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Preface

Statistics and demography share important common roots, yet as academic dis-
ciplines they have grown apart. Even a casual survey of leading journals shows
that cross-references are rare. This is unfortunate, because many social problems
call for a multi-disciplinary approach. Both statistics and demography are neces-
sary ingredients in any serious analysis of the sustainability of pension or health
care systems in the aging societies, in the assessment of potential inequities of
formula-based allocations to local governments, in the estimation of the size of
elusive populations such as drug users, in the investigation of the consequences
of social ills such as unemployment, and so forth. This book was written to bring
together much of the basic statistical theory and methodology for estimating and
forecasting population growth and its components of births, deaths, and migration.
Although relatively simple mathematical methods have traditionally been used to
assess demographic trends and their role in the society, use of modern statistical
methods offers significant advantages for more accurately measuring population
and vital rates, for forecasting the future, and for assessing the uncertainty of the
demographic estimates and forecasts.

For statisticians the book provides a unique introduction to demographic prob-
lems in a familiar language. For demographers, actuaries, epidemiologists, and
professionals in related fields the book presents a unified statistical outlook on
both classical methods of demography and recent developments. The book pro-
vides a self-contained introduction to the statistical theory of demographic rates
(births, deaths, migration) in a multi-state setting. The book has a dual character.
On the one hand, it is a monograph that can be consumed by a lone reader. There
are many results that have appeared in journals or working papers only. Some
appear here for the first time. The book is also useful as a classroom text, and
includes exercises and complements to explore special topics in detail without
interrupting the flow of the text. More than half of the book is readily accessible
to undergraduates, but to fully benefit from the complete text may require more
maturity.
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Introduction

1. Role of Statistical Demography

The world population exceeded six billion (6,000,000,000) in 1999. According
to current United Nations projections, in 2050 the population is expected to be
9.3 billion, although under plausible scenarios it might be as low as 7.7 billion
or as high as 10.9 billion. In all cases, the increase will intensify competition for
arable land, clean water, and raw materials. Soil erosion and deforestation will
continue in many parts of the world. The increased production of food, housing,
and consumer goods will increase the production of greenhouse gases and, thus,
contribute to climate change.

Underneath the global trends there is a great diversity. In the middle of the
19 century, European women gave birth to five children or more, on average. A
newborn was expected to live 40 years or less. In a matter of a century the average
number of children dropped to two and life expectancy rose to over 60 years.
Many developing countries (notably China) have later followed a similar path, but
a key factor in the uncertainty regarding global trends is whether all developing
countries will go through a similar transition, and if so, at what pace.

Even within the industrialized world a great diversity persists. The average
number of children per woman (as measured by the total fertility rate) varies
from 1.2 children per woman in Italy and Spain, to 2.0 in the United States. The
U.S. value is over 50% higher than that of the primarily catholic Mediterranean
countries that have had a history of relatively high fertility! Yet, all values are
below the level (approximately 2.1) that is needed for population replacement.
Although births currently exceed deaths, this is a temporary phenomenon caused
by an age-distribution that still has relatively many people in the child-bearing
ages. In the near future the situation will change, and the age-distributions of the
industrialized countries will be older than in any national population ever before
on earth. This will put stress on the health care and retirement systems, a stress
whose magnitude is not fully appreciated by decision makers, yet.

The “graying” of the industrialized populations will be accentuated by two
factors. First, the large baby-boom cohorts born after World War II will be retiring
in 2010-2020. This may prove to be a one time phenomenon, but no-one can say
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for certain that fertility fluctuations would have come to an end. The second factor
is the continuing increase in longevity. Forecasters have repeatedly assumed that
the decline in mortality cannot continue for more than a decade or two, only to
have been proved wrong by the subsequent development.

Interestingly, populations can be quite heterogeneous with respect to life ex-
pectancy, as well. Women live longer than men, the rich and the well-educated
live longer than the poor and the less-educated, and those in marriage live longer
than those divorced, for example. The elderly are in many ways disadvantaged in
the current industrialized societies. A happier future may lay ahead, if only by se-
lection: it is possible that we will see a well-educated, healthy and wealthy retired
population that is capable of exercising political power for its own benefit.

Since the rate of population growth in the developing countries far exceeds that
of the industrialized countries, the geographic distribution of the world population
will change. For example, the combined population of Europe and North America
is currently 17% of the world population, but since the combined population is
not expected to change by 2050, its share is expected to drop to 11%. A key
social policy issue is to what extent the declining trend is counterbalanced by
immigration from the less developed regions. An influx of immigrants would
probably be advantageous to the elderly, since the immigrants could keep the
economies growing and the “pay-as-you-go” retirement systems solvent. However,
those in working age may reasonably see immigrants as competing in the same
labor market, so racism and xenophobia may also gain ground.

Apart from global issues, demographics has an important role in the day-to-day
decision making of national and local governments. Ever since the biblical times
demographic data have served as a basis of taxation, military conscription, ap-
portionment of political representation, and allocation of funds. Systematic biases
in data may cause inequities across ethnic domains or geographic regions. When
small areas are considered, random variations may cause inequalities in treatment.
Lack of timeliness is always a potential source of systematic bias, but the remedy
of frequent adjustments adds an element of unpredictability in the planning by
local units.

Relatively simple mathematical methods have traditionally been used to assess
demographic trends and their role in the society. The methods have typically
been based on the measurement of demographic rates by age and sex. Summary
measures, such as total fertility rate and life expectancy can then be calculated.
A substantive line of research tries to explain variation in the rates across social
groups, regions, or time, in terms of sociological or economic concepts. Another,
less ambitious line of research tries to elucidate the long-term implications of the
current rates. Classical methods from matrix algebra and differential and integral
equations are used in the latter.

Simple methods have served and, undoubtedly, will continue to serve demogra-
phy well. However, there are three reasons for expanding a demographer’s toolkit
into a statistical direction. First, as noted above, there is considerable interest in
exploring variations in demographic rates in ever finer subpopulations. For ex-
ample, if we find that young widows have an elevated risk of death but numbers
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are small, how can we know that this is not due to chance? Or, if the duration
of unemployment is associated with mortality, how can this be evaluated? Cross
tabulations are a classical, but clumsy, way to study such issues. In epidemiology,
cross tabulations have largely been replaced by statistical relative risk regression
techniques. We believe the same will happen in demography. Apart from simply
adding new techniques to a demographer’s toolkit, a methodological consequence
is that principles of statistical inference, in particular the assessment of estimation
error, should become a standard part of demographic analysis.

Second, many of the issues mentioned above involve forecasting in one way or
another. In econometrics, the standard way to handle forecasting problems is to
use statistical time-series techniques. We believe demographers can also benefit
from the time-series toolkit provided that it is judiciously applied, in a manner that
respects the demographic context. Demographic forecasts can then be made using
data driven techniques, in addition to the judgmental methods that are currently
favored. A methodological consequence of the adaptation of such techniques is
that forecast uncertainty can be handled probabilistically. For example, instead
of merely saying that it is plausible that world population is between 7.7 and
10.9 billion in 2050, we may say that it is within such an interval with a specific
probability. Empirical analyses based on the accuracy of earlier U.N. forecasts
suggest that in this case the probability is roughly 95%.

Third, even though the quality of basic demographic data on population size
is likely to continue to improve, more elusive populations have become of con-
cern. For example, we need information on the spread of drug use to assess its
cost to the society and to determine the success anti-drug policies. Direct enu-
meration is, clearly, out of the question. Or, we need estimates of populations by
health status to anticipate future demands on institutional care and housing that
are accessible to those physically impaired. Such populations present us with com-
plex definitional challenges, and information concerning them must derived via
statistical techniques that may suffer both from biases and sampling error.

After these remarks we are reminded of two characterizations of the demo-
graphic profession. Jim Vaupel has defined a demographer as “someone who
knows Lexis”. Earlier Joel Cohen defined a demographer as “someone who fore-
casts population wrong”, and a mathematical demographer as “someone who uses
mathematics to forecast population wrong”. Perhaps we could define a statistical
demographer as “someone who knows Lexis, forecasts population wrong, but can
at least quantify the uncertainty”.

We have written this book with two types of readers in mind. First, we have
thought of a mathematically oriented demographer, who is interested in learning
the statistical outlook on the familiar problems. We have tried to define all relevant
concepts in the book. However, the exposition is necessarily brief, so previous,
familiarity with basic mathematical statistics, regression analysis, and time-series
analysis is probably necessary for a full understanding of many of the arguments.
Second, we have thought of a statistician, who is interested in working with demo-
graphic problems. We have tried to present the central demographic concepts in
the context of statistical models, and indicate conditions under which the classical
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demographic procedures are optimal. Empirical examples are provided to give a
flavor of what makes demography interesting. In addition to demographers and
statisticians, we have thought of, for example, economists interested in pension and
health care problems, epidemiologists interested in risk assessment, and actuaries
and public health people interested in gerontology as potential readers of the book.

The application of statistical models in demography is not always straight for-
ward, however. Along the way we try to indicate how a blind application of statistics
can lead to unacceptable results. In fact, a central virtue of demographic teach-
ing is a kind of “source criticism”, in which one examines, much like a historian
does, the mechanisms that have produced the data being analyzed. The most fash-
ionable statistical analysis is not worth much if it is applied to data that are not
what they seem. The book points out such issues, so it may be of a more general
methodological interest to statistical readers.

2. QGuide for the Reader

The book was originally conceived as a monograph intended for a lone reader.
There are many results that have appeared in journals or working papers only. Some
appear here for the first time. Yet, we have included exercises and complements
to permit the use of the book in classroom. Some of the technical material is
useful for reference (e.g., formulas for estimators and variances), and may be
skipped on a first reading. Guidance is provided throughout the book. Parts of the
earlier versions of the book have been used at the Universities of Joensuu and
Jyviskyld, Finland; Orebro University, Sweden; Max Planck Institute at Rostock,
Germany; and Northwestern University, U.S.A., to teach advanced undergraduate
and graduate students in statistics and demography. For a statistical audience,
additional discussion of the demographic issues has often proved useful. For a
demographic audience, we have spent more time on the basics of statistics.
At least three threads of thought can be distinguished within the book:

* Chapters 2 and 4-6 provide an introduction to Statistical Demography; a shorter
course that might be called Biometrics is obtained from Chapters 2 and 4;

* Chapters 2—4, 10 and 12 provide an introduction the Demographic Data Sources
and their Quality;

* Chapters 4, 6-9 and 11 provide an introduction to Demographic Forecasting; a
shorter course concentrating on Demographics of Pensions and Public Finances
is obtained from sections of Chapters 4, 8-9, and 11.

In each case, other chapters provide supporting material.

3. Statistical Notation and Preliminaries

The remainder of this chapter introduces some notation for random variables and
their distributions emphasizing vector and matrix formulations. We also give a
heuristic review of basic results from maximum likelihood estimation that we
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assume as known in the sequel. Additional reminders/results will appear inter-
spersed in the text, where needed. Some references for this material, at the same
general mathematical level of the text, include Rice (1995), DeGroot (1987), Lind-
sey (1996), Azzalini (1996) and, at a more advanced mathematical level, Rao
(1973), Severini (2000), Bickel and Doksum (2001), and Williams (2001).

The probability of an event A will be denoted by P(A). If X is a random variable
(i.e., a function whose value is determined by a random experiment), its distribu-
tion function or cumulative distribution function (c.d.f.)is F(x) = P(X < x). The
probability that X exactly equals x is P(X = x) = F(x) — limy o F(x — h). Note
that whenever F'(.) is continuous this probability is zero. If F(.) is differentiable,
then F'(.) = f(.) is the density function of X.

Example 3.1. Normal (Gaussian) Distributions. The standard normal distri-
bution N(0, 1) has the expectation 0 and variance 1. Its density is f(x) =
(27'[)’1/z exp(—x2/2). Suppose X has this distribution, or X ~ N(0, 1), then
Y = u + o X has the normal (Gaussian) distribution N (i, o'?) with mean p and
variance o2. The density of Y is f(y) = 27) 20~ exp(—(y — u)?/(262)). O

Example 3.2. Bernoulli Distribution. If X takes the value 1 with probability p
and 0 with probability 1 — p, then X has a Bernoulli distribution with parameter
p,or X ~ Ber(p). In this case P(X = x) = p*(1 — p)! =, where 0 < p < 1 and
xe{0,1}.0

In mathematical demography one typically considers X > 0 and it is often more
convenient to work with survival probabilities p(x) = P(X > x)thanwithc.d.f.’s.
If p(.) is differentiable, then f(x) = —p’(x).

The joint probability of events Ay, ..., A, is P(A; N...N A,), but we some-
times write P(Ay, ..., A,) for short. The conditional probability of one event
given another is defined as P(A;|A;) = P(A; N Ay)/P(A>), when P(A;) >
0. If Xy,...,X, are random variables, their joint distribution function is
F(xi,%xp,..,%,) = P(X1 <x1, X2 <X,.., Xn < X,). Writing column vectors
Xx=(x1,....x,)" and X = (X, ..., X,,)T, with T denoting transpose, we may
also write F(x) = P(X < x) where the inequality holds for each component.

The expectation of X is denoted by E[X]. If X has density f(.), or if X takes
discrete values x1, x», ..., then

oo

E[X]:/xf(x)dx or E[X]:in P(X; = X;), (3.1

—00

respectively. If X and Y are random variables and a and b are scalars, then we
have the linearity property E[aX 4 bY] = aE[X] + bE[Y]. The variance of X
is defined as Var(X) = E[(X — E[X])*]. It has the property Var(a + bX) = b?
Var(X).

The expectation of a random vector X is defined componentwise, E[X] =
(E[X:1,...,E[X,D". If a is a vector and B is a matrix such that a + BX is
well-defined, then E[a + BX] = a + BE[X]. The covariance between X; and
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X, is defined as Cov(X, X») = E[(X; — E[X1])(X, — E[X5])]. The covariance
matrix of X = (X1, ..., X,)7 is an n x n matrix Cov(X) whose (i, j) element is
Cov(X;, X ;). Using vector notation we may write Cov(X) = E[(X — E[X])(X —
E[X]T]. It has the property Cov(a + BX) = BCov(X)B”.

The conditional expectation of X, given X, is denoted by E[X|X»].
It has the linearity property of the usual expectation. It may be shown
that, when the moments exist, E[X;] = E[E[X|X>]]. The conditional vari-
ance is Var(X|X,) = E[X%le] — E[X,|X,]%. It has the property, Var(X;) =
E[Var(X]|X5)] + Var(E[X ]| X3]). Similarly, the conditional covariance is defined
as Cov(X1, X21X3) = E[X1X»]|X3] — E[X1|X3]E[X>]|X3] and has the property
Cov(X1, Xp) = E[Cov(X1, X2|X3)] + Cov(E[X1]|X5], E[X2|X3]).

Example 3.3. Multivariate Normal Distribution. Suppose a k x 1 vector X
has E[X] = p and Cov(X) = 3. It has a multivariate normal distribution,
X ~ N(p,X), if aTX ~ N(@"u, a” 3a) for any k x 1 vector a. If p =0 and
3 =1, the identity matrix, then XTX ~ X2 distribution with k > 1 degrees of
freedom. ¢

The multivariate normal distribution is an example of a parametric family of
distributions. Consider n independent observations X; coming from densities
fi(xi;0),i =1,...,n, where 0 is, say, a k x 1 vector of parameters belonging to
some set ® C R¥. We do not assume here that the observations are necessarily
identically distributed, because in regression applications of interest they typically
are not. For example, in normal theory regression, if X; would be the dependent
variable and z; would be a vector of explanatory variables, we would have the
density fi(x;;0) = 2n) o~ exp(—(x; — 2 B)*/(20%)), where 0 = (BT, 02)".

When viewed as a function of 0 the probability of the observed data is called
the likelihood function, L(0) = fi(x1;0)--- fu(x,;0). The natural logarithm of
the likelihood function is the loglikelihood function £(0) = log L(0). The prin-
ciple of maximum likelihood means that we try to determine a value of 0
that maximizes L(0), or equivalently ¢(0). The maximizing value (if one ex-
ists) is called a maximum likelihood estimator (MLE). Define a k x 1 vector of
partial derivatives S;(0) = 9/00 log(f;(x;;0)) for each i =1, ..., n. Their sum
S(@)=S,0)+---+S,(0) is called the score (e.g., Rao 1973, 367), and the
MLE solves the system of k equations S(0) = 0.

Before the observations X; = x; have been made, the score is a random vari-
able, because its components are random: S;(0) = 9/90 log( f;(X;;0)). Assuming
that the order of differentiation and integration can be changed, we have that
E[S;(0)] = 9/00 [ fi(x;;0) dx; = 0. The latter equality holds because the inte-
gral equals 1 for all @. Therefore, the expectation of the score is E[S(0)] = 0. Write
Cov(Si(0)) =Z;(0),i =1,...,n, and define Z(O) =Z,(0) +---+Z,(0). It
follows that Cov(S(0)) = Z(0), because the observations are independent. This is
one form of the so-called Fisher information of the sample. Subject to regularity
conditions on densities f;(x;; @) (that may involve conditions on both the range of
values of possible explanatory variables and on the tails of the density), none of
components of the score S;(0) take too large a share of the variance of the score,
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so one can appeal to the central limit theorem to assert the asymptotic normality
of the score. Therefore, we have that S(0) ~ N (0, Z(0)) asymptotically.

Example 3.4. Score tests. Consider a hypothesis Hy : @ = 0(. Under the null hy-
pothesis, a” S(0y) ~ N(0, a” Z(0y)a) for any k x 1 vector a, so depending on the
alternative hypothesis, a large number of the so-called score fests can be con-
structed.

Defineak x k matrix H;(0) = 82/8080T log(fi(X;;0)),foreachi =1, ...,n.
Le., this is a matrix whose (r, s) element is 32/30,00, log( f;(X;;0)). Their sum
H@®) =H,(0) + --- + H,(0) is called the Hessian. By a direct calculation one
can show that E[H;(0)] = 82/8080T J fixi;0)dx; — E[Si(0)S;(0)T]. As in the
case of the score, the first term on the right hand side is zero. Using the re-
sult, E[S;(0)S;(0)7] = Cov(S;(0)) = Z;(0), we find an alternative expression for
Fisher information, — E[H(0)] = Z(0).

Example 3.5. Fisher Information for Normal Distribution. Consider the normal
distribution N (1, 02). Let @ = (i1, 0*)". The Fisher information Z(0) is given by

the matrix
1/0? 0
[ 0 1/2 04)] ’ (-2)

If instead we take @ = (i, o)7 then the lower diagonal entry of Z(0) changes to
2/6%. ¢

Suppose 0 is the MLE. By Taylor’s theorem there is vector 0 between the MLE
and the true value 0 such that S(0) = S(0) + H(0')(® — 0). We get from this that
0 —0 = —H(0')"' S(0) provided that the inverse exists. Subject to regularity
conditions S(8)/n — 0,' as n — oo, and H(0)/n has a limit H*(0) that is a
continuous function of 0 at least in the neighborhood of the true parameter value. In
this case the MLE also converges to 0, so it is consistent. Being essentially a linear
function of the score, the MLE inherits the multivariate normal distribution from
the score and asymptotically Cov(8) = Z(8)~"'. For practical inferential purposes
we may assume, for large n, that 0~N (CR —H(é )~!). This leads to the so-called
Wald tests.

There is yet a third type of test that naturally arises from the above theory. Con-
sider a hypothesis Hy : @ = 0. Using a second order Taylor series development
for £(0) around @ and noting that S(8) = 0, we get that

2060 — €(00)) = —(0 — 0,)" H(O')(O — 0,), (3.3)

where 0’ is a point between 0 and 0. The asymptotic result given for the Wald tests
shows that the right hand side has a approximate x> distribution with k degrees of
freedom. This is one form of the so-called likelihood ratio test. The three tests are

! This can mean either convergence in probability or almost sure convergence (Rice 1995,
164).
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asymptotically equivalent, but their small sample characteristics may differ (Rao
1973, 415-418).

We conclude with definition of o(.) and O(.) notation. Let {a,};2 | and {b, }> |
be two sequences of numbers. We say that a, is o(b,) if lim, |a,/b,| = 0, and
a, = O(by,) if |a, /b,| is bounded when n is large. To allow continuous arguments
we say that a(x) is o(b(x)) or O(b(x)) as x — L if a(x,) is o(b(x,)) or O(b(x,))
for any sequence {x,}°°, with x, — L. For example, 6x* is O(x*) and o(x°) as
x — 00, and 6x* is O(x*) and o(x?) as x — 0.
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Sources of Demographic Data

1. Populations: Open and Closed

We can think of a population size as a process. At any given time ¢ a set of individ-
uals satisfy the membership criterion of the population. In the case of a geographic
area, for example, the criterion is “being in the area”. The population can increase
via births and in-migration. It can decrease via deaths and out-migration.! Thus,
births, deaths, and migration form the relevant vital processes.

Traditionally, the term vital event is used for births, deaths, marriages and di-
vorces but not for migration (cf., Shryock and Siegel 1976, 20). Although this
usage has an origin in civil registration, the distinction is not useful in statistical
demography and we consider vital processes to include migration. Changes of
marital status can be vital processes, if the population of interest has been defined
in terms of marital status, but so can be such processes as getting a job or becoming
unemployed, if the population is defined in terms of employment status.

In a limiting case we define a population as closed if it has no vital processes. A
closed population is simply a set of individuals. (In demography it is common to call
apopulation closed even if it experiences births and deaths. We take here a broader
view.) In most demographic applications a population is open in some respects.
For example, in a follow-up study of a fixed set of individuals, the population is
closed with respect to births and in-migration, but it is open with respect to deaths.
Annoyingly from the researcher’s point of view, such a population may, in practice,
be open to out-migration and other forms of attrition or loss from follow-up, as
well.

As discussed below, the distinction between closed and open populations is
important in the design of the data collection for demographic studies. However,
in most parts of this book we have the prototype of national population in mind.
National populations are open to births, deaths, migration etc.

! A population can also change when its definition changes, e.g., when a country, state, or city
annexes or de-annexes an area. Such changes do not involve vital processes, and analysis
of past data on population change should make allowance for any significant boundary
changes that occurred.
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Atfirst thought nothing seems simpler than to define a population. National iden-
tity is so ingrained that a special effort is required to appreciate the conventional as-
pects of the membership criterion. Therefore, consider the following two examples.

Example 1.1. Who Counts in the U.S. Census? The United States Constitution
(Article I, sec. 2) stipulates that “Representatives and direct Taxes shall be ap-
portioned among the several States which may be included within this Union,
according to their respective Numbers, which shall be determined by adding to
the whole Number of free Persons, including those bound to Service for a Term
of Years, and excluding Indians not taxed, three fifths of all other Persons.” Since
nontaxed Indians were not included in these numbers, their coverage in historical
censuses (that started in 1790) is dubious. Slaves were to be counted in a sepa-
rate category in censuses prior to 1870. It seems that slaves were to be counted
in full in the census and then their numbers reduced by two fifths for Federal
apportionment — slaves did not figure into population counts for apportionment of
state legislatures by southern states (cf., Shryock and Siegel 1976, 14—-16; Savage
1982; Anderson and Fienberg 1999, 13). {

Example 1.2. Who Belongs to the Sami Population? In the mid-1990’s consider-
able controversy was caused in Northern Finland by the question of who belongs to
the Sami (Lapp) population of Lapland. Some advocated a definition emphasizing
the role of Sami language, others the length of family history in the area. Differ-
ent cultures had mixed in Lapland over the centuries, so no clear-cut distinction
between the families could be given. Fueling the controversy was the thought that
the original people of the area may be treated preferentially in future legislation.
In the Law on the Sami Cultural Self-Government from 1995 the following (freely
translated) definition was given:

A person belongs to the Sami population, if he considers himself to be Lapp, provided
that (1) he himself or at least one of his parents or grandparents has spoken Sami as his
mother tongue; or (2) he is a descendant of a person who has been marked as mountain,
forest, or fisher Lapp in the books of land or taxation; or (3) at least one of his parents has
been marked or could have been marked as having the right to vote in the election of Sami
representatives.

In addition, a map of the area within which this definition was to be applied, was
published. ¢

These examples display many of the problems that one encounters in trying
to define a membership criterion for a human population. Economic, cultural,
and administrative considerations are typically involved. Even subjective factors
(““... if he considers himself to be Lapp ... ") were involved in the very definition
of the Sami population. How can or ought one define the “true size” of the Sami
population at a given point in time? Not only is the definition subjective, but so is
its measurement: a person’s self-identification may vary over time as well as how
the question asking for self-identification is presented.
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A similar issue arises forcefully in the definition and assignment of racial classi-
fications. The American Anthropological Association concluded that “The concept
of race is a social and cultural construction, with no basis in human biology — race
can simply not be tested or proven scientifically.”? In the U.S., ever since the 1970
census a person’s race is based on self-identification. Since some people identify
with more than one group, the United States began in the 2000 Census to allow for
“multi-race” categories: 63 racial classifications with 6 categories® for single-race
only and 57 for combinations of races (U.S. Census Bureau 2000). Analysis of
time series statistics for racial groups in the U.S. requires care for allowing for
definition changes pre- and post-2000.

Below, we briefly discuss some aspects of the operational definition of national
and sub-national populations and relate these to the coverage and classification
errors that frequently occur. We next discuss censuses and population registers as
sources of population data. We pay attention to historical aspects of the registration
of the vital events, because analysis of past time series of statistics on vital events
will help us understand the accuracy of forecasts. Similarly we introduce the
concept of the Lexis diagram for insight into the complexities of using grouped
data to estimate vital rates in open populations. After that we consider registers
and cohort and case-control study designs as prototypes of data collection for
specific demographic (or epidemiological) problems. We conclude the chapter by
discussing the role of statistical sampling in population estimation. Sampling more
generally will be discussed in Chapter 3.

2. De Facto and De Jure Populations

At any moment in time any specific geographic area has a de facto population,
which consists of all individuals who are present in the area. This concept is
unequivocal but may not always be highly relevant. Consider the following groups
mentioned in the “Recommendations for the 1990 Censuses of Population and
Housing in the ECE Region” (United Nations 1987, 9-10):

(1) persons usually resident and present;
(2) persons usually resident but absent;
(3) persons temporarily present but usually resident elsewhere.

The de facto population comprises (1) and (3), but excludes (2). Often one is inter-
ested in the usually resident, or de jure, population consisting of (1) and (2). The
distinction may seem simple until one considers the cases frequently encountered
in practice:

2 American Anthropological Association, Press Release/OMB 15, Sept. 8, 1997.
3 American Indian and Alaska Native, Asian, Black or African American, Native
Hawaiian and Other Pacific Islander, Some Other Race, White.
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(a) persons maintaining more than one residence;

(b) students not living with parents;

(c) persons living away from home during work week;

(d) persons in military service;

(e) military personnel who maintain a home elsewhere;

(f) institutional populations such as hospitals, or prisons;

(g) persons intending to return to a former home place;

(h) persons who have arrived a short time ago who consider some other place as
their home;

(i) persons expected to return soon from elsewhere.

Categories (g)—(i) may consist of illegal aliens, nomads, vagrants, military, naval,
or diplomatic personnel and their families. They may include merchant seamen,
fishermen, transients in ships, trains, cars, or airplanes, refugees etc. For different
purposes different choices can reasonably be made concerning which of these
groups are included into the population. In many countries and many subnational
areas these categories may be small and so their operational definitions may not
matter in practice. Sometimes these groups do matter, however.

Example 2.1. Accident Rates in Nordic Countries. A comparison of the rate of
traffic accidents in the cities of Gothenburg, Helsinki, Oslo, and Stockholm from
1990-1994 (Nieminen 1996, 22) shows that Helsinki has had a lower rate of
accidents involving passengers inside vehicles (about 1 passenger accident per
1,000 inhabitants in a year) than the other cities (1.5-2.5 per 1,000), but a higher
rate of accidents involving pedestrians (about 0.5 per 1,000) than the other cities
(0.35-0.5 per 1,000). There can be many causes for such differences, including
possible variations in the completeness of the registration. However, a map of the
locations of the accidents in Helsinki (Nieminen 1996, 13) shows that accidents
concentrate near the central railway station, a major gateway for commuters to
work. Although we cannot determine whether this explains the differences between
the cities, it is clear that while the accidents are tabulated according to the place
of occurrence, the denominator population is the de jure population. This is a
mismatch. A proper denominator for the risk rate would be the de facto population
because many accidents occur to individuals who commute to work. ¢

In the industrialized countries, the official population figures typically rely on
some form of de jure definition (Shryock and Siegel 1976, 50). Once the defini-
tion of the population is agreed upon, it is important to consider the quality of
demographic information. If the analysis of time trends is of interest, have the
definitions remained the same over time? If comparisons between different areas
are of interest, are the definitions the same in the different countries? Finally, if
the definitions are comparable, are the counts and classifications accurate?

Example 2.2. Undercount in U.S. Censuses. Consider the population sizes reported
by U.S. censuses of 1940-2000. The “net undercount” — true size minus census
count — can be estimated by several methods (cf., Chapter 11). To appreciate the
order of magnitude, consider the following estimates of the undercount (in %) by
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race based on “demographic analysis” (Robinson et al. 1993, 1065, and Robinson,
Adlakha, and West 2002, 26):

Non-Black Black
year male female male female
1940 52 4.9 10.9 6.0
1950 3.8 3.7 9.7 54
1960 2.9 24 8.8 4.4
1970 2.7 1.7 9.1 4.0
1980 1.5 0.1 7.5 1.7
1990 1.6 0.6 8.1 3.1
2000 0.2 -0.38 5.1 0.5

We see that Blacks have higher undercount rates than Non-Blacks, and males have
higher undercount rates than females. Note that the rates show the net effect of both
census misses and census duplications or other erroneous enumerations. By and
large the net undercount rates declined from 1940 to 1980, and increased in 1990. It
is possible that attempts to obtain a complete count may lead to increased erroneous
enumerations, and the 2000 census appears to have overcounted non-black females.
Demographic analysis also shows that net undercount varies markedly by age.
For example, in 1990 Black males in ages 25-60 had the lowest probabilities of
being enumerated in the census whereas non-blacks in ages 15-25 may even have
been overcounted. Clearly, census numbers suffer from problems of comparability
across sex, age, race or ethnic group, and time. ¢

Migration can also lead to surprising conceptual problems. In the case of in-
ternational geographic migration most countries are unable to keep track of emi-
gration, and many countries have difficulty in keeping track of (especially illegal)
immigration. The United States, for example, does not have any statistics con-
cerning emigration, and while it has annual statistics of legal immigration, only
indirect estimates (e.g., Muller and Espenshade 1985, Espenshade 1997) are avail-
able for the much larger illegal immigration. In Europe, the quality of migration
data varies considerably. The Nordic countries with well-functioning population
registers have relatively good data on people moving in, because typically many
aspects of daily life (health care, child care, opening of bank accounts, access to
subsidized public transportation etc.) depend directly or indirectly on their being
registered. It is somewhat harder to keep track of people moving out, unless the
out-movers go to a country with a good register that agrees to supply information
about new migrants received. The European countries that rely on censuses face
problems similar to those of the United States. A practical problem in compiling
statistics on migration is caused by the fact that the countries do not adhere to the
same definition as to who is a (long term) migrant (Poulain 1993, 354). The U.N.
has recommended that an intention of staying at least a year in a country (after
an absence of at least a year) would be required to consider a person a migrant,
but this is not followed by most European countries (Poulain 1993, 355; Eurostat
2004, 151-153). The use of different definitions of migrants implies that a person
may be counted as belonging to the population of two countries at the same time,
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for example. Thus, even if the practices of census taking would agree between two
countries, the definition of the population during intercensal years need not be the
same across countries.

A further problem in published population statistics arises from possible mis-
classifications by age, race, marital status, place of residence etc. Although age
is nowadays accurately known for inhabitants of most industrialized countries, a
self-reported age may be in error. In non-industrialized countries age may have
been less important, especially in the past. For example in the population of Philip-
pines in 1960 showed remarkable digit preference (or age heaping) for multiples
of 5 years. For example, the counts in ages 59, 60, and 61 were 72,2006; 275,436;
and 31,299, respectively (cf., Shryock and Siegel 1976, 116).*> Where feasible,
such reporting problems may be mitigated by recording year and date of birth as
well as age (to cross-check).

Although demographic methods typically are applied to human populations,
demographic concepts have methodological value more broadly. Some notions
that are basic for the study of human populations can be usefully extended to
populations consisting of other types of elements. Populations of types of consumer
goods (cars, refrigerators, . .. ) or species of animals (rabbits, fish, insects, ... ) are
obvious examples experiencing births, deaths and migration, and having a changing
age structure. In addition, one can also study interesting populations consisting of
human aggregates such as households and enterprises. Their definition often has
an administrative, de jure basis, but for application one is typically interested in
the de facto numbers.

Example 2.3. What Is a Household? Households can be defined in terms of house-
keeping, or one or more persons live in a housing unit and provide themselves with
food and possibly other necessities of life (cf., Van Imhoff and Keilman 1991, 10).
Housing units often have not only de jure residents but de facto residents as well.
Therefore, the composition of a household may only be revealed by special surveys.
Note that no aspect of kinship is usually involved in the definition of a household
even though many households are familial units also. In addition to births and
deaths, households may also split. ¢

Example 2.4. Corporate Demography. Inenterprise or corporate demography (cf.,
IImakunnas, Laaksonen, and Maliranta 1999; Carroll and Hannan 2000, 51) data
often are available for individual establishments, such as factories, warehouses,
restaurants, or stores. In some cases, data may exist for departments within estab-
lishments, such as different production lines in a factory. Enterprises, corporations

* The age heaping was still present to a lesser extent in the 1990 census, where the numbers
for the three ages were 275,560; 322,233; and 205,177, respectively (Hobbs 2004, 137).

3 Similar phenomena occur in other statistics. For example, Breslow and Day (1987, 163)
presented data on smoking from the so-called British Doctors’ study (cf., Example 5.1 be-
low). Smoking status was classified into classes 0,4, 5-9, . . ., 30-34, 35-40 cigarettes/day.
An estimate of the average number of cigarettes is also given for each class. The averages
are quite close to lower limits of the classes suggesting that the respondents have had a clear
digit preference of multiples of five.
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and other economic organizations with a legally defined (de jure) status may con-
sist of several establishments. Finally, conglomerates consisting of legally separate
corporations may form a unit of analysis. Data on enterprises are usually collected
for some administrative purpose such as taxation or occupational health. Enter-
prises with low level of economic activity may be inadequately surveyed or even
completely omitted by the legal definitions in use. Therefore, the size of the en-
terprise population may be underestimated in official statistics at the same time
that total employee population statistic is relatively accurate. In addition to births,
deaths, and splits, enterprises may also merge. {

3. Censuses and Population Registers

In statistics it has become customary to contrast censuses and samples. A census
is a study comprising the whole population of interest, whereas a sample involves
only a part. A population census refers more specifically to a complete count of the
population of an area at a given time. Censuses may be combined with samples in
various ways. Some data (e.g., age) may be collected for 100% of the population
and other data (e.g., income) collected from, say, every 100™ unit. A census can be
de facto or de jure based and typically collects such basic information as age, sex,
and, perhaps on a sample basis, marital status, literacy, educational attainment,
occupation, industry, place of usual residence, place of birth (cf., Shryock and
Siegel 1976, 32; United Nations 1987, 5-7). Most countries of the world (including
the Unites States, England, France, China, and India) rely on censuses as the
basic source of population data. In practice, censuses are carried out via mail
questionnaires and door-to-door interviewing. Since population counts are often
used to apportion political power, for military conscription, or for taxation, a census
may not always be an innocuous operation.

Example 3.1. Nigerian Censuses. Prior to the 1991 census the population of
Nigeria was estimated to be 95.7 million in 1985 by the United Nations, 110 mil-
lion in 1988 by the World Bank, and 112 million in 1987 by the Nigerian govern-
ment. Estimates for the year 1991 were in the range 112—123 million (Population
Today, June 1992, No. 6). The history of the Nigerian censuses goes back to the
1860’s but apparently the quality of the results, including that of the previous cen-
sus, in 1973, has been less than satisfactory. Presumably, the ethnic diversity of
the country has played a part in this. With this background it was quite a shock
that the 1991 census count was 88.5 million, or more than 20% less than the esti-
mates. Evidently, any attempt at a statistical analysis of the population of African
countries must somehow account for the uncertainty of the census results. ¢

In countries using censuses a separate system has been in place for the estima-
tion of births, deaths, marriages, migration etc. For example, in the United States
death registration became fairly complete in Massachusetts around 1865 (Shryock
and Siegel 1976, 21). In the year 1900 a “death registration area” was established
comprising the District of Columbia and ten states. A “birth registration area” was
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established in 1915 with the same area included. Complete geographic coverage
was achieved in 1933 although only 90% registration was required for the admis-
sion of a state into the area (Shryock and Siegel 1976, 274). We see that even in
the industrialized world one cannot expect long time-series of known statistical
quality, on vital events.

In contrast to the statistics usage, in demography censuses typically are con-
trasted with population registers. Registers provide continuous information about
all members of the (typically de jure) population. The Nordic countries, Japan, and
Russia are examples of countries with population registers. Although nowadays
population registers are maintained as computerized databases in many countries,
they have a long history. Finland and Sweden have continuous, register based pop-
ulation statistics from the year 1749 onwards. The registers were kept by the church
based on an ecclesiastic law of 1686. Each parish would keep track of the vital pro-
cesses of births, deaths, marriages, and changes of parish. Initially, these registers
developed out of books that were maintained since the 1500’s for the follow-
up of parishioners’ progress in the knowledge of reading, writing, and the Bible
(Nieminen and Markelin 1974). The establishment of the population statistics
around 1750 seems to have occurred in part because estimates compiled by the
Royal Academy in Stockholm showed that the true population was only about
2 million instead of the generally believed figure of 3 million (Terédsvirta 1987, 3),
a situation not unlike the one that occurred much later in Nigeria!

The reliability of the Finnish vital statistics has been studied using parish level
data by Pitkédnen (1977), for example. He has shown that many infant deaths were
omitted from the registers during the 18" century, because unbaptized children
were recorded as stillborn, and baptized infants who died young were deliberately
omitted. Pitkdnen (1986) also shows that a curious increase in the mortality of the
middle-aged and older men during the first decades of the 20" century may have
been an artifact caused by migration to the United States. Apparently a fairly large
number of deaths that occurred overseas were recorded in the parish registers, even
though the persons themselves had been marked as emigrated. The mis-match of
the numerator and denominator (as in Example 2.1) could have caused an artificial
increase of a few percent in the estimated mortality (Pitkdnen and Laakso 1999).

Countries with population registers do conduct censuses every five or ten years to
provide occupational and educational details that are not included in the population
register itself. The situation varies between countries but for example in Finland this
involves the linking of computerized databases rather than door-to-door activities
(Harala and Tammilehto-Luode 1999).

4. Lexis Diagram and Classification of Events

A formal aspect of the recording of the vital events is their classification by age
and time. Much the same way as with defining populations, initially nothing seems
simpler. However, since it is customary to compile statistics on vital events by
discrete time, rather annoying complications arise. To appreciate the problem, we
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FIGURE 1. Lexis Diagram.

introduce the concept of a Lexis diagram, one of the most useful technical devices
of demography.®

We let horizontal axis refer to time ¢ and vertical axis to age x in Figure 1. For
each person in a well-defined population we may draw a life line that starts at a
time and age when the person enters the population and ends at the time and age
when the person exits the population. Typically the entry would occur at birth and
the exit at death, but entries or exists due to other vital processes (e.g., migration)
may occur at other ages. The line L of Figure 1 is an example of a life line.

The complications referred to above arise from the following. Suppose we are
interested in describing the mortality of the population in age x during year . We
have three options. (1) We may take those who were in age € [x, x + 1) at exact
time ¢, and observe their mortality experience during year ¢. The life lines of these
individuals touch or cross the line AD and the deaths among them occur in the
parallelogram ACED. The problem is that these individuals have their (x + 1)
birthday during the year, so the deaths occur to both x and x + 1 year-olds. (2) We
may take those whose x" birthday occurs during year ¢. Their life lines cross the
line AB and their deaths occur in the parallelogram ABFC. The obvious problem is
that the deaths occur in part during year ¢ + 1. (3) We may consider those who are
present in the population in age x during any part of the year ¢. Their life lines cross
either AB or AD, and the deaths are recorded in the rectangle ABCD. One problem

® Wilhelm Lexis (1837-1914) was a German statistician and economist who was among
the first users of the diagram in Lexis (1875). Others (e.g., Gustav Zeuner, Karl Becker)
had used similar graphics in the 1870’s also.
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in this approach is that it mixes deaths from two birth cohorts: life lines crossing
AD belong to those born during calendar year t — x — 1; life lines crossing AB
belong to those born during year ¢ — x. Also, unlike the other two approaches, it
is less directly applicable to forecasting because forecasts are typically formulated
in terms of cohorts.

Many countries routinely compile their vital statistics based on the rectangles.
They give rise to period measures (i.e., measures relating to a particular observa-
tion period such as a calendar year) of life expectancy, for example. Since such
calculations combine data concerning different cohorts (mortality experience of
the x + 1 years olds is recorded from the rectangle above DC, for example), one
often thinks of them as referring to synthetic cohorts, whose experience corre-
sponds to those alive during any part of the year ¢.

A more refined analysis is feasible if continuous-time data are available. Con-
sider the lifeline L’ of Figure 1. Suppose it refers to a woman, whose marriage
is marked by ‘+’, whose first and second children were born at mark ‘o’. The
analysis of the “waiting times” between the marks is called event history analysis.
Statistical techniques for such analyses will be discussed in Chapters 4 and 5.

In general, the follow-up of cohorts requires that events are classified by the year
of occurrence, age, and birth year. With the triple classification of vital events, the
events of interest can be divided into the friangles of Figure 1, so any of the above
approaches could be implemented. In modern computerized registration systems
triple classification poses no particular problems. However, one should note that in
all countries of the world demographic statistics have earlier been based on separate
tabulations that have been extracted from the primary source materials by hand.
In many countries they still are. In non-automated tabulations the requirement of
triple classification is an additional burden. Consequently, one cannot expect long
time-series based on triple classification in any country in the world.

There is an even more fundamental problem in some demographic and related
statistics. Above, we have taken for granted that the events are classified by the year
of occurrence. However, sometimes events are tabulated by the year of reporting.
This seemingly illogical practice may sometimes be followed because it is desired
to published statistics in a timely fashion. One can argue that if the number of
missed reports during year ¢ equals the number of those reports that actually relate
to events from earlier years, but come in during ¢, then no error occurs. This
argument is misleading, however, since much of the interest in official statistics is
in changes of trends, and the trends will be distorted if tabulations are made by the
year of reporting.

The timeliness requirement does produce a problem for all statistics, even
those based on the most modern computer systems. For example, it is typical
that information about deaths occurring abroad come into the registration system
months, or years, after the event. For this reason, statistical agencies establish
rules as to how long they wait for reports of the events. Statistics compiled in
this manner may sometimes have to be revised, if the missing events are nu-
merically important. The historical Finnish parish registers discussed above are a
case in point.
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One should also note that there are events of demographic interest for which the
time of occurrence is not easily observable. For example, the onset time of many
cancers, or that of HIV infection, is not directly observable, and the presence of
a disease may only become known when the disease has progressed sufficiently.
In other cases, such as noise-induced hearing loss, the impairment may progress
gradually, and no clear-cut definition is feasible. In such cases the reporting of the
events may depend crucially on the severity of the symptoms and the efficiency of
medical screening. In these cases there may not exist any estimates of actual onset
times, and tabulation by year of reporting is the only practical possibility. Never-
theless, we caution that the statistics thus obtained may misrepresent actual trends.

5. Register Data and Epidemiologic Studies

5.1. Event Histories from Registers

Much of demography deals with data classified by age group, time period etc. With
modern computing power, the analysis of data sets consisting of individual level
data has become feasible. Computerized population registers contain life histories
of all individuals in a population (cf., Harala and Tammilehto-Luode 1999). These
have been supplemented by information from other registers, or from censuses,
to analyze mortality, for example (Valkonen and Martelin 1999). Census data are
entered into databases, and historical parish records have been available in com-
puterized form (e.g., the Umea Demographic Database at http://www.ddbumu.se,
or the Scanian Demographic Database at http://ddss.nu/Ldd/fortext.htm, both in
Sweden). Social security systems or insurance companies often have highly de-
tailed work histories that are continually updated.

In addition to the administrative data sources mentioned above, computerized
data bases have been created for specific research tasks. For example, cancer
incidence data are available in many countries from specific cancer registries (e.g.,
Teppo and Hakulinen 1999). Some countries, such as Finland, maintain a large
number of other special purpose databases on births, congenital malformations,
occupational diseases, causes of death, abortions, sterilizations, implants, visual
impairments, intellectual disabilities, diabetes, infectious diseases etc. (Gissler
1999)

The strength of the continuously operating administrative and special purpose
registers is their ability, in principle, to provide information on trends. However,
their usefulness may be limited by narrow data content and their information may
be biased for specific research uses because they cover only certain groups of
persons.

5.2. Cohort and Case-Control Studies

Complementing census or register based information, we have increasingly avail-
able databases from large epidemiological studies and from social surveys. These
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databases have the advantage that they have been created with specific research
hypotheses in mind, so, in general, they can be expected to provide superior data
sources for certain kinds of causal research.

In Section 4, we used “cohort” to refer to those born in a given year. More
generally, a cohort consists of those individuals that have experienced a given
event at the same time. Strictly speaking, one can then think of a cohort as a closed
population. In practice, the term is often used in a way that allows for the possibility
that a cohort is depleted by deaths. Or, a cohort can be open with respect to deaths.

In addition to birth cohorts, those entering college during a given semester form a
cohort, women who have given birth on the same day form a cohort, etc. In response
to the increased public interest in effects of environment and individuals’ behavior
on health, governments have funded increasingly many follow-up studies to try to
unravel the causal chains involved. As a result, there is an increasing number of
high quality data sets containing individual-level information on cohorts.

An alternative, case-control (or case-referent) study design in epidemiology
tries to assess relative risk by comparing those who have fallen ill (“cases”) to
those who could have fallen ill, but have not (“controls” or “referents”). Case-
control data typically are collected from an open population by sampling, so its
study design is quite different from that of a cohort study.”

Both designs are much used in epidemiology, and they are both well-suited to
demographic studies. We briefly introduce their basic logic and point out some
possible pitfalls. For a more detailed discussion, Breslow and Day (1980, 1987),
Kleinbaum, Kupper and Morgenstern (1982), Woodward (1999) or dos Santos
Silva (1999) may be consulted.

5.3. Advantages and Disadvantages

A cohort study is based on the idea that one follows a cohort over time, records
the exposures or the occurrence of other potential causal agents, and estimates the
extent to which the subsequent illnesses among the members of the cohort vary by
exposure history. Since specific illnesses typically are rare and may have a long
latency time, cohort studies can be both costly and time consuming.

Example 5.1. British Doctors’ Study. In the famous British Doctors’ Study (Doll
and Peto 1976) the primary objective was to study the lung cancer risk caused by
smoking. In October 1951, all men and women in the British Medical Register who
were believed to be resident in the U.K. were sent a questionnaire. The first analyses
related to the men only. A total of 34,440 men (or 69% of the men alive at the
time) gave their name, address, age, and sufficient information about their smoking
habits to be included in the study. Follow-up started in November 1, 1951, and

7 Increasingly, case-control studies are conducted within cohorts, i.€., both cases and con-
trols are restricted to members of a predefined cohort. The cohort is followed and controls are
selected over time as cases appear. These hybrid designs are called nested case-control, case-
cohort, or case-base designs (cf., Prentice, Self and Mason 1986; Flanders, Dersimonian
and Rhodes 1990).
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continued until October 31, 1971. Repeat questionnaires were sent in 1957, 1966,
and 1972 to collect current information on smoking. The numbers of respondents
(as proportion of those alive in parenthesis) were 31,318 (98.4%), 26,163 (96.4%),
and 23,299 (97.9%), respectively. A total of 10,072 deaths were observed during
the follow-up, with 441 caused by lung cancer. In addition, much information was
obtained concerning other cancers, cardio-vascular diseases and other diseases.
Among the results, one may note that the age-standardized death rate (Section 3.3
of Chapter 5) due to lung cancer was 0.1 per 1,000 person years among the non-
smokers and 1.4 among the cigarette smokers — the relative risk of the smokers is
about 14-fold. Among the latter, the risk increased from 0.78 for those smoking
1-14 cigarettes/day, to 1.27 for those smoking 15-24 cigarettes/day, to 2.51 for
those smoking over 25 cigarettes/day. The evidence on increasing dose-response
was clear. O

A case-control study is based on the idea that if we find a group of people with
a specific illness, and select a group of those who could have the illness (i.e., are
at risk) but do not have the illness, then any differences in the earlier exposures of
the two groups may be causally related to the illness. The difficulty in carrying out
the study centers on the investigator’s ability to find controls that can be validly
compared to the cases (Feinstein 1985). No exact rules are available, but if one
can identify the population out of which the cases arose, then a random sample
of the same population are eligible for being controls. (For a lively debate on the
matter, see the 1985 contributions of O. Miettinen, J. Schlesselman, A. Feinstein
and O. Axelsson in Journal of Chronic Disease 38, 543-558.)

Example 5.2. Doll and Hill Study. Prior to the British Doctors’ Study, Doll and
Hill (1950) had used the case-control design to investigate the role of smoking
and atmospheric pollution as risk factors for lung cancer. The study was planned
in 1947. Twenty London hospitals were asked to notify the investigators of all
carcinomas of the lung, stomach, colon, or rectum. The latter three cancers were
investigated to provide a possible contrast to lung cancer. Although complete
notification was not achieved, the authors believe that omissions could not bias
the inquiry by being a select group, since the hospitals did not know the detailed
hypotheses being studied. Between April 1948 and October 1949 a total of 2,370
cancers were reported. It had been decided beforehand that patients 75 years of
age and older would not be admitted, so 150 cases were excluded from the study.
In 80 cases the cancer diagnosis was found to be erroneous, so 2,140 patients were
left. Of these, 408 could not be interviewed due to early discharge (189), being too
ill (116), death (67), deafness (24), being unable to speak English clearly (11). One
case was excluded due to “wholly unreliable” replies. Thus, 1,732 cancer cases
remained. Of these, 709 were lung cancer cases. Despite the exclusions, the authors
claimed that the cases were “a representative sample of the lung-carcinoma patients
attending selected London hospitals”. As controls for the lung cancer cases, the
investigators chose 709 patients at the same hospitals who had come there for some
other illness. For each case, the control had to be of the same sex, within the same
5-year age-group, and have come to the same hospital at about the same time.
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In other words, the controls were individually matched to the cases. Somewhat
more of the cases turned out to live outside London than of the controls, but again
the authors believe that this can hardly influence the results. As one indication
of the excess risk they mention that the odds of never smoking were 2:647 among
the male lung carcinoma patients, whereas the odds were 27:622 among the male
controls. Alternatively, one could say that the odds of cancer were 2:27 among the
non-smokers and 647:622 among the smokers. (I.e., there were 29 non-smokers in
the data set with 2 lung cancers, and 1,269 smokers with 647 lung cancers.) The
resulting odds ratio for cancer is 647:622/2:27 = 14 indicating a similar relative
risk as the one later found in the British Doctors” Study. (This analysis does not
allow for the matching that was used in the study, however, and the analysis would
now be done in a different way, see Example 7.5 of Chapter 5). ¢

Examples 5.1 and 5.2 suggest the following, simplified characterization of the
merits of the two approaches. The cohort study is often relatively slow and costly,
especially if the illness is rare and the latency time of the illness is long, but the
results are more trustworthy. The case-control study typically is quicker and less
expensive but it may be less reliable if the choice of controls is biased in some way.
We will come back to this issue in Section 2.3 of Chapter 5. Moreover, when cohort
studies are carried out prospectively, the exposures and illnesses both occur after
the study has been initiated.® In contrast, often a case-control study is retrospective,
so that information on exposures must be obtained from remaining records, or it
must be remembered by the subjects or by other people who have known them.’
Therefore, the exposure information is typically weaker, and possibly biased, and
imperfect controls may also cause bias.

