suitable statistics for the (Xi) are 2 and s where 

Define Ci  = ( X i  - @ / S .  Then for a location and scale equivariant estimator 
IT: 

T(x) = 1 + sT(c) 

The point here is that T(c)  is much less variable than T(x) .  We will assume 
T is unbiased, so E&T) = 8. Consider 

say, so the expec!ation is merely over the location a;d scale of the sample. 
Conditionally, X and S are independent, with X N N(0, l /Csf) and 
(n - 1)S2 - x , ” - ~ .  Thus 

U(C, S) = ~ { r i  - e + S T ( C ) ) ~  

= ~ ( 2  - e ) 2  + ~ ( r i  - e)sT(c) + E ( s ~ ) T ( c ) ~  

where all expectations are conditional on C = c, S = s. Finally, 

1 
and this is found by a simulation experiment as an average over many samples 
(XI , .  . . , X,) of the random variables. Almost no more work is needed than in 
calculating T(X), but the estimate of var(T) obtained is much more accurate 
(see Table 1.2). 

The essence of this transformation is to average analytically over as much 
of the variation as possible. The assumption on f is slightly restrictive, but 
includes Student’s t distribution as well as the Cauchy, Laplace, and con- 
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Table 1.2. Estimates of n x'var(T) Based on 200 Replications for 
Sample Size n = 25 for the Mean, Median, and Trimmed Mean (r = 2) 
Estimators T 

U 

1.5 2 5 10 100 

Mean 
Average 
s.e. 1 a 

s.e.2" 
Variance reduction 

Median 
Average 
s.e. 1 
s.e.2 
Variance reduction 

Average 
s.e. 1 
s.e.2 
Variance reduction 

Trimmed mean 

1.57 
0.14 
0.048 

9 

2.17 
0.19 
0.1 1 

3 

I .72 
0.18 
0.065 

7 

1.53 
0.18 
0.062 

8 

1.96 
0.23 
0.093 

6 

1.61 
0.16 
0.065 

6 

1.185 
0.10 
0.019 

27 

1.67 
0.14 
0.064 

5 

1.22 
0.080 
0.022 

12 

1.096 
0.095 
0.010 

90 

1.55 
0.14 
0.052 

7 

1.14 
0.097 
0.01 5 

40 

1.009 
0.084 
0.001 7 
2,400 

1.60 
0.1 1 
0.05 1 

5 

1.051 
0.084 
0.0052 

260 
~ ~~~ 

"The s.e.1 and s.e.2 are standard errors from direct estimation and 
conditional estimation. The distribution of Sf was u - '  x gamma(a), so 
x, - t 2 z .  

taminated normal distributions. I t  is a small price to pay for a six-fold reduc- 
tion in experimental replication. I t  should be stressed that negligible extra 
work is involved. Instead of for each replication 

1. 
2. Form V = T(X)' 

Sample Z , ,  . . . , Z ,  - N ( 0 ,  l),  S , ,  . . . , S,,  set Xi = Zi/Si 

and averaging V ,  we 

1. 
2. Calculate 2, i 
3. 

Sample Z , ,  . . . , Z ,  - N ( 0 ,  l),  S,,  . . . , S,,  set Xi = ZJS, 

Form V = l/c S,? + { T(X) - 2)'/S2 

and average I/: The variance reduction is most when T ( c )  is most nearly 
constant, but is always worthwhile. 
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A Queueing Problem 

Consider the following everyday queueing problem. A bank has several 
tellers serving customers. We could propose any one of a number of queueing 
disciplines : 

(i) One common queue, with a teller on becoming free serving the 
customer at the head of the queue. 

(ii) Separate queues for each teller; each customer chooses the shortest 
queue on arrival and remains in it. 

(iii) Arriving customers choose a queue at  random and remain in it. 
(iv) Customers are allocated to a queue in rotation. 
(v) Variants of (ii), (iii), and (iv) in which queue-changing is allowed if 

a queue becomes empty. 

Any number of criteria can be used to assess the performance of the system 
under these disciplines. The study could look from the bank’s angle and 
consider the time that tellers are idle, or from the customers’ point of view 
centering on the customer’s waiting time. We will not normally be interested 
in average waiting time, since a customer’s frustration will rise more than 
linearly with the delay experienced. 

Analytical progress is not possible for the more complex disciplines 
even under simplifying assumptions on the customer arrival process and the 
service time distribution. Some progress can be made under further approxi- 
mations (Newell, 1982), but this will ignore the subtle differences between 
disciplines. The only practicable approach for a detailed study is simulation. 

A queueing system is determined by a sequence of events through time, 
the moments at which any customer changes state (arrives, changes queue, 
is served, or departs). A simulation is, in principle, straightforward, but care 
is needed to ensure that all the events are simulated in the correct order. For 
this reason queueing systems are usually simulated in special-purpose com- 
puter languages which take care of some of the details. Queueing systems 
can be simulated in general-purpose languages, which often give more 
control over what is happening. Our example was simulated in BASIC on a 
BBC microcomputer. 

The arrival process can be simulated at the outset to produce a list of 
arrival times. It can be any process, even one based on observations. For 
illustration we took a Poisson process. For each customer the departure time 
will be known as soon as that customer enters service, at which point the 
waiting time can be recorded. For convenience the service times were taken 
to be constant. With any of the queueing disciplines and s servers, there are 
s + 1 possible next events; a customer arrives or one of the servers completes 
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Figure 1.3. Tally for waiting times in Table 1.3. 

Table 1.3. Successive (Along Rows) Waiting Times for 200 Customers at a Three- 
Server Queueing System with Unit Service Time and Poisson Arrivals at Rate 0.4 

O* 
0 
0.307 
0 
0 
0 
0 
0.963 
0.110 
0.893 
0.419 
0.175 
0.456 
0.483 
1.317 
0.272 
0 
0.685 
2.029 
1.877 

O* 
0 
0 
0 
O* 
0 
0.116 
0.325 
0.767 
0.525 
0.290 
0 
0.444 
1.124 
0.701 
0 
0.086 
0.786 
2.094 
1.877 

0 
0 
0 
0.1 87 
0 
0 
0 
0.395 
0.217 
1.143 
0.127 
0.143 
0.854 
1.007 
0.184 
0 
0 
1.389 
1.581 
1.605 

0 
0.442 
0.279 
0.517 
0 
0 
0 
0 
0 
1.149 
0.272 
0.184 
0.954 
0.917 
0.821 
O* 
0.566 
I ,411 
1.409 
2.216 

0 
0.598 
0 
0 
0 
0 
0.05 1 
0 
0 
1.150 
0.665 
0.002 
0.771 
1.200 
0 
0 
0.604 
1.501 
1.979 
1.931 

0.148 
0.713 
0 
0.065 
0.332 
0 
0.689 
O* 
0 
1.206 
0.427 
0 
1.363 
1.124 
0 
0 
0.342 
2.069 
1.685 
1.970 

0.080 
0.068 
0 
0.350 
0.055 
0 
0.632 
0 
0.449 
0.414 
0.625 
O* 
1.091 
0.857 
0 
0.641 
0.825 
1.920 
1.755 
2.460 

0.603 
0.338 
0.01 1 
0.544 
0 
0 
0.544 
0 
0.094 
0 
0.827 
0 
1.124 
0.609 
0 
0.652 
0.907 
1.929 
1.878 
2.199 

0 
0.439 
0.639 
0 
0 
0 
1.103 
0.590 
0.240 
0 
0.853 
0 
1.769 
0.61 7 
0 
0 
0.708 
1.932 
1.867 
2.139 

0 
0.027 
O* 
0 
O* 
0 
1.076 
0.232 
0.917 
0 
0.817 
0.409 
1.462 
0.671 
0.186 
0 
0.71 7 
1.932 
1.837 
1.925 

“Customers marked with an asterisk arrived at an empty system. 

1 1  
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service. The times of each of these events are known, so the appropriate 
event can be processed and the process can be repeated. 

Such a simulation will produce a series of waiting times which can be 
expressed as a histogram of waiting times. (See Figure 1.3.) However, there 
is an important point that is often overlooked. The waiting times are clearly 
not independent (Table 1.3), and we must not attach undue significance 
to the suspiciously large number of waiting times in the range 1.8-2.0. We 
can extract some independent events from this simulation. When a customer 
arrives at a completely empty system (denoted by an asterisk in Table 1.3), 
the future must be independent of the past (since it depends only on future 
arrivals and these form a Poisson process). Let us call the parts of the simu- 
lation between the starred arrivals tours [following Cox and Smith (1961)l. 
Then the tours are independent. This device has been termed regenerative 
simulation by Iglehart (although it is a method of analysis rather than 
simulation) and is discussed with alternative analyses in Chapter 6. 

1.6. LITERATURE 

There is a vast literature on simulation. As an experimental subject much 
that has been published has been superceded. We have made no attempt to 
give a comprehensive survey; bibliographies up to the late 1970s are given 
by Nance and Overstreet (1972), Sahai (1979), and Sowey (1972, 1978). 
Later papers are likely to appear either in applied or computational statis- 
tics journals or in the computing literature, with case studies in operations 
research and management science journals. 

1.7. CONVENTIONS 

The following mathematical conventions will be used in later chapters. 
It is at times important to distinguish between the sequence (ai) and the 

set {ai},  the distinction being that (a i )  is ordered, whereas {a i}  is merely the 
set of values taken by a sequence. For a periodic sequence (ai) is infinite, but 
{ui} is finite. 

The modulus operator u mod b forms the remainder when a is divided by 
b. Mod is used in two senses: both a mod b = c and a = c mod b to mean 
a mod b = c mod b. 

The exclusive-or logical operator EOR is defined by pEORq is false if 
both p and q are true or both are false, and true otherwise. It can also be 
applied to (0, l}, where 0 represents false and 1 true, and to  binary vectors 
element wise. 

The function gcd(a, b) is the largest factor common to both integers a 
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and b. Some of the proofs of Chapter 2 will require familiarity with its use, 
including the existence of integers s and t such that sa + tb = gcd(a, b). 

The natural logarithm is referred to as In( ) (except in computer programs). 
Random variables have distributions described by cdf's (comulative 

distribution functions) and perhaps pdf's (probability density functions). We 
will use the notation X - N ( p ,  a2) or say X is a normal variate to indicate 
that the random variable X has a normal distribution. Standard distributions 
are assumed throughout. The gamma distribution is always assumed to 
have unit scale parameter and shape parameter a, that is, its pdf is 

X a - l  - x  e /W on (0, a) 

The symbol 0 denotes the end of a proof or example. 

EXERCISES 

1.1. 

1.2. 

1.3. 

1.4. 

1.5. 

1.6. 

Verify that the pseudo-random sequence 1,8,13,. . . is produced by the 
rule Xi = (Xi-l + X i P 2  + Xi-3) mod 20, and that the sequence 
repeats after 248 terms. Experiment with other starting values and 
note that most but not all repeat after 248 terms. Consider replacing 
20 first by 5, then 4, and consider all possible cases. (There are only 
125 and 64 starting values, respectively.) Use Lemma A of Section 2.7 
to deduce the complete solution to the original problem. [This may 
be easier after studying Chapter 2.1 
Reflect on why models are used in your field of study, and whether 
simulation is as helpful for science as it is for management. 
Look up Hoaglin and Andrews (1975) and compare their recommenda- 
tions with simulation studies in a recent issue of a statistical journal. 
Do any of these studies use variance reduction? 
Suppose X,, . . . , X ,  - exp(i), and we wish to estimate the (1  - c() 

point of their distribution. Compare the estimator j? of p = P ( X ,  > c) 
obtained from the proportion of X i  > c with 8 obtained by fitting an 
exponential distribution to observations > C .  Show that var( i )  2 p / n  
whereas var(F) x ( - p  In p)'/(ne-"). For i, = 4 2  and C = 1 find the 
standard deviations of j? and 
Show how to use the variance reduction of Andrews et al. (1972) to 
estimate P(T < c) for c in a tail of the distribution. A greater gain is 
found for these probabilities than for var( T) .  
Simulate queueing discipline (ii) (in the queueing subsection of Section 
1.5) for s = 2 servers, unit server time, and Poisson arrivals with rate 0.6 
for 250 customers. [Algorithm 3.2 shows how to generate the inter- 
arrival times.] 

for p = lo%, 5 % ,  and 0.1%. 
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Pseudo-Random Numbers 

Almost all the simulation methods and algorithms to be discussed in later 
chapters derive their randomness from an infinite supply Uo, U1, U, ,  , . . of 
random numbers; that is, an independent sequence ( Ui) of random variables 
uniformly distributed on (0, 1). Many users of simulation are content to 
remain ignorant of how such numbers are produced, merely calling standard 
functions to produce them. Such attitudes are dangerous, for random num- 
bers are the foundations of our simulation edifice, and problems at higher 
levels are frequently traced back to faulty foundations. 

This chapter is of rather specialized appeal. Do not yield to the temptation 
to skip it without working exercise 2.17, for many of the random number 
generators in use (at the time of writing) have serious defects. 

2.1. HISTORY AND PHILOSOPHY 

There is no mathematical problem with random numbers: their existence 
is provable from Kolmogorov’s axioms for probability. [See, for example, 
Neveu (1965, Section 5.1).] However, this result does not produce a realiza- 
tion of a sequence of random numbers for us to use; we have to find some 
observable process of which the mathematics is a reasonable model. The 
philosophical problem hinges on that much-abused word “reasonable.” 
How can we decide from a finite sequence ( U l ,  . . . , U,) whether (Ui) is an 
adequate model? We have immediately all the philosophical problems of 
statistical inference. 

The earliest users of simulation used physical processes which were 
accepted as random. Most readers will have performed experiments on 
tossing coins or throwing dice when learning about probability. Such 
simulation experiments have a long history. A more sophisticated variant 
from the 18th century is Buffon’s needle experiment to estimate n. (See also 
Section 7.5.) Mechanical devices are still widely used in gambling (dice, 
roulette wheels) and in lotteries [see West (1955) and Inoue et al. (1983)l. 
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Tippett (1927) produced a table of 40,000 digits “taken at random from census 
reports.” Later tables, such as the RAND (1955) one of a million digits, were 
produced from electronic noise, which is also the random input to the 
British “Premium Bond” draw (Thompson, 1959). 

All these physical methods have been widely accepted as random, pre- 
sumably on the basis of observation and explicit or implicit testing. However, 
many of them have been found to exhibit biases and dependencies. In the 
case of the RAND machine there were mechanical faults in the recording 
mechanism that marred the randomness suggested by the theory of elec- 
tronics (Hacking, 1965, p. 129). Thus even physical devices need to be tested. 

Simulation was one of the earliest uses of electronic computers. The pio- 
neers of computing the 1940s found that physical devices did not mesh well 
with digital computers. Even when tables of random numbers were available 
on punched cards or tape, they were too slow and cumbersome. So they 
looked for simple ways to produce haphazard sequences, and considered 
various nonlinear recursive schemes. One of the earliest was von Neumann’s 
“middle square” method. Suppose we want a sequence of four-digit decimal 
numbers. Starting from 8653 we square it (74874409) and extract the middle 
four digits, 8744. This can be repeated to obtain 

8653,8744,4575,9306,6016, 1922,6940,. . . ( 1 )  

a deterministic sequence that appears random. Hence, the terminology of 
pseudo-random (pseudo-: false, apparent, supposed but not real-Concise 
Oxford Dictionary) or quasi-random (quasi- : seeming, not real, half-, almost-- 
Concise Oxford Dictionary). We give a formal definition. 

Definition : A sequence of pseudo-random numbers ( Ui) is a deterministic 
sequence of numbers in LO, 11 having the same relevant statistical properties 
as a sequence of random numbers. 

This needs clarifying by specifying which properties are relevant and 
statistical. Informally, what is meant is that any statistical test applied to a 
finite part of ( Vi) which aims to detect relevant departures from randomness 
would not reject the null hypothesis. In practice it seems sufficient to insist 
that the joint distributions of (Ui+ ,, . . . , U i + &  are not far from uniformity in 
[0, 1Ik for small values of k (say, k 6 6). 

One of the most appealing ways of viewing this definition is in terms of 
predictability. In everyday speech we call things “random” if we cannot pre- 
dict them. For example, one would quickly reject the output of the algorithm 



16 PSEUDO-RANDOM NUMBERS 

given in Table 2.1 when one notices that Ui never lies in ( V i -  2, Ui-  and so 
can be predicted to some extent. The middle square example looks unpredict- 
able for a while, then settles down to 

2100,4100,8100,6100,2100,. . . 

What we need are sequences that are hard to predict unless the mechanism 
generating them is known. 

This introduces a connection with cryptography, the art or science of 
turning meaningful sequences into apparently random noise in such a way 
that a key-holder can recover the original data. The author’s first acquain- 
tance with pseudo-random numbers came in this way. A sonar device was to 
be constructed using pseudo-random acoustical noise. The pseudo-random- 
ness made it unlikely that an enemy would recognize the sonar as a signal 
amongst oceanic noise, whereas the known structure enabled the sonar 
to recognize echoes of its own emissions. 

Unpredictability is also the key as to why we accept physical devices as 
random. We know that if we had a sufficiently precise knowledge of the 
initial position and spin of a roulette wheel we could predict its outcome. 
However, the mechanism used magnifies the initial conditions to make 
imprecise knowledge useless for prediction. Thus we use randomness to 
cover our ignorance of the details of the process used, and we can do the same 
for nonlinear recursions. 

Some Common Generators 

The middle-square method and (2) were quickly rejected as sources of pseudo- 
random numbers, but one method of that era has survived. Lehmer (1951) 

Table2.1. Fifty Numbers from (2); read 
Down Columns 

0.563 0.478 0.218 0.396 0.455 
0.624 0.527 0.163 0.527 0.692 
0.187 0.005 0.382 0.923 0.147 
0.811 0.531 0.545 0.450 0.839 
0.999 0.536 0.926 0.373 0.986 
0.810 0.067 0.471 0.824 0.825 
0.809 0.603 0.397 0.197 0.811 
0.620 0.671 0.867 0.020 0.635 
0.429 0.274 0.264 0.217 0.446 
0.049 0.945 0.132 0.238 0.082 
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reported experiences with the congruential generator 

U i  = a U i - l  mod 1 (3) 

which mimics the magnification effect of a roulette wheel provided the multi- 
plier a is large. In practice (3) must be computed in finite-precision arith- 
metic, so it is usual to generate integers Xi by 

X i  = a X i - l  mod M (4) 

and set U i  = X J M .  Provided a and M are integers, ( 3 )  is then performed 
exactly. (Lehmer used a = 23, M = 10’ + 1 on a decimal computer.) This 
family of generators and its cousins is now widespread. 

Cryptographers are more concerned with pseudo-random sequences 
of hits and the use of special hardware. Thus they have tended to prefer 
pseudo-random number generators based on shjft-registers. These record the 
last d bits hi- 1, . . . , hi-,,, so 

for some functionf‘: {O, 1 (0, 1 i. The usual choice is 

for binary constants ul. . . . , an. There are many ways to obtain pseudo- 
random numbers from a sequence of pseudo-random bits. The simplest is 
to let 

for integers L and M with 0 < M < L. 
These generators are discussed in detail in the next three sections. I t  is 

worth noting that minor variations may give rise to very different behavior. 
For example, (3) implemented in floating-point arithmetic may behave quite 
differently from an exact implementation via (4) (cf. exercise 2.4). All these 
generators have the property that eventually they reach a sequence that 
repeats itself; the middle square example had such a sequence of length 
four. This length is called the period of the generator. Clearly four is un- 
acceptable, and the period should be as long as possible. 

There are other generators implemented on popular microcomputers, 
apparently without reference to the existing literature. The BASIC inter- 
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preter on the Research Machines 3802 forms 

v = 38965Ui- + 26664 

and then renormalizes, Ui = 2"x, where a is chosen so that < U i  < 1. 
This reaches a cycle of period 1995 after about 10,000 calls (Research 
Machines Ltd., 1982). 

The BASIC interpreters on both the APPLE I1 and CBM PET micro- 
computers have used 

= 0.708076143 x Ui 

again renormalized so < W; = 2'v < 1. Now W;. is a 32-bit number, so 

W; = 0.BlB2B3B4 

for bytes 0 < Bi < 256 (and El 2 128). Then on the Apple U i  = O.B&B,Bl, 
whereas on the Pet Ui = 0.B4B3B2B1 (Henery, 1983). 

Testing 

The sequences produced by all these generators do have some structure. 
Most of the rest of this chapter is devoted to identifying that structure and 
assessing its consequences. Any generator can be tested empirically by apply- 
ing statistical tests for independence and uniformity to (Ul ,  . . . , U,) for large 
N .  However, this can be very time-consuming and always leaves open the 
possibility that there is some relevant structure which has not been detected. 

For certain congruential and shift-register generators it is possible to find 
exactly the distribution of ( U i ,  . . . , U i + k - l )  for small k .  These theoretical 
tests have proved more searching than empirical tests. Thus, one is recom- 
mended to choose a generator for which theoretical tests are available and 
have been performed before it is put to serious use. (A mild amount of pre- 
dictability might be an asset in an arcade-style game.) 

The undesirable structure of (3) and (5) has led some authors to suggest 
applying further algorithms to their output in an attempt to destroy the struc- 
ture. This might involve permuting the ( U i )  or choosing between two or 
more generators for each i (See Section 2.5). Beware of the assumption that 
they improve matters. Very little progress has been made on their theoretical 
analysis, and the possibility remains that the known structure is transformed 
to something worse or that further structure is introduced. Complex algo- 
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rithms are by no means necessarily more "random" than simple ones, as is 
shown by the striking example of Knuth (1981, pp. 4-5). 

The conviction of this author is that it is better to use simple and well- 
understood algorithms, and that within families meeting those conditions 
it is possible to choose pseudo-random number generators good enough for 
any prespecified purpose. 

*Random Sequences 

Philosophers have discussed several ways to define randomness, but few are 
relevant to our purposes. The point of view taken above is close to that of 
Hacking (1965), who was most interested in finite sequences in attempting to 
understand the foundations of statistics. Another approach particularly 
associated with von Mises (1919, 1957) is to define probability directly in 
terms of limiting frequencies of infinite sequences. A collecrire K is an infinite 
sequence of outcomes satisfying certain conditions. The probability of an 
event E is defined as the limit as n -+ cc of the frequency of E in the first n 
terms of K .  Elementary texts often introduce P(coin tossed gives heads) = 4 
in this way. 

Von Mises' original conditions were too strong, but they were relaxed by 
others and put into definitive form by Church (1940). We say (Ui) is k- 
distributed if the empirical distribution of ( U i ,  . . . , U i + k -  converges to the 
uniform distribution on [0, 1Ik. Then ( Ui) should be k-distributed for all k, 
called m-distributed. Furthermore, any subsequence of ( U i )  should be 
oc-distributed. One has to confine attention to computable subsequences to 
avoid allowing the choice of all Ui 2 4. Computable subsequences are what 
are known to probabilists as optional sampling rules and insist that whether 
or not Ui+ is included is determined by knowledge of U , ,  . . . , Ui. There 
exist sequences ( U , )  for which all computable subsequences are =c - 
distributed; these are the von Mises--Church collectives. 

All our algorithms give rise to periodic sequences and so are not even 
1-distributed as only a finite set of values will occur. However, only a theory 
of random finite sequences seems relevant to simulation. Kolmogorov 
(1963) had one idea, and Chaitin (1966) and Martin-Lof (1966) defined 
randomness in terms of the complexity of the algorithm mecessary to gene- 
rate the sequence. 

None of these helps with our practical problem, and we will take the 
pragmatic approach of making ( Ui) as featureless as possible: where structure 
is unavoidable we will aim to make its scale small. 

"Starred subsections are optional reading. 
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2.2. CONGRUENTIAL GENERATORS 

Congruential generators are defined by 

X i  = ( a x i - ,  + c) mod M (1) 

for a multiplier a ,  shift c, and modulus M ,  all integers. We can and will take 
a, c, Xi to all be in the range {0,1,. . . , M - I}. The pseudo-random sequence 
( V i )  is determined by ( 1 )  and 

once the seed X ,  is given. We saw in Section 2.1 that generators of this form 
with c = 0 were first described by Lehmer (1951); such generators are called 
multiplicative. The early literature contains some confusion about the general 
(mixed) case; the first example published seems to be a = 27, c = 1, M = 235 
by Rotenburg (1960). 

The future of(Xi) is determined by its current value. Since the M + 1 values 
(X,, . . . , X,) cannot be distinct, at least one value must occur twice, as X i  
and Xi+, , ,  say. Then Xi,. . . , Xi+,’- is repeated as Xi+,,,. . . , X i + Z k -  and so 
the sequence (Xi) is periodic with a period k < M .  The full period M can 
always be achieved with a = c = 1. Table 2.2 illustrates the range of behavior 
that can occur. Clearly, the period depends on the choice of a, c and perhaps 
also on the seed. For multiplicative generators the maximal period is M - 1, 
for if 0 ever occurs it is repeated indefinitely. 

It is usual to choose M to make the modulus operation efficient, and then 
to choose a and c to make the period as long as possible. It is known how to 
find the period of an arbitrary congruential generator (Fuller, 1976; Dudewicz 
and Ralley, 1981) but this seems unnecessary as the following theorems suffice. 
Proofs are given in Section 2.7. 

Theorem 2.1. A congruential generator has full period M if and only if 

(i) gcd(c, M )  = 1. 
(ii) a = 1 mod p for each prime factor p of M .  

(iii) a E 1 mod 4 if 4 divides M .  

Note that if M is a prime, full period is attained only if a = 1. 

Theorem 2.2. A multiplicative generator with modulus M = 28 2 16 
has maximal period M/4, attained if and only if a mod 8 = 3 or 5 .  In the case 
a = 5 mod 8, let b = Xo mod 4. Then ( V i  - b / M )  is the sequence output 
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Table 2.2. Examples of Congruential Generators 

M = 1 6 , ~  = 1.c = 1 
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0 , _ . . .  
M = 1 6 , ~ = 5 , c = I  
0, I ,  6, 15, 12, 13, 2, 11,  8,9, 14, 7, 4, 5, 10, 3,0, . .  . . 
M = 16, u = 5, c = 4 
0, 4, 8, 12, 0,. . . o r  I .  9, I , .  . . or 2, 14, 10, 6. 2, .  . . o r  3, 3, 
or5,13,5 , . . .  o r 7 , 7  , . . .  or11.11 , . . .  or15,15 , . . .  
M = 16, u = 5, c = 0 
I ,  5,9. 13, 1, . . .  or 2, 10, 2 , .  . . o r  3, 15, 11. 7, 3, _ _ . o r  
4 ,4 , .  . . o r  6, 14,6,. . . o r  8, 8 , .  . .or 12, 12 , .  . . . 

1, 3,9, 1 1 ,  I . .  . . or 2, 6. 2 , .  . . o r  4, 12,4.. . . o r  
5, 15, 13, 7, 5, . . .  or 8, 8, . . .  or 10, 14, 10,. . .  . 
M = 16, u = 4, c = 0 
I ,  4. 0, 0.. . . or 2, 8. 0, 0,. . . , etc. 

1 ,2 .4 ,8 ,3 ,6 ,12,11,9,5,10,7.1 , . . . .  
M = 1 3 . ~ = 4 , ~ = 0  
I ,  4, 3, 12, 9. 10, 1, . . . or 2. 8, 6, 1 I .  5. 7, 2, . . . . 
M = 1 3 , ~ = 5 , c = O  
I .  5, 12, 8, 1. .  . . or 2. 10, 1 1 ,  3, 2 , .  . . or 4. 7, 9, 6, 4 . .  . . . 
M = 13, u = 12. 1' = 0 
1 ,  12. I , .  . . or 2, 11, 2 , .  . . o r  3, 10. 3. . .  , ,  etc. 

M = 1 6 , ~  = 3.c = 0 

M = 1 3 , ~  = 2. c = 0 

from the full-period generator 

Xi =  OX,-^ + b(a - 1)/4)mod M/4 

The final assertion is due to Thompson (1958) and contradicts an earlier 
folklore that mixed geiierators were somehow less random than multiplica- 
tive ones. The sole advantage of a multiplicative generator seems to be to 
avoid U i  = 0. 

Theorem 2.3. A multiplicative generator has period M - 1 only if M is 
prime. Then the period divides M - 1, and is M - 1 if and only if a is a 
primitive root, that is, a # 0 and a(M-  l ) l P  f 1 mod M for each prime factor 

Thus prime moduli are much more useYul for multiplicative generators. 
p o f M  - 1. 
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It may not be easy to find a primitive root, but once one is found all the others 
follow from: 

Theorem 2.4. If a is a primitive root for a prime M ,  so is uk mod M provided 
gcd(k, M - 1) = 1. 

One example of the use of this theorem is the Mersenne prime 231 - 1. 
We know 231 - 2 = 2.32.7.11.31.151.331 from which one can check that 7 
is a primitive root and hence so is 75 = 16807, recommended by Lewis et al. 
(1969) and Gustavson and Liniger (1970). 

*Reduction Modulo M 

The modulus M is usually chosen to make it easy to implement Y mod M 
without division. If the computer works to base r and M = #, all we have to 
do is to retain the bottom p digits of YO For example, 12345678 mod lo5 = 

45678. Thus one finds powers of 2 used on binary computers and powers of 10 
used on calculators. 

It is only a little more difficult to implement M = rs - s for small s. 
Let Z = Y mod M and z = Y mod # (which is easy). Then 

Y = z + trs = tM + (z + s t )  

so Z = ( z  + t s )  mod M ,  which can be performed by subtracting M from 
z + ts  until the result is less than M. Exercise 2.7 shows s subtractions will 
suffice. 

More care is needed to implement a multiplicative generator with 
M = rs + 1. This takes the rs values (1, .  . . , r } .  If Y = a x i - , ,  Y = z + t# 
and ( a x i -  ,)mod M = ( z  - t)mod M = z - t if z 2 t, otherwise z - t + M .  
The one remaining problem is that we will have to arrange to store the value 
# as 0 in a P-digit word. 

These tricks have proved quite popular. The Mersenne prime 231 - 1 
has been used with several multipliers; Lehmer originally used the prime 
lo* + 1 and the prime 216 + 1 has been popular more recently. For # + 1 
it is usual to let U i  = Xi/#, to avoid a time-consuming division. 

Choosing a Generator 

Thus far we have restricted our choice by choosing M so that mod M is easy, 
and a and c to achieve full or maximal period. There is still a lot of freedom 
left! We will now confine attention to full period generators and multi- 
plicative generators with a prime modulus and maximal period. These take 
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values evenly spaced in [0, l), each occurring once per cycle. Provided M is 
sufficiently large, the ( U i )  will be nearly uniformly distributed. They may, 
however, be completely predictable, for example if a = c = 1. A less obvious 
example is the once very popular generator RANDU with M = 

a = 216 + 3,  c = 0. Then 

= (216 + 3 ) X , ,  + ~ ~ 2 ~ '  = (216 + 312x, + ~ ~ 2 ~ ~ ( 2 ~ ~  + 3 )  + C2231 

= 6(216 + 3 ) x ,  - 9x ,  + C , 2 3 1  

= (6.216 + 9)x ,  + ((216 + 3)cl + Cz + 2 X , p 3 '  

= 6 X , + ,  - 9X, + c J 3 '  

where each ci is an integer. Thus 

U i + z  - 6 U i + l  + 9 U i  is an integer 

and ( U i ,  U i  , U i +  ?) lies on one of 15 planes in the unit  cube. This means 
that if ( U i - l ,  U i - 2 )  is known even to limited accuracy, then U i  is quite 
predictable. This is a fairly extreme example, but i t  has been very widely used 
on IBM 360 /370  and PDP-I 1 machines! 

The remedy is to choose u and c to avoid this happening. Marsaglia 
(1968)pointedout and Fig. 2.1 demonstrates that thek-tuples(Ui,. . ., U l + k -  

(a)  ( b )  

Figure 2.1. Plotsofpairs(U,, U , ,  ,)forvariouscongruentialgeneratorsmodulo2048.(~)rr=hS, 
c = I .  all 2048 points. ( h )  First 512 points of(u) with X ,  = 0. (c , )  u = 1365, c = 1. ( t l )  [ I  = 1229. 
c = 1 .  ( e )  u = 157, c = 1. ( J )  u = 45. c = 0. ( q )  u = 43, c = 0. 
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Figure 2.1 (Continued) 
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will always lie on a finite number of hyperplanes in [0, l)k. More precisely, 
we have (Beyer et al., 1971, Smith, 1971, Ripley 1983~) .  

Theorem 2.5. Let l \ k  be the lattice j t le ,  + . . .  + tkek I ti integer; with basis 

1 
N el = - ( 1 ,  a, a2 

( 3 )  
e j  = j t h  un i t  vector for 2 d j d X 

Then 

( i )  For full-period generators 

with N = M, and ((Uk,, . . . , U k , + k -  is of the same form with 
N = M/gcd(k, M). 
For a maximal-period multiplicative gcnerator with prime modulus 
M, 

(ii) 

: (u , ,  . . . , U,+k-l); = (0, I l k  n 

with N = M .  and 

( ( U J , , .  . . . . U k l + h - l ) ;  = (0, n Ak 

ifgcd(k, M - 1 )  = 1,otherwiseit isanonlatticesubsetof(0. n Ak. 

PROOF. See Section 2.7. 0 

Figure 2.1 shows what happens in some other cases. Note that we can 
deduce the behavior of multiplicative generators with M = 2O, (I = 5 mod 8 
from the full-period case by Theorem 2.2; one merely replaces M by M/4 in 
defining A,. 

One important conclusion of Theorem 2.5 is that the choice of c merely 
shifts the lattice. I t  has been traditional that c be chosen to minimize the 
correlation between U i  and U , , , .  However, for a fine lattice like Fig. 2.1~1 
the correlation will be small for any c, whereas for Fig. 2 . 1 ~  to minimize the 
correlation will merely mask the lack of independence of ( U , ,  Ui+ I ) .  There 
seems no compelling advantage of any other value over c = 1. 

This reduces our choice to a few values of M and to the choice of u. In 
the Section 2.4 we show that u can be chosen to make the lattice of values 
described in Theorem 2.5 rather evenly spread in [0, l)k and thus about 
N -  'Ik apart. ([O, l )k n Ak contains N points.) We would like this distribution 
to be as even as possible, which means choosing M as large as possible. An 
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idea of how large M might need to be can be obtained from: 

Theorem 2.6. Suppose n points are uniformly and independently distributed 
in (0, l)k. Let D be the smallest distance between a pair of points. Then Dk is 
approximately exponentially distributed with mean 2r(# + 1)/nk/’n2 = 
akin2, say. 

PROOF. Ripley (1983a). The approximation is asymptotic as n + co but 
remarkably accurate for n as small as 25. 0 

Suppose our simulations need n k-tuples. Then provided N-’Ik  < 
(ak/99.50n2)’/‘, the 1% point of the distribution of D, the nonuniformity of 
the pseudo-random numbers will be negligible. This reduces to N >, 200n2, 
say 2” for n = 1000. Thus: 

Recommendation. A congruential generator should have period as large as 
possible, at least 230, a multiplier a chosen to give period M or M - 1, 
and a good lattice structure as described in Section 2.4. 

2.3. SHIFT-REGISTER GENERATORS 

Shift registers were introduced in Section 2.1. In their most general form 
they have M 3 2 states, but we will confine attention to the binary case 
which has been the only one used for pseudo-random numbers. We have 

This is easy to implement in a hardware circuit by use of a shift register, 
hence the name. Note that addition modulo 2 and exclusive or have the same 
truth table, and so we may replace (1) by 

where uj,  = . . . = aj, = 1 and all other a j  = 0. 
Each bi is determined by (bi- 1, . . . , b i - d ) ,  which has at most 2d possible 

values. Furthermore, if this is the zero vector, then b, = 0, and bj = 0 for all 
j 2 i. Thus, the maximal period is 2d - 1. The details of how to find the 
period of (1) (or even if the maximal period is attained) depend on methods of 
factorizing polynomials over finite fields. Golomb (1967) summarizes the 
algebra needed. Recursion (1) is associated with the polynomial 

f(x) = xd + a lxd- l  + . - .  + ud 
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It has been usual to consider trinomials 1 + x4 + x p  with 1 < 4 -= p ,  so 

Reversing the sequence shows 1 + . X P - ~  + xP and 

b.  I = b. 1-p  EOR h i -q  

must have the same period. Table 2.3 lists some pairs ( p ,  q )  that give maximal 
period 2p - 1. [From Golomb (1967). Further values are given by Lewis 
and Payne (1973, Fig. 9), Zierler and Brillhart ( 1968, 1969), and Zierler ( 1969).] 
Some specific suggestions are p = 98, y = 27 (Lewis and Payne, 1973); 
p = 521, q = 32 (Bright and Enison. 1979): and p = 607, q = 273 (Tootill 
et al., 1973). 

Tausworthe ( 1  965) suggested using 

I. 

u i  = c 2-.’hi,+, = O h , ,  + , ’ ‘ ’ hi!+,. 
1 

that is, L-bit binary fractions taken t apart. Consequently, such random- 
number generators are called Tausworthe generators. The parameter t is 
called the rlecimurioii. A decimation is said to be propri. i f  gcd(t, 2 p  - 1 )  = 1 .  
For a proper decimation ( U , )  has period 2“ - 1 (since this is the period of 
each of its bits by Lemma C of Section 2.7). 

The BBC microcomputer has a Tausworthe generator with p = 33, 
y = 13, t = L = 32. This is a proper decimation, and so has period Z3’ - 1. 
(The order of the bytes in U i  is reversed, but this has no consequence.) The 
following algorithm is a neat way to implement a Tausworthe generator with 

Table 2.3. 
Period Shift Register, with p < 36 

All Values of (p, q )  for which I + xy + x p  gives a Maximum- 

I’ ‘I  P ‘I 

2 1  
3 I .  2 
4 I .  3 
5 2, 3 
6 1,5 
7 1 ,3 .4 .  h 
9 4. 5 

10 3.7  

I 1  
15 
17 
18 
20 
21 

23 
71 

2. 9 
1.4, 7. x. 1 I .  14 
3, 5,  6, 11, 12, 14 
7. 1 1  
3. 17 
2. 19 
1.21  
5.9 .  14, 18 

P 

25 
28 
29 
31 

33  
35 
36 

‘I  
-~ 

3.7. 18. 22 
3. 9, 13. 15. 19. 25 
2. 27 
3. 6. 7, 13. 18. 

24, 25. 28 
13.20 
2. 33  
I I ,  25 
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q d p/2, p = t = L = word length. [It is used with p = 36, q = 11 on the 
Honeywell Multics system (Sibson, 1984).] 

Algorithm 2.1 
word X with bi,+ on the left: 

(Whittlesey, 1968; Payne 1970). Assume U i  is stored in a 

1. copy x to  7: 
2. Left shift X by q bits, filling with zeroes. 
3. Let X = X EOR 7; copy X to T (bitwise exclusive or). 
4. Right shift T by p - q bits, filling with zeroes. 
5. X = X EOR T now contains U i + l .  

One can use p = t = L < word length by padding with zeroes on the 

Lewis and Payne suggested making up an L-bit integer from nonconsecu- 
right. Exercise 2.9 shows that this algorithm works. 

tive terms in (bi) ,  for example, 

yi = bjbi-r, ' '  bi-IL (3) 

for delays 1 2 ,  . . . , I L .  Each bit of y still obeys (2), so we can form 

= y i W p  EOR y I - ( p - 4 )  (4) 

which can be implemented by a simple circular buffer. Such generators are 
called generalized feedback shift registers (GFSRs). They were introduced to 
be faster than Tausworthe generators, but Algorithm 2.1 may be faster for 
p = t = L. The p starting values for recursion (4) need not satisfy (3).  How- 
ever, the period of ( yi) will depend on the starting values. Obviously we will 
obtain random numbers by U j  = 2-LI.;., so 0 < U j  < 1. 

Example. p = 5 ,  q = 2 gives the bit sequence 

11 11 10001 101 1101010000100101 100.  . . 

of maximum period 3 1. The Tausworthe sequence with t = L = 5 is 

31, 3, 14, 20, 4, 22. 15, 17. 33, 10, 2, 11, 7,  24, 27. 21. 1, 5. 19. 
28, 13, 26, 16, 18, 25. 30, 6, 29, 8, 9, 12.. . . 

If we take the GFSR b j b j _ , b i - 1 2 b i _ l , b i _ 2 ,  we obtain 

1, 13, 8, 29, 30,9, 16, 23, 20, 14. 31. 4. 24. 11, 10, 7, 15, 18, 
12, 5. 21. 3, 23, 25. 6, 2, 26. 17, 27, 28, 19.. . . 0 
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The theoretical analysis of Tausworthe and GFSR sequences concentrates 
on the k-tuples of integers (x, . . . , x + k -  ,). We would like all k-tuples to be 
equally frequent in a period. There is a minor problem with the missing 
p-fold zero in (bi). We say (x) is k-distributed if  all k-tuples are equally 
frequent except zero, which occurs one less time in each period. 

Theorem 2.7. A Tausworthe generator with proper decimation is k- 
distributed for 1 =S k d int[p/r]. 

PROOF. (x, . . . , X + k -  1) is made up from kL bits of (bit+ . . . , bir+kr). If 
kr d p ,  this is a subset of (bit+ I ,  . . . , bit+,) that takes all possible values 
except all zeroes once in a period. Thus every nonzero k-tuple of yi's is 

0 

Suppose kL > p .  Then only 2, - 1 of the possible 2kL - 1 values of 
(x, . . . , x + k -  I )  can occur. Consequently, k-distribution is impossible for 
k > int[p/L]. Figure 2.2 shows that there may be advantages in taking 
r > L to improve the k-dimensional structure, and that when k-distribution 
fails, it can fail dramatically. 

The analogue of Theorem 2.7 is not automatic for GFSRs; it depends on 
the starting values. Let A be the p x L matrix whose rows are the bits of 
Y , ,  . . . , Y,, called the seed marrix. 

equally frequent in a period. 

Theorem 2.8. A GFSR sequence is I-distributed if and only if its seed 
matrix is nonsingular. 

PROOF. Let Ai be the corresponding matrix for (x, . . . , x+,- l). Define a 
p x p matrix C by 

Cij  = 

C p j  = hi j  + hqj for 1 < j < p 

for 1 < i < p ,  1 < , j  d p 

so Ai  = C A i - ,  = C i - ' A  with addition modulo 2. 
Now(bi+j  ,..., bi+j+p- l )T  = C'(bi , . . . ,  b i + p - , ) T ~ ~ C o  , . . . ,  C ' , ~ = 2 ~ - 2 ,  

are distinct matrices; hence x is 1-distributed if and only if A is nonsingular. 
0 

Theorem 2.9. A GFSR sequence is k-distributed if and only if both 
k =S int[p:L] and thematrix with row i. the bitsof(Y,,.. ., x + k -  i = 1.. . . , p 
is nonsingular. 

PROOF. Apply theorem 2.8 to the kl-bit integers made up by concatenating 
o x,. . . , x ' + k -  1 .  
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(4 (d) 

Figure2.2. Plots of all pairs (Vi, Ui+,) from shift-register generators with p = 1 1 ,  y = 2. 
(a )  t = L = 1 1 .  (b)  t = L = 5, so 2-distributed. (c) t = 5, L = 8. ( d )  t = 17, L = 8. 

Example. Consider p = 7, q = 1 with period 127. A GFSR sequence with 
L = 3 gives 

0 1 2 3 4 5 6 1 3 1 7 1 3 7 2 2 6 6 2 4  
5 0 4 0 4 6 1 5 4 4 4 2 7 4 1 0 0 6 5 3  
5 1 0 6 3 6 6 4 1 6 5 5 0 2 5 7 3 0 5 2  
7 2 4 3 5 7 5 5 6 7 6 2 2 0 3 1 1 4 0 2  
3 2 0 5 4 2 1 1 2 5 1 6 3 0 3 7 4 7 5 3  
3 4 3 3 2 6 0 7 7 0 1 4 6 7 0 7 1 5 2 1  
7 7 6 4 7  3 6 . .  . 
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- - 
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  

- 1 1 0  - 

31 

which is 2-distributed. The seed matrix is 

which is clearly nonsingular. For 2-distribution we consider 

0 0 0 0 0 1  
0 0 1 0 1 0  
0 1 0 0 1 1  
0 1 1 1 0 0  
1 0 0 1 0 1  
1 0 1 1 1 0  

- 1 1 0 0 0 1  

which is nonobviously of rank six. (See below.) If we were to start with 
6, 5, 4, 3, 2, 1, 0 we would obtain a nonsingular seed matrix and so 
1-distribution. However, for 2-distribution we have 

1 1 0 1 0 1  
1 0 1 1 0 0  
1 0 0 0 1 1  
0 1 1 0 1 0  
0 1 0 0 0 1  
0 0 1 0 0 0  
0 0 0 0 1 1  

which is singular since the sum (mod 2 )  of columns 2, 5 ,  and 6 is zero. Thus 
0 this sequence is not 2-distributed. (See Exercise 2.1 1.) 

Theorems 2.7 and 2.9 show the need for very long periods. For example, 
Bright and Enison (1970) and Fushimi and Tezuka (1983) both consider 
p = 521, y = 32, with L = 64 and L = 32, respectively. By Theorem 2.9 
these are candidates to be 8-distributed and 16-distributed, and Fushimi and 
Tezuka check that this is so. However, even with a period of 2”’ - I the 
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1 1 0 1 0 1  
0 1 1 0 0 1  
0 0 1 1 1 1  
0 0 0 0 1 1  
0 0 1 0 0 0  
0 0 1 0 0 0  

L 0 0 0 0 1 1  

- 1  1 0 1 0 1 '  
0 1 1 0 0 1  
0 0 1 1 1 1  
0 0 0 1 1 1  
0 0 0 0 1 1  
0 0 0 0 0 0  
0 0 0 0 1 1  

k-tuples have a spacing of 2 - 3 2  in dimensions 1-16, whereas congruential 
generators of similar periods will do much better for k Q int[ p / L ] .  

In general a very long period will be easier to achieve with a GFSR 
generator than a Tausworthe or congruential generator. All one has to do  is 
to increase the size of the buffer retaining x- . . . , y i - ,  when increasing p .  
One then uses the following algorithm. 

Algorithm 2.2. 
with Y- ,, . . . , Y-,,, and pointers I and J set to p - q and p 

Locations Y[ 1 3  . . . Y [ p] are set aside as a buffer, initialized 

1. Y = Y[I]  EOR Y [ J ] ,  Y [ J ]  = Y. 
2. I = I - 1 ;  ifI = 0 then I = p .  
3. J = J - 1 ;  ifJ = 0 then J = p .  
4. Return Y 

+ 

I 

Normally each Y will be held within a computer word; if this is not possible, 
operation 1 is applied to each part of Y independently. 

There remains the problem of choosing the starting values to achieve 
maximal k-distribution. Trial-and-error checking the conditions of Theorem 
2.9 seems to be the only general way known. To achieve I-distribution is 
easy; merely including I ,  2, . . . , 2'- ~ in (Y , ,  . . . , Y,) ensures that the seed 
matrix is nonsingular. Nonsingularity of a p x kL binary matrix is easily 
checked by reducing it to upper triangular form by exclusive-oring rows. 
For example, consider (5). The following process consists of exclusive-oring 
each row in turn with lower rows to remove 1's from the next column, or 
permuting rows. One rapidly finds the matrix to be of rank 5 and so singular. 

1 1 0 1 0 1  
0 1 1 0 0 1  
O l O t l O  
0 1 1 0 1 0  
0 1 0 0 0 1  
0 0 1 0 0 0  
0 0 0 0 1 1  - 

1 1 0 1 0 1  
1 0 1 1 0 0  
1 0 0 0 1 1  
0 1 1 0 1 0  
0 1 0 0 0 1  
0 0 1 0 0 0  
0 0 0 0 1 1  

1 1 0 1 0 1  
0 1 1 0 0 1  
0 0 1 1 1 1  
0 0 0 0 1 1  
0 0 0 1 1 1  
0 0 0 1 1 1  

~ 0 0 0 0 1 1  

l l 0 l O l  
r 3 1 1 0 0 1  
0 0 1 1 1 1  
0 0 0 1 1 1  
0 0 0 0 1 1  
0 0 0 1 1 1 

- 0 0 0 0 1 1  
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1 1 0 1 0 1  
0 1 1 0 0 1  
0 0 1 1 1 1  
0 0 0 1 1 1  
0 0 0 0 1 1  
0 0 0 0 1 1  
0 0 0 0 0 0  

- 
jl 1 0  1 0  1 
0 1 1  0 0 1 
0 0 1 1 1 1  
0 0 0 1 1 1  
0 0 0 0 1 1  
0 0 0 0 0 0  

- 0 0 0 0 0 0  

Another method is to select the initial values of the form (3). Then the 
bitsof(Y, ,..., y + k - l ) a r e  [ b i - j + k - l l j  = [ , I 2  + t ,..., I L  + t ; t  = O , . .  ., k - 11. 
Provided this set of values is distinct, the proof of Theorem 2.7 shows that 
these k-tuples are 1-distributed and hence that ( Y , )  is k-distributed. One must 
then choose the delays at least k apart and with I L  d p - k, which is always 
possible for kL < p ,  for example by 

Specific implementations of generators of this type are considered by Arvillias 
and Maritsas (1978) and Fushimi and Tezuka (1983). 

Fellen (1969) and Toothill et al. (1971, 1973) study less relevant properties 
of Tausworthe generators. 

2.4. LATTICE STRUCTURE 

We saw in Section 2.2 that the k-tuples ( U i , .  . . , Ui+k- 1 )  from certain con- 
gruential generators lie on lattices in the unit hypercube. Both congruential 
and shift-register generators suffer from the same problem: for a period of 
length N there are only N k-tuples. For shift-register generators with k- 
distribution the word length L is restricted, so that these N points lie on the 
cubiclatticeofside 2 - L ,  with (2 -L)k  < N + 1. Figure22 shows what happens 
if we increase the word length. 

Congruential generators can achieve a very similar k-dimensional 
behaviour, prorirlrti that the multiplier is chosen suitably. The rest of this 
section is devoted to a detailed study of the k-dimensional output of full- 
period congruential generators. and those of maximal period with a prime 
mod ul us. 

Lattices 
A lattice A in R k  is defined by k linearly independent vectors e l , .  . . . ek .  Then 

A = {rle,  + . . . + tkek I t i  integer; 
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is the set of sums of integer multiples of the e,. The set (e, ] is called a basis 
for A. 