However, the potential gains in efficiency are often seen to outweigh the risk
of bias, and the case-control design has become a standard tool of epidemiologic
investigation. With this background it is surprising that in demography, most in-
vestigations with causal goals have cohort designs.

A very large number of demographic studies are cross-sectional, so they follow
neither paradigm. Since the time element is missing from those designs, they often
lack credibility for causal inferences.

5.4. Confounding

A defining feature of experimental research is that the researcher can manipulate
and control the causal factors of interest. For example, in a study of drug effi-
ciency, groups with precise dosage are formed and subjects are randomized into
them. In many epidemiologic studies, such as those discussed in Examples 5.1 and
5.2, ethical considerations prohibit manipulation of exposures. Similarly, in most
demographic studies (e.g., when investigating the determinants of fertility) the

8 Logically, a retrospective cohort study is also a possibility. In this case one defines a
historical cohort and collects information on it from existing records.
% In nested case-control studies data collection is usually prospective.
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researcher has no choice but to observe what happens, and to try to make com-
parisons in as valid a manner as possible. We call such studies observational. The
validity of an observational study with causal aims can sometimes be compromised
by unobserved interdependencies of the variables being studied.

Two variables are said to be confounded in a study if their separate effects
cannot be distinguished from each other (Moses 1986, 9—10).!° If one variable has
negligible effects then the possible confounding may not be important (cf., Bailey
1982). There are also a multitude of other ways in which a comparative study may
fail. Yet, possible confounding is often a major concern.

Confounding may be present in an observational study when those subjects
who receive a treatment differ systematically from those who do not. For exam-
ple, when the large-scale randomized (and double-blind placebo-controlled) Salk
vaccine trials were conducted, an observational study was also done to compare
(i) polio incidence rates for second-grade students who were vaccinated and whose
parents gave permission for vaccination with (ii) the rates for first-grade and third-
grade students in the same schools. Comparison with a randomized controlled
experiment showed the risk of contracting polio was confounded with parental
permission — higher income children more readily received permission but had
lower immunity from the disease.

Confounding may also be present even in a randomized controlled experiment
when subjects leave the study or otherwise do not follow protocol for reasons re-
lated to the assignment of the treatment. For example, subjects assigned a placebo or
a treatment may perceive it as inferior and leave the study to pursue other treatment.

For an illustration, consider the artificial data of Figure 2. The aim of the study is
to understand what might explain variations in Y. Two groups are involved: there
are 24 individuals marked with a ‘+’ and 36 individuals marked with a ‘o’, and
there is one continuous explanatory variable X. Define G = 1, for the individuals
of type ‘4, and let G = 0 otherwise. The data are well described by the estimated
regression equation

Y; =1.4746.65G; +0.915X; +¢;, 5.1

where the estimated residuals e;, i = 1, ..., 50, have the variance 2.19%. The co-
efficient of G has a ¢t-value = 10.27 and the coefficient of X has a z-value = 5.90.
With P-values < 0.001, both effects appear highly significantly different from 0.

Suppose now that an investigator has no knowledge of the two types of individ-
uals, and fits a simple linear regression with X alone as an explanatory variable.
The estimated equation is

Y; = 9.94 4+ 0.192X; + e;, (5.2)

10 This is a rather general characterization. In particular, it does not include specific assump-
tions concerning the causal roles of the variables. For a review of the many complexities
that arise when the concept is operationalized in an epidemiologic context, see Geng, Guo
and Fung (2002).
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FIGURE 2. Example of Confounding.

where the residual variance is 3.67%. The coefficient of X has a t-value = 0.83 and
a P-value = 0.41, suggesting that X has no influence on Y. The estimated effect
of X is tangled up with the unmeasured group indicator, and the conclusion of the
study is incorrect.

Note that had the researcher restricted his or her study to those of type ‘4 only,
and regressed Y on X, the estimated slope would have been 0.83 with a P-value
of 0.003, so the correct conclusion would have been reached. The same is true if
only those of type ‘o’ had been studied (resulting in the estimated slope = 0.99,
and P-value < 0.001). This suggests that restricting the scope of the study by
controlling a variable is one way to avoid confounding.

On the other hand, suppose the investigator was interested in comparing the two
groups, and did not measure X. Using a two-sample ¢-test, he or she would have
found that a 95% confidence interval for the mean of those of type ‘+’ minus the
mean of those of type ‘o’ is (3.47, 6.37). The conclusion that those with a ‘4’
have a higher mean would have been correct, but the difference would have been
underestimated by approximately a half due to the confounding of G and X.

Both cohort and case-control designs often give rise to contingency tables whose
analysis can be invalid, if confounding is present. In complements we indicate some
classical procedures for handling suspected confounding via stratified analysis. In
Chapter 5 we show how regression techniques can be used to do the same.

6. Sampling in Censuses and Dual System Estimation

If it were not for the need of geographic detail (for municipalities, city neigh-
borhoods or blocks, etc.), sample surveys would probably have replaced censuses
a long time ago. Samples would be less expensive to carry out and they reduce
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the burden of respondents because only a fraction is included. More extensive
information can be collected by well-trained personnel in a sample survey than
in a census that has to rely on temporary work force. In addition, being based
on deliberate randomization, the precision of statistical sampling can be assessed
based on the sample itself (Chapter 3), whereas errors in a census cannot be eval-
uated based on the census only. These advantages have been used to complement
census information in various ways.'!

Sampling has been used in the U.S. decennial censuses since 1940 to collect
part of the information. The so-called long form requesting detailed data on in-
come and other characteristics is given to approximately 10% of the respondents,
the fraction being larger in smaller areas and smaller in larger areas. Major sav-
ings in response burden are achieved by this without unduly compromising data
quality.

Sampling has also been used in the United States to evaluate the accuracy of
the decennial censuses. The “demographic analysis” estimates of Example 2.2
are essentially based on consistency checks between the current census, earlier
censuses, and the recorded vital events. A problem in such estimates is that they
rely on the assumption that such other pieces of earlier information are trustworthy,
an uncertain proposition at best, and they depend on consistency in definitions (e.g.,
racial classification) among the various data sources.

A direct statistical evaluation of the census can be made by redoing the census on
a sample basis in different parts of the country. Suppose the unknown population
of an area is N, with n; individuals counted in the census. Suppose the second
census count is 7,, and one can verify that m individuals were counted in both
censuses. A more refined analysis will be given in Section 5 of Chapter 5, but
let us condition here on n; and n,. Assume that the two counts are independent,
and that individuals are equally likely to be counted during either occasion. The
probability of counting m individuals in both censuses is equal to the number of
ways of choosing m from the n; in the first census times the number of ways of
choosing ny — m from the N — n; not counted in the first census, divided by the
number of ways of choosing 7, from N. The resulting probability of observing m
can be written as P(m;n,, N — ny, n,), when we first define

P(x;oe,ﬂ,y)s(i‘)(yfx>/<“;“ﬂ>. ©.1)

Here max{0, y — B} < x < min{e, y} and P(x;w, B,y) =0 otherwise
(Exercise 8). This probability distribution is called the hypergeometric distribu-
tion (DeGroot 1987, 247-250) and we can use it to calculate the probability of
observing m when we know N (and n; and n,). In the census context, we observe
values of ny, ny, and m but we do not know N. One way to formulate a guess

! The existence of censuses is very important for many sample surveys, because the census
can provide a frame or list from which a probability sample can be drawn. The census can
also provide information adjusting a sample or calibrating estimates based on the sample to
agree with observations on the whole population. We will not pursue these aspects, however.
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(or estimate) of N is to choose the value that makes the observed data as likely
as possible. We view (6.1) as a function of N (a likelihood function) and choose
the value of N that maximizes (6.1) (cf., Feller, 1968, 45-46). The maximizing N
is the maximum likelihood estimator. Here, the MLE is essentially N = niny/m
(Exercises 9, 10).

Example 6.1. Underreporting of Occupational Diseases. The Finnish Register of
Occupational Diseases obtains its information from two sources. A suspected case
of occupational disease must be reported by the examining physician to author-
ities (first capture). The case must also be reported to the insurance institution
responsible for compensation (second capture). The following data were obtained
in 1980: n; = 3,769, n, = 3,053, and m = 1,591. The total number of cases re-
ported was M = 3,769 + 3,053 — 1,591 = 5,231. In this case N =3,769 x 3,053/
1,591 =7,232, or the ratio between the estimated cases to the reported cases would
appear to be ¢ = N/M = 1.38. However, it was suspected that the likelihood of
reporting would depend on the diagnosis. The main diagnostic groups were (a)
noise-induced hearing loss with M = 1,856 and ¢ = 1.20, (b) diseases caused by
repetitive or monotonous work with M = 1,448 and ¢ = 2.47, (c) skin diseases
with M = 1,171 and ¢ = 1.23, (d) other diseases with M = 756 and ¢ = 1.34.
Adding the disease specific estimates leads to an overall estimate of 8,258 cases in
1980. The fact that diseases in category (b) are poorly reported is understandable,
because the connection between working conditions and the disease is particularly
hard to establish for them. ¢

Some populations are especially hard to estimate, because their membership
criterion involves illegal activities. Drug use is an example in which users are
expected to be reluctant to reveal their user status (cf., Turner, Lessler and Gfroerer
1992). Yet, a drug user may end up being registered in several administrative
registers. This provides a basis for population estimation.

Example 6.2. Numbers of Drug Users. In Finland, information about heavy drug
use is available through several registers. The most important ones are the Hospital
Discharge Register and the Criminal Report Register. In 2001 there were n; = 446
reports from the former, n, = 825 reports from the latter, and m = 53 reports from
both registers, for heavy drug use in the Helsinki Region (Helsinki, Espoo, Vantaa,
Kauniainen). This yields the estimate N = 446 x 825 /53 = 6,942. We will come
back to this in Example 3.7 of Chapter 5.

A form of this capture-recapture method was used by Sir Francis Bacon in the
study of wildlife populations around 1650 (Cormack 1968). Laplace applied it to
human populations in the 1780’s. The method has been reinvented many times,
whence the names “Petersen’s method” or “Lincoln index” in ecology. Its modern
use in demography is usually accredited to Chandra Sekar and Deming (1949). In
demography it is often called dual systems estimation (DSE) (Marks, Seltzer, and
Krotki 1974).

Simple as N = n n,/m may seem, in practice the application of dual systems
estimation to the study of the census is complicated by several factors. First, the
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population may be heterogeneous with respect to the probability of being captured.
If the heterogeneity is observable, it can be modeled by stratification (Chandra
Sekar and Deming 1949) as we did in Example 6.1 or by logistic regression
(Huggins 1989, Alho 1990b). Second, error in ny, n,, and m may arise from data
errors (names, addresses etc.) that should be corrected. Third, actual human pop-
ulations are typically open, so the de facto population of an area may not be the
same during the two counts (cf., Alho et al. 1993). Nevertheless, the dual systems
approach provides a practical way to analyze the coverage of a census (cf., Mulry
and Spencer 1993; Kostanich 2003a,b; U.S. Census Bureau 2004). A more detailed
discussion of population heterogeneity will be taken up in Section 5 of Chapter 5,
and Chapter 10 presents an overview of the whole problem of census evaluation
using dual systems techniques in the U.S. context.

Exercises and Complements (*)

1. Consider (a) your own country, (b) the city you live in. Which is bigger, the de
Jjure or the de facto population?

2. Digit preference has been quantified in demography using statistics that are
based on comparing the size of the enumerated population to the population one
would expect to see in the absence of digit preference. Define V, = enumerated
population in age x. Whipple’s index (for digit preference of ages 25, 30, ...,
60) is defined as,

8 1 62
2} V20+5y /g Z V.
y=

x=23

This is of the observed/expected form if in reality all V,’s are equal. Give some
more general conditions, under which this index still works. (Hint: Consider
5-year intervals [23, 27], [28, 32],...and assume that V, is (a) linear in each
interval, (b) an odd function around the center of the interval: V5_, — Vo5 =
—(Vassx — Vas) for x =1, 2, etc.) For more information about quantifying
digit preference, see Shryock and Siegel (1976, 116-118).

3. Consider Example 5.2, where an odds ratio for disease (among smokers and
non-smokers has been calculated as 647:622/2:27. (a) Show that the odds ratio
for smoking (among those diseased and non-diseased) has the same value.
Therefore, the value of the odds-ratio does not depend on whether the data
come from a case-control, or a cohort study. (b) Given that the data come
from a case-control study, can one say that the risk of cancer is 2/29 for the
non-smokers and 647/1269 among the smokers?

*4. Suppose the results of either a cohort or a case-control study are presented as
a2 x 2table,

111 Not Total
Exposed a b ni
Not c d no

Total ny niy N
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*6.
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Here N = n; + n, = m; + my, is the total number of subjects. The odds ratio
is estimated as OR = ad/(bc) under both study designs. Condition on all the
margins np, ny, mi, my. Then, any one element of the matrix defines the others.
Denote the upper left hand corner of the matrix by A and its value in a partic-
ular experiment by a. Under the null hypothesis that the true odds ratio is = 1,
the probability of having a exposed who are ill is P(a;n;, ny, m;) as defined
in (6.1). Thus, E[A] = mn;/N and Var(A) = m(n;/N)(ny/N)YN —my)/
(N — 1) (e.g., DeGroot 1987, 247-250). As discussed by Feller (1968, 194) the
variable X = (A — E[A])/Var(A)”> ~ N(0, 1) asymptotically, so X2 ~ x2
distribution with one degree of freedom. Thus, the null hypothesis is re-
jected at risk level «, if X? > ki_q, where ki_, is the 1 — o fractile of the
x2 distribution. Show that the observed value of the test statistic can be
written as

Continuation. When one wants to control for the values of a potentially con-
founding third variable with values, say, k = 1, ..., K, then we have K inde-
pendent strata with

i Not Total
Exposed ai by Nk
Not Cr dy nok
Total mig moy Ny

Denote the true odds ratio in stratum k by 6. Consider the situation in which
O =0fork=1,..., K.Now test Hy: 0 = 1 against H4: 6 # 1. The famous
Cochran-Mantel-Haenszel statistic for this hypothesis is

K 2 K
X* = {Z(Ak - E[Ak])} / > Var(Ap),
k=1 k=1

where the expectation and variance are calculated as in Complement 4 for
each table k =1, ..., K (Cochran 1954, Mantel and Haenszel 1959). The
remarkable fact is that asymptotically X> ~ x? distribution with one degree of
freedom even if the strata are very small (e.g., Ny = 2), as long as K is large.
(For large strata the result is obvious.) Show that the observed value of the test
statistic can be written as

K akdk — bka ? K ninynmny
e () /R )
{,Z:l: Ny } ; NZ(Ni — 1)

Continuation. In the setting of Complement 5, the so-called Mantel-Haenszel
estimator of the common odds ratio is defined (Mantel and Haenszel 1959) as

=250 /505
= \ N« = \ Nk
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Show that if byc;, > Oforallk =1, ..., K, then we can write

K
é = Z wkék,

k=1

where 0, = ardy /(brcy), and wy = (bycr/Ni)/ Y- bjc;/Nj.

*7 Continuation. In a matched case-control study in which one case is matched

10.

with one control, each pair forms a stratumk = 1, ..., K because the matching
criteria may correspond to possible confounders. The results of such a study
are often represented as 2 x 2 table as follows:

Control
Exposed Not
Case Exposed a b
Not c d

This table is a sum of the K stratum specific tables of the type considered in
Complement 5. In this case Ny = 2 forall k = 1, ..., K because there is one
case and one control in each stratum. There are N = 2K individuals in all.
There are four types of tables: (i) a tables with both the case and the control
exposed, (ii) b tables with the case exposed but the control is not, (iii) ¢ tables
with the case not exposed but the control is, (iv) d tables with neither the case
nor the control exposed. In case (i), for example, the table is of the form

111 Not Total

Exposed 1 1 2
Not 0 0 0
Total 1 1 2

(a) Verify thatin cases (i) and (iv) we have aydy = byc; = 0, incase (ii) aydy =
1, bycy = 0, and in case (iii) axd; = 0, bic, = 1. (b) Show that the Cochran-
Mantel-Haenszel test statistic is then of the form X? = (b — ¢)?>/(b + ¢). This
is also known as the McNemar test statistic. (¢c) Show that the Mantel-Haenszel
estimator of the common odds ratio is § = b/c. Thus, in both statistics only
the “discordant pairs” matter.

. Consider the capture-recapture case in which n; is the number of first captures,

n, recaptures, and m is the number caught both times. (The traditional notation
used in capture-recapture literature does not follow the usual conventions of
statistics; note that these symbols have here a meaning different from the
one in the previous examples!) Show that the labeling of the censuses as
first or second in Section 6 does not matter, so that P(m;ny, N —ny, ny) =
P(m;ny, N — ny, ny), as defined in (6.1).

. Show that by equating m to its expected value (that is given in Complement 4)

one obtains the classical estimator, N = niny/m.

Show that the MLE based on (6.1) is essentially the same as N defined above.
(Hint: show that P(m;n;, N —ny,ny)/P(m;n;, N —1—ny,ny) =(N —
n1)(N —ny)/(N — ny — ny + m), which is increasing when nyn,/m > N, so
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that (6.1) is increasing for N < njn,/m and decreasing for N > nn,/m.
Conclude that the exact MLE is = |nn,/m], where | x] is the largest integer
<x)

To estimate Var(N) under the hypergeometric model in which n; and n,
are fixed, note first that E[m] = nin,/N and Var(m) = na(n;/N)(N — n;)/
N)N —ny)/(N —1). Since N is a nonlinear function of m we lin-
earize the statistic at E[m] using a Taylor series, or N~ niny/Elm] —
(nin2/ E[m]*)(m — E[m]). This yields the approximate variance, Var(N )~
(n1ny/E[m)*)*Var(m). Assume that N is large enough so that N — 1 can be
replaced by N in Var(m). Show that by plugging in the estimator N the ap-
proximate variance of the capture-recapture estimator can be estimated by
ninau Uy /m?, where uj=n; —m, j=1,2. This is an example of the so-
called delta method that will be discussed in more detail in Section 7.2 of
Chapter 3.
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Sampling Designs and Inference

Cohort and case-control studies are usually restricted to a carefully selected subset
of the total population, because the possibility of confounding is an overriding
concern. For example, in cohort studies of carcinogenicity one tries to find groups
that differ from each other as much as possible in terms of the exposures of interest
but that are otherwise similar. There is no attempt to cover the population at
large, the assumption being that the causal effect found in the groups under study
will be similar for persons outside the groups. Even with that assumption, the
complementary task of assessing the risk caused by the exposures at population
level requires a “representative sample” from which to estimate the actual pattern
of exposures. The concept of representative sampling is more slippery than might
first appear (Kruskal and Mosteller 1979a—c, 1980), but will be explicitly defined
below. For most studies, we hope to generalize either to the population from which
the sample members (or study subjects) were selected or even more generally
to a larger population, sometimes called a “superpopulation”. Much of the data
used for social, economic, demographic, or epidemiologic analyses comes from
samples.

Although sampling theory is not always viewed as part of demography, we
present selected aspects of the theory here because it plays a central role in the
production of some basic population data. For example, the Current Population
Survey is a stratified multi-stage survey of U.S. households that provides important
data on economic and social activities. As another example, U.S. Post Enumeration
Surveys (PES’s) are conducted after the decennial censuses to assess their accuracy.
Poststratification plays an important role in their analysis. In the 1970s and early
1980s, the World Fertility Survey was carried out in 41 nations in Africa, the
Americas, Asia, and Europe. Our goal is to give enough details of the theory so
that the reader can appreciate the complexities of the relevant large scale surveys
and make inferences appropriately from the survey data. In particular, Section 7
discusses principles of statistical inference in a sampling context.

A sampling design (or sampling procedure or selection procedure) is a rule for
choosing a single sample from the set of possible samples. An individual element is
selected if the chosen sample contains the element. If the rule assigns probabilities
to the possible samples such that each element in the population has a non-zero

31
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probability of being selected, we say the sample resulting from the rule is a random
sample or a probability sample.

Samples in which nature provides the randomization do not necessarily satisfy
the definition of random sampling. A fortiori, this holds for purposive samples
in which the researcher handpicks “representative elements” (cf., Cochran 1977,
10-11), and for self-selected samples, such as the popular internet surveys in which
any individual with access to internet may have his or her view about a particular
issue recorded. Although inferences can be made from nonrandom samples, the
strength of the inferences can be assessed internally — from the sample itself — only
if additional assumptions are invoked; see Smith (1983). In contrast, if each element
in the sample has a positive selection probability and the selection probability is
known for each element in the sample, then an unbiased estimator of the population
total is available (Section 4.2) — such samples will be called representative samples.
Moreover, if the inclusion probability of every pair of elements is known for every
sampled pair and is positive for every pair in the population, the standard error of
the total can be estimated from the sample (Section 5.3) and the sample is called
a measurable sample.

We take the view that in analyzing data from a sample one should generally
acknowledge the method used to select the sample. Point estimates may be ad-
justed for probabilities of selection, and variance estimates should account both
for unequal probabilities and for dependencies in sample selection. Exceptions
to this rule may be made for certain analyses of well-specified models (Sections
4.4, 7.3) and for analyses in which one is willing to accept bias as a compensa-
tion for reduced variance (Section 4.4). We review some major types of sampling
designs underlying demographic data and discuss how the designs affect analy-
ses of the data. Basic references include Cochran (1977), Lohr (1999), and Levy
and Lemeshow (1999). More recent and very practical references are Korn and
Graubard (1999) and Lehtonen and Pahkinen (2004). More advanced theoretical
treatments include Siarndal, Swensson, and Wretman (1992), Thompson (1997),
Skinner, Holt, and Smith (1989), Chambers and Skinner (2003), and the classic
Kish (1965), which provides much practical advice for large scale survey design.
A concise and accessible overview is provided by Frankel (1983).

In past years, only a few specialized software packages were available for car-
rying out statistical analyses that took the sampling design into account. Currently
a number of strong packages are available. Descriptions and links to reviews are
available from the Survey Research Methods Section of the American Statistical
Association'.

1. Simple Random Sampling
The most elementary kind of sample selection is simple random sampling (SRS),

in which each possible sample of n elements from a population of size N elements
has an equal chance of selection. The selection probability for an element of the

! http://www.fas harvard.edu/%7Estats/survey-soft/survey-soft.html
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population is the probability that the element is contained in the sample. In simple
random sampling, each individual has the same selection probability, which equals
the sampling fraction f = n/N. In without-replacement sampling, no element is
selected more than once, and in with-replacement sampling an element may be
selected more than once (up to n times).

To select a SRS of n units from a population of size N we need a listing of
the population units, called a sampling frame. Construction and maintenance of
a sampling frame is an important practical matter (e.g., Kish 1965, 53-59), with
attention required to ensure completeness and detect duplications and erroneous
inclusions. A sample of the population can be based on random digit dialing, so
the frame is implicitly formed by the list of all phone numbers. Multi-stage area
samples can be based on maps and database listings of housing units. In both cases,
the frame represents the ideal target population in an approximate sense only. Pop-
ulation counts can be used for controls for ratio estimates of totals (Sections 4.2,
5.4), and those counts may be based on censuses or on postcensal estimates (Chap-
ter 10). In countries that have a population register, the register can be a flexible
source of sampling frames for many uses. However, when the target population
of the sample is defined by some social, economic or educational criteria that are
only available for census years, the register becomes gradually outdated, as time
from the census elapses. Errors caused by the mismatch of the frame and the ideal
target population are typically not assessed in surveys. It would involve completely
different methods - methods of the type that are used in statistical forecasting.

A way to think of drawing a simple random sample of size n is to take a list of
the N elements in the population and randomly permute their order, and then to
take the first 7. Forming a random permutation requires care, however.

Example 1.1. The 1970 Draft Lottery in the U.S. During the U.S. participation
in the Vietnam War, concerns about the unfairness of the military draft led to a
decision to randomize the selections. A random permutation of birth dates in the
year would be formed, and those young men who would end up first on the list
would be chosen first, and so forth. In practice, capsules labeled with dates were
put into a bowl to be chosen at random one at a time, so that the date on the i th
selected capsule was assigned draft number i. The capsules were not well mixed
in the bowl, however, which led to a significant negative correlation between birth
date and draft number (Fienberg 1971). A recent analysis of deaths recorded on
the Vietnam Memorial in Washington (Sommers 2003) found a similar negative
association between death rate and draft number. An improved randomization
method, relying on random number tables and physical randomization, was later
used (Rosenblatt and Filliben 1971).

Consider using the sample to estimate the population mean for some numerical
characteristic, or variable. We denote the population values by yi, ..., yy and
the sample values by yi, ..., y,. (Other symbols than y may be used as well.)
Although y; in the sample is not the same as y; in the population, it will be
clear from the context which is which. We will use upper-case letters to refer
to population characteristics or summaries and lower-case for sample values of
the variable. The population mean is denoted by ¥ = (y; + - - - + yy)/N and the
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sample mean is denoted by ¥ = (y; + - - - + y,)/n. The population total will be
denoted by Ty = NY.The “finite-population variance” S and the sample variance
s2 are defined as

N n
ST=) = VPN =1, 7= (n—3*/0n-1. (1.1)
k=1 k=1

Example 1.2. Child Stunting. Burgard (2002) uses household surveys of women in
Brazil and South Africa to analyze child stunting (i.e., stunted or checked growth
in children). For example, if y; is the number of stunted-growth children of women
in household 7, the mean of the y;’s is then the average number of stunted growth
children per household containing a woman. The population total of the y;’s is the
number of stunted-growth children in households containing women. That total
can be divided by the total number of children in households (say, from census
records) to estimate the proportion of stunted growth children. ¢

Both ¥ and 52 are examples of statistics — functions of the data — with probability
distributions that depend on the population and on the sample design used, which
here is a SRS of size n from the population of size N. In later chapters we may
view population characteristics themselves (e.g., vital rates) as random variables,
as random even though there is no sampling from the population — the population
itself is viewed as stochastic. In this chapter we are conditioning on the population
at hand and regarding the data collection as a random process. We refer to the
probability distribution for a statistic as its sampling distribution.

For without-replacement simple random sampling one can show (Exercise 1)
that

E[j]1=7, (1.2)
Var(y) = (1 —n/N)S?/n, (1.3)
E[s%] = §2. (1.4)

In other words, the mean of the sampling distribution of y is Y, the mean of the
sampling distribution of s is S2, and the variance of the sampling distribution of 7
is (1 — n/N)S?/n. The standard deviation of a statistic is called the standard error
(SE), for a non-negative variable the ratio of the standard error to the mean (or
to the population value being estimated, which may be different if the statistic is
biased) is called the coefficient of variation (CV), and the square of the coefficient
of variation is called the relative variance.

Thus, the sample mean y is an unbiased estimator of the population mean. Its
variance is the product of three factors: the fraction not sampled, the heterogeneity
in the population, and the reciprocal of the sample size. The first factor 1 — f,
called the finite population correction, explains why a large sampling fraction
is not needed to obtain high precision. A large sampling fraction helps reduce
variance, but a small sampling fraction does not hurt. Often the sampling fraction
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f is small enough to ignore. Plugging in s for S? in the formula in (1.3) yields an
unbiased estimator of Var(y)

Var(5) = (1 — f)s?/n. (1.5)

To estimate the population total Ty we use 7y = Nj. In general the population
total may be estimated by the sum of the sample values divided by their selection
probabilities. As an illustration notice that Ty = ¥; + - - - + ¥,, with ¥ = y;/f.
The variance may be estimated by

Var(fy) = (1 = )= 3" = 3’ (L6)
k=1

where y = (34 + - - - + ¥,)/n. Although we have emphasized the unbiasedness
property, we do not regard exact unbiasedness as a critical property. Many useful
statistics are not exactly unbiased. For example, although (1.4) holds, we have that
E[s] # S. Yet, the bias in s does not affect the development of confidence intervals
based on ¢ distribution under the usual normal-theory assumptions. In many other
cases, what is important is that the bias becomes small as the sample size increases,
so that the bias is small relative to the standard error. For example, the coverage
of 95% normal-theory two-sided confidence intervals for the mean is still close to
95% if the ratio of the absolute value of the bias of the estimate of the mean to
standard error of the estimate of the mean is 0.1 or less (Cochran 1977, 14).

2. Subgroups and Ratios

The simplest important nonlinear statistic arises in estimating the population ratio
R of the totals of two variables in a population, say R = Ty /Tx. If measurements
y; and x; are made for each element in a simple random sample of size n, we may
estimate R by

Ié:Zy;/Zx;. 2.1
i=1 i=1

This statistic is the ratio of two random variables. In Example 1.2, if we wanted
to estimate the proportion of children who were stunted but did not know the total
number of children, we could use (2.1) with y; the number of stunted children
in household i and x; the total number of children in household i. The expected
value of R is not exactly equal to R. The “ratio-estimator bias” does not arise from
problems in the sample but rather from non-linearity of the ratio estimator. To
analyze the mean and variance we will approximate R by a linear statistic. Define
&; = y; — Rx; and notice that

R—R=(j— R¥)/i ~ (7 — RX)/X =&/X, (2.2)
if the sample size is large enough that & will be close to X. The approximation will
work well provided the CV of the denominator of (2.1) is small (Complement 3).
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The right hand side of (2.2) is a linear function of the observations, and we use the
mean and variance of the right hand side to approximate the mean and variance
of the left hand side (Cochran 1977, David and Sukhatme 1974). Because the
expectation of the right hand side of (2.2) is zero, we say that the ratio estimator
is approximately unbiased or asymptotically unbiased (for large n). The variable
&; 1s the residual of y; from the line through the origin with slope R. We estimate
itbye; =y, — Rx,- and use

-7
e

\A/ar(lé)z Fom s

(2.3)
as an estimator of the variance. Here, 5?2 is given by s in (1.1) with ¢; substituted
for y;. If the population mean X is known, it may be used in the denominator of
(2.3), but whether the estimator of variance is improved depends on the relation
of y and x in the population (Cochran 1977, 155-156; Rao and Rao 1971).

Ratio estimators are commonly used when estimating characteristics of a sub-
group whose sample size is random. This occurs often in the context of small area
estimation, or more generally in the estimation of small domains that can also be
defined by criteria other than the geographic. For example, consider using a simple
random sample of size n to estimate the mean and total of a variable for a subgroup
G. Define the indicator variable x; = 1 if element i belongs to the subgroup and
x; = Ootherwise,i = 1, ..., N.Define y; to equal the variable of interestif x; = 1
and to equal O otherwise (or replace y; by x;y;). The total for the subgroup is Ty
and the size of the subgroup is Ng = Ty. Therefore, the mean for the subgroup is
equaltoR = Ty /Tx.If ng = x1 + - - - + x, > 0, we can estimate R by Rin (2.1),
which equals the mean of interest in the sample. If we consider the conditional
sampling distribution with samples of a fixed size ng > 0 from the subgroup, R
is an unbiased estimator of R with (conditional) variance (1 — ng/ Nc;)S(z; /ng,
which may be estimated by (1 — ng/ Ng)sé /ng, with

N n
S¢ =Y xi(yi—R?/(Ng—1) and s¢ = xi(yi — R\’/(ng —1).
i=1 i=1 (24)

3. Stratified Sampling

3.1. Introduction

In stratified sampling, the population is divided into some number H of non-
overlapping strata, with N, > O units in stratum 2 = 1, ..., H. Note that N =
Ny + - -+ + Np. Samples are taken independently from each of the strata. In fact,
completely different sampling methods may be used in different strata. Stratified
sampling is used for a variety of purposes, including (i) reducing sampling variance,
(ii) ensuring that sample sizes from certain strata do not fall below thresholds, (iii)
controlling cost.
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In stratified simple random sampling, a SRS of size n, > 1 is selected from
stratum 2 = 1, ..., H. To estimate the overall population mean, form an estimate
of the mean of each stratum and then take a weighted average of those stratum
means, with weights proportional to N,. This weighted estimate will not be the
same as the unweighted mean unless the sampling fractions f;, = n, /N, are all
equal. The total sample sizeisn =n; +---+npy.

Example 3.1. NELS:88 Base-Year School Sample. The National Educational Lon-
gitudinal Study of 1988 (NELS:88) was a survey conducted to provide data on a
cohort of students who were in eight grade in 1988. The purpose was to provide
data to inform policy research on schooling and later behavior and choices by
the students. The base-year sample was taken from schools in the U.S. enrolling
eighth grade students in 1988 (Spencer et al. 1990). Subsamples of the students
were surveyed in successive years in follow-up surveys, allowing for estimation
of growth and change in student attributes (Example 5.2, below). A list of public
and private schools was obtained and used for a sampling frame; the schools in
the frame were believed to contain 99% of the eighth grade students. Strata were
developed in two steps, in order to group schools that were relatively similar in
terms of variables deemed relevant to the survey’s objectives. Superstrata were
formed by cross-classification of school type (for public, private religious, and
other private schools) by geographic region (8 regions for public and 4 aggregate
regions for other schools). Substrata were formed within each superstratum by ur-
ban/suburban/rural location of school and, for public schools only, cross-classified
by percentage of students who were black or Hispanic. The schools were selected
independently from the different superstrata with unequal probabilities set roughly
proportional to the estimated size of the eighth grade class. Within each superstra-
tum, schools were sorted by stratum and within stratum by size (estimated eighth
grade enrollment) and selected with systematic sampling (Section 6). For public
schools, a sample of 817 out of 22,818 in the frame were selected and participated,
compared to 240 out of 16,048 nonpublic private schools; although the sampling
rate for the public schools appears to be larger than for nonpublic schools, the public
schools tended to be much larger than the nonpublic schools, and the size-weighted
sampling fractions were much larger for nonpublic schools. The latter, especially
“other private” schools, were oversampled — selected with greater (size-weighted)
sampling fractions than schools as a whole — to provide sufficient sample sizes
for separate analyses and for comparison of public, private religious, and other
private schools. The number of participating students in the base-year sample was
24,599. ¢

3.2. Stratified Simple Random Sampling

Denote the population value for unit i in stratum h=1,..., H by Y;;, i =
1,..., Np, and denote the sample values by yy;,i =1, ..., n,. The population
mean for stratum % is denoted by V= +---+ Yun,)/ Ny and the sample
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mean is denoted by y, = (yn1 + - - + Yn,)/nn. The corresponding variances S,f
and s? are obtained from (1.1) by substituting yy, for y;, ¥, for ¥, 3, for , Ny, for N,
and n, for n. The overall population mean is a weighted sum of the stratum means,
Y = WY, + -+« + WyY), with the stratum weights defined as W, = N,/N. Since
the sample mean in stratum / is an unbiased estimator of the population mean for
the stratum, the weighted mean y,, = W13, + - - - + Wy, is an unbiased estima-
tor of V.
The variance of y,, is

H
Var(3,) = Wil = fi)Si/nn. 3.1
h=1

Notice that the variance depends only on variability within strata. It will be small if

the strata are internally homogeneous. Thus, in the design stage of the survey one

may use prior information about the variability in deciding how to define strata.
If nj, > 2 we may unbiasedly estimate S by s, leading to the variance estimator

H 2
Var(iu) = Y WR( = fi) - (3:2)
h=1 h

If n;, = 1, unbiased estimation of variance is not possible. A common fix is to
combine (or “collapse”) strata that are adjacent or similar in some sense and
pretend that the sampling used larger sample sizes in fewer strata (Wolter 1985).

Sample sizes sometimes are chosen proportional to N, leading to a sample
distribution across strata identical to the population distribution. This proportional
allocation of a sample typically reduces sampling variance relative to SRS with the
same sample size. The sample allocation may also be chosen to minimize variance
(for a particular statistic) for fixed sample size or (if costs vary across strata)
for fixed cost. Then, one speaks of the so-called optimal allocation or Neyman
allocation. The optimal allocation for one statistic may not be optimal for another,
however, and Neyman allocation can lead to variances greater than SRS for some
statistics. Allocating the sample to achieve thresholds (n, > 1, for thresholds 7;)
is sometimes called oversampling when the resulting stratum sample sizes exceed
what they would be under proportional allocation ( fN, ). Compared to proportional
allocation, oversampling may increase the variance for statistics such as y,, that
weight each stratum proportional to size (N,).

3.3. Design Effect for Stratified Simple Random Sampling*

The design effect (deff) for a statistic under a given sampling design is defined as
the ratio of its variance to what the variance would be for a comparable statistic
under simple random sampling (Kish 1965, 258). For example, the design effect
for the estimate of the mean under stratified sampling is the ratio of (3.1) to (1.3).

2 This is a specialized topic and may be skipped without loss of continuity.
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Although the numerator (3.1) may be estimated by (3.2), a proper estimator of
deff is not immediately obvious, because s2 in (1.1) typically is not an unbiased
estimate of S? of (1.1) for sampling designs other than SRS.

Matters are simpler when estimating proportions, however, because if each y;
isOor 1,then S> = Y (1 — Y)N/(N — 1) so (1.3) may be unbiasedly estimated by
(1 = fHyu(1 — ¥,)/(n — 1). In this case the estimated deff is

S WEA = gl — 3/ — 1)
(= Ny =5/ —1)

If proportional allocation is used, the design effect typically is less than 1 (Exer-
cise 6), but the design effect can well exceed 1 if oversampling is used or if optimal
allocation is used to minimize variance for a different statistic than the one we are
analyzing.

Estimates of deff are useful both as summaries of efficiencies (or inefficiencies)
of sample designs and for approximating the sampling variance of a statistic.
For example, suppose that design effects are calculated for a variety of estimated
proportions and have a median value of ¢, and we have estimated another proportion
by p from a sample of size n. A quick estimate of the sampling variance of p
is c(1 — f)p(l — p)/(n — 1). This estimate could be off, however, as different
statistics may have quite different design effects, and examination of not just the
median design effect (or average) but also their spread is appropriate.

(3.3)

Example 3.2. Design Effects for NELS:88. Design Effects were calculated for
a large number of base-year questionnaire items in NELS:88. The mean design
effects for school questionnaire items were 1.82 for all schools, 2.23 for public
schools, and 1.40 for private schools (Spencer et al. 1990, 52). The design effects
were greater than 1.0 because the schools were selected with unequal probabilities
across strata (private schools were oversampled) and, more important, within strata
schools were selected with probabilities proportional to estimated eighth grade
enrollment, which is efficient for surveying students but not efficient for estimating
school characteristics based on equal treatment of large versus small schools. ¢

3.4. Poststratification

If an SRS is selected and stratum sizes N, are known, the sample may be stratified
after the fact and analyzed as if it were stratified initially; this practice is called
poststratification. Poststratification does not cause bias in the estimate of a popula-
tion mean or total if the sample means for the poststrata are conditionally unbiased
(given the sample sizes from the poststrata). Poststratification can cause bias if the
choice of poststrata depends on the observed values of the means, which can be
avoided if the poststrata are chosen prior to analysis of the sample data. Poststrat-
ification improves variance nearly as much as proportional allocation provided
the sample sizes within strata are not too small — Cochran (1977) recommends
n, > 20.
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Example 3.3. Poststratification in the 1990 U.S. Post Enumeration Survey (PES).
Post Enumeration Surveys are used to estimate undercounts and overcounts in
censuses. The rates are known to vary among subgroups defined by variables
such as age, sex, race, geographic location, family type, and housing type. As
discussed in Example 6.1 of Chapter 2, overall estimates will be biased if the
subgroup membership is not taken into account. In the 1990 PES, the U.S. Census
Bureau initially used 1,392 poststrata in calculating the estimates (Example 4.1,
Chapter 10). Excessive sampling variance due to small sample sizes for some of the
poststrata led to a “revised” poststratification using 357 poststrata (Hogan 1993).
The latter poststratification was based in part on analysis of the data. Also, the
PES used cluster sampling and because sample elements from the same cluster
could fall into different poststrata, statistics calculated for different poststrata are
not independent. We continue the discussion in Examples 4.4 and 7.2, below. ¢

The term “poststratification” is used not only to describe stratification after the
fact, but also for calibration of sample weights to sum to known totals (Section 4.2),
to reduce non-response bias (Section 4.3), and to adjust for survey undercoverage or
overcoverage (Chapter 10, Section 5.2). In these other applications, independence
of selections in different poststrata is not assumed.

4. Sampling Weights
4.1. Why Weight?

In many applications, one has a sample of elements that appear in the sample with
unequal probabilities. Sometimes the unequal probabilities occur by design, other
times as a result of nonresponse or nonparticipation (Kish 1965, 425; Kish 1992).
Define indicator random variables I, = 1 if element k is selected in the sample
and [; = 0 if it is not. Define the first-order inclusion probability mw;, = E[I}] to
be the probability that element k is in the sample. The unweighted sample mean y
typically will be biased. To see this, first reexpress y as

lN
V= — I 4.1
y nZ)’kk 4.1

and notice that the y;’s are fixed (but unknown except for the sample) and the I;’s
are random. Take expected values to obtain

1 N
E[5]1=-) wm. (4.2)
=

Define the population covariance between 7 and Y as

N N
oyx =Y wmi/N =YY m/N. (4.3)
k=1 k=1
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Note that 7wy +---+ 7y =n (because I +---+ Iy =n) and so E[y] =
(N/n)oy, + Y. This shows that the unweighted sample mean has bias (N /n)oy,
and hence E[¥] = Y if and only if the correlation between the selection probabil-
ities and the variable is zero.

In general, if elements are selected with unequal probabilities, there can be no
assurance that unweighted estimates will be approximately unbiased. For example,
the weighted mean in stratified sampling may be written as

1 H ny
S =D D wnid (4.4)
h=1 i=1
with wy; = Nj,/nj, = 1/ f;, = thereciprocal of selection probability. Suppose H =
2, and we had a sample of 10% from stratum & = 1 and 25% from stratum i = 2,
where the two strata were each half the population (N; = N, = N/2) . The un-
weighted mean would be biased unless the means of the two groups were exactly
equal.

4.2. Forming Weights

The basic principle of weighting (as, e.g., in (4.4)) is to set a unit’s weight equal to
the reciprocal of its selection probability. The weights often are called either sample
weights or case weights. If the weights are wy = 1/m;, the Horvitz-Thompson
estimator of the population total is defined as the weighted sum

Tur =) wiyk. (4.5)
k=1

and is unbiased for the population total Ty (Exercise 7). Consider the case when
each y; = 1 and notice that the sum of the weights is an unbiased estimator of
N. Correspondingly, if y; = 1 when element & is in a subgroup G and y; =0
otherwise, then Ty is the sum of the weights for the members of G in the sample,
S0 it is an unbiased estimator of Ng. In stratified SRS, the sum of the weights in
stratum 4 is exactly Nj, and the sum of the weights for all sampled elements is N.

Example 4.1. NELS:88 First Followup Schools. In 1990, two years after the
NELS:88 base-year survey, the sampled students were surveyed again (actually,
to save money, subsamples of the more than 24,000 base-year students were sur-
veyed). Most of the students were in tenth grade, and most of the students were in
different schools. For analyses of the schools in the first follow-up survey, school-
level sampling weights were needed. The weights were set inversely proportional
to the probability that a school was in the first follow-up survey. A school had a
positive probability of being selected in the first follow-up if it enrolled at least
one student who was eligible for selection in the base year, and in general that
probability was a function of the numbers of students in the school who in 1988
were eighth grade students, their base-year selection probabilities, and how they
were clustered in different schools in 1988. The probabilities could be estimated
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from specially collected data on what 1988 schools contributed students to the
school in question in 1990 (Spencer and Foran 1991), and weights were set equal
to the reciprocals of those probabilities. ¢

Although the expected value of the sum of the sample weights (w; = 1/my) is
always N, in many applications the sum of the weights — for the population as a
whole and especially for subgroups — is random. When the sum of the weights is a
random variable (or when non-response or population undercoverage or overcov-
erage is present), adjustments may be imposed so that the weights sum to a known
total or the weights for subgroups sum to known sets of totals. A widely used
adjustment forces the weights to sum to the population size N. Or the calibrated
weight equals sample weight x adjustment factor, that is,

w ! N (4.6)

D S V2N '

The analytical properties of estimators using such calibrated weights are more
complex, but their use does confer some advantages in usual practice. (The com-
plexity arises because the weight @ for unit k£ depends on which other units are
in the sample, a dependence not affecting wy.) If one is estimating a proportion by
a weighted mean, using the weights wy could lead to an estimate greater than 1,
but weights w; always lead to estimates between 0 and 1. In many cases esti-
mators based on 1, will have smaller variance than those based on w; (Sérndal,
Swensson, and Wretman 1992, 182—-184). Statistical agencies sometimes make ad-
ditional adjustments to weights to force various linear statistics to equal population
values or other control values, viaraking (Deming 1964) and its extensions (Haber-
man 1984) or regression models (Deville and Sdrndal 1992, Deville, Sédrndal, and
Sautory 1993). A concise discussion is given by Rao (2003, 13-15, 20-21).

Advanced techniques (not recommended for casual use, but often carefully
implemented in public use data files for large-scale surveys) modify the weights
to reduce sampling variance of estimators though at the cost of introducing bias.
Such techniques may involve “trimming” the largest weights or by shrinking all of
the weights (averaging the vector of weights with a vector of constants); see Kish
(1992), Potter (1990), Qian and Spencer (1994), and Kalton and Flores-Cervantes
(2003).

Example 4.2. Extreme Weights in the 1990 U.S. PES. The 1990 PES was a sample
survey conducted to provide data for estimating the gross overcount and gross
undercount in the 1990 U.S. census. The sample consisted of a stratified sample
of more than 5,000 small areas, called clusters. (See Chapter 10, Example 4.1 for
further details.) Within each cluster, the census was essentially redone, and data
were collected to allow for dual-system estimation as described in Section 6 of
Chapter 2 and Section 5 of Chapter 5. The clusters were selected with unequal prob-
abilities, so that areas with small numbers of households (as estimated from pre-
census listings of housing units) had very small selection probabilities, and densely
populated city blocks had larger selection probabilities. Some clusters, however,
had large numbers of housing units but, as a result of errors in the pre-census
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listings, were selected with small probabilities and, when they appeared in the
sample, received very large weights. One such cluster in the sample contributed
0.75 million to the estimate of undercount. The problem arose from a combination
of a large weight and an outlier data value. Zaslavsky, Schenker, and Belin (2001)
discuss the problem and discuss the use of robust methods for treating it. ¢

When using statistical software that accommodates unequal probability samples,
one should be aware that the software may assume that the weights are of the form
wy, rather than ;. Although one can use variants of (2.3) to estimate the variance
when (4.6) is used, estimating variance when more complex weighting adjustments
are used requires special software or procedures, e.g., Stukel, Hidiroglou, and
Sarndal (1996). Unless we construct the adjusted weights ourselves, we may not
have the data to account for the variances in the weights. The effect on variance
estimates of ignoring the complexity in the weights often is not severe in practice
unless the differences between w; and w; are large.

4.3. Non-Response Adjustments

Non-response is a common problem in demographic surveys: targeted respondents
may not be located, may be located but not contacted, may be contacted but
not provide usable data. Lohr (1999, Chapter 8) gives an accessible overview
of nonresponse and a recent extensive treatment is provided by Groves et al.
(2001). Unit non-response is said to occur when virtually no data are provided
by the targeted respondent. Often, the unit non-respondents are not treated as
part of the data file and a weighting adjustment is used to allocate the sampling
weight for the unit non-respondent to one or more respondents. Some adjustments
are based on a model that the survey participants are the result of two stages of
random selection, first is probability of selection into the sample and second is a
response propensity or conditional probability of responding given selection. The
propensities are estimated with statistical models for estimating probabilities or
rates (e.g., Section 5 of Chapter 5) and may be used directly (e.g., Alho et al.
1991) or to define weighting cells. Weighting cells are analogous to poststrata,
except that the counts for weighting cells are based not on the whole population
but on sample-weighted numbers of sample selections falling into the cells. The
response propensity for a weighting cell is calculated as the ratio of the sample-
weighted number of respondents to the sample-weighted number of selections in
the cell. The non-response adjustment factor for a respondent is the reciprocal of
the estimated propensity for the respondent. The assumptions or model behind the
weighting will be incorrect to one degree or another, and bias may result. To
assess the degree of error from imperfect non-response weighting adjustments,
alternative weighting methods sometimes are used, but how well the resulting
spread of estimates reflects the error will vary from situation to situation.

Example 4.3. Nonparticipation in a Survey in an STD Clinic. An extreme case of
error from unit response occurred in blood testing of patients at a clinic for treating
sexually transmitted diseases (STD’s). Everyone in the group had given a blood
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sample, and the samples without identifying information were tested for HIV, with
17 positives found. In a survey of the patients, 82 percent agreed to participate, but
only 8 tested positive. Had the survey been able to test the remaining 18% (who
were nonparticipants), an additional 9 would have tested positive. Nonparticipation
caused the survey estimate to be biased downward by a factor of 0.57 (Hull et al.
1988). ¢

Example 4.4. The Dual System Estimator as a Propensity-Weighted Census. Sec-
tion 6, Chapter 2 presented a model-based estimate of population size based on a
census with n; enumerations and a second, sample survey with n, enumerations,
of which m were counted in both. The dual-system estimator (DSE) was nn,/m.
A person not being counted in the census can be viewed as non-response, and we
can consider an individual i to have a response propensity, which we will view
as an enumeration probability ;. If we view m/n, as an estimate of m;, we can
interpret the MLE as a Horvitz-Thompson estimator with estimated weights,

n
> yi/#i, 4.7
i=1

with #; = m/n; and y; = 1. Example 6.1 of Chapter 2 showed how unequal prob-
abilities of enumeration could lead to bias in the DSE, but if the estimates could
be poststratified so that the probabilities were homogeneous within poststrata, the
bias could be corrected.

Item non-response occurs when the targeted respondent’s data are included in the
data file but a variable is missing because the response to one or more questionnaire
items is not available or not usable. A common practice that facilitates data analysis
in the presence of item non-response is to use imputation to predict or fill-in the
missing data item or items. Using imputed values as if they are actual observed
values carries two risks. First, the imputations may be systematically wrong, e.g., if
people with extremely high or extremely low incomes are more prone to non-report
income data (even when other observed characteristics are taken into account),
using reported values to impute non-reported values might bias the median up
and the mean down. Second, variances computed from imputed values treated
as actual observations tend to be too small. For example if a sample of size n
includes some imputations that are used in estimating a mean, s> may be smaller
in expected value than S? (depending on how imputations are made) and n will
be larger than the actual number of observations, with the result that s>/n may
tend to underestimate the sampling variance. Methods for estimating the variance
with allowance for randomness in the imputations include multiple imputation and
jackknife methods and is an active area of research; see Rubin (1987, 1996), Fay
(1996), Rao (1996), Rao and Shao (1992) and, for overview, Korn and Graubard
(1999, 211-218). These methods might not be applicable in secondary analysis
of a data file unless details on the imputation are available, including which cases
were used to impute for other cases.
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4.4. Effect of Weighting on Precision

As noted in Section 4.1, unless the covariance oy, is zero, weighting is needed
to ensure unbiasedness or approximate unbiasedness of estimates of population
means or totals. If the covariance is zero, or sufficiently small, more accuracy may
be attainable without weights. If the covariance is zero, so weighting is unnecessary,
but the weights wy or W, are nevertheless used to estimate the population mean, the
weighting multiplies the variance of the estimator by a factor of g = (n/N)W > 1,
where W is the population mean of the wy’s (Kish 1965, Section 11.7; Gabler,
Haeder, and Lahiri 1999; Spencer 2000a). The factor g may be estimated from
the sample by the formula, “one plus the relative variance of the weights” in the
sample as recommended by Kish (1965, 1992). The factor g is often called the
design effect from weighting or the variance inflation factor (Kalton and Flores-
Cervantes 2003).

Given the increase in variance from unnecessary weighting, how can one decide
whether weighting is necessary? It is possible to compare weighted and unweighted
estimates to see if they have the same expected values, and if they do then it is not
unreasonable to use unweighted estimates. DuMouchel and Duncan (1983) and
Fuller (1984) describe hypothesis tests for linear models. Nordberg (1989) pro-
vides tests for generalized linear models to compare weighted versus unweighted
coefficients. Pfefferman (1993) describes use of the Hausman specification test
for additional models. He makes the important points, however, that the null hy-
pothesis in all of those tests asserts that the expected values are the same with
and without weighting, and lack of power in a test can lead one to incorrectly
fail to reject the null hypothesis. Furthermore, even if expected values are equal,
any probability statements could still be incorrect if the error structure is more
complicated than specified under the null hypothesis.

What should one do if the weighted and unweighted estimates appear to have
different expected values? The answer depends on one’s goals and the standard
errors of the estimates. It is possible for weighted estimates to have smaller stan-
dard errors, although often weighted estimates have higher standard errors. If the
difference is caused by outliers that have large weights due to their small sampling
or response probability, we would consider trimming or shrinking the weights, as
mentioned in Section 4.2. In model-based analyses (including many studies with
causal aims), a large difference in estimates of expected values suggests that some
aspects of the models being entertained may be incorrectly specified — in that case,
one can try to revise the model or use weighted estimates, which at least have
the property of estimating the population-level parameters of the model one has
specified.

On the other hand, if the design effect from weighting is quite large despite
weight trimming or shrinkage, some compromise strategy might be appropriate,
even in descriptive studies. For such cases, Korn and Graubard (1999, 1995) recom-
mend modifying the estimand to include variables strongly related to the weights
(or stratum definitions) and using unweighted point estimates or reducing the vari-
ability of the weights as discussed in Section 4.2.
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Example 4.5. Extreme Weights in the Survey of Consumer Finance. The Survey
of Consumer Finances (SCF) collects data on household finances, income, assets,
debts, demographics, attitudes, employment, and other activities. The sample is
selected from two frames. One sample is selected with area-based cluster sampling
and provides data for the population generally. A second sample is selected from
lists of persons who filed individual income tax returns. An index of wealth is
constructed from the tax return data, and individuals are stratified by that index
(Frankel and Kennickell 1995). The second sample provides most of the data on
high-income and high-wealth individuals. In the 1983 SCEF, a single respondent in
the list sample had an unusually low selection probability but reported ownership
of a $200 million business; the sample-weighted wealth for the individual “rep-
resented $1 trillion, or about 10 percent of total wealth” (Avery, Ellichausen, and
Kennickell 1986, 20). Later, a reinterview showed that the $200 million datum was
an interviewer error — the business should have been recorded as $2 million. This
underscores the critical importance of data quality in addition to correct statistical
methods (cf., U.S. Federal Committee on Statistical Methodology 2001). ¢

5. Cluster Sampling

5.1. Introduction

Selecting a SRS or stratified SRS may be difficult in practice. A listing of individual
population elements with contact information (e.g., for sample of the national
population) may not be available. Field costs can be high if the sample is spread
out geographically and administrative costs can be high in sampling individuals
from institutions if many institutions (such as hospitals or schools) are in the
sample. A solution to these problems is to group individual elements into clusters
and sample the clusters. Clusters may be geographic or institutional or derived in
other ways. For example, Roberts et al. (2004) applied cluster sampling to estimate
mortality related to the 2003 Iraq war.

In single stage cluster sampling a sample of clusters is chosen (the clusters are
“primary” sampling units, or PSUs) and all elements within the sampled clusters
form the final sample. In a two-stage cluster sample a sample of clusters is first
selected, and then a sample of the elements of the chosen clusters is selected
(“secondary” sampling units). These form the final sample. This readily generalizes
to hierarchical multistage sampling with more than two stages of selection (Kish
1965, 155).

Often, the design effect for a statistic from a cluster sample is greater than 1,
indicating less precision than a SRS of the same size. Indeed, it is possible for the
design effect to be vastly greater than 1, implying that if the clustering is not taken
into account in the variance estimation, the estimated variances could be the wrong
order of magnitude. However, cluster sampling often is more cost-effective than
element sampling, so that the sample may include a larger number of elements
with cluster sampling than with SRS. Thus, the ratio of precision to cost may be
lower even if deff > 1.
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We first consider single stage sampling with replacement. This will turn out to be
of practical importance as an approximation for estimation under more complicated
designs.

5.2. Single Stage Sampling with Replacement

Suppose a sample of size 1 is selected from among A clusters so that cluster « has
probability z, > 0, =1, ..., A, of being selected. Note thatz; + --- 4+ 2z4 = 1.
Suppose y, is the cluster total of the variable of interest. Let I, = 1 if cluster « is
selected, and I, = O otherwise. The Horvitz-Thompson estimator of the population
total is then Iy /z1 4+ -+ I4ya/za. Since P(l, = 1) = z,, this is unbiased.
Suppose we independently repeat the selection a times. Let the estimate obtained
in the i" selection be y;/z;,i = 1, ..., a. Averaging the estimates obtained in this
manner yields the Hansen-Hurwitz estimator

A 1<
T =~ vi/z. (5.1)
i=1

As an average of unbiased estimators, this is also unbiased for the population total.
To estimate the population mean, simply divide the estimator of the total by N (or
by an estimate of N). The variance of (5.1) is unbiasedly estimated (Exercise 8) by

Var(um) = ——= 3 (i = 5 (52)
i—1

with y; = y;/(az;), the value of y; inversely weighted by the expected number of
times it appears in the sample, and ¥ = ¥,/a + - - - + ¥,/a.

5.3. Single Stage Sampling without Replacement

Consider now that a of the A units are selected without replacement, with i, the
probability that unit « is selected into the sample and 7, the probability that units
« and o’ are both selected in the sample. In this case a cluster can only be sam-
pled once, so we index the sampled clusters by «. Again, the Horvitz-Thompson
estimator

Tur =) Ya (5.3)
a=1

with y, = y, /7, is unbiased for the population total. (This is really the same
setup as (4.5), if we recognize that each y; in (4.5) is now the total for PSU i.)
However, its variance depends not just on first-order selection probabilities 7, but
also on joint selection probabilities 74, for PSUs « and «’. Without additional
assumptions, unbiased estimation of the sampling variance is possible only when
Teo > 0 for all pairs of PSUs. This condition is not satisfied by many sample
designs in which the PSUs are selected with systematic sampling (Section 6). In
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addition the 7, ’s must be known for all pairs of PSUs in the sample, which may
not be the case in secondary analysis of data collected by others.

A practical expedient is to estimate the variance as if the sample were selected
with replacement in a independent draws with draw-by-draw selection probabili-
ties z, = 1, /a. With these specified probabilities, the calculation of Tyrand Tyy
yield the same results as point estimates, and (5.2) provides a serviceable approx-
imation for the variance. It is reasonable to suppose that the estimated variance
will be conservative (tend to be too large in expected value) because the without-
replacement aspect of the sampling is ignored (Durbin 1953), although just how
conservative depends on the sampling rates.

To estimate the mean for the population or for a subgroup more generally, we
can divide the estimator of the total by the size of the population or subgroup (if
known) or by an estimate. Define x,g = 1 if element 8 in PSU « is in the subgroup
and x4 = 0 otherwise and define y,g to equal the variable of interest if element
B in PSU « is in the subgroup and y,g = 0 otherwise (or redefine y,g as xqgYap)-
The total for PSU « is y, = yo1 + - - - + Yop and the size of the subgroup in PSU
QiSXq = Xq1 + - - - + Xop. Define weighted PSU sample totals by §, = w, y, and
Xo = WXy With w, = 1/, and estimate the mean by the ratio of the weighted
totals,

R:Zya/zjza. (5.4)
a=l1 a=l1

From the linearization argument of Section 2 we know that this is approximately
unbiased and its variance may be estimated (under the with-replacement assump-
tion) by

a a 2
Vaty = 37 /(305) 55)
a=1 a=1

with &, = V4 — Riq.

Example 5.1. Survey of the Homeless in Chicago. In 1985 and 1986 two sample
surveys were conducted to estimate the number of homeless people in Chicago
and their characteristics. An operational definition of homeless was needed, and
was based on where a person needed to spend the night at the time the survey was
fielded. Homeless people were divided into two groups, those in public shelters and
those “on the street”. A list of public shelters was obtained, stratified by number
of beds, and sampled. (Within shelters, residents were sampled, which is a form of
multi-stage sampling as discussed in the next section.) To sample the homeless on
the street, PSUs were defined as “census blocks, usually identical to residential or
commercial blocks as conventionally understood, but also including open places,
parks, railroad yards, or vacant land. Census blocks are divisions of the entire
area of a city, including all land, whatever the use to which that land may be
dedicated. For the city of Chicago, the 1980 Census defined approximately 19,400
blocks” (Rossi, Fisher, and Willis 1986, 11). A SRS of the blocks would yield few
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homeless, as the homeless tended to concentrate in certain areas. Stratification of
the blocks was based on the subjective ratings of those members of the Chicago
Police who were closely familiar with the blocks, and disproportionate sampling
was used to minimize variance (based on prior assumptions). Each sampled block
was included in the survey, and a professional interviewer and an off-duty Chicago
policeman as a pair visited each face of the block at a time between midnight and
4 A.M. and attempted to find each person on the street (or parked car, or unlocked
entryway, etc.). The surveys were run for two two-week periods, September 22—
October 4, 1985 and February 22—March 7, 1986. The estimated average daily
numbers of homeless in those periods were 2,344 (735) and 2,020 (275), with
estimated standard errors shown in parentheses. ¢

5.4. Multi-Stage Sampling’

For efficiency purposes, it is common to choose a random subsample of elements
from the sampled PSUs. The subsamples need not be selected by simple random
sampling themselves; e.g., they may be drawn in one or more stages, e.g., in the
U.S., counties or groups of counties may be the PSUs, then cities (or areas outside
cities) may be selected at the second stage, then blocks may be selected at the
third stage, and then housing units may be selected at the fourth stage. Stratified
or systematic sampling may be used as well. Using the “ultimate cluster” method
of variance estimation, we do not need to keep track of all stages of sampling,
but only which selections came from each PSU (or “ultimate cluster”). Let wqg
denote the sampling weight for element «f; e.g., if PSU o was selected with
probability 7, and the conditional probability that element S was selected given
that the PSU was selected is gy, then the weight is wyg = 1/(7wy 7)) Let Yog
denote the value of the variable of interest for element o if it is in the subgroup and
Yap = 0 otherwise, and let x,s = 1 if element «f is in the subgroup of interest
and x,p = 0 otherwise. Form weighted values Vo5 = wepyap and Xop = WapXap
and form weighted PSU sample totals as

by by
Fa= Jup and Xo =D g, (5.6)
B=1 B=1

with b, the number of elements subsampled from PSU «.

To estimate the total for the subgroup we can use the Horvitz-Thompson estima-
tor (5.1) and we can estimate its variance by (5.2) (Complement 9). The variance
estimation method is called the ultimate cluster method.

Alternatively, if the size of the subgroup is known to be, say, Tx, we can estimate
the total by the “ratio-estimator of the total”, ﬁTx. An estimate of its variance is
provided by T)% times (5.5). For practical purposes, we may compute both estimates

3 This is a specialized topic and may be skipped without loss of continuity.
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and their variance estimates and choose the simpler estimate (Horvitz-Thompson)
unless the ratio estimate appears to have appreciably smaller variance.

5.5. Stratified Samples*

Stratification and multistage sampling are often used together. We review here some
of the complexities that arise. Often, the PSUs are stratified, and it is also possible
that cluster sampling will be used in some strata and not others. In some cases,
even if stratification is not explicitly used, some large PSUs may be selected with
certainty, and then the analysis should proceed as each certainty PSU comprised
a separate stratum (and then the secondary sampling units are treated as PSUs
within the stratum) and the remaining sample selections were in another stratum
(or strata, as the case may be).

To estimate the population total 7', one may separately estimate the total for each
stratum and then sum the estimates, using say T1 + -+ TH, with Th an estimate
of the total for stratum /. The latter may be HorvitZ-Thompson estimates or ratio-
estimates. The variance of the estimator of the total is estimated as the sum of
the variances of the individual 7},s, namely Var( )+ - -+ + Var(Ty). Specifically,
consider sampled element kg, i.e., subsampled element 8 in sampled PSU «
from stratum 4. Denote its sampling weight by wyg, let y,op denote the value
of the variable of interest for element hap if it is in the subgroup and yxes = 0
otherwise, and let x,qp = 1 if element haf is in the subgroup of interest and
Xnop = 0 otherwise. Form weighted values Va8 = Whap Yhap aDd Xpop = WhapXnap
and define weighted PSU sample totals by

b}m b/wz
yha = Z .)v)haﬁ and iha = Zihaﬁv (57)
B=1 B=1

with by, the number of elements subsampled from PSU « in stratum /4. The
Horvitz-Thompson estimator of the population total is then

H a
Tro=) Z Fhac- (5.8)

h=1 a=1

If we use the with-replacement estimator of variance from (5.2), we have

Z Z(yha -3 (5.9)

h=1
as an estimator of variance of (5.8), where ):)h = ZZ”: | Yo
To estimate the mean, one may use either 7Ty, / Tx, if Tx is known, or the ratio
mean

ah—l

RC = 7A-'Y,st/TX,st’ (510)

* The topic is rather specialized so the section may be skipped without loss of continuity.
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with TX,S, defined analogously to Ty,s ¢ 1n (5.8). A linear approximation to the error
in R, is

H a
Re— R~ Ty —RTxs)/Tx =) > &a/Tx (5.11)
h=1 a=1
with &, = Vpy — RXp,. To approximate the mean and variance of the left side of
(5.11), we look at the mean and variance of the right hand side, which is 1/Tx
times a Horvitz-Thompson “estimator’”” based on the unobservable &, . To estimate
the variance, we define é,, = Vpo — I?ciho, and use

H ap
Var(R) = Y0 =23 @ — &/ T3, (5.12)
h=1 a=1

Clh—l

with &, = ZZ”: | €na/ay. The variance of the combined ratio estimate of the mean

may be estimated by (5.12) as stated or with 73 used in the denominator.

Example 5.2. NELS:88 Sample of Students. From each school in the base-year
sample in NELS:88 (Example 3.1), a sample of eighth-grade students was selected.
The schools were selected with probability proportional to the estimated number
of eighth-grade students (based on information available for all schools in the
frame), and for any given type of school the proportionality factor was constant,
so that if a constant number of students were sampled in each school and the
estimated numbers of students were correct, each student in a given type of school
would have the same selection probability. The actual number of students selected
per school varied slightly because within the sampled schools, oversamples of
black and Hispanic students were selected with stratified sampling. The fact that
stratified sampling was used within schools does not need to be taken into account
in variance estimation if the collapsed stratum method is used.

A subsample of students in the base-year sample were surveyed again in follow-
ups in 1990, 1992, 1994, and 2000. Students reported on school, work, and home
experiences, activities, and attitudes, and achievement tests were administered as
part of the survey in 1988-1992. Students’ teachers, parents, and school admin-
istrators were also surveyed. (Determining selection probabilities for teachers is
difficult, although if teacher data are analyzed as student attributes the student
weights may be used.) For analysis of student growth over time, it is important to
note that the original PSU — the eighth grade school — remains the PSU for variance
estimation.

Example 5.3. The U.S. Current Population Survey. The Current Population Survey
(CPS) is a stratified multi-stage sample survey of the U.S. population, with a sample
size on the order of 60,000 households per month (although budgetary fluctuations
cause sample sizes to vary from one set of years to another). The sample overlaps
heavily from one month to the next, in a deliberate design known as a rotation
sample. A housing unit is in the sample for 4 consecutive months, is left out for
the next 8, and then it returns into the sample for the following 4 months, after
which it is replaced by a new selection. The rotation design is less expensive than
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sampling independently each month and improves the precision of estimates of
monthly and annual change. Compared to a permanent panel, the rotation design
gives more precise estimates of averages across years and eases response burden as
well. Although its primary purpose is to provide employment data, in some months
(or years) the CPS includes detailed questions on income, fertility, education, and
other topics.

Since there is no list of people (and contact information) in the U.S., the CPS sam-
pling frame is based on geographic areas. The U.S. is partitioned into about 2,000
PSUs, which typically consist of counties or groups of counties in the same state.
Highly populated PSUs are selected with certainty (“self-representing PSUs”) and
each comprises its own stratum; the remaining PSUs are stratified based on number
of male unemployed, number of female unemployed, and household demograph-
ics, for 432 stratain all (as of 1995). One PSU is selected from each stratum. Within
each sample PSU, lists of ultimate sampling units (USUs, typically, clusters of 4
adjacent addresses) are prepared based on the previous census and a systematic
sample (Section 6) is selected. In large USUs, further subsampling may be done.
A sample of building permits supplements the list of USUs to account for recently
constructed housing units. The design is quite sophisticated and has evolved over
many years; a comprehensive reference is U.S. Census Bureau (2002). $

6. Systematic Sampling

We consider selecting a systematic sample of n units from a listing of N units such
that each unit has the same selection probability. For simplicity, first suppose k =
N /n is an integer. A systematic sample consists of units r, r + k, r + 2k, ..., r +
(n — 1)k with r chosen to be an integer between 1 and k. Once r is randomly
picked, the rest of the sample is determined. There are r possible systematic
samples. Alternatively, the procedure may be viewed as choosing 1 of k possible
clusters at random. If the list is in random order, the sampling is equivalent to
random sampling, but more often the list is sorted by some criterion prior to sample
selection. As we have described it, systematic sampling uses equal probabilities
of selection, so the unweighted mean is unbiased.

It is perhaps slightly surprising that the variance of the estimator of the popu-
lation total from a systematic sample can be smaller than that of a single random
sample of the same size. This occurs if the variance of the y values within the
systematic samples is larger than the population level variance of the y values,
or equivalently when the intracluster (or intraclass) correlation within systematic
samples is negative (Cochran 1977, 208-209). Another way of looking at sys-
tematic sampling is to see it as stratified sampling with dependent selections. In
the sampling frame, the first k units are called the first zone, the next k units are
the second zone, and so on until the n™™ zone consisting of the last k units. If we
selected one unit from each zone, independently across zones, we would have a
stratified sample. In systematic sampling, we select one unit from each zone but
not independently: if we select the j™ unit from the first zone, we select the j™ unit
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from the every zone. For this reason, zones are often called implicit strata. The
analogy with stratified sampling is helpful for variance estimation. A common
method for estimating sampling variance when there is no replication (i.e., the
sample consists of a single cluster) is to pretend the systematic sampling is equiv-
alent to stratified sampling with one selection per stratum and to use the collapsed
stratum method (Section 3.2) to estimate variance. The success of such variance
estimation methods depends on the sort-order of the population list. Unlike the
other methods of random sampling we have discussed, the sampling variance does
not necessarily decrease as the sample size increases.

Example 6.1. Systematic Sampling of Private Schools in the National Assessment of
Educational Progress. The National Assessment of Educational Progress (NAEP)
is a test given to samples of students in several grades in the U.S. The main
component is a public school sample, but a private school sample is also selected
and is important for analyses comparing public and private student performance.
The private school students are selected in two-stage sampling, rather similar to
NELS:88 (Examples 3.1 and 5.1), with schools selected with systematic sampling
with probabilities proportional to a measure of size of the school. In an investigation
of the properties of variance estimators, Burke and Rust (1995) created a population
of 105 schools that were selected in NAEP for 1994, and assigned a mean score to
each school based on the observed mean from the 1994 student sample from the
school (based on about 30 students per school). The schools were sorted using the
characteristics underlying the NAEP private-school sample design and systematic
samples of various sizes (numbers of schools) were selected. Analysis showed that
the sampling variances (and mean square errors) did not decline monotonically
with the sample size. The variance estimation methods performed well however,
even with small sample sizes. ¢

Implementation of systematic sampling when k = N /n is not an integer is
discussed in texts such as Kish (1965, 115-116). One straightforward method is
to randomly choose a number r € [0, k) and then randomly select units [r + 1 4
Jjxk],j=0,...,n—1, with | x| denoting the largest integer < x. The method
extends to selection of units with unequal probabilities (Cochran 1977, 265-266).

7. Distribution Theory for Sampling

7.1. Central Limit Theorems

Central limit theorems apply to the weighted sample mean and Horvitz-Thompson
estimators from many kinds of complex sample designs used in demographic sur-
veys. The classical central limit theory assumes the sampling is with replacement,
so that selections are made independently, meaning that 77;; = 7r;7r; for units i and
Jj- Thus, if we select a simple random sample with replacement from a population
of size N with mean Y and variance 0 < S2 < oo, the distribution of the stan-
dardized sample mean is asymptotically normal N (0, 1). If the units are selected
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with unequal probabilities z; and with replacement, then the unbiased estimator of
the total, Ty given by (5.1), is the sample mean of the independent and identically
distributed variates y; /z; and again the classical central limit theorem implies that
the asymptotic distribution of (f’HH —Ty)/v Var(f”HH) is N(0, 1), where the vari-
ance Var(Tyy) is shown in Exercise 8. A central limit theorem also applies to the
weighted mean from a stratified simple random with-replacement sample with a
fixed number of strata with increasing sample sizes (because a weighted average
of normal random variables is normal) or with the number of strata increasing with
N and the sample sizes in the strata fixed (Krewski and Rao 1981).

Those central limit theorems need modification to apply to sampling without re-
placement, because in that method the individual observations are not independent.
If the sample is selected without replacement, or if number of strata increases with
n, then the concept of n growing without limit requires us to consider N growing
as well, for otherwise the sample would include the whole population (and keep
growing!). Thus, we consider a sequence of sampling situations with increasing
population sizes N and increasing sample sizes n such that limn/N < 1.

Versions of the central limit theorem have been proved for without-replacement
sampling designs that are similar to simple random sampling in that either

;i is approximately proportional to 7; g (7.1

for PSUs i and j or successive sampling is used (Complement 26). For example,
Hajek (1960) and Erdos and Renyi (1959) showed that under some realistic condi-
tions on the population, the standardized sample mean, (§ — Y)/(S/(1 — f)/n),
is asymptotically normal N(O, 1). The asymptotic normality of the Horvitz-
Thompson estimator in unequal-probability sampling has been established for
single-stage (Hdjek 1964, Rosén 1972) and for multi-stage sampling designs whose
PSU-selection probabilities satisfy (7.1) and whose weighted PSU sample totals
in (5.1) satisfy certain moment-like conditions (Sen 1988). Additional conditions
involve the PSU selection probabilities being too small for some units relative to
others, the idea being that no single unit or small number or units contribute too
much to the variance. Asymptotic normality has also been proved for the weighted
mean in stratified simple random sampling when either the stratum sizes or the
number of strata grow with the population sizes and 2 < n;, < N, (Bickel and
Freedman 1984). The results extend to stratified multistage sampling. The results
do not apply to systematic sampling from a fixed population, where the limited
number of possible systematic samples may be an impediment to normality, and
where the variance can only be estimated under assumptions.

The central limit results mentioned above also apply to vectors of means
or Horvitz-Thompson estimators, whose asymptotic distribution is multivariate
normal.

We have not focused on the moment (or similar) conditions for the population
that are required to formally prove the central limit theorem (Thompson 1997).
When we are considering a finite population, practical considerations such as skew-
ness and the presence of extreme values (or extreme sample-weighted values) — in
relation to the sample size — become the most critical considerations. For example,
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a statistic computed from a sample of municipalities can have a highly skewed
sampling distribution, if most units are small but some large cities belong to the
list. Cochran (1977, 39-44) provides useful guidance concerning applicability of
the theory to finite samples, and discusses how the minimum 7 for the normal
approximation to work varies with the skewness in the underlying population.

7.2. The Delta Method

The delta method is a procedure for approximating random variables and especially
their means, variances, and covariances. We have considered it already in Exercise
11 of Chapter 2 and we used it in a special case to approximate the ratio in (2.2).
In this section we let 7,, denote a general statistic (that may, but need not, be an
estimator of a population total). Suppose the sequence 7,,, n = 1, 2, ... 1is such that
T,, is asymptotically normal, specifically the limiting distribution of /n(T,, — 6) is
N(0, 62(0)).If g(.) is a function with a continuous non-zero derivative at 0, g’(9) #
0, and o (.) is continuous, then the distribution of

Vnlg(T,) — g(0)]
g (Ty)o (T,)

approaches N (0, 1) as n — oo. The basic idea is that g(7,,) ~ g(0) + ¢'(O)(T, —
0) by Taylor’s theorem. For smaller sample sizes, Student’s ¢ distribution may
often provide a better approximation, although the appropriate number of degrees
of freedom depends on the population, the sample design, and on the method used
for variance estimation.

This result generalizes to k-variate statistics T, = (T, .. ., Tin)T, for example
vectors of weighted means or totals. Suppose we have a sequence of statistics
T,,n =1,2,... such that the limiting distribution of /n(T, — 0) is multivari-
ate normal N (0, 32(0)), with 3(.) a continuous function of 0. Suppose further
that we have a function g= (g1, ..., g,)’ from R* to R? such that the matrix
of partial derivatives G(0) = (dg;/d6;) is continuous. Then the distribution of
J/n[g(T,) — g(0)] approaches N(0, G(0)X(0)G(0)7) as n — oo. Furthermore,
for inferential purposes we may approximate the limiting distribution by N (0,
G(T,)X(T,)G(T,)T) (Rao 1973, 385-389). The latter covariance is called the
linearization estimate, and for practical purposes we may use alternative estimates
of covariance (as discussed in the Section 8) that are asymptotically equivalent.

When the limiting distribution is normal with mean zero, it is customary to
say that the estimator is asymptotically unbiased. This does not necessarily mean
that the bias of the estimator goes to zero. For example, consider ¥ and y to be
sample means and g(X, y) = y/x to be the ratio estimator. If X and y are jointly
normally distributed, then one can show that E[g(%, ¥)] does not exist’, although
as sample sizes get large and variances of X and j go to zero, the distribution of
g(x, ¥) — g(E[x], E[¥]) approaches a normal distribution with mean O.

(7.2)

5 The only time the mean exists is if § = c¥ with certainty, for some constant c.
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Example 7.1. Model-Based Variance of the Dual System Estimator (DSE). Ahyper-
geometric model for dual system estimation based on a Post Enumeration Survey
(PES) was discussed in Section 6, Chapter 2. The model treated the number of
enumerations in the census, 7, and the number of enumerations in the PES, n,, as
fixed, and the number in both, m, as random. As discussed in Exercise 11 of Chap-
ter 2, a variance estimate of the DSE can be estimated obtained using the delta
method as (nyn2)>m=3(n; — m)(1 —m/ny) (Chandra Sekar and Deming 1949;
Bishop, Fienberg, and Holland 1975, 233). Wolter (1986) presents some data from
the U.S. Census Bureau’s 1980 Post-Enumeration Program showing, for black
males, (weighted) counts n; = 11,306,493, n, = 11,233,060, m = 9,803,540. The
weights are needed because the PES was based on a sample of areas (blocks), so a
DSE based on unweighted counts would only estimate the population size of the
sample of areas. If we divide the counts by the average sampling weight, say w,
we can estimate the population for the sampled area as (n;/w)(ny/w)/(m/w) =
niny/(mw). Multiplying this by w to estimate the total population, we have the
usual form of the DSE but based on the weighted counts, or 12,955,169. The
estimated standard error according to the hypergeometric model is 1,809,549. {

7.3. Estimating Equations®

We review here some principles of statistical inference in a sampling context.
Consider again a population of size N. Many of the quantities we estimate from
sample surveys can be defined in a roundabout way as solutions to equations.
Denote the population characteristic of interest by 6 and note that the population
mean is the solution to

N
> i—6)=0. (7.3)
i=1

the population ratio is the solution to
N

D i —6x) =0, (7.4)
i=1

and the population cumulative distribution function at a point y is the solution to

N
D Uy (1) = 0) =0. (7.5)

i=1

(Exercise 12). These equations are all of the form ¥r7(0) = 0, with

N
Yr®) =Y Y, xi, 0). (7.6)

i=1

% The section is somewhat theoretical and may be skipped without loss of continuity.
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As a sum over population values, ¥7(6) can be thought of as a population total.
For any 0, ¥/7(0) can be unbiasedly estimated by the sample-weighted total

Vs(0) =YY (vir i, 0)/7i. (1.7)
i=1

A sample estimate, say §, can be obtained as a solution to the estimating equation
¥s(0) = 0.

Vector-valued estimating equations are useful for estimating vectors of char-
acteristics. For example, consider how the least-squares estimates for the linear
regression model satisfy a vector-valued estimating equation. Let y; denote the
variable y for element i and let x; be a ¢ x 1 vector of covariates for element i
in the population. Consider a sample of n observations and write the sample val-
uesasX = (x1,...,%,) andy = (y1, ..., y»)T. The classical multiple regression
model asserts that y; is random with conditional mean (given x;) equal to x! 0 for
a g x 1 coefficient vector 0. The least-squares estimate of @ minimizes the sum
of (y; — x! 0)? and can be shown to satisfy the “normal equations” X’y = X7 X9.
Alternatively, without resorting to assumptions about a model, we can define 0 as
the solution to the normal equations when they are based on the N sets of pop-
ulation values. Specifically, define ¥ (y;, X;, 0) = x;(y; — xiT 0) and note that the
solution to 17(0) = 0, where

N
Pr(0) =D (i, x;, 0), (7.8)
i=1

satisfies the normal equations based on the whole population. The sample-weighted
estimate of 0, say 0, is a solution of 1;(0) = 0, where

Ps(0) =Y P(yi, xi, 0)/7, (7.9)
i=1

or X'D,y = X"D,, X8, where D,, is a diagonal matrix with elements 1/7;.

Suppose the function 1(y, X, . ) is continuously differentiable for all y and x,
and write H(@) = 91,(0)/00 for the matrix of partial derivatives. Then, we may
expand 1)4(0) in a Taylor series about '(/)S((A)) to yield (Complement 14)

0— 0~ —H(0) '¢,(0) ~ —E[H(®)] ',(0). (7.10)

The elements of 1,(0) are weighted sample totals and for large samples ),(0) typ-
ically is distributed approximately as multivariate normal. The covariance matrix
of the asymptotic normal distribution (cf., Section 3 of Chapter 1) is

E[H(0)]'Cov(1),(0)) E[H(0)"]~". (7.11)

The elements of Cov(t,(0)) for any fixed 0 can be estimated in the usual manner
(e.g., (5.2) or (5.9), or using replication methods of Section 8). Evaluating the
estimate at @ = 0 leads to an estimate of the actual covariance under the population
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value of 0, say COv,,_. A consistent estimator of the asymptotic covariance matrix
of @ given by (7.11) is

Cov() = H(B) ' Cov,, (H(®)") . (7.12)
We have that, approximately,
6; — 6;
— ~ N, 1), (7.13)
6y,

where 6; denotes the i diagonal element of CGV(é).

Much of statistics starts from assumptions about the population. In fact, in many
studies with causal aims there may not exist any finite population of which the
observations are a sample. Instead, the population values are assumed to be drawn
by nature from a density f(y, x|0) that belongs to a parametric family indexed by
0. Then we set ¥ (y, x, 0) = 9/00 log(f(y, x|0)). In this case we can take n = N
som; = 1. Evenifn < N, so an actual sample is selected, but each component of
) is uncorrelated with the selection probabilities then (recall Section 4.1) we do
not need to use unequal sampling weights in 10;(0) and we say the sampling is
non-informative or ignorable (Valliant, Dorfman, and Royal 2000, 36-39). In that
case we may also replace 1/m; in (7.9) by 1. (Exercise 15). In these cases the root
of 15(0) = 0 yields a maximum likelihood estimator, as introduced in Chapter 1.
Recall the definition of the Fisher information as Z(0) = — E[H(0)]. Then, we have
that E[n~'4ps(y,x,0)] = N~'4)7(0) ~ 0 and n~! Cov(1p4(0)) ~ Z(0), so (7.11)
may be replaced by Z(0)~! (Exercise 15). Instead of (7.12), the covariance of 0
may be estimated by Z (0)~!. The latter is an example of amodel-based estimator of
covariance, as compared to a design-based estimator of covariance such as (7.12).

Even if the aims of a study are causal and the real target population transcends the
sampling frame, it can be useful to calculate the covariance estimates both ways to
see if there is evidence of possible model mis-specification or informative sampling
(Horowitz 1994). Or, one can include characteristics of the sample design (such as
indicators for clusters or strata) in the model to see if they have explanatory power.
If they do, then the specification of the presumed causal model may be incomplete
in some respect. Furthermore, if estimates of the parameters of interest change
after the inclusion of variables related to the sampling design, then a revision
of the causal assumptions, collection of better data that allows one to address
possible confounding, or both may be called for. For further discussion, see Binder
and Roberts (2003), Korn and Graubard (1999), Chambers and Skinner (2003),
Skinner, Holt and Smith (1989), and Valliant, Dorfman, and Royall (2000).

Example 7.2. Design-Based Variance of the Dual System Estimator (DSE). In
Example 7.1 we considered a model-based estimate of variance of the DSE based
on a hypergeometric model. Such a model is unrealistic, in part because the enu-
meration rates vary by subgroups, and the hypergeometric model assumes equal
enumeration probabilities. Separate DSEs can be constructed for different post-
strata and summed, but the variance of the sum is not equal to the sum of the
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variances because selections in different poststrata are not independent due to the
cluster sampling used in the PES (Example 3.3). In the PES, a stratified sample
of clusters was selected with unequal probabilities. Let n; denote the weighted
number of census enumerations in the sample clusters, n, the weighted number
of enumerations in the second, sample enumeration (the “P sample”), and m the
weighted number in both, where the weights are reciprocals of design-based se-
lection probabilities. For simplicity, ignore erroneous enumerations. Consider a
single poststratum. The simple DSE for the poststratum is n;n,/m. We can im-
prove on this using the known total number of census enumerations, Ny, to yield
N = Niny/m. The ratio Iéc =ny/m is called an “adjustment factor”, because
the DSE is equal to the adjustment factor times the census count, N;. The vari-
ance of N for a given poststratum can be estimated by N? times the quantity
after the first summation sign in (5.12), with a;, the number of clusters in stratum
h, ény = Vha — Iéc)?ha, Yhe = Ny for cluster he, and X, = m for cluster ha. To
find the covariance between estimates for the poststratum and another poststra-
tum, which we will indicate with a’, simply replace (&, — &,)*/T?2,, in (5.12) by
(Gha — En)(8pq — )/ (T2, T2,,). Applying this to the estimated number of black
males from the 1980 Post-Enumeration Program (Example 7.1) under a simplifi-
cation of the actual sample design (Wolter 1986, 343-344) yielded an estimated
standard error of 51,000, which is more than twice the model-based standard error.
The differences are due partly to weighting but also to clustering. The clustering
will inflate the variance if the enumeration probabilities have a positive intraclass
correlation, which means that the enumeration probabilities are variable and give
rise to a clustering of census misses (Hengartner and Speed 1993). It is possible that
some of what appears as intraclass correlation is due to interviewer effects or other
operational effects in the PES that were similar within clusters. In a careful analysis
they would be estimated and taken into account where feasible. By themselves,
clusters cannot serve to define poststrata, so although there is some geographic het-
erogeneity in the enumeration probabilities, how to revise the estimation method
to account for the heterogeneity is not obvious. ¢

Although models do not have to be correct to be useful, as John Tukey has noted,
it is important to appreciate that the advantages of using assumptions about the
population distribution do depend on the validity of the assumptions. Note that 0 is
implicitly defined by (7.6) and a consistent estimate of @ can be obtained whether
or not the density is correctly specified. Similarly, (7.12) provides automatically
a correct covariance estimator for the implicitly defined parameter even under a
wrong model. However, the usefulness of the estimates depends on the degree of
mis-specification.

Example 7.3. Parameter Interpretation Under An Erroneous Model. Suppose
we assume erroneously that ¥; ~ N(0,60),i = 1, ..., n are independent and take
v (yi, xi,0) = yl.2 — 6, but in reality ¥; ~ N(u, o%). A consistent estimate of @ is
obtained by setting (7.7) to zero, s0 = (y? + - - -+ y2)/n, but in this case 6 =
E [Yiz] = u? + o2, Any attempt at calculating one-sided prediction intervals for a
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future value is likely to fail if ;12 is not small compared to o%. Although two-sided
prediction intervals with nominal coverage levels between 68% and 99% will have
approximate probability « of covering the future value even for /o] as large
as 0.6 (Cochran 1977, 15), the non-coverage is asymmetric. For example, when
u = 0.60 the probability that the future value falls above a nominal 95% interval
is 0.0459 and the probability it falls below the interval is 0.0020. Furthermore,
consider variance estimation via (7.12). In this case H(0#) = —n, so (7.11) equals
exactly Var(d). (Using the properties of the normal distribution one can show
that E[Y*] = 30* + 6021* + p*, soin this case (7.11) equals 20 + 402u?)/n.)
Thus, (7.12) leads to asymptotically correct inferences about mean squared error 6.
The problem is that the user of the mis-specified model believes that the inferences
are about a variance. {

Interval estimates can be developed in several ways. Let 8, denote the root of
Y (@) = 0. One way to produce a two-sided 100(1 — «)% confidence interval for
6 is to use (7.13) to obtain the interval 0%z, 1265, with z, the p™ fractile of the
N(0, 1) distribution for 0 < p < 1. A second way, often but not always applicable,
is to use the approximate normality of ¥;(6) so that, approximately,

Ys(6) — ¥r(0)

= ~ N(O, 1). (7.14)
Oy (6)

Consider testing the null hypothesis Hy : ¥7(6) = 0 versus the two-sided alter-
native, H : ¥7(0) # 0. A 100(1 — )% confidence interval for 6, is the set of 6
values for which Hj is not rejected, i.e., the set of § such that

%(9)2/63](0) = Z%,a/z- (7.15)

Note that z}_, /> is also the 1 — « fractile of the x? distribution with one degree
of freedom. This approach leads to alternative confidence limits for the ratio, as
developed by Fieller (1932).

Example 7.4. Fieller Intervals for a Ratio Estimator. Define foT by (4.5) and
define TX, 7 analogously. The ratio estimator 9= TKHT/ TX_ g from an unequal
probability sample is the solution to (7.7) with ¥ (y;, x;, 8) = y; — 6x;. To find the
endpoints of the interval for 6 such that (7 15) holds, we solve the quadratic equa-
tion obtalned by settlng /8 0)?* = U¢(9)Zl a2 Note that v,(0) = TYHT — GTX HT
and a ) _Var(TYHT) 20Cov(Tyur, Txur) + 02 VaI'(Tx ur). After some alge-
bra, we find that the roots and hence the endpoints of the interval are

2 2
= 2y —a/2Cxy + Zi—g2y/Cyy + Cox — 201y — Zl—a/z(cyycxx - c)zcy)

(7.16)
1— Z%fa/zcxx

where the relative variances and relative covariances are cy, = VaI(Ty ur)/ Ty HT>
o = Var(Tyx 1)/ TX ur and ¢y, = Cov(Ty ur, Tyur)/(Tx urTyur). The roots in
(7.16) are imaginary for any sample if we take o small enough, and in this case the
interval is the whole real line. However, for commonly used significance levels, this
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israre if ¢, and ¢y, < 0.09 (Cochran 1977, 156). For comparison, the confidence

interval obtained from (7.13) is (1 & Zl—aj24/Cyy F Cox — 2¢4y). O

8. Replication Estimates of Variance

Although the delta method can often be used to derive approximations to the
variances of complex nonlinear statistics, its practical application can be hard.
It can be tedious to determine analytically the partial derivatives needed, and
errors of programming can occur, as the process must be repeated afresh for each
new statistic. The error of approximation is often difficult to assess. The so-called
resampling methods circumvent these problems via brute force computation that is
implemented formally the same way, no matter what the statistic of interest. We will
discuss two such methods, and comment on a shortcut that is sometimes available.

8.1. Jackknife Estimates

Consider a with-replacement sample of n units such that unit i is chosen with
probability z; > 0 (as in Section 5.2) and let § denote an estimator that is a smooth
function of sample means or totals, e.g., a mean, a ratio, a regression coefficient,
etc. Denote by @ the estimate when the i™ unit is omitted from the calculation.
A jackknife estimate of variance is defined as

A A I <A A A 1 A
Varjack(g) = nT Z (9(1') - 9(.))2, 9(.) = ; ZQ(]’). (8.1)
i=1 j=1

This is sometimes ceilled a “delete-1” jackknife. Varjack(é) redlices to the usual
unbiased one when 6 is a linear function of the data, such as Tyy in (5.1). For
example, if the selections are made with equal probabilities, then Varjack(y) =s%/n
(Exercise 19). Therefore, the concept is primarily useful when the statistic of
interest is a nonlinear function of the data.

In multi-stage sampling, if the n sample units are PSUs, we delete all sample
selections within the PSU (i.e., we delete the whole ultimate cluster) when we
obtain é(i). If simple random sampling without replacement is used, Varjack(é)
may be multiplied by the finite population correction factor 1 — f. An alternative
form of the jackknife uses § in place of 9(.) in Varjack(é). If n is large, we may
reduce computations by randomly sorting the sample into groups and deleting a
group at a time.

If we want to apply the jackknife method to an estimate from a stratified simple
random sample, we may use

H ny ny

—1 ~ ~ ~ ~
Z(l — An fh)nh Z Oy — 9(h))2, with ) = . Z O jys (8.2)
=

=1 LT -

where é(h,-) is the estimate calculated without observation i in stratum s; A, = 1 if
the sampling is without replacement and = 0 if with replacement; f;, = n;, /N, is
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the sampling fraction, and n,, is the number of groups in stratum h. A variety of
alternative jackknife estimators can be obtained by replacing é(h) in (8.2) by 0, by
the unweighted average across strata of é(h)’s, or by the unweighted average of all
of the d;;)’s (Rao and Wu 1985).

To accommodate without replacement sampling in multi-stages or when selec-
tions are made with unequal probabilities, we need to use modifications of these
methods or special versions of the bootstrap, as in Sitter (1992) and Rao and
Wu (1988). For application of the jackknife (or bootstrap or similar replication
methods) for variance estimation in multiple frame surveys such as the Survey of
Consumer Finance discussed in Example 4.3, see Lohr and Rao (1997).

Many computer programs use the standard deviation of variance estimates from
(8.2) in computing ¢ statistics with degrees of freedom equal ton; + --- +ny —
H, but that may be optimistic if the sample allocation is very disproportionate, the
strata have unequal variances, or one is analyzing a subgroup that may be absent
in the sample from numerous PSUs (Cochran 1977, Korn and Graubard 1999,

193f5).

8.2. Bootstrap Estimates

Again, we begin by considering a with-replacement sample of » units such that
unit i is chosen with probability z; > 0, and let § denote a smooth estimator (e.g.,
Shao and Tu 1995, 86ff). Keeping the sampled values fixed, draw a simple random
with-replacement subsample of size m from the original sample and compute 8
for the subsample; repeat this independently B times and denote the estimates by

é*l, %2, ..., 6*B A bootstrap estimate of the variance of 0 is
B 1B
Varpeo(0) = Y 0 =0/ (B—=1), 6% ==Y 6. 8.3
arpoo(6) ;( )*/(B — 1) B; (8.3)

Notice that when the original sample is viewed as fixed, for B < oo the bootstrap
estimator (8.3) is still random as its value depends on the subsamples chosen.
Efron and Tibshirani (1993, 50-53) rely on theory and experience to suggest that
B between 50 and 200 usually suffices for estimating variance. The additional
variability from having B at 200, say, rather than oo is dwarfed by the variability
from the original sample. The expected value of Varboot(é ) with respect to the sub-
sampling and conditional on the original sample will be denoted by E, [\A/arbool(é )].
When 0 is a linear statistic, E, [Varboot(é)] is equal to (n — 1)/m times the usual
unbiased estimator of variance (Exercise 22). For example, if the selection proba-
bilities are equal, then we have that E,[Varpeo(7)] = (n — 1)m~"s2/n. Although
many applications of the bootstrap choose subsamples of size n, as in the origi-
nal sample, the resulting variance estimates for linear statistics will be downward
biased by the factor (1 — 1/n). Choosing m = n — 1 eliminates that bias.

To account for without-replacement simple random sampling, one can multiply
Varyoo(9) by the finite population correction factor 1 — 1/ N. More generally, how-
ever, the bootstrap can be modified to directly account for unequal probability sam-
pling without replacement by with-replacement subsampling from the n(n — 1)
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pairs of sample units with unequal probabilities that reflect the original joint
selection probabilities (Rao and Wu 1988, 237-239).

To account for multi-stage sampling, one can use the ultimate cluster method
(with the simplifications that entails) and subsample whole ultimate clusters
(i.e., all sampled elements in the PSU) and use (8.3). That method parallels the
jackknife treatment in Section 8.1. One can also, however, choose the subsamples
with multi-stage sampling; Sitter (1992, 761-764) and Rao and Wu (1988, 239)
provide details for two-stage sampling.

The simplest way to get a bootstrap estimate of sampling variance in stratified
simple random sampling is to draw a simple random with-replacement subsam-
ple of size my, from stratum & = 1, ..., H in the original sample, then compute
the bootstrap estimates 0** b=1,..., B for independent subsamples, calculate
Varboot(é) as in (8.3), and sum across strata. If m;, = n;, — 1 then E, [\A/arbool(yw)]
is equal to (3.2) but without the finite population correction factors 1 — f,. If
the sampling fractions are negligible, this is fine, or if the sampling fractions are
equal, the bootstrap variance estimate may be multiplied by 1 — f. To estimate
sampling variance under stratified multi-stage sampling using the ultimate cluster
method, subsample m;, ultimate clusters from the n;, in the sample from stratum
h=1,..., H and apply (8.3).

Should one prefer to use the bootstrap or the jackknife for variance estimation?
The bootstrap is better able to accommodate sampling without replacement than
the jackknife, although at the cost of some complexity. The bootstrap can also be
used to obtain one-sided and other asymmetric confidence intervals; see Efron and
Tibshirani (1993). The jackknife can involve less computing, however, and sim-
ulations suggest that in some cases its variance estimates have somewhat smaller
mean square error than those from the bootstrap (Shao and Tu 1995, 251-258). In
terms of the accuracy of the variance estimates, if the ultimate cluster method is
acceptable and the estimator is a smooth function of sample means or totals, either
the jackknife or bootstrap may be used, with the choice based on convenience. For
very small sample sizes, as may occur in highly stratified samples, the jackknife
appears to be preferable to the bootstrap.

8.3. Replication Weights

Replication weights provide a simple method for computing variances for sec-
ondary analysis of data. When preparing a public use data file, some statistical
agencies include with each case a set of r replicate weights. Calculating an esti-
mate using any one of the r replicate weights yields an estimate of the form 6** (if
the bootstrap is used) or é(i) (if the delete-1 jackknife is used) or something similar
(if other replication methods are used for the variance estimation). The variance
of a statistic can be estimated by a constant ¢ times the sum of squared deviations
of the weighted estimates about their mean or about the full-sample estimate, @.
The constant ¢ depends on the replication method being used, and guidance is
provided along with documentation for the public use data file. If available, repli-
cate weights are quite useful. They may be derived from more efficient replication
methods than the delete-1 jackknife or the bootstrap, such as balanced repeated
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replication, which allow r to be fairly moderate. The creation of the replicate
weights may also take into account weighting adjustments for poststratification
and other calibration and nonresponse.

Exercises and Complements (*)

1.

*3.

#4,

*3.

(a) Derive (1.2). (Hint: Notice that the y;’s are constants, and find the expected
value of y by substituting E[I;] for I; in (4.1).) Show that for simple random
sampling, E[I;] = n/N, and hence E[¥] = Y. (b) Use the properties of the
variance of a linear combination to show that the variance of  is

Var(§) = [Z Var(L)y; + Z Z Cov(Is, mykyz]
=1 I#k
(c) Show that for simple random sampling, Var(l;) = (n/N)(1 —n/N) and
Cov(Iy, I;)) = —(n/N)(1 —n/N)/(N — 1). Substitute and simplify the alge-
bra to obtain (1.3). (d) Finally, write s> = [n/(n — 1)][ > yl.z/n - )72]. Show
that the expected value of the first term in the square brackets is Zfl Y?/N and
note that E[7%] = Y2 + Var(¥). Substitute and simplify to obtain E[s?] = S2.

. In with-replacement simple random sampling, elements are selected in 7 in-

dependent draws with equal probabilities at each draw. Define 6> = (N — 1)
§?/N and show that

Elj1=Y, Var(y)=0c2/n, E[s’]1=0>  E[s*/n] = Var(y).

The ratio of the absolute bias of R to the standard error of R is less than or
equal to the CV of x. The accuracy of the approximation in (2.2) depends
on ¥ being close to X . In practice, the approximation should be adequate for
typical purposes if the CV of x is less than 0.1 (Cochran 1977). In that case
the bias may be neglected in relation to the standard error. The estimate of
variance (2.3) tends to be biased downward, particularly for n < 12, unless
the CV of ¥ is less than 0.1.

The ratio estimator provides an alternative to estimating ¥ by the sample
mean, provided that the population mean of X is known. The ratio-estimate
of the mean is RX and the ratio estimate of the total is NXR. The variances
may be estimated by multiplying (2.3) by X? or N2X? respectively. If the
population scatterplot of y; against x; lies close enough to a straight line
through the origin, the ratio-estimate of the mean (or total) will be superior
to that based on the sample mean. A practical guide is to choose RX over 7
only if its estimated variance is appreciably smaller than that of y.

The square root of the design effect is abbreviated as Deft. There is some
inconsistency in practice concerning finite population corrections. Some au-
thors define Deft as the ratio of (i) the actual standard error of the statistic,
under the given design with sample size n, to (ii) S/+/n — without the finite
population correction; e.g. Kish (1995, 56).
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Show that the analysis of variance identity holds in a stratified population,

H H
(N —1)S* =) (Ny = DS, + ) Ni(Fy — )%,
h=1

h=1

Show that if proportional allocation is used in stratified sampling, then for
large Nj’s

H H 5 5
Zh:l %S/% ~— Zh:l %(Yh — Yy <1

Deff (7) = == -

This shows that to a good approximation, proportional allocation helps effi-
ciency (the ratio of sampling variances) if the strata are chosen propitiously
and does not hurt it if the strata are chosen unwisely.

. Prove that the Horvitz-Thompson estimator (4.5) is unbiased for the popula-

tion total. (Hint: Extend (4.1) to include weights and omit the factor 1/n.)

. To obtain the variance of (5.1), denote by m, the number of times unit

« is selected in the sample. The joint distribution of the m,’s is given by

the multinomial distribution. Mult(n; z1, . . ., 74). The probability of observ-
ing (my,...,ma) is nl(my!...maD)7'Z" ... 24" and we have E[m,] =
nzq, Var(my) = nzy(1 — zo), and Cov(my, my) = —nzeze. Write Tyy =

(m1y1/z1+ -+ maya/za)/a and use the moments of m,’s to derive

A
Var(Ty) = a™" Y " za(ya/20 — NY)?

a=1

and show that this equals (5.2). Show that (5.1) and (5.2) are unbiased. (Cf.,
Cochran 1977, 253-254.)