Various measures of the “granularity” of a lattice have been developed. 
For a cubic lattice we use the smallest spacing between a pair of points, I , ,  
which is also the length of the smallest nonzero vector in A. Most people 
envisage a lattice as being made up  by repeating a basic parallelogram cell. 
(Look at Fig. 2.1 again to convince yourself.) One way to define such a cell 
is to take e, as a shortest nonzero vector in  A, e, as the shortest vector 
linearly independent of e,, e3 as the shortest linearly independent of e,  and 
e,, and so on. Fork d 4 this generates a basis for A (except for one exceptional 
lattice for k = 4, for which only some of the choices for shortest work). 
However, one’s intuition about lattices fails for k 3 5. Let li be the length of 
ei chosen in this way. Then Ik is one measure of “granularity,” and r = / ,Jl ,  
measures the “uniformity” of the lattice. (We can usually achieve r d 2.) 

Yet another method of measuring uniformity was given in Section 2.2 
where we saw that the triples from RANDU lie on only 15 planes. I t  has 
proved more useful to measure the maximal spacing between parallel 
planes that cover the lattice. Clearly Fig. 2.1(1 will have a smaller spacing 
than Fig. 2 . 1 ~ .  Call this spacing sk  and its reciprocal \ t k .  

Computing Lattice Constants 

The theory behind the following methods is described later in this section. 
The case k = 2 is easiest. 

Theorem 2.10. Start with any basis (e, fl for A,. Relabel if  necessary so that 
(\el( d I(f((. Compute s = nint(e”f/((e((’). I f  s # 0, replace f by f - se and 
repeat. I f  s = 0, then I ,  = [leil. I ,  = llfll, and v 2  = N I , .  

Rrmrirks. ( i )  n in t ( s )  is the nearest integer to .Y, halves being rounded toward 
zero, so nint( - 3.5) = - 3, for example. (ii) The coordinates of all vectors in 
A 2  are multiples of I/N (since this is true of the basis 2.3). Thus it may be 
convenient to perform the calculations on Ne and Nf. 

PROOF. ( i )  Ilf - sell’ = /Ifl12 + s211ej12 - 2seTf < l l f I / ’  if and only if s # 0 
and 2eTf > sIle11*, if and only if s # 0. Thus the algorithm strictly reduces the 
length off and by remark (ii) must terminate. 

( i i )  Clearly f - se E A2 ,  and (e, f - se) is another basis. 
( i i i )  Now suppose we have a basis with s = 0. By replacing f by - f  if 

necessary, we may assume 0 d eTf d $llel12. Suppose g E A, and ilgl/ < i l f  1 ) .  
Then there are integers u and u with g = ue + uf, and by changing the sign we 
may assume u > 0. Then if c( = u/u, 
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Thus if 1' > 0 we can find a shorter g by replacing t' by - r. Then 

This implies - 1 < c1 < 0, or 0 < - 1' < u. Suppose u # 0. 
Let p = - u /u  > 1 .  Then 

l l f l l Z  > /lgIl2 2 I l f  - Bell2 2 BCB - l)llel12 + l I f l 1 2  
a contradiction. Thus the only vectors shorter than f in A, are integer 
multiples of e, so Il = l/el(, I ,  = (If((. 

(iv) Choose H as the line through the origin of a family of parallel lines 
with spacing s2.  Choose f as a shortest vector in H n A,. Then the basic 
parallelogram has base f and height s,, so area = s,llfll = 1/N. Thus, 
s2 = l/NllfIl 2 l /Nll ,  and equality is attained if H contains a vector attaining 

0 
This method of changing basis was proposed by Beyer et al. (1971) and 

Marsaglia (1972) but has a long history in number theory. It normally 
works extremely rapidly. 

I , .  Thus v 2  = l / ~ ,  = N I , .  

Example. 
For ease of working we multiply both vectors by 512. 

(i) e = (1,45), f = (0, 512) gives s = 1 1 ,  f + ( - 1 1 ,  17). 
(ii) e = ( -  1 1 ,  17), f = (1,45) gives s = 2, f + (23, 1 1 ) .  

(iii) e = ( - 1 1 , 1 7 ) , f = ( 2 3 , l l ) s o s = O  

For Fig. 2.lf we have N = 512, e l  = (1,45)/512, and e, = (0, 1 ) .  

Hence, I ,  = 0.0395, 1, = 0.0498, v 2  = 20.25, r = 1.26. 0 

In three or more dimensions we can give bounds on the lattice constants 
from Theorem 2.1 1 .  The vectors ej* defined there are known as the dual basis. 
They are the rows of E -  I ,  where E has columns el  ' ' ' ek.  

Theorem 2.11. 
be defined by e'ej* = d,,, and MI = min lie? 1 1 .  Then 

Let (ei) be any basis of& with increasing (lei 1 1 .  Let e:, . . . , ez 
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PROOF. From the definitions and Theorem 2.16. 0 

T o  use Theorem 2.11 we need to find a basis made up of short vectors. 
We can extend the ideas of Theorem 2.10 by: 

Algorithm 2.3. 
no change is made for any pair: 

ej - sei. 

Fix some order of the pairs { i, j ) .  Apply the following until 

Assume I(eill < I/ejl(. Let s = nint(e'ej/(leil12). If s # 0, replace ej by 

Exactly as for k = 2 this will terminate in a finite number of steps and 
find a basis with shorter vectors. In most cases the right-hand inequalities 
in Theorem 2.1 1 are then equalities, but not always. The bounds are usually 
quite close. 

Example. 
reduces the basis (2.3) to 

k = 3, N = 216, u = 249. Using { l ,  2 ) ,  (1, 3) ,  j2, 31, as the order 

Ne, = (260, - 796, - 1596) 

Ne, = ( -  519, 1841, - 343) 

Ne, = (1 316,4,996) 

and e ,  + e, + e3 is shorter than e,, the longest of these vectors, but even so 
Theorem 2.1 1 yields 0.0259 d 1, d 0.0296. 

This suggests trying further transformations, as does 

Theorem 
i = 1,  . . .  

( 9  I (  

2.12. (Minkowski). 
, k provided 
e l  I/ d . . .  < /IekIl and 

For k = 3 or 4. basis ei has ~le,/l = I,, 

(ii) Ile,II < /lei + cjejI( ,eachcj E (0, +1. - 1 ) .  
j <  i 

PROOF. Section 2.7. 0 
In applying Algorithm 2.3 we have already checked all combinations with 

just one ci # 0. (s = 0 implies llei k ej(l 3 Ileill.) For k = 3 this leaves four 
combinations for e,, and for k = 4 four for e, and 20 for e4. If we do find a 
shorter vector, we can replace ei by that vector and repeat Algorithm 1.3 
and the test ofTheorem 2.12. In our example this gives I3  = 0.0275. 

This gives us a way to find I,. I,. and I' exactly for k d 4. For k 2 5 it is 
possible that no basis attains I , ,  . . . , / k ,  but the bounds ofTheorem 2.1 1 almost 
always suffice after applying Algorithm 2.3. 
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The Spectral Test 

The vectors (e:) introduced in Theorem 2.1 1 form a basis for another lattice 
A*, known as the polar (or dual) lattice. 

Theorem 2.13. Let X. = {xlxTu integer) be a family of parallel hyperplanes 
covering A. Then u E A *  and \‘k = I T ,  the length of the shortest nonzero 
vector in A*. 

PROOF. The basis ( e l )  spans R k ,  so u = tleT + ’ . .  + tkef for r e d  t i .  For 
each i, e, E X, so ti = eru is an integer; hence u E A*.  Conversely, if u E A*, 
u # 0, then all e, E X and so A c X. 

The spacing of .Yf is min{llxll I x7u= l/llu~l, so v,=min(lIul( 1 . X x A j  = 

0 
We can rewrite this conclusion by noting that U E A *  if and only if 

minjllull I0 # u E A*;  = 17 .  

eyu. .  . e lu  are integers. Thus 

v k  = min{ llull I 0 # u, ui integers, u1 + uu2 + . . . + u k - I u k  is a multiple of N )  

Such a quantity was defined by Coveyou and Macpherson (1967), who called 
testing for large values of v k  the “spectral test.” In that context “large” is often 
assessed by forming C(k = okv:/N, where wk = ~ ~ ’ ~ / 1 - ( k / 2  + 1) is the volume 
of the unit ball in Rk. Values of & larger than 1 are thought good. We can use 
Theorem 2.16 On A* to show that \‘k d ( ‘ k N 1  ’, SO pk < o k c t ,  which helps 
explain why values greater than 1 are thought good. I t  seems preferable to 
use the inequality for \’k in a similar way to r 2 1,  remembering that \‘k is an 
absolute measure of the granularity of Ak. 

It remains to find vk.  For v 2  we have Theorem 2.10. For k = 3 or 4 we 
could apply Algorithm 2.3 and Theorem 2.12 to the polar lattice A*. However, 
if the bounds of Theorem 2.11 are not sufficient, we can carry out a finite 
search by 

Theorem 2.14 (Dieter, 1975). \ ‘k = min{llull I u = t,e: + . . .  + tkef F 0, 
ltil d int[MYIle, 111) for any polar basis (er). 

P R ~ F .  I f i l  = le’ul d lle,l/ lIul/ by Cauchy--Schwartz. For the minimal u, 
0 

In practice int[~!Ie,lI] is almost always 0 or 1. and by Theorem 2.12 we 
can take i t  to be 1 for k d 4. One further useful trick [from Knuth (1981)] is 
to take as the starting basis for Ak the basis (7.3) transformed by the trans- 
formations used for 12,- and to update the polar basis (er)  with (ei). Fortran 
code is given by Hopkins (1983) and in Appendix B. 

lluil = \ ‘k  d M’ by Theorem 2.11. 
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Example. N = 512, u = 45 (continued). The final basis for A 2  was 

Ne, = ( -  11, 17), Ne, = (23, 11) 

This gives us as initial basis 

Ne, = ( -  11, 17, 253) 

Ne, = (23, 11, -529) 

Ne, = (O,O, 512) 

since u2 = -23 mod N, and the last element must be u2  times the first. 
From this we have 

e: = ( -  11,23,0) 

et = (17, 11, 0) 

ef = (23,0, 1) (23 = - a 2 )  

We now apply Algorithm 2.3, noting that if ej + ej - sei, then e,* + e,* + se:, 
to yield 

Ne, = (23, 11, - 17) 

Ne, = (22, - 34, 6) 

Ne, = (82, 106, 162) 

e: = (12, 6, -10) 

et = (7, - 10, 3) 

ef = (1, 1, 2) 

when reordered in increasing length. This passes Theorem 2.1 2, so I ,  = 0.0598, 
1, = 0.411, r = 6.86, and w = &. We have It,I < 0, It2[ < 0, (t31 < 1 in 

0 Theorem 2.14, so v, = u' attained at ef.  Note that \ ' A / ,  = 1.007. 

Assessing Congruential Generators 

Table 2.4 lists some of the results of applying the preceding methods to 
A2, As,  A4 for some commonly used generators. Only r and iqk are shown, 
since in all cases Ik is very close to l/vk. 

Line 1 is the generator GO5CAF of the NAG Fortran library. Line 2 from 
Marsaglia (1972) is used by DEC for its VAX compilers. Line 7 is from CDC 
Fortran (FTN 4.x and 5.x compilers). All seem quite acceptable. Line 3 is 
used by BASIC on the Sinclair ZX8l (Tootill, 1982). Figure 2.3 confirms 
its two-dimensional granularity, which is due to both a bad choice of multi- 
plier (Exercise 2.13) and too short a period. Lines 4 and 5 are for IBM 360/370 



Table 2.4. Lattice Criteria for Certain Congruential Generators 

k = 2  k = 3  k = 4  

M U 1' I' \' r 1' r \' 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 

2'9 
2 3 2  

2 ' 6  + 1 
2 3 1  - I 
2 3 1  - I 
235 

748 

2 3 2  

108 + 1 
1 o9 
248 

231 - I 

I 3 l 3  
69069 
75 
75 

63036001 6 
8404997 

44,485,709. 
377,909 

2147001325 
23 

3141 59221 
51' 

397204094 

0 
1 
0 
0 
0 
1 
0 

71 51 36305 
0 

21 1324863 
1 
0 

1.23 
1.06 

7.60 
1.29 
2.8 I 
1.29 

1.13 
1.89 x los 

3.89 
I .87 
2.82 

11.7 

3.44 x 1 0 8  
6.51 x 10' 

75 
1.68 x 104 
4.09 x lo4 
1 . 1 1  x los 
7.45 x loh 

6.40 x 104 

1.23 x 10' 

23 
1.61 x lo4 

2.77 x 104 

1.57 
1.29 
1.59 
3.39 
2.92 
1.93 
1 .85 

1.09 

2.12 
2.86 
2.63 

821 1 

4.29 x 10' 
14-40 

639 
625 

2930 

31.4 

3.44 104 

1540 
23 

800 

832 
4.74 104 

1.93 
1.30 
3.43 
2.07 
I .64 
5.98 
3.85 

1.16 
357 
2.46 
1.67 
1 .50 

1.55 104 
230 

147 
201 
141 

1370 

269 
23 

103 
3400 

171 

9.17 
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Figure 2.3. 
mod(2I6 + 1). 

Plot of all pairs (U(, Uj+,)  from the Sinclair ZX81 generator, Xi = 7 5 X , _ ,  

series machines from Lewis et al. (1969) and Payne et al. (1969). Line 6 is the 
default generator of GLIM3 (Baker and Nelder, 1978), a widely used 
statistical package, and line 8 is that built into BCPL (Richards and Whitby- 
Strevens 1979), a progenitor of C .  Line 9 is Lehmer’s original suggestion 
and lines 10 and 11 are from van Es et al. (1983). Lines 4 and 12 are routines 
GGUBFS and GGUBT of IMSL. Many other generators have been tested 
in this way, and the calculations can even be done on a microcomputer 
(Ripley, 1983b). 

*Theory 

Let E be a k x k matrix whose columns form a basis for a lattice A. Let 
&I) be the modulus of the determinant of E .  Then d(A) is the k-dimensional 
volume of the basic lattice “cell.” 

Theorem 2.15. 

where 

k = 2  3 4 5 6 7 6 

( C k ) 2 k  = 4 3 2 4 8 64 256 
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PROOF. Cassels (1959, Appendix; 1978, Section 12.2). 

For our congruential generators d(&) = I," from (2.3). 

41 

0 

Theorem 2.16. 

PROOF. ( i )  Choose linearly independent vectors f , ,  . . . , fk E Ak with llf, ~1 = I,. 
and gEA: with llgll = vk = 1:.  Since ifi) span Rk, g'f, # 0 for at least one s.  
Now g = fief, f, = 1 s,e,, so gTf, = 1 s j i i  is an integer and 

by Cauchy Schwartz. 
and H = span(A,- , ). 

Consider parallel hyperplanes to H covering Ak with maximal spacing 5'. 
Let f be any member of on a nearest hyperplane to the origin (excluding H).  
Let A t  be the lattice with basis ( f , . .  . , . f k - ] .  f). Then A t  c A, and so 
d(&) d ()(A') = %/(A,- , )  by volunic: = basal area x height. Thus 

(11) Let Ak- , be the lattice with basis f , ,  , . , . fk -  

s 3 l/Nd(Ak- I ). SO 

A -  1 

\', < 1's d Nt/(Ah- < N n I ,  
I 

and \ ' k / k  d N n 1; d ( ( ' k l k  by Theorem 2.15. 0 

This result implies that 1 I \ v k  and 11, are essentially equivalent measures o f  
"granularity" of a lattice. The relation with the ratio I' = / k / I I  comes from: 

Theorem 2.17. 
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2.5. SHUFFLING AND TESTING 

The best we have been able to do in the theoretical analysis of Sections 2.2- 2.4 
is to find for a limited class of generators the exact distribution of k-tuples 
( Ui, . . . , U i + k - ,  ) over a period. Even this says nothing about the distribution 
of k-tuples over less than a period. For example, Fushimi and Tezuka (1983) 
tested pairs from the GFSR of period 2521  - 1 considered by Bright and 
Enison (1979); although this is 2-distributed, the part of the period tested 
of length about 10,000 had considerably too many pairs near the diagonal 
of the unit square. We again discover philosophical problems, for such events 
will happen with true random numbers, and by asking for our pseudo- 
random numbers to conform too closely to expectation we will damage 
their credibility for some purposes. I t  does seem essential to test several 
subsequences from a generator with different starting points before jumping 
to conclusions. 

There is a mistaken belief that taking seeds widely spaced apart in ( X i )  
and running the same congruential generator with these seeds will give 
“more independent” streams than sampling from a single sequence. Consider 
seeds X , ,  and Yo = X j .  Then = X , + , ,  = jrrJX, + ( r r J  - I ) C / ( L I  - 1 ) ;  mod 
M ,  so ; ( X , ,  Y,); lie on a lattice corresponding to the multiplier (aJ mod M ) .  
I t  is entirely possible that ( ( X , ,  Y , ) )  has much coarser structure than 
( iXzi ,  X I , +  ) j  and extremely unlikely that i t  has better lattice constants. 
I f  (Xi) is not thought sufficiently random to be used as the sole source of 
random numbers. one needs B better generator! 

Shuffling 

Various methods are available to modify the output of a suspect generator. 
They are not recommended since they are little understood, but they may 
provide a quick “fix” where necessary. 

A .  Generate output in blocks of length L. and apply a fixed permutation 
to each block before use. This should be sufficient to repair RANDU, for 
example. [See Atkinson (1980).] 

B. Apply a random shuffle to ( U , ) .  Suppose we have T[O],. . .  . 
T[k  - I ]  initially filled with U l , . .  ., U k ,  and a second pseudo-random 
sequence (h). At  each step we use V ,  to select a random member of T ;  that is. 
we set J = int  [ k V , ] ,  then return T[J] and replace it by U,. This idea is due to 
MacLaren and Marsaglia (1965). 

A subtly different method to B was proposed by Bays and Durham 
(1976). In their method the last value output is used rather than e, to choose 

C. 
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the next member of T to be replaced. Whereas B can make a sequence worse 
if ( Vi) and (F)  are closely related, no such examples are known for the Bays- 
Durham method. (They may of course exist.) 

D. Given two sequences (Xi) and ( y i )  with moduli M ,  set 
U i  = (Xi + yi)/M mod 1. An extension of this idea to three sequences was 
used by Wichmann and Hill (1982). Determining the period can be tricky, 
as those authors found. 

E. Instead of adding we could form U i  = (Xi EOR x ) / M .  

The only theoretical analysis of these schemes have been on simplified 
versions that may not be reliable models-Bays and Durham (1976), Brown 
and Solomon (1979), Nance and Overstreet (1978). and Rosenblatt (1975). 

Empirical Testing 

Any  significance test of independence or uniformity or both can be applied to 
the output ( U l , .  . . , V,) of a pseudo-random number generator. Many 
tests have been used and i t  is most convenient to group them according to the 
property tested. 

Tests for Independence 

Any nonparametric test for independence can be applied to (Ui) or 
(x = int[ U i  x K ] )  for any integer K .  Often i t  is easiest to take K a power of 
2 and so examine the first few bits of X i .  

(a) Gaps Tesr $or (Ui). Fix constants 0 < r < [I < 1 and consider the 
lengths of intervals for which U i  $ (a,  /I). If the sequence ( Ui) is independent, 
the distribution of lengths should be geometric with parameter 
P(GL < V, i /I) = (/I - CI ) .  Furthermore, independence means that successive 
gap lengths are independent, so we can compare observed and empirical 
distributions by a chi-squared test. As an example, consider Table 2.1 with 
CI = 0.4, /I = 0.6. Then the gap lengths are 0,7, I ,  0, 1,0,8, 1,5, 1,6,7 so 

k =  0 1 2 3 4 5 6 7 8 > 8  

Observed 3 4 0 0 0 1 1 2 1 0 

Expected 2.4 1.92 1.54 1.23 0.98 0.79 0.63 0.50 0.40 1.61 

which needs no statistical test to reject independence. 
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(b) Runs Testfor ( U i ) .  Runs up are monotone increasing subsequences; 
runs down are defined by replacing increasing by decreasing. There are 
several subtly different “runs tests” depending on whether both runs up and 
down are used, and on the exact definition of a run. Probably the easiest is to 
discard the first element of a run, so the first two runs up in Table 2.1 are 
(0.563, 0.624) and (0.811, 0.999). In that case the run-up lengths are inde- 
pendent and a chi-squared test can be used to compare their observed and 
expected frequencies. Tedious but elementary probability shows that 
E(number with run length = k) = ( n  + l)k/(k + l ) !  - (k - l ) /k! ,  k = 1 , .  . . , n 
for a sequence of length n. Barton and Mallows (1965) discuss runs tests in 
more detail. 

(c) Permutation Tests for ( U i ) .  Divide (Ui )  into blocks of length t ,  
( U , ,  . . . , Uf), (U,+ ,, , . . , U,,) ,  . . . . There are t! possible orderings of a 
block of t distinct numbers, and these should be equally probable. Counting 
the occurrences of all possible orderings and using a chi-squared test gives us 
a test for independence. This is only useful for moderate t, since we will need 
n B t !  We saw in Section 2.1 that the Fibonacci sequence (1.2) will fail this 
test for t = 3. 

( d )  Coupon Collectors’ Test for (x). Consider the lengths of sequences 
needed to “collect” all integers 0,. . . , K - 1 .  This gives us a frequency 
distribution on { K ,  K - 1 ,  . . . }. The probability of a length r being needed is 
found by combinatorial arguments (Greenwood, 1955). 

Note that (a) and (d) depend on uniformity, whereas (b) and (c) work for 
any continuous marginal distribution of the ( U i ) .  

Testsfor Uniformity 

Tests for uniformity can be any nonparametric test of a known distribution. 
The most commonly used are a chi-squared test based on dividing (0, 1 )  
into intervals, and the Kolmogorov-Smirnov test maxIF,(.x) - XI, where 
F,(x) = (number of  Ui Q x)/n,  the empirical distribution function of 
( U , ,  . . . , U,) .  Its computation is discussed by Gonzalez et al. (1977). 

Tests of Pairs, and k-tuples 

The chi-squared test can also be applied to test the uniformity of k-tuples 
{(Ukir . . . , Uki+k- ,)}, dividing [0, Ilk into a number of small regions. To do  so 
effectively and ensure a reasonable number of counts in each cell of the test 
needs a very large number of observations, so this tends to be a weak test. 
Note that this test cannot be applied to ( ( U i . .  . . , Uj+k- since these k-tuples 



CONCLUSIONS 45 

are not independent. Good (1953, 1957) provides a correct modified test for 
pairs {Cut, Ui+ , ) ) .  

An alternative is to use time-series methods to examine the correlation 
structure of ( Ui). These methods are meant for normally distributed 
sequences, and it may be better to apply them to v = 0- ’( Ui), which is 
normally distributed if 0 is the cumulative distribution function for the 
normal (see Theorem 3.1). We can then test whether the correlation between 
U i  and Ui+t or and v+,  is zero. This is again a weak test, for lack of cor- 
relation does not imply independence. 

More sensitive tests are provided by tests of the k-tuples as a point pattern. 
Theorem 2.6 provides one such test statistic (Ripley and Silverman, 1978) 
and others are described in Ripley (1981, Chapters 7 and 8). 

The theoretical tests of Sections 2.2--2.4 have been found to be more 
powerful than empirical tests in the sense that “good” generators by the 
theoretical criteria have been found to fail the empirical tests no more 
often than would be expected by chance. Nevertheless it is always worth 
conducting some empirical tests to check that the generator has been imple- 
mented correctly. (Microcomputer implementations work incorrectly 
surprisingly often from faulty compilers or side effects of operating systems.) 

We would of course expect the statistical tests to be failed occasionally 
by chance. In extensive investigations i t  is a good idea to try each test on a 
large number of nonoverlapping subsequences of ( U , ) .  For each rest we obtain 
an observation of either pass/fail or a significance level and can test these 
observations against their known distribution. Perhaps the most commonly 
used example of this procedure is to apply the Kolmogorov Smirnov test of 
uniformity. This gives rise to a significance level P uniformly distributed on 
(0, I) ,  and the Kolmogorov- Smirnov test is applied again to the observed 
significance levels. An example is given by van Es et al. ( 1983). 

2.6. CONCLUSIONS 

The net effect of both theoretical analysis and empirical investigations is that 
a good pseudo-random number generator should : 

(a) use a simple algorithm and so be rapid, taking considerably less 
time than evaluating a logarithm; 

(b) be periodic with a long period, at least Z2’ or lo8, and take values 
evenly spread in [0, I), preferably excluding zero; 

(c) have k-tuples for k = 2, 3, 4 and preferably k d 10 as uniformly 
distributed as possible in [0, l)k; 

(a) have been checked carefully to see that it does implement the stated 
algorithm. 



46 PSEUDO-RANDOM NUMBERS 

Unfortunately a large proportion of generators in common use fail to have 
some of these properties, principally b and c. However, a number of gene- 
rators are available with the desired properties which are fairly simple to 
implement. 

Among congruential generators, line 2 of Table 2.4, 

Xi = (69O69Xi-, + 1)mod 232, U i  = 2 - j 2  Xi 

has been implemented successfully in Fortran and assembler on a range of 
machines from 8-bit microcomputers to 64-bit supercomputers. If the 
NAG library is available, line 1 is an obvious choice. It is preferable to have a 
generator with period greater than 2j2, and it will often be possible to use 
line 11 with period 248. Implementing these generators in a high-level 
language is normally done using double-precision reals, which usually can 
represent exactly considerably larger integers than integer types. (See 
Appendix B. 1 .) 

The GFSR generators represent an easier solution in environments 
with only limited precision arithmetic, provided a word-wise EOR operation 
is available. Generally we will choose at least 15-bit integers and ask for at 
least 4-distribution. One such recommendation is based on p = 98, q = 27, 
L = 15, which has a “granularity” of 2-l’  and almost exact independence 
in up to six dimensions. To initialize it we take bi = b i - 9 8  EOR bi-, ,  and 
make up out of (bi, b i+6 ,  b i f l 2 , .  . . , bi+84),  i = 1,.  . , ,98 and then use 
algorithm 2.2. 

It is always helpful to have two or more generators available and to run 
important simulations using each, to reduce the likelihood that anomalous 
results are due to the quirks of the generator used. 

*2.7. PROOFS 

We need three lemmas for the results of Section 2.2. 

Lemma A. Let p;’ . . . p ; r  be the prime factorization of M .  Then the period 
of any congruential generator with modulus M is the lowest common 
multiple of its periods modulo p?’. 

PROOF. By induction we need only consider M = rn ,  m2 with gcd(m1, m2) = 1. 
Let y j  = X j  mod m,,  Z j  = X j  mod m 2 ,  with X ,  any value in the periodic 
cycle. Suppose X i ,  K ,  Z i  have periods d, d l ,  and d 2 .  Then y j  = Yo iff j is a 
multiple ofd,. Since x d  = X,, Yd = Yo, so d is a multiple of dl . By symmetry it 
is a multiple of d 2  and hence of lcm(d,, d 2 )  = 1. Now X ,  - X ,  is a multiple 
of both rn, and m 2 ,  since = Yo, Z ,  = Z,, hence of M. Thus X, = X ,  and 
d = 1 = Icm(d,, d 2 ) .  
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Lemma B (Fermat, 1640). Suppose p is prime and 0 < a < p .  Then up-  ' = 1 
mod p. 

PROOF. Consider {ra  mod pi0 6 r < p } .  This is a set of p distinct numbers 
(ru = sa mod p implies r = s), so it is {O,.  . . , p  - I}. Thus ( u  mod p ,  2u 
modp , . . . ,  ( p  - 1)amodp)  = (1, . . . ,  p - 1) and 

P- 1 P- 1 fl r a =  fl r m o d p  
1 1 

whence ap- '  = 1 mod p. 0 

Lemma C. ( x k i )  has period d/gcd(k, d )  if ( X i )  has period d. 

PROOF. X k i  = X ,  if and only if ki is a multiple of d if and only if i is a multiple 
of d/gcd(k, d). 0 

Proof of Theorem 2.3. 

(i) Since c = 0, X i  = a'X, mod M .  Let p?l. . . p: be the prime factorization 
of M .  Then (Xi mod p;') has period at most (pgh - 1) (omitting zero), so 
( X j )  has periodat most n.l (p;' - l), < M - 1 unlessr = 1. 

(ii) Suppose M = pa for a prime p, a > 1. Then ( X i  mod p) has period d 
dividing (p  - 1) by lemma B. Thus ( X i d  - X , )  is a multiple of p, whence 
( X i d )  has period at most p a - ' ,  and ( X i )  has period at most dpa-* < M - 1. 

(iii) Suppose M is prime. By lemma B the period d divides M - 1. Suppose 
M - 1 = nd, and that p is a prime factor of n. Then s = ( M  - l)/p is a 
multiple of d, and X ,  = us mod M = X o ,  so us mod M = 1. Hence if n > 1, 
a is not a primitive root. Conversely, if a is not a primitive root, let 
s = ( M  - l)/p, when X ,  = u S X O  mod M = X , ,  so the period divides s and 
is less than M - 1. 0 

Proof of Theorem 2.4 

Let b = ak mod M .  Then ( x k i )  corresponds to multiplier b, and has period 
( M  - 1) if and only if gcd(k, M - 1) = 1 by lemma C .  

Proof of Theorem 2.1 

(i) By lemma A we can confine attention to M = pa, p prime. 
(ii) If c = 0, the period is at most M - 1 by the proof of Theorem 2.3. 

We assume c > 0. 
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(iii) If a = 1, Xi = (X, + ic) mod M, so Xi = X, iff ic mod M = 0 iff i is a 
multiple of M/gcd(c, M), the period. We can now assume M = pa, c > 0, 
a > 1. We have 

mod M for j > 0 (a' - 1)c 

(a  - 1) 

(iv) Suppose the period is M. Then we may take X,, = 0. Some X i  = 1, 
when (a' - l)c/(a - 1) = 1 mod M and hence gcd(c, M) = 1 [for 
(a' - l)/(a - 1 )  = 1 + a + . . .  + ui-l  , an integer]. Also, X ,  = 0, so 
(aM - l)c/(a - 1)  is a multiple of M = p". If a f 1 mod p this implies 
a'" - 1 = 0 mod M, hence a, mod p = 1.  However, lemma B shows ap  = a 
mod p ,  so aM = a mod p .  We conclude a = 1 mod p .  

(v) Suppose M = 2", a > 2. If a = 1 mod 2 but a f 1 mod 4, a = 3 mod 4. 
Then 

X i  = { u ' X ~ - ~  + (a + 1)c) mod M 

hence X,, X , ,  . . . are multiples of (a + l)c mod M = 4c mod M. Thus ( X Z i )  
takes at most M/4 values, and (Xi) has period at most M/2. 

This establishes necessity. For sufficiency assume M = pa. We will use 
induction on a. For c i  = 1, a = 1 mod M, whence (Xi) = ( ic  mod M) starting 
from zero, which has period M. Now suppose the theorem holds for 
M = pa-'.  Fix X o  = 0. From the conditions a = 1 + qp' for p' > 2. Thus 

- 

u p  = (1 + qp')P = 1 + pqp' + . . .  + @ p e p  = 1 + sqp'+l 

for an integer s with s s 1 mod p. Now X ,  = (aP - l)c/(a - 1) mod p" = 
sqp'+'c/qp' mod pa  = scp mod pa. By induction we find Xi, is a multiple 
of p for all i. Let x = Xi,/p. Then 

yi = { a p x - ,  + (aP - l)c/(a - 1)p) modp"-' 

= + sc) mod pa-'  

Applying the theorem for modulus p"-' shows x has period p a - '  since 
s = 1 mod p ,  so gcd(sc, p " - ' )  = 1. We can deduce X, = 0, so (Xi) has 
period dividing M = p". However X,-I = pYp.-2 # 0, and (Xi) has 

Proof of Theorem 2.2 

period M. 0 

(i) Suppose X o  is even. Then X ,  = 2'Y, for Yodd, and 

(X,2-') = a(Xi- 12-r )  mod 20-l 

reduces to the case of an odd seed. 
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(ii) Suppose a is even. Then X ,  = a a X ,  mod 2 ,  = 0. We now suppose X ,  
and a are odd, so X i  is always odd. Choose X ,  as the smallest value in the 
period. Then 

and (a - 1 )  is even, so X i  - X ,  is even, = 2 y. say. 

where U’ = (a - 1)/2. From Theorem 2.1 this has period less than M;2,  
for either a’ is even or LI f 1 mod 4. 

is even. 
Let Zi = x / 2 ,  with 

( i i i )  Suppose LI = 1 mod 4, so CI = 1 + 4h. Then ( I ’  = 2h and 

From Theorem 2.1 this has period M:4 i f  h is odd ( ( I  = 5 mod 8)  otherwise 
less than M / 4 .  

(iv) Suppose LI = 3 + 4h. Then 

and u‘(a + I )  = 4(h + 1)(2h + I )  is a multiple of 4. Hence so is Y,,. Let v. = Y2J4, with 

Now (I’ mod 4 = (16h’ + 24h + 9) mod 4 = 1. so ( y )  has period M,% 
only if h is even. Thus if LI = 7 mod 8, ( v )  has period less than M / 8 .  If a = 3 
mod 8, (Y,,) are multiples of 4 with period M!8,  whereas (Y , ,  + ) are odd. 
Thus ( x )  and ( X i )  have period MI4. 

( v )  Suppose ( I  = 5 mod 8. Then X i  = X, + 42,- so the smallest value in 
the sequence, h = ( X i  mod 4) for any i. Then Lli = X i / M  = h / M  + (Z i i (M;4) )  
as required. 

Proof of Theorem 2.5 

Let Q denote addition modulo M .  
(i) [ Uij = ( ( X ,  Q s ) / M  1 s = 0, 1,. . . , M - I ;, so 

( ( U i , .  . . , U ; + k -  1 ) ;  = { ( X O  Q S, U ( X ,  + S )  Q C, . . . ) /M 1 S 0 , .  . . , M - 1 )  
= [0, n ( ( X ,  + s, a x ,  + us + c + r ,M,.  . . ) / M  I s ,  t , ,  . . . , 11, integer; 
=[O,I)kn ( ( X o  , . . . , X k - l ) / M  + A , )  



50 PSEUDO-RANDOM NUMBERS 

(ii) { ( V i , .  . . , u i + k - l ) )  = {(s, as, a's,. . . ) /M I s = 1,. . . , M - l}  
= (0, l)k n {(s, as + r 2 M .  . . .)/M I s, t 2 ,  . . . , t k  integer} 
= (0, l )k  n Ak 

For the nonoverlapping k-tuples we note 

{ U k i }  = ( ( U ,  + s / N )  mod 1) 

by lemma C in the cases claimed and modify the above accordingly. 

Proof of Theorem 2.12 

(i) SUppOSe g E g = f , e ,  + * "  + tkek. If t j  # 0 We Wil l  show 
I(gl/ 2 \lejll. This establishes Ileill = li for i = 1, . . . , k. 

(ii) By changing e, to -ei if necessary we may assume all ti 2 0. Let 
T = max ri. We proceed by induction on 7: If T = 1 then llgll 2 l(ej(/ by 
hypothesis (ii). Suppose the result is true for max ti < T - 1. Let 
m = min{rilri > 0) and r = max{iJti = m}. Define E as the sum of e, over all 
indices i except Y with ti > 0. Let h = g - mE. We will show llgll 2 llh/. 
Now either max hi < T - 1 and llhll 2 /(ejll or all nonzero t i  were equal to m, 
when h = me,, so IlhIl 2 llejl/. In either case llgll 2 llhll 2Jlejll. 

hence eTe, 2 - ~ ~ l e , l ~ '  whether s < t or s > t. Now consider 
(iii) Fix s < t .  Then j/e, + e,1I2 2 lletl12, whence 2e,e, 2 - 

(h - mer)TE = 1 h,e'E = 1 h,e'E 
i f r  i # rin b: 

= hi(I/eij12 + (up to 2) eTej} 3 0 since hi 2 0 

(iv) j/glj2 - (Ih1l2 = /Ih + mE/12 - )jhl12 

= 2mhTE + m2j/E/12 = 2m(h - mer)TE + m2{( /E  + er\12 

which is nonnegative by (iii) and by hypothesis. 

EXERCISES 

2.1. Complete the sequence (1) and show that it eventually repeats. Try 
other starting values. Is the behavior starting from 8653 typical? 

2.2. Investigate all starting values for the two-digit decimal and eight-bit 
binary middle square methods. 
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2.3. 

2.4. 

2.5. 

2.6. 

2.7. 

2.8. 

2.9. 

2.10. 

2.1 I .  

2.12. 

2.13. 

2.14. 

2.15. 

2.16. 

Prove that for the Fihonucci recursion ( 2 )  that U i - 2  c U i  < Ui-  
never occurs, whereas this event has probability 1/6 for random 
numbers. 

Try implementing the generator U i  = 1013Ui-, mod 1 in floating- 
point arithmetic and via (4) with M = 10' and M = 216. What 
periods are obtained? 

Compute the outputs of the following congruential generators with 
M = 64. (a) a = 29, c = 17. (b) u = 9, c = 1 .  (c) u = 13, c = 0. 
(d) u = 1 I ,  c = 0. 

Find the periods corresponding to multipliers 10, 12, 16, and 18 in a 
multiplicative congruential generator with M = 67. 

Show for M = rp  - s, Y = a X i - ,  + c, that Y mod rB + s( Y div r p )  < 
( 1  + s ) M .  

Plot the lattices of (Ui, Ui+ ,) and ( U z i ,  UZi+ , )  for the examples of 
Exercises 2.5 and 2.6. 

Show that Algorithm 2.1 works. 

Generate the shift-register sequence with p = 7. y = 1 .  Form the 
Tausworthesequence with t = L = 3 and show that i t  is '-distributed. 

Generate the GFSR with p = 7, y = I ,  starting 6. 5. 4, 3, 2, I ,  0 . .  . . 
How does i t  fail to be 2-distributed? 

Find starting values for the GFSR with 17 = 7, y = I ,  L = 3 by the 
delay method and verify that i t  is 2-distributed both via Theorem 2.9 
and by generating the sequence. 

Find a better multiplier than 75 for M = 21h + I ,  c = 0. 

Compute the lattice constants where appropriate for the examples of 
Exercises 2.5 and 2.6 in two and three dimensions. 

Try the effect of the Bays- Durham shufflng algorithm on Table 2.1. 

Apply the gaps and runs tests and the permutation test for /i = 3 
to both Table 2.1 and the output from Exercise 2.15. 
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2.17. Test empirically the pseudo-random number generators on all the 
computers you use. If possible, find out the algorithms claimed to be 
used, check that these are implemented as stated and pass appropriate 
theoretical tests. Alternatively, replace these generators with ones of 
known quality, and test your implementations. 



C H A P T E R  3 

Random Variables 

The scope of this chapter is the generation of independent random variables 
X , ,  X 2 ,  . . .  with a given distribution function F or probability density 
function (pdf) f .  We assume that we have access to a supply ( U i )  of random 
numbers, independent samples from the uniform distribution on (0, 1). 
Our task is to transform ( Ui) into ( X i ) .  In most cases we will have the choice 
of several algorithms for doing so. Usually there will be no universal best 
choice; different methods might be recommended for once-off use and for 
adding to a computer center's mathematical library. 

When choosing algorithms we will consider the following points. 

(a) The method should be easy to understand and to program. It is all 
too easy to make mistakes while implementing sophisticated 
methods. 

(b) The programs produced should be compact. This may only be 
important on small machines but can considerably reduce overheads 
in interpreted languages. 

(c) The final code should execute reasonably rapidly. This point has 
been emphasized in the literature almost to the exclusion of the 
other two. Andrews (1976) cites a study in which generating the 
random variables cost 0.2% of the total computer usage of a simula- 
tion study. It is rarely important to save generation costs. 

(a) The algorithms will be used with pseudo-random numbers and 
should not accentuate their deficiencies. 

Experience has shown that the relative speeds of different algorithms 
vary surprisingly little across different computers and languages, APL 
being the main exception (Appleton, 1976). "Good algorithms avoid large 
tables of constants and multiple calls to mathematical functions (In, sin, cos, 
etc.) 
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3.1. SIMPLE EXAMPLES 

Undoubtedly the best-known distribution is the normal distribution. One 
once popular way to sample from it is to use 

which has mean zero, variance one, and is approximately normally dis- 
tributed by the central limit theorem. The approximation is fairly good, 
but curves of both pdf and cdf are discernibly different, with maximum 
differences of about 0.0050 and 0.0023 respectively (Exercise 3.1). 

The best-known “exact” method for the normal distribution is that of 
Box and Muller (1958). (Note: not Muller as frequently given.) 

Algorithm 3.1 (Box-Muller). 

1. Generate U1,  set 0 = 2 n U , .  
2. Generate U 2 ,  set E = -In U 2 ,  R = a. 
3. X = R cos 0, Y = R sin 0 are independent standard normal deviates. 

For simplicity in programming often only X or Y is used. To  understand 
how the algorithm works, consider a pair ( X ,  r) of standard normal deviates. 
Their joint pdf is 

1 
- exp[ - +(xz + y2)] 
2n: 

Let ( R ,  0) be ( X ,  r) in polar coordinates. Then (R,  0) has joint pdf 

when R and O are independent. Then S = R 2  = Xz + Y 2  has a x$ dis- 
tribution, which is also an exponential distribution of mean 2. Finally, 
let U = exp( - S/2). Then 

P ( U <  u ) = P ( - S / 2 < I n u ) = P ( S >  - 2 l n u )  

= exp[-&-2 In u)]  = 11 

for 0 < u d 1. This transforms (X, Y )  to ( U ,  0), independent uniform random 
variables. Reversing the transformation yields the algorithm. (See Exercise 
3.2.) 

We have incidentally discovered a way to sample exponential variates. 
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Algorithm 3.2. X = - 2- In U has an exponential (I.)  distribution for 
P ( X  d x) = P(U B exp( - Ax)) = 1 - exp( - i x ) .  

To sample from a Poisson distribution we can exploit the Poisson process. 
Let Ei = - In Ui be the inter-event times in a Poisson process, and let N be 
the number of events by time t .  Let S,  = El + * . . + En,  P, = U ,  x * . . x U,. 
Then N = n if and only if S ,  < p < S,+ if and only if P, 2 e-’ > P,+ 1 .  

This gives the following. 

Algorithm 3.3. 

1. 
2. Repeat. 

3. X = N - 1 - Poisson ( p ) .  

We can now sample from x 2  distributions, for x:, is the distribution of the 
sum of rn independent exponential(2) variates, and xi,,,+ is the distribution of 
a xim plus a squared standard normal. From normals and x 2  we can obtain 
Student’s t and the F distribution. 

There are many other ingenious “tricks” of the type shown in these 
examples. The scope for invention is unlimited and hundreds of specific 
algorithms have been published. Most of them are based on a small number 
of general principles, the subject of the next section, with specific distributions 
being discussed in later sections. 

Set P = 1, N = 0, c = e-’. 

Generate U i ,  let P = P x U i ,  N = N + 1 until P < c. 

*A Cautionary Tale 

All our theory assumes the use of genuine random numbers. Neave (1973), 
Swick (1974), Chay et al. (1975), and Golder and Settle (1976) comment on 
the use of Algorithm 3.1 with congruential generators. Neave generated 
two million normal deviates from 

which reverses the role of U i  and U i +  in Algorithm 3.1. He reported that for 
the Y’s all values lie in the range ( -  3.3, 3.6) for the generator a = 131, 

We know from Theorem 2.5 that many congruential generators have a 
lattice structure for ( ( U i ,  Ui+,)}, and (1) must transform this into some 
structure for { ( X ,  Y)}. Figure 3.1 shows what can happen. In particular, 
Fig. 3.ld explains Neave’s findings. His generator has I’ = 2 x lo6, 

= 0, M = 2 3 5 .  
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i2 = 0.0076, v2 = 131 and so has an appalling lattice structure. The points 
( X ,  Y )  clearly lie on a spiral. We can see this from 

X = ,/- 2 fh U i  cos (2naUi + 2nclM) 

Y = Jm sin (2naUi + 2nc/M) 

(by the periodicity of the trignometric functions), which shows ( X ,  Y )  lies on 
the spiral 

( , / X r  c o s ~ n a t  + c), JXr sin(2nat + c)), t E (0,1) 

The maximum of y values is attained when 2nat z n/2 in the multiplicative 
case, so is d m .  This suggests we need a to be large, although Fig. 3 . 1 ~  
shows that this is not sufficient. Neave (1973) analyzed the distribution of Y 
on the assumption that U i  - U(0,l). However, U j  has a discrete distribution 
that radically alters the theory. 

. .  
. . . . .  

. . .  . .  . . . . . .  
. .  

, . . .  

. .  

( a )  

Figure 3.1. 
(aJ The congruential generator X ,  = ( 6 5 X , - ,  + I )  mod 2048. 

Plots of pairs (X, Y J  fram the Box-Muller algorithm 3.1 applied to real generators. 



Figure 3.1. (Continued) (b) X, = (1229X,_, + 1) mod 2048. (c) as (b), with U ,  and U , ,  , 
interchanged. 
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. .  . .  

. .  , . .  . .  
. .  . .  

Figure 3.1. (Continued) ( d )  10,OOO points from Neave’s example. (e)  A GFSR with 2-distribution 
and L = 5. 
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Perhaps the best way to understand the Neave effect is to note that we 
can be concerned with large values of X and Y, hence with small values of Ui. 
The plots of {( U,, U i +  ,)} analyzed in Section 2.4 show which values of Ui+ 
occur with small Ui. I t  thus becomes possible to interpret the lattice behavior 
in terms of { ( X ,  Y ) )  plots. 

Reversing the roles of U i  and Ui+' gives us an interpretation of the 
Algorithm 3.1 form of the Box-Muller transformation. 

One might suppose that the near-independence of ( R ,  0)  from a GFSR 
illustrated in Fig. 2.2b might give a better distribution of X or Y than a 
congruential generator. Figure 3. lr  shows that this is not necessarily so. 

No general theory has yet been developed for the sensitivity of this or 
other algorithms to the random numbers used. Almost all the algorithms 
are continuous in the sense that nearby points in ( U i ,  Ui+ ) space get mapped 
to nearby points in ( X ,  Y )  space. except perhaps for Ui  or U , ,  near zero or 
one. 

3.2. GENERAL PRINCIPLES 

Almost all algorithms for sampling from specific distributions are derived 
from a few general principles. All the principles discussed in this chapter 
apply to continuous distributions. Most also apply to discrete distributions, 
but these are discussed in more detail in Section 3.3 .  

Inversion 

I t  is well known in nonparametric statistics that if  X has a continuous cdf 
F then F ( X )  - U(0 ,  I ) .  This suggests sampling from F by X = F - ' ( U )  
provided the inverse exists. The following theorem places 11o restrictions on F. 

Theorem 3.1. Define F -  by F - ( i r )  = min !.YIF(.Y) 3 u).Then if Li - U(0,  I ) ,  
X = F - (  U )  is a sample from F .  

PROOF. The minimum is attained by right-continuity of F, so F ( F -  ' ( u ) )  2 u, 
and F - ( F ( . Y ) )  = min(.v I F v )  3 F ( x ) )  d s. Hence ( ( u ,  s) I F - ( u )  < x)  = 
( ( u , ~ )  111 d F ( x ) )  and P ( X  s x) = P ( F - ( U )  d x) = P ( U  s F ( x ) )  = F ( s )  as 

Examples. (a) Tossing a biased coin. Let X = 1 for heads, 0 for tails, 
P ( X  = 1) = p .  Then F(x) = 1 - p + p l ( x  3 l), so F - ( u )  = I ( u  > 1 - p ) .  
Thus X = I ( U ~ l - p ) = ! ( l - U d p ) = I ( U , d p ) ,  where U , = l - U - U ( O ,  1). 

(b) The exponential distribution has F ( x )  = 1 - e - l X  on (0, 'a), so 
F - ( U )  = - ; . - I  In(l - U )  = - ; . - I  In U , , a s  in Algorithm 3.2.  

required. 0 
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(c) The Weibull distribution with F(x) = 1 - exp( - xs) on (0, co) has 
X = (-In U1)l/B 

(d) The Cauchy distribution has pdf f(x) = l/n(l + x2) and F(x) = 
4 + n-' tan-' x, so X = F - ( U )  = tan[n(U - $11 

(e) For the normal distribution we obtain X = p + cr@-'(U). Now (D-' 
is just another transcendental function like In or sin and can be approximated 
in the same way. Bailey (1981) gives some approximations, and Beasley and 
Springer (1977) give a Fortran program to evaluate 0-l. 

Inversion is a universal method but may be too slow unless subprograms 
to calculate F -  are available. For example, it is theoretically possible to use 
inversion to sample from the beta density 

f(x) = x"-'(l - x)s-l/B(a, /I) on (0, 1) 

or the von Mises distribution 

f ( 0 )  = exp(lc cos @/27r10(~) on (0,274 

but much simpler methods are given below. 
Most of the pseudo-random number generators described in Chapter 2 

give { V i }  as a set of equally spaced points in [0, 1). The inversion trans- 
formation will map this to a good approximation to the true distribution. 
However, the independence of X i  = F -  ( Vi) still depends on the independence 
of (Vi). 

Rejection 

Suppose we wish to sample from a pdf f but have a way to sample from the 
pdf g. Rejection methods (von Neumann, 1951)-sometimes more optimistic- 
ally called acceptance methods-retain the sampled values Y from g with a 
probability depending on Y Thus 

1. Generate Y from pdf g. 
2. With probability h( Y) return X = Y else go to 1. 

Then X has pdf proportional to gh. For 

P(Y < x and Y is accepted) = 

so 



GENERAL PRINCIPLES 61 

and 

which shows the accepted values have pdf gh/Jgh.  
We want to sample from f: Provided f l g  < M < 00 we can take h = f l g M ,  

when X has pdf f l M j g h  = f: Furthermore, P ( Y  is accepted) = Igh = 1/M. 

Algorithm 3.4 (general rejection). To sample from f with f < Mg. 
Repeat 

Generate Y from g, 
Generate U from U(0, l), 

until M U  < f ( Y ) / g ( Y ) .  
Return X = Y. 

The test M U  G f (  Y)/g(  Y )  accepts Y with the required probability. The 
number of trials before a Y is accepted has a geometric distribution with 
mean M ,  so the algorithm works best if M is small. Note that it is not 
necessary to know f; only fl oc f and a bound on fl/g. 

Examples. (a) Beta distribution. Let fl(x) = x " - ' ( l  - x)P-l  on (0, I), 
Y - U(0, 1). Then fl/g is bounded if and only if a, jl 2 1. Then 

which is near one only for both a and /I small. If we take g(x)  = axa-  l ,  by 
Y = Ul", then fl/g is bounded for a > 0, jl 2 1 .  