Justification of ultimate cluster method of estimating variances. The variance
of the Horvitz-Thompson estimator (5.3) in one-stage cluster sampling may
be expressed as (see e.g., Cochran 1977, 260-261 for the complex details)

A A
Var (Tyr) = Y (taTtar — Taa ) Fo = For -

a=1 o'>a

Several variance estimators have been derived, including the (“Sen-Yates-
Grundy”) estimator

a a
Varl(fHT) = Z Z(nana’ - naa’)na_al'(j}a - 5}01’)27

a=1o'>a

but they are unbiased only if 7, > O for all (not just sampled) pairs of PSUs.
Furthermore, depending on the design used, the unbiased estimators may take
negative values for some samples. In two-stage sampling, let y, denote the
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Horvitz-Thompson estimate of the total for PSU « and let V(3,) denote its
variance. The variance of (5.3) under two-stage cluster sampling is

A
Vary(Tyr) = Vary(Tyr) + ) Var(§o) /.

a=1

The estimator Varl(fHT) in fact accounts for a good portion of the variance
due to subsampling, and under two-stage sampling its expected value is

A
Vary(Tyr) — Y Var(3a).

a=1

An unbiased estimator of variance is provided by

Vary(Tyr) = Vary(Tyr) + Y Var(F) /7.

a=1

which typically is only slightly larger than Var,(Ty7). (This discussion is
based on Sarndal, Swensson and Wretman (1992), 135-141; see their pp. 141—
150 for three and higher-stage sampling.)

The separate ratio estimator of the total is

H A
Z Ry Txp
h=1

with Ty the known population total for x in stratum /4 and

ap ap
Ry = Ziha/tha-
a=1 a=I1
The variance of the separate ratio estimator may be estimated by

H
Var(R;)Ty,
h=1

with (from (5.5))
R R ah ap » ap y 2
Var(Ry) = —— Z eha/< tha>
ap — 1 a=1 a=1

and €4 = Vpe — I?h)?ha. A possible drawback of the separate ratio estimator
is bias, if the coefficients of variation of the denominators of I@;, are not all
small; in that case the variance estimator may well underestimate, leading to
overconfidence in the accuracy of the estimate.

An alternative to the separate ratio estimator is the combined ratio estimator
of the total, Iéc Tx, with I?C defined by (5.10). The variance of the combined
ratio-estimator of the total may be estimated by the numerator of (5.12).
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Show that the estimating equation method estimates the population mean by
a weighted sample mean with weights as in (4.6) and that it estimates the
ratio with an estimator of the form (5.4).

If additional information on the population is available, modifications to the
Y functions may be put in place. Consider, for example, the case of popula-
tion mean that has ¥ (y;, x;, 8) = ¥o(y; — 0). If the population values were
known to be symmetrically distributed about the mean, we could identify the
population mean by setting (7.6) to zero when ¥ is any odd function about
zero. For example, take ¥((z) = z for z € [—k, k], ¥o(z) = k for z > k, and
Yo(z) = —k for z < —k, for some k > 0. This leads via (7.7) to a Winsorized
estimate of the mean, insensitive to outliers (Lehmann 1983, 376ff.).

We consider a linear approximation to the solution from an estimating equa-
tion. Let @ denote the estimate and 0 the population value. Under regu-
larity conditions the estimator is consistent. This justifies using a linear
approximation to ¥, as —,(0) = w‘y(é) —(0) = H(0)(6 — 0). Assum-
ing the inverse exists, we may solve this to yield the first part of (7.10).
Similarly, under regularity conditions, for large samples H(0) is close to
its mean, so H(O)(é —0)~ E[H(O)](é — 0). This yields the second part.
Binder (1983) and Thompson (1997, 104 ff.) discuss conditions under which
these approximations are valid.

Suppose nature selects the N population values from a density f(y, x|0)
that belongs to a parametric family indexed by 0. For simplicity ignore x.
Set ¥ (y, 0) = 9/00log(f(y]0)). Use a law of large numbers to show that
N~'4)1(0) approaches E[3/90 log(f(]0))] as N gets large. In the classical
formulation, one considers an infinite population with [ 47(8)dy = E[9/00
log(f(v10))]. Recall the discussion of scores in Section 3 of Chapter 1 and
show that if the order of differentiation and integration can be switched,
E[0/001og(f(v]0))] = 0. Next, suppose that non-informative sampling is
used to select a sample of size n. Recall that in the finite population setting
(Section 7.1) both n and N get large, and in the classical formulation the
population is infinite. Consider t,(0) with weights 1/m; in (7.12) replaced
by 1. Observe that n~'Cov(2)5(0)) &~ n~' E[1,(0)" 14(0)], which tends to a
matrix whose (i, j) element is E[(d/06; log f(y]10))(3/06; log f(y]10))]. As
discussed in Section 3 of Chapter 1, conclude that n~'Cov(2/,(0)) ~ Z(0).
Show that the population cumulative distribution function at a point y, say
F(y), is the root of (7.5). Let u; = I(_,,1(y;) and w; = 1/m; and show that

F(y) = Xn:wiui/iwi
i=1 i=1

is the solution, when one sets (7.7) to zero and ¥ (y;, x;, 0) = u; — 0. If the
denominator in F'(y) were replaced by its expected value, would the resulting
estimator take all its values on [0, 1]? Note that if the w;’s vary other than
across strata, then F(y) is a ratio of sample totals and its variance may be
estimated as described in (2.3), (5.6), or (5.12), or as in Section 8. Denote the
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variance estimate by 62 and use the delta method to show that an approxi-

£ .
mate 100(1 — a)% coné’gence interval is given by F(y) £ 21-¢/26 ).

. Population quantiles. We would like to define the p™ population quantile, or

the 100p™ percentile, say 6,,, as the solution to F(6,) = p, with F the popu-
lation c.d.f.. An exact solution may not exist, however, if F is not continuous,
and the solution may not be unique if F is not strictly increasing. Even if F
is continuous, however, F is discrete. Lohr (1999, 311-313) and especially
Korn and Graubard (1999, 68-74) discuss problems and solutions for discrete
distributions, including various interpolation methods to define £~'. One way
(Woodruff 1952) to develop an approximate 100(1 — )% confidence interval
for 6, is to transform the endpoints of the interval from Exercise 16 using £ .
This leads us to take (£~ (p — z1—a/26 @) F (P + 21-0/26 1)) 8S
the interval, with 6p(é( p))equal to 6ﬁ(y) evaluated at y = A( p).

Alternative confidence sets for population quantiles. The quantile 6, is ap-
proximately a zero of (7.6) with ¥ (y;, xi, 6) = I(—c0,0)(yi) — p. Using (7.16)
we may develop alternative confidence intervals for 6, as (Francisco and
Fuller 1991)

01F0) — 21-026 40y < P < F(O) + 21-0/265)}-

Verify that Varjack(f‘HH) gives the estimator (5.2) and that if the selections are
made with equal probabilities, Varjack(y) =2 /n.

Grouped jackknife. Given a with-replacement sample of n units, we may
randomly assign the sampled units to form groups of (equal or nearly equal)
sized = n/r,and let é(g) denote the value of the statistic § when the g™ group
is omitted. A grouped jackknife estimate of the variance or of the mean square
error of 7 is

r—1 R
Z (o) — f(~))2-

rooo

with 7, the average of the f,)’s or alternatively

In the grouped jackknife, we form the sample into groups at random one
time, and then delete d observations at a time. Let N; denote the number of
without-replacement subsamples of size n — d, and é(g) denote the value of
the statistic based on the g subsample, g = 1, ..., N,. A delete-d jackknife
estimate of the variance of 7 is

n—d e, o
N, Y (e —8u)%,

g=1

with 6, the average of the é(g)’s. A consistent estimate of variance of the
sample median is obtained if d > n'/?> and n — d — oo. Generally, in cases
where the delete-1 jackknife does not give consistent variance estimates but
the delete-d jackknife does, it is necessary that both d and n —d — oo.
Typically N, is too large for manageable computing, and a random subsample
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(either with or without replacement) of the N, subsamples may be used to
estimate the variance. (Shao and Tu 1995, 49-55).

The delete-1 jackknife applies to many statistics, including linear statistics,
ratios and regression coefficients in linear and generalized linear models, and
statistics that are smooth functions of the data (see Shao and Tu 1995, chapter
2, for further information). As described in Complement 21, the delete-1
jackknife does not give good estimates of the variance of the sample median.
The performance of jackknife estimates of variance in stratified and stratified
multi-stage sampling has been studied for statistics that are smooth functions
(having continuous second derivatives) of vectors of population means and
such that the function evaluated at the vector of means is proportional to
the function evaluated at the vector of totals — such statistics include linear
statistics, ratios, and regression coefficients in linear and generalized linear
models. The sampling designs use with-replacement sampling of PSUs and
itis assumed that as n increases, max, (N, /N)/(nj,/n) remains bounded (this
allows for increasing number of strata or for constant number of strata), and
that as N increases the Wj,-weighted averages of within-stratum covariances
are bounded.

If n;, = 2 for each stratum, a convenient way to form a jackknife estimator
of variance is to pick one unit from each stratum, say unit 21 from stratum #,
and only delete it. The estimator is then

H
Vara @) =Y (B - 0)°
h=1

Balanced repeated replication (BRR) is an alternate method of variance es-
timation that can be used with n;, = 2 (and other stratum sizes too but less
easily), in which half of the units are omitted from the calculation of each
replicate, with the half chosen according to a systematic design.

Show that E, [Varboot(f"HH)] is equal to (n — 1)/m times the estimator (5.2).
What is it equal to if the selection probabilities are all equal?

To use the bootstrap to estimate variance from a stratified without-replacement
simple random sample, denote the original sample values by yp;,i =
1,...,ny, denote the stratum means by y,, and denote the values in any
subsample by y;;,i =1,...,my, all for h =1, ..., H. Calculate the es-
timate §* not from the y;;, but rather from scaled values J,; defined as
Yni = yn + m,l/z(nh — l)l/z(y,fi — V), and then estimate the variance with
(8.3). A simple choice for my, is n, — 1, in which case j;; = y;;. (Rao and
Wu (1988); see Sitter (1992) for methods based on without-replacement sub-
sampling.)

Successive sampling is a method of drawing a sample of size n with un-
equal probabilities and without replacement from a population of size N. Let
Z1, ..., 2y be positive numbers summing to 1. At each draw, choose unit
i if not selected at a previous draw with probability proportional to z;. For
example, at the first draw unit i has probability z; of being selected. If unit
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J was selected at the first draw, the probability that unit i(# j) is selected at
the second draw is z; /(1 — z;). Hdjek (1981) analyzes this method in detail.
The degrees of freedom for variance estimates from complex sample designs
is a complicated question. The degrees of freedom, say d, may be chosen
so the asymptotic second moment of the variance estimator agrees with the
second moment of a chi-squared random variable on d degrees of freedom.
Cochran (1977, 96) presents a formula for d stratified simple random sam-
pling with n; observations from stratum 2 =1, ..., H, and shows d lies
between min{n;, — 1) and n, with n = n; + - - - + ny. The result assumes
the underlying observations are normally distributed, and if their actual dis-
tribution has heavier tails, the formula will overstate the degrees of freedom.
The approach may be extended to multi-stage samples, in which case sam-
ple sizes refer to numbers of PSUs. As a practical rule, d should not exceed
n — H, which is optimistic but utilized in some software packages.

When one is analyzing data from a sparse subgroup, instead of all H strata
and all n PSUs, it is better to consider only those containing at least one
sample member from the subgroup. Also, when using a replication method to
estimate variance, it is commonly recommended that d should not exceed the
number of replicates minus 1. Rust and Rao (1996) present a clear discussion.
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Waiting Times and Their
Statistical Estimation

We will first describe the simplest model for survival data, the exponential distri-
bution. Its demographic significance often goes unnoticed, because it assumes a
constant hazard rate. This is unfortunate, because many of the key issues of demo-
graphic estimation can already be discussed in this simple case. We continue in
Section 2 by treating the classical model for a general waiting time. The emphasis is
on the probability of survival function and its estimation based on individual level
or grouped data. Section 3 discusses the estimation and use of survival probabilities
in forecasting. A probabilistic handling of fertility measures is given in Section 4.
In particular, we will give an introduction to Poisson processes in this setting. In
Section 5 we consider the magnitude of random variability in demographic rates
and the commonly used Poisson assumption. Section 6 discusses the simulation
of waiting times and counts. For a classical presentation, see Pressat (1972).

1. Exponential Distribution

Consider a waiting time until a specified event. The event can be death, so for a
newborn the waiting time is the length of life. The waiting time can also be the
time of appearance of the first cancer, the time between the first and second births,
the time of first marriage, duration of marriage etc. In this section we develop a
simple exponential model for a waiting time. Although the model is a crude one,
it provides a direct way to introduce statistical concepts that are central to more
realistic models. We also obtain optimality results that provide a foundation for
the age-specific estimation of general waiting times.

We let a nonnegative random variable X > 0O represent the waiting time. As
described in Chapter 1, the distribution function of X is F(x) = P(X < x). Sup-
pose F'(.) is differentiable, so F'(.) = f(.) is the density function of X. Then, the
expectation of X is

o0

E[X] = /xf(x)dx. (1.1)

0
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In demography, E[X] may correspond to /ife expectancy, for example.

The variable X has an exponential distribution with parameter & > 0, or X ~
Exp(w), if its survival function p(x;u) = P(X > x) is equal to exp(—ux) for
x > 0. For reasons to be explained in Section 2, u is called a hazard rate'. In
this case F(x; ) = 1 —exp(—ux) and f(x; ) = pexp(—ux). When viewed as
a function of w, f(x;w) is the likelihood function of the observation. Integrating
by parts gives us the result E[X] = 1/u. In Section 2 we show a simpler way to
calculate the integral.

Example 1.1. Memorylessness of Exponential Waiting Time. The exponential dis-
tribution has the so-called memorylessness property: p(x + t)/p(x) = p(t) for all
x > 0. In words, this means that the probability of surviving an additional time ¢,
given survival beyond time x, does not depend on x. It follows that E[X|X > x] =
x + 1/p, for example. Starting from the equation p(x + ¢) = p(x)p(t) one can
prove that no other distribution has the memorylessness property (Feller 1968,
459-460). O

Example 1.2. Independent Causes of Death. Suppose X1, ..., X, are indepen-
dent, exponentially distributed waiting times with parameters pt1, .. ., i, respec-
tively. Define X = min{X}, ..., X;}. Then (Exercise 1), we have that P(X > x)
= exp(—(u1 + - - - + ur)x) or, in other words, the minimum has also an exponen-
tial distribution with the parameter p; + - - - + ug. In demography, X, ..., X
might represent waiting times to death from k independent causes of death and X
would be the actual duration of life.

The method of moments provides a way to estimate (. (Complement 3.) Suppose
X; ~Exp(w),i =1,...,n, are independent and identically distributed (i.i.d.).
Define X = (X; +---+ X,,)/n, so E[X] = 1/u. The method of moments sets
X =1/4, giving us ft = 1/X as the estimator of 1. As we discuss next, f& is also
a MLE of pu.

Maximum likelihood estimation can accommodate censoring, which may occur
if individuals exit the population for reasons other than death. For simplicity of
language let us think of the X;’s as representing the independent lengths of life
of n individuals. In practice, we may not observe an individual’s full lifetime: if
X; < c¢; we will observe X; but if X; > ¢;, then we only know that i died after c;,
or X; was censored at time c;. Suppose there are fixed numbers ¢; > 0 such that
each i is followed only until the censoring time ¢;. Let m denote the number of
deaths that were not censored, and assume (with no loss of generality) that they
were the ones with the first m indices. The likelihood function of the observed
times of deaths X; = x; can then be written as

m

L = [rexp(—px) [ exp(-ucy). (12)

i=1 i=m+1

! The word hazard comes from Arabic al zahr meaning dice.
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Define the loglikelihood function as £(1) = log L(w). We leave it as an exercise
for the reader to prove that by differentiating £(w) and setting the derivative to
zero, one obtains the solution,

m
K+ K"
where K is the number of person years lived by those whose deaths were observed,
and K’ is the number of person years lived by those who were censored, or

L= (1.3)

m n
K=Y x, K'=) . (1.4)

i=1 i=m+1
We see that the MLE is of the form: “observed cases divided by person years
lived”. It is customary to call it an occurrence-exposure rate. We will be talking
about o/e rates for short.> By taking each ¢; = 0o, we get that m = n, and the
result that the moment estimator is the MLE when there is no censoring. Thus, in
the absence of censoring the estimator /i = 1/X is actually an o/e rate!

Above we have assumed that the censoring variables are fixed numbers. We will
see below that this is an extremely common situation in the age-specific estimation
of waiting times of demography. However, suppose now that the ¢;’s are values of
random variables C; that are independent of the X;’s, and have distributions that do
not depend on . Let pc,, .. .c,iCoirsonCo(X1s - o s Xm|Cimg1, - - ., €;) denote the con-
ditional probability that the first m censoring times equal or exceed the correspond-
ing x values, given the values of C,11, ..., Cy, and let fc, ., . c,(Cnt1s .-, Cn)
denote the jointdensity of C, 11, ..., C,.Define Lc = fc,,,,...c.(Cmg1s -, Cp) X
DCyoeo ol ity X1+ o s X |Cpe15 + -+ €). Then, the full likelihood is L(u) x
L. Since L¢ does not depend on u, it does not affect the maximum likelihood es-
timation, and f is also the MLE under general independent censoring. (For more
details about likelihood construction under various censoring mechanisms, see
Klein and Moeschberger 1997, 66—67.) This result is important in demographic
applications, because censoring by migration, or by death, is often independent of
the risk being estimated.

Similarly, if an individual i enters the follow-up after the beginning of the
observation period, say attime d; > 0, his or her survival experience is left censored
(as opposed to right censoring considered above). Due to the memorylessness
property of the exponential distribution the late arrivals can be accommodated by
adjusting their entry times to zero, and by defining their time of death as X; — d;
and their time of censoring as ¢; — d;. This shows that in the case of exponential
distribution the o/e rate is the MLE under both right and left censoring.

Note that this corresponds precisely to the observational scheme in which the
data are collected from the rectangles of a Lexis diagram (e.g., ABCD in Figure 1
of Chapter 2). Individuals spend varying times in any given rectangle based on the

2 In epidemiology an o/e rate is often called “incidence” or “incidence rate” (e.g., Rothman
1986).
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time of year they were born. This leads to fixed left and right censoring. Other
mechanisms of censoring can often be assumed independent of the waiting time
being studied. Hence, if constant hazard can be assumed to hold in each rectan-
gle, then the exponential model provides a full estimation theory for parameter
estimation, rectangle by rectangle.

Here, we digress to comment on the calculation of person years when the popu-
lation being studied is open. In large populations that are open to migration, person
years lived during a year are typically approximated by the average of the popu-
lation sizes in the beginning and at the end of the year. So, if V() is the size of
the population of interest at exact time ¢, the person years lived during [z, + 1)
are approximated as K () =~ (V(t) + V(¢ 4+ 1))/2. Consider two cases. (i) Let the
population of interest be those in age x at exact time t (meaning those whose exact
age is in the interval [x, x + 1) at exact time 7). Referring to Figure 1 of Chapter 2
again, let V,p be the number of life lines crossing A D, and let Vg be the num-
ber of life lines crossing CE. Suppose the number of deaths in the parallelogram
ACED is Dycpg. Then the o/e rate is approximately Dacpg/(Vap + Veg)/2. (ii)
Let the population of interest be those in age x during t. In obvious notation, the
approximate o/e rate is Dagcp/(Vap + Vpc)/2. Note that it is not easy to express
the latter notion in words, in an unequivocal manner. The difficulty comes up when
individual level data are available, and one wants to use a computer to compute
the person years exactly. The algorithms are surprisingly tricky (e.g., Breslow and
Day 1987, 362), especially if the population is open.?

Returning to inference, we note that classical results of maximum likelihood
estimation can be used to draw inferences concerning . Subject to regularity
conditions on censoring, as a MLE the o/e rate, i, is a consistent, asymptotically
normal estimator of p as the number of cases gets large (e.g., Rao 1973, 365;
also Chapter 1, Section 3). The asymptotic variance of the o/e rate is Var({i) =
—1/£"(w). Since £(u) = mlog(n) — w(K + K'), we have that £”() = —m/u?,
and the asymptotic variance is u?/m. Hence, in large samples (say, when the
expected count m is > 30) we can test, for example, the hypothesis Hy: & = uo by
noting that the distribution of the standardized variable Z = m'2(@ — o) /1o 1S
approximately normal N (0, 1) when Hy is true. We leave it as an exercise to show
that confidence intervals can similarly be constructed for u, and for its monotone
functions such as the survival probability e *, ¢ > 0.

As an aside, we note a partial justification of the Poisson model for demographic
events. There is a relation between the estimate of variance of the o/e rate under
the exponential model, and under a Poisson model. Under the exponential model,
we estimate the variance of the MLE 1 by f1>/m. On the other hand, suppose we
condition on the person years lived, K and K’, and consider m to have a Poisson
distribution with mean u(K + K'), where K + K’ is assumed to be a known con-
stant. Then, the MLE of u is formally given by (1.3) and its variance /(K + K')
is estimated as f1>/m. The equality of the estimates under the exponential and

3 Software capable of computing person years is increasingly becoming available, e.g.,
Stata, S+, R, and SAS have such modules.
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Poisson models is of interest, because under the exponential model the count m
does not have an exact Poisson distribution. In fact, when there is no censoring,
m = n with probability one, or m is fixed. The above derivation can be used as a
justification of a Poisson assumption in many demographic settings in which other
arguments cannot be used (cf., Section 5).

In all its simplicity the exponential model may serve as a building block for
more complex models, when population heterogeneity is introduced in one way
or another.

Example 1.3. Cross-Sectional Heterogeneity of Constant Hazard Rates. Suppose
the lifetimes of those born at ¢+ > 0 have a constant hazard rate e *', where
@ > 0 and o > 0. Those who are in age x at ¢, and thus were born at ¢ — x, have
hazard pe "= = pe~*"e**. Notice that the survivors at ¢ are a heterogeneous
population with the hazard increasing exponentially with age x > 0. If the quality
of industrial production improves over time, such a pattern of hazard rates might
be observed in a cross sectional sample of products. It is not unthinkable that
human cohorts adopt increasingly healthier life styles and benefit from public
health improvements. If so, one would expect a similar patterns in human period
mortality. ¢

Example 1.4. Gamma Distribution for Frailty. Again consider that an individual
has a constant hazard, w, but suppose that u is heterogeneous in the population.
One convenient model is that pu has probability density function g(u;c«, B) =
B te Pt /T (@) for u > 0, with @ > 0, 8 > 0, and I'(a) = fooo x e ¥dx.
This distribution is known as the gamma distribution with shape parameter o and
scale parameter 8, and it has mean /B (e.g., DeGroot 1987, 286-290). The gamma
Sfunction T'(«) is a generalization of the factorial, and satisfies I'(n) = (n — 1)!
for positive integer n and I'(x + 1) = xI['(x) more generally. Suppose we pick
an individual at random. Then, the probability that he is alive in age x >
0 is (BT () f;° e ™ u e Pdu=(B/(x+B)" [y guia, x + B)du =
(B/(x + B))*. (You can check the first equality by substituting in the definition
of g(u; o, x + B).) Although we do not exploit the fact here, we note also that the
gamma distribution itself serves as a model of lifetimes and includes the exponen-
tial distribution as a special case (@ = 1). ¢

The gamma distribution describes the heterogeneity of the population in this
example. The bigger u is, the higher the hazard is. Therefore, it is called a frailty
distribution. Notice that if we would use the average hazard /B to assess the
probability of surviving to x > 0, the result would be exp(—(«/B)x). Because
the probability of survival e ¥ is a convex function of the hazard pu, it follows
from Jensen’s inequality (Complement 8) that the probability of surviving to x,
at average hazard, is smaller than the average of the probabilities of survival,
(B/(x + B))*. Since Jensen’s inequality does not depend on the particular form
of the distribution of hazards, the result actually holds for any frailty distribution
with a finite expectation. We will see below that the result can be extended into a
much more general form still.
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2. General Waiting Time

Section 2.1, below, introduces the concept of a hazard function and relates it to
probability of survival function. In Section 2.2, we discuss how to calculate the
expectation of life, given the survival function. We also define life table populations
and stable populations, consider the effect of heterogeneity and change of mortality
on survival, and apply the concepts to pension funding. Section 2.3 discusses
estimation of the survival function and cumulative hazard function from individual
level data. Section 2.4 considers aggregated data.

2.1. Hazards and Survival Probabilities

We derive now a basic identity between hazard rates and survival probabilities.
Many, but not all, of the details of this development will carry over to the analysis
of multistate demographic systems in Chapter 6.

Let X be a nonnegative random variable representing a waiting time. Again, to
simplify language, we will be talking about a length of life. Recall the definition,
p(x) = P(X > x).*Letus assume that p(0) = 1. Assume also that there is a piece-
wise right-continuous function wu(.) > 0 on [0, co) such that P(x < X < x + h|
X > x) = w(x)h 4+ o(h), where o(h)/h — 0 when h — 0. This a mathematical
way of saying that the conditional probability of dying at or before age x + h,
given survival beyond age x, is approximately proportional to /, with the constant
of proportionality depending on x. The function x(.) will be called a hazard.’ In
mortality analysis it has traditionally been called force of mortality.

In terms of the survival function p(.) the condition can be written as

p(x) — plx +h)

= uw()h + o(h). 2.1
p(x)

Dividing both sides by 4 and letting 7 — 0, we obtain a differential equation

p(x)

=— . 2.2
(0 p(x) (2.2)

Since the left hand side equals the derivative d/dx log p(x), we have

X

p(x) = exp —///,(t)dt +C|1. 2.3)
0

* In demography, survival is traditionally described via a function ¢(x) defined as 100,000 x
p(x). The idea is that we follow a cohort of 100,000 individuals, and £(x) gives the expected
number alive at age x.

5 Terms hazard rate, incidence, incidence density, incidence rate, intensity, or instantaneous
probability are also sometimes used for ().
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The constant C must satisfy the boundary condition p(0) = 1, so we must have
C = 0. In summary, we have the representation

p(x) = exp(—=A(x)), 2.4

where

X

A(x) = / () dt (2.5)
0

is the so-called cumulative hazard. Formula (2.4) shows that the distribution of
a general waiting time can be obtained from the exponential distribution with
parameter ;© = 1 by transforming the time axis: p(x) at time x > 0 is the same as
the survival probability under the exponential model at time A(x). The estimation
of u(.), A(.), and p(.) from individual-level data will be discussed in Section
2.3, and estimation from grouped data in Section 2.4. In Section 3, we discuss a
numerical procedure for estimating p(.) given estimates of p(x) for integer ages x.

Example 2.1. Weibull Distribution. If u(x) = (8/a)(x /a)P~! for some o > 0 and
B > 0, then we have a so-called Weibull distribution with A(x) = (x/a)?. We
see from the formula that « influences the scale of the distribution, whereas 8
determines its shape. For 8 > 1 the hazard is increasing, for 8 < 1itis decreasing.
Taking 8 = 1 we get, as a special case, the exponential distribution Exp(1/«). ¢

Example. 2.2. Linear Survival Functions. Consider the ages t € [x,x + 1),
and assume that w(¢t)=b,/(1 —by(t —x)) for some b, < 1. Then,
p(®)/p(x) =1 —b,(t — x). In other words, the function p(.) is linear on interval
[x,x + 1). On the other hand, if p(t)/p(x) =1 — b, (t — x) on [x, x + 1), then
u(t) = —d/dtlog p(t) = b, /(1 — by (t — x)), or it is of the form given. The
linearity of the survival function means that the deaths are expected to be uniformly
distributed over the interval [x, x 4+ 1). This is in contrast to the exponential
model, in which a constant hazard leads to an exponential decline in the numbers
of deaths, as the population at risk is depleted. We see from Figure 2 that this model
is more realistic than the exponential model in ages, say, x > 30. We will show in
Example 2.9 how this model leads to the so-called actuarial estimator of survival. {

Example 2.3. Balducci Model for Survival Function. G. Balducci proposed the
following model in 1920. Let t € [x, x 4+ 1), and assume that u(¢) = a, /(1 +
a,(t — x)) forsome a, > 0. Then, p(t)/p(x) = 1/(1 + a,(t — x)). In this case the
declining hazard leads to an even faster decline in the numbers of deaths during
the interval [x, x 4 1) than the exponential model. We see from Figure 2 that this
model is more realistic than the other two for the youngest ages such as x < 15. ¢

Example 2.4. Competing Risks. Adding demographic realism to Example 1.2,
suppose there are k causes of death with hazards w(x), ..., ux(x) in age x. Then,
the overall hazard of death can be taken as pu(x) = pi(x) + - - - + ur(x). This is
the classical model of competing risks of death. Forecasts of future mortality are
sometimes formulated in terms of cause-specific death rates. For example, the
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Log-hazard
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FiGURE 1. Log of Mortality Hazard for the Married (Dashed Line), Widowed (Dotted Line),
and Single and Divorced (Solid Line) Women in Finland, in 1998.

U.S. Office of the Actuary (1987) has used the following classification: (1) heart
disease, (2) cancer, (3) vascular diseases, (3) violence, (4) respiratory diseases, (5)
diseases of the infancy, (6) digestive diseases, (7) diabetes mellitus, (8) cirrhosis
of the liver, and (9) other diseases. ¢

Mortality can vary by many characteristics of the individual, sometimes in an
unexpected manner.

Example 2.5. Mortality and Marital Status in Finland. Figure 1 shows estimates
of the logarithms of age-specific mortality rates for females in Finland in 1998
by marital status. The rates were calculated from single year of age data provided
by Statistics Finland. The estimates have been smoothed using a robust smoother
(RSMOOTH of Minitab, which applies a carefully selected sequence of moving
averages and running medians to the data). We see that the mortality of those who
are married is the lowest, and the mortality of the singles and the divorced is the
highest. The mortality of the widows is in between, except in young ages. We will
come back to the latter issue in Example 3.2 of Chapter 5. There appears not to
be agreement as to whether marriage lowers mortality hazards by providing a less
risky life style, or whether there is a selection mechanism in operation such that
those who are more “fit” are also more likely to find a spouse (e.g., Gove 1973;
Hu and Goldman 1990; Lillard and Panis 1996). We will consider this problem in
Section 1.5 of Chapter 6, and show that both points of view may have a certain
justification. ¢

Note that the approximate linearity of the log-hazard as function of age x(> 55)
in Figure 1 is not compatible with a Weibull distribution. However, it is com-
patible with the Gompertz model (x) = ac*, with «, ¢ > 0, that was introduced
by B. Gompertz in 1825. Note also that the hazards of the three marital statuses
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are roughly parallel in the log-scale in higher ages. This implies that their haz-
ards are equal, up to a multiplicative constant. That is, we have approximately a
proportional hazards situation in the higher ages.

2.2. Life Expectancies and Stable Populations

Instead of relying on parametric models, demographers have traditionally de-
scribed mortality nonparametrically. Starting from o/e rates of the type (1.3) and,
e.g., the linearity hypothesis of Example 2.2, one obtains estimates of p(x) for
x =0,1,2,... The resulting estimates are then presented (usually as multiplied
by 100,000) in a tabular form, together with some related quantities.® This is the life
table. Shryock and Siegel (1976), Chiang (1968, 1984), and Smith (1992) provide
details of the many variants that are in use. With the development of user-friendly
computer programs, tabular representations of the relevant quantities are gradually
becoming obsolete. Nevertheless, life table is a central concept in demographic
theory.

2.2.1. Life Expectancy

The expectation of the general waiting time can be calculated using (1.1). However,
the following result is often simpler. Define I(¢) to be the indicator process of a
waiting time X, or I(t) = 1 if X > ¢, and /() = 0 otherwise. It follows that we
can represent X in a roundabout way, as follows:

[e¢]

X = / I(t)dt. (2.6)
0

We may call this an integral representation of a waiting time X. Note that the
probability that X > ¢ equals p(z) = E[I(¢)]. Take the expectation of both sides
in (2.6), and change the order of expectation and integration (which is permissible
here because I(t) > 0; Chung 1974, 59) to get the formula

o0

E[X] = f p(t)dt. 2.7)
0

Alternative methods of proof that rely on calculus are given in exercises (see also
Cinlar 1975, 24-25).

Proving the result E[X] = 1/u for the exponential distribution is a one-step
integration using (2.7).

In demography, special notation is used for life expectancies. The additional life
expectancy, given survival to age x, is denoted by e,. (Sometimes e, is used for
the discrete time version, and e} for continuous time. We will not make the dis-
tinction.) Using our notation this is e, = E[X — x|X > x]. Since the conditional

® Thus, instead of speaking of a “nonparametric” representation, one could equally well say
that a very high-dimensional parametric model is used!
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probability of surviving to age x 4 ¢ given survival to age x, is p(x +t)/p(x) =
exp(—(A(x + 1) — A(x))), we can also write

ex = /P(X +2)/px)dz.
Ooo i 2.8)
= /exp —//L()C-FS)dS dz.
0 0

Since only weak assumptions are typically made concerning the hazard rate w(.),
the estimation of p(.), A(.), or u(.) itself, is difficult. A relatively crude approach
is as follows. If one approximates 1i(.) by a piecewise constant function, then the
theory of Section 1 can be used to derive the MLEs of the constant hazards. For
example, if we assume that u(¢) = u, for ¢ € [x, x + h) and we know the total
number of deaths and the total number of person years lived in the population
during age [x, x + h), then fi, is simply the o/e rate (1.3). Similarly, if we define
the increment of the hazard as,

Ayp = Alx +h) — A(x), 2.9

then we can estimate A x.n by hji, . If h = 1 and x takes integer values, for example,
the estimate of p(x) would be p(x) = exp(—fop — -+ — fiy—1). Under a piece-
wise constant hazard model, we can estimate Var(Q,) & [i%/m,, where m, is the
number of deaths in age x. Relying on a normal approximation, a 95% confidence
interval for p(x) can be given approximately as p(x)exp(£1.96 x (fLo®/mg +
R ,&x_lz/mx_l)l/z), for example. Chiang (1968, 1984) and Smith (1992) pro-
vide extensive variance formulas under several alternative models.

Life expectancy is one of the most widely used summary measures of mortality.
The suggestive terminology may lead some non-demographers to think that life
expectancy at birth, or ey, is a forecast made at the given time for how long a
particular birth cohort might live. However, life expectancy is almost universally
calculated from age-specific data of a given period. Thus it typically refers to a
synthetic cohort rather than an actual cohort. An alternative concept of synthetic
cohort is considered by Coleman (1997) in the context of diffusion of HIV infection
in a social network.

Apart from a limited number of analytical models, numerical integration must
be used to calculate the life expectancies e, in (2.8). Suppose p(x) has been
specified for a set of ages x, say x = 0, 1, 2, ... The most common approximation
assumes the linearity of p(t) in each interval [x, x 4 1). This is equivalent to the
so-called trapezoidal method of numerical integration. It leads to the approximate
formula

~
ey ~

+ 3 e +1)/p(x). (2.10)
=1

N =
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The formula can be used independently of the way p(x) has been estimated. In
particular, it follows from Example 2.2 that (2.10) is compatible with hazards of
the form wu(t) = b, /(1 — by (t — x)).

2.2.2. Life Table Populations and Stable Populations

Life expectancies and survival probabilities have a peculiar interpretation in de-
mography that appears not to be generally known among statisticians. Suppose
individuals are born into a population at a constant rate of 1 person per unit of
time, and the survival probability of a person aged x is p(x), unchanging over
time. Then, at any given time we expect there to be p(x)dx individuals in the
narrow age interval [x, x + dx]. The expected total size of this population is given
by the right hand side of (2.7) (draw a Lexis diagram!). The function p(.) is then
the density of the expected population. (Note that it integrates to E[X], not to 1.)
The expected population is called the life table population determined by p(.).
Assume that E[X] is finite. It follows that in the life table population the expected
person years per new born are specified by the right hand side of (2.7). Thus,
1/E[X] can be interpreted as an o/e rate. However, as the population size does not
change over time, there must also be one death per year, so the o/e rate 1/ E[X] can
also be interpreted as the (crude) life table mortality rate, calculated as number of
deaths divided by total population size.

As part of classical mathematical demography, the theory of life table popu-
lations is deterministic. It typically assumes a continuous population density and
does not require the size of the total population to be an integer. As shown by Kei-
ding and Hoem (1976), the theory can be reconciled with statistical models of the
type we discuss here. Instead of pursuing those details, we will use the traditional
language when discussing life table populations, stable populations (below), and
later in discussing population renewal.

The population interpretation of life expectancies can be carried further. Suppose
that individuals are born at rate Be?' where p is some constant. Consider the
number of people in age x at time 7. They were born at time ¢t — x, so their number
is Be”"=¥) p(x). Let V(t) be the size of the population at time ¢, or

o0

V(t) = Be” / e P p(x)dx. (2.11)
0

We see that the population grows (or declines) exponentially at rate p, and its age
distribution is proportional to e~”* p(x). Note the effect of growth on age distri-
bution. If p is increased, the age distribution becomes younger, if p is decreased,
the age distribution becomes older. Exponentially growing populations with un-
changing age distribution are called stable (e.g. Coale 1972). If p = 0 we have a
life table population. Since it does not grow, it is called stationary.

Although the assumption underlying stable populations (exponential births, un-
changing mortality schedule, no migration) are highly restrictive, the model can
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FIGURE 2. Log of the Hazard Increment of Mortality in Finland in 1881-1890 (Upper
Curves) and 1986—-1990 (Lower Curves), for Females (Solid line) and Males (Dashed Line).

be valuable in situations in which the data are poor. For example, since the growth
rate, life table population, and age distribution are functionally related, knowing
two of them allows us to guess the third. For a list of relations one can use, see
Keyfitz (1977, 174-185).

2.2.3. Changing Mortality

What happens to life expectancy when mortality changes over time? We consider
first some historical data and then an analytical example.

Figure 2 shows empirical estimates of the logarithm of the hazard incre-
ments (2.9) with h =1 for x =0, ...,99, based on Finnish data from 1881-
1890, and from 1986-1990. We have calculated the estimates as log([\x,l) =
log(—log p(x + 1)/ p(x)) based on Tables 4A and 4B of Kannisto and Niemi-
nen (1996) that give the probabilities of death 1 — p(x + 1)/ p(x).

The figure shows first that mortality in ages O to 45 has decreased dramatically
during the hundred year period. In higher ages the decrease has been much less
pronounced. To appreciate the difference, note that around age 13 the hazard
declined from about ¢33 &~ 0.005 to ¢ 37 ~ 0.00017, whereas in age 70 the
decline was from about e 32 ~ 0.041 to ¢~*2 ~ 0.015. In other words, in the
younger ages the earlier hazard was about 30-fold as compared to the rate a century
later, whereas in the older ages is was merely 3-fold. Second, in relative terms,
female life expectancies have remained steadily higher than male life expectancies.
During 1881-1890 we had e( of 41.3 for males and 44.1 for females, or the female
figure was 7% higher than the male figure. In 1986-1990 we had ey’s of 70.7
and 78.8, respectively, or the female figure was nearly 11% higher. In older ages
the change was even more pronounced. We had esy’s of 19.4 and 21.1 during
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1881-1890, and es(’s of 24.6 and 30.7 during 1986-1990 for males and females,
respectively. Or the female advantage had grown from 9% to 25%.

Past mortality schedules form the basis on which forecasts of future mortal-
ity must be based, in one way or another. To set the reader thinking about the
problem, let us consider two simple (even simplistic!) approaches. Suppose we
assume that life expectancy increases linearly. Since the improvement for males
was 29.4, and for females 34.7 years, during 1890-1990, the linearity assump-
tion would imply a forecast of 100.1 for males and 113.5 for females, in 2090.
On the other hand, let A, ;(¢) be the hazard increment of year ¢, and define
y(x, 1) =log A 1(t). From the data of Figure 2 we get estimates of y(x, 1890)
and y(x, 1990). Consider a year ¢ > 1990. A linear trend extrapolation (in the log-
scale) would assume that $(x, 1) = y(x, 1990) + [y(x, 1990) — y(x, 1890)](z —
1990)/100. Taking t = 2090, we get the schedule y(x, 2090), and the correspond-
ing survival probabilities p(x,t) = exp[—exp{P(0,2090)} —--- —exp{J(x —
1, 2090)}]. The implied life expectancy would be £,(2090) = 78.7 for males, and
€0(2090) = 87.2 for females. These forecasts are over twenty years less than those
based on the linearity of the life expectancy itself. The methods that start from
the mortality rates but put more weight on the most recent rates of decline lead to
intermediate values. For example, a recent Finnish forecast puts the median of the
predictive distribution (Section 2 of Chapter 9) of e for the males as 83.8 in 2065,
and as 88.2 for the females. In either case the loglinear model leads to an eventual
deceleration in the increase of life expectancy. During the period we are consid-
ering Finnish life expectancy appears to be a slightly concave function of time.

In general, there are infinitely many mortality schedules that correspond to a
given life expectancy. A connection can be established, if mortality is parametrized
in some way.

Example 2.6. Effect of Changes in Hazards on Life Expectancy. Suppose the hazard
of mortality in age x attime r > 0 is of the form p(x, t) = pu(x) — g(¢)é(x), where
g(0) =0, 6(x) = 0for x > 0, and let the corresponding life expectancy at birth be
eo(t). How does e((#) change over time? One way to investigate that is to calculate
the derivative with respect to 7. Recall (2.5) and define

Alx) = /5(s)ds. (2.12)
0

Differentiating under the integral sign yields
d oo
77 S0 = g’(t)/P(x, DA(x)dx. (2.13)
0

For example, if g(t) = ¢, then g’(t) = 1 and p(x, t) = p(x, 0)e*™¥. In this case,
as t increases, the derivative of ey(¢) increases. Therefore, the graph of ey(t) is
convex if the decline in mortality rates is linear in each age. Of course, linear
decline cannot continue forever. ¢
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2.2.4. Basics of Pension Funding

Suppose a person starts working at age o > 0 and retires at age § > «. During
work the person pays continuously an amount ¢ per year to a fund that earns an
interest r. This entitles the worker to a unit pension (or annuity) per year that is
paid continuously until death. How large should ¢ be? To determine ¢ we discount
both the contributions and the pension payments to time of birth. The discounted
value of all contributions is

B
C=c / e I(t) dt, (2.14)

o

where I(t) is the indicator process of time at death, as in (2.6). Suppose the highest
age is w, so p(w) = 0. The discounted value of pensions is

w

A= fe”’ I(t) dt, (2.15)
B
Setting E[C] = E[A] yields an equation from which ¢ can be solved as

w B
c= /e”’ p(t)dt/[e” p(t)dt. (2.16)
B o

In an infinite population the laws of large numbers would guarantee that this value
of ¢ would exactly balance the contributions and payments. In practice, a pension
institution would have to take into account that the number of participants in the
scheme is finite.

Suppose we have n participants. Let C; be the contribution and A; the pension
of personi = 1, ..., n, and define D; = C; — A;. Let us determine c so that with
probability 0.999 the fund is sufficient to cover the pensions. Defining

D= Z D, 2.17)
i=1

the task is to determine c so that P(D > 0) > 0.999. An approximate way of doing
this is to appeal to the central limit theorem (CLT). Suppose the D;’s are indepen-
dent with common mean E[D;] = u and variance Var(D;) = oti=1,....n 1t
follows from the CLT that Z = (D —nu)/ (n'?0) ~ N(0, 1) asymptotically, as
n — oo. Note that the event {D > 0} is the same as the event {Z > —un'/?/o'}.
Thus the condition is un'/? /o = 3.09, the 0.999 fractile of the N(0, 1) distribution.
Here n and o depend on ¢. We indicate in Exercises 18 and 19 how the solution
can be found.

The system considered thus far is funded meaning that contributions are collected
into a fund from which annuities are later paid. Most current pension systems are
not funded, however. Instead, they are Pay-As-You-Go (PAYG), which means that
current workers pay the pensions of current pensioners. In a defined benefit system
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pension rules determine how much each pensioner is entitled to get and contribution
rates are set so that the needs are met, each year. In a defined contribution system
the contribution rate is fixed and the level of pensions may fluctuate.

Consider, for example, a defined benefit PAYG system under a stable population
(2.11) that grows at the rate p. As above, we simplify and assume that contributions
are made at the constant rate c. What value of ¢ produces a unit annuity for each
pensioner? A moment’s reflection shows that we must have

® B
c= [e_px p(x)dx//e_‘”‘ p(x)dx. (2.18)
B o

The expression is formally the same as (2.16) but population growth rate replaces
the interest rate. Note that ¢ is a declining function of p: the smaller the growth
rate, the higher the contribution rate. Although the stable population model is based
on highly restrictive assumptions, (2.18) indicates correctly the root cause of the
problems that have become acute in many countries at the turn of the millennium.
Populations of many industrialized countries are expected turn into a decline, so
the PAYG principle is becoming unsustainable.

2.2.5. Effect of Heterogeneity

Returning to the problem of heterogeneity (cf., Example 1.4 and the discus-
sion thereafter), suppose & > 0 is a measure of a person’s frailty, such that the
person’s hazard is u(x, &) = u(x)&. The probability of surviving to age x > 0,
p(x, &) =exp(—A(x)€), is a convex function of the frailty &. Therefore, by
Jensen’s inequality the probability of survival for a person with average frailty
E[€], or exp(—A(x)E[£]), is smaller than the average probability of survival
Elexp(—A(x)&)]. Define life expectancy at frailty &€ as ep(§) = f p(x,&)dx. By
changing the order of integration we have that E[ey(§)] = f Elp(x,&)]dx >
[p(x, E[§])dx. Therefore, the life expectancy of a person with average frailty
is smaller than the average life expectancy of a population, whenever frailty in-
fluences the hazard of mortality multiplicatively.

We caution the reader not to misinterpret the above result. For example, a person
with median frailty does have a median life expectancy, because under the assumed
model, life expectancy is a decreasing function of &.

2.3. Kaplan-Meier and Nelson-Aalen Estimators

Although our primary interest will be with grouped data, as noted in Section 5
of Chapter 2, individual level data are increasingly becoming available from pop-
ulation registries, epidemiologic databases, and reconstructed historical records.
Kaplan and Meier (1958) discussed an estimator of p(.) using such data, under
censoring.

Consider a cohort of size n. Let X; be the time until death, and let ¢; be the
censoring time, for individual i = 1, ..., n. Define the observable withdrawal
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times T; = min {X;, ¢;} and order them: 0 < T(y) < T(p) < - -+ < Ty). Define the
indicators of not being censored: 8y = 1if T(; corresponds to a death, and §;y = 0
if it corresponds to a censoring. Then, we may estimate p(¢) for any # > 0 by

s 86y
oy =] {H"_Z—Jr’]} . (2.19)

Tiy=t

This is the celebrated Kaplan-Meier or product limit estimator. To understand
its rationale, suppose n = 4 and the withdrawal times are 1.0, 1.5, 2.5, and 4.0.
Consider p(t) for 1.5 <t < 2.5, so two withdrawals have occurred by . If neither
was a censoring, the estimate is (3/4)(2/3) = 2/4, or it is the fraction remaining in
the cohort. If the second withdrawal was a censoring, then we have seen one death
out of four, and the estimate is 3/4. If the first withdrawal was a censoring and the
second was not, then we have seen one death out of three, and the estimate is 2/3.
In general, a death decreases the estimate by the fraction it represents out of those
remaining in the cohort.

Example 2.7. Life Expectancy Calculation from Kaplan-Meier Estimates. Ex-
pected waiting times (such as a life expectancies) can be calculated based on
Kaplan-Meier estimates. Take x = 0 in (2.10), and suppose that in the exam-
ple above we have no censoring. Then, we have p(1) =3/4, p(2) = 1/2, p(3) =
1/4, and p(4) = 0. Therefore, éy = 1/2+3/4+1/2+ 1/4+ 0 = 2. Since the
Kaplan-Meier estimator is a step function, the integral (2.8) can be evaluated
directly as 1.0 x 1.0 4+ 0.5 x 0.75 + 1.0 x 0.5 + 1.5 x 0.25 = 2.25. This is the
correct value of the integral that avoids the approximation involved in the trape-
zoidal method. In order not to forget first principles, recall that the latter figure must
agree with the simple average of the survival times, when there is no censoring.
Anditdoes: (1.0 +1.54+2.54+4.0)/4 =2.25! ¢

The same principle applies if there are tied waiting times: if r persons are at risk
and d die simultaneously at time ¢, then from ¢’ on a factor (+ — d)/r is included
in the product (2.19). The only difficulty arises if d deaths and ¢ censorings occur
simultaneously among » who are at risk at ¢’. Typically such an event would be an
artifact due to imprecise data collection. If we place the censorings first, then the
term (r — ¢ — d)/(r — ¢) is included in (2.19) from ¢’ on. If we place the deaths
first, then the term (r — d)/r is included. The latter is always bigger. In this way
we can bracket the value of the estimator we would get if the exact withdrawal
times were known.

Example 2.8. Survival Probabilities for Habsburgs. Figure 3 has a graph of
Kaplan-Meier estimates of survival probabilities for the males and females of
the Habsburgs family of Austria. The data relate to 175 members of the main line
of the family through which the throne was passed from generation to the next. The
birth years range from 1218 to 1895. The survival curves are for females and males
separately. Sex was not known for 10 of the members, so those have been left out.
These individuals have typically died very young, so leaving them out exaggerates
survival. We see that after the first year or so, the survival curves are surprisingly
linear. From the right triangle that has height 0.85 at age 1, and the length of the
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FIGURE 3. Survival Probabilities for Females (Solid) and Males (Dashed) Among the Mem-
bers of the Main Line of the Family of Habsburgs.

base of 85 years, we can estimate that the life expectancy is approximately 36
years. The correct arithmetic result (that includes those whose sex is not available)
is 35 years. More details about the data will be given in Chapter 5, starting from
Example 2.1. ¢

The estimation of the cumulative hazard could be based on the Kaplan-Meier
estimator, by taking A(r) = — log p(r). However, an alternative that generalizes
more easily to regression settings is as follows. Suppose the interval [0, 7] is divided
into short subintervals of length 4. If there are n individuals in the population in the
beginning of the interval [x, x 4 /) and the probability of two or more deaths is
negligible, the probability of exactly one death during the interval is approximately
nu(x)h. If there is a death, then a moment estimator for the hazard increment is
[\x,h = 1/n. If there is no death, the moment estimator is = 0. Combining the
estimates from the subintervals we obtain the so-called Nelson-Aalen estimator

A=Y o (2.20)

ngn—l—i—l

This estimator was independently introduced by Nelson (1969) and Aalen (1976).
A comprehensive discussion of the Kaplan-Meier and Nelson-Aalen estimators is
given in Andersen et al. (1993).



88 4. Waiting Times and Their Statistical Estimation

In survival theory literature it has become customary to write the sum in (2.20) as
astochastic Stieltjes integral (e.g., Klein and Moeschberger 1997, 70-79). Suppose
we follow a cohort of size n. Let Y(¢) be the size of the cohort at time ¢, and let
MN(t) be the number of deaths that have occurred during time [0, ¢]. Then, we have
that

t

~ . [dN(s)
A@) = o) 221

0

if Y (#) > 0. The denominator Y(s) keeps track of the size of the population that
has neither died nor become censored by s.