(b) von Mises distribution. Let f1(@ = ( 2 ~ ) - '  exp(K cos 0) on (0, 2 4 ,  
g uniform on (0,2n). Then M = exp K (K 2 0) and the acceptance condition 
becomes U < exp[lc(cos Y - l ) ] .  

The art of using the rejection method is to find a suitable pdf g (known as 
the enuelope) that matches .f well and from which it is easy to sample. The 
theory applies equally well to discrete distributions, but suitable envelopes 
are very unusual in that case. 

Distributions belonging to the exponential family often have f i ( x )  = 

exp[ - b(x)]  for a particularly simple function b(x). Von Neumann used a 
"trick" to generate an event with probability e-' ,  0 < f < 1, which was 
subsequently exploited by Forsythe (1972). Consider the sequence 
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for a sequence (Ui) of random numbers. Let N be the first index i with 
U i  2 U i - l .  Then 

P ( N  > n)  = P(t > U ,  > . . .  > U , )  = t"/n! 

so 

P ( N  = n )  = P ( N  > n - 1) - P ( N  > n )  = t " - ' / ( n  - I)!  - t"/n! 

and 

m a. 

P ( N  is odd) = 1 P ( N  = 2k + 1) = { t Z k / 2 k !  - t 2 k + 1 / ( 2 k  + l)!} = e - '  
0 0 

Thus we obtain 

Algorithm 3.5 (Forsythe rejection). For pdf f with b = - ln(f/y), 
0 < b(x)  + In M d 1 for all x. 

1. Generate Y from g, let U = b ( Y )  + In M .  
2.  Generate U*. If U d U* go to 4. 
3. Generate U .  If U < U* go to 2 else go to 1 
4. Return X = Y. 

At each stage U is the last even term, and U* is the last odd term in 
( t ,  U1,  U , , .  . .). The restriction e - '  < f ( x ) / g ( x ) M  d 1 is severe and means 
that this method is never used alone. 

Rejection may form a part of other algorithms. Consider Marsaglia's 
polar method, a modification of the Box-Muller Algorithm 3.1. 

Algorithm 3.6 (polar). To generate two independent normal variates. 

1. Repeat 
Generate V,, V, - U ( -  1, 1) 
until W = V :  + V $  < 1. 

2. Let c = 4-2w-l In w 
3. Return X = CV,, Y = CV,. 

Step 1 is a rejection method leaving (V,,  V,) uniformly distributed in the 
unit disc. Let ( R ,  0) be polar coordinates for (Vl, V,), so W = R 2 .  Then 
(U: 0) has joint pdf 1/2n on ( 4 1 )  x (0,274, whence W and 0 are uniform and 
independent. Let E = -In W Then 

and similarly Y = ,/% sin 0 = CV,. 
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Algorithm 3.6 uses rejection to avoid calculating two trignometric 
functions and so is usually substantially faster than Algorithm 3.1, at the 
expense of a little extra complexity. I t  is folklore that the polar form is less 
susceptible to deficiencies in pseudo-random number generators. Figure 3.2 
illustrates that this is not the case. 

Kronmal and Peterson (1981, 1984) give methods related to rejection. 

Composition 

We can extend our techniques by first randomly choosing a distribution, 
then sampling from the chosen distribution. Suppose we have 

for pdfs 1;: and a probability distribution { p l , .  . . , pr ) .  Then we can sample 
from f by first choosing I from {pi},  then taking a sample from 5.  The 
density f is said to be a mixture or compound of other distributions, and the 
method is known as composition. 

One common use is to split the range of X up into intervals. For example, 
consider the standard exponential, and let 1;: be the pdf conditional on 
i - l < x < i .  Then p i = P ( i - l d X < i ) = e - " - "  - - i = e - ( f - l )  ( 1  - e - l ) ,  
so { p i )  is a geometric distribution on 1,2,3,  . . . . Furthermore, 

J ( ~ )  = e - t x - ( i - l ) l  / (1  - e - ' )  on [ i  - 1, i )  

Our outline algorithm is 

1. I = - 1  
2. Repeat 

I = 1 + 1  
until (independent event with probability 1 - e- ' ) .  

3. Sample Y from pdf e-"/(l - e - ' )  on [0, 1) .  
4. Return X = I + I: 
Von Neumann noted that if we use a rejection method at step 3, we would 

accept with probability (1  - e -  I ) .  Combining this observation with his 
"trick" gave 

Algorithm 3.7 (von Neumann, exponential) 

1. Let 1 = 0. 
2. Generate U, set T = U. 
3. Generate U*. If U d U* return X = I + 7: 



. .  . .  . .  

b )  

Figure 3.2. 
2048. (b)  Xi = ( 1  229X, ~, + I )  mod 2048. 
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Plots of all pairs ( X ,  Y )  from the polar algorithm 3.6. (a )  X ,  = ( 6 5 X i - ,  + I )  mod 
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4. Generate U .  If U < U* go to 3. 
5. I = I + 1, go to 2. 

The reader is urged to check that this does indeed give samples from an 
exponential distribution. (See Exercise 3.7.) 

Using rejection with the range of X split into parts was called “switching” 
by Atkinson and Whittaker (1976). A special case of their work is the beta 
distribution with tl = /l < 1. We divide (0, 1) into (0, f) and (f, l), using 
envelope y 1  (x) oc xo- ’ on (0,i) and gz(x) a (1 - x)@- on (4,l). The envelope 
is sampled by 

1. Let Y = ut’“/2. 
2. Generate U z .  If U ;  > 9 let Y = 1 - I.: 

and the whole algorithm becomes 

1. Repeat 
generate U , ,  U z ,  let Y = U1:’”/2 

until U ,  < [2(1 - Y ) l a - l ,  
2. Generate U 3 .  If U 3  > f l e t  Y = 1 - Y. 
3. Return X = Y. 

using the symmetry of the density. Atkinson and Whittaker give a fuller 
version for a # p. 

Example. Brent (1974) applied composition and the von Neumann- 
Forsythe method to the normal distribution. The range [0, co) is divided 
into intervals Ii = [@-‘(I - 2 - i ) ,  @-‘(I - 2 - i - 1  )], i =  1, 2, 3 , . . . .  On 
each interval the trick can be applied since max f(x)/min f (x)  < e on each I i .  
Interval I i  is selected with probability 2 - i ,  and finally a random sign is 
applied to the half-normal variate generated by composition. Brent gives a 
Fortran function which uses few uniforms per normal but has a large table of 
constants. 

Example. Marsaglia and Bray (1964) used a four-part composition method 
for the normal distribution, which is discussed in more detail in Section 3.4. 
Two of the parts are very quick to sample and form 97.4% of the mixture. 
This illustrates the general point that composition algorithms tend to be 
fast but complex. 

Ratio of Uniforms 

Suppose ( V ,  V )  is a uniformly distributed point within the unit disc. From 
the polar algorithm V / U  has the distribution of the ratio of two independent 
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normal variates. From the Box-Muller algorithm this is the distribution of 
tan 0, which is easily seen to be the Cauchy distribution. Thus a simple way 
to sample from the Cauchy is 

Algorithm 3.8 (Cauchy) 

Repeat 
generate U , ,  U ,  - U(0, I ) ,  
let V = 2 U ,  - 1 

until U :  + V 2  < 1. 
Return X = V / U  

Here ( U  ,, V )  is uniform within a semicircle, which clearly suffices. 
Kinderman and Monahan (1977) took up this idea and considered 

whether other distributions could be sampled as V / U  for ( U .  V )  uniform over 
some set. 

Theorem 3.2. For any nonnegative function h with j h  c ~cc let Ch = 
( (u,  u )  I 0 < u G ,/Jh(v/u)). Then C, has a finite area and if ( U ,  V )  is uniformly 
distributed over Ch then X = V / U  has pdf h / j h .  

PROOF. Consider the change of variables (u ,  1 ' )  -+ (u, .Y = z~/u).  Now 

area (ch) = JJch dutlr = JLm u dudx = j+h(.x)dx < aj 

Furthermore, ( U ,  V )  has pdf l/area(Ch), so ( U ,  X )  has pdf u/area(Ch) and X 
has marginal pdf 

u du/area(Ch) = 12(x)/2 area(Ch) = h ( x ) / j h ( x )  

0 

G"' 
as required. 

[0, a3 x [b - ,  b , ] ,  when we can use rejection sampling. 
This result is most useful when ch is contained in a rectangle 

Algorithm 3.9 (ratio of uniforms) 

Repeat 
generate U 1 ,  U ,  - U(0, l) ,  
let U = a U , ,  V = b-  + ( b ,  - b - ) U 2 .  

until ( U ,  V )  E C,,. 
Return X = V / U .  
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Note that as in rejection sampling we only need to know f up to a constant 
factor. Conditions for Ch to be contained in a rectangle are given by 

Theorem 3.3. Suppose h(x) and x2h(x) are bounded. Then Ch c [0, a] 
= Jsuph, b ,  = Jsup{x2h(x)lx 2 0) and 6 -  = 

PROOF. 0 < u < d Jsuph is obvious. For u 2 0 to be a possible 
value there must exist a u > 0 with 0 < u2 < h(u/u) or t > 0 with u 2  d t2h( t )  
for t = u/u. Thus (u, u )  E Ch implies u2 d b$ or u < b,. The case u i 0 

It may be possible to enclose Ch in other polygonal shapes more efficiently 
than within a rectangle. However, the main computation is usually in 
checking if (u, u)  E C,,. 

follows similarly. 

Examples. (a) Exponential. Let h(x) = e-' on (0, a). Then a = 1, b- = 0, 
and b ,  = 2/e.  Furthermore, (u ,u )  E C ,  is equivalent to u2 d e-"'" or 
u < - 2u In u. Thus the algorithm is 

Repeat 

until V < - 2 U  In U .  
Return X = V / U .  

generate U ,  V = 2 U J e  

(b) Cauchy. Take h(x) = 1/(1 + x2) on (- m, co). Then a = 1 and 
b ,  = b- = 1. Also (u,  u ) € C h  is u2 d 1/(1 + v 2 / u 2 )  or u2 + u2 < 1, so we 
recover Algorithm 3.8. 

(c) Normal. Let h(x) = exp(-fx2). Then a = 1, b: = b2 = 2/e ,  and 
(u, u )  E Ch if and only if u2 d - 4u2 In u. The algorithm is 

Repeat 
generate U ,  U , ,  
let v = J2e=i(2u1 - I), x = V / U  

until X 2  < - 4 In u. 

Figure 3.3 shows how this transforms the lattice structure of pseudo-random 
numbers. 

Squeezing 

Both the rejection and ratio-of-uniforms methods use membership tests 
like MU d f / g  or (U, V )  E Ch which can be slow to evaluate. Most of the 
time the test will be clearly passed or failed and simple approximations to 
f / g  or Ch will suffice. 
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Figure 3.3. Plots of all possible successive normals ( X ,  Y )  from Algorithm 3.17. (a) 
X i  = (65X,- ,  + 1 )  mod 2048. (b )  X i  = (1229Xi- ,  + 1 )  mod 2048. 
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Suppose we can find simple (to evaluate) functions 1 and u with 

I < f / g  < u for all x 

Then if MU < I(Y) we can accept X and if MU > u ( Y )  we can reject I: in 
each case without evaluating f / g .  This can result in a considerable speeding- 
up of the algorithm. The analogue for the ratio of uniforms is to find sets 
Ci c C, c C, with (u, u )  E Ci and (u, v )  q! C, being easy to determine. 

This process is called pretesting or squeezing (Marsaglia, 1977). Much 
ingenuity can be applied to the choice of the bounds and even the order of the 
tests. 

Examples. (a) Exponential distribution restricted to (0,2), with pdf 
f(x) = e-"/(1 - eC2) .  With g the uniform density on (0,2) we obtain 

Repeat 
generate Y - U(0, 2), U - U(0, 1 )  
until U < e-'. 

Return X = I: 

from fi(x) = e-x. We can then apply squeezing to U < e-'. Of course, 
e" 2 1 + x for all x, so 1 - x d e-" d 1/(1 + x), and so 

e-"(a + 1 - x) < CX < e-'/(l - a + x) 
The squeezed rejection algorithm is 

1. Generate Y - U(0,2), U - U(0, 1). 
2. If U Q e-'(a + 1 - Y) go to 5. 
3. If U > e-*/(l - b + Y) go to 1.  
4. If U > e-' go to 1.  
5. Return X = I: 

where a and b are to be chosen. We choose a to maximize the probability p 
that the test succeeds. We find p = ae-' for a 2 1, * (a + 1)2e-" for a < 1 and 
so take a = 1.  We choose b to maximize the probability that we branch to 1; 
this is 4[3 - b - e-*(l + ln(3 - b) + b)] =: 0.521 at b = 0.662. With 
these choices 36.8% of the time Y is accepted at 2, 52.1% we reject at 3, 
8.9% we reject at 4, and 6.4% we accept at 4. Figure 3.4 illustrates the pretests. 

(b) Ratio-of-uniforms for exponential. We want to pretest V d - 2U In U .  
From ex 2 1 + x we obtain x d ln(1 + x) or y - 1 2 In y and 
y-' - 1 < -In y ,  so 

(1  + In a)  - aU d -In U d a/U - ( 1  + In a)  



Figure 3.5. 
lines are the pretests. 
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Pretests for the ratio method for the exponential. The solid line is Ch;  the dashed 
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We choose constants a, b,,  b2 in 

1. Generate U - U(0, l), I/ - U(0, 2 / ~ ) .  
2. Let X = V / U .  
3. I f t X  < (1 + lna)  - aU go to6.  
4. 1fi-X > b,/U - (1 + In b, )  go to 1. 
5. I f i X  > b2 /U - (1 + In b,) go to 1. 
6. Return X. 

The probability of acceptance at 3 is e(l + In u ) ~ / ~ u ’ ,  maximized for a z 1.65. 
The presence of both 4 and 5 corresponds to two possible choices for b of 
0.105 and 0.773. Figure 3.5 shows the bounds. 

3.3. DISCRETE DISTRIBUTIONS 

We will assume throughout this section that we wish to sample a variate X 
from a distribution given by p, = P(X = I), I = 1,2, .  . . and P,  = P(X < r). 
Any distribution on a countable set can be reduced to this form by relabeling 
the points. We will assume that the number of points is M ,  possibly infinity. 
Of course, for any method that involves storing ( p , )  we will have to truncate a 
distribution with M extremely large or infinite, say by ignoring all values 
beyond M‘ where 1 - P(X < M ’ )  < E, say 

Inversion 

For a discrete distribution F - ( u )  = min{x(F(x) 2 u }  = i where 
P , - ,  < u < Pi ,  so inversion amounts to searching a table of (Pi) for a 
suitable index i. Formally we have: 

Algorithm 3.10 

1. Generate U - U(0, 1). Let i = 1. 
2. While Pi < U do i = i + 1. 
3. Return X = i. 

The expected number of comparisons at step 2 is E X ,  since i comparisons 
are done for X = i. The algorithm can be speeded up by reordering the (p,) 
into decreasing order. This reduces EX as much as possible, and the original 
distribution can be recovered. The expense is in set-up time and space. 

A better way to reduce the number of comparisons is to start the search 
at a more suitable place. If ( p , )  is unimodal one could search left or right 
from the mode. We can also use a binary search to locate i. 
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Algorithm 3.10A 

1. Generate U - U(0, l), set L = 0, R = M .  
2. Repeat 

i = int[(L + R ) / 2 ]  
if U > Pi then L = i else R = i 

until L 2 R - 1. 
3. Return X = i. 

This tends to be faster for M 2 30. 
More generally we can start the search from a point depending on U .  

The indexed search method is based on the use of a thumb-index in a 
dictionary to find the beginning of the L's, say (Chen and Asau, 1974). 

Algorithm 3.11 (indexed search). Fix m. Let q j  = min{i I Pi 2 j/m}, 
j = 0, ..., m - 1. 

1. Generate U .  Let k = int(mU), i = q k .  
2. While Pi < U do i = i + 1. 
3. X = i. 

This is verified as for Algorithm 3.10 plus noting that initially P i -  < j /m< Pi, 
so if Pi 2 U ,  Pi 2 U 2 j/m > P i - l .  

Yet more sophisticated search algorithms are possible, the process being a 
trade-off between the time to set up additional structures and the time taken 
for each call. 

Example. [X N Poisson (lo)]. We find P(X < 22) 5 0.9997 and may 
truncate the table there, s? possible values are 0,. , . ,22. For searching 
from 0 we expect 11 comparisons [ = E(X + 1) to conform to a range 
1, . . . , M I .  Searching from the mode reduces this to about 3.6, and an indexed 
search with m = 5 to about 3.3 plus 1 look-up in the q table. Figure 3.6 shows 
a binary search which needs about 3.3 comparisons per X. The tree is found 
by combining the two least probable groups of values at each stage, starting 
with the individual values (Knuth, 1973a, p. 402). 

Ahrens and Kohrt (1981) modify the indexed search idea by subdividing 
{qm- . . , 1) by a further index. This may be faster for long-tailed distribu- 
tions. They also record if i = q j  is the only value with j /m < Pi  < (j + l)/m. 

Alias Method 

Walker (1974,1977) proposed what at first sight is an ingenious modification 
of the rejection method for discrete distributions, but is in fact a composition 
method. Instead of rejecting X = j we output X = A( j ) ,  the alias value. 
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Figure 3.6. 
right otherwise. 

Binary search tree for Poisson (10) .  At each node move left if L; < statcd value. 

The method requires that M be finite, and uses two tables Q and A of pro- 
babilities and aliases respectively. 

Algorithm 3.12 (alias method) 

1. Generate U - U(0, 1).  
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2 .  Let Y = 1 + int[MU], Z = frac[MU]. 
3. If 2 < Q ( Y ) ,  return X = Y else return X = A ( Y ) .  

At step 2 Y is uniformly distributed on { 1,. . . , M} and Z - U(0,  l), inde- 
pendent of I.: Thus 

P ( X  = i )  = Q(i) /M + 1 [l  - Q ( j ) ] / M  
j :A( j )  = i 

The computation of (3.12) can be speeded up by replacing Z < Q ( Y )  by 
M U  G Q(i)  + i - 1 or U < [Q( i )  + i - l]/M and tabulating the appro- 
priate right-hand side in place of Q. 

It remains to find tables Q and A so that P ( X  = r )  = pr. These tables are 
not unique. 

Algorithm 3.13 
For i = 1 to M 

Set Q(i)  = 1, ai = pi, Ii = true. 
For step = 1 to M - 1 do 

Select i with ai < 1/M, I i  = true. If there is none, stop. 
Select j with aj > 1/M, I j  = true. 
Set Ii = false, A(i)  = j ,  Q(i) = Mui. 
Set a j  = aj - [l - Q ( i ) ] / M .  

Theorem 3.4. Algorithm 3.13 finds Q and A satisfying (1) for pr = P ( X  = r). 

PROOF. At all times ai = pi - last term of (1). When Ii  is set false, Q( i)/M = ui 
by definition, so P ( X  = i )  = pi. Equation (1) for i is unchanged subsequently. 
Let di = ai - Q(i) /M,  Then initially 1 di = 0, and this is unchanged at each 
step. For indices i with Ii = false we have di = 0, so I ' d i  = 0, the sum 
being over indices with Ii = true. At each stage either there are indices i a n d j  
with di < 0, d j  > 0 or all di = 0 and we are done. After M - 1 steps, only one 
Ii = true, so that di = 0. It remains to check that 0 < Q(i)  d 1. The upper 
inequality follows from the choice of i. Initially ai 2 0, and by the choice of 
j, a j  = a j  - [l - Q(i)]/M 2 1/M - 1/M = 0 at the end of each step. 

This proof shows that an explicit choice of i and j can be given by 

Algorithm 3.13A 
For i = 1 to M 

For step = 1 to M - 1 
Set Q(i)  = 1, ui = pi, Ii  = true. 

Choose i attaining mjn{ailIi true). 
Choose j attaining max{ajlIj true). 
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If  ai = aj stop. 
Set I i  = false, Q(i) = M a i ,  A ( i )  = , j ,  
Set aj = aj - [l - Q(i)]/M. 

Example. [ X  - binomial (3, 1/31] 

0 1 2 3  0 1 2 3  

108a 32 48 24 4 32 25 24 4 
A 
21Q 21 21 21 27 2 1  21 27 4 
I T T T T  T T T F  

0 1 2 3  0 1 2 3  

108a 29 25 24 4 2 1  25 24 4 
- 0 0 1  0 1  A 

-+ 21Q 21 21 24 4 21 25 24 4 
I T T F F  T F F F  

_ - - _  _ - - -  
+ 

+ 
_ -  

Unfortunately this version of Algorithm 3.13 uses O(M + 1 -step) operations 
to find i andj,  and so O ( M 2 )  operations overall. An O ( M )  implementation is 
possible, using linked lists (Kronmal and Peterson, 1919) or pointers 
(Greenwood, 1981). We illustrate the use of stacks. 

Algorithm 3.13B. Needs work array M'( 1 ) .  . . w ( M )  of indices 

Set nn = 0, n p  = M + 1. 
For i = 1 to M 

Set Q(i) = M p , .  
IfQ(i) < 1 set nn = nil + 1, w(nn) = i 

else set n p  = n p  - 1, w(np) = i. 
For step = 1 to M - 1 

i = w(step), j = w(np)  
A(i) = j ,  Q(.j) = Q(j) + Q(i) - 1 
IfQ(i) < 1 then n p  = n p  + 1. 

In this implementation Q(i) stores Mai and indices with ai < 1/M are 
step . . . n p  - 1, the rest having ai 2 1/M. 

Table 3.1 shows that Algorithm 3.13B can be much faster than Algorithm 
3.13A. However, Algorithm 3.13A tries to choose i and j to maximize the 
Q( i )  and hence minimize look-ups of aliases. For example, if in the binomial 



76 RANDOM VARIABLES 

Table 3.1. Timings on BBC Microcomputer of Methods for the Poisson 
Distribution (Interpreted BASIC) 

5 10 20 50 

Algorithm 3.3 
Set up (msec) 
Per call (rnsec) 

Straight search 
Set up (rnsec) 
Per call (rnsec) 
Per call-3.10A (rnsec) 

Indexed search (m = 2p) 
Set up (rnsec) 
Per call (rnsec) 
Mean comparisons 

Binary search 
Set up (sec) 
Per call (rnsec) 

Per call (rnsec) 
Set up-3.13A (sec) 
Set up-3.13B (sec) 

Algorithm 3.15 
Set up (rnsec) 
Per call (rnsec) 

Alias 

14 
33 

180 
15 
26 

280 
8.2 
1.56 

1.4 
15 

6.8 
2.08 
0.58 

- 
- 

22 
59 

280 
26 
30 

470 
8.1 
1.51 

2.7 
18 

6.8 
4.50 
0.89 

56 
132 

37 85 
109 260 

410 910 
49 114 
34 40 

820 1,780 
8.1 7.1 
1.42 1.61 

6.2 22.4 
20 22 

6.8 6.8 
10.4 38.0 
1.47 2.79 

57 57 
125 169 

example we always take i ,  J as small as possible we find 

0 1 2 3  

A 1 -  0 0  
27Q 6 27 24 4 

so the probability of choosing an alias is increased from 7/27 to 23/54 and 
the time per call will be increased slightly. 

Table Method 

This is an approximate method suggested by Marsaglia (1963) and 
implemented by Norman and Cannon (1972). Consider the d-digit radix r 
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representation of pi, 

77 

d 

pi = 1 r - ja i j  
1 

For example, we have the following decimal expansions for binomial (3,1/3): 

P(X = 0) = 0.296 
P ( X  = 1) = 0.445 (rounded up to make total 1) 

P(X = 3) = 0.037 
P(X = 2) = 0.222 

The method depends on generating events of probability r - j  and assigning 
aij of them to X = i. In our example we have 

1. Generate U - U(0, 1). 
2. If0 < U < 0.8, let I = int[lOU] + 1, X = al[I]. 

If0.8 < U < 0.98, let I = int[lOOU] - 80 + 1, X = a z [ l ] .  
If0.98 < U ,  let I = int[lOOOU] - 980 + 1, X = a3[I]. 

Here a j  is a table of aoj O’s, a, l’s, and so on for j  = 1,2, or 3. If 0 < U < 0.8, 
I is uniform on 1, .  . . , 2  + 4 + 2 + 0, and if 0.8 < U < 0.98, I is uniform on 
1 ,..., 9 + 4 + 2 + 3 , a n d i f 0 . 9 8 <  U,I isuniformonl ,  . . . ,  6 + 5 + 2 + 7 .  

0.2 + 0.09 + 0.006. The principle should be clear from this example. Peterson 
and Kronmal (1983) give a formal algorithm. Comparative studies have 
shown the table method to have slow set-up times but fast sampling. It 
seems rarely to be competitive with the search and alias methods. 

Thus P(X = 0) = 0.8 x 2/8 + (0.98 - 0.8) x 9/18 + (1 - 0.98) x 6/20= 

Specific Distributions 

The general methods of indexed search and alias are easy to implement for 
an arbitrary discrete distribution, so methods specific to particular dis- 
tributions seem only worthwhile if the set-up times are significant, for 
example if the parameters change every few samples. 

Geometric Distribution 

The geometric distribution is sometimes known as the “discrete exponential” 
and can be sampled by discretizing an exponential. Suppose E has an 
exponential (L) distribution, and X = int[E]. Then 
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for r = 0, 1, 2,. . . . This is a geometric distribution with success probability 
p = 1 - e-', so choosing 1 = -ln(l - p )  we can sample from any given 
geometric distribution. 

A negative binomial distribution with integer index k is the distribution 
of the sum of k independent geometric variates. It can be sampled as such for 
small k or k varying from sample to sample. 

Binomial Distribution 

A binomial(n, p )  distribution is the distribution of the sum of n Bernoulli 
trials. If we sample the trials by inversion we generate U , ,  . . . , U ,  and count 
the number Y of U i  less than p .  

For large nit will be wasteful to generate all the U i  to find U(y)< p < U(y + ,), 
where U(i )  is the ith smallest U i .  We can make use of the fact that U(i)  has a 
beta(i, n + 1 - i) distribution, and that conditional on U ( i ) < p <  U ( i + k ) ,  
Y - i has a binomial(k - 1, [ p  - U ( i ) ] / [ U ( i + k )  - U ( i ) ] )  distribution. Relles 
(1972) applied this recursively, starting with (0, 1) and in each case generating 
the median of the range enclosing p .  (He gives Fortran code using an approxi- 
mate method to generate beta variates.) Knuth (1981, p. 131) gives a more 
refined version due to Ahrens which for binomial(n, p )  chooses i = int[( 1 + n)p] 
then works recursively until k is small. A formal algorithm is 

Algorithm 3.14 

Set k = n, 8 = p ,  X = 0. 
Repeat 

i = int[l t ke] 
Generate V - beta(i, k + 1 - i) 
If 8 < V then 8 = 8/v ,  k = i - 1 

else X = X + i, 8 = (6' - V)/(l - V ) ,  k = k - i 
until k < K .  
For i = 1 to k 

Return X. 
generate U - U(0, 1); if U < p then X = X + 1. 

Here K is chosen as a balance for efficiency (Exercise 3.13). 
Another stratagem is available if p is a simple binary fraction (Tocher, 

1954). If p = 4, we can generate n random bits and count the number which 
are one. If U - U(0, 1) its binary representation is such a series of random 
bits. If p = 2-,, we can take U ,  , . . . , U ,  and count the number of bits that are 
one in all U i ,  hence in U ,  OR U 2  O R . .  . OR U, .  It is easy to extend the 
method to events of probability m2-'. For example, if p = 8 we count the 
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bits that are either one in U ,  or one in both U 2  and U 3 ,  events of probability 
3, so Y is the number of one’s in U ,  OR ( U ,  AND U , ) .  This method is not 
recommended because the bits of pseudo-random numbers are not usually a 
good source of random bits. 

Poisson Distribution 

Table 3.1 shows that the simple Algorithm 3.3 with expected time 
proportional to p + 1 is slow unless set-up time is significant. Atkinson 
(1979a, 1979b) and Peterson and Kronmal (1983) give more extensive 
comparisons which favor the general indexed search and alias methods. 

The general methods need large tables for p large (say loo), and there has 
been interest in different methods for large p. Atkinson (1979a), Ahrens and 
Dieter (1980, 1982a), and Devroye (1981) all give methods that use rejection 
in the tail. All are fairly complex methods: Devroye gives a 65-line Fortran 
routine. The obvious idea to use a normal distribution as the envelope does 
not work as the normal tail decays too fast. Atkinson used a logistic envelope. 
His algorithm is 

Algorithm 3.15 [Poisson (p), p 3 301 

Set c = 0.767 - 3.36/p, 
k = Inc  - p - Inp. 

Repeat 
Repeat 

= 7 ~ ( 3 p - ” ~ ,  a = /3p, 

generate U , ,  
Let X = (a - ln[(l - U , ) / U , ] ) / / 3  

un t i lx  > - +  
Let N = int[X + +I. 
Generate U , .  

until a - P X  + In{ U,/[l + exp(a - /3X)]’f d k + N In p - In N !  
Return N .  

The restriction p 3 30 ensures (it is claimed) that the envelope constant c 
suffices. The method is faster than Algorithm 3.3 from about p = 30 and 
comes into its own for p 2 100. 

A further possibility (Atkinson, 1979a) for a general Poisson algorithm is 
to have available fast generators for particular values of p, say 4,8,16, . . . , 128 
and to use the fact that the sum of independent Poisson variates is Poisson. 
Thus Y - Poisson (84.7) would be generated as Y, + Y, + Y3 + Y4 where 
Y, - Poisson (64), Y, - Poisson (16), Y, - Poisson (4), and Y4 - Poisson 
(0.7) would be generated by Algorithm 3.3. Such an algorithm would be 
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bulky and complex but desirable when p changed every call, for which we will 
see uses in Chapter 4. 

Sampling without Replacement 

Some discrete distribution problems will require sampling without replace- 
ment, particularly for randomization of experiments and surveys. Suppose 
we wish to draw n units at random from a population of N, for example n 
individuals from a database. The obvious method is to select individuals at 
random, rejecting those already selected until n are found. If n is comparable 
with N, this is wasteful. One way to avoid this is to generate 
U1,. . . , UN - U(0, 1) and select the n individuals corresponding to the n 
smallest Ui, perhaps found by sorting (Ui, i )  on U i  (Page, 1967). In either 
case the selected individuals could then be picked out of the database 
sequentially. 

A better idea was given independently by Fan et al. (1962), Jones (1962), 
and Bebbington (1975). The individuals are considered in turn. If k have 
already been seen and r chosen, the next is selected with probability 
(n - r) / (N - k). This terminates when n are chosen, often before the Nth. 
It is not immediately obvious that this method will pick n individuals, nor 
that it picks them at random. However, the sampling probability reaches one 
when there are n - individuals left, so n will be picked. Furthermore, the 
probability that elements il < i2 < . * 1 < in are picked is 

N n 1 &I" - t + 11 

where RiS = n - s + 1 and R, = (N - t + 1) - (n  - s) for is < t < i s + l .  The 
denominator is N!  and the numerator contains n, n - 1,. . . , 1 for i ,  , . . . , is  
and N - n,. . ., 1 for the remaining elements. Thus the probability is 
n!(N - n ) ! / N !  independent of which elements are specified. See also Vitter 
(1984) who samples i j +  - i j  directly. 

Knuth (1981) and McLeod and Bellhouse (1983) give the following method, 
which McLeod and Bellhouse show to be marginally faster than the previous 
method and which does not require N to be known before the database is 
read. Select the first n individuals as a current sample. Each subsequent 
individual is rejected with probability 1 - n/t, where t is the number of 
individuals seen. If selected, the new individual replaces one of the current 
sample chosen at random. Clearly this will select n individuals. For t 2 n, 
the tth individual is selected with probability n/ t  and survives with probability 

fi (1 -;)=' N 
t + 1  
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since l /r  is the probability that the rth individual will replace it. By reordering 
the first n individuals, we see any individual is selected with probability n,”. 
Now for individuals t l  c t2  < . . .  < t ,  to be selected we have probability 

( t i  - l)!/(ti - i ) !  n ! ( N  - n) !  - - 
si!/(si - i)! N !  

where t n + l  = N + 1 and si = t i + l  - 1 ,  by checking that the tith element 
is selected and does not displace r l , .  . . , ti- ,, and that elements with 
ti < t < t i + l  do not replace any of the i so far selected. This formula is 
derived for t1 2 n but is easily modified to cover the remaining cases (Exercise 
3.14). 

Occasionally there will be a need for a random permutation, equivalent to 
shuffling N objects. In principle this is easy: label all N !  permutations and 
choose one at random. The following algorithm is due to Moses and Oakford 
(1963). 

Algorithm 3.16 

For t = N down to 1 do 
Generate S uniform on i 1 ,  . . . , r i. 
Swap the Sth and t th  objects. 

To see that this generates all permutations, define 

N 

p = n ( t  - l)!(S, - 1 )  
I = 1  

where S, is the value of S on the tth step. Then 0 S p < N ! and all values 
occur. Further p determines the (S,) and hence the permutation. Finally, 
all values of p are equally likely. Algorithm 3.16 avoids having to generate a 
digit in 1 , .  . . , N !, which can be a problem for even moderately large N .  I t  has 
been rediscovered frequently (Durstenfeld, 1964; de Balbine, 1967; Page, 
1967). 

3.4. CONTINUOUS DISTRIBUTIONS 

For discrete distributions we saw that general algorithms were competitive 
for most specific distributions. This is not true for continuous distributions, 
perhaps because of their many different tail behaviors. A very large number 
of specialized algorithms have been proposed, and we consider in detail only 
the more popular or meritorious ones. 
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Normal Distribution 

The normal distribution is a location-scale family, so by letting X = p + aY 
we can concentrate on Y - N(0,  1). We have already seen four methods: 
sum of 12 uniforms, Box-Muller (Algorithm 3.1), Marsaglia’s polar variant 
(Algorithm 3.6), and Brent’s von Neumann-Forsythe method. 

A more recent method is the ratio-of-uniforms (Best, 1979; Knuth, 1981, 
pp. 125-127, 552; Ripley, 1983~).  Take h = exp( -x2/2). Then (u, c) E Ch is 
equivalent to u 2 o , u 2  s exp( - u2/2u2) or - 4uz In u 2 LJ or xz < - 4 In u 
for x = u/u. With pretests this gives 

Algorithm 3.17 (normal by ratio-of-uniforms) 

1. Generate U ,  V = m ( 2 U 1  - 1). 
2. Let x = V / U ,  Z = $ X 2 .  
3. If Z < (1 + In a) - aU go to 6. 
4. If Z > b/U - (1 + In b) go to 1. 
5.  I f Z  > - In U go to 1. 
6. Return X .  

[V = 0.86(2U, - l)] 

[Z  < 1 - U recommended] 
[Z  > 0.259/U + 0.351 

Here b: = b2_ = max(x2e-x2’2) = 2/eso b ,  = Jz/e d 0.86. Best chooses 
a = 1, and this seems faster than Knuth’s a = which minimizes the 
probability of reaching 5 .  For b, e- 1 . 3 5  z 0.259 is near-optimal for avoiding 
5 .  This algorithm is as simple as the polar method, returns one normal deviate 
at a time, and is comparable in speed. (See Table 3.2.) Figure 3.7 illustrates the 
acceptance region and pretests. Figure 3.3 shows all possible successive 
pairs ( X ,  Y ) ,  to be compared with Fig. 3.1 and 3.2. There is little to choose 
between the Box-Muller, polar, and ratio methods for sensitivity to pseudo- 
random number generators. 

Compilers of subroutine libraries will be prepared to accept more complex 
algorithms for the sake of speed. Brent’s algorithm is just one of a number of 
composition algorithms designed for speed. Marsaglia and Bray (1964) gave 
a four-part algorithm. Density .f4 copes with 1x1 >, 3 whereas ,fl, , f2,  ,f3 all 
have support ( -  3,3). Thus p4 = P(lXl >, 3) : 0.0027. In the polar algorithm 
(XI >, 3 can only occur if - 2 In W 2 9. This yields the following algorithm 
for j k :  

Repeat 
Repeat 

Generate V,,  V, - U (  - 1. 1 )  
until W = V :  + V :  i 1. 

Let c = J w - ’ ( ~  - 2 In w), s = CV,. T = C V ~ .  
until IS1 > 3 or IT1 > 3. 
If IS1 > 3 return X = S else return X = T 



Table 3.2. Comparisons of Various Methods for Sampling Nonuniform Distributions (Times in msecs for Fortran Except Where 
Stated) 

BBC Basic ACT Sirius 

.~ 

Uniform 
Exponential 

Inversion 
Von Neumann 
ratio 

Cauchy 
Inversion 
ratio 

Normal 
Box Muller 
polar 
ratio 
Brent 
Marsaglia-Bray 
inversion 

r < 1 (3.19) 
z > l (3 .20)  

Gamma 

-~ 

I .5 

18 
14 
22 

24.5 
16.5 

4' 
31 
32 
44 
17 
36 

50 95 
50 70 

4.0" 

I 1  
30 
'5 

38 
28 

32 
'7 
44 
66 
- 

- 

ca. 50 
ca. 80 

___ 

I .Oh 

5 .0  
3.5 
4.8 

8.0 
4.8 

7.0 
6.0 
7.8 
8.9 
~ 

~ 

ca. 18 
ca. 20 

Corvus 
CDC(pec)  

VAX(jisec) APL on IBM 
RANF G05CAF 3701168' 

9111s 

3.1 
0.92 
6.9 

3.9 
I .6 

7.7 
4.1 
3.2 
3.0 

1.45 
4.0 

13 16 
8 10 

'9 

05 
155 
155 

I25 
110 

I45 
1 I5 
145 
1 I5 
155 
125 

320 390 
230 270 

2.8 

80 
50 

110 

I20 
45 

I60 
82 
80 
90 
55 

110 

230 270 
180 210 

30 

110 
180 
1 60 

145 
130 

I 90 
120 
155 
I30 
1 60 
I40 

310- 390 
270-300 

29 

89 
~ 

- 

107 
178 

I27 
134 
223 
- 

- 

323 

ca. 350 
300-350 

'Interpreted Basic. 
bCompiled Basic. 
'For lo00 samples. Timings by Dr. P. J. Green. oo 

w 
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0. 

0. 

0. 

0. 

0. 

-0. 

-0. 

-0. 

-0. 
- - _ - -  

Figure 3.7. Acceptance region and pretests for Algorithm 3.17. The region Ch is inside the solid 
line, the dashed lines are the recommended pretests, and the dotted line is Z = 1.25 - e1I4U. 

On ( - 3,3) the normal pdf is approximated by sums of two or three uniforms. 
Thus 

= 0.8638, 

p 2  = 0.1107, 

X = 2(U1 + U z  + U 3 )  - 3 

X = 1.5(U1 + U2 - 1 )  

P 3  2 0.0228, f 3  = [4  - Pl f l  - PZ.f2l/P(lXl 3) 

The reader may wonder how these values came to be chosen. Presumably 
plfl  was chosen to be a good, simple approximation to 4, p1 being chosen so 
that p1 fl < 4 for all x. A plot of 4 - p1 fi shows a roughly triangular middle 
part, which suggests the form of f2. Then f 3  and f4 were chosen to fill in the 
remaining pieces. As they are sampled infrequently, this can be done without 
undue regard for efficiency. See Figure 3.8. 

The complete algorithm is 

Algorithm 3.18 (Marsaglia-Bray, normal) 

Generate U .  
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Figure 3.8. 
solid line is the normal pdf. the dotted lines are p ,  

The Marsaglia-Bray composition algorithm for the normal distribution. The 
and p 2 J 2 ,  and the dashed line i sp , f ;  + p2. / ; .  

If U < 0.8638 then 
generate U , ,  U,, U,, 
let X = 2(U1 + U ,  + U , )  - 3 

else if U < 0.9745 then 
generate U , ,  U ,  
let X = 1.5(U1 + U 2  - 1) 

repeat 

until 0.358U2 < g(V), 
let X = V 

repeat 

else if U < 0.9973002039 

generate U , ,  set V = 6U, - 3, generate U,,  

else 

repeat 
generate U , ,  U , ,  set 

until W = V :  + V :  < 1, 
let c = J w - ' ( ~  - 2 In w), s = CV, ,  T = CV,, 

= 2Ui - 1 
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until IS1 > 3 or IT1 > 3 
if IS[ > 3 then X = S else X = T 

endif 
Return X .  

Here 

g(x) = ae-X2i2 - 2b(3 - x2) - c(1.5 - Ixl), 1x1 < 1 

a e - x * / 2  - b(3 - 1x1)’ - ~ ( 1 . 5  - Ix~), 1 < 1x1 < 1.5 

a e - x z / 2  - b(3 - 1 ~ 1 ) ~ ~  1.5 =S 1x1 c 3 

a = 17.49731196, b = 2.36785163, c = 2.15787544 

This algorithm uses on average around 3.9 uniforms per normal, but is 
usually faster than the simpler algorithms-see Table 3.2. If generating 
uniforms are slow, one can reuse U ;  see Exercise 3.10. 

Marsaglia (1961a) and Marsaglia et al. (1964) use a 31-part composition 
for the positive part of the normal to which they attach a random sign. 
Figure 3.9 illustrates the idea. The pdfs fi , . . , , f, are uniform on specified -‘i 0. 15 

0. 10 

0. 05 

0. 00 
0 . 0  0:s 

Figure 3.9. 
curve into the 31 regions shown. 

The rectangle-wedge-tail algorithm for the half-normal divides the area under the 
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intervals, and f i 6 , .  . . , f3,, are nearly triangular. Finally, f 3 1  is the tail 
X > 3. The algorithm uses the following modified rejection technique for 
nearly linear densities. 

Suppose f = 0 except on (a, b) and there are constants s and t such that 

s - t (x  - a)/(b - a) < f(x) < t - t (x  - a)/(b - a )  

on that interval. Then 

1. Generate U ,  I/ - U(0, 1). 
2. If U > V swap U and P! 
3. If V < s / t  go to 5 .  
4. 
5. Return X = a + (b  - a)U.  

Exercise 3.16 verifies that this works. 
Marsaglia et al. (1976) refine this algorithm further. The reader is referred 

to the original papers for full details. 
Kinderman and Ramage (1976) give a five-part composition algorithm 

for which the most frequently sampled distribution is the sum of two 
uniforms, 2.216(U1 + U 2  - 1). Again, the paper gives full details. Ahrens 
and Dieter (1972) have yet another five-part composition method. 

Yet more methods have been published by Deak (1980, 1981) and Dieter 
and Ahrens (1973). Marsaglia (1964) simulates from the tail of a normal 
distribution. 

If V > U + t-’f(a + (b - a)U)go to 1. 

Exponential Distribution 

We have seen two algorithms-3.2 (inversion) and 3.7 (von Neumann). 
Inversion is easy and is generally used unless it is too slow. The von Neumann 
method is faster provided random-number generation is fast. The ratio-of- 
uniforms method with pretests is also competitive. Marsaglia (1961 b) and 
Knuth (1981, p. 128) give other methods. 

Cauchy Distribution 

The ratio-of-uniforms algorithm 3.8 is almost always preferred to inversion. 

Student’s t-Distribution 

An obvious algorithm is normal/(xJ/v), where x,’ is regarded as a special 
case of a gamma distribution. Direct methods are given by Kinderman et al. 
(1977), Kinderman and Monahan (1980), and Marsaglia (1980). (See also 
Exercise 3.20.) 
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Gamma Distribution 

The gamma distribution has been one of the most intensively studied in the 
last decade, so the survey of Atkinson and Pearce (1976) is hopelessly out of 
date. We consider only unit scale parameter, with pdf 

~ ' - - l e - ~ / r ( a )  on (0, GO), a > 0 

If 2a is an integer we can use twice a x:,, variate for which we saw efficient 
methods for small a in Section 3.1. Otherwise we will consider separately 
the cases a > 1 for which the pdf is bounded and a < 1 for which it is not. 

For a < 1 we have the following simple and fast algorithm (Ahrens and 
Dieter, 1974). 

Algorithm 3.19 

1. Generate U o ,  U ,  . 
2. If U o  > e/(a + e), go to 4. 
3. Let X = {(a + e)U0/e}"". If U1 > e-' go to 1 else go to 5. 
4. Let X = - h ( ( a  + e)(l - Uo)/ae}. If U1 > Xu- '  go to 1. 
5. Return X. 
This partitions (0,~) into (0,l)  and (1,  00) and uses separate envelopes on 

each. Its correct operation is verified in Exercise 3.17. Best (1983) refines this 
by splitting at Z(a )  < 1. See also Exercise 3.22. 

For a > 1, Cheng and Feast (1979) give three related algorithms derived 
from the ratio-of-uniforms method. The region Ch for h(x)  = ~ " - l e - ~  is 

{(u, u)Iu, u >, 0, u2 < ( ~ / u p - ~ e - " / " }  c [0, a] x [O,  b] 

where a = [(a - l)/e](u-'"2 and b = [(a + 1)/e]('+1)'2. We can express the 
test as 2 In U < (a - 1) In X - X. We would generate U as aU,,  giving 

2 In U ,  + ( a  - l)ln[(a - l ) / e ]  < (a - 1) In X - X 

or, for c = 2/(a - 1) and W = X / ( a  - l), 

c l n U ,  - l n W +  W <  1 

This gives 

1. Generate U,, U ,  - U(0,l) 
2. Let W = d U 2 / U ,  ford 2 b/(a - l)a 
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3. Ifc  In U1 - In W + W > 1 go to 1 
4. Return X = (a! - l ) W  

as one implementation. We can pretest step 3 by 

2a. If cU ,  + W - W - '  < c + 2, go to 4 

Figure 3.10 shows that as a increases the acceptance region shrinks toward 
the diagonal U1 = U 2 .  Cheng and Feast thus suggested bounding Ch by 
a parallelogram. With suitable bounds for the constants we get 

Figure3.10. The region Ch in ( U , ,  U z )  space for the Cheng-Feast gamma algorithm 3.20. 
(a )  a = 2. ( b )  a = 5 .  (c) a = 10. ( d )  a = 100. For a 3 5 the sloping lines are the intersection of 
the parallelogram with the unit square. 
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Algorithm 3.20 (gamma, a > 1). c1 = a - 1, c2 = {a - l/6a}/c1, c3 = 2/cl, 
c4 = c + 2, c g  = l/&. 

1.. Repeat 
generate U , ,  U 2 ,  
ifa > 2.5 set U ,  = U 2  + c,(l - l.86U1) 

until 0 < U ,  < 1. 
2. Let W = c2U2/U1. 
3. I f c 3 U , +  W +  W - ' & c c , g o t o 5 .  
4. If c3 In U1 - In W + W >  1 go to 1. 
5. Return X = c, W 

This uses a rectangle to enclose Ch for 1 < a 6 2.5, and a parallelogram for 
a > 2.5 to give a fairly constant speed as a is varied. 

Many other algorithms have been proposed, including those of Ahrens 
and Dieter (1974, 1982b), Atkinson (1977), Atkinson and Pearce (1976), 
Best (1978, 1983), Cheng (1977), Cheng and Feast (1980a), Johnk (1964), 
Kinderman and Monahan (1980), Marsaglia (1977), Schmeiser and La1 
(1980), and Tadikamalla (1978). Tadikamalla and Johnson (1981) give a 
survey at that date. 

Beta Distribution 

The beta and gamma distributions are related. If X - gamma (a) and 
Y - gamma (P),  then X / ( X  + Y) - beta(a, P). Conversely, if X - beta 
(a, 1 - a) and Y - exponential then YZ - gamma (a) for a < 1. (This is 
Johnk's algorithm for the gamma.) For a and p both integers, the ath largest 
out of U1,. . . , Uol+B+ has a beta (a, j) distribution. Finally, beta variates 
can also be used to generate F-variates, for if X - beta ( i p ,  fv), 

Many methods have been proposed for the beta distribution. Either 
VX/CA1 - XI1 - Fll,". 

of a or P can be less than one. The three main cases are 

0 )  a, P > 1 
(ii) a < 1 < j 

(iii) a, j < 1 

with P < 1 < a coming by symmetry (X + 1 - X, u c-, P )  and cases with 
a = 1 or fl = 1 by inversion. 

Johnk (1964) gave 

Algorithm 3.21 (beta a > 0, /? > 0)  

Repeat 
Generate U1, U 2  - U(0, l), 
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let V, = Ut'", V' = Ui'p 
until W = V, + V, d 1. 
Return X = Vl/W 

Exercise 3.18 verifies this method, and shows that the acceptance rate is poor 
if a + B is large. Ahrens and Dieter (1974), Atkinson (1979c), Atkinson and 
Pearce (1976), Atkinson and Whittaker (1976), Boswell and De Angelis 
(1981), Cheng (1978a), Sakesegawa (1983), Schmeiser and Babu (1980), and 
Schmeiser and Shalaby (1980) give faster and more complicated methods 
which apply in one or more of the three cases given previously. One can of 
course also use the relationship to the gamma, the order statistic method 
(for integer a and f l ) ,  and inversion ( i f  a suitable approximation is available). 

Symmetric Stable Distributions 

This ic the family of distributions with characteristic functions exp ipr - lcrl'l. 
The cases CI = 1, the Cauchy, and x = 2. the normal. are dealt with above. 
Chambers et at. (1976) show that if V - U (  - ni7. n/2)  and W - exponential 
then 

11 + c, 
[cos( V,]' 

has the required distribution. 
More generally one can consider infinitely divisible distributions, of 

which stable distributions are a subclass. Bondesson (1982) uses an approxi- 
mate composition method, letting X be a sum of random variables with 
randomly chosen distributions. For the stable distributions this reduces to 
the method of Bartels (1978). 

3.5. RECOMMENDATIONS 

I t  is impossible to make recommendations of which algorithm to use that 
are good across all environments. The first piece of advice is to follow 
Jackson's ( 1975) Rules for Programmers on optimization : 

1. Don't do i t .  
2. (for experts only) Don't do i t  yet 

In other words, if you have a program available to you which will do what 
you want, use it. I t  is very unlikely that any lack of speed on its part will 
compensate for your time in programming and testing a preferred method. 

That advice will apply to most mainframe installations but not to users 
of mini- and microcomputers and programmable calculators. For such 
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Table 3.3. Recornendations for Simple Algorithms 

Normal : 
Exponential: Inversion (3.2). 
Cauchy : Ratio (3.8). 
Student's t :  
F: Gamma/gamma or via beta. 
Gamma: 

Beta: 

Geometric : 
Binomial: 

Poisson : 

Polar (3.6) or ratio (3.17). 