2.4. Estimation Based on Occurrence-Exposure Rates

We showed in Section 1 that the o/e rate is the MLE of the hazard rate if the
true hazard is constant. The actuarial method and Balducci hypothesis provide
estimators that are based on more realistic models for various ages. Over the years,
demographers have devised ever more refined methods that attempt to minimize
biases due to an erroneous parametric model. Their motivation is the fact that
because the populations being studied usually are large, random variability in
the counts is small (compared to the expected values of the counts) and hence,
unless models are pushed to extremes, biases from incorrect models can be more
detrimental than random error in estimation of parameters. Also balancing this
tendency away from parametric models is the fact that the data typically are grouped
by year.

A second desideratum involves the intended use of the estimates. Life tables con-
tain various summaries (such as e, ) based on an estimated version of the survival
function p(.). For those purposes, all one needs, roughly speaking, is to be able to
estimate the one-year survival probabilities p(x 4+ 1)/ p(x) = exp(—A, 1) forx =
0,1,2,...

We continue to use mortality as our paradigm case. Consider a one-year age-
interval [x, x + 1), and suppose first that data are available from the rectangles of
the Lexis diagram (e.g., ABCD in Figure 1 of Chapter 2). Let k() be the density
of population in age ¢t > 0 at a fixed time. Define

x+1
Ky = / k(t)dt. (2.22)

X

If the density of the population remains the same during the year in which the
observations are made, then K, is the number of person years lived by the x-year
olds during the year. Let us assume this. Suppose the observed o/e rate is M, and
that we observe M,’s and K,’s. How then to estimate w(.)? Using the method
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of moments we equate the observed rate with the expected average hazard of the
population in age x,

x+1
Mx=/,u(t)k(t)dt/Kx. (2.23)

X

Note that k(7)/ K, defines a probability density on [x, x + 1) that integrates to
one and w(.) is assumed to be continuous. By the mean value theorem of integral
calculus there is some point &, € [x, x 4+ 1) such that M, = w(&,). In other words,
the o/e rate estimates 1(.) at some age between x and x + 1, but without additional
assumptions we don’t quite know which.

Keyfitz (1977, 19-21) suggested the following local linearity approximation.
Suppose that the true rate is linear in interval [x,x + 1), say u(t) = o +
#1x(t —x — 1/2)for some constants 1o x and ;.. Similarly, assume that the pop-
ulation density is piecewise linear, k(1) = ko x + k1 (t —x —1/2) fort € [x,x +1).
It follows that K, = ko, and A, | = po,. By a direct calculation one can show
that the right hand side of (2.23) is equal to wo  + 1.ck1.x/(12ko ). Thus, if we
have estimates of the slopes w1, and k; , we have from (2.23) the estimate

Aot =M, — “1 ‘2’1‘:;: (2.24)

Keyfitz suggested that we estimate the slopes by
fix = Mep1 — My1)/2, ki = (Kot — Kem1)/2. (2.25)
These estimates are available for x = 1,2, ..., w — 1, where w refers to the

open ended age-group [w, 00). One could thus obtain the estimates [1(¢) = f\,m +
A1x(t —x —1/2)fort € [x,x + 1).

Keyfitz’s approach is a reasonable one. It takes care of the first order deviation
from constancy both in w(.) and k(.). It also has the merit of being non-iterative.
Although the estimates fi(¢) typically are not continuous, a continuous estimate of
the whole curve u(.) can be obtained using Keyfitz’s method. Under the assump-
tion of piecewise linearity for p(.) and k(.), it follows that pg, = u(x + 1/2).
Therefore, the right hand side of (2.24) can also be interpreted as an estimate of
the mid-interval mortality u(x + 1/2). Having these estimates available we can
use any interpolation method (e.g., splines) to get continuous estimates of the
intermediate values of ((.). Some bias will inevitably be introduced.

Example 2.9. Actuarial Estimator. The so-called actuarial estimator of survival
is of the form p(x + 1)/p(x) = 2 — M,)/(2 + M,), where M, is the age-specific
mortality rate of age x. Itis probably the most widely used estimator of survival due
to its simplicity. As discussed in Exercise 9, it is based on the linearity assumption
of Example 2.2. {

No matter how the intermediate ages are handled, the highest age must be han-
dled separately. It is typically an open-ended age-group such as 100+. Let the
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FIGURE 4. The Distribution of Life Times of Those Born in 1994, Who Died in Age Zero,
in Finland.

lower end point of the highest age be w and denote the crude mortality rate in this
age as M,,. Under a constant hazard assumption, the corresponding probability
of surviving for one year would be exp(—M,,), and under a more realistic “uni-
form distribution of death” hypothesis of Example 2.2 the probability would be
2—-M,)/(2+ M,). The numerical effect of the approximation errors can be re-
duced simply by continuing the calculations to sufficiently high ages so that the
populations involved are small. For the purpose of completing a life table, we can
equate observed mortality rate with the life table mortality rate, and solve e,, from
the identity M, = 1/e,,.

For later use we also need estimates of the distribution of life times among those
who die during their first year of life.

Example 2.10. Distribution of Death During First Year. Figure 4 has a histogram
of the death times of those who died before reaching their first birthday. The data
are for the cohort of 1994, in Finland. The columns correspond to weeks. A total
of 58% died during the first week, with 23% dying during the first day. A total of
71% died during the first four weeks. The total number of deaths on which these
estimates are based is 291. The total number of live births in 1994 was 65,231,
so the proportion dying during the first year of life was 0.45% for both sexes
combined. For males the proportion dying during the first year of life was 0.5%
and for females it was 0.4%. The average number of days lived by those who died
before reaching their first birthday was 43, corresponding to 0.12 years. ¢

Example 2.11. Proportion of Deaths During First Days. Later on, we will need
estimates of hazards ©(0) and «£(28/365), for example. They can be based on
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parametric models or direct empirical estimates. Consider the data of Example
2.10. The proportion of births dying during the first year of life was 0.0045. Given
the low level of mortality, we can also interpret this as an o/e rate. The proportion of
deaths during the first day of life (out of all deaths before first birthday) was 23.0%.
Therefore, on an annual basis the rate of death is 0.23 x 365 = 84 times the age-
specific rate of age [0, 1). Therefore we can estimate ;£(0) = 84 x 0.0045 = 0.378.
For the two-week period of days 22-35 the proportion of deaths was 3.8%, so on
an annual basis we can estimate £(28/365) as 0.038 x (365/14) = 0.99 times the
age-specific rate of age x = 0. In this case it would be 0.0045. $

The concept of hazard that leads to survival probabilities and life tables appears
so self-evident that it is hard to detect the conventional aspects of its adoption.
Although slightly philosophical, we ask the reader to consider the following case
of “randomness or predestination”.

Suppose a waiting time X can take three values 1, 2, 3. Consider two models.
(a) Suppose we toss a die once. If we get 1 or 2, then X = 1; if we get 3 or 4, then
X = 2; and if we get 5 or 6, then X = 3. (b) Suppose we toss a die once. If we
get 1 or 2, then X = 1. Otherwise, we toss again. If we get 1, 2 or 3, then X = 2.
Otherwise X = 3. We interpret (a) as an extreme form of frailty that completely
determines survival — your time of death is set at birth — and (b) as a pure hazard
model with no frailty. Under both models P(X = j) = 1/3,forj = 1,2,3,s0an
outside observer could not tell which of the two models is valid, even based on a
large number of independent observations. The models are incompatible but the
classical deterministic life table theory does not distinguish between them. If we
could have repeated observations on the “same X after the first toss, then we
could, in principle, distinguish between the models. A realistic point of view may
be that there are elements of both (a) and (b) in the world we live in. As in (a), some
individuals are better programmed to live long than others, yet as in (b), we all face
outside risks that are unpredictable. A challenge of life table theory is not to lose
sight of either model. We will come back to this topic in Section 8 of Chapter 5
and in Section 1.3.4 of Chapter 6.

3. Estimating Survival Proportions

In population forecasts one needs estimates of the proportions of survivors from
age x to age x + 1, where “age x” refers to the interval [x, x + 1). Here we take
as a starting point estimates of survival probabilities as derived in Section 2.4. Let
k(s, t) denote the density of the actual population aged exactly s at time 7. In the
absence of migration, the proportion in question may be written as

x+2 x+1

/k(s,t+1)ds//k(s,t)ds. 3.1)

x+1 X
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Letting 1p(s) denote the probability that an individual aged s at time ¢ survives
1 year, and defining the weight function v(s) = k(s, 1)/ fj“ k(y,t)dy, we may
rewrite (3.1) as a weighted average of the one-year survival rates,

x+1
/ v(s)ip(s)ds. (3.2)
The usual way of estimating (3.1) is use the life table survival proportion L, 11/ Ly,
where
x+1
Ly = / p(t)dt. (3.3)
(Traditionally, the right hand side of (3.3) is multiplied by 10,000 or by 100,000.

We will not follow this practice.) These integrals are usually evaluated using the
linearity assumption, so

Leyi  (px+2)+ p(x +1))/2

= 34
Ly (p(x + 1)+ p(x))/2
Rewrite (3.4) as a weighted average of the one-year survival probabilities,
L, (x+1) (x)
Lo pa Dy p—— 2 (35)
Ly px)+plx +1) px) + plx +1)

where 1p(x) = p(x + 1)/ p(x). We note two things. First, if the true population
density k(., #) is not proportional to the density of the life table population whose
age distribution is determined by p(.), then the weights in (3.5) may be incorrect.
Second, a correct survival proportion from age x to age x + 1 can, in principle (by
the mean value theorem of calculus), always be obtained as a weighted average
of the one-year survival probabilities ;p(x) and 1p(x + 1), if the one-year survival
probabilities 1p(x + ¢) are monotone for ¢ € [0, 1). Alternative, and potentially
more accurate, methods can be devised.

For example, suppose the density of population is piecewise linear, k() =
ko + ki x(t —x —1/2) for t € [x,x + 1). Suppose also that the one-year sur-
vival probabilities p(x) = p(x 4+ 1)/p(x) are piecewise linear, \p(t) =po.x +
1t —x —1/2),t € [x,x + 1). (Note that this linearity assumption involves
one-year survival probabilities rather than probabilities p(x).) Then, instead of
(3.5) the average survival probability is given by

2k(x) + k(x + 1)
3(k(x) + k(x + 1))

p(x) = 1pXx) {

}+ 1p(x+1){ 2k(x + 1)+ k(x) }

3(k(x) + k(x + 1))
(3.6)

For the unknown densities k(x) and k(x 4+ 1) we can use the estimates l%(x) =
(Ky—1 + K.)/2, for example. We would expect to see differences between (3.6)
and (3.5), if (a) one-year survival probabilities |p(x) change rapidly as a function
of x, and (b) fertility was rapidly changing approximately x years ago.
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Surviving births must be handled separately. Consider the Lexis diagram of
Figure 1 of Chapter 2. Suppose x = 0. The life lines of the births during year ¢
start in AB, and we are interested in the proportion that cross BC. Suppose that
only data from rectangles are available. Consider all deaths that occur in ABCD,
and let f denote the fraction that occur in the triangle ACD and thus represent
deaths to persons born during year ¢ — 1. This fraction f is called a separation
factor, and it gives more weight to deaths at ages closer to x + 1 than to x. Values
of fhave historically been in the range 0.15 to 0.3 (Keyfitz 1977, 11). However, in
the Finnish data of Example 2.10, the fraction was 0.08. This is a reflection of the
low level of infant mortality in Finland. In any case, the probability of surviving
from birth to the end of the year (i.e., survival in triangle ABC) is approximately
Lo = exp(—=(1 — f)Mo) = 1 — (1 — [)Mo.

Note also that if we want to consider cohort survival during the first year of life
(i.e., survival in ABFC), then separation factors can be used to get estimates.

The difficulties encountered in the handling of the surviving births stem from
data collection when information is available only for the rectangles of the Lexis
diagram. However, when triple classified data (by age, year, and cohort) are avail-
able, the most obvious choice is to estimate the proportion of deaths in trian-
gle ABC out of the births in AB (when x = 0). This gives directly an average
probability of survival to the end of the year (provided that net migration is not

large).
A similar remark can be made for the one-year survival probabilities L,;/L,
forx =0, 1,..., ® — 1. Referring again to the Lexis diagram of Figure 1 of Chap-

ter 2, we could assume that the mortality rate M, has been calculated on a birth co-
hort basis from the parallelogram ACED. Then, a natural estimate of the one-year
ahead survival is exp(— M, ) for ages in which mortality does not change much. The
actuarial estimator (2 — M, )/(2 + M,) discussed in Example 2.9 and Exercise 9
would be appropriate for ages with increasing mortality hazards (such as x > 30).
Finally, an estimator could also be based on the Balducci model (cf., Example 2.3).
It might be appropriate for ages with declining hazards (such as x < 10).

4. Childbearing as a Repeatable Event
4.1. Poisson Process Model of Childbearing

A statistical model for a repeatable event can be given in terms of counting pro-
cesses. We call a set of random variables { N(¢)|r > 0} a counting process (or an
arrival process or a point process — the terms will be used interchangeably), if
N(0) =0 and N(t) increases by jumps of size one only. Then, N(¢) counts the
number of events of interest (or “arrivals”) by time ¢. In the case of childbear-
ing, each woman starts childless and a counting process can keep track of her
pregnancies that result in one or more live births (e.g., Keiding and Hoem 1976,
Mode 1985). Since a single pregnancy can result in multiple births, we can attach
a “mark” to each arrival indicating how many live births (1, 2, ...) occurred. In
this case one speaks of a marked counting process.
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A particularly simple arrival process is obtained if we assume that the interar-
rival times are independent and exponentially distributed with some parameter
A > 0. This defines the so-called Poisson process with intensity parameter
A, because in this case N(z) ~ Po(At), or P(N(t) = k) = e’“()»t)k/k! for k =
0,1,2,... (cf., Cinlar 1975, Chapter 4). We give a direct proof of the distribu-
tional result using the properties of the exponential distribution.

Proof of the Poisson distribution property. Let T} < T, < - - - be the arrival times
such that T, T, — Ty, Tz — T3, . . . are independent with exponential distributions
with parameter A. For the following argument, let p(¢#) denote P(7; > t) for
k=1,2,... We show first by induction that

k=1

Pe(t) = Ze*“(,\t Y /il 4.1

i=0

This is the survival function of the so-called Erlang-k distribution. Since p(t) =
e~ the equality (4.1) holds for k = 1. Now make the induction assumption that
the result holds for k = j, and consider k = j + 1. A moment’s reflection shows
that the event {74, > t} occurs if and only if one of two mutually exclusive
events occur, either {7; > t}or {7, >t > T;}. Recall that the density of 7} is the
negative of the first derivative of p;(),1.e., — p; (t). Therefore, we have the equality

t

pj1(0) = p;(1) + / —pl(s)e ) ds. 4.2)
0

Integrate by parts and observe that the integral on the right hand side can be
written as the sum of —p;(¢) and the right hand side of (4.1) for k = j + 1. This
completes the induction proof of (4.1).

Having proved (4.1), we conclude by noting that { N(r) = k} is equivalent to
{Ty <t < Tiy1}, and we know from the proof of (4.2) that the probability of this
eventis P(N(t) = k) = pry1(t) — pr(t) = e M (M)*/k!. O

We note that the Erlang-k distribution defined by (4.1) has many applications
in telecommunications, where it is used in the analysis of incoming phone calls to
a switching board, for example. It could still be of some demographic interest on
its own right, because it can be used to gain intuition on waiting times until the k™
child the k™ unemployment spell, the k™ relapse of a disease etc.

The Poisson process model is useful in statistical demography because it leads
directly to a MLE of A. Suppose we observe n independent Poisson processes N; ()
with the same parameter A. Assume that the observation time of the i™ process is
t; > 0, and define K = t; + - -- + t,. Now the total countis N = N;(t;) + --- +
N, (t,). It has the distribution Po(AK), where K is known. The MLE of A is A=
N/K, with an estimated variance of 4/ K . We see that this is an o/e rate of the same
type we considered in the analysis of mortality. A different argument was, neverthe-
less, needed to motivate it in the case of a repeatable phenomenon, such as births.
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Since the birth rate varies considerably by a woman’s age, estimation is typically
carried out by assuming constancy over a one-year or a five-year age interval. The
childbearing ages are often operationally defined to be the ages 1544, or 15—
49, because outside these ages fertility is low. Fertility rates have also been quite
erratic, and, hence, hard to forecast, during the past century.

Example 4.1. Age-Specific Fertility Rates for Italy and the U.S. The following
table has o/e rate estimates (multiplied by 1,000) of age-specific fertility by 5-year
age-groups in the United States in 1940-1970, and in Italy in 1975-1985.

Age-Specific Fertility Rates in the United States and Italy

United States Italy
Age 1940 1950 1960 1970 1975 1985
15-19 453 70.0 79.4 57.4 32.5 12.1
20-24 131.4 165.1 252.8 163.4 129.8 72.5
25-29 123.6 165.1 194.9 145.9 140.2 101.8
30-34 83.4 102.6 109.6 71.9 84.1 65.7
35-39 453 51.4 54.0 30.0 40.7 25.2
40-44 15.0 14.5 14.7 7.5 12.6 5.0
4549 1.6 1.0 0.8 0.7 0.9 0.3
Total 2.23 2.98 3.53 2.39 2.21 1.41

“Total” refers to the total fertility rate that is discussed in more detail below, but
here it is defined simply as 5 x (sum of the five-year age-specific rates)/1,000. In
the U.S. data we see the famous baby-boom of the post-war times. Within a decade,
fertility went up by 1/3, stayed at a high level for a decade, and then dropped by
1/3. Neither the increase nor the decline was anticipated by population forecasters
in the United States. In the mid-1940’s it was believed that total fertility would
decline to 2.06 by 1960 (Whelpton, Eldridge, and Siegel 1947). Ten years later,
in the forecast for 1960-1980 (U.S. Census Bureau 1958) the highest of the four
forecast variants for white total fertility in 1970 was 3.90 and the lowest 2.54. Later,
in Italy, fertility also declined by 1/3 in a decade. This too was not anticipated by
forecasters. In an official Italian forecast published in 1969 (“Tendenze evolutive
della popolazione delle regioni italiana fino al 1981”) the low scenario for the total
fertility rate in 1979 was 2.6 and the high scenario was 2.8. By 1985 the forecasters
had changed their minds, and forecasted a future total fertility of about 1.3. Similar
decreases were observed in other Mediterranean countries. )

In causal analyses, birth rates are needed for sub-populations defined by edu-
cation, region etc. A curious problem arises when birth order (first birth, second
birth, etc.) is taken into account. By parity we refer to the number of children
previously borne. Women who have had no children are said to be of parity zero,
for example. Let B, ; be the number of births of orderi =1, 2, ... to women in
age x, and let K, be the person years lived by women in age x, during a given
year. The i™ order-specific (or parity-specific) fertility rate is usually defined as
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B, /K, (cf., Shryock and Siegel 1976, 280). We caution that this is not an o/e
rate, however, since the denominator is not restricted to women of parity i — 1.
The calculation of the measure in this manner can be motivated, however, if the
proper exposure data are not available.’

Alternatively, we may consider parity from the perspective of the interarrival
times of births for a woman. The so-called parity progression ratios, i.e. the ra-
tio of women in parity i that reach parity i + 1, can be illuminating as a tool to
understand changes in childbearing behavior (e.g., Mode 1985, 119-120; Smith
1992, 235-237).8 The meaning of such ratios is rather subtle, however, and multi-
state techniques (Chapter 6) appear to be required for a proper treatment of parity
progression. We will illustrate the problems in Section 4.3.3.

4.2. Summary Measures of Fertility and Reproduction

As seen in Example 4.1, fertility varies considerably within the childbearing ages.
We will apply the Poisson process model to define the most important summary
measures of fertility. A nonstationary Poisson process can be obtained from a
stationary process defined in Section 4.1 by a change of the time scale. Consider an
intensity function A(.) > 0 for t > 0. In analogy with (2.5) we define a cumulative
intensity

X

A(x) = / A(t)dt. 4.3)

0

Define an arrival process N (x) such that P(N (x) = k) = e *® A(x)*/k!. In other
words, the number of arrivals by time x equals the number of arrivals of a stationary
Poisson process with intensity 1, by time A(x).

We use these concepts in the following way to describe childbearing. Suppose
N(x) counts the number of children a woman has by age x. Then, we call A(x) the
age-specific fertility rate at exact age x. In human population we would typically
have bounds 0 < o < BsuchthatA(x) = Oforx < o andx > . Then, the interval
[a, B] is said to consist of the childbearing ages. In Example 4.1 we displayed
estimated age-specific fertility rates (for five-year age groups) with o = 15 and
B =50.

The most important summary measure of fertility is A(8), which is called the
total fertility rate. Notice that E[N(x)] = A(B) for all x > 8. Thus, the total
fertility rate can be interpreted as the expected number of children a woman will
have during her lifetime, provided that she survives to the end of the childbearing
ages and the rates do not change with time.

7 In demography, such measures are sometimes called rates of the second kind (e.g., Inter-
national Encyclopedia of the Social and Behavioral Sciences (2001)), 3482-3483.

8 In particular, the so-called “children ever born” methods enjoy wide use in countries with
deficient data (e.g., United Nations 1983, Chapter II).
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FIGURE 5. Total Fertility Rate in Finland in 1776-1999, and in the United States (Dashed
line) in 1920-1999.

Example 4.2. Finnish Fertility, 1776-1999. Figure 5 has a plot of the Finnish total
fertility rate during 1776—1999. We see that fertility remained high to the beginning
of the 20" century. It then declined until the early 1930’s. The peak of the Finnish
baby-boom was in 1947. Figure 5 has also a plot of the U.S. total fertility rate
in 1921-1998, with a peak in 1957. It is sometimes thought that the baby-booms
were caused by postponement of births during war time and subsequent recovery.
Figure 5 suggests that this cannot be the case, since fertility rose already before
and during the war. We will come back to this issue in Section 4.3.1. {

The usual procedure for estimating age-specific fertility treats the intensity A(.)
as constant over one-year or five-year age-intervals. As in Example 4.1, a total
fertility rate is then obtained by approximating the integrand of (4.3) by the piece-
wise constant estimate of age-specific fertility. If single year data are used, then
an estimate of the total fertility rate is simply the sum of the age-specific o/e rates.
Under a Poisson model for births, an estimate of variance for the estimated total
fertility rate is obtained by summing the variances of the o/e rates.

The reproduction of the population is traditionally measured by the extent to
which the female population reproduces itself. Define « as the sex-ratio at birth,
i.e., it is the ratio of male births to female births. It follows that the fraction of
female birthsis 1/(1 + «). The so-called gross reproduction rate is the total fertility
rate when only female births are considered, or it is defined as A(B)/(1 + k).

The value of « varies from one culture to another. The value k = 1.05 is fairly
typical inindustrialized countries, but values in the range 1.01 — 1.08 seem to occur
in populations in which technologies for detecting the sex of a fetus (at an age when
an abortion has been a medically safe option) have not been available (e.g., Shryock
and Siegel 1976, 109). Statisticians might be interested to know that in 1710 John



98 4. Waiting Times and Their Statistical Estimation

Arbuthnot conducted what may have been one of the earliest applications of the
so-called sign-test by calculating the probability that male births would exceed
female births for eighty two consecutive years (1629-1710) in London, provided
that k = 1. He found this probability to be exceedingly small, thus proving the
operation of Divine Providence (cf., Stigler 1986, 225-226). Karlin and Lessard
(1986) consider the optimality of the sex ratio.

In addition to regional variation, k may vary by age of mother. We note that
if such variation is numerically important, then gross reproduction rate can be
defined as foﬁ A(t)/(1 + k(1)) dt, with the k(x) the sex-ratio for births to a mother
of age x.

Example 4.3. Time Trends in Sex Ratios in Finland. Sex ratio at birth may also
vary in unexpected ways over time. Figure 6 has a plot of the Finnish ratio from
1751-2000. The actual ratios vary quite a bit around the smoothed curve that was
obtained by running the RSMOOTH procedure of Minitab twice. The variation
is due to random fluctuations in Bernoulli trials. The interesting thing, however,
is the trend of the time series. We will see later that the series is nonstationary
by usual measures, indicating that there have been real changes in the ratio. The
causes of changes have been investigated, but no obvious demographic factor such
as paternal age, maternal age, age difference of parents or birth order can explain
the nonstationarity (Vartiainen, Kartovaara and Tuomisto 1999). ¢

Let T be the waiting time until a woman’s death and define p(x) = P(T > x).
Then, N(T) is the total number of children she has over her lifetime. (Note how
death may cause censoring here via 7'.) The expected number of girls she will have
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FIGURE 6. Sex Ratio at Birth (Actual and Smoothed) in Finland in 1751-2000.
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is E[N(T)]/(1 + «). This is called the net reproduction rate.® To evaluate it, note
that conditionally on 7" = ¢, a woman is expected to have A(7) children. Recall that
—p'(t) is the density of T and integrate by parts to show that E[N(T)]/(1 4 «)
equals

1
(1 4+«)

B
/A(t)p(t) dt, 4.4)

o

oo

/ A (=p (1) dt = )
0

because A(.) vanishes outside [«, B]. The right hand side of (4.4) is the usual
definition given for the net reproduction rate. It can be interpreted as the expected
number of girls a new born baby girl will have over her life time (provided that
fertility and mortality schedules do not change over time). The gross reproduction
rate is the expected number of girls a new born baby girl will have if she survives
to age f. A stationary life table population is obtained if the net reproduction rate
is = 1. As discussed in Section 2.2 of Chapter 6, a growing or declining stable
population is obtained if it is > 1 or < 1, respectively. The integrand A(.)p(.) is
called the net maternity function.

To determine the growth rate p of the stable population corresponding to A(.) and
p(.), suppose the female births at time ¢ are Be”' and the female population den-
sity at time 7 is Be”~*) p(x). From the equality Be”" = [ Be”") p(x)A(x)dx/
(1 + «) we get the equation

o0

l:/e_’”‘ ) p(x) dx /(1 + ). (4.5)

0

By computing the derivative of the right hand side with respect to p we note that
the right hand side is monotone function that declines from 400 to 0. Therefore,
(4.5) has a unique real root in p.

If we would have p(x) = 1 for x < B, then a value 1 + « =~ 2.05 of the total
fertility rate would guarantee the reproduction of the population. Due to mortality in
ages < f a somewhat higher value, such as 2.1 is often mentioned as the threshold
value. In countries with a low level of mortality an intermediate value such as 2.07
may be more accurate.

A possible definition for the length of generation is the number of years until the
annual births become multiplied by the net reproduction rate (4.4). If we denote
the generation length by G and the net reproduction rate by N, we then have for
the stable population the equation N = ¢”% or G = log(N)/p. Being determined
by the life table age-distribution and period fertility, p is also called an intrinsic
growth rate.

° The invention of the net reproduction rate is often attributed to Robert R. Kuczynski
(1876-1947) although several authors entertained similar ideas in the 1920’s and 1930’s
(DeGans 1999, 65).
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One measure of the timing of the births is the mean age at childbearing. In
statistical terms, this is an expected value of the age of the mother. There are at
least four logical densities with respect to which the expectation might be taken. (i)
Suppose b(x) is the density of births by mother’s age, o < x < . We get the actual
mean age if we use b(x). (ii) If we use a density proportional to the age-specific
fertility rate A(x), we get a hypothetical mean age that would occur if there were
constant past births and no mortality by age 8. (iii) If we use a density proportional
to A(x)p(x), we get a hypothetical mean age that assumes constant past births but
takes into account mortality. (iv) If we use a density proportional to e™*A(x) p(x),
we get a hypothetical mean age that takes into account intrinsic growth. As shown
by Keyfitz (1977, 126), this mean age is close to the length of generation, as defined
above. Usually, mean age is calculated assuming (ii) (Shryock and Siegel 1976,
279). To develop a sense of the practical meaning of the various measures, consider
the data from Finland in 2000.

Example 4.4. Alternative Measures of Mean Age at Childbearing, Finland 2000.
The total fertility rate was 1.73 and the sex ratio at birth was 1.06. Therefore,
the gross reproduction rate was 1.73/2.06 = 0.84. The net reproduction rate was
N = 0.83, so the effect of mortality during childbearing ages on reproduction was
negligible. The mean age at childbearing was approximately 29.9 using definition
(i), and 29.5 using (ii). The reason the actual mean age is higher than that determined
by the age-specific rates is that the cohorts in the youngest childbearing ages are
smaller than those in the older childbearing ages. The other two definitions lead
to slightly lower values lower than 29.5. If the length of the generation would
be G & 29 years, then the corresponding population growth rate would be p &
log(0.83)/29 = —0.006. ¢

In the Finnish example, the current fertility and mortality rates would imply, in
the absence of migration, a decline at the rate of about 0.6% per year. The low level
of natural reproduction has not been a topic of interest in public debate because
the baby-boom generations have produced large numbers of births during the past
decades. The situation will change when the small generations born after 1970
form the bulk of the child-bearing population, and may be changing already as
underfunding of pensions is increasingly a topic in the news.

As childbearing is largely voluntary activity, but subject to social norms, it is of
interest to consider to what extent the sex distribution of their children can be con-
trolled by the parents, by means other than genetic testing or X-ray determination
of the sex of a fetus and abortion.

Suppose a couple can potentially have some finite number of children. They may
elect to cease childbearing earlier. Let X; = 1 if the i'" potential child is a boy, and
X; = 0 otherwise. Assume that the X; are independent and identically distributed
Bernoulli random variables with parameter p, X; ~ Ber(p). The number of boys
among the first n potential births, say S, = X; + --- + X,;, has mean np. Define
Y, = S, — np, with Yy = 0. Suppose the couple has elected to have n births, and
they are deciding whether to have one more. There are two possibilities. (1) If the
n™ birth was the last feasible birth, or if the couple decides not to have further
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births, then the final Y value is Y,. (2) If additional births are available and the
couple decides to continue, then E[Y,41|Y,] =Y, + E[X,+1] — p = Y,,. In both
cases the expected Y value at the next step is the current value, no matter what
the circumstances. The same argument applies to the previous step, so no matter
what strategy the couple is following, their expected final ¥ value was then Y,,_;.
Continuing in this way we see that their expected final ¥ value must have been
Yy = 0. A similar argument can be made for the girls, so that the ratio of the
expected number of boys to the expected number of girls is always p : 1 — p, no
matter what decision rule the couple follows. This is an elementary example of the
celebrated optional sampling theorem of Doob (cf., Chung 1974, 324-327): “No
strategy in a fair game improves your chances.” One implication of this finding
is that in large populations the overall sex ratio does not depend on the strategies
couples use. Although the result, as we have presented it, is straight forward, we
point out additional subtleties in exercises.

4.3. Period and Cohort Fertility
4.3.1. Cohort Fertility is Smoother

The total fertility rate is usually interpreted in terms of a hypothetical (synthetic)
cohort whose evolution is determined by the vital rates of year ¢. If the population
is stable, the period total fertility rate may also correspond to the experience of
actual cohorts. However, as amply demonstrated by Example 4.1 and Figure 5,
fertility rates have been highly variable in the past. One possibility is that period
fluctuations might be due to changes in the timing of fertility in different cohorts
(cf., Ryder 1956). We will discuss this issue in the context of the baby-boom in
Finland. As discussed in Example 4.2, it is unlikely that it could be explained
simply as a recovery of births postponed during World War II.

In fact, consider the total numbers of (live) births in Finland, in consecutive
five-year periods, during 1925-1954:

years births
1925-1929 384,300
1930-1934 349,200
1935-1939 366,000
1940-1944 372,600
1945-1949 521,300
1950-1954 466,200

We see that the number of births reached a low during the years following the
economic depression of the 1930’s. After that there was a recovery, and during
the five-year period that was most influenced by the war, the recovery continued:
the total number of births was higher during 1940-1944 than during the previous
five-year period of peace. A more plausible explanation can potentially be given
in terms of a longer term postponement caused by both the depression and the war.
This can be investigated by studying completed cohort fertility. The difficulty with
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FIGURE 7. Approximate Completed Fertility for Birth Cohorts Born in Finland in
1905-1965.

cohort analysis is that it takes 30—35 years to observe the whole completed fertility
of a cohort. Instead, Figure 7 presents the sum of age-specific fertility rates in ages
1540 for the birth cohorts born in 1905-1965.!° Before analyzing the data, two
technical remarks are in order.

First, the estimates are based on the rectangles of the Lexis diagram rather than
the genuine cohort parallelograms. This can have a notable numerical effect for
some birth cohorts that were born at a time when fertility was rapidly changing from
month to month due to war. The years 1918-1919, 1939-1940, and 1944-1946
are examples of this (Fougstedt 1977, 19).

Second, for the last five cohorts the values have been forecasted by adding
0.16 to the cumulative fertility of ages 15-35. This is the difference observed
for the last available cohort born in 1960. Given that the fertility in ages 40-49
has been approximately 0.05 during the 1940’s and 0.01 recently, the (forecasted)
cumulative sum for the ages 15-40 approximates cohort total fertility rate well.

Turning to Figure 7, completed fertility presents a much smoother picture of the
evolution of fertility than period fertility of Figure 5. This is to be expected, since
fertility is heavily influenced by period factors that tend to compensate for each
other over time for actual cohorts. Nevertheless, completed fertility has changed
during the period we are investigating. It started at level 2.3 for the cohort of 1905
and rose to a high of 2.7 for the cohort of 1919. As argued by Fougstedt (1977,
18), the method of estimation has slightly exaggerated this value and decreased
the low value of the previous year. Perhaps, 2.6 is closer to the actual maximum.
From there, a decline to about 1.8 takes place. In other words, the increase during

10 The authors are grateful to Timo Nikander of Statistics Finland for providing these data.
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the early part of the period is about 0.3 children, and the subsequent decline is
about 0.8 children, or 31%. Therefore, the baby-boom still appears as a reversal
of a declining trend that started in the late 1800’s and continued after the 1950’s.
Although timing has certainly contributed to the creation of the baby-boom in
Finland, it cannot be explained merely by timing. Major changes in completed
cohort fertility also occurred.

In thinking about the possible reasons for a reversal of a long-term decline, it
seems useful to look at other countries, as well. Sweden did not participate in
the war, but had a baby-boom that peaked in 1945, and a smaller peak in 1964.
Great Britain and Belgium had lesser peaks in 1947-1948 and a bigger one in
1964. France and the Netherlands had higher peaks in 1946-1947 and a lesser
one in 1964. The United States and Canada had major peaks in 1957 and 1960,
respectively. (LN.E.D. 1976, 46-54)

In summary, all the countries appear to have experienced a temporary reversal
of a long time declining trend. Looking for an analogy in physical systems theory,
we may observe that this corresponds to an underdamped system (Box and Jenkins
1976, 344). That is, when such a system is perturbed, its equilibrium state may
change, but this value is only reached after a sequence of oscillations.!!

4.3.2. Adjusting for Timing

Although timing cannot explain all of the fluctuations in childbearing we observe,
it can certainly play a role. Therefore, if one has reason to believe that childbearing
is currently being postponed (or that it occurs earlier than before) it is of interest
to see how its effect might be assessed.

Let A(x, t) be the age-specific fertility rate in exact age x at exact time ¢ and
define the period total fertility rate as

00
A(t) = / Ax,t)dx. (4.6)
0
Correspondingly, define the cohort total fertility rate of those born at s as
00
C(s) = /A(x, s+ x)dx. 4.7)

0

Assume that A(x, t) = g(x) for# < 0 and write A = A(0), for short. Let us assume
that g(x) =0 forx <o and x > B.

Suppose that during ¢ > 0 two things happen. First, all age-specific rates are
multiplied by (1 — r), where |r| < 1. Second, the schedule g(x) is shifted at a
rate of r per year towards older ages (r > 0) or towards younger ages (r < 0). In
other words, assume that A(x, t) = (1 — r)g(x — rt) fort > 0. As aresult A(t) =
(1 —r)A, so the period total fertility rate is multiplied by (1 — r).

! Readers who have ever hit a pothole driving in a car with worn-out shock absorbers have
experienced underdamped systems.
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To see what happens with cohort total fertility, note first that the lowest and
highest ages of childbearing at ¢ are «(¢) = o + rt, and B(t) = B + rt, respec-
tively. Consider a cohort born at s > —¢. Its lifeline in the Lexis diagram is
L(t) =t — s. Therefore, it enters the childbearing ages when L(¢) = «(¢), or at
timet = (« + 5)/(1 — r), when its members have age (o + rs)/(1 — r). Similarly,
the cohort ends childbearing at t = (8 + s)/(1 —r) in age (B +rs)/(1 —r). We
have that

(B+rs)/(1—r)
C(s) = / (1 —r)glx —r(s+x))dx. 4.8)

(a+rs)/(1—r)

After a variable change y = (1 — r)x — rs we see directly that C(s) = A. In
other words, the completed total fertility of the cohort born at s > —« equals that
of period r = 0 despite the transformation of the age-specific schedules. Moreover,
a similar argument shows that C(s) = A for all 5. The interpretation is that we can
have a level change in period fertility and no change in completed cohort fertility,
if the period level change is suitably matched by a translation type delay in fertility.

If a translation at speed r occurs, then the mean age at childbearing changes
by r each year (if we define mean age with respect to a population whose age
distribution is proportional to A(x, t), as in definition (ii) preceding Example 4.4).
Conversely, if the mean age at childbearing changes by r per year, then we would
expect period fertility to be multiplied by (1 — r) if no change in completed cohort
fertility occurs and fertility schedules are simply being translated. Conditionally on
this hypothesis, A(t)/(1 — r) would be a possible measure of fertility for year ¢ that
would “adjust” for the timing effect observed during ¢ (see Bongaarts and Feeney
1998; and for extensions Van Imhoff and Keilman 2000, Kohler and Philipov 2001).
Of course, the hypothesis may be false. For an alternative statistical formulation,
see Example 3.1 of Chapter 5.

4.3.3. Effect of Parity on Pure Period Measures

Could the argument be pushed further to birth order specific fertility rates discussed
in Example 4.1? Suppose a woman can give up to / births. We can then write

AMx, ) =@1(x, 1)+ -+ @r(x, 1), (4.9)

where @;(x,1),i = 1,...1, is the parity-specific fertility rate (defined just after
Example 4.1) or the component of fertility that is due to births of order i. Let
Ai(x, t) be the age-specific rate for order i births and let w; (x, ¢) be the fraction of
women in age x who are at parity i — 1 at z. Then, the components can be written
as @;(x,t) = w;(x, t)A;(x, t). Suppose we repeat the argument given above for the
component of total fertility that is due to order i,

o0

E(t):f(p,-(x,t)dx. (4.10)

0
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An adjusted measure would thenbe 7;(¢) /(1 — r;), where r; is the speed at which the
components ¢;(x, ¢) have been translated. The sum of the order-specific adjusted
measures would be the adjusted total fertility rate. The reasoning is problematic,
however, since changes in ¢;(x, t) can be due to changes in A;(x, t), w;(x, t), or
both. Moreover, if A;(x, t) changes it necessarily affects w; (x’, t') forx’ > x, 1" >
t,and i’ < I (cf., Van Imhoff 2001, and references therein).

From a methodological point of view, a more serious problem is revealed by
the consideration of parity. By a pure period measure one might refer to summary
measures that depend on the transition intensities of the current period only. This
seemingly simple definition depends on the setting, in a surprising way. For exam-
ple, given this definition, the components ¢;(x, t) are not pure period measures,
because the weights w; (x, t) depend on the fertility by birth order before time 7.
It follows that the actual age-specific rates L(x, t) are not pure period measures
either, because they are sums of components that depend on earlier events. Hence,
the measures 7;(¢) are not pure period measures, nor is their sum, the “period”
total fertility rate A(z)! A multistate analysis (cf., Chapter 6) can produce a period
measure that takes parity into account, but it is clear that if further disaggregation,
e.g., by economic or social status, were entertained then the same problem would
reappear.

On the other hand, suppose we stick with parity as the only criterion of disag-
gregation beyond age. Although transition intensities from one parity to the next
can depend on any aspect of the past event history of the person, we will here
formulate an example in which only the time of the previous birth has an effect
(cf., Mode 1985, 144). It also serves as an example of a multiple decrement model:
each parity can be left via two routes: death and having an additional birth.

Example 4.5. Parity Progression Ratios. Consider a new-born baby girl with mor-
tality hazard p(x) in age x. Suppose childbearing ends in age 8 > 0. Set Ty = 0,
andlet 0 < T} < T, < - - - be the times of birth of her children. The woman is at
parity i in age x, provided that she is alive in age x, and 7; < x < T;4,. Suppose
that the hazard of a new birth is of the form P(x < T;;; < x 4 h|woman is alive
inage x, T;11 > x > T; = u) = v;(x, u)h + o(h). Write

Ai(x,u) = /(Vi(s,u)JrM(S))ds, (4.11)

for short. Let g;(x) be the density of the entry time to parity i + 1, in age x. Using
(2.4), we get go(x) = exp(—Ap(x, 0))vo(x, 0) fori =0.Fori =1, 2, ... we have
the recursion

X

8i(x) = / 8i—1(u)exp(— Ai(x, u)) vi(x, u)du. (4.12)
0
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The probability of ever entering parity i = 1, 2, ... is
B
Gi = /gi_l(x)dx, (4.14)

0

so the probability of remaining childless is 1 — G, for example. The parity pro-
gression ratio is G;11/G;, or it is the conditional probability of entering parity
i + 1, given entry to i. This can be estimated from period data based on estimates
of u(x) and v;(x, u). The interpretation of the ratio is more complex than one
might think, because it depends on the hazards of entering earlier parities j < i
via (4.12). O

4.4. Multiple Births and Effect of Pregnancy
on Exposure Time

Apart from the repeatable/nonrepeatable distinction, fertility rates differ from mor-
tality rates because of the possibility of simultaneous multiple births. In addition,
even though a pregnancy is a precondition of a later birth, after fertilization a
woman is essentially incapable of giving birth for nine months or so. This is a
form of censoring from the perspective of the Poisson model. We will show that
neither factor typically has an effect that would invalidate the Poisson process
approximation.

Historical statistics from Finland since the year 1900 show that the fraction of
multiple births increases until age 35-39, but appears to decrease thereafter. The
number of live births resulting in twins has been in the range 1.0-1.5% out of the
total number of live births. The number of live births resulting in triplets has been
approximately 0.01-0.02%, or one tenth of the twins. The fraction of live births
resulting in quadruplets used to be approximately 0.0005%, but since the 1980’s
the fraction has increased to about 0.002, or to one tenth of the triplets. The increase
may have been caused by the introduction of fertility-enhancing drugs that tend
to produce multiple births. In summary, the total number of live born babies is,
therefore, 1-2% higher than the number pregnancies resulting in live births.

Multiple births can be handled via marked counting processes. For example,
for each woman i we can superpose independent Poisson processes Nj;(t) for
the arrival of each type of pregnancies (j = 1 corresponds to a single live birth,
Jj =2 corresponds to twins etc.; cf., Cinlar 1975, Section 4.4). The total num-
ber of children born to woman i by age ¢, is then a (finite) sum of the form
L;(t) = N;j(t) + 2 x Nip(t) +3 x N;3(t) + - - -. Due to the independence of the
arrival processes the probabilistic characteristics of the process L;(¢) are easily
derived. For example, let us ignore the effect of triplets, quadruplets etc. Sup-
pose the expected number of live births per person year is A > 0. Then, we get
approximately that N;;(¢) ~ Po(0.97 x 1) and N;;(t) =~ Po(0.015 x 1), because
0.97 +2 x 0.015=1. It follows that Var(L;(t)) ~ A(0.97 4+ 0.015 x 2%) =
1.03 x At. In other words, by ignoring multiple births we would underestimate
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the variance of the births by about 3%. Although this is a topic of considerable
interest in micro demography i.e., the branch of demography dealing with small
groups, families, or individuals (e.g., Sheps and Menken 1973), it has no practical
effect in the analysis of aggregate fertility data usually considered in demography,
where the dominant source of variation is in the expected values A rather than the
Poisson variance conditional on A.

The second problem has to do with the fact that the usual duration of pregnancy
is nine months, or 3/4 years. It follows that women who give birth during the period
of observation, or have given birth during the latter 3/4 of the preceding year, do
not actually contribute a whole year of exposure to risk of birth, only a part. This is
in contrast with mortality: everybody is exposed to death while living! The usual
method of calculating person years currently exaggerates the number of person
years of the population exposed to births by 3/4 of the fraction giving birth. We
saw in Example 4.1 that during the baby-boom, 20-25% of women in ages 20-30
gave birth each year. Subsequently, the fraction has declined to 5-15%.

Again, the problem is of interest in micro demography, but in aggregate studies
the calculation of person years is rarely corrected. There are at least two reasons for
this. First, infecundity'? (i.e., physiological inability of a woman in a childbearing
age to conceive or carry a pregnancy to a term) also occurs for reasons unrelated
to births (infections, blocking of Fallopian tubes etc.). Even if a woman is fecund,
she may not be at risk of pregnancy because she is not sexually active, by choice
or by external constraints. Lack of exposure to pregnancy of these types would
remain uncorrected. Second, when fertility statistics are used at an aggregate level,
a possible correction would often cancel out in applications. For example, in
forecasting one would apply a corrected fertility estimate to a risk population that
is smaller than the total population in the age-group of interest.

5. Poisson Character of Demographic Events

For many kinds of demographic events, the distribution of the number of occur-
rences is well approximated by the Poisson distribution. For example, in Section
1 we saw that in the case of censored exponential waiting times, the number of
events can be taken to have a Poisson distribution for inferential purposes. A clas-
sical result for proportions of events says that the distribution of the number of
successes in trials, with a small probability of success but a large number of tri-
als, is approximately Poisson. Specifically, suppose there are n independent trials,
such that the outcome of trial i is “success” with probability p; , and “failure” with
probability 1 — p; ,,. Now consider a sequence of such trials as n — oo such that
Pin+ -+ pun = A >0and max{p; ,li = 1,...,n} — 0. Then the distribu-
tion of the number of successes is approximately Poisson Po(1).

12 In English “fertility” refers to actual realized fertility and “fecundity” refers to physio-
logical ability to have children. In French it is the other way round!
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Proof of asymptotic Poisson distribution property. The following proof is taken
from Feller (1968, 282). Suppose P(Y;, =1)=p;p,and P(Y;, =0)=1—p;,
for independent Bernoulli variables Y; ,, and define S, =Y, , +--- 4+ Y,,. The
probability generating function (of argument s) of Y; ,, is E[sY*"] = (1 — p; , +
Di.nS), S0 the probabilities generating function of S, is the product E[s Snl=(1—
Pin+ p1as) -+ (1 = ppy + puns). Taking the logarithm we get that

log(E[s™]) = ) _log(l = Pin(l = ). (5.1)
i=1
The first order Taylor series approximation to the logarithm is log(l — x) = —x

with the (Lagrange form) remainder term —x?/[2(1 — £)?], where & is a point
between x and 0. Taking x = (1 — 5)p; , in the i™ summand, it follows that as
n — oo, we have that

log(Els™] = —(1=5) Y Piu—(1—s)?> P}, /200§,
i=1 i=1
— —A(1 — ). (5.2)

This proves that as n — oo, E[s%] — exp(—A(1 — s)), which is the probability
generating function of the Poisson distribution Po(1). The convergence of the
generating functions implies the convergence of the corresponding distributions
(Feller 1968, 264, 280). ¢

Feller’s proof shows that we may have both population heterogeneity and dif-
ferent censoring times in a population and still get a Poisson limiting distribution
for a count, provided that the event in question is rare. Section 4.1, on the other
hand, says that if we are dealing with a repeatable event, then a Poisson model
may be appropriate irrespective of the relative frequency of the event, provided that
the interarrival times are exponential. One can show the latter result to agree with
Feller’s result by dividing the time interval into short subintervals. Then, the rarity
assumption can be invoked within each subinterval, and we have an approximate
Poisson distribution within each subinterval. The counts within subintervals will
be independent because of the memorylessness property of the exponential distri-
bution and the fact that no one is removed from exposure by the event of interest.
For additional discussions, see Breslow and Day (1987, 131-135, and references
therein).

When intensities of events are compared across small regions, for example, it is
useful to note that the Poisson model assumes more variability than the binomial
model. In addition, a sum of heterogeneous Bernoulli variables has a smaller
variance than a sum of homogeneous Bernoulli variables. Therefore, the Poisson
model leads to a more conservative inference.

Is Poisson variation important? The coefficient of variation of the Poisson dis-
tribution is A ~1/2. In the early days of stochastic population modeling considerable
interest centered on the so-called branching processes (Galton-Watson processes,
in particular) as models of population growth. This theory is very interesting on
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its own right. However, it is not an adequate descriptor of the actual variability of
the observed vital rates in human populations. Consider a simple example. Annual
changes of several percent are common in age-specific mortality and fertility rates.
However, for a Poisson model the coefficient of variation remains under 0.05 as
soon as the expected count is greater than 400, and it remains below 0.01 when the
expected count is over 10,000. It follows that from the point of view of population
forecasting the Poisson variability and, a fortiori the binomial or Bernoulli vari-
ability, are negligible, unless we are dealing with small populations with expected
counts that are in the hundreds or less (Pollard 1968, Goodman 1968).

6. Simulation of Waiting Times and Counts

Consider a waiting time X > 0 with survival probability p(x) = P(X > x). Sup-
pose first that p(.) is strictly decreasing, so the inverse p~'(.) exists. Let U be a
random variable with a uniform distribution on [0, 1] and define T = p~(U).
Then, we have that P(T > x) = P(U < p(x)) = p(x). In other words, T has the
same distribution as X. Several methods are available for the generation of uni-
formly distributed pseudo random numbers (e.g., Ripley 1987). Therefore, this
method can be used to generate observations from any strictly decreasing survival
function: simply generate U and set X = p~!(U). The method is equivalent to
using the inverse of the distribution function.

Example 6.1. Simulation of Weibull Random Variates. Consider the Weibull dis-
tribution of Example 2.1. that has survival probabilities of the form p(x) =
exp(—(x/oe)ﬁ), SO p’l(u) =a(— log(u))l/ﬁ. If we randomly generate U uniform
on (0, 1], X = p~!(U) will be Weibull with the desired parameters. In the case of
the exponential distribution, or 8 = 1, we have simply p~' (1) = —a log(u). ¢

More generally, we have p(x) = exp(—A(x)), so if A~'(.) exists, p~'(u) =
A~!(—log(u)). Provided that it is easy to compute the values of the inverse func-
tion, a straightforward way to simulate waiting times is thus available.

Consider counts now. Suppose X has the binomial distribution Bin(#n, p). In
that case X is the sum of n independent Bernoulli distributed random variables,
X=Y+---4+7Y,,where PY; =1)=pand P(Y; =0)=1—p. If U;’sare n
independent random variables that are uniformly distributed on [0, 1], then we
candefine ¥; = 1,if U; < p, and define ¥; = 0 otherwise. Now X has the desired
distribution. More complex methods are available for large n (cf., Ripley 1987, 92).

One way to simulate observations from a Poisson distribution is to resort to
Poisson processes. Suppose X ~ Po(A). Then, X equals the number of arrivals in
a Poisson process with intensity 1 during time A > 0. Hence, all we need to do is
to generate waiting times from the survival function p(x) = exp(—x), until their
sum exceeds A. If the n'" waiting time brings the sum over the value A, then we
take X = n — 1. Again, other methods may be faster when A is large (Ripley 1987,
92). The same methods can be applied to other processes related to the Poisson
process. For example, as in Section 4.2 we may consider the total number of births
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per woman as a sum of Poisson processes bringing her single births, twins, triplets
etc. We stop the processes at the simulated time of death of the woman, or at the
end of childbearing ages, whichever comes first.

Exercises and Complements (*)

1.

*3.

*8.

Show that if Xi,...,X; are independent and exponentially dis-
tributed waiting times with parameters ui, ..., Wi, respectively, and X =
min{X1y, ..., Xi} then P(X > x) = exp(—(®1 + - - - + 1y )x), or the mini-
mum has also an exponential distribution with the parameter | + - - - + .-
(Hint: the minimum exceeds x if and only if all of the waiting times ex-
ceed x.)

. Consider two cohorts of N (statistically independent) individuals. Sup-

pose the lifetimes within each cohort have exponential distributions with
parameters p; > 0, j = 1,2. How many individuals do you expect to be
alive in age x > 0 in each cohort? Show that the average force of mor-
tality in the population formed by the two cohorts is (u; exp(—pix) +
Uo exp(—urx))/(exp(—u1x) + exp(—u2x)), in age x. How does the force of
mortality change over time if the cohorts are heterogeneous with (1 > p,?
For more discussion about population heterogeneity, see Keyfitz (1985),
Chapter 14, or Vaupel and Yashin (1985).

Method of Moments. Suppose X1, ..., X, are ii.d. from some distribu-
tion with a k dimensional parameter 6. The method of moments estimates
u) = E[X]] < cowithm") = (x/ + --- + x;)/n. Itis an application of es-
timating functions (Chapter 3, Section 7.3): it uses functions (x;, 8), whose
j™ component is ¥;(x;, 0) = y;/ — u(0), j =1,...k.

. Derive formula (1.3).
. Consider exponentially distributed waiting times with m units observed and

with i the o/e rate. Since Z = m'/?(ft — u)/u has an asymptotic standard
normal distribution, when w is the true hazard rate, we have that asymp-
totically Z? has a X12 distribution. Let k, be the (1 — «) fractile of the X12
distribution. It follows that an approximate (1 — «) level confidence interval
for pu consists of all those values of yu that satisfy the inequality Z? < k.
Solve this quadratic equation for u to get the end points of the confidence
interval.

. Continuation. Construct a (1 — «) level confidence interval for e
. Consider the setting of Example 1.4. Assume «//8 = 0.02. Study numeri-

cally the probability of survival to age 0 < x < 80, comparing an individual
with the average hazard to the average probability of survival, for 8 = 400,
100, 25.

Jensen’s Inequality. If g is a convex function and E[X] is finite, E[g(X)] >
g(E[X]). The result is geometrically obvious once we note that for a convex
function, g(X) > g(E[X]) + s(X — E[X]), where s is the slope of the tangent
of g(.) at E[X].
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Inreference to Example 2.2, assume that p(¢) = 1 — bt fort € [0, 1] orequiv-
alently that u(t) = b/(1 — bt), where we take 0 < b < 1. Then we have that
—p'(t) = b. Note that if there are m deaths in a cohort of n individuals, then
the likelihood of the datais L(b) = b™(1 — b)"™", and the MLE of b is simply
b = m/n. This is quite reasonable, since b can be interpreted as the prob-
ability of death during the interval. From the latter perspective b can also
be seen to be a moment estimator of b. Note also that the expected num-
ber of person years in the cohort is n(1 — b/2) and the expected number of
deaths is nb. Therefore, in large samples we expect the o/e estimator to be
u =b/(1 —b/2). One can solve for b from this to derive the actuarial es-
timator for the probability of death b = 2 /(2 + ), and for the probability
of survival 1 —b = (2 — n)/(2 + ). Neither formula seemed particularly
intuitive to us without the derivation! We see that the actuarial estimator is
reasonable when the force of mortality is well approximated by the formula
u(t) = b/(1 = br).

Under the Balducci model of Example 2.3 one assumes that p(t) = a/(1 +
at) fort € [0, 1], where a > 0, so p(t) = 1/(1 + at) (cf., Keyfitz and Beek-
man 1984, 34). In a cohort of n individuals the expected number of deaths
is na/(1 4+ a) and the expected person years are nlog(l 4+ a)/a. Therefore,
in a large cohort we would expect the o/e estimator to be u = a?/[(1 + a)
log(1 + a)]. This is a nonlinear equation that can be solved numerically for a.
(a) An alternative proof of (2.7) can be based on double integrals starting
from

o0

/x(—p/(x))dx =/f—p/(x)dtdx.
0 0

0
(Hint: Change the order of integration.)
(b) Prove (2.7) by partial integration (i.e., integrating by parts), starting from

[e.9]

E[X] = / (= p' () dx.
0

(a) As in 11(b), show by partial integration that

o0

E[X’] = Z/Ip(t)dt.

0

(b) Prove the result starting from P(X? > u) = p(u'/?), and making a change
of variable u = t>.

Show that cause-specific hazards are additive under an independent compet-
ing risks model (cf., Examples 1.2 and 2.4) by determining first the cumulative
hazard of X = min {Xy, ..., X;}, and then differentiating.

Consider a model of independent competing risks of death with pu(x) = A +
Re**,where A, R, o > 0. This is the so-called Gompertz-Makeham family of
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hazards. Gavrilov and Gavrilova (1991) present evidence that in many human
populations changes in mortality over time can be described by varying the
term A only. How can this be interpreted? If this were the only way mortality
can be lowered, what would it imply concerning the further reduction of
mortality?

(a) Show that the Gompertz model ;(x) = ac*, witha, ¢ > 0, satisfies pu(x +
1)/u(x) = c. (b) Show that a Gompertz-Makeham model of Exercise 14
satisfies log{(u(x + 1) — u(x))/(u(x) — p(x — 1)} = a.

Derive the approximation (2.10) starting from (2.8).

Calculate the expectation of the general Weibull distribution in terms of the
gamma function.

Suppose c(t) is an integrable function, let /(¢) be the indicator process defined
in Section 2.2.1, and define the random variables

B ®
X = /c(t)l(t)dt, X, = /c(t)l(t)dt.
P B

(a) The expectations of the variables are obtained by changing the order of
integration and expectation, as in (2.6) and (2.7). (b) To calculate the second
moments, note first that

B w
XX, = /c(t)dt/c(t)l(t)dt,
P B

because XX, = 0 unless I(8) = 1. Now take the expectation under the in-
tegral sign to get E[X X»]. (c) To calculate E[X 12] note first that X2 can be
written as

B B Bt
//C(s)l(s)c(t)l(t)ds dt = 2//c(s)ds c(t)I(t)dt.

Now take expectation under the integral sign.

Apply the results given above to derive expressions for the moments of D
and solve for ¢, in Section 2.2.4.

Consider a cohort of size N with withdrawal times 1.1, 1.5, 2.0, and 2.2.
Draw a graph of the Kaplan-Meier estimator for these data if (a) N = 4, and
all events are deaths, (b) N = 4, and third withdrawal was a censoring, (c)
N = 4, and last withdrawal was a censoring (how does the estimator defined
by (2.19) behave for large #? Is this realistic?), (d) N =5, and there are
two tied deaths at the third withdrawal time, (e¢) N = 5, and there is a tied
death and censoring at the third withdrawal time (present an upper and lower
estimate in this case).

Continuation. Draw a graph of the Nelson-Aalen estimator in each case.
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An estimate of the variance of the Kaplan-Meier estimator is given by the
formula introduced by Greenwood in 1926,

0]
m+1-=im—1i)

Var(p(6) = p(t)* )

Tiy=t

Suppose that there is no censoring, and let the number of cases by time ¢
be c(r). Note that we then have p(t) = (n — c(¢))/n. Using this, show that
Greenwood’s formula reduces to p(z)(1 — p(¢))/n (cf., Andersen et al. 1993,
258). For a version applicable to grouped (or tied) data, see Woodward (1999,
203-204). If the Kaplan-Meier estimate is applied to data from a complex
sample, sample-weighted numbers may be used for n and i in (2.19) and
alternative variance estimates may be appropriate, as discussed in the next
complement.

(a) Show that the Nelson-Aalen estimator of the cumulative hazard is equal
to the first order Taylor expansion of the estimator log p(¢). (Hint: a Tay-
lor expansion yields log((n —i)/(n —i + 1))~ —1/(n —i +1).) (b) Re-
call that if Y ~ Bin(N, p), then Var(p) = p(1 — p)/N. Suppose we have
N =n—i+1 individuals at risk just before the i death and assume
that one dies in a short time interval around the time of death. Given
one death, we would estimate the probability of survival in the interval as
pi=m—1i)/(n —i -+ 1). A Taylor series expansion yields the approxima-
tion Var(log p;) &~ p;~>Var(p;). Assume that the “trials” consisting of death
times are independent, to arrive at a variance for the Nelson-Aalen estimator
(2.20) as

8a)
n—i+Dm—1i)

Var(A(t)) = Z

Tiy=<t

(c) Derive Greenwood’s formula using the delta method approximation
Var(p(t)) = Var(exp(log p(t))) ~ ﬁ(t)ZVar(log p(t)). For a rigorous discus-
sion, see Andersen et al. (1993). If the data come from a survey, the sampling
variance of the estimate can be obtained using replication methods (Chapter 3,
Section 8).

Derive formula (2.24).

Derive a formula for K, defined by (2.22), when k(t) = Be”'. Suppose the
number of deaths is D, = K, M,. Using (2.20), derive a formula for D,,
when hazard is of the Gompertz-Makeham form () = A + Re*', with
A = 0.00376, R = 0.0000274, and o = 0.104. (These values correspond to
Swedish male data from 1926-1930; cf., Gavrilov and Gavrilova 1991, 75—
76). Similarly, using (2.9) and (2.5) derive a formulafor A, ;. Let B = 10,000,
and B = —0.01. Verify that you get the following table (the number of deaths
is not an integer but this won’t matter),
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x K, D, M, Avs
70 9851.49 449.692 0.0456471  0.0456580
71 9560.33 480.292 0.0502380 0.0502501
72 927778 513.358 0.0553320 0.0553454
73 9003.58 549.077 0.0609843  0.0609992

Apply Keyfitz’s method to the table of Exercise 25. For the first age, 70,
use slope estimates {11 70 = M7, — M7 and k, 70 = K71 — Kro. Similarly for
the last age. Verify that you get the following estimates (2.24): 0.0456584,
0.0502501, 0.0553454, 0.0609986. Calculate the exact values of the hazard
increments based on the Gompertz-Makeham model, and show that for the
two central ages these agree with the values given here.

Derive the weights in (3.6).

Derive a formula for the expectation of the Erlang-k distribution (a) by inte-
grating pk(t), (b) by using the difinition directly.

Consider a couple that continues to have children until they get the first boy,
and then they stop. Suppose the probability of a boy is 0 < p < 1, and let
X denote the number of children the family will have, so 1/X is the frac-
tion of boys. Under our model the family size has the geometric distribution
P(X =k)=p(l — p)k‘l, k=1,2,... Use it to show that under this strat-
egy E[1/X] = —log(1 — p). In the case p = 1/2 the expected proportion is
~ 0.693. For more discussion, see Yamaguchi (1989), or Keyfitz (1985, 335-
344).

We have shown in Section 4.2 that a couple cannot influence the ratio of the
expected number of boys they will have to the expected number of girls they
will have. However, Exercise 29 shows that they can influence the expected
fraction of boys in their own family. How can the two facts be reconciled? (a)
Use the geometric distribution to show that in the setting of Exercise 29 the
expected number of girls in the family is (1 — p)/p. Since the couple is certain
to have exactly one boy, the expected number of childrenis E[X] = 1/p. (b)
By Jensen’s inequality, E[1/X] > 1/E[X] = p. Thus, the discrepancy is
due to nonlinearity (or “ratio bias”). Intuitively, the fraction of boys is larger
(smaller) than expected in small (large) families.

Suppose a couple can have at most two children, but they stop at one if they
have a boy. Let the probability of a boy be 0 < p < 1. Let X be the total
number of children they will have. (a) Show that E[X] = 2 — p. (b) Show
that the expected number of boys is p(2 — p) and the expected number of
girls is (1 — p)(2 — p), so their ratio is p/(1 — p). (c) Show that E[1/X] =
p@3 — p)/2.(d) Conclude that E[1/X] > p. This shows that the conclusion
of Exercise 30 was not due to the unrealistic assumption of being able have
an unlimited number of children.

Consider an individual exposed to a carcinogenic agent at dose level s > 0.
A one-hit model for carcinogenicity assumes that cells are bombarded by
molecules or by radiation and cancer occurs if there is even a single hit.
Assume that hits arrive as a Poisson process with intensity As. Show that
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during a period of length L, the probability of at least one hit is 1 — e™*",
where @ = AL. This probability is & «as for small « and s. Therefore, one
also speaks of a linear dose-response model.

Derive formula (4.4).

Suppose the age-specific fertility rate of year ¢ is of the form A(x,?) =
ro(x)exp(y(x — M)t), forx = «, ..., B, where M is the mean age of child-
bearing of the form M = X, xAo(x)/ X Ao(x). Suppose thatats = T the mean
age at childbearing is M’. Set up a calculation using Newton’s method to find
a value of y such that M’ = T, xA(x, T)/ X, A(x, T). This is an example of
loglinear models to be discussed in Chapter 5.

The OECD publishes comparative statistics on the “probability” of ever
starting studies in institutions of higher learning (universities, polytech-
nic institutions etc.). For year ¢, the measure is c(t) = c(o, Hw(w, t) +
-« +c(B, HHw(B, t), where c(x, t) is the probability that a person of age
x =o,a+1,..., B, who has not started such studies earlier, will do so dur-
ing year ¢, and w(x, t) is the share of those who have not started such studies
earlier out of the total population in age x (in the beginning of year ¢). Think
of o as the lowest age in which the studies could be started, and 8 as some
(conventionally chosen) upper age: « = 16 and g = 44, for example. Show
that this is the life table probability of starting such studies by age 8, if c(x, ¢)
does not depend on t. If this assumption fails, the measure is influenced by
earlier events, and we may even have c(¢) > 1!

Consider Example 4.5. Define p;(x) = probability that the woman is at parity
i in age x. (a) Show that po(x) = exp(—Ao(x, 0)) for i =0, and for i =
1,2,...

X

Pix) = f g1 exp(— As(x. ) dt.
0

(b) Note that if there were no mortality until age g, then we would have
Gi=piB)+ pir1(B)+---.

Use simulation to estimate the variance of the Weibull distribution, when
oa=1and g =2.

Consider exposed and unexposed cohorts of size n, withrisks of death p;, j =
1, 2. Suppose the relative risk p = p;/p, is estimated from binomial data
Xj ~ Bin(n, pj), J = 1, 2, with ﬁ = ﬁ]/ﬁz, where ﬁj = X]/l’l Use simula-
tion to study the skewness of the distribution of p forn = 10, 20, 30, 50, 100,
when p; = 0.3 and p, = 0.15 by drawing the histogram of the results. (Note
in programming that p is not defined for all data sets.)

A non-obvious consequence of the duration of pregnancy is that it creates a
negative autocorrelation into annual data. To evaluate the magnitude of the
negative autocorrelation in births caused by 9-month pregnancy, consider a
population of fixed size N and a constant birth rate f. Assume there are
B, births during year [z, ¢ + 1). Show that a randomly chosen woman who
gave birth during year 7 spends an expected time 9/32 of the year t + 1
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in a state of not being able to give birth. The expected loss of due to this
is 9 f B; /32 births. Using the result Cov(B;y1, B;) ~ Cov(—9f B;/32, B;) =
—9 fVar(B;)/32 show that the autocorrelation must be —9 f/32. For f = 0.1,
we get the approximate numerical value —.03, for example.

40. Consider a Gompertz distribution with u(x) = ac*, x > 0, ¢ > 1. Show that
we can simulate its values by taking U ~ U (0, 1] and computing 7 = log(1 —
log(c) x log(U)/a)/ log(c).



5

Regression Models for Counts
and Survival

Populations studied in demography are often large. There has been relatively little
need to introduce parsimonious parametric models that are common in other fields
of applied statistics, such as epidemiology. For example, the classical life table
uses one parameter to describe each age. Therefore, it is not unusual that a hundred
or more parameters are estimated from the data. Similarly, age-specific fertility
and mortality rates can be viewed as estimators of age-specific parameters, one
for each age-group. When demographers have used parametric models, the uses
have been to induce smooth changes in the estimates from one age to the next
(e.g., Gompertz-Makeham models for mortality; Lotka, Wicksell and Hadwiger
have introduced analogous graduation models for fertility; cf., Keyfitz 1977). In
contrast, epidemiologists studying the occurrence of diseases often have to resort
to small data sets. The biases that might arise from imperfect parametric models
have been outweighed by the increased precision the models provide. Optimality
of statistical estimation procedures and statistical significance testing have become
an important aspect of epidemiologic inference.

In this chapter we will provide a brief introduction to the most commonly used
statistical models for relative risk, namely logistic regression, Poisson regression,
and Cox regression. It turns out that the estimation theory of all these models
can be viewed from a unified point of view. The likelihoods they lead to are
examples of the so-called generalized linear models. Therefore, we will start by
describing some general features of the theory in Section 1. Then, we proceed
to discuss logistic regression in Section 2, and Poisson regression in Section 3.
Standardization and loglinear models are specifically noted. In Section 4 we discuss
ways of incorporating random effects into these models. Heterogeneity in capture-
recapture data will be considered in Section 5. In Section 6 we consider bilinear
models that have been used both in forecasting and data analysis. In Section 7 we
consider proportional hazards models for survival type data. In Section 8 we discuss
selection by survival. Section 9 discusses some aspects of spatial point patterns.
We conclude in Section 10 by discussing methods for simulating regression data.

117



118 5. Regression Models for Counts and Survival

1. Generalized Linear Models

1.1. Exponential Family

The exponential family of statistical distributions is a family of parametric dis-
tributions that includes the binomial, Poisson, exponential, normal, beta, gamma,
inverse Gaussian, and other distributions. The exponential family is characterized
by the fact that parametric inferences can be based on a limited set of summary
statistics no matter how large the sample. This leads to an elegant statistical theory
that applies verbatim to most distributions of the family. We will discuss only a
subset of the exponential family below, so as to be able to introduce logistic, Pois-
son, and Cox regression in as direct a way as possible later. The methods provide
tools for analyzing relative risks in slightly varying settings. More details about ex-
ponential families and generalized linear models can be found in Andersen (1980)
and McCullagh and Nelder (1989), for example.

Suppose a random variable Y takes values y and has a density function (or
probability function in the discrete case; we will speak of densities, for short) of
the form

J(y.0) = exp(yd — b(0) + c(y)), (1.1)

where 6 is the so-called canonical parameter of the distribution, and »(.) and
c(.) are known functions. Densities of the form (1.1) belong to the (1-parameter)
exponential family.

Example 1.1. Exponential Distribution. Suppose Y ~ Exp(u) with density
fOspn) =pe ™, where y >0 and p > 0. This can be written in the form
f(y;n) = exp(—uy + log(n)), so by taking 8 = —u, b(#) = —log(—0) for 6 <
0, and c(y) = 0, we see that the exponential distribution is of the form (1.1).
In this case b'(f) = —1/6. As noted below (2.7) of Chapter 4, E[Y] = 1/u, so
E[Y]=b'(0). 0

Example 1.2. Bernoulli Distribution. Suppose Y ~ Ber(p) with f(y;p) =
pY(1 — p)'=Y,where0 < p < landy € {0, 1}. Inthis case we can write f(y; p) =
exp(y log(p/(1 — p)) +log(1 — p)). By taking 6 = log(p/(1 — p)). b(8) =
log(1 4 exp(#)), and c(y) = 0, we see that the Bernoulli distribution belongs to the
1-parameter exponential family (1.1). In this case ' (0) = exp(0)/(1 + exp(6)), so
again E[Y] = b'(0). We will see below that this is generally true. {

Since our interest will primarily be in the modeling of counts, in the following
we will assume that Y takes integer values. Similar arguments go through in the
continuous case, when sums are replaced by integrals. Since f(.;0) defines a
probability distribution, we must have

Y rro=1 (1.2)
-
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for all values of 6. Let us differentiate both sides of (1.2) with respect to 6. The
left hand side can be differentiated termwise provided that the resulting series
converges. Since d /dOf (y,0) = (y — b'(0)) f(y, 6), we get the result,

E[Y] =) (1.3)

In other words, whenever E[Y] exists, it is given by b'(0). Furthermore, dif-
ferentiating (1.2) the second time yields d?/d6? f(y, 8) = —b"(0) f(y,0) + (y —
b (0))?f(y,0), so that

Var(Y) = b"(6). (1.4

Returning to Example 1.1, we note that in that case Var(Y) = 1/62. In Example
1.2, we get Var(Y) = b"(0) = exp(8)/(1 + exp(8))> = p(1 — p).

1.2. Use of Explanatory Variables

Suppose now that we have independent variables Y;, each with a density of type
(1.1), but with individually varying parameters 6;,7 = 1, ..., n. The key idea in
the formulation of generalized linear models is that a linear model is assumed
for some function of ;. In the simplest case, suppose there is a vector of ex-
planatory variables X; = (X;i, ..., Xjt)7 and a vector of unknown parameters
B =B, ..., BT, such that

6 = XIB. (1.5)

In practice, we usually take X;; = 1, i.e., the model has a constant term. This is
not required for the theory to be presented below, however.

McCullagh and Nelder (1989) discuss more complicated mappings between the
canonical parameter 6;, and the linear predictor X! 3. In fact, the usual formulation
is in terms of link functions between the mean b'(0) and the linear predictor. Our
formulation corresponds to the special case of a canonical link function that leads
to a linear mapping between the canonical parameter and the explanatory variables.
The generalized linear models were introduced by Nelder and Wedderburn (1972).

1.3. Maximum Likelihood Estimation
The likelihood function of the observed data is
L(B) = exp(U' B — B(B) + C(Y)), (1.6)
where Y = (Y}, ..., Y,)T, and
U=)¥X: BB =) bXIB: CY)=) ¥y (17)
i=1 i=1

i=1

Note that L(3) is the product of two factors, exp(U” 3 — B(3)) and exp(C(Y)).
Treating the explanatory variables X; as known constants, the former involves
the random data only through the summary statistic U, and the latter does not
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involve the parameter 3. The Neyman factorization theorem (e.g., Lehmann 1986,
54-55) implies that U is sufficient for 3. For inferential purposes, we only need
to pay attention to U. Furthermore, 3 has k components and the likelihood (1.6)
corresponds to a k-parameter exponential family. As in (1.3), one can show that
E[U;]1 = d/3B;B(B) or, in vector form, E[U] = 9/93B(3).

To estimate 3, we use maximum likelihood. Define ¢(3) = log L(3), and dif-
ferentiate with respect to 3. Setting the derivative to 0, we get that U = 9/93
B(3). Hence we have the elegant equation

U = E[U]. (1.8)

Defining the design matrixX = [Xy, ..., X,,]” we may write U= X"Y. Therefore,
(1.8) is equivalent to X7Y = XTE[Y].

As opposed to ordinary linear regression, (1.8) may be a nonlinear equation in
the parameters 3 that doesn’t admit an explicit, let alone linear, solution. Instead,
the solution has to be found using numerical methods, and it is typically a nonlinear
function of the observations. Instead of exact normality and unbiasedness that we
obtain in normal theory ordinary regression, we get asymptotic normality and
asymptotic unbiasedness (and consistency), when the number of observations 7 is
large.

1.4. Numerical Solution

Newton’s method is frequently used to solve (1.8). Define the Hessian, or the k x k
matrix of second partial derivatives of the loglikelihood function, as

H = 3%/08087 (). (1.9)

From (1.6) we see that —H = 32/39393” B(3), and as in (1.4), one can show
that —H = Cov(U). Let E;)[.] and H; refer to the expectation and covariance
as estimated based on the i iterated value of 3, or B, and note that Newton’s
method provides the recursion,

B+ = Ba) — H(?)I(U —EyplUDh, i=0,1,2,..., (1.10)

that must be started from some initial value 3 and repeated until convergence.

Although the numerical calculations are carried out using a computer, a closer
look of how Newton’s method works gives us some insight as to the nature of the
solution. Note that —H = Cov(X”Y) = X" WX, where W = Cov(Y), a diagonal
matrix with Var(Y;) as the i diagonal element. Equation (1.4) provides a general
formula for computing W, but, e.g., in the binomial and Poisson cases the variances
are known from introductory statistics courses. As noted by Finney (1952) already,
(1.10) can be written as

Birny = XTWipX) ' X"Wihgy, i=0,1,2,..., (1.11)
where

hi) = XBq) + Wi, (Y — Eq[Y]) (1.12)
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is the so-called working variate. The right hand side of (1.11) is a generalized
least squares (GLS) estimator when X is the design matrix, (1.12) is the vector of
observations, and W(;) is the diagonal matrix of weights. This shows that maximum
likelihood estimation for the generalized linear models (of the form described here)
can be carried out by a repeated use of weighted least squares (WLS) (e.g., Thisted
1988, 215ff.).

1.5. Inferences

When the MLE ﬁ has been obtained, its variance-covariance matrix can be esti-
mated as

Cov (B) = (XTWX)™!, (1.13)

where W is the MLE of W. To compute this in practice, we simply plug the MLE
of B into (1.5), and use the result in (1.4). A heuristic derivation for (1.13) can
be obtained from (1.11) and (1.12). The MLE is (subject to regularity conditions
that typically obtain) consistent, so the essential part of the randomness in (1.12)
comes from Y. Ignoring all other sources we get that the covariance matrix of h;) in
(1.12) is approximately W', because Cov(Y) = W. Therefore, the approximate
covariance of (1.11) should be (1.13). (See also Section 3 of Chapter 1 and the
discussion related to (7.11) of Chapter 3.)

Often, inferences concerning the parameters utilize Wald tests (Section 3 of
Chapter 1) in which we compare the estimates of the parameters (or their lin-
ear combinations) with their estimated standard errors, as calculated from (1.13).
When the number of observations is large enough and the number of parameters is
moderate, the asymptotic normality of (3 can be assumed. For example, let A 3 be
a linear combination of interest and consider the hypothesis Hy : A3 = AT 3.
Based on (1.13), the estimated standard error of A7 3 is AT(XTWX)~!\)!/2,
and the test statistic 7 = AT(3 — B¢)/ AT(XTWX)~'A)!/2 is distributed approx-
imately as N (0, 1) when H, is true. A 95% confidence interval for A” 3 is corre-
spondingly AT(8) £ 1.96 x AT(XTWX)~!A)!/2.

If f(B) is a (smooth) nonlinear transformation of the parameters, then a
confidence interval for it can be based on the delta method (Section 7.2.
of Chapter 3). In this case, the approximate 95% interval is f (B) £ 1.96 x
AT(XTWX) ' A)/2 where A = 9f/313.

Both score and likelihood ratio testing can be used as an alternative to Wald tests
in generalized linear models. In the case of likelihood ratio tests it has become
customary to carry out these calculations via a related measure called deviance.
Define a saturated model (or a full model) as a model that has as many parameters
as there are data points. It can fit the data perfectly. The deviance of a regression
model is defined by

200F — ), (1.14)

where £* is the loglikelihood of the saturated model and ¢ is the maximum log-
likelihood of the regression model being entertained. The deviance does not, in
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general, have a known distribution, although in special cases approximations are
available. However, the difference in deviance between two nested models yields
the usual likelihood ratio test statistic 2(@ 1| — fo) for testing the larger model, which
has loglikelihood £, against the smaller one with loglikelihood £y (cf., Section 3
of Chapter 1).

Specifically, consider a generalized linear model with canonical parameter 8 =
1, ...,60)T € O, an interval in R¥. Define two subspaces of the form ®; =
{0c ©lgi(0)="-=gy @) =0},i =0, 1, where mp > m,, and consider two
hypotheses, Hy : 0 € ©pand H; : 0 € ©,. In this case ®y C ©,, and we say that
Hy is nested in H,. Suppose the “restrictions” g; are subject to mild regularity
conditions (e.g., continuous first partial derivatives and no redundancy, so that one
cannot derive one restriction from the others; e.g., Rao 1973, 416ff.). In this case,
2(¢; — fy) has an asymptotic x? distribution with mq — m, degrees of freedom
when H, is true.

Among other things, these results provide a method for constructing confidence
intervals for the parameters, or their linear combinations. In the simplest case, take
mo=1,m; =0, and g1(8) = 6; — ¢, for some c. Denote the maximum of the
log-likelihood, conditionally on 6, = ¢, by fo(c). This is the so-called profile like-
lihood. Then, an approximate 95% confidence interval for 6. is {c]2(8, — by(c)) <
3.841}, for example. Both analytical considerations (e.g., Jennings 1986; Cox and
Hinkley 1974) and simulations suggest that the likelihood ratio approach may be
preferable to Wald testing in small samples. An illustration is given in Exercise 17.

1.6. Diagnostic Checks

In ordinary linear regression the predicted values are given by Y =
X(XTX)"'XTY, where X is as above. The matrix X(X” X)~'X”, which converts Y
toY (“Y hat”), is called the hat matrix. In ordinary least squares (OLS) regression,
the i™ diagonal element of the hat matrix gives the so-called leverage of the i ob-
servation (cf., Exercise 10). Note that leverage depends on the design matrix X but
not on Y. Analogously, in generalized linear models leverage is sometimes mea-
sured by the diagonal elements of the matrix W'/2X(X” WX)~' X" W!/2 based on
(1.11) (cf., Pregibon 1981). Some care is needed when interpreting the leverages,
since the variances in W typically depend on the mean (Hosmer and Lemeshow
2000, 153).

Example 1.3. Leverage in Simple Generalized Linear Model. Consider simple
linear regression, ¥; = 1 + B2 X; + ¢;, where g; ~ N(O, o?)are independent, i =
1,...,n. In this case k =2, X;; = 1, and we have written X;» = X;, for short.
One can show, by a direct calculation, that the i th diagonal element of the hat
matrix equals 1/n + (X; — X)?/Z;(X; — X)*. In other words, the further the
value of the explanatory variable is from the mean, the larger the leverage of the i
observation. Consider now a simple generalized linear model with 6; = B, + B, X;
and Var(Y;) = W;,i = 1,...,n. Define V=%;W;, X = X;W;X;/V,and § =
¥;W;(X; — X)?/ V. The details are somewhat tedious, but one can then show that
the leverage of the i™ observation is W;(1 + (X; — X)?/S)/ V. This is harder to
interpret, because X; can also affect W;. {



2. Binary Regression 123

The influence of data points refers to how much the estimates would change
if the data points were omitted. In ordinary regression the most widely used
measure of the influence of the i™ observation is the so-called Cook’s distance
(B — B (XTX)(B — B/ k62, where B is the MLE that has been computed
without the i™ observation (Weisberg 1985, 119). Defining Y, = X3 as the vec-
tor of predictions when observation i is not used in the estimation of 3, notice that
the numerator of Cook’s distance equals (? — SA((,-))T(SA( — SA((I-)). The rationale of
the particular weighting (denominator) used in the definition of Cook’s distance
derives from the sampling distribution of 3 (cf., Exercise 12). An analogous mea-
sure in generalized linear models is (,@ — B(i))T(XTWX)(B — B(i)) (cf., Pregibon
1981).

If the data are obtained with random sampling, one can compare estimated means
and variances from the model with estimates derived using sampling weights (cf.,
Chapter 3). Then, (1.8) would be replaced by a weighted version that incorporates
the inverses of selection probabilities, as in (7.9) of Chapter 3. Similarly H of
(1.9) would be replaced by a version including the weights (cf., Chapter 3, Section
7.3; Hosmer and Lemeshow 2000, 211-221). This is sometimes called a “pseudo
maximum likelihood” approach.

2. Binary Regression

2.1. Interpretation of Parameters and Goodness of Fit

Consider a binomial random variable Y ~ Bin(n, p). As in Example 1.2, we write
0 = log(p/(1 — p)), or p =exp(0)/(1 + exp(#)). Thus, the canonical parame-
ter 6 equals the log-odds of the individual trials. Often, the notation logit(p) =
log(p/(1 — p)) is used. Therefore, these models are also referred to as logit mod-
els. Assuming the model (1.5) for 6 leads to logistic regression. A detailed intro-
duction to these models is given in Hosmer and Lemeshow (2000), for example.
Here we will first discuss the interpretation of the parameters of the models using
a simple example relating to the probability of death. We then discuss statistical
inference for these models. In Section 2.2 we discuss a series of examples.
Suppose g(x, t)is the probability that an individual in exact age x dies within one
year, if the mortality level of calendar year ¢ applies. Consider two logistic models,

q(x, 1) = exp(ap + a1x + r)/(1 + exp(ap + a1 x + 1)), 2.1
and
q(x, 1) = exp(ery + B1)/(1 4 exp(ery + B1)). (2.2
It is easy to see that under both models

gx,t+1) / q(x, t)
l—gq,t+ 1)/ 1 —q(x,

or the odds-ratio (OR) of death during year ¢ + 1 versus year ¢ equals exp(f),
irrespective of age x. Equivalently, 8 can be interpreted as a log-odds-ratio. A

= exp(B), (2.3)
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similar interpretation can be given to ¢} in (2.1), but under (2.2) logitg(x, r + 1) —
logit g(x, t) = ayy1 — @, . Therefore, model (2.1) is a special case of the analysis
of covariance model (2.2).

Under (2.1) the odds-ratio for those in age x + 1 at¢ + 1 divided by that for those
in age x at ¢ is exp(a; + B) = exp(a;) exp(B). Under (2.2) the ratio is exp(oy4+1 —
a, ) exp(B). Therefore, time and age affect the odds-ratio multiplicatively.

When the probability of death is small, the left hand side of (2.3) is close to
the relative risk g(x, t + 1)/q(x, t), and it is customary to say that the parameters
of logistic regression models measure relative risk. However, if the probability of
death is large, then this interpretation is not valid, so it is the safest to refer to
odds-ratios at all times. Of course, once a model has been fitted, we can estimate
relative risk g(x, t + 1)/q(x, t) (or, say, risk differences g(x, r + 1) — g(x, t)) by
simply plugging in the estimates of the model parameters. As discussed in 1.5, a
standard error for the measure can be based on the delta method.

One can test model (2.2) against (2.1) using likelihood ratio tests as discussed in
Section 1.5. If both models are applied to ages x = 1, ..., m, then the test statistic
(1.14) will have an approximate x? distribution with m — 2 degrees of freedom,
when (2.1) holds.

Measuring the goodness of fit is possibly the most important difference between
binary regression and ordinary (normal distribution theory based) regression.! In
the latter a single residual may give important clues as to the possible lack of fit. In
the former, especially in the Bernoulli case (n = 1), we have to group or smooth
the data in some way to see if the group means differ locally more from the pre-
dicted than one would expect under the correct model (e.g., Landwehr, Pregibon,
and Shoemaker 1984; Fowlkes 1987). Hosmer and Lemeshow (2000, 140-145)
have derived approximate critical values for one such test, in which the groups are
formed based on the deciles (or other percentiles) of the predicted probability of
success. Their simulations suggest that if J groups are used one can get approx-
imate critical values from a x? distribution with J — 2 degrees of freedom. Of
course, if the data are initially binomial, Y - Bin(n, p) with np moderately large,
then one can study the lack of fit for each binomial separately using the standard
normal approximation to the Pearson residuals (Y — np)/(np(1 — p))'/2.

2.2. Examples of Logistic Regression

Logistic regression can be used in a multitude of ways in demographic contexts. We
will here introduce a historical data set, discuss confounding, and analyze attitudes.

Example 2.1. Sex Ratios of the Habsburgs. We consider a data set collected from
Encyclopeedia Britannica concerning the Habsburgs of Austria.> A section of

! More subtle differences exist. Gail (1986) shows that omitting a covariance that has the
same distribution among the exposed and unexposed biases logistic regression, but not
ordinary regression, for example.

2 The authors would like to thank Prof. Weyss of L1.A.S.A., who had tables of the Habsburg
family that were in some respects more accurate and complete than those in the Britannica.
Visitors to Vienna may want to visit Kaisergruft in the basement of Kapuzziner Kirche that
houses the graves of many in our data set.
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the family tree begins with Guntram the Rich who lived around 950. Only male
descendants were recorded in the earliest times, so our data set starts from Rudolf
I (1218-1291) who was a German king. He forms our generation 0, his children
are the generation 1 etc. We follow the throne to generation 20 consisting of
Charles I (1887-1922) and Maximilian Eugene (1895-1952). Only the part of the
family tree is included through which the throne went. For example, all of Maria
Theresa’s (1717-1780) sixteen children are included, but out of their descendants
only those of Leopold IT (1747-1792) are included, since Leopold’s son Francis I
(1768-1835) inherited the throne. We have already used this data set for Figure 3
of Chapter 4, and we will analyze several aspects of the data later. However, here
we would like to inspect the reliability of the data using regression techniques.

Maria Theresa was the only woman to hold the throne and pass it on to her
children. All other were men. We therefore expect that both the actual and reported
sex-ratio at birth would be tilted in favor of the males among the 20 families. This
is not the case, however. There are a total of 175 individuals in the data set. Sex
is given for all but 10 individuals who have died young. Among the remaining
165 persons, there were 79 males. If all births can be considered to be i.i.d. with
respect to sex, then we have a model Y ~ Bin(n, p) with n = 165 and Y = 79.
The MLE of the probability of a male is p =79/165 = 0.479. The common
method of calculating a 95% confidence interval for the proportion of males is
p £ 1.96(p(1 — p)/n)'/? = 0.479 £ 0.076. Or, we get the interval [0.403, 0.555]
that easily includes the value 105/205 = 0.512 that we might expect. Overall, we
see no indication of the omission of females from the data set.

As asecond step we might wonder whether the fraction of the males has remained
constant over time. We consider the model Y; ~ Ber(p;), logit(p;) = Bo + B1 X,
where ¥; =1 if i is a male and Y; = 0 otherwise, and X; is the birth year of
individual i = 1, ..., 165. The MLE is ,31 = —0.001 with an estimated standard
error of 0.00085. This finding is consonant with the notion that the fraction of
females has increased over the years due to more accurate reporting. However, the
P-value is only 0.244, so the evidence is weak at best.

Example 2.2. Child Mortality Among the Habsburgs. As a second check of the
quality of the Habsburgs data we consider deaths in early age among the children
who did not pass on the crown. We consider the model ¥; ~ Bin(n;, p;), logit(p;) =
Bo + B1X;, where n; is the number of children in generation i excluding the one
whose descendants formed generation i + 1, ¥; is the number of them that died
in age < 2, and X; is the birth year of the individual founding the generation
i =1,...,20. The P-value under the hypothesis of zero slope was 0.936, which
does not suggest any systematic change in the fraction of those who have died
young. Therefore, child mortality appears not to have improved in a gradual manner
(although we certainly know from other sources that it has improved in the 20"
century), or if it has, then infant deaths may have been omitted from the data set
in earlier times. ¢

Example 2.3. Testing Effects of Exposure on Illness. Consider an epidemiologic
study of the effect of exposure on the risk of illness. Suppose the following
(artificial) data have been obtained during a follow-up period:
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I Not Total

Exposed 36 64 100
Non-Exposed 24 76 100
Total 60 140 200

Let us assume binomial models for the data: Y; is the number of illnesses among
the exposed with Y} ~ Bin(100, py), Y, is the number of illnesses among the non-
exposed with Yy ~ Bin(100, pg), and Y; and Y are independent. Relative risk
can be measured directly as RR = (36/100)/(24/100) = 1.5, or via the odds ratio
OR = (36 x 76)/(64 x 24) = 1.781. The data can be analyzed in different ways.
For example, we may condition on the number of illnesses (= 60), non-illnesses
(= 140), and the total number of exposed (= 100). Under the null hypothesis
that p; = po the number of those who are ill among the exposed has a hyperge-
ometric distribution and we can calculate the probability of obtaining 36 or more
such cases as P(36;60, 140, 100) + - - - 4+ P(60; 60, 140, 100) = 0.0446, where
P(x;a, B, y)isasdefined in (6.1) of Chapter 2. This probability may be interpreted
as a P-value for the one-sided alternative hypothesis that illness is more likely
among the exposed than the non-exposed, or p; > po. This is Fisher’s exact test.

There is no unique method for calculating a P-value corresponding to the two-
sided alternative hypothesis p; # po. Often it is calculated simply by doubling
(the smaller of the two tail probabilities), in this case 2(0.0446) = 0.0892.3 The
results would indicate that there may well be an association. However, we may
also pursue the analysis based on the assumption of two binomial models. Defining
Bo = log(po/(1 — po)) and B; = log([p1/(1 — p1)1/[po/(1 — po)l), we can write
Po = exp(Bo)/(1 + exp(Bo)) and p; = exp(By + B1)/(1 + exp(o + B1)). Defin-
ing X; =1 for the exposed group and Xy = O for the non-exposed group, we
can write p; = exp(Bo + B1X;)/(1 + exp(Bo + B1X;)). Now we have a logistic
regression model that can be fitted with any number of statistical packages, but
it is simple enough that we can solve it by hand. The MLE of pg is 0.24 and the
MLE of p; is 0.36, and so the MLEs are f; = log(0.24/0.76) = —1.1528 and
B1 =10g([0.36/0.64]/[0.24/0.76]) = 0.5773. Taking Y = (Y;, Y,)” the matrix
(1.13) is evaluated as

Cov Bo _((11Y)[23.04 O 11 _1_ 0.05482 —0.05482
B ) \\10 0 1824 /\10 —\ —0.05482  0.098227 ) °

3 These values are based on the exact hypergeometric distribution. They are easily obtained
from the program StatXact, for example. If a x} distribution is used as an approximation,
we get the one-sided P-value of 0.0324 and the two-sided P-value of 0.0649. The StatXact
manual has additional discussion on the various definitions of the two-sided P-values. SAS
sums the probabilities of the possible tables whose probabilities are not greater than the
probability of the observed table (Cox and Hinkley 1974, 106), and Haberman (1978, 107)
sums the probabilities of the possible tables whose cell value deviates from its expectation
by as much or more than the observed table, which yields the exact significance level for
the Pearson chi-square test.
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The estimated standard error obtained from the diagonal of the matrix (1.13)
is 0.3134 = 0.098227'/2, so a Wald test statistic for Hy: B; = O gets the value
0.5773/0.3134 = 1.842. Referring this to the standard normal distribution leads
to the same P-value as the X12 approximation to Fisher’s exact test. {

Logistic regression is well suited to the study of joint effects of several vari-
ables. In particular, it can be used to assess confounding by factors that have been
measured in the study (cf., Section 5.4 of Chapter 2). Let us continue in the setting
of the previous example.

Example 2.4. Detecting Confounding. Suppose there was a dichotomous third

variable Z such that the 2 x 2 table of Example 2.3 is actually a sum of two 2 x 2
tables as follows:

Overall Z=1 Z=0
11 Not Total Il Not Total Il Not Total
Exposed 36 64 100 32 48 80 4 16 20
Non-Exposed 24 76 100 8 12 20 16 64 80
Total 60 140 200 40 60 100 20 80 100

Whereas the previous analysis seemed to suggest that exposure increased the risk
of illness, we now see the relative risk of illness is = 1.0 for those with Z = 1 and
for those with Z = 0! Clearly, exposure does not have any effect, but Z may. In this
(artificially constructed) example it is easy to detect the source of confounding. In
practice, there can be many potential confounders and they may be measured in
continuous scales. Then a tabular analysis becomes very cumbersome. In contrast,
using logistic regression it is easy to study complex patterns of confounding by
simply adding and subtracting explanatory variables from regression. For the case
at hand we might define X;; =1 for j =1 and X;; =0 for j =0;Z;; =1 for
i = 1and Z;; =0 for i = 0; and then assume four independent binomial models
the number of those ill, Y;; ~ Bin(n;;, p;;), where logit(p;;) = Bo + Bi1 Xij + B2 Z;;
and Nop = N1 = 80, noy = nip = 20. <>

Logistic regression is also suitable for the study of attitudes. The following ex-
ample shows that sometimes attitudes may depend on birth cohort. Some practical
aspects of model choice are also illustrated.

Example 2.5. Choosing the Sword. The University of Joensuu has arranged Doc-
toral Promotions once or twice a decade. This is a festive event in which a Doctor’s
hat and a sword are given to those who have completed their doctorate since the pre-
vious Promotion. Participation is voluntary and some do not. One reason is that the
promotees must pay themselves for the hat, sword, fancy dinner, formal clothing
etc. In 1999, a controversy arose. Some promotees wanted to omit the sword from
the ceremony, because they felt it is a militaristic symbol, and expensive to the bar-
gain. Others said that this would undermine tradition. A compromise was reached,
and the choice was left to the promotees. A total of n = 104 promotees participated
with 70 taking the sword. Can we explain why some did but others did not?
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We know, for each promoteei = 1, ..., 104, their SEX (= 1, if i is female, oth-
erwise 0), AGE (in years), and SCHOOL (Education, Forestry, Humanities, Nat-
ural Sciences, Social Sciences), and if they took a sword (¥; = 1) or not (¥; = 0).
Define P(Y; = 1) = p;, as before. Beforehand we thought that possibly men are
more likely to take the sword than women, and so might those in natural sciences
be more likely than those in education, humanities, or social sciences.

Treating SCHOOL as a factor (i.e., dummy variables were created for four of the
five categories), and including it as an explanatory variable together with AGE and
SEX, showed that the probability of taking the sword did not depend on SCHOOL
at all: the smallest P-value of the four indicators was 0.48. Omitting SCHOOL
we fitted the equation logit(p;) = 4.57 — 0.70 x SEX; — 0.086 x AGE;,. The es-
timated standard error of the coefficient of SEX was 0.45 corresponding to a
P-value of 0.12 and the estimated standard error of the coefficient of AGE was
0.029 corresponding to a P-value of 0.03. Hence, there was some evidence that
the women were less likely to take the sword, but there was clear evidence that
the older you were the less likely you were to take the sword. The youngest pro-
motee was 26 years old, and the oldest 64 years old, a difference of 38 years, so
the odds-ratio comparing the youngest and oldest (holding SEX constant) would
be exp(0.086 x 38) = 26.3. The 95% confidence interval for that odds ratio is
exp((0.086 = 1.96 x 0.029) x 38) = (3.0, 228), which does not include 0. Hence
the age effect was not only statistically significant (i.e., too large to plausibly be
due to random error), but implied a large difference in preferences.

As older people would be expected to be more respectful of tradition than
younger ones, the finding appeared puzzling. To examine the relationship between
age and the probability of taking the sword more closely, a factor variable AGE2
was defined corresponding to 10-year age-groups 26-34, ..., 55-64. Using the
youngest age as a comparison or reference group, the dummy variables of the
three older ages had negative coefficients, but only that of age-group 45-54 was
significant*. Defining just a single dummy A for this age-group and entering it to
the equation with SEX, produced the equation logit(p;) = 1.35 — 0.82 x SEX; —
0.97 x A;. The P-values for the two explanatory models are now 0.044 and 0.049
respectively. However, the model does fit the data slightly less well than the original
model using SEX and AGE.

‘We conclude that women have been less likely than men to choose the sword. The
older promotees have similarly been less likely to take the sword than the younger
ones. In addition, there is some evidence that especially those in ages 45-54 at the
time of the Promotion were reluctant to take the sword. We note that they were
born during 1945-1954 and so most of them belong to the baby-boom cohorts in
Finland. They carried out their university studies 20-30 years later, roughly during
the 1970’s, when student radicalism was fashionable. We speculate that this may
have influenced their preferences. ¢

4 We say that a statistic is “significant” if it is significantly different than zero at some
significance level, which usually is 0.05 unless specifically stated.
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2.3. Applicability in Case-Control Studies

Logistic regression can be applied in a cohort study to explain, in terms of back-
ground characteristics, why an event of interest occurs during follow-up to some
but not to others. It is less obvious that it could be applied in a case-control setting,
because of the outcome selective method of data collection. However, we show
now that the method is valid under certain conditions.

Consider an individual with vector of characteristics X. Define Y = 1 if the
individual is ill, and Y = O otherwise. Define S = 1, if the individual is selected
into the study, and S = 0 otherwise. Assume that the logistic model P(Y = 1) =
exp(a + X7 B)/(1 + exp(a + X7 3)) holds, where we have displayed the constant
term separately. The probability that an individual is selected into the study depends
on Y, and we denote the selection probabilitiesby r; = P(S = 1|Y = j), j =0, 1.
We would like to determine the probability of being ill, given that the individual
is selected into the study. Following Breslow and Day (1980, 203), we can use
Bayes’ formula and write

P(S=1|Y = DPY =1)

PY=1S=1)= .
PS=1Y=DPY =)+ PS=1Y =0)P(Y =0)
2.4)
Substituting in the logistic probabilities, and simplifying, yields the result
* XT
P(Y = 1|5 = 1) = —XP@ X P) 2.5)

1 + exp(a* + XTB3)’

where o* = o + log(t;/70). Thus, the same logistic model is valid for the study
of relative risk in both cohort and case-control studies, but unless t;/79 = 1 the
constant term from a case-control study o* cannot be interpreted as representing
the risk of those with X = 0.

Suppose now that t; = 7;(X), but in such a way that 7;(X) = c7o(X). We see
from (2.5) that the logistic model is still valid, as long as both selection probabilities
depend in a similar way on X.

However, if the relative risk of selection depends on X and is of the form
11(X)/70(X) = exp(a’ + XT~), we have

exp(e” + X"(B + 7))

P =1IS=1= 1 +exp@” + XT(B+ 7))’

(2.6)

where o = « + o’. We note that the coefficients become biased. This conclusion
is of practical importance in studies such as the Doll and Hill study (Example 5.2
of Chapter 2). Suppose all available cases are taken into the study (7;(X) = 1),
and controls are selected from among patients who have come to a hospital for

5 If prior information about baseline risk (when X = 0) is available, absolute risks can
still be estimated (Neutra and Drolette 1978; King and Zeng 2002 review several of the
alternative formulations).
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reasons other than the disease under study. If similar exposures increase the risk
of both types of disease, then the bias represented by y in (2.6) is likely to be
present.

There are several variants of the cohort and case-control designs in which the
use of logistic regression may be valid. Keindnen (2002) investigated factors in-
fluencing the recruitment of workers into information technology (IT) branch in
Finland, during 1999. The data source was the employee database of Statistics
Finland (cf., Statistics Finland 2002), which has detailed data on employment his-
tories of everyone employed in Finland. Three random samples were first selected
from among those who were either outside the labor force, in the labor force but
unemployed, and in the labor force but outside the IT sector, in the beginning of the
year. Since recruitment into the IT sector is a rare event, massive samples would
have been necessary to get reliable estimates using this approach alone. However,
a fourth sample was selected from among those who had moved into the IT sector
during 1999.

The use of logistic regression in this setting can be justified much the same way as
above. For example, restrict attention to those who are unemployed in the beginning
of the year. Consider an individual with characteristics X in the beginning of the
year. Let Y = 1 if the individual is employed in IT sector at the end of the year and
let Y = 0 otherwise. Define S = 1 if the individual was selected into the study and
S = 0 otherwise. Assume that P(Y = 1) = exp(a + X7 3)/(1 + exp(a + X7 3)).
Let 7o be the probability of being selected into the study in the beginning (i.e.,
the first three samples). Let 1, be the probability of selecting a case into the
study, provided that he or she was not already selected in the beginning, and de-
note the marginal selection probability P(S = 1) by 71 = 19 + (1 — 19)12. It fol-
lows that P(S=1,Y =0) = 10/(1 +exp(a + X" 3)), and P(S=1,Y =1) =
tiexp(a + X7 B)/(1 + exp(a + X7 3)). With these conventions the conditional
probability that the individual becomes employed in the IT sector, given that the in-
dividual selected into the study, is given exactly by (2.5). As this was aregister based
study, the selections into the samples could be made independently of X. As noted
in Chapter 2, studies of this type are sometimes called case-cohort or case-base
studies.