Normal/gamma or Exercise 3.20. 

a > 1 Ahrens and Dieter (3.19) or Exercise 3.22. 
a > 1 Cheng and Feast (3.20). 
gamma,/(gamma, + gamma,) if gamma 
available, otherwise Johnk (3.21). 
Integer part of exponential. 
n < 50 count U;s < p .  
n > 50 general method. 
p < 5-20 multiplication (3.3). 
p < 100 general method. 
p > 100 algorithm 3.15. 
Indexed search with m = i M  or alias. Other discrete: 

users, Table 3.3 recommends some simple algorithms that are unlikely to be 
embarrassingly slow in a simulation study. 

There will occasionally arise the need to sample from other continuous 
distributions, when the methodology of Section 3.2 will be useful. Atkinson 
(1982) is one example, Tadikamalla (1979) another. 

We have only considered the sensitivity of algorithms to the pseudo- 
random number generator used for certain methods for the normal dis- 
tribution. The general experience seems to be that the algorithms described 
here are satisfactory when used with a good generator. However, it is always 
advisable to check that the final program does produce approximately the 
correct distribution, for example by a Kolmogorov-Smirnov test of the 
empirical cdf based on a large number (say l0,OOO) of samples. 

Table 3.2 gives some comparative timings in a variety of environments. 
These times should be seen as a guide only, but confirm that relative speed 
varies little between very different computing environments. 

EXERCISES 

3.1. Find a recursive formula for the pdf of the sum of I I  independent 
U(0, 1) variates. [For the pdf note that its value on the interval 
( i  - 1, i), i = 1,. . . , n is a polynomial of degree 11 - 1 and obtain a 
recursion for the coefficients of these polynomials.] Hence show the 
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3.2. 

3.3. 

3.4, 

3.5. 

3.6. 

3.7. 

3.8. 

3.9. 

3.10. 

3.11. 

3.12. 

pdf is 
int(x) 

C ( -  l)’(;)(x - r-)”-’/(n - I)!  on (0, n) 
0 

Prove carefully that the Box-Muller algorithm returns independent 
standard normal variates. Show that if X and Y are independent with 
a differentiable pdf then R and 0 are independent only if X and Y are 
normally distributed. 

Verify by direct calculation that if N = max{nlE, + . . . + En d t }  
that N has a Poisson distribution, for independent exponential 
variates Ei. 

Plot ( ( X ,  Y))  for the Box-Muller and polar algorithms for the 
congruential generators Xi = ( a x i -  I + 1) mod 256, a = 133 and 341. 

Consider the beta density f (x)  = 6x(1 - x) on (0, 1). Derive as many 
different algorithms as you can to sample from 11 and compare them. 

What is the expected number of uniforms used in the Forsythe 
method? 

Verify that Algorithm 3.7 works. Derive the expected number of 
uniforms per exponential. 

Apply the ratio-of-uniforms method to the t-distribution with 
pdf a ( 1  + x 2 / v ) - ( v + 1 ) ’ 2 .  

Hsuan (1979) gives a method for sampling from a polygonal region. 
Consider using it with the ratio method for normal and exponential 
distributions. 

A frequent trick is to “reuse” uniforms. Show that if U - U(0, 1) 
then X = I(U d p )  and I/ = U/p if X = 1 otherwise = (1 - U)/(1 - p) 
are independent, and I/ - U(0,  1). Algorithm 3.19 uses this device. 

Implement various methods for sampling from the distribution on 
12,. . . , 12) of the sum of the outcomes of two dice throws. 

For the alias method taking M a power of 2 allows Y to be found by 
shifts rather than multiplication. To  do so one might introduce some 
zero probabilities. Do Algorithms 3.1 3 cope correctly? Try the 
example of Exercise 3.1 1. 
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3.13. Experiment with Algorithm 3.14 and choose K .  

3.14. Show the McLeod and Bellhouse reservoir sampling method works 
in all cases. 

3.15. Consider sampling without replacement with probability pro- 
portional to given weights. Can one do better than sampling with 
replacement and rejecting multiple occurrences? [See Wong and 
Easton (1980).] 

3.16. Show that the modified rejection method for nearly linear densities 
works. What is its probability of acceptance? 

3.17. Verify that Algorithm 3.19 works. 

3.18. Verify that Algorithm 3.21 works. 

3.19. Implement as many methods as you can for the triangular density 
f(x) = max(0, 1 - 1x1). 

3.20. Kinderman et al. (1977) give the following algorithm 

1. Generate U ,  U ,  - U(0, 1). 
2. If U < f then X = 1/(4U - l), V = X - ’ U ,  

else X = 4U - 3, 
3. 
4. 
5. Return X .  

V = U , .  
If V < 1 - 31x1 go to 5 .  
If V 2 (1 + X2/v )“”f ’ ) ’ ’  go to 1 .  

Show that this generates a t,-variate. [It is a rejection algorithm 
with g(x) a min(1, 1/x2).] 

3.21. Consider the inverse Gaussian distribution with pdf 

(1/2nx3)”’ exp[ - A(x - p)’/2p2x] on (0, a) 

Show that V = 1(X - p)’ /p’X - x: and hence X = X ,  or X 2 ,  
where 

Show that we should choose X ,  with probability p / ( p  + X , )  to 
obtain an inverse Gaussian variate (Michael et al., 1976). [Hint. 
Transform X + Y = min(X, p 2 / X )  -+ V = A( Y - p)’ /p2 Y . ]  
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3.22. Let Y have a gamma(@ + 1 )  distribution, independent of CJ. Prove 
that YCJ"" has a gamma(@) distribution. This is an easy and fast 
method for CI < 1 .  On some systems it will be faster to generate 
Ul ia  as exp( - E / a )  where E - exp( 1). 

3.23. Testing algorithms can be difficult. At some time line 3 of algorithm 
NMB of appendix B.5 was deleted, so only the first component of the 
Marsaglia-Bray algorithm 3.18 was used. How many samples 
would be needed to detect this error, say by a Kolmogorov Smirnov 
or chi-square test '? 



C H A P T E R  4 

Stochastic Models 

In Chapter 3 we were concerned almost exclusively with generating independ- 
ent samples from specified distributions. In the simplest case this univariate 
distribution is  the model, but often the stochastic model will utilize several 
dependent random variables. Constructing realizations with structured 
dependence has attracted much less attention. Many stochastic models can 
be simulated in the “obvious” way from their definitions, for example renewal 
processes. Nevertheless some tricks can be helpful and are presented below. 

4.1. ORDER STATISTICS 

Order statistics present perhaps the simplest form of dependence. An 
independent sample ( X ,  , . . . , X , )  is rearranged into increasing order as 
X ( , )  < . . .  < X(, , ) .  The obvious way to do this is to sort the sample after 
generation. The fastest general-purpose sorting algorithms need O(n In n )  time 
to sort n items (Knuth, 1973b), so there will be a value of n for which the cost 
of sorting will dominate the cost of sampling. Typically this occurs for n in the 
range 100- 10,000. 

The alternative is to generate the sample in order. By taking 
X ( i )  = F - ( U ( i ) )  we can reduce the problem to that of generating an ordered 
sample of random numbers, although in practice forming F -  may be very 
slow. Two methods have been suggested. 

1. Sequential. Let U , ,  . . . , U ,  - U(0, l ) .  Define U(,) = U;’“, U(k) = 

are the order statistics of a sample of size k on (0, U(k+ ,)), and plus inversion 
for U(,,). 

This method is particularly elegant for the exponential distribution. Let 
E,, ,  = - In U(,+ , - k ) .  Then 

U(k+ 1 )  X (Uk)l’k, k = n - 1, n - 2, .  . . , 1. This uses the fact that U ( , ) ,  . . . , U(k) 

E(k) = E(k - 1)  + Wk/(n + 1 - k )  

where E,,, = 0 and W,,  . . . , W, are independent exponential variates. 
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2. Exponential Spacings. Let E , ,  . . . , En+ , - exp(1) and Sk = EI + 
. . . + E,.  Then U,, ,  = S , / S , +  , have the required joint distribution (Exercise 
4.1 ). 

Another idea is to generate a partially sorted sample by grouping. Suppose 
the range of F is divided into intervals I , ,  . . . , I ,  of roughly equal probability. 
First a sample ( M I ,  . . . , M , )  of the multinomial distribution ( P ( X  E I , ) )  is 
taken, then M ,  points from I ,  are sampled and sorted, followed by M ,  points 
from I , ,  and so on. If k is chosen proportional to n, the average number of 
points sorted remains bounded and the expected time is O(n). Rabinowitz and 
Berenson (1974) suggest k in the range n/7 to n/2 for the uniform distribution, 
and Gerontidis and Smith (1982) illustrate other distributions with k z 4 4 .  

Consider the uniform distribution with l i  = [ ( i  - l)/k, i / k ) .  Then one way 

Table 4.1. Timings for Methods for Generating All Order Statistics of a Sample of 
Size n" 

U nforms 
Sorting 
Sequential 
Exponential 

spacings 
Grouping 

(k = nJ4) 
Normals 

Sorting 
Inversion 

Exponentials 
Sorting 
Sequential 
Inversion 

of u,i, 

of exponential 
spacings 

n 

10 20 100 1000 10 100 1000 10,000 

BBC Basic (msec) VAX Fortran (psec) 

16 
39 

20 

18 

30 

55 

28 
17 

37 

23 32 46 100 125 170 220 
40 41 41 150 140 140 140 

20 18 18 90 85 80 80 

18 16 16 10 100 100 100 

37 46 61 180 210 260 310 

53 52 52 240 225 225 220 

32 44 57 135 170 210 260 
17 17 17 80 80 80 80 

36 35 35 160 150 150 150 
- 

"Times are per order statistic. In each case the fastest available algorithm was used for samples to 
be sorted. 
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to generate a multinomial sample is to generate n U - U(0,  1) and count the 
number M i  of U Those UjeZi will do for the M i  points from Zi .  Thus the 
method can be viewed as a special-purpose sorting method which uses our 
knowledge of the distribution of the numbers to be sorted. It is closely related 
to address-calculation and radix sorts (Knuth, 1973b, pp. 99-102, 177- 178). 

Table 4.1 gives some timings for the various methods. There is little to 
choose between them for moderate n; therefore if a good sort routine is 
available, it would seem the best choice. It is hard to envisage applications 
that would need all order statistics for n 2 lOOO! Other comparisons are 
given by Lurie and Hartley (1972), Reeder (1972), Schucany (1972), Lurie and 
Mason (1973), Rabinowitz and Berenson (1974), Ramberg and Tadikamalla 
(1978), Bentley and Saxe (1980), and Gerontidis and Smith (1982). 

The comparisons are rather different if we only want a small proportion of 
the order statistics, for example the median and quartiles. It is possible to 
modify sort algorithms to avoid sorting the whole sample (Chambers, 1977, 
pp. 45, 184) but the work of sampling remains. If we require just X ( k )  we can 
sample it as F - ( u ( k ) ) ,  where uk - beta(k, n + 1 - k) can be sampled directly. 
(Note that in Chapter 3 we considered doing so via order statistics for small 
n.) If we want X ( k , ) ,  ..., X(kp) ,  k ,  < ... < k,, we can adapt the sequential 
method, so X & , )  = F - ( v ) ,  v = I/;+1 x beta@,, k,+, + 1 - k i )  variate, 
i = p - 1,.  . . , 1. Alternatively, we can modify the exponential spacings 
method, generating w - gamma(k, - ki- 1) i = 1,. . . , p  + 1 (k,, = 0, k,,+ , = 

n + 1) and setting 

4.2. MULTIVARIATE DISTRIBUTIONS 

The most common multivariate distribution is the multivariate normal in p 
dimensions with mean p and dispersion matrix C. There are two general 
approaches to sampling N(p, C). 

Suppose X = SST for some p x p matrix S .  Then if Z l ,  ..., Z,, 
are independent normal deviates, X = p + S Z  - N(p, C )  [since 
E(X - p)(X - p)T = S E Z Z T S T  = S S T ] .  Such matrices always exist. For 
example, the Cholesky decomposition of C is the unique lower-triangular 
matrix L with LLT = X (Nash, 1979). Then X = p + LZ can be formed quite 
rapidly. This decomposition is particularly useful if C- '  is specified, for if 
LLT = C - '  then we can take S = (L-')T and form X = p + Y ,  LTY = Z .  This 
triangular system of equations is easily solved. 

The other general approach is to generate Y - N(0, C) by generating Y, , 
then Y2 conditional on Y,, and so on. Let be the upper k x k submatrix of 
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C, and a = I .  Then the conditional distribution of yk given 

and standard deviations JC,, - a'A;-',a can be precomputed; A;' can be 
found from A;-', without full inversion. 

The implementation of the conditioning and Cholesky methods differs 
only in that 

W, = ( Y l , .  . . , yk - I )  2.' is N(aTA;-', W,, Zkk - aTA;',a). The vectors aTA;.', 

for the Cholesky method and 

in the conditioning method. Thus both require the same time per X, but in 
general the Cholesky method will take less time to set-up. However. examples 
exist in which one form is easy to derive analytically. ( I n  time series they are 
M A  and A R  representations respectively.) 

Comparative studies of these methods include Scheur and Stoller (1962). 
Barr and Slezak (1972), and Hurst and Knop (1972). Generally the Cholesky 
method is preferred. 

Wishart Distribution 

Let X, - N(pk, C), k = I , .  . . , H be independent multivariate normals with a 
common dispersion matrix. Let 

Then W has a noncentral Wishart distribution W(n,  Z, A), where A = c plpT. 
It arises when considering sample covariance matrices. 

Consider first the central case (A = 0). Then W = LVL' where LL' = Z 
and V = 1 Z,Z:, so a direct way to simulate V involves np normal deviates. 
We can reduce this load by Bartlett's decomposition. Let i, - x,'+ I ,  i = 1,  
, . . , p ,  and E , ~  - N ( 0 ,  1 )  for I ,< i < j < p .  Then (Exercise 4.3) 
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This algorithm is given by Ode11 and Feiveson (1966) and Chambers (1970). 
Smith and Hocking (1972) give Fortran code; they use an approximate 
method to generate the x2 variates whereas it would be better to use 
Algorithm 3.20. 

The noncentral Wishart distribution depends only on A, a nonnegative 
definite symmetric matrix. Let D = l-TT be its Cholesky decomposition. Take 
p,,. . . , pp as the rows of l-, and p i  = 0 for i > p. Then 

where the two terms are independent and the second has a W(n - p, X, 0) 
distribution. The first term is L [I (vk + zk)(vk + zk)T]LT, where L vk = pk, 
and can be simulated using p2 normals. This decomposition follows Cham- 
bers (1970). Gleser (1976) gives an extended decomposition, which is both 
more complex and more efficient. See also Johnson and Hegemann (1974). 

Discrete Distributions 

In theory, multivariate discrete distributions are no different from any other 
discrete distributions; they still take a countable set of values. In practice we 
have to approximate this by a rather large finite set, so they provide a severe 
test of the standard methods. Bivariate distributions have been considered by 
Kemp and Loukas (1978, 1981) and Kemp (1981), and trivariate ones by 
Loukas and Kemp (1983). Straight searching is prohibitively slow, but, 
provided space is available, indexed, alias, and table methods performed well. 
One simple idea for a bivariate distribution ( X ,  Y )  on { 1,. . . , L }  x { 1,. . . , M }  
with P = P ( X  < x) + P ( X  = x ,  Y < y )  is to use the value of X as an index. 
That is, we first search on ( P x M )  for P(X d x - 1) < I1 
< P ( X  d x )  = P,, and then search from P,, to P,, for y such that 

,y. 

P x , y - l  < u d P x y .  

4.3. POISSON PROCESSES AND LIFETIMES 

A point process in time is a sequence of times of occurrence So = 0, S ,  , S , ,  . . . . 
(We consider more general point processes in Section 4.6.) Let 
T = (Si - Si- 1 )  be the times between occurrences, which we will think of as 
lifetimes. For a renewal process the 7;: are independent, and the “obvious” 
way to simulate a renewal process is to construct the partial sums Si of a 
sequence of independent samples T from the specified lifetime distribution. 



POISSON PROCESSES AND LIFETIMES 101 

A Poisson process of rate i. is a renewal process with exp(i.) lifetimes. This 
gives one way to simulate it. An alternative characterization is that the 
number N ,  of points in (0, I )  has a Poisson ( i t )  distribution, and the N ,  points 
are uniformly distributed on (0, t ) .  (If we want the points in order we could 
generate an ordered sample by the methods of Section 4.1; using exponential 
spacings then nearly recovers the renewal-process approach.) 

Consider a heterogeneous Poisson process with rate function i.(r). Define 
the cumulative rate A(t)  = yo i.(s)ds. There are two immediate ways to 
simulate such a process. First, sample N ,  - Poisson[A(r)] and then N ,  points 
independently with cdf A/A(r). Alternatively simulate a Poisson process S; of 
unit rate. Then (S ,  = A ~ (SL)) is a heterogeneous Poisson process of rate i . ( t ) .  
This time-change transformation is an analogue of inversion and will 
generally be more efficient. [Kaminsky and Rumpf (1977) compare this with 
various approximations that are sometimes used.] 

There is also an analogue of rejection sampling. Rejecting points in a 
Poisson process is known as rhinniny, an allusion to two-dimensional 
processes as models for forests. Lewis and Shedler (1979a) proposed the 
following algorithm. 

Algorithm 4.1 (thinning). 
rate function 2, and h a function from [0, x )  to [0, I] .  

Let (S , )  be a heterogeneous Poisson process of 

J = O  
for I = 1 to n 

repeat 
J = J + l  
generate U 5 U(0,  I )  

until U 6 h(S,) 
s; = s, 

next I .  

Then (Sk) is a heterogeneous Poisson process of rate hi.. 

Each point of (S,) is retained independently with probability h ( S , ) .  Thus 
(S ; )  has independent numbers of points in disjoint intervals and so is a 
Poisson process. To find its rate function, note that 

P(some S k ~ ( t ,  t + At)) = h(r)P(some S,E(I,  I + AI)) 

z h( t)i.( r)Ar 

so the rate function is h x 1,. 
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A further operation for point processes is superposition, in which the 
points of two or more independent point processes are combined. The 
superposition of Poisson processes is a Poisson process with rate function the 
sum of those of the components. This can be used as an analogue of the 
composition principle to split I into simpler components before the use of 
inversion or thinning. 

Lewis and Shedler (1976, 1979b) illustrate these techniques for rate 
functions of the form exp(a, + a, t + a2t2). 

Lifetime Distributions 

There is a close connection between lifetime distributions and heterogeneous 
Poisson processes. Lifetime distributions are often specified by their hazard 
function h(t) = f(t)/[l - F ( t ) ] ,  so 

h(t)At z P(t d T < t + Atlt < T )  

Let H ( t )  = r0 h(s)ds be the cumulative hazard. Then F ( t )  = 1 - exp[ - H(t)], 
and F ( u )  = H-[-ln(l  - u) ] .  If U - U(0, l), E = -In(l - V )  - exp( l), so the inversion method for a distribution specified by its hazard is 

T = H - ( E ) ,  E N exp(1) 

Now suppose ( S , )  is a Poisson process with rate function h. Then S ,  is a 
sample from the distribution with hazard function h, for 

P ( S ,  > t )  = P ( N ,  = 0) = exp[-H(t)] = 1 - F ( t )  

Hence we can use any of the methods described for heterogeneous Poisson 
processes to simulate lifetime distributions. We have just considered inver- 
sion. Superposition leads to 

T = min(T ,,..., G), haz(7;) = A;, A, + . . .  + ik = h 

and hence tends to be slow. Thinning gives 

Algorithm 4.2. Suppose h < g, a hazard function with cumulative hazard G. 

S = O  
Repeat 

generate E - exp(l), U - U(0, 1) 
let S = S + E ,  Y = G - ( S )  

until Ug(Y) < h(Y). 
Return T = Y 
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This is just I = 1 in Algorithm 4.1 applied to the Poisson process of rate g 
simulated by inversion. Let N denote the number of exponentials or uniforms 
generated. Then (Devroye, 1985) 

E N  = f ( t )G(t)dt  

To see this, let S ,  be the successive points tried. Then ( S , )  is a Poisson process 
of rate $1, and ( S , ,  UqCS,)) form a homogeneous Poisson process on 
{ ( f ,  ~110 6 Y d q( t )} .  Thus if T > t we expect to reject 

0 

points by time t .  From this 

Alternative expressions are 

confirming that if g and h match well then Algorithm 4.2 is efficient. 

hazard rates, which he terms “dynamic thinning.” 

Algorithm 4.3. 

Devroye (1985) has an elegant modification for densities with decreasing 

Suppose h(0) < x and / I  is nonincreasing. 

T = O  
Repeat 

bound = h(T)  
generate E - exp(bound), U - U(O, 1 )  
let T = T + E  

until U x bound d h(T). 
Return 7: 

This corresponds to using a point process with rate function /z(S,) on [S,,, 
S,, , ), which is no longer a Poisson process. However, 

P( t  s T < f + Atlt d r )  % P(r d E + To < f + Atlt < E + T o )  x [h(t)/bound] 

= (1 - e -  h*undAr)h(t)/bound % h(t)Af 
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Table 4.2. Timings for the Pareto Distribution" 

r 

0.1 0.5 1 5 10 100 

Inversion 21 8 6 38 38 38 
Algorithm 4.2 c o b  x* xh 32 30 28 
Algorithm 4.3 135 60 47 35 31 30 

"Milliseconds per random variable in BBC Basic. 
bInfinite theoretical mean and large unstable empirical values. 

where To is the largest value of T less then r .  Thus T has hazard function h( ) 
as required. 

I t  is not possible to give a general formula for E N  for Algorithm 4.3. 
Devroye (1985) gives a number of bounds. 

Example. The Pareto distribution with f ( r )  = a/(1 + r ) l + a  on (0, a), with 
a > 0. Then h( t )  = a / ( l  + r )  and H ( t )  = a In(1 + t ) ,  so inversion yields 

T = exp(E/a) - 1 = U-l l z  - 1 

for E - exp(1) or U 5 U(0, 1). The dynamic thinning method can also be 
used. Devroye (1985) shows 

For constant hazard y(t) = r we find E N  = a E T  = r / ( r  - 1)  for r > 1 and .x 
for a < 1. Despite this, Table 4.2 shows little advantage for dynamic thinning. 

For an ordered sample of lifetime distributions the obvious methods are to 
sort a sample or to use I--(&), where E,i, are generated by the sequential 
method (Newby, 1979). 

4.4. MARKOV PROCESSES 

Many of the stochastic models of operations research can be regarded as 
Markov processes, and Markov models are also used in demography and 
population biology. A discrete-time Markov chain with state space S and 
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transition matrix P can be simulated in the obvious way: 

If  X, = s select X , ,  , from the 
discrete distribution { p s i  I i E S ) .  

It may be worth setting up index search o r  alias tables for the rows of P ,  or  a t  
least those more commonly visited if S is large. One  could, for example, set up  
alias tables for row s on the first visit to s. 

An alternative is to compute T,, the time to the next jump, then X , ,  T,,. The 
wait T, has a geometric distribution with parameter pss if X ,  = S, and Xn+7 . , ,  
has the discrete distribution {pJ(l - ps,)l ieS\,  ( s ) ) .  This is likely to be 
faster at the expense of program complexity. 

Continuous-time Markov chains can be simulated in the same way. Let T,, 

T ~ ,  . . . be the sequence of times between jumps. and J , ,  J , ,  . . . be the sequence 
of states visited. Then we can reconstruct the process from (J , , ,  T,,) (technically 
only up  to the “first infinity“). Furthermore, conditional on ( J , , .  . . , J,, , 
T,,. . . , T , -  ,), T ,  is exponentially distributed with rate tiJ,,, and ( J , , )  is a 
Markov chain. Thus we can simulate the continuous-time process by 
sampling an exponential time to the next transition, then sampling the next 
state from the J, th row of the transition matrix J of ( J , ) .  Here J,,s = q,,,/y, and 
J,, = 0. A formal version of this construction is given by Freedman (1971. 
Theorem 7.33). 

Looking at a process in this fashion is known as dI.sc~re?e-eivi~f simulation. 
I t  may well be possible to obtain all the information we need from (Jl,) 
without knowing ( T , ! ) .  For example. in the queueing model for a bank 
discussed in Chapter I we might s~tppose that a customer leaves in disgust if 
the queue to which he or she is assigned already contains 10 or  more 
customers. Then we can find from (J,l) the proportion ofcustomers who leave. 
I t  is also true for a wide class of queueing models that the equilibrium 
distribution of the process does not depend on the distribution of ( T , )  (Kelly, 
1979). so we may as well take T,, to be discrete. 

Although many models are Markov or  have embedded Markov chains (a 
series of times at which observations form a Markov chain), this is not the 
most natural way to view a queueing system. The system is specified by what 
happens to customers and servers, and discrete-event simulation languages 
such as SIMSCRIPT. GPSS, and Simula work with descriptions in these 
terms. They are described and compared in Fishman (1978a) and Bratley et 
al. (( 1983). Hordijk et al. (1976) discuss some of the theory. 

4.5. GAUSSIAN PROCESSES 

Gaussian processes on T c Rd are stochastic processes all of whose joint 
distributions are jointly normal. That is, a random variable X ( t )  is defined for 
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each t E 7; and X ( t , ) ,  . . . , X ( t , )  have a multivariate normal distribution for 
each r-tuple ( t l ,  ..., tr) and each r. 

One will only need to sample a stochastic process at a finite number of 
points, so a sample from a Gaussian process is just one from a multivariate 
normal distribution. However, the number of points can easily be 1000 or 
10,000, in which case one faces the decomposition of an n x n matrix for n of 
the order of lo3 or lo4. This is computationally prohibitive. More efficient 
methods can be found using stationarity. 

Consider first time series models, with T = { 1,2, 3,. . . ). An M A ( q )  process 
is defined by 

where I : ,  - N ( 0 ,  a') independently for t ~ ( - q ,  - 4  + l , . .  .). This can be 
simulated straight from the definition (1). An A R ( p )  model has 

In this case we need to specify X , ,  . . . , X ,  to start the recursion. Since this is a 
Gaussian process, ( X l , .  . . , X p )  - N(0,  Z) and we only need to find the 
dispersion matrix Z. This is done using stationarity, for Z is the dispersion 
matrix of 

S 0 

' 1 1 ' ' '  '1, 

1 0 

0 "  1 0  

+ E ,  (3) 

wherc .4 denotes thc 17 x p matrix i n  ( 3 ) .  This system is solved to find the 
symmetric matrix 1. [See, for example, Gardner et al. (1979).] Alternatively 
onc could set X ,  = . . .  = X,, = 0 and run  (2)  for long enough to settle down 
to equilibrium. This can be quantified. for the effect of the initial conditions 
decays as 0 '. where 0 is the smallest modulus of a root of 
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z P - u I z P - l  - . . . _  up. By combining the ideas for A R  and M A  processes 
one can simulate A R M A  processes. 

The continuous-time analogues of A R M A  models (linear stochastic 
difference equations) are stochastic differential equations and Brownian 
motion. Like ordinary differential equations these can be solved by discret- 
ization into small time steps, so the increments of Brownian motion become 
independent normal variates, and Brownian motion itself is approximated by 
a random walk [see Rao et al. (1974) and Platen (1981)l. There is one useful 
dodge that can be used to reduce the time step where necessary. [For 
example, Knuth (1984).] Suppose B(t) is Brownian motion with 
var[B(t)] = 02t ,  and B(nr) and B(nr + 5 )  have been found. Define 

Y(s)  = [B(~T + sr)  - B(nr)] - s[B(nr + r )  - B(nr)], 0 G s G 1 

Then knowledge of the Y process would allow B(t)  to be filled in on (nr, 
nr + r). The process Y is a Brownian bridge. To simulate a Brownian bridge 
one can reverse the process; let W(r), 0 d t d 1, be a random-walk approxi- 
mation to Brownian motion and let W,( t )  = c[W(t) - tW(l)]. Then W, is a 
Brownian bridge (Exercise 4.7). 

A Gaussian process on Rd is specified by its mean function m( ) (which we 
will assume to be zero) and covariance function C(x, y). Under the 
assumption of stationarity under translations we have C(x, y) = C(x - y, 0) 
= c(x - y), say. If in addition the process is stationary under rotations 
(isotropic), c(h) is a function of the length of h only, so C(x, y) only depends on 
the distance between x and y. There are few direct ways of simulating a 
Gaussian process with a specified covariance function. If we can simulate any 
process with covariance function C,  we can obtain an approximation to a 
Gaussian process with the same covariance function by averaging a number 
of realizations of the non-Gaussian process and relying on the central limit 
theorem. 

Zubrzycki (1957) took a Poisson process of rate A on Rd and centered a 
disc of radius R about each point. Then Z(x) is the number of discs that cover 
x; it has an isotropic covariance function which decays to zero at 2R.  
Sironvalle (1980) allowed R to be random, chosen independently for each disc 
from a distribution F. On R2 

so 
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and 

1 - F(r )  = - 

This will not give a distribution function for arbitrary c, but will do so for 
many covariance functions if I is chosen appropriately. This clearly gives a 
non-Gaussian process, but averaging independent copies amounts to taking 
1. large and considering l . - ' X L .  

Another approximate method for isotropic covariances is the "turning 
b a n d  method of Matheron (1973). Simulate a stationary process Z ,  on R 
with covariance function cl .  Select a random rotation 0 in Rd, and define 
Z(x) = Z,((Ox),). This is a stationary isotropic non-Gaussian process with 
covariance function 

We need to invert (4) to find c l  from c. [There is always a suitable c ,  (Ripley, 
1981, pp. 12-13).] This is particularly simple for d = 3 when 

d 
c l ( r )  = - [ rc(r)]  dr 

Again averaging is needed to produce an approximately Gaussian process. 
The turning bands method needs samples of stationary processes on R'  

and we have as yet seen few examples. Solutions of stochastic differential 
equations provide one possibility; another is to generalize moving average 
processes to 

X ( x )  = k ( x  - y)dB(y) s 
or 

for Brownian motion B or a Poisson process N with points (y ,} .  Both have 
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the covariance function 

C(X) = k(x  - u)k(u)du s (7) 

but (6) has a nonzero mean and is non-Gaussian. The stochastic integral ( 5 )  
will be approximated by a sum of the form 

where E, - N ( 0 ,  d), independently for each n. This is a convolution and so can 
be evaluated rapidly at (x = rd} via Fast Fourier Transforms. 

To do so we regard X j  = X(jd) as a stationary process on {O ,  . . , , N - l}  
with addition mod N .  Then if 

N -  1 .. - 
Xi = 1 k(j6 - rd)E, 

r = O  

and we define k j  = k( j6  mod N 6 ) ,  then 

X j  = C k j - , E ,  
S 

Let 8 and Z. be discrete Fourier transforms of X and E,  so 

We can obtain ( X i )  from (8,) by 

This gives us a rapid way to evaluate (8). Form ( g r )  in advance. Generate 
( E ~ ,  . . . , E ~  - I ) ,  form (E,)  then (x,) and (Xj). If N is a power of 2 the Fourier 
transforms can be calculated via the Fast Fourier Transform. In fact, we can 
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generate (E,) directly. Let 

STOCHASTIC MODELS 

Then V, = 0, UN-, = U, and VN-r = - y ,  giving N linearly independent 
variables (Uo, .  . . , U N I 2 ,  V , ,  . . . , VNi2 - provided N is even. These are also 
statistically independent, normally distributed with variance N h / 2  except U,, 
which has variance N 6 .  

We have some freedom in this construction, for (7) does not determine k( ) 
completely. All we have is i. = IKIz .  Thus we may without loss of generality 
take z, = K - , .  = 4. [Here 1. is the spectral density of (Xi).] This gives the 
following algorithm. 

Algorithm 4.4. 
even N .  

1. Form c,,. . . , c N -  I by r, = c(rd), r f N / 2  - I and ch -, = c,. 

2. Form Z., and q5\ = &, s = 0,. . .  , N - I .  

Covariance function c(r6) specified, r = 0,. . . , N / 2  - 1 for 

For each simulation of X(O),  . . . , X ( ( N  - 1)6) 

1. Sample U ,  - N(O, NO),  U l  ,.... U,,z - N(0,  N S / 2 ) ,  V ,,..., V N , , - ,  

2. L e t U , - , = U , , r = I  ,..., N / 2 - I .  
Let V, = Vh,2 = 0, Vv- ,  = - 

3. F o r j =  I ,  ..., N - 1 let 

- N ( 0 ,  N h / 2 ) .  

r = 1 , . . . ,  N / 2  - 1 

via a Fast Fourier Transform algorithm. 

This method will generate any stationary Gaussian process on 
lo,. . . , N - 1; and approximates any stationary Gaussian process on R. The 
circularity will give a poor approximation unless N h  >> range of c. Davis et al. 
(1981) give Fortran code to implement this algorithm. (Lines 1400 and 1670- 
1700 ensure x = 0 and should be omitted, and a better normal generator 
used.) 

4.6. POINT PROCESSES 

Section 4.3 considered only Poisson point processes on [0, a). Renewal 
processes can be simulated directly from their definition as partial sums of 
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independent lifetimes. Sometimes we will want a renewal process in equilib- 
rium (that is, starting observation at an arbitrary time, not at an event). Let TI 
be the time from beginning observation to the first event observed, and T,, 
T,, . . .subsequent inter-event times. Then T, has a different distribution from 
T2. with density 

1 

P 
d ( t )  = -[I  - F( t ) ]  on (0, a) 

where F is the cdf of T,, and p is its mean. Thus to simulate the process on 
(0, co) we sample T, from d ,  then T,, T3,. ..from the normal lifetime 
distribution. 

Another approach is necessary to simulate an equilibrium renewal process 
on ( -  m, GO). Clearly 0 will belong to a lifetime with probability proportional 
to the length of the interval. Thus the interval (T- ,, T, ) containing zero has a 
length with pdf t f ( t ) / p  and is uniformly distributed about zero. Once T_ , and 
TI are established the simulation is completed both forward and backward in 
the obvious way. 

Most other models of point processes in time can be simulated directly 
from their definitions. [See, for example, Cox and Isham (1980).] 

Stochastic geometry and spatial statistics (Ripley, 1981) make use of point 
processes on quite complicated spaces. Most specific models are based on the 
Poisson process. The only construction from Section 4.3 that can be 
generalized to points on the plane is that which distributes N ,  points 
inependently on (0, t). For very general spaces X we can define a Poisson 
process N with mean measure A by 

(i) N ( A )  is the number of points in the (measurable) subset A c X .  
(ii) If { A , )  are disjoint, { N ( A , ) )  are independent. 

(iii) N ( A )  - Poisson [A(A)]. 
(iv) Conditional on N ( A )  = n, the n points in A are independently 

distributed with distribution A/A(A). 

Some of these properties make sense only if A(A) is finite. Since we will 
only be able to simulate a finite number of points, we will confine attention to 
A c X with A(A) < cu. The properties (iii) and (iv) give a direct way to 
simulate the process on A .  It may be difficult, however, to sample from the 
multidimensional distribution given at (iv). In this case we could partition 
A = A ,  u . . ' u A , ,  Ai  n A j  = 0, and use property (ii) to simulate independ- 
ently on each Ai. Then A may be more nearly uniform on A i  and so easier to 
sample. Figure 4.1 shows a simple example. The thinning method also 
generalizes in an obvious way. 

Poisson cluster processes are defined by replacing each point of a Poisson 
process with an independent group of points. Cox or doubly stochastic 
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I 

Figure4.1. 
rectangle, for (b) for A , ,  . . . , A, in turn. 

Subdividinga region A for a Poisson process. In (a) one samples points in the outer 

Poisson processes are Poisson conditional on the realization of the random 
mean A. Both may be simulated directly from their definitions. 

Gibbsian point processes, which are often used as models for regular point 
patterns, pose more difficulty. Again we confine attention to a set A c X for 
which f ( N ( A )  < co) = 1. Then we can specify the distribution of the N ( A )  
points by the { f ( N ( A )  = n)} and the pdfs .f, of points (x,, . . . , x,), conditional 
on N ( A )  = n. Unfortunately ,f, may be far from constant and of an intractable 
form. Consider, for example, n points in Rd distributed at random in the unit 
ball, conditional on no two points being closer fhun r.  Rejection sampling is 
possible in theory but may be phenomenally inefficient (Ripley, 1977, p. 179). 
An obvious alternative is to generate xl, then x2 conditional on xl, and so 
on. However, in our example we do not even know the marginal distribution 
of xI. Fortunately f, is known to be the equilibrium density of a space-time 
process that is easy to simulate (Ripley, 1977, 1979). 

The density f. cannot depend on the order of xl,. . . , x,, since this order 
has no physical meaning. We just assume that f(x,IxI,. . . , x, - is known. 
Consider the following algorithm. 

Algorithm 4.5. Start with X I ,  . . .  ,Xn as any set of points with 
L(XI,...,X,) > 0. 

For step = 1 to large number 
Generate U .  Let k = 1 + int[NCJ]. 
Generate X from f (XlX, ,  . . . ,Xk- l,Xk+l,. . . ,X, ) .  
Replace Xk by X. 

It can then be shown under very mild conditions on f, (for example, f, > 0 
suffices) that the limiting distribution of ( X I , .  . . , X,) has density f ,  (Ripley, 
1979; Lotwick and Silverman, 1981). How large the number of steps needs to 
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be depends on fn, but usually 10n steps will suffice to eliminate the initial 
conditions, and samples taken 2n-4n steps apart are virtually independent. 

Algorithm 4.5 can be thought of as a spatial birth-and-death process in 
which deaths and births alternate. More general processes of this type cover 
the cases in which P ( N ( A )  = n) is unknown (Preston, 1977). 

4.7. METROPOLIS' METHOD AND RANDOM FIELDS 

The idea of using a Markov chain to simulate a complex system (as for a 
point process in Section 4.6) has been used extensively in statistical physics 
following the early work of Metropolis [in Metropolis et al. (1953)l. We will 
set out a general framework and illustrate i t  with the simulation of random 
fields. 

Suppose we have a system with a large but finite number of states, and we 
wish to sample from a distribution that gives state j probability n j  > 0. A 
Markov chain with transition matrix P will have equilibrium distribution n if 
and only if 

nT = n T P  (9)  

and this chain is reversible if and only if the detailed balance conditions 

(10) 

are satisfied (Kelly, 1979, Section 1.2). It is easy to see that (10) implies (9), for 

nipij = njpji for all i f j 

( n T P ) j  = p r i p i j  = 1.. J P J ~  " 

1 i 

- - nj 1 p j i  = nj 
I 

To sample from n we select a Markov chain with transition matrix P 
satisfying (10) and run i t  until i t  appears to have settled down to equilibrium. 
A general way to choose P is 

Algorithm 4.6 (Metropolis). Choose a sj-mrnrrric transition matrix Q. At 
each step select,/ from Qi., and move from i to,/ with probability mini l ,  nj!ni:  
otherwise remain at i. 

This defines 
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for j # i and 

pi, = q,, + 1 max(0, 1 - nj/ni}qij 
j + i  

for which (10) holds, for 

nipij = min{lri, nj}qij 

= min{n,, nLi3qji = n j p j i  

There remain the questions of uniqueness and convergence to the unique 
equilibrium distribution. The equilibrium distribution will be unique if P is 
irreducible. However, pij > 0 if and only if 4ij > 0, so P is irreducible if and 
only if Q is. The distribution of ( X , )  will converge to n if P is aperiodic. Note 
that pi i  > 0 unless both qii = 0 and nj 3 71, for all states j with qij > 0. If for 
one of these states nj > n,, then p j j  > 0. Thus except in the trivial case of 
constant xi, at least one p j j  > 0, so the state j and hence the whole chain is 
aperiodic. Thus a sufficient condition if n is not constant is to check that i t  is 
possible to move from any state to any other under Q. 

Other prescriptions of P have been proposed. Barker (1965) replaced 
minll, nj /n i )  by the smaller quantity nj/(ni + nj).  Again 

ninj 
n, + 7Tj 

n . p . .  = -qij = njpji for i # j 
I I J  

so (10) holds. (In this case P is always aperiodic.) Hastings (1970) gives a 
parametric family of prescriptions that includes both Barker’s and Metro- 
polis’ methods. Peskun (1973) shows this is inferior to Metropolis’ suggestion 
for estimating E , . f ( X )  by the average of f ( X , ) .  This says little, however, 
about the rate of convergence of X ,  to equilibrium. (Metropolis’ method is 
better than Barker’s principally because it makes more transitions, so the 
average is over more independent terms.) 

Markov Random Fields 

Consider ;I process that takes one of k colors at each of a set of sites. These 
sites will be related by a graph structure, for example, sites on a square lattice. 
so each site has a number of neighbors. The process is specified by giving the 
joint distribution of all the random variables (.\,IsE S ) .  A Markov random 
field has the special property that P ( x ,  = color[.\,, s # I ’ )  = P ( x ,  = colorl.u,. s 
;I neighbor of I ’ )  for each site. In words. the conditional distribution at a site 
given the rest depends only on the values at the neighboring sites. 
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Such processes are specified by giving these conditional distributions, with 
the result that the joint distribution is known only up to a normalizing 
constant (Kelly, 1979, Chapter 9). 

As an example, consider a binary process on a M x M lattice with colors 
white and black. We can define 

“11 c 
P ( x ,  = black 1 rest) = - 

1 + eV 

where 

q = /3(number of black neighbors - number of white neighbors) 

This corresponds to the joint distribution 

P(x, . * .  xYM ) = const exp{P C l(same color)} ( 1  1) 
neighbor 

pairs of sites 

but the constant cannot be written in any simple form. 
This is an ideal problem for Markov chain methods, which only depend on 

zj/7ti. We can choose Q so that qij > 0 only if i and j are states that differ in 
value at a single site. If this site is r,  then 

n. P(x,  = new colorlrest) --?= 
n, P(x,  = old colorlrest) 

which is easily computed for a Markov random field. For example, we might 
select Q by choosing a site at random and changing its value to a randomly 
chosen color (not necessarily excluding the current color). This is clearly 
symmetric and irreducible so Algorithm 4.6 can be used. 

Barker’s method for a binary Markov random field can be expressed 
rather more simply. At the chosen site x, = black or white so 
ni + nj = P ( x ,  = white, rest) + P(x,  = black, rest) = P(rest) and 

n .  P(x,  = new color, rest) 
2- - 
ni + nj P(rest) 

= P(x,  = new colorlrest) 

The method thus reduces to choosing the new color at r from the conditional 
distribution given the neighboring values. This can also be considered for 
k > 2. Geman and Geman (1984) called this variant the “Gibbs sampler.” 



116 STOCHASTIC MODELS 

Yet another method based on Markov chains is Flinn’s (1974) “spin 
exchange” method. Two sites are selected at random and the interchange of 
their values considered, being performed with probability ~ c ~ / n ; .  Suppose r 
and s are the sites selected. Then 

P(x, = old x,lrest)P(x, = old x,lrest) 
Tcl - 
T I ,  P(.Y, = old x,lrest)P(.u, = old s,lrest) 
- - 

prorided r and s are not neighbors. If r and s are neighbors, the conditional 
joint distribution of s, and .Y, must be evaluated. For  example, from ( 1  1)  we 
find 

P(u, = white, x, = black I xI, t # r, s) 
P(.Y, = black, x, = white 1 xI, t # r, s) 

= exp P(Wr - B, -b B, - W,) 

where W, and B, are the numbers of white and black neighbors of r excluding 
s, and W, and B, analogously for s excluding r .  This method was used by 
Cross and Jain (1983) to simulate models of image textures (apparently 
without considering the neighbours problem). The Markov chain produced is 
only irreducible over the set of states with the same marginal distribution. 
For example, the proportion of black sites is unchanged. Thus the method 
produces a conditional simulation of a Markov random field given the 
marginal distribution of colors. 

Many of these methods have versions in which the site to be altered is 
selected systematically. ( In  an  image made up of an M x M lattice of pixels 
one might scan the pixels in a TV-scan.) We no  longer have a stationary 
Markov chain. Convergence to a Markov random field as equilibrium 
distribution can be shown from the theory of nonhomogeneous finite 
Markov chains or by direct arguments. 

The only evidence for preferring one of these methods to another is 
empirical. Folkore generally prefers systematic scans of the sites and the 
“Gibbs sampler”. 

EXERCISES 

4.1. Show by direct calculation that the joint distrihution of ( V , .  , , . . I ; , )  has 
pdf ) I !  on 0 < r ,  < r 2  < . . .  < r,, < I .  where V, = S,/S,,+ , and 
s, = E ,  + . . .  + E, ,E ;  - exp(1). 
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4.2. 

4.3. 

4.4. 

4.5. 

4.6. 

4.7. 

Consider various methods to simulate 

(i)  the interquartile range 
(ii) an a-trimmed mean (the mean excluding X ( , , ,  . . . , X,,,,, and 

(iii) a trimean (a weighted average of the median and upper and lower 
cc-percentile) 

from a Cauchy distribution. 

Xn + 1 - [ n u ] ,  . . . , Xn) 

Prove that Bartlett's decomposition for the Wishart works. [Let 2 be 
the n x p matrix with row k = Z,. Then bj is the inner product of 
columns i and j of 2. These columns are independent and have a N(0,  I )  
distribution, so the distribution of Wwill be unchanged by rotations of 
the columns in R". We can reduce 2 to upper-triangular form by 
rotations. Then V has the required form and the diagonal elements are 
the lengths of N ( 0 ,  I,,+ I ~ i )  vectors.] 

Simulate a Poisson process on (0, 1) with rate function exp(cc + /?t) by 
several methods and compare them [cf. Lewis and Shedler (1976)l. 

Use thinning to simulate a Poisson process with rate functions 2, + 
Y sin wt, using pretesting. [ j . ( t )  3 i., - Y is obvious but better pretests 
are possible.] 

Simulate the queueing system of Chapter 1 with one of the disciplines 
given there, and customer baulking at queue size 10. 

Brownian motion B(r)  on [0, x ) has C(s, r )  = min(s, t ) .  Brownian bridge 
B,, on [O,l]  is defined as the distribution of B( t )  conditional on B( 1)  = 0. 
Show B, has C(s, t )  = .s( I - t )  for s < r and that this is also true (up to a 
scale factor) of B(r)  - rB( 1 )  on (0. 1 )  as well as the process Y (  )defined in 
Section 4.5. 
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Variance Reduction 

Careful design of a simulation experiment can almost always improve its 
effectiveness for a given cost, or reduce its cost for prescribed effectiveness. 
That is, the cost in computer time, for it is possible for the thought in the 
design process to outweigh the savings (as is the case for all the examples of 
this chapter). This suggests that we should be looking for variance reductions 
of at least a factor of 2 and preferably 10 or more. Another factor to bear in 
mind is the ubiquitous l / f i  law of statistical variation, so to reduce the 
standard error of an estimator by a factor off  one needs to increase the size 
of the experiment by around f2. This means that large increases in computer 
power are needed to produce relative modest increases in precision. Another 
consequence is that it is conventional to quote variance reduction, not 
standard error reduction, as the cost reduction should be roughly pro- 
portional to the variance reduction. 

How then can we achieve appreciable variance reductions? Many of the 
standard techniques are adaptations of ideas from sampling theory or the 
design of experiments. Both these subjects are of interest for simulation and 
can help suggest further dodges. Many techniques fall into one of the 
following categories. 

(a) Importance sampling. This involves using a distribution different from 
the one specified in the problem, and is used to place samples where they will 
be most beneficial. It is closely related to stratijied sampling. 

(b) Control and antithetic variates. Both are devices to exploit corre- 
lations. Antithetic variates are deliberately induced to have negative corre- 
lations, which reduces the variance of their mean over that of independent 
samples. Control variates is regression estimation in sampling; the sample 
values of the variable under study are regressed on those of other variables of 
known mean. 

Exploiting the conditional structure of a problem may 
help us do some of the averaging analytically. We saw an example from 
Andrews et al. (1972) in Chapter 1. 
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(c) Conditioning. 
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(d) Common uariates. This entails reusing the random-number stream 
during the experiment and is usually an example of the idea of “blocks” from 
the design of experiments. 

Simulation has a colorful language, and variance reduction techniques, 
especially clever ones, are often known as swindles. Presumably it is nature 
that is being swindled, but she frequently gets her own back. Variance 
reduction swindles quite frequently do not work, especially when more than 
one idea is tried simultaneously. Even when variance reduction is achieved it 
may be at the cost of a much more complicated analysis of the resulting 
experiment because of the correlations induced. Variance reduction obscures 
the essential simplicity of simulation, which may help explain its lack of use. 
Despite all these caveats there is a clear responsibility on simulators to think 
about variance reduction when conducting a large simulation study. 

5.1. MONTE-CARL0 INTEGRATION 

The object of any simulation study is the estimation of one or more 
expectations of the form E+(X).  (This may not be obvious at first sight, but 
even a cumulative distribution function is a collection of expectations.) Thus 
we can regard the problem as evaluating a frequently complex and high- 
dimensional integral. It is not then surprising that simulation has been used 
to estimate integrals with no mention of a stochastic model. This is known as 
Monte-Carlo integration and is one of the most fruitful fields for variance 
reduction techniques. 

Suppose we wish to evaluate 

where x could be multidimensional (but will be scalar in all our examples). 
For scalar x the usual way to evaluate 9 will be analytically or via numerical 
integration. If X E  R2, we can use repeated integration, but this will be 
awkward if {f  > 0 )  n {$ > 0} is a complex shape. In higher dimensions the 
problems of applying numerical integration formulas become worse, and 
Monte-Carlo integration becomes the preferred method. 

In contrast, Monte-Carlo integration is as easy in 10 dimensions as in 1. 
Suppose (without real loss of generality) that f is a pdf. Sample X , ,  . . . , X, 
independently from f and form 

n 

P = n-’C+(xi) 
1 
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Then 8 estimates 8, for E8 = n- l  E 4 ( X , )  = ,%$(XI) = J 4 f d x .  However, 

so the precision of 8 is proportional to l/& This contrasts markedly with 
numerical integration, which can use n points to achieve a precision of O(n-4)  
or better. Although we cannot alter var(6) = c/n, we can try to reduce c. 

Example. Let 6' = P(C > 2), where C is a Cauchy deviate. The "obvious" 
way to estimate 8 is to let f = 1/n(1 + x'), the Cauchy density, and 
+(x) = I ( x  > 2). This amounts to generating n Cauchy variates and taking 8 
as the proportion greater than 2. We know 

6' = 1 - F ( 2 )  = $ - n-l tan 2 z 14.76% 

Also n o  - binomial(n, 6') so var(H^) = S( 1 - O)/n zz O.l26/n. We will use this as 
our reference value for variance reductions. 

I t  is only slightly less obvious to compute 0 = $P(lCl > 2) by taking 
4 ( x )  = $I(l.xI > 2). This gives 2r18 - binomial(n, 20), so var(6) z 0.052/n, a 
variance reduction of 2.4 times. 

Another idea is to note that 

and apply Monte-Carlo integration with Xi N U(O,2) and 4 ( x )  = 2f(x). This 
gives var(8) z 0.028/n. Alternatively, note that for y = l / x ,  

a coincidence! Using Xi - U(0, i), +(x) = f(x)/2 gives var(6 +) z 
9.3 x 10-5/n,  a variance reduction of 1350. 

This gives us four forms of the problem without using any of the general 
techniques. Table 5.1 illustrates the variance reductions obtainable. The 
largest value corresponds to var(8) z 1.1 x 10- ' / n  and removes the need for 
the experiment. This example is of course rather unrealistic as the answer is 

0 known or could have been found easily by numerical integration. 
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Table 5.1. Variance Reductions Obtainable for 0 = P(C > 2) 
~ 

0 

~~~ ~ ~~~~ ~ ~~ ~~ ~~ 

Straight 1 2.4 20 1350 
1.6 Hit-or-miss - ~ 

Importance 1350 
Control variates - ~ 7400 1.1 x 10* 

Antithetic variates 2.4 18 24 12 

~ 

- - - 

There is an even less efficient version of Monte-Carlo integration known as 
“hit-or-miss Monte-Carlo.” Consider a bounded function 4 on (a, 6), with 
0 d 4 d c. Then 0 is the area under the curve, and can be estimated as 
c(6 - a) times the proportion under 4 of [a, 61 x [0, c]. Let U - U(a,  b) and 
V - U(0, c). Then 

Take n independent samples ( U i ,  F) and let 8 be c(6 - a) times the proportion 
with d &Ui). Then E 8  = 6 and var(8) = 0[c(b - a) - 01/11. Table 5.1 
shows that in our standard example var(8) > var(8), and this is true generally. 

Theorem 5.1. 
with equality only if 4 = c, when var(8) = 0. 

Suppose 6 = J,b4(x)dx with 0 < 4 d c. Then var(8) < var(6) 

PROOF. 

n var(8) = 4 ( ~ ) ~ ( 6  - a)ds - H Z  taking j’ uniform on (a, 6) 1: 
< c J 4(x)(6 - a)du - t12 

= c(6 - a)0 - 0’ = nvar(8) 

a 

with equality only if 4 = c. 

This shows hit-or-miss should never be used, although i t  sometimes is. 
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5.2. IMPORTANCE SAMPLING 

The idea of importance sampling is related to weighted and stratified 
sampling ideas in sampling theory. Suppose we wish to estimate 6 = E + ( X )  
for an observation X on a random system. Then some outcomes of X may be 
more important that others in determining 6, and we would wish to select 
such values more frequently. A simple example is to take 9 as the probability 
of the occurrence of a very rare event. Then the only way to estimate 9 at all 
accurately may be to produce the rare events more frequently. 

Suppose we simulate a model which gives pdf g to X rather than the 
correct pdf f; and both pdfs are known. Then if we let $ = q!J f/g, 

is an unbiased estimator of 9. This is a weighted mean of the q!J(Xi) with 
weights inversely proportional to the "selection factor" g/f: We have 

which can be much smaller than var(8) provided y is chosen to make +fly 
nearly constant. It is easy to show that var(8,) is minimized by g K I4f'l 
(Exercise 5.3), but this is impracticable. I t  does however give us an idea of how 
to choose g. 

Consider our standard example, 6 = P(C > 2). We select g so that 
{y > 0) = { I q ! J f l  > 0) = {x  > 2). On x > 2, f(x) is closely matched by 
q(x) = 2/x2. We can easily sample from y by inversion to get X = 2/U. Then 

$(x) = 2f(x)/g(x) = 2X2/7t(I + x 2 )  = 2/n(l + x-2 )  

and X - '  - U(0, i). Thus importance sampling here reduces to Monte-Carlo 
integration of J:l2 ,f(y)dy. 

Example (Siegmund, 1976). Let X I ,  X , ,  . . . be independent identically 
distributed random variables with partial sums S, = X ,  + ... + X,.  For 
u < O < h l e t  

T = rnin{n 1 S ,  < a or S ,  b h )  

The theory of sequential tests needs probabilities such as 9 = P(ST 2 6). 
Siegmund showed how importance sampling could be used to estimate 6 
more precisely. 
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Table 5.2. Results of a Simulation Experiment to Find 0 = P ( S ,  2 b) for 
T =  min{nlS, < u or S,  >, b}  with S,  = X ,  + + X,, Xi - N(p, 1) and 
u = -4, b = 7 
- __ ~~ 

P Direct 8 s.e. 8 s.e. Variance 
Reduction 

0 0.389 0.0049 0.389 0.0055 1 
-0.1 0.149 0.0035 0.147 0.0010 12 
- 0.2 0.04 1 0.0020 0.041 2 1.8 x 1 0 - ~  110 
- 0.3 0.01 1 0.0010 0.00996 3.8 x 10-5 750 
-0.5 0.0005 0.0007 0.000505 2.3 x 9,600 

For simplicity, consider Xi - N ( p ,  1). By symmetry we need only consider 
p d 0. [If p > 0, estimate 9 = 1 - P ( S ,  ,< a).] Importance sampling should 
increase the chance that S ,  2 b, which we ought to achieve by taking a new 
mean 1' > 0. Choosing v = - p  gives both algebraic simplicity and a certain 
optimality (loc.cit.) Then the ratio of the pdfs is exp(2pS,), so the estimator of 
0 under importance sampling is 

where X are independent realizations of S , .  The summand is less than 
exp(2pb) (remember p d 0), which helps explain its reduced variability. Table 
5.2 shows the results of a small experiment with a = -4, b = 7, and n = lo4. 
Using importance sampling made negligible difference to the total cost. 

N (  - p, 1) both 
I ( S ,  2 b) exp(2pS,) and I ( S ,  < -b) have mean 8 and they should be 
negatively correlated. This suggests 

Siegmund gives a further idea for a = - b. Then for Xi 

e* = (1 - A)I(S,  2 b)exp(2pS,) + d ( S ,  d -b) 

with i. chosen to approximately minimize var(O*). This is similar to the ideas 
of Section 5.3. 0 

5.3. CONTROL AND ANTITHETIC VARIATES 

Both control and antithetic variates aim to reduce the variability of an 
estimator by using two quantities that vary together. Suppose we wish to 
estimate H = E Z  for some Z = +(X) observed on a process X. A control 
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uariate is another observation W = $(X), which we believe varies with Z and 
which has a known mean. We can then estimate d by averaging observations 
of Z - (W - EW). A simple example is to estimate the mean of a sample 
median using the sample mean as control variate. Anfirhetic uariates come in 
pairs. Suppose Z* has the same distribution as Z but is negatively correlated 
with Z. Suppose we estimate d by 8 = t (Z  + Z*). Clearly 8 is unbiased, and 

var(8) = [2 var(Z) - 2 cov(Z, Z*)]/4 

= 4 var(Z) [I + corr(Z, Z*)] 

Thus we will obtain a more precise estimator from n pairs (Z,  Z*)  than 2n 
observations of Z provided corr(Z, Z*)  < 0. It might be cheaper to observe 
(2, Z * )  than observe Z twice, in which case we gslin even more. 

Example (Rothery, 1982). Suppose we wish to compare the power functions 
of two hypothesis tests S and T (Here Sand T denote the indicator functions 
of the critical regions, so power = ES.) If the power function of T can be 
found analytically, we can use T as a control variate. If S and T are 
comparable in performance, we will frequently have S = T = 0 or S = T = 1. 

0 Rothery found variance reduction factors of 2-6 in his example. 

The theory as presented above is straightforward. The problem arises in 
identifying suitable variates. Generally we will have more than one candidate 
for a control variate, and only know that Z generally varies with each w. 
This suggests 

as an unbiased estimator of 0. The coefficients 
var(8). Consider first the case p = 1 .  Then 

are chosen to minimize 

so we should take = cov(Z, W)/var(W). I t  is unlikely that we would know 
cov(Z, W )  and not E(Z), and we might or might not know var( W ) .  Replacing 
cov(Z, W )  and var(W) by their sample equivalents amounts to regressing the 
observations of Z on the observations of M! The general case is similar and 
leads to multiple regression of Z on W,, . , , , W,. 

This is not a standard regression problem because we have random 
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regressors y .  Thus we do not necessarily obtain an unbiased estimator of 0 
or var(8) by standard regression methods. However, if the coefficients 13, are 
found by a preliminary experiment and are held fixed, we will obtain 
unbiased estimators, for if = y - EY, 

so n - ’ R S S  is an unbiased estimator of var(8). 

Example. We return to our standard example in the form 0 = + - Ja f(x)dx. 
Expanding f ( x )  = l/n(l + x2)  suggests control variates x2 and x4. A small 
regression experiment gave 

8 = 4 - [f(X) + 0.15(X2 - 8/3) - 0.025(X4 - 32/5)] 

and var(8) z 6.3 x 10-4/n. Plotting f ( x )  and this quartic suggests that we 
would do better by including terms in x and .x3. Doing so reduces var(8) to 
3.8 x 10-6/n, a variance reduction factor of 7400. 

We can also apply control variates to H = JA” f (x)dx.  Fitting x2 and x4 we 
find 

8 = f (X) + 0.312(X2 - 1/24) - 0.233(X4 - 1/160) 

which gives var(8) z 1 . 1  x 10-9/n. In other words, 8 is effectively constant, 
and one sample will give an accurate enough approximation to its value. 

0 

We can explore further the properties of control variates by assuming joint 
normality of (2, W,, . . . , W,). Many control variates are sums or averages, so 
this may not be an unreasonable assumption. We will also assume that 
EY = 0. How much do we lose by estimating $ in a prior experiment? By 
joint normality there is an independent variate U and coefficients pi such that 

z =  H + u +xpiy= t ) +  u + w$ 
where w = (W,,  . . . , W,). Clearly w$ is the optimal control leading to 

var(8) = a:/n = var(Zlw)/n 
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If fl is estimated by @ 

var(P@) = n-' var(Z - w@) 

= n-' var(U - w(B - p)) 
= n-'[a: + var(w(@ - p))] 

by the independence of U and w. Clearly 

~ ( 8 1 s )  = E [ Z  - w@] = 8 - o@ = e 
Consider p = 1. Then 

var(P) = a$/. + n-'cr&var(h 

Suppose was estimated from t runs. Then 

/? = c (Wi - W)zi/c(wi - W ) 2  

var(pl{wi)) = &/C<wi  - Wl2 

var(B) = a $ ~ [ 1 / c ( w ~  - $1~1 

and c ( w i  - W)2 - &xf- so 

var(h = a:/a&(t - 3) 

var(8) = a$n-'[I + ( t  - 3)-'] 

Now suppose p > 1, and let W be the t x p matrix of observations of w - W 
in the preliminary experiment. We find 

@ = (WTW) - ' WTZ 

var(@IW) = aE(wTw)-' 
var(@) = a $ ~ -  ' / ( t  - p - 2) 

where C is the covariance matrix of w (using properties of the Wishart 
distribution). Thus 

var(P) = a:n-'[1 + E ( w c - ' w ~ ) / ( ~  - p - 211 

= a$n-l[1 + p / ( t  - p - 211 

a:(t - 2) - - 
n(t - p - 2) 

The loss is thus negligible provided t >> p. 
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Now suppose fi is estimated from the n observations of the actual 
experiment. That is, we fit 

zi = B + w i s  

from n observations by a regression. Then 

so 

EIBl{Wi)] = 0 

and 

where the rows of X are (1, wi). Finally, 

8 - N(B, ai(XTX);;) conditional on {wi )  

so we can find a conditional ( 1  - a )  -confidence interval by 

where c = Jm, 6:, = R S S / ( n  - p - 1)  and t ,  is the upper ( 1  - f x )  
point oft,, - p -  ' .  Since this is a valid confidence interval conditionally, it is also 
a valid unconditional ( 1  - a)-confidence interval. [This argument follows 
Cheng (1978b) and Lavenberg et al. (1982).] 

How much do we lose by estimating p? We have 

so we do lose. Consider first p = 1. Then 
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Now c ( w i  - W)2 - o$~,2- I independently of W, so 

var(8R = o;n-'[1 + o$/ok(n - 311 

= o;n-'[l + l/(n - 3)] 

For p =- 1 we find 

n n - p - 2  

using the independence of W and (WTW) and properties of the Wishart 
distribution. Thus the loss in estimating p is the factor (n - 2)/(n - p - 2 )  and 
is negligible if n >> p. 

These calculations are all done assuming joint normality. Without this i) 
may be biased, and the use of jacknife and bootstrap techniques (Section 7.1) 
has been suggested to reduce the bias. Lavenberg et al. (1982) give some 
examples, but prefer the confidence interval based on joint normality. 

When C is known we could consider using it in the estimation of 8. 
Consider estimating 8 in 

by maximum likelihood under joint normality. Then the log likelihood is 

and the maximum likelihood estimators of 0 and are those given above 
when C is unknown. If we insisted on replacing the sample variance of w by C 
we would obtain a conditionally biased and much more complicated 
inferences. Cheng (1978b) and Cheng and Feast (1980b) point out that it i s  
advantageous to use C if var(Z) is to be estimated, but this is of secondary 
interest (if any). 
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Antithetic Variates 

The method of antithetic variates finds two correlated estimators of 8 and 
combines them. Suppose X and X* are two outcomes of our model, giving 
rise to 2 = &X) and Z* = 4(X*).  Then 

var[%Z + Z*)] = 4 var(Z)[I + corr(Z, Z*)] 

so we obtain a smaller variavce on averaging Z and Z* rather than two 
independent realizations provided corr(Z, Z*) < 0, and a substantial re- 
duction if we can achieve large negative correlation. 

A standard way to achieve this correlation in simple models is to generate 
Z and Z* by inversion as Z = F - ( U ) ,  Z* = F - (  1 - U ) .  Then corr(Z, Z * )  < 0 
by Theorem 5.2. 

Theorem 5.2. Suppose y is a monotonic function on (0, 1). Then 

PROOF. 

and t = 1-inf(u)g(u) > 0).  Then 
Without loss of generality assume y is increasing. Let 0 = Eg(U), 

<,(I,[; y(l - u )  - 0 du = 0 0 

For symmetric distributions we can obtain perfect negative correlation [but 
EZ = F ( 0 . 5 )  = point of symmetry is obvious anyway]. Consider the 
Bernoulli distribution with P(Z = 1) = 1 - P(Z = 0) = p. Then 

for any random variable Z* with the same distribution (Exercise 5.4), so for p 
near zero or one only minor variance reduction is possible. Another well- 
known example is Z - exp(2) for which corr(Z, Z * )  x -0.645 (Page, 1965). 
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The following result (Hoeffding, 1940; Frechet, 1951; Whitt, 1976) shows that 
we do achieve the best possible negative correlation. 

Theorem 5.3. Suppose X and Y have a common marginal distribution with 
cdf F .  Then 

max(0, F ( x )  + F ( y )  - 1 )  6 P(X 6 .Y, Y 6 y) 6 F(min(s,y)) 

with both extremes being attained and giving minimal and maximal values of 
corr(X,Y). The upper bound corresponds to Y = X ,  the lower to 
X = F - ' ( U ) ,  Y = F ( 1  - U ) ,  U - U ( 0 ,  I ) .  

PROOF. f(x 6 x, Y 6 y) 6 f(x 6 .Y) 6 F(.u). By symmetry P(x 6 s, Y < ) I )  

6 min(F(s), F ( y ) )  = F(min(s,y)), which is clearly attained by X = Y For the 
lower bound 

To see that the bound is attained. consider 

P ( F - ( U )  6 .Y,F-(I ~ Li )  6 y) = P(U 6 F(.Y), 1 - U 6 F ( y ) )  

= P(1 - F(y) 6 U 6 F(.u)) = max(O,F(s) + F(y) - 1)  

Let H(.Y, y) = P ( X  6 .Y, Y 6 y). We will show 

whence the extreme joint cdfs give extreme correlations. Consider independ- 
ent pairs ( X I ,  Yl), ( X z ,  Yz) with joint cdf H .  Then 

The left-hand side is 
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as required. 0 

This theorem rather restricts the applicability of antithetic variates. For  
Monte-Carlo integration on (a, b), 0 = f 4 dx, we find 

with 

versus 

where $(u )  = &a + (b  - a)u). We see that var will be small if 
( $ ( u )  + $(1 - u ) )  is nearly constant, in particular if Ic/ and hence 4 is nearly 
linear. 

Example. Direct application of antithetic variates to our standard example 
merely changes C to -C and so achieves the same variance reduction as 
counting ICJ > 2. Suppose we generate samples of (CI by tan(nU/2). Here 
antithetic variates again counts half the number of events of double 
probability and so has var(8) 0.030/n. For the alternative form 
8 = i - f i f d s  we find va r (4  2 5.9 x 10-4/i?, although this requires 2n 
evaluations of f' and should be compared with earlier formulas evaluated at 
211. For 0 = J;'' f d.u we find var(8) z 3.8 x 10-',in. These last two cases give 
variance reductions of 24 and  12, reflecting the greater linearity of ,f over 

0 (0,2) compared with (0. i). 

For Monte-Carlo integration of a smooth function 4 we can always 
obtain approximate linearity by splitting the range of integration into small 
parts. Thus we can consider using first stratified sampling to divide up the 
range of integration, then antithetic variates on  the pieces. This is bound to 
lead to large variance reductions at  the expense of additional programming. 
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I t  is, however, beginning to look like a simple numerical integration routine 
(the trapezoidal rule) and will still be outclassed by numerical integration. 

Antithetic variates are more difficult to apply when less is known about the 
problem than in unidimensional Monte-Carlo integration. There are two 
problems in its use. First, the method suggested by Theorem 5.2  to induce 
negative correlations is inversion. Inversion may be tedious or impracticable, 
yet it is very much more difficult to achieve appreciable negative correlation 
with other methods of generation. Second, in more complex models such as 
queueing systems we do not generate directly the variables of interest (such as 
waiting times and queue lengths). 

Cheng (1982) takes a novel approach to the use of antithetic variates in 
queueing systems. He takes the point of view that what are negatively 
correlated in most attempts at antithetic variates are control variates, and 
inducing negative correlation between the control variates can induce 
positive correlation between their prediction errors. That is, if 

then achieving corr(C, C*) < 0 may cause corr(q, y*)  > 0. Cheng’s approach 
is to construct a simulation that differs as little as possible from X while 
replacing C by C*. It is best seen in a simple example. Suppose we have a 
queue with exponential service times and are interested in mean waiting time. 
We would expect the waiting time to increase with the average service time. 
Let S = si denote the average of the service times. For the antithetic 
simulation we construct new service times oi and rescale them to have mean 
S* = F-(1 - F(S)) ,  where F is the cdf of S. The effect of this should be to 
induce negative correlation in the mean waiting times of the two simulations. 
The reader is referred to the original paper for further details and extensions. 
Note that in almost all cases it is an approximate technique in that the two 
simulations do not have exactly the same distribution. 

Queueing Systems 

There has been a fair amount of attention to the use of control and antithetic 
variates in queueing systems. Two obvious choices for control variates are the 
mean arrival and mean service times. Other possibilities are considered by 
Carson and Law (1980), Iglehart and Lewis (1979), Kleijnen (1974/5), 
Lavenberg and Welch (1981), and Lavenberg et al. (1982). 

For antithetic variates we can apply the U + 1 - U transformation to the 
arrival times, service times or both. Page (1965) suggested interchanging the 
random numbers used for arrival and service times. Mitchell (1973) used an 
extended version of Theorem 5.2 to show that when estimating steady-state 
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waiting time in a GI/G/l FIFO queue both interchanging random numbers 
and applying antithetic variates to both arrival and service times simulta- 
neously reduce the estimation variance. Such results are rare, and often a 
pilot experiment is needed to see if an idea for control or antithetic variates is 
beneficial. 

Example. Consider the GI/G/l queue with FIFO service. This has a general 
cdf G of service times S, and a renewal process of arrivals with interval times 
A ,  of cdf F .  There is one server who serves customers in order of arrival. Let 
i4( denote the wait (excluding service time) experienced by the ith customer to 
arrive. Suppose customer 1 arrives at time 0 at an empty queue. Then 

w, = 0 

i4( =max(O, i4(.- , - A i  + S i p  i B 2 

which recursively determines the waiting times from (Ai, S,). Note that ( W.) 
are not independent. 

Suppose we wish to estimate w = EW,,,. One suggestion for a control 
variate is defined by 

c, = o  
c, = C,-I - A ,  + Si-,, i B 2 

so C, = (sum of service times of past customers - arrival time of ith 
customer) and has a known mean. If the queue is usually busy we can expect 
iq 5z c,. 

Table 5.3. Estimated Standard Errors of Estimators of 
w = EW,,, in a M/M/1 Queue with Traffic Intensity 0.9" 

Standard Variance Reduction 
Error 

Straight 5 . 8 1 4  - 

Antithetic variates 
Control variate Cleo 4 . 0 1 4  2.1 

ui + 1 - ui 5 . 9 1 6  < 1  
y+1-  6 . 0 1 4  < 1  
Both 3 . 1 1 4  3.5 

U i 0  v 3 . 0 1 4  3.6 

'n denotes the total number of runs. 
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We can generate Ai  = F - ( U i ) ,  S j  = G - (  %), Possible antithetic schemes are 
shown in Table 5.3 together with their effect. In this example A i  - exp(0.9), 
Si - exp(l), so w z 6 and P(Wloo = 0) z 12%. In this example most of the 
computing cost was in generating the exponential deviates, so the variance 
reductions were effectively free and would be worthwhile. 

5.4. CONDITIONING 

The application of conditioning depends very much on the problem under 
study; there is no general theory. We can always say 

var(E[ZlW]) = var(Z) - E(var[ZI W ] )  d var(2) 

so forming any conditional expectation E[Zl W ]  analytically will reduce 
variability. The problem, of course, is to identify the right W The example 
given in Chapter 1 is of this type. The work of Andrews et al. (1972) was 
anticipated by Dixon and Tukey (1968) and Relles (1970), and is expounded 
in detail by Gross (1973) and Simon (1976). Almost all these references are 
restricted to estimators of location with specific distributions, although 
Simon also considers estimators of spread. 

Burt and Garman (1971) and Garman (1972) provide an interesting 
example from PERT analysis. Consider a network such as Fig. 5.1. The times 
of transfer are random and independent; the quantity of interest is the 
minimum passage time T from A to B by any allowed route. Burt and 
Garman note that conditional on Tl = t ,  and T, = t 5  there are three possible 
passage times 

A 
B 

Figure S.I. A simple stochastic PERT network. 
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which are independent. Thus T = min(t, + T4,tl + T3 + t , ,  T2 + t , )  has a 
known conditional cdf 

F,( .x)  = 1 - [l - F,(.Y - t l)][l  - F, (x  - t ,  - t 5 ) ] [ 1  - F , ( x  - t , ) ]  

where Fi is the cdf of T .  Thus conditioning reduces the problem to a 
simulation experiment on (TI, T,). 

Garman (1972) pointed out that conditional on TI = t we have the 
equivalent network of Fig. 5.2, and this has a conditional cdf of X which can 
be computed analytically by series-parallel reduction. Let Th = 

min(T2, T3 + t )  whose cdf can be found. Then X = min( T, + t ,  T6 + T,). This 
conditioning reduces the problem to a simulation experiment on TI. 

The network of Fig. 5.1 is rather simple, but the principle is applicable 
quite generally to networks. 

We can use conditioning in estimating EW,,, in the GI/G/I queue. 
Chapter 1 introduced the concept of a row between times at which the queue 
is totally empty. Each run will provide us with a random number of tours plus 
one observation on N ,  the number of the last customer before the 100th that 
arrived at empty queue. Then 

where w, = E( WrIw. > 0, i = 2 , .  . . , Y - 1). Thus we can estimate w, from the 
tours, and P ( N  = n )  from the runs. The combined estimate will make more 
use of the observations than merely recording W,,,, and should be more 
accurate, particularly at lower traffic intensities. However, it appears to be 
very difficult to assess the variability of an estimator that is not an average, 
except by repeating the whole experiment. 

Carter and Ignall’s ( 1975) “virtual measures” are conditioning repackaged 
for rare events. Their motivating example was the provision of fire-fighting 
appliances. The rare events are the inability to supply enough machines of the 
right type. One way to overcome this is to simulate the typical behavior of 

T4+ t 

Figure 5.2. 
conditional o n  T, = t .  

An equivalenl network t o  Fig. 5.1 
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fighting small fires, and compute analytically the probability of a failure to 
cover a large fire given the state of the system, averaging this over the 
simulation of the system. This is a case in which var[Zl W ]  is large, so a large 
variance reduction is attainable by conditioning. 

The term “conditional Monte Carlo” was coined by Trotter and Tukey 
(1957) for a somewhat different idea. Suppose we have a space of outcomes 2 
which can be described by the pair ( x , y ) .  Conditional Monte Carlo is a way 
to evaluate the conditional expectation E [ 4 ( X ) l  Y = y o ]  without restricting 
sampling to the potentially awkward set { z ( x , y o ) } .  Let Z be a random 
variable taking values in 9, and let X and Y correspond to Z, so Z = z ( X ,  Y ) .  
Let h be the pdf of ( X ,  Y ) .  Then we estimate E [ 4 ( X ) l  Y = y o ]  by 4 ( X ) w ( X ,  Y ) ,  
where 

and [ ( x ,  y )  is an arbitrary function with t ( x )  = [ ( x ,  y )dy  # 0. Then 

so the estimator is unbiased. Usually this is written using Z ,  in which case 

and h’(z) = J h ( x ,  y )  is the pdf of Z, J the Jacobian of z -+ (x, y) .  The function i 
is available for variance reduction. For fixed x we can use i to reduce the 
fluctuations in [ ( x , y ) / h ( x , y ) ,  so we should take [ similar to .fu(ylX = x). 
Taking &,y)  = f u ( y l X  = s) makes w(.u,y)  = fx(.xlY = y o ) / f x ( x ) ,  which re- 
duces to importance sampling using the simpler unconditional distribution. 
The general method avoids calculating fx. 
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Example. Suppose X I , .  . . , Xn is a N(0,  1 )  sample, and X,,,, . . . , X(,) are its 
order statistics. Let 

In studying tests of outliers we might want to know 

0 = P(S 3 SIR = r) 

We use the fact that R is a scale factor to define Y = R ,  X = (X, , .  . . , X,)/R 
(which has only n - 1 degrees of freedom). Now 

and .fR(r) is known. Computing the Jacobian gives 

where I. = r/R. We take 

4(X) = I(S/R 2 S/Y) 

Then [ is chosen to flatten w as a function of R. Since I. zc R - ’  and 
1)Z112 K R2, this suggests [ ( Z )  K R”-’exp( -cR2) for some constant c chosen 
by experiment. 0 

This example is a simplified version of the original application of Arnold et 
al. (1956). 

5.5. EXPERIMENTAL DESIGN 

Many simulation experiments are done to compare conditions, for example 
to compare queueing disciplines in a niodel of a bank (such as that described 
in Chapter 1). In such cases we can use all the ideas of the design of 
experiments to produce better comparisons between the different conditions. 
We aim only to provide an overview of what is possible, referring the reader 
to the literature for further details. Box et al. (1978) provide an especially 
convincing introduction to the subject. 

One of the fundamental ideas in experimental design is the grouping of 
experiment units into blocks which are more homogeneous than the total 



138 VARIANCE REDUCTION 

pool of experimental units. In a simulation experiment the only difference 
between the “units,” the simulation runs, is the stream of random numbers 
used. In some circumstances it will make sense to block runs by keeping some 
or all of the random numbers constant. For example, in a queueing problem 
we have two sets of random variables, the arrival times and the service times. 
If these are generated by separate generators we can form blocks by holding 
either or both constant. In simulation parlance this is known as the method 
of common random numbers. 

The classic problem with blocks is that they are perforce small. This does 
not apply in simulation, for we can make the blocks as large as we wish and 
still maintain complete homogeneity. There is thus no need to use incomplete 
block designs. 

The literature is confused on the analysis of experiments involving 
common random numbers. If there are just two treatments we can take the 
difference in the responses and analyze these as independent samples. Let the 
responses be Y, and Y2. Then 

var( Yl - Y2) = var( Yl ) + var( Y,) - 2 cov( Y, , Y2) 

Thus we will obtain a more precise estimate of the mean difference if 
corr( Y, , Y,) > 0. This is likely but need not always follow, as Wright and 
Ramsay (1979) demonstrate. This formula also demonstrates that common 
random numbers will be most effective when the treatments effect the mean 
response but not its variance. 

The classic assumption for a randomized block design is that 

response = mean + treatment effect + block effect + error 

or 

yij = response to treatment ion block j 

= p + T i  + bj + E i j ,  E i j  - N(0,a2) 

If this holds, there is no difficulty in analyzing the experiment and producing 
estimates of treatment differences (and, more generally, treatment contrasts). 
Where blocks are created by common random numbers, this assumption 
amounts to assuming that the effect of changing the set of common random 
numbers is to change the response equally for all treatments. This appears to 
the author to usually be a tenable assumption. [Heikes et al. (1976) thought 
otherwise, and point out that a generalized least squares analysis is possible 
assuming correlation between the E . ~  within each block.] 
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Two other worthwhile ideas from the design of experiments are factorial 
experiments and response-surface methodology. Where two or more factors 
may be varied in the design of a facility being studied by simdation, factorial 
experiments and particularly fractional factorials can help in producing an 
economical design. Where the aim is to minimize some cost, response surface 
modeling fits a “convenient” model to the estimated cost as a function of the 
variables and uses this to explore around the minimum cost conditions. 

Schruben and Margolin (1978) report on a simulation study of a hospital 
specialized-care facility using both common random numbers and antithetic 
variates. Care is always needed in combining two variance reduction 
techniques, since all too often each defeats the other and no overall gain 
results. Their experimental design used six random number streams, and was 
unusual in that antithetic pairs were used at different points in a 2 x 2 x 2 
factorial experiment. The ideas incorporated in that study deserve wider 
consideration. Schruben and Margolin give proofs of variance reduction, but 
they do depend on inducing correlations of the correct signs, which we are 
not usually able to show theoretically. 

The considerations of this chapter show that the design of simulation 
experiments is no easy matter. There always has to be a balance between the 
effort put in and the computer time saved. The author’s experiments have 
almost all been sufficiently small but analytically intractable that the greatest 
benefits came from the judicious use of common random numbers and 
response surface modeling. With large but simple systems much more may be 
possible. It does seem that the topics of this chapter are widely ignored in 
published simulation studies, and when they are used the variance reductions 
gained have been modest, say 2- 10. Reducing the cost from $3000 to $300 is 
clearly worthwhile; reducing $30 to $3 might not be with an) realistic 
accounting of the simulator’s time. 

EXERCISES 

5.1. 

5.2. 

5.3. 

Experiment with as many variance reduction techniques as you can 
think of to apply to the problem of evaluating P ( N  > 2.5)  for 
N - N(0,l). 

Hammersley and Handscomb (1964) use the integration of 
&.u) = (ex - l)/(e - 1) on (0, 1) as a test problem of variance reduction 
techniques. Achieve as large a variance reduction as you can. 
(Hammersley and Handscomb achieved 4 million.) 

Show that var(8,) is minimized by y x I @ f l  in importance sampling. 
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5.4. 

5.5. 

5.6. 

5.7. 

5.8. 

5.9. 

VARIANCE REDUCTION 

Show that for Bernoulli trials with probability p < f of success the 
minimum achievable correlation is -p/(l - p )  and that this is 
achieved by counting events of probability 2p.  

Apply Cheng's method of antithetic variates to finding EW,,, in a 
M/M/l  queue, and compare with Table 5.3. 

A n  alternative way to write a control variates regression is 

zi = @ + (Wi - w)p 

Show that this gives an orthogonal design matrix, so under joint 
normality & and are independent with 

var(&) = &/n 

vartb) = o:(w'w)-' 

conditional on (wi). 
Note that 6 = & + wip, so 

as before. 

One way to perform antithetic runs is known as seed switching. 
Suppose the random number stream is produced by a maximal period 
multiplicative generator. Show that replacing the seed X ,  by M - X ,  
produces the antithetic stream. (Thus no extra programming is 
required.) Is this possible with a mixed generator? 

A stronger version of Theorem 5.3 is given by Wilson (1979). Suppose 
U , ,  . . . , U ,  have U(0,  1) marginal distributions, and y j (u )  are functions 
of finite variance. Then if t = C l g j ( u j ) ,  the minimum variance of t is 
attained by cdfs in 2.  Here a distribution H E X  is defined by 
functions z j :  [0, I ]  + [0, 11 that are one-one, onto, and have derivative 
I except at a finite number of points. Then H is the cdf of the uniform 
distribution on the image of [0, I ]  under (ij). Deduce this result for 
it = 2 from Theorem 5.3, and prove the general case. 

Consider a renewal process N ( t ) .  Show that applying antithetic 
variates to the lifetimes reduces var(N(t)) averaged over n runs 
(George, 1977). 

~ 
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5.10. Study Schruben and Margolin (1978) and consider how to apply their 
ideas to the queueing discipline example of Chapter 1. 

5.11. An extension of antithetic variates termed rofafion sampling for the 
simulation of Markov chains was introduced by Fishman (1983a, 
1983b). He produces k parallel correlated runs by introducing corre- 
lation in the jumps made when the runs are in the same state. Suppose 
K runs are in statej. Then the next state is chosen by inversion with 
uniforms Ur = (U + ( r  - I)/K) mod I ,  r = I , .  . . , K .  This is applied at 
each step to each state in turn. Apply this to estimating the mean time 
to extinction of a branching process with X ,  = 1 and each individual 
divides into two with probability p < 4 or dies at each generation. 
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Output Analysis 

The analysis of simulation experiments that give one observation per run is 
relatively straightforward unless, as in Chapter 5,  deliberate dependence was 
introduced in the experimental design. However, for simulations of systems 
evolving through time we may take many correlated observations per run. 
Suppose we are interested in the distribution of customer waiting time in a 
queueing system. Then the waits of each customer will be relevant data. 
Furthermore, we will expect the waiting times of successive arrivals to be 
correlated. 

These problems arise also with the observation of actual queueing 
systems. However, because of the expense of observation, real systems are 
usually observed by sparse sampling (if at  all), so the development of 
appropriate statistical analyses has been triggered by simulation experiments 
relatively recently. 

The problems only arise for quantities defined on a system “in equilib- 
rium” or in “steady state.” That is, we have a strictly stationary process X, on 
(--a, co) or all the integers, and we are interested in aspects of the 
distribution of X, for any fixed t .  Alternatively, we can consider X, starting at 
t = 0 and converging to an equilibrium process as t -+ co. (The two ideas are 
equivalent in most examples, since the equilibrium process must be strictly 
stationary, and if a stationary process exists, there is usually a convergence 
theorem.) If we are interested in the transient behavior of the process, as in 
estimating w = EWloo in Section 5.3, we will only have one observation per 
run. We now confine our attention to steady-state problems. 

There are two approaches to simulating a steady-state problem. With n 
total observations we can take k runs of length m, where mk z n. The 
terminating simulation approach takes k large and hence m small. The steady- 
state approach takes a few long runs, perhaps only one. The terminating 
approach has a large number of independent replications and so is easy to 
analyze. Its results may however be biased by the problem of the initial 
transient. Only exceptionally are we able to sample a process in equilibrium. 
Normally we have to take a starting state at r = 0 and hope that the 
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distribution of X, nears equilibrium well within the length of each run. We 
may well allow the process to “warm up” before observation by discarding 
data before t = t o  > 0. The problem of detecting when a process has reached 
equilibrium is considered in Section 6.1. 

The steady-state approach looks more promising in that only a small part 
of the data will need to be discarded before equilibrium is neared. However, it 
will be much more difficult to analyze, and in particular to produce reliable 
estimates of the variability of estimators and hence confidence intervals for 
parameters. Several different approaches are discussed in Sections 6.2 and 6.3. 

Regenerntizw simulation provides an alternative analysis for either long or 
short runs of processes with regeneration points, although i t  is most 
appropriate to long runs. For this restricted class of processes i t  solves the 
problem of the initial transient and points a way to analyze correlated data. 
These apparently magical gains are somewhat illusory, for regenerative 
simulation will work well only when a large number of tours are observed, in 
which case the initial transient will be short and the correlation between 
observations will have a short range. Nevertheless i t  provides an interesting 
alternative, discussed in Section 6.4. 

There are several instances in output analysis in which theoretical 
knowledge of the process can ease the statistical problems. The existence of 
regeneration points is one example. Another is the knowledge that the 
process is ergodic, without which basing results on one or a small number of 
runs is very dangerous. Unless the process is very well understood a 
minimum of k = 3 runs is advised to provide some check on estimates of 
variability produced internally to each run.  

Suppose we are interested in 0 = E[&X,)] under the steady-state distri- 
bution of X(,. Let Y , ,  Y 2 ,  Y , ,  . . . be a series of observations on (XI) ,  and let 
Z, = t+b(Y,), so fl  = E Z , .  Then most of our methods estimate 6 = Z ,  but differ 
in the way they estimate var(0). The series (Z,)  is a stationary time series with 
autocorrelation sequence 

and variance r ~ ’  = var(Zi). Then 

var(Z) = n ’ C cov(Zi, Z j )  
i . j  
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which will exceed 0’ if all p s  > 0 (as is usual). Conversely, let 
s’ = c ( Z i  - Z)’/(n - 1). Then 

Es’ = ( n  - l ) - ’ E x ( Z i  - i?)’ 
= ( n  - I)-’EC(Z,Z - 2Zi2  + 2)’ 

= (n - ~ ) - ‘ E [ C ( Z ~  - p)’ - n(Z - p)’] 

= (n - l)-1[ncr2 - n varZ] 

so s’/n underestimates a’ln which underestimates 
quantity often considered is 

var(Z), on average. A 

1 X 

r’ = lim nvar(i?) = 0’ 
n - a  

Then var(Z) d t’/n if all correlations p s  > 0, and the relative difference is 
likely to be small for large n. We can also express T’ in  terms of the spectral 
density f of (Zi). This is a positive function 1 on [O, rc), defined so that 

O’ps = 2 cos so f @)do l 
Then 

so 

This formula will be taken up in Section 6.3. 

to substitute estimators of p s  and 0’ in (1). Hannan (1957) proposed 
Moran (1975) considers the traditional methods to estimate var(Z). One is 
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where 
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and 1 is chosen so that ps z 0 for s 3 1. Then Moran shows 

so PI is approximately unbiased if its assumption holds. However, if I is 
appreciable compared to 11 then Vl is quite variable. An alternative approach 
is to estimate ps parametrically, as discussed in Section 6.3. 

The other traditional approach is “hatching” or the method of batch 
means. The data ( Z , ,  . . . ,Z,,) are divided into I, batches of length 111 with 
means (BL), so 

B,  = m -  ICZ,, I)m+ I + “ ‘  + Z,,,,l 

Then we hope ( B , ,  . . . , B, ) is relatively uncorrelated and that 

is a better estimator of var(Z) = var(B). This is discussed i n  more detail in  
Section 6.2. An important side effect is that we may expcct the B,  to be ncarlq 
normally distributed. The final advantage of hatching is that i t  reduces the 
volume of data to be stored and manipulated. Some siniiilators and 
simulation systems routinely batch all data. 

Much of the work on output analysis gives only asymptotic results, a s  I J  o r  
rn and/or k tend to infinity. This is no  great disadvantage as exact results 
would depend heavily on the system under study. The asymptotic results 
provide a fairly general approximation. Since (2,) are dependent we need 
limit results for dependent sequences. Many different results are  available, of 
which some of the most useful appear to be those depending on c/)-mixing 
(Billingsley, 1968). Let $(IT) be a positive sequence decreasing to zero. We will 
require that ~ q 5 ( r 1 ) ~ ”  < ‘x. Then ( Z , )  is +mixing if  

whenever A depends on ( Z , .  . , . , Z , )  and B on (Z , , , ,  I , .  . .). Most qucucing 
systems d o  satisfy this condition, which essentially rules out long-range 
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dependence. Let S ,  = Z ,  + ...  + Z, .  Then, if [ n t ]  denotes the integer part of 
nt, 

converges weakly to Brownian motion, W, * W [This implies that 
W,,(t) * W(t)  for each t ,  as well as stronger results such as max W, =+ max W ]  
The definition of W, includes the unknown 8, so for some purposes we replace 
0 by 2, = S,/n, to get 

Note that B,(O) = B,(1) = 0. We can then show that B, * B,, the Brownian 
bridge process. (See Exercise 4.7.) The process - B, is termed a standardized 
time series by Schruben (1982, 1983). These results are used to give 
approximate distributions for various test statistics below. 

6.1. THE INITIAL TRANSIENT 

Throughout this section we assume that X, is fixed, and Z , , Z , ,  . . .  are 
observed, with (Z i )  converging in distribution and L ,  to Z,,, so 8 = EZ,  . 

Having observed Z 1 , .  . . , Z ,  we delete Z , ,  . . . , Z ,  and estimate 0 by 

n 

i = d +  1 
a, c zi 

We hope that lEf$ - 81 decreases as d increases. However var(8,) may 
increase with d, so it is by no means clear that if we are only interested in 9 we 
should delete any of the series. It has been suggested in the literature that d be 
chosen to minimize the mean square error of 8,. The choice of d will depend 
on n and Z ,  and may be d = 0, as shown by Blomquist (1970) for the average 
waiting time in a M/M/l queue for large n. However, we will be more 
interested in a confidence interval for 9, and experience has shown that 
deletion leads to possibly wider but much more reliable confidence intervals. 

A wide variety of ad hoc tests for “steady state” and algorithms for 
deletion have been proposed. Wilson and Pritsker (1978) and Gafarian et al. 
(1978) survey some of these proposals. None have been found reliable in 
subsequent simulation experiments, and attention has turned to the more 
formal tests described later. These are all tests of equality of pi = E Z i .  We 
know p i  + 0, and we may know that pi increases or decreases, for example, in 
certain queueing systems starting up from their empty state. The tests 



THE INITIAL TRANSIENT 147 

implicitly assume var(Zi) = 02 ,  although this may not be justified. They 
would therefore nor detect the initial transient in the AR( 1 )  process 

Zi = aZi - l  + E ~ ,  i > 0, Z, = 0 

since EZ, 5 0 but 

var(Zi) = a2 var(Z,-, ) + o,' 
so 

increases to var(Z,). 
The simplest procedures are graphical. We can estimate pi by taking r 

replications of (Z, , . . . , Z,) and letting iii be the average of the observations of 
Zi. Unless r is very large these estimates will be too variable, but they can be 
smoothed before plotting. A simple way to smooth is to use a moving average 
of the form 

b 

pi  = (2b + l ) - I  1 b,+, 
I = - b  

with suitable adjustments near 1 and n. Then h is chosen to obtain a smooth 
picture. (More sophisticated smoothers can be used, including monotone 
regression if p i  is known to be monotone.) The value of d is then chosen as the 
point at which jli appears to have converged. Figure 6.1 illustrates the 
procedure. Welch (1983) gives other examples. In general, the choice of d is 
not easy. 

Automatic procedures for detecting and deleting an initial transient are 
based on significance tests of pl  = p 2  = ... = pn = 0. The experience of 
cusum techniques in quality control suggests that a gradually drifting mean 
(such as seen in Fig. 6 . 1 ~  viewed from right to left) is best detected from 
cumulative sums of the form 

Unfortunately, 9 is unknown, so we substitute 6 = Z .  Then 

s;, = - (sk - k Z )  
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so we may as well work with the sums (2; - Z ) ,  for which we have a limit 
theorem via the B, process. If there i s  a drift then B, will ’nave large 
fluctuations, so we can base a significance test on any statistic indicating large 
fluctuations in B, or Bo. Analogous problems in other branches of statistics 
with the same limit process suggest 

C M  = j B,(t)’df 
1 

0 

the Cramer-von Mises statistic favored by He idbe rge r  anc 
Schruben (1982) gives a one-sided test for p i  increasing 

S = B,(t*)2/t*(1 - t * )  

Ich 983). 

where min B,(t) is attained at t*. The weak convergence theory gives 
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asymptotic distributions for CM and S. For CM we have 95x, and 99% 
points of 0.46 and 0.74, whereas for S,  Schruben shows S - x:. To apply 
either test we need a consistent estimator of z (for which the asymptotic 
distribution remains valid); such estimators are discussed in the next two 
sections. See also Schruben et al. (1983). 

A n  automatic procedure will apply such a test to a series of deletion points 
d. Heidelberger and Welch (1981a, 1983) recommend deleting O%, lo%, 20:,,, 
30%, 40%, and 50% in turn,  stopping when the remaining series passes the 
CM test at the S% level. If all six tests are failed a longer series is needed, so n 
is increased and the process is repeated. When a satisfactorily stationary 
series is found the width of a confidence interval for 0 is computed, and n is 
increased further if necessary to achieve a width less than a prescribed limit. 
(The whole procedure is in fact applied to batches rather than the original 
data.) 

The multiple use of significance tests in these automatic procedures is 
problematical. In general some supervision will be advisable, and knowledge 
of the process being studied can be very helpful. I t  would seem advisable to 
delete too much, and produce a safe confidence interval for 8, than to delete 
too little and experience bias. 

6.2. BATCHING 

The use of batches is a time-honored way to cope with correlation within a 
series ( Z ,  , , . . , Zn). Suppose this is divided into k successive batches of length 
rn with batch means B,, . . . , B,. The correlations between (Bi) should be less 
than those between (ZJ. Now 

m 

For example, suppose (Zi) is a A R (  1 )  process, so ps = ~ ( 1 ’ 1  for Ic(( < 1. Theii for 
i < j  
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so ( B i )  has a geometrically decaying autocorrelation at rate am. Let 

(Bi  - B)2  
1 v, = ____ 

k(k  - 1 )  

be the hatching estimator of var(Z). Then Moran (1975) shows that 

Thus p2 will be effectively unbiased provided n is large and ps = 0 for s 2 m. 
For the AR(1)  process we obtain 

with 

and T~ = az( l  + %)/(I - r ) .  Thus the relative bias is small provided 
m -  ' ( 1  - a'") is small. Tables 6.1 and 6.2 compare Vl and p2 for the A R ( 1 )  
process. Note that 

Table 6.1. The Performance of v, for an A R ( I )  Process with IT' = 1 

n = 100.r = 0.5 

n = 1000,~ = 0 5  

n = 1000,r = 0.9 

I =  10 2.98 x 10 ' -0.14',,, 3.8 x 10 0.64 

I =  10 3.00 x -013",, 3.8 x 10 ' 0.20 

I =  10 1.90 x 10 - 371, 6.4 x lo-' 021 
1 = 20 1.90 x lo-' - I 3 " ,  1.9 x 0 26 
I = 50 1.90 x lo-'  -0.567,, 5.9 x 041 
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Table 6.2. Performance of Batching, with k Batches of Length m Each, for an AR(1) 
Process with (I' = 1 
~ ~ ~ _ _ ~ _ _ _ _ _ _ _ _  ~ . _ _ _ _ _ _ ~  

corr(B,, B, + , ) bias( V2 1 var( Vz)  cv( Qz) 
~~~~ 

n = 100,a = 0.5 
k = 2  1.37% -2.7% 2.1 x 1 0 - 3  1.5 
k = 5  3.57% -6.7% 3.9 x 10-4 0.71 
k =  10 7.67% -13.4% 1.6 x 0.48 

k = 10 0.68% -1.3% 1.9 x 0.48 
n = 1000,~ = 0.5 

k = 50 3.57% -6.7% 3.8 x lo- '  0.2 1 
n = 1000,~ = 0.9 

k = 5  2.49% -4.7% 1.9 lo-" 0.76 
k = 10 5.2% -9.5% 6.5 x 10-5 0.48 

A side effect of batching will be that each Bi is approximately normally 
distributed. [Indeed, the central limit theorem for the W, process will give us 
more, asymptotic joint normality of (Bl,. . . .Bk) as rn -.+ m. Brillinger (1973) 
gives a more direct proof of asymptotic normality.] This and independence 
gives a x2 distribution of v2 and the stated variance. 

There is necessarily a compromise between choosing rn large to achieve 
negligible correlation between batches and having k large enough to obtain a 
precise estimate of v 2  = var(B,). We will use a (1  - a) confidence interval for 8 
of the form 

This is valid provided rn is large enough to make ( B i )  approximately 
independent and normally distributed. The added variability due to v2 will be 
appreciable for k d 30. [Schmeiser (1982) calculates the effect of choosing k 
too small.] Since B = Z independently of k ,  the choice of k too small gives a 
confidence interval that is unnecessarily wide, whereas choosing k too large 
causes v2 to be biased downward and so gives a confidence interval that is 
optimistically short. 

The recommendations for chosing k in the literature boil down to testing 
for serial dependence in (Bi). For example, it has been suggested to test that 
the lag-one correlation is less than 0.05. A related test (Fishman, 1978b: 
Kleijnen et al., 1982) is von Neumann's test, which is a test of p 1  = 0, applied 
to ( B i ) .  The problem is that large values of k will be necessary to establish 
p ,  # O! This is another problem in which CI priori theoretical knowledge can 
be very helpful in deciding on a minimum for rn. 
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The method of “standardized time series” can be used to produce 
estimators of T‘ (Schruben, 1983). Whereas p2 is based on the between-batch 
variation, this method uses the within-batch variability. Consider first 
X , ,  . . . , X , ,  the contents of a single batch. This gives rise to a standardized 
time series 

and B, 
z2. For example, let 

B ,  as m -+ co. We can use the known variability of B, to estimate 

m in 

j =  1 j =  1 
A = T& 1 B,(j/m) = 1 

Then A - N ( 0 ,  r2m(m2 - 1)/12) asymptotically, so 

estimates T ~ .  If this is applied to block i to obtain Ai, then 

k v3 = ( n k ) - ’ C A ;  x [12/rn(m2 - l)] 
1 

is asymptotically as m + oc, k fixed, an estimator of t 2 / ) i ,  with 
p3 x k n T C 2  - x:. A second measure of the variability of B, is 

Bo(t*)’/t*(l - t*),  B,(t*) = max B,(r) 

from which we get 

B = m  1 ( X i - X )  I (m - I) 
[ j r ,  -I/ 

with I attaining max j l{  (Xi - X) and 

estimates t 2 /n ,  with p4 x 3nksC2  - x i k .  