Both case-control and case-cohort studies may include matching as part of data
collection. We will indicate in Example 7.5 how this changes the likelihood.

3. Poisson Regression

3.1. Interpretation of Parameters

Suppose Y ~ Po()). By taking 6 = log(A), b(0) = A = exp(@), and c(y) =
—log(y!), we see that the Poisson distribution belongs to the 1-parameter exponen-
tial family (1.1). In this case the canonical parameter is the log of the expectation.
The Poisson regression model is loglinear, because the expectation is related to the
linear predictor (1.5) in the log-scale. Let K ; be the number of person years lived
by those in age x during year ¢ in a population, and let Y, , be the corresponding
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number of deaths. Suppose A, K, ; is the expected number of deaths®, so Ay 18
the hazard (cf., Chapter 4). Then, a model corresponding to (2.1) would be

Ayxr = explag + o1 x + Br). 3.1

It is easy to see that A, ;11 /Ay, = exp(B) irrespective of x. Using hazards as risk
measures, we note that the parameters of the Poisson regression model have an
exact interpretation in terms of the log of relative risk. The same way logistic re-
gression assumed multiplicativity for the odds-ratios, Poisson regression assumes
multiplicativity for the relative risk. Using terminology introduced in Chapter 4,
we note that (3.1) is actually a proportional hazards model.

Once the parameters have been estimated, other measures that can be estimated
including hazard differences (e.g., A, ;+1 — Ay,) and expected values A, K ;.
Confidence intervals for them can be derived using the delta method (Section 1.5).

If (3.1) holds, the Poisson expectation is of the form

Axt Ko = exp(ao + ayx + Bt +log(Ky,)). (3.2

We see that the person years can be accommodated by incorporating an additional
regression term log(K, ,) with a fixed coefficient = 1 to the regression model.
Many computer programs such as GLIM, EGRET, R, S+, SAS and Stata allow
such offset regressors.

Inference concerning Poisson regression can be carried out the same way as for
logistic regression. The goodness of fit of the Poisson models is easier to study,
however, since the deviance is known to have an asymptotic x? distribution when
the expectations of the Poisson counts are sufficiently large (cf., Conover 1980,
191). In addition, several more refined tools for diagnostic checking have been
developed (e.g., Bishop et al. 1975, 136—137; Haberman 1978, 77-79). In Section
4 we will also note that count data often display more variability than one would
expect under a strict Poisson assumption. Alternative models are provided for this
situation.

3.2. Examples of Poisson Regression

Poisson regression is a standard tool of demographic analysis. Here we give a few
simple illustrations, and others will appear later in several places.

Example 3.1. Poisson Models for Births. Estimates of age-specific fertility in
Example 4.1 of Chapter 4 are based on a saturated model, where the number of
births inage x =, ..., B duringyeart =1,...,T, is Y; ~ Po(A,;K,;). More
parsimoniously, consider models of the form log(x,;) = 8, + n; + y(x — M)t +
¢(x — M)*t, where M is the mean age at childbearing at t = 0 (for the various

¢ Although K, ; depends on Y., this dependence can be ignored at least as long as the
expected count is small relative to the person years. In a data set on old-age mortality (Alho
and Nyblom 1997) alternative estimates of relative risk could be calculated using a binomial
model. In this case, the estimates were essentially the same as those obtained from a Poisson
model even though Y,, represented a large proportion of K.
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definitions, see Example 4.4 of Chapter 4). For identifiability, assume that ¥,6, =
0.If y = ¢ = 0, we have a main effects ( or a “2-way analysis of variance” model)
in which the §,’s determine the shape of the age-specific fertility schedule and the
n,’s determine the level of total fertility. If ¢ = 0, then (as discussed in Exercise
34 of Chapter 4) the model incorporates a systematic change in the mean age at
childbearing: for y > 0 the mean age increases and for y < 0 it decreases over
time. Finally, if we also have ¢ # 0, it is possible to capture a systematic change
in the spread of fertility around the mean age: for { > 0 the spread increases over
time, for ¢ < 0 it decreases over time. The role of M is to center the x values, so
a better interpretation for the parameters y and ¢ is obtained. {

Example 3.2. Mortality of Young Widows. A notable feature in Figure 1 of Chap-
ter 4 is the high mortality of widows in young ages. Is the effect significant? Con-
sider ages 26—34. The number of deaths among married were Y, = 35, and the num-
ber of person years were Ky = 145, 651. For the widowed the deaths were Y| = 3,
and person years were K; = 663. Assume that ¥; ~ Po(A;K;),i =0, 1, are in-
dependent, and consider the model log(};) = u + «;, with &g = 0. We obtain the
estimate @, = 2.9355, so an estimate of relative risk is exp(2.9355) = 18.83 with a
95% confidence interval [5.79, 61.2]. Thus, the excess risk appears to be real. The
finding agrees with those of Hu and Goldman (1990, 241) from several countries.
The authors suggest that the circumstances leading to the spouse’s death may also
increase the hazard of the remaining partner. {

Example 3.3. Age-Period-Cohort Problem. Model (3.1) treats both age and period
effects linearly (in the log-scale). In many demographic applications it is also of
interest to consider cohort effects. For example, harsh conditions in childhood may
adversely effect later survival. Note, however, that if a term B3(¢ — x) is added to
the linear predictor, then the model is not identifiable: to any value for 83 there
corresponds a model containing age and period effects only that provides the same
fit. The root cause for the problem is that the three effects are perfectly collinear
in this case. This is the famous age-period-cohort problem. If there is a basis for
deciding which two of the effects are the most important, then the effect of the third
can be determined conditionally on the estimates of the first two. For a review, see
Clayton and Schiffers (1987a,b), and for an example of a potential resolution in a
non-parametric setting, see Ogata et al. (2000). ¢

Example 3.4. Number of the Habsburg Offspring. Continuing in the setting of

Example 2.2, consider the sizes of the generations i = 1, ..., 20. Let Y; be the
number of children in generation i minus one (i.e., excluding the one who passed
on the throne). A possible model assumes that ¥; ~ Po(};),i =1, ..., 20 are in-

dependent. To investigate time trends, let us assume the model log(A;) = o + BX;,
where X; is the birth year of the person generating the generation i. We obtain the
MLE B = 0.000114 and an estimated standard error of 0.000415. We conclude that
there appears to be no overall trend in family size over the observation period. ¢

Example 3.5. Regression Models for Rates of Small Areas. Summary measures
such as life expectancy or total fertility rate are sometimes desired for small areas.
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In Finland, for example the median size of a municipality is 5,000, and the annual
number of births and deaths is of the order of 50. In the U.S., there are more than
40,000 places, municipalities, and minor civil divisions, and the median size is
around 1,000. Even though data by municipality are available, the numbers are
so small that Poisson variation makes the results unreliable. Poisson regression
provides a way to stabilize the estimates by “borrowing strength” in estimation
from neighboring areas. Suppose Y., ~ Po(A,, Ky,,) is the number of events in
age x in municipality m. Fit a main effects model log(A.,,) = o, + B, to data from
several municipalities. This yields the MLEs )A\xm. Suppose the counts are births.
We can then estimate the age-specific fertility rates for each municipality m by
Am’s. Similarly, if the counts are deaths, we can estimate age-specific mortality
rates by A,,’s. In an analysis of a few small municipalities we may want to use
external baseline rates in estimation. If the «,’s are known, this can be effected
by offsetting o, + log(K,,,), instead of just log(K,,), in estimation. ¢

3.3. Standardization

Poisson regression has a close connection to standardization, a topic that is central
to classical demography (e.g., Breslow and Day 1987, 128; Hoem 1987). For
concreteness, we consider mortality, but the concepts and results of this section
apply generally. Denote the number of deaths in age x at time ¢ by Y,, and the
corresponding person years of exposureby K, forx =0, ..., wandt =1,...,T.
A dot (.) in place of a subscript will denote summation over the subscript,

T 1)
Y,. = X; Yo, Y. = z(; Y, Y.=
1= x= t

T w T
K, = Z K., K,= Z K., K.= Z K,. (3.3)
=1 x=0 =1

Often we are interested in comparing Y, across years, but we want to eliminate the
effect of age distributions (K,,) varying with 7. Denote the age-specific mortality
rates by m,; = Y,;/K,;, and note that the crude mortality rate of year ¢ can be
written as a weighted average of the age-specific rates,

Y, ® (K.
— = xt- 34
K. Z(K.,)'"’ S
The fact that the weights depend on ¢ is problematic — do differences in crude rates
reflect different risks or different weights?
Direct standardization solves the problem by the use of standard weights w, >

0 with wo + -- -+ w, = 1. The directly standardized mortality rate is defined
simply as

T
Y.l
=1

3 e (3.5)
x=0
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Since (3.5) depends on the chosen weights, standardized rates can generally be used
for comparative purposes only. A common choiceisw, = K,./K... For the purpose
of standardizing time series, external standard weights are used (cf., Anderson and
Rosenberg 1998).

Calculation of the directly standardized rate requires knowledge of the indi-
vidual m,,’s. If only the crude rate is known for time ¢, an alternative, indirect
standardization may be used. Taking the reference group to be the aggregate over
t, with w, = K,./K.. and m, = Y,./K,., notice that the ratio of the direct stan-
dardized rate to the crude rate in the reference group is X, w.m,,/ X, wm,. If we
replace the standard weights w, by K,,/K.,, that ratio transforms to the standard-
ized mortality ratio (SMR),

Y../K. Y.
_ /K.t - t ' (3.6)
Z(th/K~t)mx K m,
x=0 x=0

Note that (3.6) can be interpreted as an observed/expected ratio. If we multiply the
SMR by the crude rate for the reference group, we obtain the indirectly standardized
mortality rate,

v \n .
<Zi)=0 thmx> K. ' ( .

For additional insight into indirect standardization, suppose that Y, are mutually
independent and distributed as Po(A,; K,;), and consider a main-effects analysis
of variance model as,

hot = expla + Bo). (3.8)

If we write out the likelihood and apply the factorization criterion, we see that the
vectorU= (Yy., ..., Y., Y.1, ..., Y.7)T is sufficient for (o, . . . , 0w, B, - - ., BT)T .
Recalling (1.8), we note that the MLEs are the solution to U = E[U]. Equating
first Y,. = E[Y,.] and setting ; = 0 leads to the estimates

exp(@x) = Yy./K,.. (3.9)

In other words, the initial estimates for the «,’s are the logs of the age-specific
rates when the data have been aggregated across years. If we insert these estimates
into the equations Y., = E[Y./], we get

exp(B) =Y., / > exp(@)K, (3.10)
x=0

which is equal to the standardized mortality ratio (3.6). Multiplying exp(5;) by the
crude mortality rate across age and years, we obtain the indirectly standardized
mortality rate (3.7). Upon further iteration the estimates may change, but (3.10)
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shows that the “main effects” model (3.8) can be viewed as a way of carrying out
indirect standardization (Hoem 1987).7

The variance of the directly standardized rate (3.5) is usually calculated under the
assumption that Y,, ~ Po(A,, K,,) are independent. Hence, the estimated variance
(3.5)is

> wivy /K. (3.11)
x=0

Statistical inference can then be based on a normal approximation to the distribution
of (3.5).

Example 3.6. Relative Risk of Mortality for Unemployed. To illustrate standard-
ization, let us consider the relative risk of mortality among the unemployed as
compared to the employed in Finland, in 1998. Whereas previously ¢ had referred
to year, now we let t = 1, 2 distinguish employed from unemployed. The deaths
D,,, the person years in thousands K ,, and the mortality rates (per thousand) m,,
forx =0,1,...,5, were the following.

Employed (r = 1) Unemployed (t = 2)

SDPOP  SDRATE
Age (X) Y Ky Myl Yo 1 €%) my2 KX/K my

(0) 15-19 11 16.7  0.659 24 103 233 0.021 1.30
(1)20-29 8 1777 0501 113 574 1.97 0.185 0.86
(2)30-39 259 296.1 0.874 246 55.0 447 0.277 1.44
(3)40-49 565 313.8 1.80 526  59.1 890 0.294 2.93
(4)50-59 759 1992 3.81 555 545 10.18 0.200 5.18
(5)60-69 176 243  7.24 51 429 11.86 0.023 7.94

Total 1859 1027.8 1.81 1515 240.6 6.3 1.000

The crude mortality rates are Y.;/K., = 1859/1028 = 1.81 and Y,/K., =
1515/240.6 = 6.3, so the relative risk appears to be 6.3/1.81 = 3.48, indicat-
ing that mortality among the unemployed is three to four times as high as among
those employed. Can this be due to a difference in age-distribution?

The column SDPOP contains the age-distribution of the whole population,
K../K... Multiplying the age-specific rates m,, by the population shares SDPOP
yields the directly standardized rates 6.57 for the unemployed and 1.80 for the em-
ployed. These yield a relative risk of 6.58/1.81 = 3.64. An indirectly standardized
relative risk estimate can be obtained by first calculating the standardized mortal-
ity ratios for both groups. As an observed/expected ratio the standardized mortal-
ity ratio (3.6) equals 1859/2743.0 = 0.678 for the employed and 1515/631.0 =
2.400 for the unemployed. Hence, the relative standardized mortality ratio is

7 The functional iteration we have used to solve the likelihood equations is not identical to
Newton’s method. The latter does not yield the same insight provided by (3.9) and (3.10).
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2.400/0.678 = 3.54. Fitting the main effects model (3.6) log(A,,) = «, + B,, with
B1 = 0 for identifiability, yields the estimate 8, = 1.2795. The standard error of
the estimate is 0.0348. Therefore, the relative risk is exp(1.2794) = 3.59 with a
95% confidence interval of [3.36, 3.85]. In this case the estimates of relative risk
are nearly the same if one uses crude rates, directly standardized rates, indirectly
standardized rates, or Poisson regression estimates. An advantage of the latter is
the easy access to confidence intervals, although they can be calculated for the
other estimates fairly easily.

However, the real power of the regression approach comes from the facility
of elaboration. In this case, many of the age-effects were within sampling error
of the mean age effect. By entering age as a continuous explanatory variable,
log(tyx;) = i + ax + B;, one obtains a smaller model with a significant age ef-
fect. The deviance of model (3.8) is 99.47 and the deviance of the model with
continuous ages is 125.14. Comparing the difference 125.14 —99.47 = 25.67
to X2 distribution with 4 degrees of freedom, we find a P-value < 0.0001, so
the smaller model is not adequate. However, there appears to be interaction be-
tween age and employment status. Extending the main effects model to a form
log(Ayr) = oy + B + Y AGE2(x), where AGE2(x) = x for the unemployed and
AGE2(x) = 0 for the employed, we get the deviance 42.14. This is a major im-
provement on the main effects model, because comparing 99.47 — 42.14 = 57.33
to x 2 distribution with 1 degree of freedom, we find a P-value much below 0.0001.
In this model, the we have ,32 = 2.1222, and the coefficient of the interaction term
is y = —0.2608. All age effects, except that of age group 1 are significantly dif-
ferent from the age-group 0. Thus, our estimate of the relative risk of the unem-
ployed as compared to employed, in age group x, is exp(2.1222 — 0.2608x) for
x=0,1,...,5, which ranges from 8.3 to 2.3. Due to the interaction, the main
effects model that underlies indirect standardization is not valid, and even direct
standardization is somewhat crude. The more refined analysis reveals that for the
young unemployment is a greater risk factor than suggested by standardization
techniques, whereas for the old the relative risk is less than suggested by the stan-
dardization techniques. A possible explanation for the change in relative risk can
be given in terms of the notion of multiple decrements: those in ill health are
selected out of the labor force before death. ¢

3.4. Loglinear Models for Capture-Recapture Data

There is a large literature on the application of loglinear models to contingency
tables (e.g., Bishop, Fienberg and Holland 1975, Haberman 1978,1979). These
models are of interest to demographers, since demographic data are often collected
as classified by variables such as age, sex, race, or region. Here, we will briefly
show how they can be used to analyze capture-recapture data.

By taking K, = 1 in the model of Section 3.3 and generalizing from deaths
to counts more generally, we get formally a contingency table of counts Y., ~
Po(Xy,). The model (3.8) is called a main effects model, because it has parameters
o, relating to the w 4 1 rows and parameters S; relating to the 7 columns. A
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(saturated) model including interactions between rows and columns would be of
the form log()\xt) =oy + ﬁf + V-

Suppose now that a census and a subsequent survey have been conducted for the
same population. Let ¥;; ~ Po(A;;) be the population counts: Y;; = the number
of those counted on both occasions; Yy = the number of those counted the first
time but not the second time; Yy, = the number of those counted the second time
but not the first time; Yy, = the number of those not counted at all. The total
population is then N = Y1 + Y19 + Yo1 + Yoo, where Yy is unknown. Suppose
we have a main effects model A;; = exp(o; + ), where we set By = 0 to attain
identifiability. Setting the three observed values equal to their expectation one gets
the estimates &, = log(Y}o), ,31 = log(Y11/Y10), and &y = log(Y10Yo1/Y11). The
MLE of the expectation of the unknown count is 00 = Yi0Yor /Y. By a direct
calculation one can show that N = Y, + Y19 + Yo1 + Aoo agrees with the classical
dual systems estimator, or N = (Y11 + Yio) (Y1 + Yo1)/Y11.

There are several variants of the derivation of the classical estimator. In particu-
lar, one may bypass the Poisson assumption of the counts and resort to multinomial
distribution of the observed counts (Y1, Yo, Yo1) (cf., Bishop, Fienberg and Hol-
land 1975; we will apply a similar argument in Section 5). The MLEs are similar,
however, since the multinomial model is obtained from the Poisson model by
conditioning on the observed total Y;; + Y9 4+ Yo;. Moreover, if one conditions
further on the marginals Y;. = Yy 4+ Yjp and Y., = Y} + Yo, one obtains the hy-
pergeometric model mentioned in Chapter 2 in which Y, is the only free variable.
All models lead to the same MLEs albeit that their (model-based) variances need
not be the same.

The interest in applying loglinear models in capture-recapture data is not that
it provides yet another derivation of the classical results. However, suppose the
two captures are positively (negatively) dependent, in the sense that having been
captured on the first occasion changes the person in such a way that his or her prob-
ability of capture during the second occasion is higher (lower) than the probability
of capture of those who were not captured during the first occasion. Conditioning
on the marginals Y. and Y., one then expects a larger (smaller) number of those
captured twice, Y;;, than under a model of independence. Thus, the classical
estimator is expected to underestimate (overestimate) the true population. Such be-
havioral response to the capture event is essentially impossible to assess based on
two captures, but if three or more captures are available, loglinear models can help.

Suppose Y;jx ~ Po(4;;;) are the population counts: Y; = the number of those
counted on all occasions, Y119 = the number of those counted the first two times
but not the last time, etc. In this case Yyoo = the number of those not counted
at all, and the total population size to be estimated is N = Y11 + Yi10 + Yio1 +
Y100 + Yo11 + Yo10 + Yoor + Yooo. A main effects loglinear model would be Az =
exp(a; + B + y), where By = yp = 0 for identifiability. However, this is not the
only possibility. A model allowing an interaction between the first two captures, but
keeping the third capture independent of the first two, assumes that A, = exp(o; +
Bj + vk + 8;;). Details of the analysis of these models are given in Bishop, Fienberg
and Holland (1975, Chapter 6).
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Examples of the application of triple-systems estimation in the context of the
1990 U.S. census data are given by Zaslavsky and Wolfgang (1993) and Dar-
roch et al. (1993). In this case the three captures are formed by the census, the
post-enumeration survey, and pre-census administrative records from Employment
Security, driver’s license administration, Internal Revenue Service, Selective Ser-
vice, and Veteran’s Administration. There seems to be some evidence that the
capture by administrative records was only weakly, if at all related to capture by
the census or the survey.

We conclude by expanding on Example 6.2 of Chapter 2 on drug use in Finland.

Example 3.7. Triple Systems Estimates of Numbers of Drug Users. In addition
to the Hospital Discharge Register (i = 0, 1) and the Criminal Report Register
(j =0, 1), there is a Register for Driving Under the Influence of Alcohol and
other Drugs (k = 0, 1) that contain information about drug users. The following
capture data that we analyze under the model Y;;x ~ Po(;j), were obtained in
year 2000:

i 1 0 1 0 1 0 1
J 1 1 0 0 1 1 0
k 1 1 1 1 0 0 0
Captures 3 77 9 87 50 695 384

The total number of captures is 1,305. The model log(A;jx) = o; + B; + i has
deviance 85.81 (residual d.f. = 3); the model log(%;jx) = o; + B; + v + §;; has
deviance 27.16 (d.f. = 2); the model log(A;z) = a; + B; + yx + mix has deviance
81.68 (d.f. = 2); and the model log(%;;x) = o; + B + v« + & has deviance 2.30
(d.f. = 2). Thus, the last mentioned model is the best among the ones considered.
In the Poisson case deviance has approximately a x? distribution with 2 degrees
of freedom, so we find that it is acceptable based on goodness-of-fit. The estimate
for the expectation of the missing cell is 000 = exp(8.5793) = 5,320. Adding this
to the total number of captures yields the estimate 5,320 + 1,305 = 6,625. This is
about 5% less than the estimate of 6,942 obtained from two registers in Example 6.2
of Chapter 2. A 95% prediction interval for the count of the missing cell is [4,035;
7,015]. This translates into an interval [5,340; 8,320] for the total population. ¢

4. Overdispersion and Random Effects

Consider the model (1.5). As noted in Chapter 4, Section 5, often demographic data
show more variability than can be accounted by the binomial or Poisson model we
may be using. The excess variability is called overdispersion. In Section 4.1 we
will first describe a simple extension of model (1.1) that can be used as a diagnostic
tool to investigate the presence of overdispersion. Then, in Section 4.2 we discuss
two classical marginal models for handling the overdispersion in these settings.
Section 4.3 presents alternative random effect models that are intended for more
general forms of overdispersion.
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4.1. Direct Estimation of Overdispersion

The classical formulation of Nelder and Wedderburn (1972) includes a scale factor
that corresponds to the variance in the case of a normal distribution, for example.
However, we can also use an estimate of the scale as a diagnostic tool to investigate
the possible presence of overdispersion or underdispersion (i.e., the case in which
observed variability is smaller than expected under the chosen model). Suppose we
have independent counts Y; that correspond to person years K;,i = 1, ..., n, such
that E[Y;] = exp(XiTﬁ)K i, where X; is a vector of characteristics of observation
1. Suppose B is a solution to (1.8) under a Poisson assumption for the data. By the
law of large numbers, (1.8) provides a consistent solution for 3 provided that the
Y;’s, K;’s and X;’s are sufficiently well-behaved, even if the Poisson assumption
does not hold (cf., Rao 1973, 112-114, theorems (i) and (iii)). Consider another
estimating equation (cf., Section 7.3 of Chapter 3) for a parameter ¢, of the form

" | (Yi —exp (7(Z-T,3)I(z')2 A
;{ oo (DK Y =0. 4.1)

Under a Poisson assumption, the laws of large numbers imply that ¢ = 1 asymp-
totically, but if we have overdispersion, or Var(Y;) > E[Y;] for all i, then (under
regularity conditions) the solution to (4.1) is asymptotically ¢ > 1. Similarly, for
underdispersion we get ¢ < 1. Thus, (4.1) provides us with a diagnostic tool to
check for possible overdispersion under fairly general conditions (McCullagh and
Nelder 1989). More definite results can be obtained in specific settings.

4.2. Marginal Models for Overdispersion

Suppose Y; ~ Bin(n;, p;),i =1,...,n, are conditionally independent given
pi, - .., Pn, but that each p; has been sampled independently from a beta distribu-
tion Be(e;, B;) with mean u; = «;/(o; + B;) and variance oiz = o; B /(i + Bi)?
(a; + Bi + 1)] (cf., DeGroot 1987, 294-296). It follows that E[Y;] = E[E[Y;|
pill = E[n; p;]1 = n; ;. Similarly, using the fact that Var(Y;) = Var(E[Y;|p;D+
E[Var(Y;|p;)], one can show that Var(Y;) = n;u;(1 — w;) + n;(n; — 1)01.2. Here
we have binomial variance + an overdispersion term determined by o/?. It is con-
venient to model the overdispersion as being proportional to the binomial variance.
Thus, given 0 < u1; < 1 and a single variance parameter o2, we can reparametrize
each beta distribution by choosing ; = p;(6™% — and i = (1 — ;) (™2 = 1),
which yields E[Y;] = n;u; and Var(Y;) = n; (1 — wi)[1 + (n; — Do ?]. In this
parametrization a multiplicative increase in variance due to overdispersion is
assumed. For modeling, we can assume that logit(u;) = XlT 3, if there is a vector
of explanatory variables X; available for unit i = 1, ...n. Maximum likelihood
can then be used to estimate both the regression parameters 3 and the dispersion
parameter o2. This is the so-called beta-binomial model (cf., Williams 1982).
It has been implemented in the program EGRET, for example. To examine
whether the overdispersion specification is appropriate, denote the fitted value
of ¥; by ¥i = n;jt; = n;exp(X”B)/(1 + exp(X73)) and plot scaled residuals
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Y — f’,-)/ n;f1;(1 — fi;) versus n;; the model implies that the variance of the
residuals should increase approximately as a linear function of n; (McCullagh
and Nelder 1989, 126).

Suppose that Y; ~ Po(A;) are independent, i = 1, ..., n and that each X; has
been sampled independently from a gamma distribution with parameters «; and §;
(cf., Example 1.4 of Chapter 4) that has mean 1; = «;/; and variance o7 = o; /87
(cf., DeGroot 1987,258-261). It follows that marginally the Y;’s have a negative bi-
nomial distribution with expectation E[Y;] = w; and variance Var(Y;) = u; + ol.z
(cf., Johnson and Kotz 1969, 124—125; these formulas provide the connection to
the parametrization given in Exercise 1). As in the case of beta-binomial distri-
bution, we can reparametrize the negative binomial distribution in terms of the
w;’s and a single variance parameter o> > 1 that provides a multiplicative in-
crease in the variance. Choosing o; = p; /(6> — 1) and B; = 1/(c> — 1) leads to
E[Y;] = p; and Var(Y;) = u;0%. A loglinear model log(1;) = X! 3 can be used
if there is a vector of explanatory variables X; available for unit i =1, ..., n.
Maximum likelihood can be used to estimate the parameters. Such models can be
fitted using the program STATA, for example. As in the beta-binomial situation, to
examine whether the Poisson-gamma overdispersion specification is appropriate,
denote the fitted value of ¥; by I?, =0, = exp(X[-T B) and plot scaled residuals
Y; — I?i) / /[l versus [i;; the model implies that the variance of the residuals
should be approximately homoscedastic.

4.3. Random Effect Models

The formulations for the binomial and Poisson case lead to nice, closed form prob-
ability models, for which maximum likelihood is a feasible estimation strategy.
Note, however, that the choice of the beta and gamma distributions is based on
mathematical convenience (they form so-called conjugate families with the bi-
nomial and Poisson distribution, respectively) rather than substantive reasoning.
Unfortunately, no attempt to handle more general cases that we have seen is entirely
free from theoretical complications. There are a number of promising frequentist
methods (e.g., Lee and Nelder 1996, 2001; Durbin and Koopman 2000) and cor-
responding Bayesian methods (e.g., Zeger and Karim 1991, West, Harrison, and
Migon 1985). We will briefly discuss the philosophy of the latter approach and
then present two examples that have been implemented with generally available
software.

In the Bayesian paradigm all unknown parameters are treated as being random,
not just the random effects. Randomness may then interpreted in various ways,
including in subjective terms: a priori we may have a more or less vague idea of
the values of the unknown parameters, and those beliefs are represented by a prior
distribution for the unknown parameters.® A posteriori — after we have seen the

8 Alternative, non-subjective interpretations include frequency distributions for prior data
and “normative and objective representations of what it is rational to believe about a pa-
rameter, usually in a situation of ignorance” (Cox and Hinkley 1974, 375); see also Berger
(1980).
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data—a more definite, but still not exact, view of their values arises. The conditional
distribution of the parameters, given the data, is called the posterior distribution.
The updating of the views is carried out using the famous Bayes formula (e.g.,
DeGroot 1987, 66; a particular case was used in Section 2.3), which says that the
posterior distribution for the parameters given the data is proportional to the prod-
uct of conditional distribution of the data given the parameters (i.e., the likelihood)
and the prior distribution. Until the 1990’s the numerical implementation of the
Bayes formula was considered a major obstacle in the Bayesian analysis. However,
the phenomenal increase in computing speed together with some theoretical in-
novations has largely removed these problems. For example, Gibbs sampling (cf.,
Gelman et al. 1995, 326-327)° is a simulation technique that produces a Markov
chain whose invariant distribution (see Exercise 23 of Chapter 6) coincides with the
posterior distribution of the parameters (whence the term Markov Chain Monte
Carlo or MCMC; we will illustrate the method in Chapter 9). This approach is
logically consistent, and produces results to the desired degree of accuracy. The
price one has to pay for the advantages is the increased complexity of the model.
In particular, a joint prior distribution has to be formed for all parameters. There
are routine ways of doing this. For example, one can use priors that are nearly
“non-informative” (Kass and Wasserman 1996). However, if the sample size is
not large, the particular choice may have unintended effects on the results that
are hard to detect. Moreover, in complex situations priors that are thought to be
non-informative may actually put strong constraints on some parts of the model
that are similarly hard to detect.

Experience with Bayesian methods is rapidly increasing, but still limited, in
part because they are not yet routinely available in most statistical packages. In
the past, there has been much debate in statistics about the relative merits of the
Bayesian and frequentist methods. We remain agnostic is this respect: while a
simple analysis is usually preferable to a more complex one, in some cases the
essence of the matter may be lost if too much is simplified.'® The methods must
match the problem. We will now briefly review both frequentist and Bayesian
models that are readily available for the demographic user.

First, Goldstein (2003) reviews the so-called multilevel models that are widely
used in education and other social sciences. Suppose we are modeling mortality
as a function of age x and time ¢, either via logistic or Poisson regression. In either
case we might model the canonical parameter as 6,; = u + o, + Bt, for example.
Under this model there would be a systematic linear time trend and otherwise
a constant age pattern. Due to extra-binomial or extra-Poisson variability, the
model might not fit the data of each year well. A possible extension would be a
1-level model 0,; = . + o, + Bt + €, where the random effects ¢,; ~ N (O, 012)
are independent. However, there might be years during which the linear trend

9 J. Willard Gibbs (1839-1903) developed models in statistical physics. A probability dis-
tribution for a random number of interacting particles in different energy states bears his
name.

10 “Things should be made as simple as possible — but no simpler.” A. Einstein.
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would be too high for all ages, and other years for which it would be too low. This
could be represented by a 2-level model 0,;, = 1 + o, + Bt + €, + 1, where the
annual random effects n, ~ N(O, 022) are independent. Such models can be fitted
using the software program MLwiN, for example. The fitting algorithm is based on
an approximation to the likelihood function. The resulting estimates are sometimes
called quasi-likelihood estimates.

Second, Gilks, Richardson, and Spiegelhalter (1995) present several examples
of the so-called hierarchical Bayesian models. As an example, consider the 1-level
model of the previous example. The random effect ¢, ~ N (O, 012) would further
be described by treating the unknown 012 as random, with some prior distribution. A
common choice is to assume the inverse of the variance, or precision 1/012, tohave a
gamma distribution with a large variance. In addition, one would assume that ;t ~
N(0,02),ay ~ N(0,02)arei.i.d.,and B ~ N(0, cré), all with large variances. One
would then use numerical simulation techniques to determine the joint posterior
distribution of the parameters u, «,, 8, and 012 given the observed data. The 2-
level model can similarly be generalized. For practical calculations, WinBUGS
software can be used (cf., Thomas, Speigelhalter, and Gilks 1992).

Example 4.1. Overdispersion in Habsburg Cohort Sizes. Returning to the Habs-
burgs of Example 2.1, consider the possible time trends in the number of children
per generationi = 1, ..., 20. Since all families include the child who later became
emperor/empress, define ¥; = (number of children in generation i) - 1 as the out-
come variable. As explanatory variable we use X; = birth year of parent i whose
children are being considered. The values ranged from 1218 to 1865. The outcome
variable had the mean = 7.75 and standard deviation 4.85. Since the variance is
much larger than the mean, and no major time trends are apparent, extra-Poisson
variability is a possibility.

The data were analyzed under three models: (i) negative binomial model; (ii)
a 1-level Poisson model; and (iii) Bayesian hierarchical model with weakly in-
formative priors. The basic model was Y; ~ Po(};), where A; = exp(u; + &),
and the linear predictor u; depends on X;. The following estimates were obtained
(standard errors in parenthesis): (i) ; = 1.85 + 0.00013(0.00078) x X; and 6% =
0.28(0.13); (i) &; = 1.87 — 0.00007(0.00083) x X; and 62 = 0.38(0.16)); (iii)
i = 1.85 + 0.00006(0.00084) x X; and 612 = 0.39(0.21). In the Bayesian case,
the means of the posterior distributions were used as point estimates, and standard
deviations of the posterior distributions as standard errors. None of the models sug-
gest that there would be a time trend. All models suggest that there is extra-Poisson
variability. ¢

Modelers are sometimes confused about whether random or fixed effects should
be used to represent a particular factor. Econometricians (cf., Hausman 1978) have
even devised ingenious tests to solve the problem. We prefer the advice of Searle
(1971, 376-380) who argues that the choice be made on substantive grounds. If
we are interested in making inferences about only those factors being analyzed,
the corresponding parameters should be viewed as fixed effects. If we are viewing
the factors as being sampled from a larger population, and we are interested in
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generalizing to that population, we want to consider random effects. For example,
in analyses of mortality, dependence on age is almost always of interest, and the
age effects usually would be treated as fixed effects. The rate of decline in mortality
is also typically of interest, but variation around the declining trend need not be. If
we are not specifically interested in those variations, we might consider the yearly
deviations from the trend as random.

Usually, the inclusion of a factor as a random effect tends to increase the standard
errors of the fixed effects. This decreases the risk of overfitting in regression, and
leads to a more conservative statistical analysis. In some cases, inclusion of a factor
as a random effect is necessitated by technical considerations concerning number
of parameters and the number of data points. For example, if we are analyzing data
on individuals and want to include a fixed effect for each individual, the number
of parameters will grow with the sample size and the MLEs may be substantially
biased even in large samples; in such a case we would consider the individual
effects to be sampled from some distributions.

5. Observable Heterogeneity in Capture-Recapture Studies

As discussed in Section 3.4, if capture events are behaviorally correlated on an
individual level, the classical population estimator can be biased. Alternatively,
population heterogeneity may create a population level correlation and cause a
capture-recapture estimator of population size to become biased. We will now
briefly indicate how heterogeneity may be handled statistically, when there are
two capture occasions.

Consider a closed population of unknown size N. For each individual i =
1,..., N, define indicator variables u;; and m; such that u; = 1 if and only if
i is captured on occasion j only, j = 1,2; and m; = 1 if and only if { is cap-
tured twice. Otherwise, uj; = m; = 0. Define n;; = u;; + m; as the indicator of
capture on the jth occasion. Let M; = uy; + uy; + m; indicate capture at least
once. Define the individual capture probabilities as p;; = E[nj;], j =1, 2; and
p12i = E[m;]. We assume that the first and second captures are independent for
each i, so that pjp; = pi; p2i- We now have for each individual M; ~ Ber(¢;), with
©; = p1i + p2i — p1ip2i. For those with M; =1 (i.e., for those that have been
captured at least once), we have the multinomial model

(w1, uzi, my) ~ Mult(1; pr;(1 — p2i))/@i, (1 — p1i)p2i/@is prip2/e). (5.1)

The classical dual systems estimator is N = niny/m, where nj =nj +---+
I’le,j = 1,2, and m =m;+---+my. Define ﬁjN = (le ++p]N)/N and
define pioy = (p11p21 + -+ + pinpan)/N. Consider asymptotics, in which the
limits p;y — p;, and pioy — P2, exist when N — oo. By the law of large
numbers we have that

N/N — pip2/pr, as N — oo. (5.2)
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For any N, let us formally define the covariance between the probabilities pj;
as Cy = piony — pinv P2n- Under the assumptions we have made, there is a limit
Cy — C. It follows that

N/N — 1 —C/pp. (5.3)

We see that the classical estimator is not consistent, unless C = 0. This asymptotic
bias is called correlation bias."!

Can correlation bias matter? Unfortunately it can. Using a linear Taylor-series
approximation, one can show (e.g., Alho 1994) that the variance of N/N is ap-
proximately

Var(N/N) = N~'(1 = p)(1 = p2)/(pi p2). (5.4

Comparing (5.3) and (5.4), we see that the ratio of the bias to the standard error is
of order /N. It follows that even a small correlation bias dominates the standard
error in large populations.

In demographic applications, factors that cause a person to be missed in the
first count (e.g., life style, attitude towards authorities, peer pressure etc.) often
cause him or her to missed in the second count. In such cases C > 0, so population
underestimation is the typical direction of bias. To the extent that such explanatory
factors can be measured, they can be accounted for by a statistical analysis.

Suppose now that there are characteristics X; that explain the probability that
individual i =1, ..., N is captured on occasion j = 1,2 via logistic regression
models

logit(p;;) = X{ B;. (5.5)

By a direct calculation one can show that the probabilities appearing in (5.1) are
as follows, p1;(1 — p2i) /i = exp(X] B1)/Ki; (1 — p1i)pai /i =exp(X] B2)/Ki;
and pi; pai/¢i = exp(X] Bi + X[ B2)/ K, where

K: =exp (X/ B1) +exp (XiTﬁz) +exp (X/ B1 + X/ Bo). (5.6)

We see that model (5.1) belongs to an exponential family. It is also a generalized
linear model, so its parameters can be estimated using the methods of Section 1.
Details of the ML-estimation of 3;s are given in Alho (1990b).

Once the MLE’s of 3;’s have been obtained, we get MLE’s of ¢;’s. Using these
we can define a Horvitz-Thompson type estimator for N,

N
N=3 M/ (5.7)
i=l1

The rationale for (5.7) is that E[M;] = ¢;, and if the error in ; is negligible, (5.7)
is nearly unbiased. We emphasize that only those individuals contribute to the sum

' In Section 4.1 of Chapter 3 we discussed a similar bias arising from the correlation of
sampling probabilities and the variable of interest. In Section 5.6 of Chapter 10 we will
consider the estimation of correlation bias in a post enumeration survey.
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that have M; = 1, and covariates X; are needed only for them. It is shown in Alho
(1990b) that (5.7) reduces to the classical estimator given in Section 6 of Chapter
2, if the population is homogeneous.

Example 5.1. Heterogeneity in Reporting of Occupational Disease. In Example
6.1 of Chapter 2 we pointed out that under reporting of occupational diseases
depended heavily on diagnosis in Finland in 1980. The methods outlined above
were used to study whether the probability of reporting depended on other char-
acteristics, such as age (Alho 1990b). A significant effect was found for insurance
companies’ reporting of noise-induced hearing loss: the older the patient the more
likely the case was reported. Presumably the cases for older workers were more
severe. Interestingly, age did not have an influence on the reports through the other
information channel, so there was no correlation bias (a constant is uncorrelated
with everything!) and the estimate for the total number of cases did not change. ¢

Example 5.2. Heterogeneity in Census Enumeration Probabilities. In an analysis
of the 1990 U.S. census data Alho et al. (1993) applied the conditional regression
techniques to the minority, central city post-strata in various parts of the country.
(A post-stratum is defined as a set of enumerations with specified values of the
covariates X;; see Chapter 10, Section 5.2.) Comparison of the characteristics of
those hard-to-enumerate (i.e., those individuals with estimated enumeration prob-
ability < 75%) to the rest of the post-stratum showed that the hard-to-enumerate
typically were young, black, unmarried renters, who lived among similar neigh-
bors in an area of high vacancy and multi-unit housing rates. In many cases the
information concerning them had been reported by an unrelated person. ¢

An alternative and somewhat simpler approach can also be considered. The
local independence assumption piy; = py; p2; means that p;; = P(m; = l|ny =
1), and hence we can use ordinary logistic regression to estimate p;; from data on
those individuals who were captured in the second survey (n,; = 1). Instead of the
estimator (5.7), we can then use

N =2 nu/pu. (5.8)
i=1
The estimator (5.8) will be less efficient than (5.7). In certain contexts, such as the
first capture being enumeration in the census and the second capture enumeration
in a far smaller survey, the loss in efficiency may be unimportant compared to the
gain from simplicity.

Estimators (5.7) and (5.8) may be used to provide estimates for subgroups (or
domains or small areas), say, G. The idea is to restrict the summation in (5.7)
or (5.8) toi € G. In census applications (5.8) is especially useful, because py; is
estimated from a sample, but the estimation of the size of G can be based on the
more precise census count via (5.8).

A methodological issue one has to consider in the application of (5.7) or (5.8)
is that in practice the population being studied may not be closed. Individuals
may enter or exit between the two captures. As discussed by Alho et al. (1993),
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it may still be possible to carry out estimation based on (5.1) and (5.2), using the
following principles: (i) define N as the population of the, say, first capture; (ii)
exclude from the second capture all those who were not present in the area during
the first capture; (iii) define the second capture probability as referring to both
being captured and being in the area. If the logistic model (5.5) still applies, the
estimators given by (5.7) or (5.8) will still be approximately unbiased, although
variance may be increased. The degree to which (5.5) holds for j = 2 now depends
on how well the logistic regression explains not only capture but non-movement.

Above we have assumed that the data are without other errors, besides the
enumeration errors being discussed. As discussed in Chapter 10, this can be far
from reality!

6. Bilinear Models

All models considered thus far have been linear (in the chosen scale). The simplest
nonlinear extension is based on conditional linearity in a sense to be explained
below. The models are closely related to factor analysis.

Consider a two-way table consisting of I rows and J columns with counts Y;;
in the i row and j™ column; this is called a (two-dimensional) contingency table.
As discussed in Section 3.4 such data can arise from a Poisson model for the
counts; from a multinomial model, if we condition on the total Y.. = %;;Y;;; and it
can arise from a (multivariate) hypergeometric model, if we condition on the row
totalsY;. = ¥;Y;;,i =1,..., I, andthecolumntotals Y.; = %;Y;;, j =1,..., J.
In fact, it can also arise from I independent multinomials, if we condition on the
row totals only, or from J independent multinomials if we condition on the column
totals.

In any case, define E[Y;;] = A;; and consider loglinear models for the expec-
tations. Under the main effects model we can write log(A;;) = +o; + ;. In
this case we have that A;; = exp(u)exp(e; )exp(f;), so the row and column effects
multiply. For identifiability, we may apply suitable “analysis of variance type”
identifiability conditions X;a; = 0 = X;8;. Conditioning on Y.. and considering
the Y.. realizations to be mutually independent, we can consider the probability of
the observation falling into cell (i, j). The probability is A;; /A.. = exp(e;)exp(B;)/
%;; exp(a; + B;), so the row and column effects are independent under the main
effects model. In fact, the probability of falling into row i is A;./A.. = exp(e;)/
¥; exp(e;) and the probability of falling into column j is A.;/A.. = exp(B;)/
X ; exp(B;), under the main effects model.

As noted earlier, including all interaction terms we would have log(A;;) = u +
a; + B + vij, where X;y;; =0 foreachi =1,..., I, and %;y;; = 0 for each
j=1,...,J. This permits arbitrary patterns of interdependence between rows
and columns. Unfortunately, the model would be saturated and would not really
add to our understanding of the possible dependencies. In case there is a natural
ordering in the categories (as in the case when i is age and j is time), then models
of the type log(;;) = u + a; + B; + v x ij, where y is a scalar parameter to be
estimated, and i and j are treated as integers, might be valuable in the study of
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the possible association of the row and column factors. However, there are many
interesting categorical variables for which no such ordering exists. For example,
marital status (never married, married, divorced, widowed), race, or region cannot
be easily thought of in such terms.

A possible intermediate formulation is the so-called association model of Good-
man (1991),

log(Aij) = n+a; + B; + ouin;, (6.1)

where ¢ > 0, and the row scores satisfy the conditions X;v; = 0 and Ziviz =1
and column scores satisfy the conditions ¥ ;n; = 0 and X jn§ = 1. This is a log-
bilinear model, because given the parameters that depend on 7, the model is linear
in the parameters that depend on j; and given the parameters that depend on j, itis
linear in the parameters that depend on /. We will call the model bilinear, for short.
The model adds 1 4+ (I —2)+ (J —2) =1 4+ J — 3 new parameters after the
main effects. The model with full interactions adds (I — 1)(J — 1), or the number
of degrees of freedom of the usual x >-statistic for testing the independence of the
columns and the rows. The model with known integer scores adds only 1 degree of
freedom. Therefore, the bilinear association model can be a useful compromise.

The reason the parameters v; (and ;) may be called “scores” (not to be confused
with the scores of Section 3 of Chapter 1!) is that they can be used to quantify
the distance between the otherwise categorical rows (columns) of the contingency
table. If two rows have similar values of v;, their dependence on the columns is
similar. In this manner, the rows can be ordered on a line, and presented graphically
(cf., Goodman 1991). The distance between rows i and i’ is |v; — v;/|, and we order
the rows based on their estimated v values.

The association model can similarly be formulated for the general Poisson re-
gression. Suppose that Y;; ~ Po(A;; K;;) is the number of deaths in age i during
year j, where K;; is the number of person years lived in age i during year j, and
Aij is the age-specific death rate. Then, (6.1) defines an association model for the
mortality counts.

Example 6.1. Lee-Carter Model for Mortality. 1f we set B; = 0 and fix u + «; to
equal the average of the log-mortality rates during j = 1, ..., J, (6.1) essentially
becomes the model proposed by Lee and Carter (1992) for the forecasting of the
U.S. age-specific mortality. Eklund (1995) investigated the approach of Lee and
Carter with Finnish male and female mortality data for ages 65, 66, ..., 99 for the
years 1972-1989. The data show quite a bit of random variability in the highest ages
due to the small number of deaths. One consequence of this is that the estimated
model produces non-monotone period mortality patterns in ages over 90. This
suggests that in some circumstances either smoothing, or some further constraint
on the model parameters, may be desirable. Girosi and King (2003) have come to
a similar conclusion using a much larger data set. ¢

The model (6.1) can be generalized further. For example, we can have two sets
of scores so that

log(X;j) = +a; + B +@rvanj + @2vian o, (6.2)



148 5. Regression Models for Counts and Survival

where both scores are similarly normalized as in (6.1), and furthermore
Xiviive; =0 and X;n;n2; = 0. Therefore, the number of new parameters in-
troduced is I + J — 5. Extension to higher order scores is immediate.

In the case of the higher order methods the parameters ¢; > ¢, > --- > 0 mea-
sure the importance of the scores in explaining the deviations of from independence
of the rows and the columns. As in ordinary factor analysis, a choice has to be
made, in practice, as to how many terms are included in the model. Methods for
making such a choice on statistical grounds are given in Goodman (1991) for the
contingency table case. In general, it is also useful to consider the interpretation
of the resulting scores. If no sensible interpretation can be given, one may be
overfitting the data.

Models of this general type appear to have been introduced in demography by
Ledermann and Breas (1959) and further developed by Bozik and Bell (1989) and
Bell (1992). The approach of Lee and Carter is particularly elegant, because after
subtracting the mean of the series it uses just a one-dimensional approximation to
describe differences from the mean.

We discuss two approaches to the numerical solution of bilinear models. Sup-
pose first, for definiteness, that we have observed mortality rates m, , for ages
x=0,1,...,w and years t = 1, ..., T. Define an (w + 1) x T matrix L with
the (x, ¢) element equal to log(m, ;). We can make the so-called singular value
decomposition (cf.,Rao 1973,42-43) L = UI'V”, where I'is a diagonal matrix of
dimension min{w + 1, T'} that has the nonnegative values y; in decreasing order
and VI'V = UTU = I, where I is an identity matrix of dimension min{w + 1, T}.
Let r denote the rank of L. The first » diagonal elements of I are called the singular
values of L and are the square roots of the eigenvalues of LL”. (Eigenvalues are
discussed in more detail in Chapter 6, Section 2.2.) The i column vectors of U
and V, U; and V;, are called the right and left singular vectors corresponding to
y;. We have a one dimensional approximation L ~ lelVlT. Here U represents
the average relative level of mortality by age. Then, the vector ¥, V] tells us the
approximate level of log-mortality during years¢t = 1, ..., T. A two-dimensional
approximation is of the form L ~ y,U; V] + U, V], One can prove that the
approximations mentioned above are the best one and two dimensional approxi-
mations to the log-mortality rates, under the least squares criterion (e.g., Greenacre
1984, 343-344). Unfortunately, the assumption of homogeneous variances under-
lying OLS is not satisfied in the Poisson setting.

The second approach relies on maximum likelihood. Many bilinear association
models for exponential family observations can be fitted with standard software,
such as GLIM, by starting out from the main effects model and, e.g., the assumption
that the column scores are proportional to j. Fixing the B;’s, all parameters that
depend on i can be re-estimated, and normalized (for simplicity, one can absorb
¢ into v;’s and not require that their squares sum to 1). Then, one can fix the
parameters that depend on i, re-estimate those that depend on j, and normalize
the estimates to satisfy the constraints. However, specialized software for handling
some of these models have also been written. For example, LEM (cf., Vermunt
1997a, 1997b) can handle a wide class under a Poisson assumption. In that program
bilinear models are called “log-multiplicative”.
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Independently of how the likelihood equations are solved it is useful to note
that unlike the SVD based approach, these calculations do not require that we
have observations for all ages for all years of observation. Similarly, the standard
properties of the MLE’s carry over to this case under regularity conditions (e.g.,
that the ¢’s are non-zero and separated).

Example 6.2. Mortality Among Elderly. To illustrate models (6.1) and (6.2), let
Yits ~ Po(Ayss Kyis) be the number of deaths in age x = 81,82, ..., 101 during
yeart = 1991, ..., 1994 for sex s = M, F, in Finland. Although separate models
could be fitted for the two sexes, a potentially more reliable estimate of time trends
is obtained if the age-effects «,; depend on s but the year-effects 8, do not. In
the same vein, we assumed that the association model has the same effects for
males and females. The log-likelihood of the larger model (6.2) was —1153039.4
and that of the smaller model (6.1) was —1153064.1. Therefore, the likelihood
ratio test statistic was 2(—115039.4 4 1153064.1) = 49.4. The larger model has
20 + 14 — 5 = 29 additional free parameters. Based on the yx? distribution with
29 degrees of freedom, we find the P-value 0.01. $

As in the one-dimensional case, under (6.2) one can use graphical displays to
characterize the locations of the rows with respect to each other. A two-dimensional
plot of the points (¢;v;, @2vi2),i = 1, ..., I, can characterize the way different
rows depend on the columns. The plot shows how close the rows are in the space
spanned by the vectors (11, ..., ny1) and (ny2, - . ., ny2). Note that the two vectors
form an orthonormal basis of a 2-dimensional subspace of R”, the space in which
the rows lie. The plot of the points (v;1, v;2),i = 1, ..., I, gives similar compara-
tive information, but does not take into account the relative importance of the two
sets of scores (cf., Goodman 1991).

In many applications neither the row categories nor the column categories are of

a dominant interest. In this case, plots of (¢1n;1, ¢21;2), j = 1,..., J, can also be
made to compare, how columns differ in their association with rows, in the space
spanned by the orthonormal vectors (viy, ..., vy1) and (via, ..., V).