As m + m both p3 and Q4 are asymptotically independent of p’, so we can 
combine both within- and between-batch information. Schruben (1983) 
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reports on some experiments with pz, p3, and p4 and combinations, which 
generally favor p4. However, he takes m very large and k small and so biases 
the comparison against p2. 

Tables 6.1-6.3 report a simulation experiment with pl-p4 for an AR(1)  
process of unit variance. Points to note are the very small bias of PI, the need 
for m to be quite large for a reasonable bias for pz, and the consistent 
underestimation by p3 and particularly p4 unless m is very large. Although p, 
has been neglected in the simulation literature, it turned out to be best in this 
experiment. This example shows that the compromise between bias and 
variance is serious for all estimators. In some case the minimum mean square 
error is achieved with 20% or more bias, but this will give severely optimistic 
confidence intervals. 

For p3 we can compute the bias explicitly. We know 

Now 

Table 6.3. Performance of the Within-Batch Estimators f3 and f4 with k Batches for 

- 

Q4 

an AR(1)  Process with c’ = 1 

Q3 

Mean Variance 
-~ 

t~ = 100,~ = 0.5 
k = 2  2.76 x 8.5 x 
k = 5  2.41 x lo-‘ 2.6 x 
k =  10 1.89 x lo-’ 7.1 x 

k =  10 2.88 x 1.7 x 
n = 1000,~ = 0.5 

k = 50 2.41 x 2.9 x 10-7 

k = 5  1.63 x 1 0 - 2  9.5 10-5 
n = IOO0,cc = 0.9 

k =  10 1.39 x lo-’ 3.7 x 

Mean 
_ _  - - 

1.6 x lo-’ 
0.95 x lo-’ 
0.60 x lo-’ 

1.9 x low3 
1.1 x 10-3 

0.86 x 10-3 
0.54 x 10-3 

Variance 
~~~ - 

1.3 x 10-4 
3.3 x 10-5 
7.1 x 10-” 

4.5 x 10 ’ 
3.5 x 10-8 

2.5 x 
5.5 x 10-6 
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so 

E A ~  = CCOV(X,,X~) ( m  ___ - j )  (y -,) 
i . j  

For an  independent sequence 

showing that p3 is unbiased. In general 

for constants c,(m), that can be computed. The mean values of Table 6.3 were 
checked against this formula and confirm the serious bias of c3 for small 1 1 1 .  

For both p3 and p4 we appear to need very large batches for the asymptotic 
results to be a reasonable approximation, much larger batches than arc 
necessary for v2, the between-batch estimator. 

Our  recommendation is to use vl. or v2 with i n  large enough to achieve 
correlation between adjacent batches of less than S " , , .  

6.3. TIME-SERIES METHODS 

We have already seen that under mild conditions we can suppose that 
Z - N ( ~ , T ~ , ' H ) .  Timc-series methods provide yet another way to estimate T'.  
Rather than estimate (p,) nonparametrically as in v,, we can fit a model to the 
data ( Z , ,  . . . , Z,,) and use its value of T~ = 2n/ (0) .  A common example is the 
A R ( p )  model [e.g., Fishman (1971)l. Then 
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2 

T 2  = 27cf(0) = o - / (  1 - pij) 

Thus an estimate of var(Z) is 

Standard time-series methods can be used to select p and estimate the 
parameters a l , .  .. , a p ,  of (Priestley, 1981, Section 5.4). If no time-series 
package is available, the simplest method is to regress (Zp,+  . . , Z , )  on 
( Z p +  - i , .  . . , Zn-i), i = 1,. .. , p .  Then the regression coefficients estimate 
a l , ,  . . , a p  and the residual mean square estimates of. This can be tried for 
various values of p and Akaike’s AIC criterion 

- -  
AIC(p)  = nIn&f(p) + 2 p  

minimized by the choice of p .  
We can also fit A R M A ( p , q )  models of the form 

with 

but these have been used infrequently, since although fewer parameters may 
be needed parameter estimation is more difficult computationally. 

It is worth noting that since we are effectively estimating f ( O ) ,  the method 
previously described is one version of autoregressive spectral estimation. 
Further methods are described by Priestley (1981, Sections 7.8 and 7.9). 

The traditional methods for estimating f (o)  arc based on smoothing the 
periodogram and are described by Priestley (1981, Sections 6.2, 7.4-7.6). 
Duket and Pritsker (1978) and Heidelberger and Welch (1981a, 1981b) 
discuss the use of these nonparametric methods for the estimation of , f(O). 
The problem with the usual smoothing methods is that they give a good idea 
of shape o f f (  ) but underestimate peaks and overestimate troughs. This is a 
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particular problem here since almost all the processes ( Z i )  of interest will have 
f(o) decreasing rapidly for small Q, so r 2  = 2nf(0)  will be underestimated. 
Heidelberger and Welch propose special smoothing methods and advocate 
fitting a local quadratic at w = 0 to I n f (  ). However, the most promising 
idea is to use prewhiteniny (Priestley, 1981, pp. 556-557). This fits an A R ( p )  
process for small p ,  converting ( Z l , .  . . , Z n )  to ( i l , .  . . ,in). Then 

and J(to) should be relatively flat so .f,:(O) can be estimated reliably from 
(i l , .  . .,&). Then 

It should be clear that time-series methods need a good deal of expertise to 
be used. Except for the straight periodogram smoothing methods it is difficult 
to estimate var(t2). On the positive side the methods of this section do 
genuinely take correlation into account rather than rely on dubious as- 
sumptions that it has been circumvented. They are probably the best methods 
for estimating r 2  for an expert user with access to a good time-series package. 

6.4. REGENERATIVE SIMULATION 

“Regenerative simulation” is a term coined by Iglehart and his co-workers for 
a method of output analysis for regenerative processes. I t  stems from a 
remark of Cox and Smith (1961, p. 136) 

In many systems.. . the process falls naturally into sections of unequal 
length, behavior in different sections being independent.. . . It follows 
that the equilibrium properties of the system can be derived from those 
of tours, a tour starting with an arrival at an empty system and ending 
the next time the system is again empty. 

Some early users of this idea were Kabak (1968) and Fishman (1973, 1974), 
before it was taken up in a series of papers by Crane and Iglehart (1974~1, 
1974b, 1975a, 1975b), and Iglehart (1975, 1976, 1977). Crane and Lemoine 
(1977) and Iglehart and Shedler( 1980) both present the subsequent develop- 
ments in published lecture notes. 
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It is easiest to explain the analysis by an  example. We return to Table 1.3, a 
simulation of a n  M/D/3 queue. Asterisks mark customers who arrived at an 
empty queue, so there were seven completed tours and one incomplete one in 
the 200 observations. We discard the incomplete tour, giving 

Length of Tour Total Wait 

I 0 
28 4.692 
12 1.663 
8 0.387 

26 5.894 
41 15.922 
37 22.787 

We are interested in the mean waiting time in equilibrium, 0. A n  obvious 
estimator of 0 is the total waiting time divided by the total number of 
customers scrvcd, 

(3 = 51.351153 = 0.3356 

(Note this is the total over cwnplrre tours; discarding the incomplete tour is 
analogous to discarding an initial transient.) This is a ratio of random 
quantities, so it will not necessarily be unbiased. To estimate its variance, we 
compute 

for the 11, tours with totalled observations ( . x i , y i ) .  Then 

which will be subsequently justified. 
Another way to estimate means and variances is to use the jacknife (Efron, 

1982). Let j ( i ,  denote the mean of (y i )  omitting tour i ,  and similarly for .Yli) .  Let 
g,,, = p(i, / i( i) .  Then 



REGENERATIVE SIMULATION 159 

is the jacknife estimator of 8, and 

n - l  2 s2 = C ( 8  - 8J 
n,  

is the jacknife estimator of var(8) or var(8). From Table 1.3 e =  0.3476 and 
S = 0.096. The jacknife estimates are generally preferred, for reasons 
discussed later. 

To underpin this analysis some theory has been developed. A regenerative 
process has a sequence of regeneration points TI, T,, . . . . that are random 
stopping times at which the future of the process is independent of its past. 
The tours between regeneration points are then independent, and the 
sequence of regeneration points is a renewal process. Let ( X , )  be the sequence 
of tour lengths giving rise to the renewal process N(r ) ,  and let Y, be the total 
observation on the rth trip. Then (Xr, Y,) are independent and identically 
distributed. Let 

which is the total observation on observed tours to date. We assume both 
E X ,  < ac, and ElY,l < a. Then 

P( Y(t)/t  -+ E Yl/EXl ) = I 

EY(t)/r  + E Y J E X ,  

(Ross, 1970, Theorem 3.16). Some further technicalities give us the same 
results for Y ( t ) ,  the total observation by time r .  Thus we identify 
6, = E Y , / E X ,  as the mean observation in equilibrium. Note that this is the 
ratio of means, not the mean of the ratio as one might expect. 

Now consider 8 = VX [averaged over N ( t )  tours]. We know 
P ( N ( r )  + as) = 1 from renewal theory, so P(8 -+ 0) = I by the strong law of 
large numbers. Thus 8 is a strongly consistent estimator of 8, but it will in 
general be biased. Let 5 = - OX, .  Then (V, )  are independent with mean 
zero, and by the central limit theorem we may assume that P - N(0,  a2/n,) 
approximately, where a2 = var( V, ). Thus 
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so 
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or 

B - N ( O ,  o Z / n , X 2 ) ,  approximately. 

This gives the approximate (1 - a)-confidence interval 

We estimate o2 = var(Y, - B X , )  by the sample variance of (Y, - P X , )  to get 
62. 

This procedure is a standard way to assess the variability of ratio 
estimators in sampling theory. It does depend on X being essentially constant 
and so needs n, large. An alternative justification would be an analysis 
conditional on ( X i ) .  f f E ( y i l X i )  z OXi  and var( y i lXi )  z d then we obtain the 
same approximate confidence interval conditionally and hence uncondition- 
ally. However, neither assumption is likely to hold, particularly that of the 
variance, which we might expect to increase with X i .  A more plausible 
assumption is var( x l X i )  = y X i ,  which gives var(8) z y /X.  Applied to our 
example we get s.e.(8) % 0.09, but it is clear that E(XIX, )  = OXi is also 
violated. 

The original rationale behind Quenouille’s introduction of the jacknife 
was that if E8 - O = O ( n - ’ )  then the bias of Rwould be O ( K 2 ) .  Efron (1982) 
discusses the properties of Rand S2, and shows that S 2  is usually conservative 
in the sense that ES2 2- var(8). Simulation experiments have shown the 
jacknife estimator 3‘’ to generally be more reliable than 6 2 / n , X 2  as an 
estimator of var(8). Thus we would recommend the use of 3.’. The difference 
between % and &is almost always small, so the choice between them is not 
important. Yet another alternative, the bootstrap, is discussed in Section 7.1. 

Each of these analyses is really a large-sample result in the sense of a large 
number of tours, for attempts to justify confidence intervals of the form 

(B - t,S, B + t,S) 

for t ,  the (1 - 4 2 )  point of a t distribution have been largely unsuccessful 
(Efron, 1982, p. 14). Thus valid inferences depend on S 2  being an accurate 
estimator and need n, large. A large number of tours implies that the 
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correlation of the original process is of short range compared to the length of 
observation. 

Regenerative simulation has been applied to a wide range of problems in 
the references already cited and in Heidelberger and Iglehart (1979), Iglehart 
and Lewis (1979), Iglehart and Shedler (1978, 1981, 1983a, 1983b), Iglehart 
and Stone (1983), Lavenberg and Sauer (1977), Meketon and Heidelberger 
(1982), Seila (1982) and Shedler and Southard (1982). Some of these refer to 
identifying the regenerative points or choosing between regenerative points 
(as in Markov chains). Others refer to the use of statistical procedures that are 
complicated by the random number'of tours. One can also consider an 
approximate regenerative analysis as in Crane and Iglehart ( 1  975b) and 
Gunter and Wolff (1980). 

Meketon and Heidelberger (1982) consider the problem of the incomplete 
tour at time t. By the waiting-time paradox this is no ordinary tour but is 
likely to be longer than expectation. They show that 

E 8  = 6 + c/t + O(l/f*) 

for 

under technical conditions, whereas if observation is continued to the end of 
the incomplete tour, 

This has a similar empirical performance to jacknifing, with a simpler 
analysis but a more costly simulation. 

6.5. A CASE STUDY 

Queueing systems are normally studied with identical servers. Suppose we 
have one slow and one fast server. Are there any circumstances in which i t  is 
preferable to run a single-server queue with just the fast server? We will only 
consider first-in -first-out (FIFO) systems for which i t  is clear that adding an 
additional server (however slow) will reduce the waiting time for each 
customer. However, this could be balanced by the increased service time for 
those customers unfortunate enough to be allocated to the slow server. 



I62 OUTPUT ANALYSIS 

Rubinovitch (1985) considered this problem for mean delay time in queues 
with Poisson arrivals of rate i. and exponential service rates 11, > p 2 .  Then 
both one- and two-server queues are Markov processes which can be studied 
analytically. Figure 6.2 illustrates Rubinovitch's results. At  high traffic 
intensities the slow server is worthwhile unless i t  is extremely slow. A t  low 
intensities most of the customers find both servers free. If  they cannot 
distinguish between the servers they will choose one at random, in which case 
only slightly slower servers are acceptable. I f  the servers are labeled the fast 
server will be chosen if i t  is free. Then a server up to twice as slow is 
acceptable, for if a customer arrives to find the fast server (only) occupied, his 
or her expected delay is 1/p2 if he or she opts for the slow server and 2 / p ,  if he 
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Figure 6.2. Should we use a slow server? The abscissa is i./p,. the trarfic intensity with just tllc 
fast server, and the ordinate is p2/p l .  the ratio of the service rates. Above the line the mean deli14 
time is less with two servers, below it  is less with just the faster server. The solid line refers to 
indistinguishable servers, the dashed line refers to a preference for the fast server when both are 
free. 
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or she elected to wait for the fast server. (By the memoryless property of the 
exponential distribution, the remaining service time of the customer being 
served is still exponentially distributed with rate p l  .) 

Simulation can be used to study more general queueing systems. Let ( A , )  
be the interarrival times and (Si) the service times in a FIFO single-server 
queue. We saw in Section 5.3 that the waiting time cl/; of the ith customer 
satisfies 

Then the delay time Di = w. + S, ,  so 

Di = Si + max(0, D i - ,  - A i )  

For a two-server queue we can use discrete-event simulation. The next event 
is either an arrival or  a departure from one of the servers. By keeping track of 
the time of each of the three possible next events (possibly + x if a server is 
free), one can simulate the whole queueing system. (A little care is necessary to 
handle the event of a customer arriving when at  least one server is free.) These 
methods work for a completely general arrival process and service-time 
distribution. At least 2000 customers could be simulated per CPU second on 
a VAXl11782. 

We only considered a Poisson arrival process. Without any loss of 
generality one can take j .  = 1 and measure time in minutes. Both queueing 
systems regenerate when a customer arrives to find all servers free, and 
regeneration is frequent at  all but very heavy traffic rates. Figure 6.3 shows 
three runs with p I  = 1.25, so the mean service time is 0.8 min. Runs are 
illustrated with a slow server with , L L ~  = 0.625 and 1’15 as well as without the 
slow server. [In all cases the service time distribution was gamma ( 5 ) ,  suitably 
scaled.] With /i2 = 0.625 there were 278 tours, whereas for pz = 1 ,  IS there 
were only 32, the tours being lengthened by the long service times of the slow 
server. For exponential service times Rubinovitch gives the probability that a 
customer finds the queue empty, illustrated in Fig. 6.4. From this we can find 
the mean tour length as the reciprocal, using ergodicity. 

In comparing queueing systems i t  is tempting to use a common arrival 
process, as was done in Fig. 6.3. This may complicate the analysis. For 
example, when considering whether to use a slow server we have a 
regeneration point only when customer i finds the queue empty in ho t l i  
systems. This reduces the frequency of regeneration points. possibly too much 
to allow a regenerative analysis. 

Figure 6.5 shows autocorrelation plots for the three rims of Fig. 6.3. The 
long delay times with a slow server inflate the variance and reduce the 
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autocorrelations. For autocorrelation-based analysis it is the single-server 
system that provides the larger problem, in contrast to regenerative simulat- 
ion. I t  is rather difficult to use any of the methods of Section 6.1 to discard an 
initial transient. The disparity between the two servers can cause cyclic 
oscillations in the delay times from customer to customer. The problem was 
circumvented by starting the simulations in  a “typical” state from a pilot run. 
An alternative would be to rely on analytical results from exponential service 
times that show rapid convergence to equilibrium. 
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servers. / i I  = 1.25, / I ?  = 0.625: and ( ( , I  one server w i t h  ! I  = 1.25. I n  all ciises i = I uith ;I Poisson 
arrival process and gamma (5)  service times. 
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Figure 6.5. Autocorrelation plots for the data of Figure 6.3. 
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Tables 6.4 and 6.5 show some results based on Fig. 6.3. The two measures 
considered are mean delay time and the proportion of customers delayed by 
more than 5 min. The value p 2  = 1/15 was chosen to give virtually identical 
mean delay times with or without the slow server under exponential service 
times. In almost all cases the standard errors are seriously underestimated if 
the results are assumed to be independent. The exception is the long delays in 
Fig. 6.3h, which are very rare and so virtually independent. The agreement 
between the remaining methods of estimating the standard error is encourag- 
ing. These values are themselves not very accurate. For example, in the last 
column of Table 6.4 we have 9501; confidence intervals of (0.37, 0.97) for the 

Table 6.4. 
6.3 

Mean Delay Time and Estimates of its Standard Error for the Data of Fig. 

~~ ~~~~~ ~ 

Fig. 6 3u Fig 6 3 h  Fig 6 3c 
~~ ~ ~ 

Mean 
Standard deviation 
Stundard errors 
Under independence 
Via 10 replications 
Via T* = 2rr / (O) 
Via regeneration 
Via regeneration, 

jacknifed 

3.27 
3.99 

0.126 
0.264 
0.290 
0.257 

0.289 

0.026 
0.038 
0.050 
0.049 

0.050 

3.30 
2.75 

0.087 
0.52 
0.58 
0.64 

0.73 

Table 6.5. 
for the Data of Fig. 6.3 

Estimates of 0 = Probability that a Customer is Delayed more than 5 min, 

~ ~~ 

Fig 6 311 Fig 6 3h Fig 6 31 

0 
s.e.( 0) 

Under independence 
Via 10 replications 
Via regeneration 
Via regeneration, 

jacknifed 

1 .2('(, 0. I4 12, 1.34';< 
4.5",:; 0.1431:,, 7.6')/, 
3.5% 0.137:';, 9.7'%, 

3.9:'" 0. I39",, 1 I .0y, 
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Figure 6.6. The estimated spectral density for Fig. 6 . 3 ~  on log,, scale. The smoothing window 
and a pointwise 95% confidence interval are shown. 
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replications estimate and (0.49, 0.69) for the spectral density estimate (Fig. 
6.6). Note that by using an internal estimate via spectral densities we do as 
well from one run as we would do from 70 replications. 

These runs were picked from a larger study to illustrate some typical 
behavior. Although a run of 1000 customers is cheap, longer runs raise 
problems of storing the results and analyzing them by standard packages. As 
batches of length 1000 are certainly virtually independent, analyses of the 
type illustrated were performed on several batches and averaged. This gave 
acceptably accurate estimates of the quantities considered without excessive 
work in estimating standard errors. The only variance reduction that seemed 
worthwhile was to use a common arrival stream. For mean delay times one 
can analyze the differences in delay times for each customer. For the 
proportion of long waiting times no variance reduction was attempted, since 
the cause of long delays differs in the two systems, and any valid analysis of 
the combined system is rather complicated. 

EXERCISES 

6.1. Consider an AR(1)  process of 100 observations. Compute var(Z), T ’ / I I ,  

and EsZ/n.  How large need lrxl be for r z / n  not to be a good estimate of var(Z)? 

6.2. Derive Moran’s formulas for EPl  and E p 2  

6.3. Simulate the process X, = 10 + a ( X , -  - 10) + c , , E ,  - N(0, 1) from 
X, = 0 and see how well you can choose how much to discard. [Note that 
E X ,  = lO(1 - a*).] 

6.4. Suppose var(l’lXi) = )’Xi in the regenerative analysis. Show that 
var(8) 5 y/R and that ;’ can be estimated by the variance of ( y  - ( 3 X i ) / f i .  

6.5. Estimate the constant c in Meketon and Heidelberger’s formula for the 
data of Table 1.3. Hence adjust 8 for bias ( 1  = 200 here) and compare with the 
jacknife estimate 0: 

6.6. If you have access to a discrete-event simulation language or systcm. 
check what assumptions it makes in its output analysis. Are they reasonablc? 

6.7. The best way to understand output analysis is to t ry  i t .  Either gimulate 
the processes of Section 6.5 or a problem from your own field and t r y  several 
different output analyses. 
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Uses of Simulation 

In a sense this whole book is about uses of simulation. What concerns us herc 
are some of the less obvious uses of simulation. which fall into two broad 
categories. The first category is within statistics. to perform statisticul 
inference. Obvious uses of simulation in statistics are those of rnndomiration 
such as randomizing experiments and randomized tests. More innovativc 
uses are Monte-Carlo tests, the bootstrap, and Monte-Carlo confidencc 
intervals. Often when a distribution is unknown, for example that of a test 
statistic. it is tempting to replace i t  by a distribution estimated from ;I 

simulated sample. Undoubtedly this has been done for many years i n  an tr t l  

hoc way. Increased computer power has made i t  possible on a large scale. and 
more formal methods such as the bootstrap and Monte-Carlo tests have been 
developed. These are the subject of Section 7.1. 

Stochastic algorithms have recently proved successful in both cryp- 
tography and optimization. Although there is a certain appeal about an 
algorithm that will always succeed, in practice we may be able to afford to 
solve a much larger problem with a probabilistic algorithm that has only ;I 

high probability of success. Consider, as an example, the problem of finding 
whether a large integer is prime or the product of a small number of largc 
primes. (Small prime factors can be found by conventional means.) There itrc 
stochastic algorithms that will report correctly if the number is prime, and 
find a factor if one exists with probability at least one-half. As thew 
algorithms are very much cheaper than any that give a definite answer. wc 
can afford to run the algorithm 20 times. We will then either know ;I factor or 
have odds over a million to one that the number is a prime (Devlin, 19x4. pp. 
176- 178). This will usually suffice! Stochastic algorithms in optinii7ation 
usually depend on the space-filling properties of random walks to rcach ii 

global rather than local optimum. This is considered further in Scction 7.2. 
Monte-Carlo integration was used as a test problem for variancc rc- 

duction in Chapter 5. We were unable to escape the precision proportional t ~ )  
I / &  law. although the constant could be made small. Deterministic 
methods can do  much better in  one or two dimensions, and wc might givc up 
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independence to try to do as well. Section 7.4 discusses quasi-Monte-Carlo 
integration in which the pseudo-random numbers are bent to f i t  thc 
particular problem. 

7.1. STATISTICAL INFERENCE 

An appealing but potentially expensive way to develop statistics would be to 
compare the data with samples from the models under consideration. Since 
this would have to be done for each parameter value, some analytical aid is 
necessary. Yet ideas increasingly along that road are being developed. 

Monte-Carlo Tests 

Suppose we have a completely specified model and a goodness-of-fit statistic 
T for which small values indicate departures from the model. The random 
spatial pattern of Chapter 1 provides an example, with T = n(n - ] ) [ I 2 .  To 
perform a pure significance test we need to know the distribution of 7: This 
may be difficult or impossible analytically. but we can always simulate from 
the model and produce m samples t ,  , . . . , t ,  of T under the null hypothesis. 
One way to proceed would be to estimate the cdf of T by the empirical cdf of 
( t , ,  . . . , t , )  or a smoothed version thereof. Essentially we estimate the critical 
point at level a as the lOOath percentile of ( t , ,  . . . , t,). 

Monte-Carlo tests are a closely related (but not identical) idea. If the null  
hypothesis is true we have m + 1 samples from the distribution of 7: m by 
simulation and one by observation. Thus the probability that T is the k t h  
smallest or smaller is k/(m + 1)  provided we can ignore ties. [For the rest of 
this section we assume a continuous distribution for T to avoid such 
difficulties; Jockel (1986) shows how they can be resolved.] If we choose k and 
m to obtain a conventional significance level (say 1 %  or S;"), we have 
Barnard's (1963) Monte-Carlo test. [Dwass (1957) gave a special case earlier 
and the idea has been rediscovered since, but Barnard appears to have been 
the first to publish it explicitly.] Two-sided tests can be developed in exactly 
the same way. 

The performance of Monte-Carlo tests has been considered by Hope 
(1968), Birnbaum (1974), Marriott (l979), and Jockel (1984, 1986). The 
Monte-Carlo test has a random critical point and so "blurs" the critical 
region. Let F be the cdf of T under the null hypothesis. Then 
U = F(T)  - U(0, l), and the conventional test rejects H ,  if U < 2. On the 
other hand, the Monte-Carlo test rejects H O  with probability p(  U ) ,  where 

k -  1 

p(u)  = 1 (7)U'(l - U),-' 
r = O  
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This should be interpreted as the proportion of times the Monte-Car10 test 
will reject with T = F - ( u )  as the observation. Marriott (1979) tabulates p ( u )  
and shows that for small k the blurring can be substantial. Note, however, 
that the Monte-Carlo and conventional tests only give different decisions a 
significant proportion of the time when T corresponds to a p-value near the 
significance level SI. 

A n  altcrnative approach is to consider the power function /)"(a) of the 
Monte-Carlo test versus the power / ] (a)  of the conventional test. We would 
expect p.l < [j and find this to be the case except when the conventional test is 
worse than useless (Foutz, 1980, 1981; Jockel, 1981). The important question 
is how large the loss of power can be. Since the Monte-Carlo test rejects if and 
only if 

the power under an alternative, F,,, is 

where h(a,rn;) is the pdf of the beta distribution with parameters (w(m + 1)  
and ( I  - a ) ( m  + I ) .  Since P(r) = F,,(F ((w)) we find 

Jockel (1984, 1986) exploits this formula. For example, 

Theorem 7.1. Suppose /I( ) is concave on [0, I]. Then ~ " ( c c )  7 ~ ( s I )  as IYI --+ ' x .  

PROOF. From ( 1 )  

There are points 5, , t2 with 0 < c ,  < c2 < I such that the integrand is zero at 



STATISTICAL INFERENCE 173 

these points, positive on and negative on ( O , < , )  and ( C 2 ,  I ) .  Let 

as required, since both densities have mean 2. 0 
) is continuous at a. the convergence of / Y ' ( x )  to P ( x )  follows directly 

from ( 1 )  (Hope, 1968; Birnbauni, 1974) by the L' convergence of h(x,w~;j fo x .  
If fl( 

How much do we lose by using a Monte Carlo test? Jockel gives. 

Theorem 7.2. Suppose /j( j is concave on [0, I]. /I(O) = 0 and /j( 1 ) = I .  The11 

where 2 - beta(a(nt + I ) ,  ( 1  - x ) ( m  + I ) ) .  

PROOF. 

where ha) is the function linear on [ O , x ] ,  [ x ,  11 agreeing with /) at (0, x ,  11. 
Then f l  is the power of the randomized test 

2 ~ I <$=. < < x  

4 < =  1 - 5  2 - x  
{G &+L, I - a  5 > x  

Then 



174 USES OF SIMULATION 

since EZ = a. The approximation comes from the central limit theorem, 
approximating Z by a normal variate of mean a( 1 - a)/m. 

Jockel (1986) gives other more accurate formulas for the lower bound. For 
a = 5% the bound goes from 64% at m = 19 through 83% at m = 99 to 94.5"" 
at m = 999. 

This formula gives a worst-case bound. For more specific results we have 
to consider asymptotic theory. Jockel shows that the local asymptotic relative 
Pitman efficiency is 

at least in the normal limit case. Again for a = 5"/, the efficiency is 81", at 
rn = 19 and 95.6% at rn = 99. Further details are in Jockel (1986). 

These results generally confirm our heuristic ideas about Monte-Carlo 
tests. They provide some reasons to avoid small values of k ,  which blur the 
critical region rather a lot and so lose efficiency and power. Of course, sirice 
( rn + 1) = k/a ,  this implies m large. Unless one takes a very rigid approach to 
significance testing, m = 99 is usually sufficient. 

In some cases one can make a decision without generating all m samples. 
In  the spatial randomness example of Chapter 1 we commented that we could 
stop if we found one small distance. Analogously we can stop when k samples 
ti are smaller than the observed 7; for then we know we will not reject. 
Similarly but less usefully if rn - k + 1 values exceed 7; we will certainly reject 
and can stop. This device can reduce the labor needed if the fit is good, so Tis 
a typical value, but will help little if the true p-value for Tis small. 

Efron's Bootstrap 

Efron (1979) introduced an idea analogous to the jacknife that has aroused 
considerable interest as a general way to estimate a sampling distribution. 
Suppose we have an estimator 8 of 0 based on a sample .x, , . . . ,x, , .  The 
suggestion is to estimate the bias and variance of 8 by replacing the unknown 
distribution of 8 by the distribution of 8 under resampling from (x,,. . . , x , ~ ) .  
That is, we draw a new sample ( y , ,  . . . , y,) by sampling (with replacement) 
from (x, ,. . . , x,) and compute 8 from the yi's. This has a distribution from the 
random selection of the yi's, and it is this distribution that is used in bootstrap 
methods. It  m a y  be possible to compute this resampling distribution 
analytically, but it is quick and easy to build up enough of a picture of it by 
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simulation. The cost is in computer time, since for each resample we calculate 
a complicated estimator (3 and we will need to d o  this a large number ni times. 
The simulation in contrast is trivial. 

At first sight this is a preposterous idea, but i t  has been shown to work well 
in a wide variety of problems. Consider the very simple example of 8 = i. We 
estimate var(8) by vat-(?.), the variance under randomization. Each ~ 3 ;  is 
independently one of :.x,, . . . , x,] i, so var( y i )  = (.xi - .Y)2/r7 and 

so this is (up to a factor close to 1 )  a sensible estimator. In  general we will 
estimate var(8) by the sample variance of O(y) for a large number of samples. 
We can also estimate the bias of 0 or  any other aspect of its distribution from 
the resampling distribution. For  example, the bootstrap estimate of  bias is 

and the first term will be estimated by the mean of 111 resamples. 
The regenerative simulation example of Section 6.4 provides a more 

realistic example. There are seven bivariate observations, ( I ,  O), (2K4.692). 
(12,1.663), (8,0.387), (26,5.894), (41, 15.922) and (37,22787) .  There f i  is thc 
ratio of the sum of the second component to the sum of the first component. 
Resampling 1000 times we find the bootstrap estimates of 

bias(@ = -0.01 1 

s.e.(@ = 0.087 

The standard error agrees with previous estimates and the bias estimate is 
very close to that from the jacknife. 

The bootstrap principle can only be justified asymptotically as n 4 x by 
showing that the resampling distribution and the true distribution of (3 have 
the same asymptotic behavior. The case of a finite sample space is easiest. Wc 
assume 8 does not depend on the labeling of the sample. Let the possible 
values be [ I ,  . . . ,  L i .  The distribution of the sample can be described by 
{ j j  = P ( x ,  = j ) ) .  and the sample (.xi) can be described by = (no. o f  
xi = j ) / n ) .  Then the quantity of interest. E&8) = E Q ( J , f ) ,  and this is 
estimated by E Q ( f * ,  f), where j'* refers to the resamples. Both ? I f  and .f* 1 . f  
have multinomial distributions, and as I I  + x both f *  - ,I and ,r - . f '  have 
the same asymptotic normal distribution. Under smoothness conditions on Q 
this gives the same asymptotic distribution for Q(f*,f) as Q ( X j ' ) ,  as 
required. Later work has extended this result to more general problems. 
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Despite this asymptotic justification, bootstrap bias and variance estimates 
work well for small samples. [Efron (1982) gives many examples as evidence 
for this statement.] 

Monte-Carlo Confidence Intervals 

Monte-Carlo tests are only defined for a single simple null hypothesis and so 
cannot be inverted simply to form a confidence interval. Some pivotal 
quantity is needed. Suppose 8 is a consistent estimator of N with cdf F , .  Let O *  
be a sample from F,. We want to use the variation of ( I *  about (3 to infer the 
variation of 8 about 0. Consider first a (local) location-family model 

Let L and U be upper and lower +a-prediction limits for O* obtained either 
analytically as 

or via simulation from the empirical cdf of fl*. The conventional ( 1  - a)- 
confidence interval for t) is 

if the model (2) holds exactly. I f  (2) is only a local approximation, (3) will be an 
approximate ( 1  - c() interval. 

Suppose additionally that F ,  is symmetric about zero. Then analytically 

U - 8 = 8 - L  

and (3) becomes 

Efron (1982, Chapter 10) calls (4) a percentile confidence interval, and 
Buckland (1983, 1984) calls it a Monte-Carlo confidence interval. 

An alternative assumption is a local scale family, particularly for ( I ,  (3 > 0. 
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Then 

I77 

( 5 )  

giving the ( 1  - 2)-confidence interval 

If ln(fi/f)) has a symmetric distribution wc can again swap limits to obtain 
OE(L, 15'). Efron considers the assumption that there is a monotone increasing 
transformation g such that g(8) has a symmetric location family of distribu- 
tions with location parameter g(0). This again gives UE(L, V ) .  Suppose, 
however, that 

and G was symmetric about HZ # 0. Lct &,, U ( ,  be percentiles of q(O*) a s  
before, giving the confidence interval 

Using 

WL' obtain 

Efron considers 6) = 4)- ' F$, the asterisk denoting that this is estimated by 
the bootstrap. I f  we assume g(8) - g(0) is approximately ii location family 
with point of symmetry / ) I  = -0 ' F $ ( f i ) ,  we obtain 

( F $  ~ ' @( - 2rri - kX),  F;T ' (D(2:, - h)) ( 7 )  

which is termed a "bias-corrected percentile interval." 
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Buckland (1984) claims the validity of (4) under the weaker condition 

Suppose II/ = g(@ is a location family for an increasing transformation g, so 
I$ - t,b - G. Then Buckland's condition becomes 

that is, the symmetry of G about zero. Without such a pivotal relation wc 
cannot conclude that P,(L < 0 < U )  = 1 - z for all (1 from Buckland's 
condition. 

Suppose that (4) is a valid confidence interval and that L and U are 
estimated as the percentiles from m simulations of O * .  Then the achieved 
confidence level is 

if the samples were generated by inversion from ( U ,  , . . . , U,")  and 
j / ( m  + 1)  2 +a, k / (m + 1)  z 1 -9.. Then E A  = ( k  - j ) / ( m  + I )  2 1 - z and 
var A z a(l - a)/m. (Note the divisor m + I rather than m.) 

The intervals ( 3 )  and (6) appear to be new and remove many of the 
problems of their symmetrized cousin B E ( L ,  U ) .  Conversely, one has to 
choose an  appropriate transformation. but for large samples with 0 near 0 
there should be little difference among ( 3 ) ,  (4), and (6). Each assumes less t h a n  
asymptotic normality. 

7.2. STOCHASTIC METHODS IN OPTIMIZATION 

Stochastic models arise in optimization in two ways. We may have to 
consider maximizing a quantity that is only measurable with error. Onc  
example is response-surface designs. There we wish to find a combination of 
controls maximizing the output of a plant, but we can only estimate thc 
output from an  experiment. Another example is maximizing a likelihood o r  
minimizing a goodness-of-fit statistic when the appropriate distributions arc 
so complex that they must be estimated by simulation. Such ideas are usually 
termed stochastic approximation or stochastic optimization. 

The other use of randomness is to explore the set over which a function is 
to be maximized in an efficient manner. Stochastic methods generally d o  well 
in very complex optimization problems; when enough is known about the 
problem deterministic methods will be more efficient. The startling success of 
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simulated annealing in combinatorial optimization (see below) suggests that 
stochastic methods are under-used at present. 

Random Search Algorithms 

We assume that a function f is given over a domain D c R”. The global 
maximum x* E D is a point at which ,f attains its maximum, that is, 

f ( x * )  = supf’(x) 
XED 

A local maximum i is a point such that f ( x )  < f(.t) for all X E D  with 
0 < 1I.x - .?I/ < 6 for some choice of 6. Deterministic optimization methods 
will in general only find a local maximum. However, ifD is convex and f’ is 
concave then a local maximum is the global maximum, so it is sufficient to 
find a local maximum. Without such additional knowledge global optimiza- 
tion methods need to cover the whole of D in some sense. One appealing way 
to do so is to use a random walk. 

Suppose f is differentiable with gradient (column) vector g. Then two 
random search algorithms are: 

Algorithm 7.1. 
surface of the unit sphere S, - c R“ and move to 

Generate a random vector F unformly distributed on the 

X i + l  - - xi + M i {  [ f ( X j  + cj F) - f ( X i  - ci 14)]/2Cij  

Here ai is a step length parameter, and the term ( . . . }  represents a finite 
difference approximation to g T  V. 

Algorithm 7.2 

1. Generate N random vectors v k  uniformly on S ,  -, 
2. Choose k to maximize f ( x i  + civ,). 
3. Move to 

Again, the term (. . .}  is a finite-difference approximation to g T y k .  Both 
algorithms are related to gradient ascent, in which the next step is along g ( . ~ , ) .  
Note that for ci small enough both algorithms will always ascend and so are 
likely to be trapped in a local maximum. Their attraction is that they will not 
exhibit the “zigzagging” of gradient ascent. 

The most commonly used global optimization algorithm is undoubtedly 
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Algorithm 7.3 

1. Select N starting points xi E D according to some distribution over D. 
2. Run a local optimization algorithm from x i  to reach ii. 
3. Choose x* as the i i  with largest f(ii). 

In essence, we find the local maximum nearest each starting point and 
choose the highest. Obviously if we have any idea of where the global 
maximum is we can reflect this in the choice of distribution over D. 

Pincus (1968, 1970) uses a Monte-Carlo approach, based on 

Theorem 7.3. 
x*, and D is compact. Then 

Suppose f is continuous with a unique global maximum at 

PROOF. Fix E > 0. By compactness and continuity we can find 6 > 0 such 
that if N ,  = ( x  1 Jx - x*J < E }  then f ( x )  < f ( x * )  - 6 for all X E  D\N,, and 
4 > 0 such that f(x) 2 f ( x * )  - 612 for all x E N , .  We will show 

JD Jx - x*Jexp E.j-(x)dx 
lim = o  
2 - m  lDexp i j (x)dx 

Let I ,  and I ,  denote the numerator and denominator. Then 

I ,  2 6, exp i.j-(x)dx 2 vol(N,)exp i.[f(.u*) - 6/21 

Now 

Ix - x*lexp J.f(x)dx + 1.y - .u*lexp i.j(.u)d.u s, N ,  

< & I d  + suplx - x*lvol(D)exp Af(x*)  
XED 

Finally, ln / ld  < E + const exp( - i.6/2) which suffices. 
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We can then apply the Markov chain sampling methods of Section 4.6 to the 
pdf proportional to 

over D, to which they are ideally suited. Then X *  is estimated by the mean of 
X , ,  the position of the Markov chain after n steps. 

Simulated Annealing 

This was introduced by Kirkpatrick et al. (1983) as a device to obtain 
improved solutions to combinatorial optimization problems, such as the 
wiring between integrated circuits on a printed circuit board and the n-city 
traveling salesman problem [see also Bonomi and Luttin (1984)l. These 
problems all have a cost U to be minimized by a choice of a large number of 
interrelated finite decisions. The traveling salesman problem is to visit n cities 
in any order without returning so as to travel the shortest possible distance. 
At each city he or she has to decide where to go next. Thus a path is a 
sequence of cities contained in { 1 , .  . . , n)" with not all paths allowed. The cost 

f l  

U (  x) = c d( X i  .~ , , X i )  
i = 2  

The key step is to set up a probability distribution on all paths by 

P,(x) = const exp[ - i.U(x)] (8) 

with forbidden paths having infinite cost. As i + cc it is clear that P ,  will 
concentrate on the optimum path(s) x*. This is just the discrete version of 
Pincus' procedure, and we can again apply Markov chain methods. 

There is a formal similarity between (8) and the pdf 

of the Gibbs measure in statistical physics of a configuration of energy U at 
temperature 7: Annealing is a manufacturing process in which a molten metal 
is cooled extremely slowly to produce a stress-free solid. In mathematical 
terms this means achieving a configuration of atoms with energy near or at 
the minimum of U .  This is precisely what we wish to do in the optimization 
problem and suggests taking I K 1/T and so increasing 1 + 00 very slowly. If 
we are using the Markov chain method of sampling from (8) we will have to 
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let this near equilibrium before I is changed appreciably, and as I I  -+ w the 
rate of convergence to equilibrium slows dramatically oust as in real 
annealing). Geman and Geman (1984) and Gidas (1985) study the choice of 
the sequence of T or, equivalently, of A. Their methods are a detailed study of 
nonhomogeneous Markov chains and suggest in general that I cc log( 1 + t), 
where t is the number of steps of the chain completed. 

Unfortunately this is so slow a rate of convegence that there is no 
possibility of achieving a sample from a P A  that is nearly concentrated on x*. 
However, all is not lost, for we can monitor U(X,). The success of simulated 
annealing in combinatorial optimization has been to find paths x with V ( x )  
appreciably below any previously known feasible path. Although P A  will not 
be concentrated on x*, it will give increased mass to the near-optimum paths 
and so there is a good chance that even a rather casual exploration of all 
paths by random sampling from P A  will come up with a good path. Why not 
then just choose a large I and sample directly from this (as suggested by 
Pincus)? For large A the successive points x, move very slowly in the space of 
allowed paths, and starting with a small I I  allows the process to search around 
rapidly for the correct local maximum. Although Gidas’ results guarantee 
that the global maximum will be approached eventually, this could take a 
very long time. Thus it is helpful to resort to the random start procedure of 
Algorithm 7.3. 

Image restoration and labeling problems give rise to Gibbs measures very 
naturally as posterior distributions. Maximizing the posterior distribution 
amounts to estimating by the posterior mode. The optimization problem 
involved can be enormous. Consider an image made up of an M x M array 
of pixels, for M = 64-512. Each pixel has one of k true colors but is observed 
with noise. Figure 7.1 shows a small example with M = 64 and k = 2. If we 
assume as prior distribution the Markov random field with specification 

In P(x i j  = black I other colors) 
In P(xi j  = whitelother colors) 

= /?[number of black neighbors - number of white neighbors] 

and additive Gaussian white noise of error variance K, we find the posterior 
distribution 

where 

pairs 
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T E S T  

IW 
Figure7.1. A 64 x 64 test image for restoration via simulated annealing. 

and Zij  is the signal on pixel ij and pWhite and pblack are the true luminance 
levels. This is easily simulated by the methods of Section 4.7. Figure 7.2 shows 
the results of 500 scans of the image with i. = In(1 + scan number)/3. No 
local optimization method found a value of U within 100 of that for the image 
of Fig. 7.2. 

Stochastic Optimization 

So far we have considered stochastic algorithms for deterministic objective 
functions. Now suppose j ( x )  can only be measured with error as f ( x ,  E )  and 
we are interested in solving 

max E ~ ( . Y , E )  
X E D  

(9) 

or 

Examples of this type of problem are given by Diggle and Gratton (1984) and 
Ruppert et a1 (1984). Both are concerned with parameter estimation in 
complex statistical models. For example, in maximum likelihood part of the 
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b) 

Figure7.2. (u)  Restoration with f i  = 0, that is, no spatial information was used. ( h )  “Minimum 
energy” restoration via simulated annealing with p = I .  

likelihood (such as a normalizing constant) may need to be estimated by 
simulation or in a moment-based estimator the theoretical moments could be 
found by simulation. 

Some care is needed with the maximization problem. Suppose the noise is 
additive, f ( x ,  E )  = f ( x )  + c. Then any attempt to maximize f (x .  6;) directly will 
have to work with a rough function and will tend to overestimate ,f(.u*), 
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possibly appreciably. There are three main approaches, all of which make 
some use of the smoothness of j ( .u ) .  

The first of these approaches is response-surface methodology. An 
example is given by Hoe1 and Mitchell (1971). This was originally a way of 
designing a series of experiments to find the point of maximum yield of, say, a 
chemical plant (Box et al., 1978, Chapter 15). To solve (9) a local quadratic 
surface for &(x) = Ef( .u ,  E )  is assumed, with E[ f ( x ,  c) - 4(.u)I2 approximately 
constant. This quadratic can then be fitted by least squares and the design 
points arranged to close in on the predicted maximum. To solve (10) one 
would use a local linear approximation. 

Perhaps the best-known approach is stochnsric ~ippros i t~ irr t io t i  (Wasan, 
1969). The original form of Robbins and Monro (1951) solved (10) for 
.YE R and 4 increasing. A sequence (.u,,) is used, defined rccursively by 

Chung (1954) showed that (u,) can be chosen so that E ( x ,  - x*)’ = O(ti I ) ,  

which is the best error rate achievable. Kiefer and Wolfowitz (1952) proposed 
solving (9) for concave 4 by estimating g(.x, e) = i( f(.u, c)/;l.u by 

g*(x) = +[ f ’ (X  + C,,E)  - f ( x  - C,,E’) ] / ( ‘ , ,  

and using the Robbins-Monro procedure for this function y*. In  gcnernl 
Eg*(x)  # Eg(x ,c ) ,  so c, + O  is necessary for x, + x*. If c, and E;, are 
independent then the best achievable rate is E(x, - x*)’ = O ( ~ I C ’ ’ ~ )  (Fabian, 
1971). However, in a simulation study we will not need 1; and t;’ to be 
independent and by use of common random variables we can expect a high 
correlation between f ( x  + c,,e) and .f(s - c,,c) leading to a much more 
stable estimator y*(x). This was exploited by Ruppert et al. (1984). Blum 
(1954) gave a multidimensional version of the Kiefer-Wolfowitz procedure. 

Other authors, notably Springer (1969), Diggle and Gratton (l984), and 
Ruppert et al. (1984) generalize more sophisticated optimization methods, 
viewing the Kiefer- Wolfowitz-Blum procedure as a version of steepest 
ascent. Diggle and Gratton base their SQ procedure on the Nelder-Mead 
simplex algorithm whereas Ruppert et al. use a Newton-type procedure. 
(Note that Diggle and Gratton use a response-surface design near their 
optimum as a second phase.) Far too little experience is available to comment 
in any generality on a preferred procedure. These methods tend to be very 
expensive in computer time, so it is well worth tuning a method of stochastic 
optimization to the specific problem in hand. However, careful use of 
variance reduction along the lines suggested by Ruppert et al. has great 
potential benefits and may enable differences in 4(x) = E f ’ ( x , c )  to be 
estimated sufficiently accurately to use derivative-based methods. 
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7.3. SYSTEMS OF LINEAR EQUATIONS 

Monte-Carlo methods to solve the n by n system of equations 

were proposed about 1950. They are generally inferior to the conventional 
methods of numerical analysis (which have been improved considerably 
since), but do have some value in specialized problems. Curtiss (1956) 
recommended the methods of this section only when a rough estimate of s 
was required or one was interested in only a few of the elements of s, for 
example in the diagonal elements of A - I .  

We can rewrite (1 1) as 

x = H x + h  

for H = I - A and consider solving (12) recursively by 

from which we find 

This series will converge to x if p(H) < 1. (The spectral radius, p, is the largest 
magnitude of the eigenvalues where these exist.) We can ensure this by 
rescaling A + c A  and b +cb and will assume from now on that (13) is 
convergent. 

Monte-Carlo methods estimate H' without forming the matrix product. 
The method used is analogous to importance sampling. Let P be the 
transition matrix of a Markov chain on { 1,. ..,ti) with p i j  > 0 if Hi, ,  # 0. 
Suppose we sample X I , .  . . , X ,  from this Markov chain with X ,  = i. Let 

Then 

E ( V , ( X o  = i )  = ~ . . ~ ~ h i , i , h i , , i , . ~ . h i , _ , , i , b i ,  = (Hkb)i 
i ,  i, 
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Thus if we take xcO)=O, X ,  = i and run the Markov chain for a long run k ,  we 
obtain an approximately unbiased estimator xh V ,  of .xi .  We can use the 
strong Markov property to obtain some information on x i  for each state , j  
visited; start a product for .xi when X ,  = . j .  

An alternative procedure is to look at  the Markov chain in reverse. 
Choose a starting state X , ,  from the distribution 77 on I , .  . . , H ;  with ri > 0 if 
h j  # 0. and compute a product from X , .  X ,  I ,. . . , XI, .  Let 

Then. provided p,, > 0 when / I , ,  # 0. 

For tach r u n  of ihc Mnrkov chain wc obtain approximately unbiased 
cstim:itors of each clcmcnt of .x. 

The originiil method of \.on Neiininnn und Ulani its published by Forsythe 
and Lciblcr (1950)  difkrb slightly. Consider 21 Mnrkov chain on j0. 1, . . . ,  i i ;  

with  0 an iibsorbing statc and I . .  . . . / I  transient. Then ( X , , )  reaches 0 almost 
surcl). Again ;issumo / I , ,  > 0 wlicncvcr / i l i  # 0 and r u n  the chain until i t  
r cxhcs  statc x r o .  Let ,i‘* be the lust statc visitcd before reaching zero. Let 

(adjoining one\ to / I  to make 21 matrix on 10, I . . . . . r i ) ) .  Then 

P(absorb at step I ,  + 1 ) 
I:( I’*IX,, = i)  = 1 (H”,).-.-.-- = .x, 

h - 11 P.Yh.0 

Similarly i f  

then 
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These give exactly unbiased estimators V* and W*bXei .  They are, however, 
more variable. (Note that W*dX., # 0 for only one value of i.) The idea of 
averaging over intermediate steps was due to Wasow (1952). 

Halton ( 1962) considered accelerating the convergence of these schemes. 
His simplest and most effective idea was that having found a rough initial 
estimate .? of x one should solve 

A.Y = ( h  - A.?) 

for a correction to i. This will have a much smaller right-hand side and so be 
solved more accurately. It is reminiscent of the ideas of iterative refinement in 
numerical analysis and of control variates. 

All these schemes would be replicated to estimate element(s) of .Y. Rather 
little work has been done on the variances of the resulting estimators, which 
clearly depend on the choice of P .  The variance need not even be finite and 
Halton (1970, pp. 17-23) discusses choosing P to make the variance finite. 

One source of interest in Monte-Carlo methods of solving linear equations 
has been the field of integral equations, which when discretized give large 
systems of linear equations. 

Eigenvalues 

A related problem is to find eigenvalues of a ti x 17 matrix A ,  that is, values i 
such that 

has a solution. Iterative methods of finding eigenvalues only find the most 
extreme eigenvalue; once this is found i t  is eliminated and the next most 
extreme found and so on. Suppose we start with an arbitrary vector x'"I and 
form 

Suppose A is diagonalizable. so A = C'AC and 

where i. is the extreme eigenvalue and c' is the corresponding rigenvector. 
Tliiis we can estimate 
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and guess the sign of A by watching a few iterations. Again Monte-Carlo 
methods can be used to estimate x ( ~ ) .  

Another method is to renormalize .uylk+'' by 

Suppose c 3 0. Then pk + -+ i,, for x ( ~ )  K c approximately for large k .  We can 
construct a stochastic version by taking a recurrent Markov chain on 
{ 1 , .  . . , n }  with transition matrix Q satisfying qji > 0 if aij # 0. Let 

Then 

for large enough k.  Thus we can estimate i. by (Wm/Wk)'i(m-k) for m > k .  

7.4. QUASI-MONTE-CARL0 INTEGRATION 

Pseudo-random numbers were defined in Chapter 2 by their pretence to 
randomness, and Monte-Carlo integration was defined in Section 5.1 
assuming independent random samples, which gave an error of order l / f i  
from N samples. Can we do  better by giving up any pretence at mimicking 
randomness? The answer is that we can, by using quasi-random sequences 
and so performing quasi-Monte-Carlo integration. 

Consider the one-dimensional integration problem 

which we estimate by 

for a sequence x1, .  . . , x N  from [0,1]. We would like to choose the sequence to 
minimize 18, - 01 without needing excessive knowledge of f: For a set 
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E c [0,1] let v N ( E )  be the proportion of the sequence within E. I f f  were the 
indicator function of E we would want AN(E) = v N ( E )  - area(E) to be small. 
In general, consider the following argument of Koksma (1942): 

after integration by parts. This gives two upper bounds. First 

the first term being the definition of D N  and the second the total variation off. 
On the other hand, applying Cauchy-Schwartz, 

for a differentiable function f: Both DN and TN are known as discrepancies, 
with TN < DN. 

For a random sequence (x,) we have 

d x  = 1/6N 
= 1:- 

So we would expect TN to be of order 1 / 3 .  Let F N ( x )  = vN([o ,x] )  be the 
empirical distribution function of the random sequence. Then 
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is the Kolmogorov -Smirnov test statistic for a uniform distribution, which is 
well known to be of order 1 / f i .  We can clearly do better by choosing a 
deterministic sequence. A little thought shows that the sequence of odd 
multiples of 1/2N is optimal and achieves DN = 1/2N and TN = l / f i N .  

Discovering one should use a uniform grid in one dimension is no great 
advance, so we turn attention to d > 2 and the integral o f f  over I = [0, 1Id. 
There are several analogues of the bounds involving DN and TN. We can 
define AN(x) = A N ( n  LO, xi]), DN = s~plAN(x)l, and T', = [j, A,(x)' d ~ 1 . l ' ~  
The bounds involve the discrepancies of ( x l , .  ..,x,) and all h < d -  
dimensional subvectors extracted from ( x i ) .  Halton (1970) and Niederreiter 
(1978) give full details. A weak form is 

where V(f) is the total variation o f f  over I and all its subcubes. 
This reduces the problem for rather general functions f to finding sets of 

points (xl,. . . , x N )  with small DN or TN. A uniform grid in d dimensions has 
DN = O(N-'Id) ,  TN = O(N-'Id)  which for d > 2 will be worse than a random 
sequence. It is known that there are constants such that for any sequence 

for all d 2 2, and sequences are known with 

and 

For d = 2, 

DN 2 ( N  In N ) / (  132 In 4) 

These results [extracted from Niederreiter (1978)l show that with quasi- 
Monte-Carlo integration we can achieve 

for smooth enough functions to satisfy an inequality for TN, and 
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for functions of bounded total variation. Note that the sequences used 
depend on N ,  as in the one-dimensional case. 

These auasi-random sequences seem to have been used only rarely, almost 
all reports being in the Russian literature. We can achieve better bounds if we 
are prepared to make stronger assumptions about 1: Suppose we assume that 
f is periodic of period one in each variable x i .  Then we consider 

for a point g E Bd. By periodicity the summation points can be regarded as 

We recognize one such sequence with g = (1, a, a2 , .  . . ,ad- )T from d-tuples of 
a congruential generator. Let c,, be the Fourier coefficients of f for h E Z d .  

Then 

Theorem 7.4 (Korobov, 1959). Let r(h) = n max( I ,  I / I , [ ) .  Suppose 

(ch( < Cr(h)-k  for all h # 0 (14) 

Then 

where 

P , ( g , N )  = 1 r W A  
,h#O.h'g=Omad \ I  

I t  is known that there are vectors g such that P k ( g , N )  = O(N-A(lnN)h'"-l))  
but the proofs are nonconstructive. For d = 2 we consider g.= ( 1 . 0 ) .  If 
N = F ,  for a Fibonacci number and o = F, , - , .  we obtain 
P,(g,  N )  = O(N - k  In N), a very much better order than more general methods. 
Specifically, 

a result of Zaremba. For d 3 3 less is known but some tables of "good" g are 
available. 
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The conditions on Theorem 7.4 look restrictive. First, (14) holds i f f  is up 
to ( k  - 1 )  times jointly differentiable in each variable and all the mixed 
derivatives of these orders have bounded variation. Thus (14) is a smoothneks 
condition. The periodicity can be removed by a transformation. For example, 

has the same integral as j ’  but extends to a periodic function. Thus Theorem 
7.4 provides a powerful multidimensional integration result. In contrast, a 
uniform grid of N = )id points achieves 

- 8) = O ( K k )  = o(N-k’d) 

a very much inferior error bound for large d. 
The proofs of the results of this section depend on subtle number-theoretic 

arguments and are the province of a small band of specialists. Niederreiter 
(1978) gives an extensive bibliography and references for the results quoted 
here. 

7.5. SHARPENING BUFFON’S NEEDLE 

Buffon’s needle experiment for the determination of n will be known to every 
reader. Although not a serious application of simulation. we will consider the 
long series of attempts to improve Buffon’s experiment. 

Buffon’s original form was to drop a needle of length I “at random” on a 
grid of parallel lines of spacing d. For / d d 

P(needle intersects the grid) = Y’nd 

To see this, let s be the distance from the center of the needle to the grid line 
below and fl be the angle of the needle to the horizontal. In  any reasonable 
definition of “at random” I’ - U(0 ,  d), fl - U ( 0 ,  n )  and they are independent. 
Thus 

P = P(needle intersects thegrid) 

= n [I P(needle intersects Id = 4)d@ 

= n 1 [: / sin(#/d)d4 

= 2//’nti 
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Let p = i/d, 4 = I/n. If we drop the needle n times and count R intersections, 

f ,  = R/n, 

&,, = f,/2p, 

varf, = p(I - p)/n 

var $,, = 2p4(l  - 2p4)/4p2n = +'( 1/2p4 - I)/n 

so &, is most accurate when p = 1. Thus if iC, = I/&,, 

var io 2 n'var $,, = 5.63/n 

Laplace considered replacing the grid of parallel lines by a grid of 
rectangles of sides a and b. A similar argument shows that (for 1 d u,b)  

24a + b)  - 1' 
nab 

p1 = P(needle intersects the grid) = 

Again var 6, is minimized by a = b = I ,  when p ,  = 3;n and var = 

( 1  - 3/n)/3nn and var iC, 
An alternative suggested by Schuster (1974) is to count separately the 

number of intersections on the horizontal and vertical grid lines, with 
1 < a = b. Let X i  and yi be the events that the ith drop intersects a horizontal 
and a vertical line respectively. Then Schuster proposed 

0.47/1?. 

as an unbiased estimator of p z  = 2p4. Now cov(X,, x) < 0 since 

P(Xi = 1 )  = P(K = 1) = p 

cov(X,, y i )  = $ 4  - p 2  = $4 - 4p242 = p 2 4 ( 1  - 44)  

P ( X ,  = I and yi = 1) = p 2 / n  = p 2 4  

We deduce that 

1 
2 I? 

var(f,,) = -[var X i  + cov(X,, x)] 



SHARPENING BUFFON'S NEEDLE 195 

which is minimal for p = 1 as before. This gives 

var(?,) 5 1.76/n 

We can also estimate 6 by counting those needles that hit both sets of lines. 
This gives $3 = count/p2n with 

which is minimal for p = 1 and gives 

var(?,) x 21.l/n 

Could we have chosen a priori among $,,, d2, and $3? All are unbiased 
estimators and we could attempt to find a minimum variance unbiased 
estimator of 4. Perlman and Wichura (1975) show that in this problem the 
number of needles intersecting one or both sets of lines is a complete sufficient 
statistic for 4. Since this is equivalent to the number of needles hitting no 
lines, we are led to Laplace's formulation as the minimum variance unbiased 
estimator of 4. Since is biased there still remains the possibility of a more 
efficient estimator of 7c in this set-up. 

Replacing the parallel grid by a square grid is closely related to replacing 
the needle by a cross of side 1 (Hammersley and Morton, 1956). Let X and Y 
be indicator random variables of the events that each of the two needles of the 
cross intersects a grid line. Clearly for I ,< d we find EX = E Y =  2pq as 
before. As for the double grid we find cov(X, Y) < 0. The maximum precision 
of 

is attained for 1 = d and leads to var ?, z 2.42/n. The corr(X, Y )  z -0.14 is 
not large and we should consider the sufficient statistics in this problem. If the 
needles are indistinguishable there are three outcomes corresponding to 
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Z = X + Y = 0, 1, or 2, with probabilities 

P ( Z  = 0 )  = 1 - 2$4 

P ( Z  = I )  = 4(J2 - 1)4 

P(Z = 2) = 4(1 - I/$)+ 

Let the number of occurrences of 2 = i be Ni in n drops. Then the likelihood 
is proportional to 

(1  - 2$$~)~'(($ - 1)4)"(4(1 - 1/$)q5)"' 

so again No or N ,  + N ,  are sufficient statistics. This gives the estimator 

with 

and 

var(ic,) 2 1.09/n 

which is better than antithetic variates but not as good as a single needle on a 
square grid for the same counting effort. 

Yet another variation is to allow / > d (Mantel, 1953). In this case we 
count the number of intersections of the grid by the needle. For a single grid 
the expected number of intersections is still 2//nd; divide the needle into parts 
of length less than d and add up. For a square grid the expected number is 
4//7rd. Let N be the number of intersections. Then 

The first term is var(p)sin el) = p2[i - 4 n'] for a single grid. Conditional on 
0 the number of intersections is either int(plsin 01) or int(p1sin H I )  + 1 so 
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and for large p var(N) z p2(f - 4/77’). This gives 

var(fi,) z ~ 7r4 var(N) x - “ “ ( I  7 - :) 2 2.31/n 
4p2 n 4n 

for large 11. In  the case of a square grid we find 

n4 
16p’n 

var(fi,) = ~ varjE(Nld)] 

and E ( N l f l )  = plsin 81 + plcos 01 with variance p’(1 + 2/77 - 16/n2) so 

var(ir,) 2 0.094/n 

Mantel suggested an alternative. Let s’ be the sample variance of N .  Then 

Es’ % p2(1 + 2/77 - 16/77’) 

for large p.  Suppose we solve 

s2/p2 = 1 + 2/n - 16/n2 

for 77 to obtain an estimator ir with 

- 
fix = ( -  1 + J l  + 1 6 ~ ) , ’ ~  

where c = I - s 2 / p 2 .  Since c 6 I ,  we obtain fi, 3 3.123. Conversely, s2  is 
bounded above by the case in which half the needles - are parallel to the grid 
and half at 45“ to the grid, giving s’/p’ d (3  - 2d’2),’4 and fix d 3.175. We 
can estimate var(fi,) using the large value of I to assume normality for the 
number of intersections, so s’ is proportional to a l,f- variate. By the delta 
method we obtain 

The estimators fi, and particularly 6, are the most accurate of those 
discussed. Against this we have only considered the limits for a large number 
of intersections on each needle, so the w o r k  for each drop is much greatFr 
than those of the earlier estimators. Because of the convergence at rate I , 1 1 .  

Monte-Carlo methods are of course not a serious way to determine 71 but 
their history provides an interesting case of ingenuity in variance reduction. 



198 USES OF SIMULATION 

EXERCISES 

7.1. Formula (1) for the power of a Monte-Carlo test makes sense even 
when k = a/(m + 1) is noninteger. Show that this can be interpreted by 
a randomized Monte-Carlo test for which ( 1 )  holds. 

7.2. Tabulate p(u)  for u = 0.1%, OS'Z,, I % ,  5'%,, lo%, and the common 
Monte-Carlo tests ( k  = 1, m = 19), ( k  = 5 ,  m = 99), ( k  = I ,  111 = 99), 
( k  = 10, m = 199), and ( k  = 2, rn = 199). 

7.3. Consider H,: T - N(0, I )  versus H , :  T - N(0, I )  for 0 > 0. For 
z = 5x) and z = Ix) compute the power of the Monte-Carlo test with 
n = 99 from ( I )  (by numerical or Monte Carlo integration) and plot 
against 0, together with the power of the conventional test and the 
lower bound given by Theorem 7.2. [See also Hope (1968).] 

7.4. Many standard examples i n  statistical inference are either a location 
family or a scale family and so are not B good test of Monte-Carlo 
confidence intervals. One problem that is not is based on example (a) 
of Chapter I .  Consider JI points in the unit square under an inhibition 
model that disallows distances less than R apart. Then asymptotically 
n ( n  - I ) ( #  -~ R ' )  - exp(n/2) where tl is the minimum interpoint 
distance (Ripley and Silverman, 1978). Apply the Monte-Carlo con- 
fidence intervals ( 3 ) ,  (4). (6). and (7) to R and compare with the 
conventional interval formed from R'. 

7.5. Apply Pincus' method to f ( s )  = sin s - x2 on ( -  n, n). Try both 
selecting the next point of ( X , , )  uniformly on ( - n ,  n )  (and so rejecting 
quite often) and uniformly on ( X , ,  - (S, X , ,  + h )  considered mod 2n, for 
small 6. 

7.6. In the example after Theorem 2.14 we wished to invert 

512 
6 162 

and knew that the inverse has integer elements. Use a Monte-Carlo 
method to estimate the inverse sufficiently accurately. 
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7.7. 

7.8. 

7.9. 

7.10. 

7.1 1. 

7.12. 

Estimate the largest eigenvalue of 

[i: 1 9 14 ‘I 
given that it corresponds to a non-negative eigenvector. 

Show that ( (2k - 1)/2N(k = 1,. . . , N)  minimizes both DN and TN in one 
dimension. 

Use Zaremba’s sequence to estimate 

1/(1 + x2  + y2 )dydx  

In Laplace’s version of Buffon’s needle prove analytically or geometri- 
cally that p1 is maximized by a = b = 1. 

Show that N ,  + N ,  is a complete sufficient statistic in the “single 
needle hitting a square d x d grid” problem even if d # 1. 

The drawback of Mantel’s k8 is that it is consistent only as 1 -+ x as 
well as n -+ co. Estimate the bias of f i 8  when 1 = 10d. In what direction 
will the bias be? 
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Computer Systems 

The examples were computed on a variety of machines ranging from personal 
computers to scientific mainframes. The details given below may help in 
understanding the timings quoted. 

BBC Microcomputer 

A personal computer manufactured by Acorn Computers under licence to the 
British Broadcasting Corporation and widely used in education in the UK. It 
is based on the 6502 8-bit microprocessor running at 2 MHz. The BASIC 
interpreter supplied was used. This is an advanced Basic with repeat.. . until 
loops and recursive procedures and functions. The intrinsic RND pseudo- 
random function is based on a Tausworthe generator. (See Section 2.3 for a 
description.) The real variables are contained in 5 bytes with a 32-bit 
precision. Integer variables are 32 bits long with range -231. . .231 - 1. 

ACT Sirius 1 

A business microcomputer, very similar to the Victor 9000 marketed in 
North America. It is based on the 8088 8/16-bit microprocessor. The 
Microsoft BASIC interpreter and compiler were run under MS-DOS. The 
inbuilt (and unspecified) pseudo-random function was used. The real 
variables are contained in 4 bytes with 23-bit precision. 

Corvus Concept 

A workstation based on the 68000 16/32-bit microprocessor running at 8 
MHz with wait states. The SVS Fortran77 compiler was used. Real variables 
are 4 bytes long with 24-bit precision; double precision variables are 8 bytes 
long with 53-bit precision. Both conform to the IEEE standard (Cornputin!), 
March 1981). Integer variables are 32 bits long with range -231 . .231 - 1. 
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The congruential generator 

Xi = (69096Xi- I + 1)mod 232 

was coded in assembler using only the registers. 

DEC VAX 11/782 

A dual-processor 32-bit superminicomputer running the VAXJVMS operat- 
ing system. Timings quoted are CPU time for programs compiled under the 
optimizing Fortran77 compiler, and would be similar for a VAX 11/780. The 
congruential generator Xi = (69069Xi- + 1)mod 232 is supplied and was 
used. Real variables have 24-bit precision and double precision variables 
have 56-bit precision. Integer variables are again 32 bits with range 
-231...231 - 1. 

CDC Cyber 174 

A 60-bit scientific mainframe with an optimizing Fortran77 compiler used at 
full optimization. Timings quoted are CPU time. The pseudo-random 
function used was either the intrinsic function RANFO, which implements 

Xi = 44,485,709,377, 909Xi - mod 248 

or the function GOSCAF from the NAG library which implements 

X i  = 513Xi-lmod259 

Real variables are 60 bits long with 48-bit precision, whereas double precision 
variables have 96-bit accuracy. Integers are stored in 60 bits, but most 
operations are restricted to magnitudes less than 248. 
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Computer Programs 

The programs included here are intended to show to avoid some of the 
pitfalls in implementing the algorithms of Chapters 2 and 3. They are written 
in Fortran77 as the only widely available language with an extended 
precision data type. Let niuuint be the largest integer such that all integers 
with modulus up to and including n i r r s i r i r  are represented exactly in double 
precision variables. 

B.I. FORM u x h mod c 

This is surprisingly difficult to do with adequate generality. The program 
given here is fairly slow, but is useful to check the operation of special- 
purpose code. for example. when implementing congruential generators. 

The problems stem from the limited range of the integer type, which 
typically only represents integers up to 2”’ - I ,  and sometimes 2” - I .  
Double precision variables will represent larger integers exactly, with 
nzu.uitit = zs3 and 2’’ on the Corvus and Vax machines described in 
Appendix A. There will be no warning of loss of accuracy when using double 
precision variables, so care is needed to ensure that integer terms never 
exceed niu.uint in modulus. If a higher precision type than double precision is 
available i t  can be substituted. There is still a problem, for the INT function 
on double precision variables is often restricted to integer parts < 2 3 ’  - I ,  so 
this function has to be avoided together with the MOD function. 

The function MUL (A, B. C) computes A x B mod C for integers A, B, C, 
with 0 6 A, B < C < M2, where 2 M 2  6 rntrsinr and INT(Z+M - 1 )  is 
acceptable. 

FUNCTION MUL(A. B. C) 
forms A*B MOD C for A. B < C < = 2-50 
DOUBLE PRECISION A. B. C. MUL. A l ,  A2, 61. 82. D, M. M M  

C 
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C set M so that 2eM.M < = rnaxint 
M = 2.0D0**25 
M M  = M * M  
D =  (A*B)/C 
CALL SPLIT (A, 6, A l ,  A2) 
CALL SPLIT (C, D. B1, B2) 
M U L = A l  - B1 + (A2-  B2)*MM 
RETURN 
END 

SUBROUTINE SPLIT (A, B. C. D) 

DOUBLE PRECISION A, B, C. D. A l .  A2. B1. 82. M. MM. AC, AD, C1. C2 
set M to the same value a s  in MUL 
M = 2.0D0**25 
MM=M+M 
A2 = INT(A/M) 
A1 =INT(A-AZ*M) 
62 = INT(B/M) 
61 = lNT(B-BZ*M) 
AC=A2*B1 +A l *B2  
C2 = INT(AC/M) 

C 

C f o r m s A * B = C + D * M M f o r O < = C , D  < M M  

C 

C1 =AC-  M*C2 
A C = C l * M  + A l * B l  
AD= INT(AC/MM) 
C = AC - AD*M M 
D = A D  +C2 +A2*B2 
RETURN 
END 

The subroutine SPLIT sets int(A) = A1 + A2 * M, int(B) = BI + B2 * M, 
so 

int(A)*int(B)=Al*Bl + A C * M  + A 2 * B 2 * M 2  

However, 0 < AC < 2M2, so we set AC = C1 + C2 * M, where 0 ,< C1 < M. 
Then 

int(A) * int(B) = (A1 * B1 + C1 * M) + (A2 * B2 + C2) * M2 

Again, the first term might exceed M2. so we write this as C + AD * M’? to  
obtain the decomposition 

int(A) * int(B) = C + D * M 2  

We know A, B < M2, so D < MI. 
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The function M U L  sets D = (A * B)/C, so at  least int(D) will be accurate. 
Then SPLIT gives 

A * B = A I  + A 2 * N 2  

C * i n t ( D ) =  BI + B 2 * M 2  

so the answer is the difference ( A 1  - B I )  + ( A 2  ~ B2)* M 2 .  We know this to 
be less than C, so ( A 2  - B2) is zero or one. 

Program B.3 contains ii modification of this program with SPLIT forming 
nint(A)*nint(B). This fornis A *  B mod C with the residue in the range 
- C,'2.. . . , C'2. ( I f  C is even. which extreme occurs depends on the sign of 
A * B.) 

B.2. CHECK PRIMITIVE ROOTS 

To ascertain whether ( I  is ;i primitive root modulo M we need to know the 
prim c factor i 7;i t i o n 

[ K n u t h  (19x1, Section 4.5.4) discusses how to find such factorizations.] 
Then we check that d.'' I '  ''I + 1 mod M for i = I , .  , , . I ' .  The program 
PROOT does this for 2 M  < m t r s i r i r .  2 5 1 .  Useful test cases are 
M = 2" - I = 21474x3647 with M - I = 2.3'.7.1 1.31.151.331 for which 7 
and 7' = 16x07 are primitive roots, and 13 is not. 

PROGRAM PROOT 
DOUBLE PRECISION A(50). AA. FAC. M. MUL, MULT. PI. PWR 
INTEGER I. J. R 
PRINT * ,  'Multiplier. Modulus, No of factors of M - 1 ' 
READ I. MULT. M. R 
A A =  MULT 
A ( l )  = MULT 
DO 10 1=2,  50 

A A =  MUL (AA. AA. M )  
10 A ( I ) = A A  

DO 30 I = 1 .  R 
PRINT *,  'Factor', I 
READ *, FAC 
PWR = (M - 1 )/FAC 
AA = 1 .OD0 
DO 20 J=50,  1. - 1  
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PI=2.0DO**(J- I )  
IF (PWR. GE. PI) THEN 

PWR = PWR - PI 
AA=  MUL (AA. A(J). M) 

ENDIF 
20 CONTlN UE 

IF (AA. EQ. 1 .ODO) THEN 

ELSE 

ENDIF 

PRINT +, 'FAILED' 

PRINT f ,  'OK for this factor' 

30 CONTINUE 
END 

The function MUL is given in B.I.  The key idcntity used is that 

uh mod M = ( u  mod M ) ( h  mod M)niod M 

[Let a = a' + a" M ,  b = b' + b" M .  Then ab = n'b' + (Lib'' + u"h' + a " b " M ) M  
so ab mod M = a'b' mod M . ]  This is used to precompute 

A(i  + I )  = LiZ'mod M, i = 0,....49 

For any integer t .  0 < t < 2'", its binary representation I,,..' is found, and  

is computed. The restrictions arise from M U L  and the need for all 
( M  - ] ) / P I  < 2 5 O .  

B.3. LATTICE CONSTANTS FOR CONCRUENTlAL GENERATORS 

Suppose X ,  = ( t rX ,  ~, + c) mod M is a congruential generator of full or 
maximal period. The subroutine LATT computes the lattice constants I', I,,. 
and vk discussed in Section 2.4 for dimensions k = 2,. . . , R.  

Double precision variables are used throughout for greatest accuracy. Thc 
rows of X are the basis vectors M e , .  Throughout powers of ( I  are rcduced 
modulo M to - M / 2 , . .  ., M / 2 .  Thus initially the length of M e ,  is at most 
I + ( k  - I )  x (M/2)*  < 2 M  for k < 8. At all times the length of the vectors is 
reduced, so we can guarantee that no element of X will ever exceed 2 M  i n  
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magnitude for k 6 8. Internal terms in TEST1 and TEST2 are bounded by 
four times the bound on an  element of X .  Thus we are guaranteed accuracy if 
integers up to 8 M  are representable exactly. This is very much a worst case, 
extremely unlikely to occur as the elements of X normally reduce in size to 

O ( f i )  after a few steps of TEST1. Warnings are issued if problems might 
occur. 

The polar basis {el*; is found by inverting the matrix of [ e l ;  using 
Gaussian elimination with partial pivoting. I t  is possible to update the two 
bases simultaneously as illustrated in Section 2.4. However, the elements o f  
[el*) can become larger than M and accuracy may be lost. 

Entry parameters 

R integer max dimension < 8 

M U L T  double precision multiplier I I  

M double precision modulus M 

One also needs to set M in M U L  and SPLIT so that ZM’ < rtitr\-ini. and MX 
in TEST1 and TEST2 to n i t r r in r .  

SUBROUTINE LATT ( R .  MULT. M )  
LOGICAL TEST2 TEST1 
INTEGER R. K 
DOUBLE PRECISION X(8, 8 ) .  LEN(8).  MULT. M 
DO 20 K = 2 .  R 

CALL INlT (X. LEN, K. MULT.  M)  
IF (TEST1 (X. LEN, K) )  GO TO 1 0  
IF (TESTZ(X. LEN, K))  GO TO 1 0  
CALL RES (X. LEN. K. M )  

1 0  

20 CONTINUE 
RETURN 
END 

SUBROUTINE INlT (X. LEN, R, MULT. M )  
INTEGER R. I, K 
DOUBLE PRECISION X(8. 8 ) .  LEN(8). L. MULT. M, A, M U L  
IF ( R  E Q  2) THEN 
L = l O  
DO 1 0  K = l ,  8 

X(1. K ) = L  

DO 20 1=2.  8 

C 

1 0  L = M U L ( L .  MULT. M)  

DO 20 K =  1 . 8  
X(I.  K) =O.O 
IF  ( I .EQ. K) X(I.  K) = M 
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20 CONTl N UE 
ELSE 

A = X ( I .  R )  
DO 25 I = 1 .  R - I  

2 5  X(I. R )  = MUL(A, X(I. 1 ) ,  M) 
ENDIF 
D O 4 0  I = 1 .  R 

A = 0.0 
DO 30 K = l .  R 

30 A = A  +X(I. K)*X(I. K) 
40 LEN(I )=A 

RETURN 
END 

FUNCTION TEST1 (X. LEN, R )  
LOGICAL TEST1 
INTEGER R .  I, J. K. 11. 12. L. NCHNGS 
DOUBLE PRECISION X(8. 8). LEN(8). XY. A. 6. MX 
DATA MX/rnaxint/ 
NCHNGS = 0 
try each pair I. J in turn 
D O 4 0 l = 2 . R  

DO 40 J = l .  1-1 

DO 20 K=1, R 
XY = X Y  +X(I ,  K)*X(J. K) 

I F  (LEN(I) LE. LEN(J)) THEN 
I1 = I  
12=J 

I1 = J  
12=1 

ENDIF 

A=XY/LEN(I l )  
L= INT(ABS(A) +0.499999999) 
IF (A. LT 0.0) L = - L  
I F  (L. EQ. 0) GO TO 40 
NCHNGS= NCHNGS +I 
A=O.O 
DO 30 K = l .  R 

C 

10 X Y = O O  

20 

ELSE 

C round halves towards zero 

B=L*X( I l .  K) 
IF (ABS(6). GT. MX) PRINT *. 'Accuracy loss' 
B = X(12. K) - B 
X( 12. K) = B 

30 A = A  + 6.6 
LEN(12) = A  
IF  (LEN(12). LT. LEN(I1)) GO TO 10  

40 CONTl NUE 
TEST1 = NCHNGS. GT. 0 
RETURN 
END 
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1 0  
C 

20 

30 
C 

50 

60 

70 

FUNCTION TEST2 (X. LEN, R )  
LOGICAL TEST2 
INTEGER I .  11. J. K. L, L1. R, S. S 1 , T l .  CON(3).  IN(8).  PTR(8) 
DOUBLE PRECISION X(8, 8) .  LEN(8). T (8) .  A. AL, B. M X  

DATA MX/rnaxint/ 
TEST2= .FALSE. 
IF ( R  .EQ. 2)  RETURN 
DO 1 0  I = 1 .  R 

PTR(I) = I 
PTR IS pointer to vectors in length order 

DATA CON/O, - 1 ,  +1/ 

DO 30 I = 1 .  R - 1  
L =  I 
A L =  LEN(PTR(L)) 
DO 20 J =  I +l. R 
L1 = PTR(J) 

L = J  
AL = LEN( L1) 

ENDIF 
CONTINUE 

I F  (L  NE I )  THEN 
L1 = PTR(L) 
PTR(L) = PTR(I) 
PTR(I) = L1 

IF (LEN(L1) LT AL) THEN 

ENDIF 
CONTINUE 

try Minkowski's test 
DO 100 l = 3 .  R 

I1 = PTR(I) 
A L =  LEN(I1) - 0 5 
IN( I )  = 1 
DO 90 S = 1, 3 * * ( l -  1)  - 1 

s1 = s  
DO 50 L = l .  1-1 

T1 = S1,'3 
I N ( L ) = C O N ( S l  -3*T1 + 1 )  
S1 = T l  

A = O  0 
D O 7 0 J - l . R  

B = O O  
DO 60 K = l .  I 

B= B +X (PTR ( K) ,  J ) *  I N ( K) 
IF (ABS(B) GT MX) PRINT f 'Possible accutacy loss 
CONTINUE 

T ( J )  = B 
A = A  + B * B  

IF ( A  GT AL) GO TO 90 
LEN(PTR(1)) = A  
DO 80 J = l .  R 
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80 

1 

C 
C 

X(I1. J ) = T ( J )  
TEST2= TRUE 
PRINT + ,  'TEST2 SUCCESS' 
RETURN 

100 CONTINUE 
RETURN 
END 

90 CONTINUE 

SUBROUTINE RES (X. LEN. R .  M) 
DOUBLE PRECISION X(8. 8). LEN(8). A(8. 8). M. LL. LU 
REAL NU, RATIO, AA. B. UL 
INTEGER R. Z(8).  I. J 
LL = LEN(1) 
LU = LL 
DO 10 1=2. R 

LL=MIN (LL. LEN(I)) 
10 LU=MAX (LU. LEN(I)) 

RATIO = SQRT(LU/LL) 
NU = SQRT(LL) 
IF (R .EQ. 2) GO TO 50 
CALL INV (X. A, R. M )  
B = 1 .OE20 
DO 30 I=1 ,  R 

AA = 0.0 
D O 2 0 J = I . R  

20 A A = A A + A ( J .  I)*A(J. I) 
30 B=MIN(AA.  B) 

NU = SQRT( B) 
D O 4 0  I = l , R  

40 Z(I)  = INT(NU*SQRT(LEN(I))/M) 
CALL SEARCH(A. R, NU, Z, M )  

50 UL=SQRT(LU)/M 
PRINT 1000, R, RATIO, UL. NU 
FORMAT (' DIM', 12. ' RATIO '.  1 PG10.3. ' LMAX ', 1 PE10.2 
& ' NU ', 1 PE10.2) 
RETURN 
END 

000 

SUBROUTINE INV (X. Y. R. M )  
invert X/M to Y by Gaussian elimination 
with partial pivoting 
INTEGER R, H. I .  J .  K. N 
DOUBLE PRECISION X(8. 8). Y(8, 8 ) .  M ,  W(8. 16). S 
N = R + R  
DO 20 I = 1 ,  R 

DO 10 J = l .  R 

DO 20 J = l ,  R 
10 W(I. J)  = X(I. J ) / M  

IF (I .EQ J) THEN 
W(I. J + R )  = 1 .O 
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ELSE 

ENDIF 
W(1. J + R ) = O O  

20 CONTINUE 
DO 60 J = l .  R - I  

S=ABS(W(J.  J ) )  
K =  J 
D O 3 0 H = J + I . R  

IF  (ABS(W(H. J ) )  GT S) THEN 
S=ABS(W(H. J ) )  
K =  H 

ENDIF 
30 CONTINUE 

IF (K .NE. J)  THEN 
DO 40 I =  J. N 
S= W(K, I) 
W(K, I )  = W(J. I )  

40 W(J. I )  = S 
ENDIF 
DO 50 K = J  +I. R 

W(K. J)=W(K. J) /W(J.  J)  
DO 50 I = J + I ,  N 

50 
60 CONTINUE 

W(K. I)=W(K. I)-W(K. J)*W(J.  I) 

DO 90 I = R +I, N 
W(R. I )=W(R.  I)/W(R. R )  
D O 8 0  J = R - l .  1. -1  

S =  W(J.  I )  
DO 70 K = J + 1, R 

W(J.  I )  = S/W(J. J )  
70 S = S - W ( J .  K)*W(K. 1 )  
80 
90 CONTINUE 

DO 100 I = 1 .  R 
DO 100 J = l .  R 

100 Y(I. J ) = W ( I .  J + R )  
RETURN 
END 

C 
SUBROUTINE SEARCH (A, R. NU, Z, M)  
INTEGER R. Z(8) .  T(8) .  I ,  J. K 
REAL NU, AC 
DOUBLE PRECISION M, A(8. 8).  Y ( 8 ) .  AA 
DO 10 I = 1 .  R 

T( I )=O 
10 

20 
K =  R 

I F  (T(K) .EQ. Z(K)) GO TO 80 
T(K)=T(K)  +I 
D O 3 0 J = l . R  

30 Y(J) =Y(J )  +A(J.K) 
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40 

50 

60 

70 

80 

C 

K = K + I  
IF (K GT fi) GO TO 60 

IF (Z(K) NE 0) THEN 
T(K)=-Z(K) 

DO 50 J= l .R  
Y(J)=Y(J)-2*Z(K)*A(J.K) 

ENDIF 
GO TO 40 
AA=O 0 
DO 70 J = l  .R 

AC=SQRT(AA) 
IF (AC LT 0 9999*NU) THEN 

AA=AA +Y (J) *Y (J) 

PRINT *, 'SEARCH SUCCESS 
NU=AC 

ENDIF 
K = K - l  
IF (K GE 1) G O T 0  20 
RETURN 
END 

FUNCTION MUL(A. B. C) 
forms A+B MOD C for A.B < C < =2*50 
DOUBLE PRECISION A,B.C,MUL.Al .A2.B1 .B2.D.M.MM 
set M so 2*M*M < =maxint 
M=2 000-25 
M M = M * M  
D= (A* B) /C 
CALL SPLIT (A.B,AI .A2) 
CALL SPLIT (C.D,Bl.B2) 
MUL=A l -B l  +(A2-B2)*MM 
RETURN 
END 

SUBROUNTINE SPLIT (A,B.C,D) 
DOUBLE PRECISION A.B.C.D,Al ,A2.B1 .B2.M,MM,AC.AD.C1 .C2 
M=2**25 
M M = M * M  
A2= INT(A/M) 
A1 = N I NT(A-A2* M ) 
B2=INT(B/M) 
E l  =NINT(B- B2*M) 
AC=A2*B1 +A1 *B2 
C2= INT(AC/M) 
C1 =AC - M*C2 
AC=Cl*M + A l * B l  
AD= INT(AC/MM) 
C=AC-AD*MM 
D=AD +C2 +A2*B2 
RETURN 
END 
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B.4. TESTING GFSR GENERATORS 

Theorem 2.9 provides a test of k-distribution for a GFSR generator with L- 
bit words (x) and kL < p. The subroutine GFSRT takes the p x kLmatrix 
with rows the bits of (x ,..., x + k - l ) r  i = 1 ,..., p and reduces to upper 
triangular form following the example of Section 2.3. 

SUBROUTINE GFSRT (A.P.N) 

INTEGER P.N.A(pmax.pmax),EOR. 1,J.L 1 
DO 60 I=1 .N 

C set pmax as  required 

J = l  
IF (A(I.1) EQ 0) THEN 

10 J=J+1 
IF (A(J.1) GT 0) GO TO 20 
IF (J LT P) G O T 0  10 
PRINT *,  'RANK DEFICIENT' 
RETURN 

20 DO 30 L=I.N 
T=A(J.L) 
A(J.L) =A(  1.L) 

30 A(I,L)=T 
ENDIF 

DO 50 J= I+ l .P  
IF (A(J.1) GT 0) THEN 

DO 40 L=I,N 
40 A(J,L)=EOR(A(J.L).A( 1.L)) 

50 CONTINUE 
60 CONTINUE 

ENDIF 

PRINT *. 'FULL RANK' 
RETURN 
END 

FUNCTION EOR(1.J) 
INTEGER EOR. 1.J 
EOR=MOD(I+J,2) 
RETURN 
END 

Subroutine GFSRS prepares the matrix from Y,,  . . . , Y p + k -  ,. 
SUBROUTINE GFSRS (Y.L.P,K) 

INTEGER L,P.K,Y (P+K-1 ).A(pmax.pmax).D.Il .Jl  .M.MI 
N=K*L 
IF  (N GT. P) THEN 

C set pmax as  required 

PRINT *.  'MUST FAIL' 
RETURN 
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ENDIF 

DO 30 I=I .P 
M =2**(  L-1 ) 

I1 =o 
DO 20 J= l .K  

M1 = M  
D O l O J l = l . L  

I1 =I1 +I  
IF  (D GE M I )  THEN 

D=Y(I+J-1) 

A ( I , I I ) = l  
D = D - M l  

A(I.11 )=0 

10 M I  =M1/2 
20 CONTINUE 
30 CONTINUE 

ELSE 

ENDIF 

CALL GFSRT (A,P.N) 
RETURN 
END 

B.5. NORMAL VARIATES 

In the remaining section RND( ) is the pseudo-random number generator. 
The polar algorithm 3.5 requires one of its variates to be saved for a 
subsequent call. 

FUNCTION POLAR ( ) 
REAL AN.E.POLAR,VI,V2.W 
SAVE IR.AN 
DATA IR /O/  
IF ( I R  EQ 0) THEN 

10 V1=2 'RND()-1 0 
V2=2  *RND( ) - I  0 
w = v 1  *v1 +v2*v2 
IF (W GT 1 ) GO TO 10 
E=SQRT((-2 O*LOG(W))/W) 
AN=VI*E 
I R = l  
POLAR=V2*E 

I R = O  
POLAR=AN 

ELSE 

ENDIF 
RETURN 
END 
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The SAVE statement is formally necessary to save IR and AN between 
calls. It is not usually necessary and may slow the program dramatically. 
Algorithm 3.17, the ratio method, does not have this problem. 

FUNCTION NRATIO( ) 
REAL NRATIO U V X Z 

10 U=RND( )  
V=O 8578*(2 *RND( )-1 ) 
x=v/u 
Z=O 25.X.X 
IF (Z LT 1 -U)  GO TO 20 
IF (Z GT (0 259/U +O 35)) GO TO 10 
IF  (Z GT -LOG(U)) GO TO 10 

RETURN 
END 

20 NRATIO=X 

Algorithm 3.18, the Marsaglia-Bray composition method, is fast if pseudo- 
random numbers are cheap. 

FUNCTION NMB( ) 
REAL NMB,AV G U UI.U2.V.W 
U=RND()  
IF (U LE 0 8638) THEN 

NMB=2 O"(RND( )+RND( )+RND( ) - 1  5)  
RETURN 

ENDIF 
IF (U LE 0 9745) THEN 

N M B = l  5"(RND( )+RND( ) - 1  0) 
RETURN 

ENDIF 
IF (U LE 0 9973002039) THEN 

10  V=6O*RND( ) - 3 0  
AV= A BS (V) 
G = l 7  49731 196*EXP(-O 5.V.V) 
IF (AV LT 1 0 )  THEN 

G=G-4 73570326*(3 0-V*V) 
ELSE 

G=G-2 367851 63*(3 0-AV)*(3 0-AV) 
ENDIF 
IF (AV LT 1 5) G=G-2 157875*(1 5-AV) 

IF (0 358'RND( ) GT G) GO TO 10 
NMB=V 
RETURN 

ENDIF 
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20 U1=2 O*RND( )-1 0 
U2=2 O*RND( ) - I  0 
W = U l * U l  +u2*u2  
IF (W GE 1 0) GO TO 20 
W=SQRT((S 0-2 O*LOG(W))/W) 
IF (ABS(U1 *W) GT 3 0) THEN 

NMB=Ul *W 
RETURN 

ENDIF 
IF (ABS(UZ*W) LE 3 0 )  GO TO 20 
NMB=U2*W 
RETURN 
END 

B.6. EXPONENTIAL VARIATES 

Algorithm 3.7 gives 

FUNCTION EXPRV( ) 
REAL EXPRV,A.U.UO. USTAR 
A=O.O 

10 U=RND()  
uo=u 

20 USTAR=RND( ) 
IF (U .LT. USTAR) GO TO 30 
U=RND( ) 
IF (U .LT. USTAR) GO TO 20 
A=A+I  .O 
G O T 0 1 0  

30 EXPRV=A+UO 
RETURN 
END 

B.7. GAMMA VARIATES 

For shape parameter tl < 1 we have Algorithm 3.19: 

FUNCTION GS (ALPHA) 
REAL GS.ALPHA.B.P.X 
DATA E/2 71 8281 82/ 
B= (ALPHA+E)/E 

IF (P. GT.1 .O) GO TO 20 
X=P**( l  ./ALPHA) 
IF (X  .GT. -LOG(RND ( ) ) )  GO TO 10 

10 P=B*RND() 
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GS=X 
RETURN 

20 X=-LOG( ( B -  P)/ALPHA) 
I F  (X**(ALPHA-l .O) .LT. RND( ) )  GO TO 10 
GS=X 
RETURN 
END 

The case CL = 1 is the exponential dealt with in B.6. For m > 1 we use 
Algorithm 3.20. 

10  

20 

30 

FUNCTION GCF (ALPHA) 
REAL GCF ALPHA AA C1 C 2  C3 C4 C5 U1 U2 W X 
SAVE APREV C1 C2 C3 C4 C5 
DATA APREViO 01 
IF  (ALPHA EQ APREV) GO TO 10 

AA=1 O/C1 
C1 =ALPHA-1 0 

CZ=AA*(ALPHA-l  0/(6 O*ALPHA)) 
C3=2 O.AA 
c 4 = c 3  +2  0 
IF (ALPHA GT 2 5) C5=1 O/SQRT(ALPHA) 
U1 =RND( ) 
UZ=RND( ) 
IF  (ALPHA LE 2 5 )  GO TO 20 
Ul=U2+C5*(1 0-1 86*U1) 
IF ( U l  LEO3 OR U1 GE 1 0 )  GOTO 10 
w=c2*u2/u1 
IF (C3*U1 +W+1 O/W LT C4) GO TO 30 
IF (CS*LOG(Ul)-LOG(W)+W GE 1 0 )  GOTO 10 
GCF=Cl *W 
APREV=ALPHA 
RETURN 
END 

B.8. DISCRETE DISTRIBUTIONS 

The two main contenders are an indexed search and the alias method. 
For the indexed search let P be a table of cumulative probabilities, so 

P ( M )  = 1.0. Subroutine SETIND sets up an index array IND with MI 
entries, and DISRV uses this to generate samples. 

SUBROUTINE SETIN D (P.M.1ND.M 1 )  
REAL P(M).PO 
INTEGER IND(MI).M.MI.I.K 
I=1 
DO 20 K=l  .MI 
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10 

20 

10 

20 
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PO= R EAL( K- 1 )/REAL( M I ) 
IF  (P(1) .GE. PO) GO TO 20 
1=1+1 
GO TO 10 
IND(K)=I 

RETURN 
END 

FUNCTION DISRV(P.M.IND.MI) 
REAL P(M).U 
INTEGER DISRV. IND( M I),M.M 1.1 
U=RND() 
I=IND(INT(MI*U) +1) 
IF (P(l) .GE. U) GO TO 20 
1=1+1 
GO TO 10  
DISRV=I 
RETURN 
END 

For the alias method we assume P contains the actual probabilities. 
Program SETAL forms the alias tables, using an integer workspace W of size 
at least M ,  and ALRV produces a sample. Algorithm 3.13B is used in SETAL. 

SUBROUTINE SETAL (P.M.A.Q.W) 
REAL P(M),O(M) 
INTEGER M.A(M),W(M),I,J.NN.NP.S 
NN=O 
NP=M+l  
DO 10 I= I .M  

Q(I)=M*P(I) 
IF ( Q ( l )  .LT. 1 .O) THEN 

NN=NN+I 
W(NN)=I 

N P=N P-1 
W(NP)=I 

10 CONTINUE 

ELSE 

ENDIF 

DO 20 S = l  .M-1 
I=W(S) 
J= W( NP) 
A(I)=J 
Q(J)=Q(J)+Q( l ) - l  .O 
IF (Q(J) .LT. 1 .O) NP=NP+I 

20 CONTINUE 

DO 30 I = l . M  
A(W(M))=W(M) 
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30 Q ( l ) = Q ( l ) + l - l  
RETURN 
END 

FUNCTION ALRV (A.Q.M) 
INTEGER ALRV.A(M).M.I 
REAL Q(M).U 
U = M * R N D (  ) 
I = 1  + INT(U)  
I F  ( U LE Q ( I ) )  THEN 

ALRV- I 
ELSE 

ALRV- A( I )  
ENDIF 
RETURN 
END 

233 



References 

Ahrens, J. H. and Dieter, U. (1972) Computer methods for sampling from the exponential and 
normal distributions. Comm. Assoc. Comput. M d i .  15, 873-882. 

Ahrens, J. H. and Dieter, U. (1974) Computer methods for sampling from gamma, beta. Poisson 
and binomial distributions. Computing 12, 223-246. 

Ahrens, J.  H. and Dieter, U. (1980) Sampling from binomial and Poisson distributions: a method 
with bounded computation times. Compuririg 25, 193-208. 

Ahrens, J. H. and Dieter, U. (1982a) Computer generation of Poisson deviates from modified 
normal distributions. A C M  Trans. Math.  Soft .  8, 163-179. 

Ahrens, J. H. and Dieter, U. (1982b) Generating gamma variates by a modified rejection 
technique. Comm. Assoc. Comput. Mack.  25, 47-54. 

Ahrens, J. H. and Kohrt, K.  D. (1981) Computer methods for efficient sampling from largely 
arbitrary statistical distributions. Computing 26, 19-31. 

Andrews, D. F. (1976) Contribution to the discussion of Atkinson and Pearce (1976). J .  Roy. 
Sfatisr. Soc. A 139, 452-453. 

Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., and Tukey. J .  W. (1972) 
Robust Estimates of Location. Princeton University Press, Princeton. 

Appleton, D. R. (1976) Contribution to the discussion of Atkinson and Pearce (1976). J .  ROJ.  
Statist. Soc. A 139, 449-451. 

Arnold, H. J., Bucher, B. D., Trotter, H. F., and Tukey, J .  W. (1956) Monte Carlo techniques in a 
complex problem about normal samples. Symposium on Monrc. Carlo Mrthods. H. A. Meyer. 
Ed. Wiley, New York, pp. 80-88. 

Arvillias, A. C. and Maritsas, D. G.  (1978) Partitioning the period of a class of m-sequences and 
application to pseudorandom number generation. J .  Assoc. Comput. Mnch. 25, 676-686. 

Atkinson, A. C. (1977) An easily programmed algorithm for generating gamma random 
variables. J .  Roy. Stafist .  Soc. A 140, 232-234. 

Atkinson, A. C. (l979a) The computer generation of Poisson random variables. Appl. Srtrrr.sr. 28, 

Atkinson, A. C. (1979b) Recent developments in the computer generation of Poisson random 

Atkinson, A. C. (1979~) A family of switching algorithms for the computer generation of beta 

Atkinson, A. C. (1980) Tests of pseudo-random numbers. Appl. Stutist .  29, 164-171. 

Atkinson, A. C. (1982) The simulation of generalized inverse Gaussian and hyperbolic random 

29-35. 

variables. Appl. Sfaf i s t .  28, 260-263. 

random variables. Biomefrika 66, 141- 146. 

variables. S l A M  J .  Sci. Stat. Comp. 3, 502-515. 

200 

Stochastic Simulation 
Brian D. Ripley 

Copyright 01987 by John Wiley & Sons, Inc 



REFERENCES 20 1 

Atkinson. A. C. and Pearce, M. C. (1976) The computer generation of beta. gamma and nornxil 

Atkinson. A. C .  and Whittaker, J. (1976) A switching algorithm for the generation of beta 

random variables (with discussion). J .  Roy. Sttitist. SOC. A 139. 431 -461. 

random variables with at least one parameter less than I. J .  Roy. Sttrrist. Sot,. A 139, 464 
467. 

Bailey. B. J .  R. (1981) Alternatives to Hastings’ approximation to the inverse of the normal 

Baker, R. J.  and Nelder. J.  A. (1978) G L I M  Monutrl Reltcrse 3. NAG, Oxford. 

de Balbine. G. (1967) Note on random permutations. Mirth. Comp. 21. 710- 712 

Barker, A. A. (1965) Monte Carlo calculations of radial distribution functions fo r  21 proton- 

Barnard, G. (1963) Contribution to the discussion of Bartlett’s paper. J .  Roj,. Stirtist. SOC. B 25. 

Barr. D. R. and Slezak. N. L. (1972) A comparison of multivariate normal generators. CWIIIII ,  

Bartels, R. (1978) Generating non-normal stable variates using limit theorem properties. J .  Strrr. 

Barton. D. E. and Mallows. C. L. (1965) Some aspects of the random sequence. A r i r i .  Mut l i .  

Bays, C. and Durham. S. D. (1976) Improving a poor random number generator. AChl 7rotl.v. 

Beasley, J .  D. and Springer, S .  G. (1977) Algorithm AS1 I I .  The percentage points of the normal 

Bebbington, A. C. (1975) A simple method for drawing a sample without replacement. A p p l .  

Bentley. J.  L. and Saxe, J .  B. (1980) Generating sorted lists of random numbers. A C M  7i’iui.~. 

Best, D. J. (1978) Letter to the editor. A p p l .  Statist. 27, 181. 

Best, D. J .  (1979) Some easily programmed pseudo-random normal generators. Aust. C(~mp. . I .  

Best, D. J .  (1983) A note on gamma variate generators with shape parameter less than unity. 

Beyer, W. A., Roof, R.  B., and Williamson, D. (1971) The lattice structure o f  multiplicati\e 

Billingsley, P. (1968) Conreryence of Probability Measures. Wiley. New York 

Birnbaum, Z .  W. (1974) Computers and unconventional test statistics. Relitrhilitj, o r i d  Bioitic,rri,. 
Sratistical Analysis q j ’ L ~ i 4 ~ r i y t l i .  SIAM, Philadelphia, pp. 441 -4%. 

Blomquist, N. (1970) On the transient behaviour of G1’G;I waiting times. Sktrml. A k t u w . .  I I X  
129. 

Blum, J. R .  ( 1954) Multidimensional stochastic approximation method. Arim Mrrth. Sturi,s/. 25 
737- 744. 

Bondesson, L. (1982) On simulation from infinitely divisible distributions. A d ( .  A p p l .  I’rohtrh. 14. 
8 55 - 869. 

Bonomi, E. and Luttin. J.-L. (1984) The N-city travelling salesman problem: statistical mechanics 
and the Metropolis algorithm. S I A M  Rroiew 26. 551-568. 

cumulative distribution function. A p p l .  S tn t i s t .  30. 275- 276. 

electron plasma. Aust. J .  Phys. 18. 119-133. 

294. 

ASWC. COtiIput. MNcA. 15, 1048- 1049. 

Comput. Sirnl. 7, 199-212. 

Statist. 36. 236-260. 

Math. So). 2, 59-64. 

distribution. Appl .  Sralist. 26, 1 18- 121. 

Sruiist. 24, 136. 

Math.  Sc$. 6, 354-364. 

11, 60-62. 

Computing 30, 185- 188. 

congruential pseudo-random vectors. Math.  Cornp. 25, 345- 363. 



202 REFERENCES 

Boswell, M. T. and DeAngelis, R. J. (1981) A rejection technique for the generation of random 
variables with the beta distribution. Statistical Distributions in Scienrific Work, Vol. 4, C. 
Taillie et al., Eds. Reidel, Dordrecht, pp. 305-312. 

Box, G. E. P. and Muller, M. E. (1958) A note on the generation of random normal deviates. Ann. 
Math. Sfatist .  29, 610-61 I .  

Box, G. E. P., Hunter, W. G., and Hunter, J. S .  (1978) Sratisticsfor Experimenters. Wiley, New 
York. 

Bratley, P.. Fox, B. L., and Schrage, L. F. (1983) A Guide to Simulation. Springer-Verlag. New 
York. 

Brent, R. P. (1974) A Gaussian pseudo random generator. Cornm. Assoc. Comput. Mach. 17.704- 
706. 

Bright, H. S. and Enison, R. L. (1979) Quasi-random number sequences from a long-period T L P  
generator with remarks on application to cryptography. Comp. Surr. 11, 357-370. 

Brillinger, D. R.  (1973) Estimation of the mean of a stationary time series by sampling. J .  Appl. 
Probah. 10, 419-431. 

Brown, M. and Solomon, H. (1979) O n  combining pseudo-random number generators. AHJI .  
Srarisr. 7, 691-695. 

Buckland, S. T. (1983) Monte Carlo methods for confidence interval estimation using the 
bootstrap technique. BIAS 10, 194-212. 

Buckland. S. T. (1984) Monte Carlo confidence intervals. Biometrics 40, 81 1-817. 

Burt. J. M. Jr and Garman, M. B. (1971) Conditional Monte Carlo: a simulation technique for 
stochastic network analysis. Monng. Sci. 18A, 207-21 7. 

Carson, J. S. and Law, A. M. (1980) Conservation equations and variance reduction in  queueing 

Carter, G. and Ignall, E. J. (1975) Virtual measures: a variance reduction technique for 

Cassels, J. W. S .  (1959) An Introduction t o  rhe Geonierry O ~ N U J ~ I ~ W S .  Springer-Verlag. Berlin. 

Cassels, J. W. S. (1978) Rational Quadratic Foinis. Academic Press. London. 

Chaitin, G. J. (1966) O n  the length of programs for computing finite binary sequences. J .  .4ssoc~. 

Chambers, J. M. (1970) Computers in statistical research: simulation and computer-aided 

Chambers. J. M. (1977) Cf~iiipi~r[~ri~JJr~i/  Merhot/s, /hr Dara .4na/!~si.s. Wiley. Net4 York. 

Chambers. J .  M.. Mallows, C. L.. and Stuck, B. W. (1976) A method for simulating stable random 

Chay. S. C., Fardo. R. D.. and Mazumdar. M. (197.5) On using the Bo\-Muller transformation 

Chrn. N. and Asau. Y. (1974) On generating random variates from an empirical distribution. 

Chrng. R.  C. H. (1977) The generation of gamnin tariables nith non-integral shape parameters. 

Chrng. R. C. H. (19783) Generating beta variables M i t h  non-integral shape parameters. Coitim. 

Chrng. R .  C. H.  (197%) Analysis of siniulation experiments under norniality assumptions. J .  

simulations. Oper. Res. 28, 535-546. 

sirnulation. Manay. Sci. (Applications) 21. 607-616. 

Conipur. Mach. 13, 547-569. 

mathematics. Technometries 12,. 1 - 15. 

variables. J .  A w r .  Stat. ..L.ssoc. 71, 340-344. 

with congruential pseudo-random number generators. .4pp/. Srarisr. 24. 132- 135. 

,dJtIt’r. I l f . S f .  I!lt/. EJIU. 7?clllS. 6. 163- 166. 

.Ippl. Sitrrisr. 26. 7 1-74, 

.*lS.WC~. c~lffl/~~lr. Mach. 21. 3 1 7 - 3 2 .  

O p i ~ .  Rrs. SOC. 29. 493-497. 



REFERENCES 203 

Cheng, R. C. H. (1982) The use of antithetic variates in computer simulations. J .  Oper.  Res. Soc. 

Cheng. R. C. H. and Feast, G. M. (1979) Some simple gamma variate generators. Appl .  Srrrrisi. 28. 

Cheng, R.  C. H. and Feast, G. M. (1980a) Gamma variate generators with an increased shape 

Cheng. R. C. H. and Feast, G. M. (1980b) Control variables with known mean and variance. J .  

Chung, K.  L. (1954) O n  a stochastic approximation method. Ann.  Mark. Srarisr. 25, 463-483. 

Church, A. (1940) On the concept of a random sequence. Bull. Amer. Murk. Soc. 46, 130- 135. 

Cox. D. R.  and Isham, V. (1980) Poinr Processes. Chapman and Hall. London 

Cox, D. R. and Smith, W. L. (1961) Queues. Methuen, London. 

Coveyou. R. R. and Macpherson, R. D. (1967) Fourier analysis of uniform random number 
generators. J .  Assoc. Compur. Mac/i. 14, 100- 1 19. 

Crane, M. A. and Iglehart. D. L. (1974a) Simulating stable stochastic systems I: general multi- 
server queues. J .  Assoc. Coniput. Mtrrh. 21, , 103-1 13. 

Crane, M. A. and Iglehart, D. L. (1974b) Simulating stable stochastic systems 11: Markov chains. 
J .  Assoc. Compur. Much. 21, 114- 123. 

Crane. M. A. and Iglehart, D. L. (1975a) Simulating stable stochastic systems I l l :  regenerative 
processes and discrete event simulation. Oper. Rrs. 23, 33-45. 

Crane, M. A. and Iglehart, D. L. (l975b) Simulating stable stochastic systems IV: approximation 
techniques. Manay. Sci. (Theorj~) 21. 1215-1224. 

Crane, M. A. and Lemoine, A. J.  (1977) A n  Introducrion ro the Reqenerarirr Merhod ,$)r 
Simulariori Ancilysis. Lect. Notes Control Inform. Sci. 4. 

Cross, G. R. and Jain, A. K .  (1983) Markov random field texture models. I E E E  Trans. PAMI-5. 
25-39. 

Curtiss. J .  H. (1956) A theoretical comparison of the efficiencies of two classical methods and a 
Monte Carlo method for computing one component of the solution of a set of linear 
algebraic equations. Symposium 011 Monte Carlo Mrthods. H.  A. Meyer. Ed. Wiley. New 
York, pp. 191-223. 

33, 229-237. 

290-295. 

parameter range. Comm. Assoc. Coniput. Mach. 23, 389- 394. 

Oper. Res. Soc. 31, 51-56. 

Davis. B. M.. Hagan, R., and Borgman. L. E. (1981) A program for the finite Fourier transform 
simulation of realizations from a one-dimensional random function with known covariance. 
Comp. Geosciences 7, 199-206. 

Deak, 1. (1980) Fast procedures for generating stationary normal vectors. J .  Sror. Comp. Sinil. 10. 
225-242. 

Deak, 1. (1981) An economical method for random number generation and a normal generator. 
Compuring 27. 1 13- 12 I .  

Devlin. K.  (1984) Microchip Mrirhrmarics. Shiva, Nantwich 

Devroye. L. (1981) The computer generation of Poisson random variables. Conipuring 26, 197- 

Devroye, L. (1984) Random variate generation for unimodal and monotone densities. Ci)i~puriql  

Devroye. L. (1985) The analysis of some algorithms for generating random variates with a given 

Dieter, U. (1975) How to calculate shortest vectors in a lattice. Math .  Conip. 29. 827-833. 

207. 

32, 43-68. 

hazard rate. Nai.. Res. Log. Q. 



204 REFERENCES 

Dieter, U. and Ahrens, J. H .  (1973) A combinatorial method for the generation of normally 
distributed random numbers. Computing 1 I ,  137- 146. 

Diggle, P. J. and Gratton, R. J.  (1984) Monte Carlo methods of inference for implicit statistical 
models (with discussion). J .  R o y .  Statist. Soc. B46, 193-227. 

Dixon, W. J.  and Tukey, J .  W. (1968) Approximate behavior of Winsorized t 

(Trimming/Winsorization 2). Technometrics 10, 83-98. 

Dudewicz, E. J. and Ralley, T. G.  (1981) The Handbook of Random Number Generalion and 
Testing with T E S T R A N D  Computer Code. American Sciences Press. Columbus, OH. 

Duket, S. D. and Pritsker, A. A. B. (1978) Examination of simulation output using spectral 
methods. Math. Cornput. Simul. 20, 53-60. 

Durstenfeld, R. (1964) Algorithm 235. Random permutation. Comin. Assor. Cornput. Much. 7, 
420. 

Dwass, M. (1957) Modified randomization tests for non-parametric hypotheses. Ann. Mtrrli. 
Statist. 28. I81 - 187. 

Efron, B. (1979) Bootstrap methods: another look at the jacknife. Ann. Stutist. 7, 1-26. 

Efron, B. (1982) The Jarknife, the Bootstrap and Other Resampling Plans. SIAM. Philadelphia. 

van Es, A. J., Gill, R. D., and van Putten, C. (1983) Random number generation for a pockrt 
calculator. Stat.  N e e d .  37, 95-102. 

Fabian, V. (1971) Stochastic approximation. Optimizing Methods in Stutistics. J .  S. Rustagi, Ed. 
Academic Press, New York, pp. 439-470. 

Fan, C. T., Muller, M. E., and Rezucha, I .  (1962) Development of sampling plans using sequentid 
(item by item) selection techniques and digital computers. J .  Amer. Siurist. Assot.. 57, 387- 
402. 

Fellen, B. M. (1969) An implementation of the Tausworthe generator. Cowm. A.s.sor.. Compirt. 
Mach. 12, 413. 

Fermat, P. (1640) Letter to 8 .  Frenicle. Oeuvres 2, 206--212. 
Fishman, G. S. (1971) Estimating sample size in computer simulation experiments. Mtrmrq. Sci. 

Fishman, G .  S. (1973) Statistical analysis for queueing simulations. Manrig. Sci. (Theory)  20. 363- 

Fishman, G .  S. (1974) Estimation in multiserver queueing simulations. Oper. Rcs. 22. 72-78, 

Fishman, G. S .  (19784 Principles of Discrete Even/ Simulation. Wiley. New York. 

Fishman, G .  S. (1978b) Grouping observations in digital simulation. Mnnug.  Sri. 24, 510-521. 

Fishman, G. S. (1983a) Accelerated accuracy in the simulation of Markov chains. Oper. Ro.5. 31. 

Fishman, G. S. (1983b) Accelerated convergence in the simulation of countably infinite state 

Flinn, P. A. (1974) Monte Carlo calculation of phase separation in a 2-dimensional king system. 

Forsythe, G .  E. (1972) Von Neumann’s comparison method for random sampling from normal 

Forsythe, G .  E. and Leibler, R. A. (1950) Matrix inversion by the Monte Carlo method. Mtrrh. 

18A, 21-38. 

369. 

466-487. 

Markov chains. Oper. Res.  31, 1074-1089. 

J .  Statist. Phys. 10, 89-97. 

and other distributions. Math. Comp. 26, 817-826. 

Comp. 4, 127- 129; 5, 55. 



REFERENCES 205 

Foutz, R. V. (1980) A method for constructing exact tests from test statistics that have unknown 

Foutz, R. V. (1981) O n  the superiority of Monte Carlo tests. J .  Slat. Comp. Siml. 12, 135- 137. 

Frechet, M. (1951) Sur les tableaux de correlation dont les marges sont donnees. A m .  Uriiv. Lyari. 

Freedman, D. (1971) Markoil Chains. Holden-Day, San Francisco. CA 

Fuller, A. T. (1976) The period of pseudo-random numbers generated by Lehmer’s congruential 

Fushimi, M. and Tezuka, S. (1983) The L-distribution of generalized feedback shift register 

distributions. J .  Stat.  Comp. Sini l .  10, 187- 193. 

sect. A 14. 53-77. 

method. Computer J .  19, 173-177. 

pseudorandom numbers. Comm. Assnc. Comput. Mach. 26, 516-523. 

Gardner, G., Harvey, A. C. and Phillips, G.  D. A. (1979) Algorithm AS154. An algorithm for the 
exact maximum likelihood estimation of autoregressive-moving average models by means 
of Kalman filtering. Appl. Stat i s f .  29, 31 1-322. 

Garfarian, A. V., Ancker, C. J.. Jr, and Morisaka, T. (1978) Evaluation of commonly used rules 
for detecting “steady state” in computer simulation. Nau. Res. Log. Q .  24, 667-678. 

Garman. M. B. (1972) More on conditioned sampling in the simulation of stochastic networks. 
Manag. Sci. 19A. 90-95. 

Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian 
restoration of images. I E E E  Trans. PAMl-6, 721 -741. 

George, L. L. (1977) Variance reduction for a replacement process. Simulation 29, 65-74. 

Gerontidis, 1. and Smith, R. L. (1982) Monte Carlo generation of order statistics from general 

Gidas, B. (1985) Nonstationary Markov chains and the convergence of the annealing algorithm. 

Gleser, L. J. (1976) A canonical representation for the noncentral Wishart distribution useful for 

Colder, E. R. and Settle, J. G.  (1976) The Box-Muller method for generating pseudo-random 

Golomb, S. W. (1967) Shijt Register Sequences. Holden-Day, San Francisco. 
Gonzalez, T., Sahni, S., and Franta, W. R. (1977) An efficient algorithm for the Kolmogorov- 

Good, 1. J .  (1953) The serial test for sampling numbers and other tests for randomness. P r w .  

Good, I .  J .  (1957) On the serial test for random sequences. Ann. Math. Statist. 28, 262-264. 

Greenwood, J. A. (1981)AlgorIthm 81-02. A portable formulation ofthe alias method for random 
numbers with discrete distributions. Cofnm. Statist.-Simula. Cnmpur. B lO(6). 649- 655. 

Greenwood, R .  E. (1955) Coupon collector’s test for random digits. Math. Comp. 9, 1-5 

Gross, A. M. (1973) A Monte Carlo swindle for estimators of location. A p p l .  Statist. 22,347-353. 
Gunter, F. L. and Wolff, R. W. (1980) The almost regenerative method for stochastic systems 

Gustavson, F. G.  and Liniger, W. (1970) A fast random number generator with good statistical 

distributions. Appl. S f a t i s f .  31, 238-243. 

J .  Statist. Phys.  39, 73.- 131. 

simulation. J .  Amer. Stat i s f .  Assoc. 71, 690-695. 

normal deviates. Appl. Statist. 25, 12-20. 

Smirnov and Lillefor tests. A C M  Trans. Marh. S@.  3, 60-64. 

Camb. Phil. Soc. 49, 276-284. 

simulation. Oper. Res. 28, 375-386. 

properties. Computing 6, 221 -226. 

Hacking, 1. (1965) Logic of Statistical Injkrence. Cambridge University Press, London. 

Halton, J .  H.  (1962) Sequential Monte Carlo. Proc. Comb. Phil. Soc. 58,. 57-58. 



206 REFERENCES 

Halton, J. H. (1970) A retrospective and prospective study of the Monte Carlo method. S I A M  

Hammersley, J .  M. and Handscomb, D. C. (1964) Monre Curlo Meihoris. Methuen, London. 

Hammersley, J.  M. and Morton, K. W. (1956) A new Monte Carlo technique: antithetic variates. 
Proc. Cumh. Phil. Soc. 52. 449-475. 

Hannan, E. J. (1957) The variance of the mean o f a  stationary process. J .  Roy. Srurisi. Soc,. B 19, 
282-285. 

Hastings. W. K. (1970) Monte-Carlo sampling methods using Markov chains and their 
applications. Biomelrika 57, 97- 109. 

Heidelberger, P. and Iglehart, D. L. (1979) Comparing stochastic systems using regenerative 
simulation with common random numbers. Adv. Appl. Prohuh. 1 I ,  804-819. 

Heidelberger, P. and Welch, P. D. (1981a) A spectral method for confidence interval generation 
and run length control in simulations. Comm. Assoc. Comput. Much. 24, 233-245. 

Heidelberger, P. and Welch, P. D. (1981b) Adaptive spectral methods for simulation output 
analysis. IBM J .  Res. Deu. 25, 860-876. 

Heidelberger, P. and Welch, P. D. (1983) Simulation run length control in the presence of an 
initial transient. Oper. Res. 31, 1109- 1144. 

Heikes, R. G., Montgomery, D. C., and Rardin, R. L. (1976) Using common random numbers in 
simulation experiments-an approach to the statistical analysis. Simulation 27. 8 1 ~ 85. 

Henery, R. J. (1983) Personal communication. 

Hoaglin, D. C. and Andrews, D. F. (1975) The reporting of computation-based results in 
statistics. Amer. Statist. 29, 122- 126. 

Hoeffding, W. (1940) Masstabinvariante Korrelationstheorie. Schrifien des Mcifhe,irccri.sc,/irri 
lnsti tuis und des lnsrituts f i r  Angt'wandre Mnthematik der Uniuersitat Berlin 5. 179-233. 

Hoel, D. G.  and Mitchell, T. J. (1971) The simulation, fitting and testing of a stochastic cellular 
proliferation model. Biometrics 27, I9 1 - 199. 

Hope, A. C. A. (1968) A simplified Monte Carlo significance test procedure. J .  Roy. Srurist. Soc. 

Hopkins, T. R. (1983) Algorithm AS193. A revised algorithm for the spectral test. Appl. Srtni.$/. 

Hordijk, A,, Iglehart, D. L., and Schassberger, R. (1976) Discrete time methods for simulating 

Hsuan, F. (1979) Generating uniform polygonal random pairs. Appl. Srurisr. 28. 170- 172 

Hurst, R. L. and Knop, R. E. (1972) Algorithm 425. Generation of random correlated normal 

Review 12, 1-63. 

B30, 582-598. 

32, 328-335. 

continuous time Markov chains. Adu. Appl .  Prohab. 8, 772-778. 

variables. Comm. Assoc. Compur. Mach. 15, 355-357. 

Iglehart, D. L. (1975) Simulating stable stochastic systems V: comparison of ratio estimators. 

Iglehart, D. L. (1976) Simulating stable stochastic systems VI: quantile estimation. J .  As.wc. 

Iglehart. D. L. (1977) Simulating stable stochastic systems V111: selecting the best system. 
Algorithmic Methods in Prohuhiliry M. F. Neuts, Ed. North Holland. Amsterdam, pp. 37- 
50. 

Iglehart, D. L. and Lewis, P. A. W. (1979) Regenerative simulation with internal controls. ./. 
Assoc. Compul. Mach. 26, 271-282. 

Nav.  Log. Res. Q. 22, 553-565. 

Cotitput. Mach. 23, 347-360. 



REFERENCES 207 

Iglehart, D. L. and Shedler, G. S. (1978) Regenerative simulation of response times in networks of 

Iglehart, D. L. and Shedler, G. S. (1980) Regeneratioe Simulation of Response Times in Networks 

Iglehart, D. L. and Shedler, G. S. (1981) Regenerative simulation ofresponse times in networks of 

Iglehart, D. L. and Shedler, G. S. (1983a) Statistical efficiency of regenerative simulation methods 

Iglehart, D. L. and Shedler, G .  S. (1983b) Simulation of non-Markovian systems. IBM J .  Res. 

Iglehart, D. L. and Stone, M. L. (1983) Regenerative simulation for estimating extreme values. 

Inoue, H., Kumahora, H., Yoshizawa, Y., Ichimura, M., and Miyitake, D. (1983) Random 

queues. J .  Assoc. Comput. Mach. 25,449-460. 

ofQueues.  Lect. Notes Control Inform. Sci. 26. 

queues: statistical efficiency. Acta fnformaticu 15, 347-363. 

for networks of queues. Ado. Appl. Probah. 15, 183- 197. 

Deo. 27,472-480. 

Oper. Rrs.  31, 1145-1166. 

numbers generated by a physical device. Appl. Statist. 32, 115- 120. 

Jackson, M. A. (1975) Principles of Program Design. Academic Press, London. 

Jockel, K.-H. (1981) A comment on the construction of exact tests from test statistics that have 

Jockel, K.-H. (1984) Computational aspects of Monte Carlo tests. Campstar 1984 Proc., Physica- 

Jockel, K.-H. (1986) Finite sample properties and asymptotic efficiency of Monte Carlo tests. 

Johnk, M. D. (1964) Erzeugung von Betaverteilen und Garnmaverteilung Zufallszahlen. Merrika 

Johnson. D. E. and Hegemann, V. (1974) Procedure to generate random matrices with 

Jones, T. G. (1962) A note on sampling a tape-file. Cnmm. Assoc. Comput. Mach. 5, 343. 

unknown null distributions. J .  Stat.  Comp. Siml. 12, 133-134. 

Verlag, Vienna, pp. 183- 188. 

Ann. Statist. 14, 336-347. 

8, 5-15. 

noncentral distributions. Comm. Statist. 3, 691-699. 

Kabak, 1. W. (1968) Stopping rules for queueing systems. Oper. Res. 16, 431-437. 

Kaminsky, F. C. and Rumpf, D. L. (1977) Simulating nonstationary Poisson processes: a 
comparison of alternatives including the correct approach. Simulation 29, 17-20. 

Kelly, F. P. (1979) Reoersibility and Stochastic NPrworks. Wiley, Chichester, England. 

Kemp, A. W. (1981) Frugal methods of generating bivariate discrete random variables Stntistical 
Distributions in Scienrifc Work, Vol. 4. C. Taillie et al., Eds. Reidel. Dordrecht. pp. 321 -329. 

Kemp, C. D. and Loukas, S. (1978) The computer generation of bivariate discrete random 
variables. J .  Roy .  Statist. Sor. A 141, 513-519. 

Kemp, C. D. and Loukas, S. (1981) Fast methods for generating bivariate discrete random 
variables. Statisricul Distributions in Scientifir. Work, Vol. 4. C .  Taillie et al., Eds. Reidel, 
Dordrecht, pp. 313-319. 

Kendall, M. G. and Moran, P. A. P. (1963) Geometrical Probahiliry. Griffin. London. 

Kiefer, J. and Wolfowitz, J. (1952) Stochastic estimation of the maximum of a regression function. 

Kinderman, A. J. and Monahan, J. F. (1977) Computer generation of random variables using the 

Kinderman, A. J. and Monahan, J. F. (1980) New methods for generating Student's rand gamma 

Ann. Math. Statist. 23, 462-466. 

ratio of uniform deviates. A C M  Trans. Math. So$. 3, 257-260. 

variables. Computing 25, 369-377. 



208 REFERENCES 

Kinderman, A. J. and Ramage, J. G. (1976) Computer generation of normal random variables. ./. 
Amer. Sfafisr. Assoc. 71, 893-896. 

Kinderman, A. J. ,  Monahan, J. F., and Ramage, J. G. (1977) Computer methods for sampling 
from Student's I distribution. Math.  Comp. 31, 1009- 1018. 

Kirkpatrick, S .  Gelatt, C .  D., Jr.. and Vecchi, M. P. ( I  983) Optimization by simulated annealing. 
Scienw 220, 67 1 -680. 

Kleijnen. J. P. C. (1974,'s) Sfaf i s f icnl  Trc~hniyirrs in Sirnulorion. Parts I and 2. Marcel Dekker, New 
'fork. 

Kleijnen, J. P. C., van der Ven. R.. and Sanders, B. (1982) Testing independence of simulation 
subruns: a note on the power of the von Neumann test. EUIYJ. J .  Oper. R e x  9. 92-93. 

Knuth, D. E. ( I973a) The A r t  o/'Comptrer Proqrtrrnniinq. V o l i o n c ~  I: Firndanwritrrl 4 lqor i r l~~n . s .  2nd 
ed. Addison-Wesley, Reading. MA. 

Knuth, D. E. ( 1973b) The Arf o f '  Coniputrr Pro</r[inirnin</. K d u w  3: Sorring trritl Srtrrchinq. 
Addison-Wesley, Reading. MA. 

Knuth. D. E. ( I98 I ) The Arr o /  Compirfrr Proqrrmn~ii iq.  V o l i t n i e  2: Seriii,iirr?iL,rit.trl .Alqori fhis.  2nd 
ed. Addison-Wesley. Reading, MA. 

Knuth, D. E. (1984) An algorithm for Brownian xroes .  Conipuring 33. 89 -94. 

Koksma. J. H. (1942) A general theorem rrom the theory of uniform distribution modulo I ( i n  

Kolmogorov, A. N. (1963) On tables of random numbers. S<ir i l \ / i~~i  A25. 369-376. 

Korobov, N. M. (1959) The approximate calculation of multiple integrals. Do!,/. . A k d ,  Ntrirk. 
SSR 124, 1207-1210. 

Kronmal. R.  A. and Peterson, A. V.. Jr. (1979) On the alias method for generating random 
variables from a discrete distribution. an it^ S i r i t i s f .  33. 214-21 8 .  

Kronmal, R .  A. and Peterson. A. V. J r .  (19x1) A variant of the acceptance-rejection method for 
the computer generation of random variables. J .  Amv. Sftrfisr. ass or^. 76, 446-4s I .  

Kronmal. R.  A. and Peterson. A.  V. Jr. (1984) An acceptance-complement analogue of the 
mixture-plus-acceptance-rrJection method fnr generating random variables. A C M  T r t t r r . ~ .  

M u f h .  So/i. 10. 271-281. 

Dutch). Mafheniutiko Zitrphen BI  I ,  7- I I. 

Lavenberg, S. S. and Sauer, C .  H. (1977) Sequential stopping rules for the regenerative method of 
simulation. IBM J .  Rex Dei-. 21, 545-558. 

Lavenberg, S. S. and Welch, P. D. (1981) A perspective on the use of control variables to increase 
the efficiency of Monte Carlo simulations. Manag.  Sci. 27, 322-335. 

Lavenberg, S. S., Moeller, T. L., and Welch, P. D. (1982) Statistical results on control variables 
with application to queueing network simulation. Oper. Res. 30, 182-202. 

Lehmer, D. H. (1951) Mathematical methods in large-scale computing units. Proceedings of the 
Second Symposium on Large-Scale Digital Calculating Machinery. Harvard University Press, 
Cambridge, MA, pp. 141-146. 

Lewis, P. A. W. and Shedler, G. S. (1976) Simulation of non-homogeneous Poisson processes 
with log-linear rate function. Biometrika 63, 501 -505. 

Lewis, P. A. W. and Shedler, G.  S. (1979a) Simulation of non-homogeneous Poisson processes by 
thinning. N a n  Res. Log. Q. 26, 403-413. 

Lewis, P. A. W. and Shedler, G.  S. (1979b) Simulation of non-homogeneous Poisson processes 
with degree-two exponential polynomial rate function. Oper. Res. 27, 1026- 1041. 

Lewis, P. A. W., Goodman, A. S., and Miller, J. M. (1969) A pseudo-random number generator 
for the System/360. IBM Sys. J .  8, 136-145. 



REFERENCES 209 

Lewis, T. G. and Payne, W. H .  (1973) Generalized feedback shift register pseudorandom number 

Lotwick, H. W. and Silverman, B. W. (1981) Convergence of spatial birth-and-death processes. 

Loukas, S. and Kemp. C. D. (1983) On computer sampling from trivariate and multivariate 

Lurie, D. and Hartley, H. 0. (1972) Machine generation of order statistics for Monte Carlo 

Lurie, D. and Mason. K. L. (1973) Empirical investigation of general techniques for computer 

algorithms. J .  Assoc. Coinpuf. Much.  20, 456-468. 

Marh. Proc. Cunih. Phil. Soc. 90, 155-165. 

discrete distributions. J .  Sfar.  Comp. Siml. 17, 113-123. 

computations. Antrr. Srtrrist. 26, 26-27. 

generation of order statistics. Conini. Srtrrisr. 2, 363-371. 

MacLaren. M. D. and Marsaglia, G .  (1965) Uniform random number generators. J .  Assoc. 

McLeod, A. I .  and Bellhouse, D. R. (1983) A convenient algorithm for drawing a simple random 

Mantel. N. (1953) An extension of the BulTon needle problem. .Awi. Moth.  Strrtisr. 24, 674-677. 

Marriott, F. H. C. (1979) Barnard's Monte Carlo tests: how may simulations'? Appl.  Srutisr. 28, 

Marsaglia, G .  (19614 Expressing a random variable in terms of uniform random variables. , 4 1 7 ~ .  

Marsaglia, G. (1961 b) Generating exponential random variables. ,411n. Mufh. Sfrrtisf. 32, 899 ~ 

Marsaglia, G .  (1963) Generating discrete random variables in a computer. Con~nt. .4,ssoc. Compuf .  

Marsaglia. G. (1964) Generating a variable from the tail of a normal distribution. 7i.c,hnometric..s 

Marsaglia, G. (1968) Random numbers fall mainly in  the planes. Pro<,. Nrrr. A d .  Sci. U S A  61. 

Marsaglia. G .  ( 1972) The structure of linear congruential sequences. App/ic.ctrions q/'  Number 
Theor). ro Nuiiirrir,ul Antr/y.si,s. S.  K. Zaremba. Ed. Academic Press. London, pp. 249-285. 

Marsaglia, G. (1977) The squeeze method for generating gamma variates. Comp. Muth. Appl. 3. 
321 -325 .  

Marsaglia. G .  ( 1980) Generating random variables with a r-distribution. M a r h .  Comp. 34, 235- 

Marsaglia, G. and Bray, T. A. (1964) A convenient method for generating normal variables. 

Marsaglia. G. .  Ananthanarayanan. K.. and Paul. N.  J .  (1976) Improvements on fast methods for 

Marsaglia. G. ,  MacLaren. M. D., and Bray. T. A. (1964) A fast procedure for generating normal 

Martin-Liif. P. (1966) The definition of random sequences. / I ! / .  Coiirrol 9. 602-619 

Martin-Lof, P. (1969) Algorithms and randomness. Reu. / 1 7 r .  Srtrrisr. Insr. 37, 265-272 

Matheron. G. (1973) The intrinsic random functions and their applications. Ad". Appl. Prohah. 5, 

Meketon, M. S. and Heidelberger, P. (1982) A renewal theoretic approach to  bias reduction in 

Compuf. Much. 12. 83-X9. 

sample. Appl.  Srtrfisr. 32. 182- 184. 

75- 77. 

Murh.  Srtrrist. 32. 894-899. 

900. 

Mach.  6, , 37-38. 

6, 101 -102. 

25 28. 

236. 

S/,4M R P L . ~ P M .  6. 260-264. 

generating normal random variables. /)I/: Prot,. Lrrr. 5. 27-30. 

random variables. Conim. Assoc. Conipirr. M u ~ , / 7 .  7, 4- 10. 

439-468. 

regenerative simulation. Monug. %i. 28. 173- 181. 



210 REFERENCES 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953) 
Equations of state calculations by fast computing machines. J .  Chem. Phys.  21, 1087- 1092. 

Michael, J. R., Schucany, W. R., and Haas, R. W. (1976) Generating random variates using 
transformations with multiple roots. Amer. Statist. 30, 88-90. 

von Mises, R. (1919) Grundlagen der Wahrscheinlichkeitsrechnung. Math.  Ze i t .  5, 52-99. 

von Mises, R. (1957) Probability, Statistics, Truth. Macmillan, New York. 

Mitchell, B. (1973) Variance reduction by antithetic variates in GI/G/I queueing simlations. 

Moran, P. A. P. (1975) The estimation of standard errors in Monte Carlo simulation 

Moses, L. E. and Oakford, R. V. (1963) Tables of Random Permutations. Stanford University 

Oper. Res. 21, 988-997. 

experiments. Biometrika 62, 1-4. 

Press, Stanford, CA. 

Nance, R. E. and Overstreet, C. L., Jr. (1972) A bibliography on random number generators. 

Nance, R. E. and Overstreet, C. L., Jr. (1978) Some experimental observations on the behavior of 

Nash, J. C. (1979) Compact Numerical Methodsfor  Computers. Adam Hilger, Bristol. 

Neave, H. R. (1973) O n  using the Box-Muller transformation with multiplicative congruential 

von Neumann, J. (1951) Various techniques in connection with random digits. N B S  Appl. Marh. 

Neveu, J. (1965) Marhematical Foundations of the Calculus of Probabilities. Holden-Day, San 

Newby, M. J. (1979) The simulation of order statistics from life distributions. Appl. Starisr. 28, 

Newell, G. F. (1982) Applications qfQueueiny Theory,  2nd ed. Chapman and Hall, London. 

Niederreiter, H. (1978) Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. 

Norman, J. E. and Cannon, L. E. (1972) A computer program for the generation of random 

Comp. Rev. 13, 495-508. 

composite random number generators. Oper. Res. 26, 915-935. 

pseudo-random number generators. Appl. Statist. 22, 92-97. 

Ser. 12, 36-38. 

Fransisco. 

298-30 1. 

Math. Soc. 84, 957-1041. 

variables from any discrete distribution. J .  Statisr. Comput.  Siml. 1, 331-348. 

Odell, P. L. and Feiveson, A. H. (1966) A numerical procedure to generate a sample covariance 
matrix. J .  Amer. Statist. Assoc. 61, 199-203. 

Page, E. S. (1965) On Monte Carlo methods in congestion problems 11-simulation of queueing 

Page, E. S. (1967) A note on generating random permutations. .-lpp/. Srruisr. 16. 273-374. 
Payne, W. H. (1970) Fortran Tausworthe pseudorandom number generator. C o t n ~ ~ i .  .4s,soc,. 

Payne. W. H., Rabung, J. H.  and Bogyo. T. P. (1969) Coding the Lehmer pseudorandom number 

Perlman. M. D. and Wichura. M. J.  (1975) Sharpening Buffon's needle. .-liner, Srarisr. 29. 157- 

Peskun. P. H. (1973) Optimal Monte-Carlo sampling using Markov chains. BioiiiPrri!,ti 60. 607- 

systems. Oprr. Res. 13. 300-305. 

Cotnpuf. M a c h  13, 57. 

generator. Comni. Assoc. Comput. Altic , / i .  12. 85-86. 

163. 

612. 



REFERENCES 21 1 

Peterson, A. V. Jr  and Kronmal, R. A. (1983) Analytic comparison of three general-purpose 
methods for the computer generation of discrete random variables. Appl. Statist. 32, 276- 
286. 

Pincus, M. (1968) A closed form solution of certain programming problems. Oper. Res. 16, 690- 
694. 

Pincus, M. (1970) A Monte-Carlo method for the approximate solution of certain types of 
constrained optimization problems. Oper. Res.  18, 1225- 1228. 

Platen, E. (1981) An approximation method for a class of It8 processes. Lithuanian Math. J. XXI, 
I21 - 133. 

Preston, C. (1977) Spatial birth-and-death processes. Bull. Int. Statist. Inst .  46(2), 371 -391. 
Priestley, M. B. (1981) Spectral Analysis and 7 h e  Series. Academic Press, London. 

Rabinowitz, M. and Berenson, M. L. (1974) A comparison of various methods of obtaining 

Ramberg, J. S. and Tadikamalla, P. R. (1978) On generation of subsets of order statistics. J .  Stat.  

RAND Corporation (1955) A Million Random Digits with 100,000 Normal Deviates. Free Press, 

Rao, N. J., Borowankar, J. D., and Ramakrishna, D. (1974) Numerical solution of It6 integral 

Reeder, H. A. (1972) Machine generation of order statistics. Amer. Statist. 26, 56-57. 

Relles, D. A. (1970) Variance reduction techniques for Monte Carlo sampling from Student 
distributions. Technornetrics 12, 499-515. 

Relles, D. A. (1972) A simple algorithm for generating binomial random variables when N is 
large. J. Amer. Statist. Assoc. 61, 612-613. 

Research Machines Ltd. (1982) Letter to the author. 

Richards, M. and Whitby-Strevens, C. (1979) BCPL-The  Language and its Compiler. Cambridge 
University Press, London. 

Ripley, B. D. (1977) Modelling spatial patterns (with discussion). J. Roy.  Starist. Soc. B39, 172- 
212. 

Ripley, B. D. (1979) Algorithm AS137. Simulating spatial patterns: dependent samples from a 
multivariate density. Appl. Statist. 28, 109-1 12. 

Ripley, B. D. (1981) Spatial Statistics. Wiley, New York. 

Ripley, B. D. (1983a) The lattice structure of pseudo-random number generators. Proc. Roy .  Sac. 

Ripley, B. D. (1983b) Take your pick. Personal Computer World Sept. 1983, 188-191. 

Ripley, B. D. (1983~) Computer generation of random variables: a tutorial. Inr. Statist. Rev. 51. 

Ripley, B. D. and Silverman, B. W. (1978) Quick tests for spatial interaction. Biometrika 65,641 - 

Robbins, H. and Monro, S. (1951) A stochastic approximation method. Ann. Math. Statist. 22, 

Rosenblatt, M. (1975) Multiply schemes and shuffling. Math.  Comp. 29, 929-934. 

Ross, S. M. (1970) Applied Probability Models with Optimization Applications. Holden-Day, San 

random order statistics for Monte-Carlo computation. Amer. Statist. 28, 27-29. 

Comp. Siml. 6, 239-241. 

Glencoe, IL. 

equations. SIAM J. Control 12, 124-139. 

A389, 197-204. 

301 -319. 

642. 

400-407. 

Francisco. 



21 2 REFERENCES 

Rotenberg, A. (1960) A new pseudo-random number generator. J .  Assoc. Comput. Mach. 7,75- 

Rothery, P .  (1982) The uses of control variates in Monte Carlo estimation of  power. Appl. Statist. 

Rubinovitch, M .  (1985) The slow server problem. 1. Appl. Probah. 22, 205-213. 

Ruppert, D., Reisch, R. L., Deriso, R. B., and Carroll, R. J. (1984) Optimization using stochastic 
approximation and Monte Carlo simulation (with application to the harvesting of Atlantic 
menhaden). Biometrics 40, 535-545. 

77. 

31, 125-129. 

Sahai, H. (1979) A supplement to Sowey’s bibliography on random number generation and 

Sakesegawa, H. (1983) Stratified rejection and squeeze method for generating beta random 

Scheur, E. M. and Stoller, D. S. (1962) On the generation of normal random vectors. 

Schmeiser, B. W. (1982) Batch size effects in the analysis of simulation output. Oper. Res.  30,556- 

Schmeiser, B. W. and Babu, A. J. G .  (1980) Beta variate generation via exponential majorizing 

Schmeiser, B. W. and Lal, R. (1980) Squeeze methods for generating gamma variates. J. Amer. 

Schmeiser, B. W. and Shalaby, M. A. (1980) Acceptance/rejection methods for beta variate 

Schruben, L. W. (1982) Detecting initialization bias in simulation output. Oper. Res. 30,569-590. 

Schruben, L. W. (1983) Confidence interval estimation using standardized time series. Oper. Res. 

Schruben, L. W. and Margolin, B. H. (1978) Pseudo-random number assignment in statistically 
designed simulation and distribution sampling experiments. J .  Amer. Statist. Assoc. 73, 

Schruben, L. W., Singh, H., and Tierney, L. (1983) Optimal tests for initialization bias in 

Schucany, W. R. (1972) Order statistics in simulation. J .  Stat.  Conip. Siml. 1 ,  281-286 

Schuster, E. F. (1974) Buffon’s needle experiment. Amer. Math.  Monthly 81, 26-29. 

Seila, A. F. (1982) A batching approach to quantile estimation in regenerative simulations. 
Manag. Sci. 28, 573-581. 

Shedler, G. S. and Southard, J. (1982) Regenerative simulation of networks of queues with 
general service times: passage through subnetworks. IBM J. Res. Deu. 26, 625-633. 

Sibson, R. (1984) Personal communication. 

Siegmund, D. (1976) Importance sampling in the Monte Carlo study of sequential tests. Ann. 

Simon, G. (1976) Computer simulation swindles, with applications to estimates of location and 

Sironvalle, M. A. (1980) The random coin method: solution of the problem of simulation of a 

Smith, C. S. (1971) Multiplicative pseudo-random number generators with prime modulus. J .  

related topics. J .  Stat. Comp. Simf. 10, 31-52. 

numbers. Ann. Inst. Statist. Math. 35B, 291-302. 

Technometrics 4, 278-281. 

568. 

functions. Oper. Res. 28, 917-926. 

Statist. Assoc. 75, 679-682. 

generation. J .  Amer. Statist. Assoc. 75, 673-678. 

31, 1090- 1108. 

504- 525. 

simulation output. Oper. Res. 31, 1167-1178. 

Statist. 4, 673-684. 

dispersion. Appl. Statist. 25, 266-274. 

random function in the plane. Math.  Geol. 12, 25-32, 

Assoc. Comput. Mach. 18, 587-593. 



REFERENCES 213 

Smith, W. B. and Hocking, R. R. (1972) Algorithm AS53. Wishart variate generator. Appl. Statist .  

Solomon, H. (1978) Geometric Probability. SIAM, Philadelphia 

Sowey, E. R. (1972) A chronological and classified bibliography on random number generation 

Sowey, E. R. (1978) A second classified bibliography on random number generation and testing. 

Springer, B. G .  F. (1969) Numerical optimization in the presence of random variability. The 

“Student” (1908) The probable error of a mean. Biometrika 6,  1-25. 

Swick, D. A. (1974) Letter to the editors. Appl. Statist .  23, 233. 

21, 341-345. 

and testing. Int. Stafist .  Rev.  40, 355-371. 

Int. Statist .  Rev .  46, 89- 102. 

single factor case. Biometrika 56, 65-74. 

Tadikamalla, P. R. (1978) Computer generation of gamma random variables. Comm. Assoc. 

Tadikamalla, P. R. (1979) Random sampling from the generalized gamma distribution. 

Tadikamalla. P. R.  and Johnson. M. E. (1981) A complete guide l o  gamma variate generation. 

Tausworthe. R.  C. (1965) Random numbers generated by linear recurrence modulo two. Math.  

Thompson, W. E. (1958) A modified congruence method of generating pseudo-random numbers. 

Thompson, W. E. (1959) ERNIE-a mathematical and statistical analysis. J .  R o y .  Statist .  Soc. 

Tippett, L. H.  C. (1927) Random Sumpling Numbers. Tracts for Computers XV. Cambridge 

Tocher, K. D. (1954) The application of automatic computers to sampling experiments. J .  R o y .  

Tocher, K. D. (1963) The Art of Simulation. English Universities Press, London. 

Tootill, A. (1982) PCW subset. Personal Computer World June, 133. 

Tootill, J. P. F., Robinson, W. D.. and Adams, A. G. (1971) The runs up-and-down performance 
of Tausworthe pseudo-random number generators. J .  Assoc. Comput.  Mach. 18, 381 -399. 

Tootill, J.  P. R., Robinson, W. D., and Eagle, D. J.  (1973) An asymptotically random Tausworthe 
sequence. J.  Assoc. Comput.  Much. 20, 469-481. 

Trotter, H. F. and Tukey. J.  W. (1956) Conditional Monte Carlo for normal samples. 
Symposium on Monte Carlo Methods.  H. A. Meyer, Ed. Wiley, New York, pp. 64-79. 

Comput. Mach. 21, 419-423. 925-928. 

Computing 23, 199-203. 

Amer. J .  Math .  Mung. Sci. I ,  213-236. 

Comp. 19. 201-209. 

Computer J .  1, 83, 86. 

A 122, 301-333. 

University Press, London. 

Statist. SOC. B 16. 39-61. 

Vitter, J. S. (1984) Faster methods for random sampling. Comm. Assoc. Comput.  Mach.  27, 703- 
718. 

Walker, A. J. (1974) New fast method for generating discrete random variables with arbitrary 

Walker, A. J. (1977) An efficient method for generating discrete random variables with general 

Wasan, M. T. (1969) Stochastic Approximation. Cambridge University Press, London. 

frequency distribution. Elec. Le t t .  10, 127- 128. 

distributions. A C M  Trans. Math.  Soft. 3, 253-256. 



214 REFERENCES 

Wasow, W. (1952) A note on the inversion of matrices by random walks Math. Comp. 6,  78-81. 

Welch, P. D. (1983) The statistical analysis of simulation results. The Computer Performance 
Modeling Handbook. S .  S .  Lavenberg, Ed. Academic Press, New York, pp. 268-328. 

West, J. H. (1955) An analysis of 162,332 lottery numbers. J. Roy. Statist. Soc. A118, 417-426. 
Whitt, W. (1976) Bivariate distributions with given marginals. Ann. Statist. 4 ,  1280- 1289. 
Whittlesey, J. R. B. (1968) A comparison of the correlation behavior of random number 

Whittlesey, J. R. B. (1969) On the multidimensional uniformity of pseudorandom generators. 

Wichmann, B. A. and Hill, J. D. (1982) Algorithm AS183. An efficient and portable pseudo- 

Wilson, J. R. (1979) Proof of the antithetic-variates theorem for unbounded functions. Math. 

Wilson, J. R. and Pritsker, A. A. B. (1978) A survey of research on the simulation start-up 

Wong, C. K. and Easton, M. C. (1980) An efficient method for weighted sampling without 

Wright, R. D. and Ramsay, T. E., Jr. (1979) On the effectiveness of common random numbers. 

generators for the IBM 360. Comm. Assoc. Comp. Mach. 11, 641-644. 

Commun. Assoc. Comput. Mach. 12, 247. 

random number generator. Appl. Statist. 31, 188-190; 33, 123. 

Proc. Camb. Phil. SOC. 86,477-479. 

problem. Simulation 31, 55-58. 

replacement. SIAM J .  Computing 9, 111-113. 

Manag. Sci. 25, 649-656. 

Zierler, N. (1969) Primitive polynomials whose degree is a Mersenne exponent. lnf Control 15, 

Zierler, N. and Brillhart, J. (1968) On primitive trinomials (mod 2). lnf Control 13, 541-554. 
Zierler, N. and Brillhart, J. (1969) On primitive trinomials (mod 2) 11. Inf: Control 14, 566-569. 
Zubrzycki, S. (1957) On estimating gangue parameters (in Polish). Zastos. Mar. 3, 105-153. 

67-69. 



Index 

Acceptance sampling, see Rejection sampling 
ACT Sirius I ,  83, 215 
Akaike's AIC Criterion, 156 
Alias method, 72ff. 232f 
Antithetic variates, 118, 124, 129ff, 139f 
APL, 53, 83 
Apple 11, 18 
Autoregressive spectral estimation, 156f 

Bartlett's decomposition, 99, 117 
BASIC, 5, 10, 17, 18, 76, 83. 97 
Batching, 145, 150ff 
Bays-Durham shuffle, 42, 51 
BBC computer, 5, 10, 27, 76, 83, 97. 215 
BCPL, 40 
Beta distribution, 60f, 65, 90, 92f 
Binomial distribution, 75, 78, 92 
Blocks, 119, 138 
Bootstrap, 4, 174ff 
Box-Muller algorithm, 54, 93 
Brownian motion, 107 
Buffon's needle, 14, 193ff. 199 

Cauchy distribution, 8, 60, 66f, 87, 92, 120 
CDC, 83, 216 
Chi-squared distribution, 55 
Chi-squared test, 44, 95 
Cholesky decomposition, 98 
Closest pair, 6 
Collective, 19 
Combinatorial optimization, 179, 18 I 
Combining generators, 43 
Common random numbers, 1 19, 138 
Composition methods, 63, 102 
Conditional Monte Carlo, 136f 
Conditioning, 118, 134ff 

Confidence interval: 
bias-corrected percentile, 177 
Monte-Carlo, 176ff. 198 
percentile, 176 

Congruential generator, 17 
Continuous distributions, 8 Iff 
Control variates, 118, 124ff 
Correlation, extremal, 130 
Correlation tests, 24, 45 
Corvus Concept, 83, 215, 217 
Coupon collector's test, 44 
Cox process, I I I 
Cryptography, 16 

Decimation. 27 
Deletion, 143, 146 
Discrepancies, I90 
Discrete distributions, 71ff. 231ff 

multivariate, 100 
Discrete-event simulation, 105, 169 
Doubly stochastic Poisson process, 1 1  I 
Dynamic thinning, 103 

Eigenvalues, 188f, 199 
Electronic noise, 15 
Envelope, 61 
Experimental design, 137ff 
Exponential distribution, 55, 59, 63, 67, 69, 

Exponential spacings, 97 
87, 230 

Factorial experiments, 139 
Fast Fourier transform, 109 
F distribution, 5 5 ,  90, 92 
Fermat's little theorem, 47 

235 

Stochastic Simulation 
Brian D. Ripley 

Copyright 01987 by John Wiley & Sons, Inc 



236 INDEX 
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