A final, and slightly controversial question relating to plotting (cf., the discussion
of the paper Goodman 1991), concerns the simultaneous description of rows and
columns. Define the points v; = (vi1, vi2)', i =1,...,1,m; = 1. np) . j =
1,...,J, and the matrix ¢ = diag(g;, ¢2). We see from (6.2) that if viTtpnj
is large, in absolute value, then row i and column j produce a large deviation
from independence in the table. This is an inner product, but weighted with ¢.
A seemingly reasonable way the represent such data would be to plot the points
gal/2v,<, i=1,...,1, andthepointsgal/znj, j =1, ..., Jintothe same plot. Such
plots are examples of the so-called biplots (cf., Gower and Hand 1996). Note, in
particular, that if one simply plots the points v; and 77;, then the angle between the
points is not necessarily related to the inner product of interest. We will illustrate
the scores in connection with migration modeling, in Chapter 6.

The discussion we have given is closely related to correspondence analysis
(e.g., Greenacre 1984). The starting point there is a contingency table with counts
Y;;. It is first transformed into empirical probabilities p;; = Y;;/Y.., and they are
normalized to deviations of the form d;; = (p;; — pi.p.;)/(pi.p.;)"/*. Note that
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the sum of the squared normalized deviations dizj is then the usual x>-statistic
divided by Y... Therefore, the deviations also characterize how the assumption
of independence between rows and columns might not hold. A singular value
decomposition is carried out for the matrix of the deviations D = (d;;). If one retains
the first two singular values, one gets formally a bilinear representation of the form
(pij — pi-P-)/(pi.p-)"* ~ vIpn;, so similar plots as those described above can
be made. A practical advantage of the correspondence analysis formulation is
that software for simple correspondence analysis are available in several general
purpose statistical packages, such as Minitab.

7. Proportional Hazards Models for Survival

Poisson regression provides a basic tool for the analysis of aggregated demographic
data. However, when individual event histories are available, the information can
be handled more efficiently by concentrating on individual waiting times, and
their determinants. We will call the smaller of waiting time and censoring time a
withdrawal time.

Cox (1972) introduced a semiparametric regression model for the hazard func-
tion. Suppose the survival function of an individual is given by (2.4)—(2.5) of
Chapter 4 with hazard of the form

(2, X) = po()g(X" B), (1.1)

where g(.) > 0is an increasing function with g(0) = 1, Xis a vector of covariates,
and 3 is a vector of regression parameters to be estimated. Since u(t, 0) = po(?),
the function 1((.) can be viewed as a baseline hazard. The equation (7.1) defines a
proportional hazards model, because time ¢ and covariates X act multiplicatively
on the hazard. In the so-called Cox regression we take g(.) = exp(.). The model is
semiparametric, because no parametric assumptions are made about the baseline
hazard, but relative risk is represented parametrically.

Example 7.1. A Simple Example of Cox Regression. Consider an epidemiologic
study of the survival of two internally homogeneous groups, those who are exposed
(X = 1) and those who are not exposed (X = 0). Assume a Cox regression model,
so for the exposed we have g(XB) = exp(B) and for the non-exposed we have
g(XB) = 1. Then the relative risk is simply exp(8). ¢

Although many aspects of ordinary linear regression, logistic regression, and
Poisson regression carry over to (7.1) as such, there are some special aspects that
need to be observed when modeling survival times via (7.1). Suppose T(j) < - - -
< T,y are ordered withdrawal times of a cohort of n individuals and let X ;) denote
the covariate vector of the individual who was the i withdrawal. Let Ry;) be the set
of those who were at risk just prior to the i th withdrawal. Hence, Ray=1{1,...,n},
andifi = 21is the first to withdraw, then Ry = {1, 3, ..., n}, forexample. Suppose
the i withdrawal is a death. Consider the probability that the individual to die then
is exactly the one who did, given that we know who were atrisk just prior to 7{; and
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that exactly one individual died during [7{;), T(;) + /). Recall the definition of haz-
ardin Section 2.1 of Chapter 4. Using those notations we can write the probability as

(T, Xaph + o) T[] (1 — (T, X)h — o(h))

JERG+1) (1.2)
> (u(Te, Xph +oh) [T (1= w(Ts, X)h — o(h))’ '
keRq) JERM\{k}

where if i = n the product in the numerator equals 1. In the denominator R;)\{k}
is the set of those at risk just before 7(;, but excluding k. Although (7.2) looks
complicated, let us divide both the numerator and the denominator by 4 and then
let i | 0. This gives us the limit

(T, Xay)
> Ty, Xi)

kER(,')

(7.3)

Under the proportional hazards model (7.1), we can go one step further and

simplify (7.3) by canceling the baseline risks for the i death,
g(Xi,0)

2 2(X(B)

keR)

Li(B) = (7.4)

A similar probability can formally be written for the censored individuals but we
want to exclude those terms from estimation. Define &) = 0 if the i withdrawal
was a censoring and ;) = 1 otherwise. The part of the likelihood involving only
non-censored individuals and not their exact times of withdrawal is

L) =[]Lo®. (1.5)
i=1

Example 7.2. A Simple Example of Cox Regression with Censoring. Continuing
Example 7.1, let us suppose that just prior to the i" withdrawal there were ny;
exposed individuals and ng; non-exposed individuals present in the cohort. Then,
the loglikelihood corresponding to (7.5) is of the form

UB) =Y 8wl X»B — log(nii exp(B) + no)l, (7.6)
i=1

where X(;) = 1if the i withdrawn person was exposed, and X(;, = 0 otherwise. ¢
A number of remarks about Cox regression are in order.

(1) The likelihood (7.5) belongs to an exponential family, so the theory of Section
1 applies. However, the numerical implementation requires additional consid-
erations (McCullagh and Nelder 1989, 429).

(2) Since the baseline terms cancel, only relative risks can be studied via (7.5).

(3) Mechanisms related to censoring have been stripped away from (7.5). There-
fore, this likelihood is called a partial likelihood (cf., Cox 1975).
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(4) Since the baseline hazard cancels, the exact times of the withdrawals are not
relevant in estimation, only their order is.

(5) On the other hand, no aspect of the above derivation would change, if we
would let the covariate vectors be functions of time, or Xy = X)(f). The
covariates are evaluated at the times of withdrawals. In this case, as in (3),
a description of the processes that produced changes in the covariates is not
included in (7.5). This is an additional reason for calling it a partial likelihood.
Apart from technicalities, an important thing in the extension is the choice of
covariates in the model. For example, if A influences both B and the hazard,
but B has no influence on survival, then including only B in regression may
lead to an erroneous conclusion that it does. For another example, suppose that
A influences B and B influences the hazard. A may or may not have a direct
influence. Then including both A and B into the model may mask (the possibly
more fundamental role) of A in the process (e.g., Andersen 1986). Example
7.4, below, provides further discussion.

(6) If the covariates X are fixed in (7.1), then the reasoning behind (2.4) in Chapter
4 implies that the survival function p(t, X) = P(lifetime for individual with
covariate X is > #) satisfies the equation — log p(t, X) = log(p(t, 0))g(X” 3).
Therefore, we have thatlog(— log p(t, X)) = log(— log p(z, 0)) + log (X7 3).
In other words, the curves ¢+ — log(—log p(z, X)) are equidistant for differ-
ent X. This provides a possible way to check the appropriateness of the pro-
portional hazards assumption, if some estimates of the survival curves (e.g.,
Kaplan-Meier) are available for the functions p(., X). We caution that there
are many applications in which the assumption of proportionality is not valid
(e.g., Example 1.4 of Chapter 6). Fully nonparametric models (e.g., Section
1.4 of Chapter 6) may then be used to estimate the hazards.

(7) Although the baseline risk disappeared from (7.5), it is possible to estimate
the baseline risk, once the regression parameters have been estimated. Breslow
(1974) proposed a procedure based on the cumulative hazard (2.5) of Chapter 4.
Recall the definition of the hazard in terms of probabilities in (2.1) of Chapter 4.
In analogy with the derivation of the Nelson-Aalen estimator (2.20) in Chapter
4, we can equate the expected number of deaths with the observed number in
the interval [T{;), T(;y + h) to get the equation

Tiy+h
= / po(dr Y g(XyB), (7.7)
T keR)

where we have taken the sum outside the integral sign. We can solve (7.7)
for the integral on the right hand side. A similar equation can be written for
intervals of length /4 that contain no deaths. For such intervals the left hand
side would be zero, and the resulting estimate of the integral would be zero, as
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well. Putting together such estimates for a fine enough partition of the interval
[0, x] yields the following estimator,

X

3
f po(ndr ~ Y m. (7.8)

0 fo=x keR)

(8) Finally, tied survival times are possible. This complicates both the argument
and the result corresponding to (7.4). In practice, approximations are used to
replace the resulting complicated likelihood by a simpler one (Cox and Oakes,
1984), although methods for efficiently computing the exact likelihood are
becoming available. In formula (7.8) tied observations lead to replacing the 1’s
(i.e., ;) = 1) in the numerator by the numbers of deaths.

Example 7.3. Changes in Mortality of the Habsburgs. A question of interest in
connection with the Habsburgs’ data is the possible change in the longevity of
the members of the privileged family. Did mortality change over the centuries and
did gender matter? Since the study population follows the throne, it is selective.
One expects better than average survival among the members. On the other hand,
excluding the person who passed on the crown to his/her children might bias the
sample the other way. In situations like this it is frequently the best to carry out the
analyses both ways to see, if the results change. In addition, the age at death is not
accurately recorded for all children who have “died young”. We consider the effect
of excluding those who did not survive to age 2. The data set contained the life times
of 175 individuals, and for 165 sex was known. The latter form our basic data set.

It is not clear how — if at all — mortality might have changed over the years,
so time-period indicators for the birth centuries 13" through 19" were used in
regression as explanatory variables. In addition, an indicator variable for sex was
used. The coefficient for being male (standard error in parenthesis) was for (a)
the complete data —0.02 (0.16), (b) the data omitting progenitors 0.19 (0.18), (¢)
among those who survived to age 2, —0.10 (0.18), and (d) among non-progenitors
who survived to age 2, 0.065 (0.21). Although the sex effect is not significant in
any of the cases, we see that including progenitors probably biases the sample by
exaggerating chances of male survival.

Under data set (c) none of the period indicators are significant. However, under
data sets (a), (b) and (d) the indicator of the 19" century is, indicating a lower
hazard during that period. Defining an indicator for the 19" century alone we get
the following estimates for its coefficient using the four data sets, (a) —0.76 (0.29),
(b) —0.87 (0.34), (c) —0.75 (0.30), (d) —0.89 (0.36). All results are significant.
We conclude that mortality did appear to decline during the 19" century, but no
progress appears to have been made during the previous six centuries. Results on
the effect of sex do not materially change. Given that we have found no evidence
of under reporting of females in the data, the conclusion is that the difference
between the mortality of males and females has been too small to be detectable in
the available data. For additional discussion, see McKeown (1976). ¢
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Example 7.4. Time-Varying Covariates. Consider the effect of smoking on cancer
risk. In a follow-up study one might want to construct a time-varying covariate
X (t) to quantify the amount of smoking. A possible representation is

t

X(t) = /w,(s)A(s)ds, (7.9
0

where A(s) is, say, the number of cigarettes per day at time s, and w,(s) is some
weight function. Taking w,(s) = 1 implies that the total ever smoked is the relevant
risk measure; taking w,(s) = e =9 o > 0, says the most recent smoking is the
most relevant; taking w,(s) = 1{0.;—4)(s) implies there is a latency period of length
a > 0, so that the most recent smoking should not be counted etc. Summarizing
the risk history is quite demanding in practice (cf., Hoel 1985). The problem
also arises in controlled experiments such as the long-term rodent experiments on
carcinogenicity (e.g., Crouch and Wilson 1981, 108). {

Example 7.5. Likelihood for Matched Studies. Somewhat surprisingly, the likeli-
hood used in matched studies is formally equivalent to (7.4). Suppose the probabil-
ity of person k falling ill is of a logistic form exp(X[ 3)/(1+ exp(X! 3)). Suppose
one case i is matched to a set of controls. Together they form a set of individuals
that we denote R;). Thus, the controls form the set R(;\{i}. Then, the conditional
probability that the person to have fallen ill among those in R(; is the one that did,
is given by (7.4), when g(.) = exp(.). A similar result holds for matched cohort
studies, as well. This is the so-called conditional logistic regression model. Epi-
demiologic data sets, such as the lung cancer study described in Example 5.2 of
Chapter 2, would nowadays be analyzed using such methods. ¢

8. Heterogeneity and Selection by Survival

Consider a simple random sample from a homogeneous cohort. We expect that,
within sampling variation, the sample will display similar features as the original
cohort. This intuition may fail in some demographic contexts if the sampling
mechanism has something to do with the measure being studied. We will discuss
two examples in which the sampling mechanism is simply survival and the measure
of interest is life expectancy or the hazard.

Suppose a sample is drawn by picking all those members of the cohort who
survive to age t > 0. At birth all members of the cohort have a life expectancy
E[X] defined by formula (2.7) of Chapter 4. The life expectancy of the sampled
individuals is E[X|X > ¢]. It is a simple matter to prove that

E[X|X > t] = E[X]. 8.1

In other words, the sampled individuals always have a higher life expectancy than
those of the original cohort. Recall that in Example 1.1 of Chapter 4 we have
shown that in the case of the exponential distribution the left hand side of (8.1) is
t + E[X], for example.
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In actual populations consisting of individuals with differing probabilities of
survival the method of selection by survival would not produce a simple random
sample. Those with higher probabilities of survival would have a higher probabil-
ities of being included than those with lower probabilities of survival. Therefore,
the inequality (8.1) would hold with even greater force. However, it is important
to understand that if we observe (8.1) to hold empirically for some cohort, then
we cannot conclude that the individuals who have survived to age ¢ > 0 are neces-
sarily “hardier” or “more fit” than those who do not. They may simply have been
lucky!

In some situations the effect of selection by survival can be more subtle. The
introduction to the book by Bienen and Van de Walle (1991, 9) on leadership du-
ration (= X) describes a theoretical model and empirical findings. The theoretical
model is that

“leaders take a “random walk” through history. A hypothesis that leaders face constant risks
of falling from power could be put forward. Perhaps leaders stand at the edge of a precipice,
which is loss of power. They must initially take a step to the right or the left. The step could
be expressed as policy or personnel choices. If they go the wrong way, they topple. But if,
by chance, their moves take them three steps away from the edge of the cliff, then they can
survive an exogenous shock, say falling commodity prices, which pushes them only one
step back towards the cliff. Leaders are eliminated randomly over time, but a few survive for
long periods through no particular merit of their own. This is not a completely implausible
theory of leadership survival. It will be shown, however, that the risks of falling from power
are not constant but they decline as leaders remain longer in power.”

An important empirical finding is that the risk of losing power peaks in the first
years in power and decreases thereafter. This leads us to back to the “randomness
or predestination” discussion of Section 2.4 of Chapter 4: is the finding a result of
different initial characteristics of the leaders, so that the frail ones fall from power
early and leave the stronger to stay longer, or does staying in power increase a
leader’s power and make longer duration more likely, or both?

Itis shown in Spencer (1997a) that the random walk model is actually consistent
with the empirical findings (at least as they are simplistically summarized here).
This shows that the findings can be supported by the hypothesis that differences
in innate characteristics of leaders do not matter. While it is quite plausible that
differences in innate characteristics do matter, such a hypothesis is not necessary
to explain the empirical results if one believes the random walk model is a useful
characterization of leadership duration.

Intuitively the result can be understood as follows. Suppose a leader starts from
point 0, and advances one step up or down at each epoch depending on the success
of his/her actions. Positive rewards can be accumulated without limit, so the leader
may advance upwards without limit. However, suppose there is some lower limit
r < 0, such that if the random walk reaches r, the leader falls from power. The
hazard of falling from power during any epoch 7 is defined as p(n) = P(falls from
power during epoch n| has not fallen from power before n). This is the discrete
time version of (2.1) of Chapter 4 with x =n,h = 1, and o(h) = 0. Now, the
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leader has zero probability of falling during the first » — 1 epochs. After that the
probability of falling becomes positive and it may increase for a while. However,
among the leaders who have survived for a long time only a few are close to r, the
less so the larger n. Therefore, the hazard will eventually decrease.!? The details of
the calculations are given in Spencer (1997a) and Carvalho and Spencer (2001).13

In the leadership example, many of those who have managed to survive have been
lucky many times. Although each leader has initially the same chance to survive
to any epoch n, the ones who actually do have become heterogeneous with respect
to their probability of falling from power. Under this model luck may accumulate!

9. Estimation of Population Density

Up to this point we have thought of events as indexed by age or time. Logically,
they can also be indexed by place of occurrence. All difficulties one encounters in
time domain appear in this case. However, new problems are created by the fact
that, unlike time, points in space do not have a unique natural ordering.

Variations in population density or in population characteristics across geo-
graphic locations belong to the domain of geographers. A specialized statistical
literature addressing such issues has developed (e.g., Griffith 1988). Especially
since the introduction of GIS (geographic information systems), one can expect
that micro demographers will increasingly become interested in spatial aspects of
population data. A sophisticated statistical theory involving spatially mapped data
is being developed (e.g., Ripley 1981, Diggle 1983, Cressie 1993, Ghosh and Rao
1994, Wackernagel 1998) that cannot be done justice here. We will briefly consider
population density.

From a spatial perspective, a population of size N can be viewed as a collection
of points X; = (xy;, X2;) € R%,i=1,...,N,on aplane. A set'* A ¢ R? can then
be characterized by the number of points n(A) it contains. For example, suppose
a country is partitioned into municipalities A; =1, ..., J. Then, n(A;) would be
the population size of the municipality. Suppose d(A ) is the area of the set A;.
Then the average population density of A; is the ratio n(A;)/d(A;).

More generally, let us think of a changing population that is depleted by
deaths, increased by births, and subject to migration. Then the population size

12 Strictly speaking, in the most elementary random walk model we have described here, the
leader can topple only during every other epoch. For example at epoch n = r the smallest
possible values of the process are » + 2 and r, so a survivor who is at » +2 whenn = r
cannot topple atn = r + 1. This artificial aspect can be eliminated by permitting the process
not to move during an epoch, or by considering jumps with continuous distributions, for
example.

13 Although parametric distributions including inverse Gaussian distributions exhibit non-
monotonic hazard functions, generalized linear models based on such distributions did not
give a better fit to the data than Bienen and Van de Walle obtained with Cox regression.

14 More precisely, a Borel set, i.e., a set that can be obtained from rectangles by countable
unions and intersections.
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at any given time can be viewed as a realized value of a random process. In
fact, one may often assume that for any partition into disjoint subsets, the counts
n(A;) ~ Po(A(A;)d(A))), where A(A;) is the expected density of area A ;, are inde-
pendent. In this case, one speaks of a spatial Poisson process," and the MLE of the
average population density is A(A ;) = n(A;)/d(A;). Such estimates may have high
sampling variability, so smoother estimates may be desired. Suppose the center of
Ajisatz; = (215, z2;). We might then have a 1** degree polynomial model for the
density, log A(A;) = Bo + Biz1; + B2z2j- A 2" degree polynomial surface would
be of the form log A(A;) = Bo + Biz1j + Bazoj + /33Z%j + ,342%1- + Bszijz2, etc.
The parameters of the models can be estimated using Poisson regression, as de-
scribed in Section 3.

A potential defect of the regression formulation is that the density may not
change in as regular a manner as the simple polynomial, or other parametric, models
assume. If individual level data are available, nonparametric methods provide
feasible alternatives. Suppose the expected population of A is given by an intensity
function A(x) > 0 for x € R2. Then, the expected count is of the form

E[n(A)] = / A(X) dX, ©.1)

A

for a set A C R%. Suppose the points x; come from a region B with d(B) finite. In
kernel estimation one chooses a symmetric kernel function «,(.) > O that integrates
to 1 and has a smoothing parameter 4 > 0. For any point x € R?, one estimates
(cf., Cressie 1993, 600)

N
Mx) =) wen(x = x)/d(B). 9.2)
i=1

For any x, one or more of the N kernels may spread mass outside B. Apart from
these “edge effects”, the integral of (9.2) over x € B, would equal N/d(B), as it
should. By far the most popular choice for a kernel function is the Gaussian kernel
kn(y1, y2) = exp(—(yf + y%)/th)/Znh. We see that for small values of & the
points nearest to X are primarily relevant in estimation. If / is increased, the points
further away make increasingly a contribution. A data dependent choice of the
smoothing parameter /& can be made using cross-validation (cf., Wahba and Wold
1975, Hirdle 1990, Green and Silverman 1994). We will illustrate the method in
Section 1.4 of Chapter 6.

Note that the right hand side of (9.1) is a spatial analogue of the cumulative
intensity ((4.3) of Chapter 4) of a birth process that depends on a two-dimensional
location x rather than a one-dimensional age x. This shows that a kernel estimator
similar to (9.2) is also available to the nonparametric estimation of age-specific
fertility. In fact, most demographic rates can be similarly handled.

15 The term Poisson random measure is also used, since n(A) is a measure of the size of A,
and it takes a random value for each set A.
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The spatial Poisson process is a model of spatial randomness in the sense that if
n(B) = N is given, then the points x;,i = 1, ..., N, can be viewed as a random
sample from a distribution with density A(x)/ /5 A(X)dx on B. In the case of
constant intensity A(X) = A, the density is uniform, and one speaks of complete
spatial randomness (e.g., Diggle 1983, 32). Complex patterns of deviations from
randomness may occur in a spatial setting. In the so-called Cox processes the
intensity A(X) is a realization of a random process much like the random effects
in Section 4.3. They can serve as models for disease outbreaks, for example. The
so-called Neyman-Scott process is generated by a mechanism that first samples
“mother points” from a Poisson process and then distributes points around them
according to some probability density. This might correspond to housing patterns
in some societies. Spatial interaction processes may display inhibition in which
a point may outright exclude other points in its neighborhood, or at least make
them improbable (cf., Diggle 1983, Chapter 4). Explanatory variables may be
included into the density of such a process, in addition to the distance between the
points. Such processes may well have applications in enterprise demography for
example.

A natural way to understand spatial interaction processes, is in terms of the
conditional distribution of the location of a single point, given the locations of all
other points. Moreover, in regression analyses of other population characteristics
that can be mapped, such as income of families, or crime rates of cities, the so-called
conditional autoregressive models (Whittle 1954) are often used. These models
are also formulated conditionally, by specifying the conditional distribution of
the characteristic at one location given the values of the same characteristic in
all other locations. Such conditional distributions are the foundation of Gibbs
sampling mentioned in Section 4.

10. Simulation of the Regression Models

The basic principles of simulating counts were discussed in Chapter 4. Only minor
additional considerations are needed to apply those techniques to the regression
settings. Consider logistic regression first with Y., ~ Bin(n,,, g(x, t)). Knowing
how to simulate a single binomial count as a sum of n,, independent Bernoulli
variables with probability of success g(x, t) is all we need. If g(x, t) is defined
by (2.1), for example, then the only additional programming task is to recalculate
q(x, t) for each x and 7. Poisson regression can be handled exactly the same way.
For large expected counts we may want to resort to special methods not discussed
in Chapter 4.

The random effects model requires one additional layer of computation. Suppose
the random effects ¢ are independent for different values of ¢, with e(t) ~ N(0, o?).
Then, we would first generate an effect from N (0, o?) for each ¢, add them to the
fixed (nonrandom) part of the canonical parameter, and generate the Poisson count
after that. Possibly the most widely used method of generating normal random
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variables is the so-called Box-Muller method and its various refinements (Ripley
1987, 54; Press et al. 1992, 289). In its classical form the method generates a pair
of independent standard normal variables via the following steps:

(1) Generate two independent uniformly distributed variables U; and Uy;
(2) Set angle ® = 27 U; and an independent radius R = (—2log(U>))"/?;
(3) Get two independent standard normals X; = Rcos(®) and X, = Rsin(®).

The formal proof that this actually produces the desired standard normals is a some-
what tedious exercise in multivariate calculus. However, note that conditionally on
R the pair (X, X») is uniformly distributed on a circle with radius R. Therefore,
X, and X, are uncorrelated, and their distance from the origin is the square root
of an exponential variable with expectation 2. This exponential distribution is the
same as a x 2 distribution with two degrees of freedom. This no proof, but note that
if X, and X, are independent standard normals, then they will have exactly those
properties!

Observations from a spatial Poisson process with a constant intensity can be
easily simulated. Suppose the region of interest is B with the expected count C. One
can then generate a Poisson variable with expectation C, denote the realized value
as n(B). One can enclose B into a rectangle, and generate uniformly distributed
points inside the rectangle, as long as n(B) of them fall into B.

Exercises and Complements (*)

1. Consider an infinite sequence of trials with probability 0 < p < 1 of success.
Let Y be the number of failures before the r™ success. Then,

r+y—1Y\ , !
P(Y=y;r,p)=< z )p(l—p)y,y=0,1,2,...

is the negative binomial distribution. The definition can be generalized to non-
integer r > 0 by the same formula (cf., DeGroot 1987, 259). It has expectation
E[Y] = r(1 — p)/p and variance Var(Y) = r(1 — p)/p>.If r isknown, show
that this belongs to an exponential family.

2. Consider the likelihood (1.6). Show that the Hessian (1.9) does not depend
on random data, so E[H] = H. This simplifies the theory of exponential fa-
milies.

*3. Suppose Y has density f(y; 0). A statistic U(Y) is a sufficient for @ € © if the
conditional distribution of Y given U = u does not depend on 0. Neyman’s
factorization criterion shows that U is sufficient if and only if we can write
f(y;0) = g(y)h(U(y), 0). A sufficient statistic U(Y) is minimal sufficient if U
is a function of any other sufficient statistic. Intuitively this means that the set
of values taken by a minimal sufficient statistic is more “coarse” than that of
any other sufficient statistic. Consider, for example, u(x) = x and v(x) = x?2
for x € R. Is u(.) a function of v(.) or v(.) a function of u(.)?
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A random variable Y belongs to the exponential family of distributions param-
eterized by © = (0, ..., 6;)7 if its density f(v;®) (or probability function)
may be expressed as

k
exp [Z u;j(y)0; — b(®) + c(y)].

j=1

When might this expression be well-defined? The function b(0) must
be chosen so that the density integrates (or sums) to 1, i.e., b(0) =
logfexp{zlj‘.=1 u;j(y)8; + c(y)} dy. The natural parameter space is defined
as 0 = {0 € Rf| — co < b(@) < oo}. (Cf., Bickel and Doksum 2001, 58—
59).

. Consider k independent competing risks X ; that have exponential distri-

butions with parameters 1 ;, j =1, ..., k. Define the lifetime as ¥ = min
{X1, ..., Xk}. Use the representation of the exponential distribution as a
member of the exponential family to calculate the expectation and variance
of Y.

In the case of ordinary regression Y = X3 + &, where € ~ N(0, o). The
likelihood is (2no2)_”/zexp(—(Y —X3)T(Y — Xﬁ)/202). (a) Show that this
canbe written in the formexp([Y' X3 — B(8)l/0*> + ¢(Y, o) + d(0)). (b) By
differentiating the log-likelihood show that the MLEs for 3 solve the normal
equations XY = E[X7Y] = X7Xg. (¢c) The solutionis 3 = (X7X)"'X7Y,
provided that the inverse exists. This is the ordinary least squares (OLS) es-
timator. It is a linear function of ¥;’s. (d) Show that 3 ~ N(3, c2(X7X)™ ).
(e) The variance o2 is usually estimated by 2= (Y- XB)T(Y — XB)/
(n — k). Show that this is unbiased.

Continuation. If &~ N(0,0°W) for some known positive definite
matrix W, then the likelihood is (mo?) % |W|™ " 2exp(—(Y —
XB)W-I(Y — XB3)/20?). (a) Show that this can be written in the
form |W|"2exp((Y'W™'XB — B(3)]/o>+ C(Y,0)+d(c)). (b) A
transformed model W~'/2Y = W~1/2X3 + W~!2¢ has mean W~'/2X3
and errors W~!/2g ~ N(0, 6°I). Deduce that the normal equations are
X"W-'Y = XTW~'X3, with solution B =X"WIX)"'X"WY (e.g.,
Rao 1973, 221). This is the generalized least squares (GLS) estimator. (c)
Show that the GLS estimator has Cov(8) = o 2(XTW~1X)~!.

. Newton’s method has the following geometric motivation. Suppose we want

to solve the equation f(x) = 0, and have a guess x, available. If f(xy) # 0,
we can try to improve the solution by replacing f(x) with its tangent line
at x = xg, L(x) = f(x0) + f'(x0)(x — x¢). This intersects the x-axis at
x1, L(x1) =0, so x; = xog — f(x0)/f'(x0) is an updated guess. In (1.10) we
seek the solution to the vector equation f(3) = 0, where f(3) = U — E[U] =
X"Y — 8/33B(/3). The tangent line is replaced by a first-order Taylor series
expansion about a trial value 3, L(8) = f(3;)) + 8/3,6'Tf(ﬁ(i))(,6 = By
Setting L(B+1)) =0 we find By = Biy— [a/afeT f(ﬂ(i))]_lf(/@(i)) =
By +192/08B8" B(Bi)1™' (U — E[UD).



9.
*10.

11

13.

*14.

*15.

16.

Exercises and Complements (*) 161

Show that (1.11) and (1.12) are equivalent to (1.10).

Show that the hat matrix H= X(X” X)~'X” (not to be confused with the Hes-
sian!), is symmetric (H=H") and idempotent (H = H?)and consequently the
jth diagonal element, 4;;, is between 0 and 1. Let B denote the OLS estimate
of 3 in the model Y = X3 + &, with Var(e) = oI, and define Y = X 3. Show
that the covariance matrix of the residual vector Y — Y equals o>(I — H).
Let ﬁ(, ) denote the OLS estimate when the i!" observation is not used in the
fitting, and define Y(,) = Xﬁ(,) Notice that the predlctlon of Y; is now x; ﬂ(,),
where x; denotes the i row of X. Show that ¥; = (1 — h,,)x,ﬁ(,) + h; Y,
so that the derivative of ¥; with respect to ¥; equals &;; (Welsch 1983).

. Derive the leverages mentioned in Example 1.3.
*12.

To motivate Cook’s distance, note that numerator of Cook’s distance is (SA( —
Yi)" (Y = Y(i)). Consider Y ~ N(XB, o°I), where the rank of X is k and
Cov(B) = o 2(XTX)"!. Show that (8 — B) (X" X)(B — B)/o? ~ x? distri-
bution with k degrees of freedom. Therefore, (3 — 3)7 (X" X)(3 — B)/ké2 ~
Fi n—k, the F distribution with k and n — k degrees of freedom.
Consider two probabilities 0 < g; < 1, forj = 0, 1. Define RR = g;/g0 and
R = {q1/(1 —q1)}/{q0/(1 — qo)}. Assume that g; = 2q, and plot both RR
and OR as functions of gy for 0 < go < 1/2.
The concept of a “saturated model” is a bit tricky. Suppose we toss a coin
independently n times, and the chance of “heads”is 0 < p < 1. Consider two
cases. First, suppose we only know that the total number of heads is y. Then,
we would base inference on the binomial model Y ~ Bin(n, p), and assume
that ¥ = y is the observed value. Second, suppose the outcome of the i™ toss

is y; and we know the ordered outcomes (yy, ..., y,). In this case we would
have a vector of random variables (Y1, ..., Y,), where the Y; ~ Ber(p) are
independent, and (Y1, ..., Y,) = (y1, ..., yu) is the observed value. The two

models are usually equally informative, but the deviances calculated under
the two models differ, because they correspond to different saturated models.
In the former case ¢* = log{[n!/(y!(n — y)DI(y/n)’(n — y)/n)"~"},
whereas in the latter case £* = 0. This shows that deviance is not appropriate
as a general measure of lack of fit.

Consider the model Y ~ Ber(p). In logistic regression the mean E[Y] = p
is mapped to the linear predictor X” 3 by a canonical link function logit(p) =
X7 3. Alternative mappings are provided by (i) the probit link, ®~'(p) =
X"B3, where ®(x)= (2n)"'/? S exp(—z2/2)dz; (ii) complementary
log-log link log(—log(1 — p)) = X' 3; (iii) identity link p = X" B, etc. To
motivate (ii), consider a follow-up period [0, 1] and assume that the camulative
hazard ((2.5) of Chapter 4; and (7.1)) of a waiting time 7 of an individual
with covariates X is A(1) exp(X” 3) at the end of the period. Define ¥ =1,
if T <1, and Y = 0 otherwise. Show that log(—log(1 — p)) = a + X7 3,
where o« = log(A(l)) can be absorbed into the constant term of the
model.

Carry out the logistic regression of the two 2 x 2 tables suggested at the end
of Example 2.4. Is an interaction term needed?
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Consider a model Y; ~ Ber(p;), where logit(p;) = oo + o1x;,i =1, ..., n.
Suppose Y; = 1 indicates that i dies (recovers from an illness) and x; is i’s
level of exposure (amount of medicine), so we are modeling a dose-response
relationship. The problem of inverse dose-response asks for a dose x = x(c)
such that the probability of death (recovery) is some predetermined value
0 < ¢ < 1. (a) Write ¢* = logit (c), and deduce that an estimator of the dose
is X(c) = (¢* — &p)/&;. (b) Note that if x is the true value, then L(x) = &y +
d1x — c* ~ N(0, V(x)) asymptotically, where V (x) = voy + 2xvg; + x%v;
and v;; = Cov(&;, &;), i, j = 0, 1 are the elements of matrix (1.13). Using the
result L(x)?/ V(x) ~ X12 deduce a second degree polynomial in x whose roots
give the 95% confidence interval for x(c). (c) Alternatively, if x is the true
value, we must have g + a;x = ¢*, soag = —ax + ¢*. Thus, we can write
logit(p;) = ¢* + a1(x; — x),i = 1, ..., n. This model can be fitted for any x
by offsetting ¢* to get the profile likelihood £o(x). Deduce that an alternative
95% confidence interval is of the form {x|2(¢; — {o(x)) < 3.841}.

Show that if we add the term y (x — ¢) into the model log(A,,) = o + o1 x +
Bt, then the model parameters are not identifiable.

Consider the data of Example 3.6. Fit a model that has a separate slope for
age for employed and unemployed. Check the residuals of the model. Are
there indications of remaining lack of fit?

Consider the following data on the incidence of occupational diseases in
Finland in 1983, by industry and sex:

Reported Cases Population At Risk (in 1000’s)

Industry Males Females Males Females
1. Agriculture 160 183 139 116
2. Forestry 116 2 54 3
3. Man. of Consumer Goods 194 371 49 93
4. Man. of Wood and Paper Prod. 575 167 112 56
5. Metal Industries, Mining 850 211 160 47
6. Other Manufacturing 284 92 70 30
7. Building, Construction 633 20 164 19
8. Trade 87 64 120 148
9. Restaurants, Hotels 2 25 10 47

10. Traffic 212 26 131 49

11. Finance, Real Estate 14 21 51 85

12. Public Admin., Defense 132 42 64 72

13. Other Social Services 75 142 80 315

14. Other Services 59 21 38 45

A topic of concern is whether the risk of occupational diseases differs
among males and females. A comparison of crude rates by sex may be
confounded by the fact that males and females work in different industries.
Use Poisson regression, indirect standardization, (3.6) and (3.7), and direct
standardization (3.5), to study the relative risk between males and females.

Suppose the number of deaths in age x =0,1,...,®, during year
t=1,2,..., T are Poisson distributed, D,, ~ Po(0; 14, K;), where K, is
the person years, the . ’s are a set of known standard mortality rates, and 6,
is an unknown relative risk parameter of the year ¢. A linear estimator of 6,
is of the form Y; = X, ¢, D,,, where the ¢ ’s are some weights. The estimator
is unbiased if E[Y;] = 6,. Incorporate the condition of unbiasedness using
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Lagrange multipliers, and show that the minimum variance linear unbiased
estimator of 6, is obtained by choosing ¢, = 1/ X, u, K, for all x. Deduce
then that the standardized mortality ratio is the minimum variance linear
unbiased estimator of the relative risk.

As in Exercise 21, suppose the number of deaths are of the form
Dy, ~Po(6,u;K,;), where the K,,’s are the person years, the w,’s are
known standard rates, and 6,’s are unknown parameters to be estimated.
Show that D, = X, D, is a sufficient statistic for 8;. Conclude with the help
of the Rao-Blackwell theorem (cf., DeGroot 1987, 373) that as a function
of the sufficient statistic, the standardized mortality ratio Y; = D,/ X, i, Ky
is a minimum variance unbiased estimator of 6,. This result is stronger than
that of Exercise 21, because no restriction to linear estimators is needed,
and its derivation is simpler, since no real calculations are needed - once one
knows Rao-Blackwell!

Consider the likelihood equation (1.8) in the form XY = XTE[Y]. In the
Poisson regression case Y; ~ Po(exp(XiTﬁ)K,-), i =1,...,n, we noted that
they can be solved by resorting to an offset term. Alternatively, define a
vector M with the i element equal to Y;/K;, and K = diag(K,, ..., K,).
Multiply the likelihood equation from the right by K=! to get X'M =
XTE[M]. Writing W = diag(E[M]) we get that Cov(M) = WK~!. Thus, an
alternative numerical method is to base the estimation on rates, and multiply
the weights by 1/K;’s in iteration.

In Finland, the state provides support to municipalities for health and social
care, using allocation formulas. A 1992 law stipulated that support for health
care should be proportional to the product of population size and “level of ill-
ness” in the municipality. As a measure of level of illness, the SMR as defined
in (3.6), was adopted, with x = age and r = municipality. (a) Do you think
mortality is a good measure of illness? (b) Suppose you are in the Municipal
Board. What kind of incentive does this formula give you, if you are consid-
ering whether to improve the health care of the elderly? (c) The median popu-
lation size of a municipality is approximately 5,000. Suppose 1% of the pop-
ulation is expected to die annually. What is the coefficient of variation of the
allocation, from year to year, in a municipality of median size, if deaths from
three consecutive years are used to calculate the SMR? Having considered
the three issues you will understand why the law was subsequently changed.
Assumethat Y; ~ Po(u;),i = 0, 1, areindependent, anddefine Y = Y, + 1.
(a) Show that conditionally on ¥ = y, we have Yy ~ Bin(y, wo/(tto + £1))-
(b) Using this, show that the probability of finding Yy < 3 in Example 3.2
is 0.9993, provided that Hy: Ao = | holds. This a direct way of confirming
the significance of the excess risk.

Derive the ML estimators of the loglinear model parameters for the
capture-recapture experiment discussed in Section 3.4.

Continuation. Show by a direct calculation that N =Yy + Y10 + Yor + oo
is equal to the classical dual systems estimator, as defined in Section 6 of
Chapter 2.

Consider the negative binomial distribution as parametrized in Section 4.
Derive the values of the gamma parameters «; and f8; as functions of 11; and o2,
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Equivalently with (5.4), we have Var(N) = N(1 — p)( = p2)/(p1p2)-
Substitute estimators p; = m/n,, pp = m/n; into this to get the variance
estimator first derived in Exercise 11 of Chapter 2.

Consider a 2-way contingency table with expected counts E[Y;;] = A;;. (a)
Under a loglinear main effects model log(%;;) = u + o; + B; with conditions
Yia; =0= X;8; the model contains 1 +(/ —1)+(J —D=1+J -1
parameters. Therefore, IJ — I —J + 1 = (I — 1)(J — 1) degrees of free-
dom remain. (b) Under a full interaction model log(;;) = n + o; + B + vij
with conditions X;y;; =0 for each i =1,...,1, and X;y;; = 0 for each
j =1,...,J the model becomes saturated, so the number of new additional
parameters mustbe (I — 1)(J — 1). To see this directly, note that the first set of
conditions introduces / conditions for the y;;’s and the second set introduces
J additional conditions. However, one of the latter conditions is superfluous,
because the first I conditions already imply that %;;y;; = 0. Thus, the num-
ber of new free parameters introducedis [J — [ — J +1=({ — 1)(J — 1).
(c) Under the association model log(;;) = u + a; + B; + ¢vin; with con-
ditions %;v; =0 = ;n; and %;v} = 1 = ;n;, there are two conditions
for both v;’s and n;’s, so (I — 2) + (J — 2) parameters are free to vary. One
more degree of freedom is lost due to ¢. Hence, the total number of new
free parametersis I + J — 3.

Consider the capture-recapture model (5.5). Show that conditioning onn;; =
1, we have uy; = 1 — m;, where m; ~ Ber(py;). Thus, the parameters 3, of
(5.5) can be estimated by applying ordinary logistic regression to first capture.
Correspondingly, taking ny; = 1, we may use m; ~ Ber(py;) to estimate 3.
Differentiate the loglikelihood (7.6) with respect to the (scalar) parameter
B. From this expression you can see that each X ;) actually has a Bernoulli
distribution. What is the probability of success? Calculate also the second
derivative and check that it gives the correct Bernoulli variance.
Continuation. The so-called log-rank test for the hypothesis Hy : f = 0 can
derived from the results of Exercise 32 by setting 8 = 0. The (score) test
statistic is £/(0)/(—£"(0))!/2. Show that it is of the form: sum of independent
Bernoulli variables minus their expectation, divided by the standard deviation
of the sum. Therefore, it has an asymptotic standard normal distribution.
Prove the result of Example 7.5.

Continuation. Consider matched sets of individuals Ry, i =1, ..., n. Sup-
pose a subset A; C R(; has #A; = n; cases, and R(;)\A; consists of non-
cases. Such data can arise from a case-control study in which the cases A; are
matched with some controls, and they together form the set Ry;), or it can arise
from a cohort study in which individuals are first matched (e.g., by residence)
into sets R(;y and during the follow-up those in A; happen to fall ill. Show that
by conditioning on the number of cases in R(;, in both cases the likelihood is

L) = exp (Z x?ﬁ)/ > exp (ZXM).

i€A; B;CR)#Bi=n; i€B;
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(Continuation) Suppose n; = 1 for all sets i with #R; =2,i =1,...,n.
L.e., we have n case-control pairs. Based on the above likelihood, show (the
otherwise mind-boggling result) that conditional logistic regression can be
run using an ordinary logistic regression program by creating a data set in
which there are n observations (data rows), for each observation the outcome
variable is 1 (“success”), the explanatory variables are the differences
between the case’s explanatory variables and the control’s explanatory
variables, and there is no constant term.

Following the notation of Section 7, let Z(;) = k if individual k withdrew
at time Tj;). Denote the history up through the i withdrawal by H; =
{T(]), Z(]), 8(1), PN T(,‘), Z(l'), 5(,’)}. The full likelihood is L(Hn) Note that
L(H;|H;—1) = P(Zy)|Hi-1, 84y, Tiiy) X P(8¢)y, Tyl Hi 1), and hence

L(H,) = [ [ LCH; | Hi-))' ™" [ [P Gy, Tiy | Hi-) [ [ P(Zioy | Hi-1. 8y, Tiin)
i=1 i=1 i=1
The first product involves censoring only. The second product involves
the times of non-censored withdrawal, which under (7.1) do not provide
information about 3. Under (7.1), the components of the last product are
given by (7.4). Assume that the proportional hazards model holds, and show
that the partial likelihood (7.5) is derived by ignoring the first two products
above. If the covariate vectors vary with time, X, = X)(¢), then they can
be included in the definition of H; and a similar expression can be derived;
see Cox and Oakes (1984, Section 8.4).
Consider formula (2.7) of Chapter 4. Prove (8.1) by first splitting the integral
into an integral from O to ¢, and an integral from ¢ to co. Then, majorize the
integrand on [0, ] by 1, and on (¢, 0o) by p(x)/p(¢). Note that the inequality
is strict unless p(t) = 1.
Use a computer to generate realizations of a random walk of length 20.
Stop each random walk if it reaches the level r = —5. Calculate the
expectation of the state of the walks that have not been stopped at epochs
n =1,5,10, 15, 20. How do the expectations behave as a function of n?
Prove formally that the Box-Muller method produces two independent
variables with standard normal distributions.
Simulation of logistic regression. Generate values of explanatory variables
X; ~ N(u,0? for i =1,...,n. Then, generate uniforms U; ~ U|[0, 1]
and calculate p; = exp(Bo + B1X:)/(1 +exp(Bo + B1X;) using, e.g.,
n = 30, Bo = —0.1, and B; = 1.0. Now generate the observations ¥; = 1 if
U; < p;,otherwise let ¥; = 0.
Generate a sample from a spatial Poisson process into a unit square such that
the expected number of points is 100. L.e., pick a value ¥ from Po(100), and
locate Y points into unit square by picking independently each x-coordinate
and each y-coordinate from U[0, 1]. Does the point pattern correspond to
your idea of complete randomness?



6
Multistate Models and
Cohort-Component Book-Keeping

In this chapter we develop some theory and notation for multistate life tables
and general linear growth models. Life tables are synthetic calculations that are
intended to summarize the overall implications of period transition rates in pop-
ulations with one or more states defined by region, marital status, labor force
participation, etc. We will provide a formulation that takes duration (i.e., time
spent in a state) into account.

As anticipated in Chapter 4, when the generation of births at constant rates of
fertility is added to a life table population, a theory of stable populations follows.
Life table calculations also provide the “engine” on which the cohort-component
population forecasts are based. The matrix model we emphasize is often called a
Leslie model, in honor of Leslie (1945). However, Bernardelli (1941) and Lewis
(1942) had earlier considered the matrix formulation. Cannan (1895) had used
the equivalent arithmetic already, and many European states and the U.S. had
used the arithmetic in the 1920’s and 1930’s (cf., DeGans 1999). Therefore, a
more neutral name seems to be in order, and we will refer to the linear growth
model.

Calculations concerning population evolution are used in economic contexts
such as pension planning, disability insurance, assessment of health care costs
etc. Often, relevant statistics can be calculated from the population numbers and
rates, so they can be viewed as functions of population numbers, or demographic
functionals. Multistate models are also connected to Markov chains that are used
to describe state transitions in many branches of science.

Section 1 presents multistate life tables in a probabilistic context analogous to
that of Chiang (1968). An application to Finnish nuptiality data is described, and
a model for simple disability insurance is formulated. Section 2 defines the linear
growth model and develops aspects of classical stable population theory and the
so-called weak ergodicity. In Section 3 we open the multistate system to external
migration and consider alternate ways of parametrizing migration flows. Section 4
defines the concepts of demographic functional and functional forecasts. In Section
5 we examine some details of the linear growth model and population renewal at
the level of individual ages. In Section 6 we will mention applications of Markov
chains to an ecological population.

166
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1. Multistate Life Tables

1.1. Numerical Solution Using Runge-Kutta Algorithm

Define I(x) = 1 if an individual is alive in age x > 0 and /(x) = 0 otherwise. The
probability of surviving to age x can be written as p(x) = E[I(x)]. In equation
(2.2) of Chapter 4, the probability of survival was shown to satisfy the differential
equation p’(x)/p(x) = —u(x) in terms of the hazard. The equation was solved
analytically in (2.4). We will show below that (2.2) has an analogue in the multi-
dimensional case. Although the multidimensional case does not allow an explicit
analytical solution, except in special cases, (2.2) can be solved numerically without
recourse to the analytical solution. The solution is based on a standard method for
first order differential equations, the so-called fourth order Runge-Kutta method
(e.g., Press et al. 1992, 710-714), which we now describe.

Consider a differential equation y' = f(x, y), where y is to be solved as a
function of x subject to a known starting value yp = y(xo). The simplest method
for getting an approximate numerical solution to the equation is to determine a
step size A > 0, set x, = x,_; + h, and determine the approximations y,;; &
Vo +hf(xy, vo),n =0, 1,2, ... This is Euler’s method. It uses information about
the derivative of y only at the beginning of each interval [x,, x,11]. One can try
to improve on Euler’s method by getting a better estimate of the derivative in the
interval. The fourth order Runge-Kutta method uses four estimates of the derivative,
one at the beginning, one at the end, and two in the middle. The algorithm is:

Ynt1 = Yn + (a1 + 2a2 + 2a3 + a4) /6, (1.1

where a; = hf(xn’ yn)v a = hf(xn + h/z’ Yo + al/z)v as = hf(xn + h/z? Yo +
ax/2), and ay = hf (x, + h, y, + az). The coefficients of the @; have been cho-
sen so that the method is accurate to the fourth degree, i.e., the error is O(h°) as
defined in Chapter 1.

Example 1.1. Runge-Kutta Illustration. Suppose u(x) =pu > 0 for x > 0 and
use the fourth order Runge-Kutta method for solving p’(x) = —up(x) subject to
p(0) = 1. The exact solution is p(x) = exp(—ux). We have yy = 1;a; = —uh;
ay = —ph(l — ph/2); a3 = —ph(l — ph/2 + (uh)*/4); and ay = —ph(l —
wh + (h)?/2 — (uh)?/4). Therefore, y; =1 — uh + (uh)?/2! — (uh)*/3! +
(uh)*/4!, or the first step is equal to the fourth order Taylor series approxima-
tion to the true value of exp(—uh). By taking 4 small enough, we can achieve any
degree of accuracy. ¢

To apply the Runge-Kutta method to (2.2) of Chapter 4, we take y(x) = p(x)
and f(x,y) = —u(x)p(x). The starting value is p(0) = 1. For most ages we take
h =1, but for age 0 we may take two steps, first 1 = 28/365 corresponding
to neonatal mortality, and the second step size is & = 1 — 28/365. The values
w(l), u(1.5), n(2), u(2.5) can be estimated, e.g., using methods discussed in Sec-
tion 2.4 of Chapter 4. For the first year of life procedures based on Example 2.11
of Chapter 4 may be applied, for example.
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1.2. Extension to Multistate Case

Suppose now that there are J states. An individual is born into a state, and may later
move to another state, move back, etc. For example, a person is born into never
married state and may later marry, become divorced or widowed, remarry, etc.
Labor force participation, migration, and even acquisition of skills and knowledge
are other examples of transition among states. Some basic references to this area
are Rogers (1975), Rees and Wilson (1977), Land and Rogers (1982), ter Heide and
Willekens (1984). More recent contributions include Schoen (1988), Gill and Keil-
man (1990), Van Imhoff (1990), Ekamper and Keilman (1993), and Rogers (1995).

Define an indicator vector I(x) = (I;(x), ..., I;(x))T for x > 0 such that
I;j(x) =1 if the individual is in state j at age x and /;(x) = O otherwise. De-
fine e; as a J-component column vector of all zeroes except a 1 in the jh
position; for example, e; = (0, 1,0, ...,0)7. Set p;(x) = E[/;(x)] and p(x) =
(p1(x), ..., ps))T, so p(x) = E[I(x)] gives the probabilities that the individ-
ual is in each of the states j = 1, ..., J at age x. We assume that the individual
changes state according to the following rules:

(1) If I(x) = e, i.e., the individual is in state j at age x, then, independently of
the individual’s earlier history, the probability of moving to state i # j before
age x + h is v;;(x)h + o(h), where v;;(.) > 0 is continuous.

(2) The probability of two or more transitions in a period of length 2 > 0 is o(h).

We call the functions v;;(.) hazards or transition intensities.

Consider the probability p;(x + k) that individual is in state i in age x + h. We
can express the probability in terms of the probabilities p;(x). There are three
cases. The individual either was in i already and did not leave, was in some other
state and moved to i, or made two or more transitions. Therefore, we can write,

pi(x +h) = (1 - Z {vji)h + O(h)}>Pi(X)
J#
+ Y {0 + o(h)} p;(x) + o(h). (12)
J#i
As in the case of (2.1) of Chapter 4, divide (1.2) by h, rearrange terms, and let
h — 0,to getforeachi =1, ..., J that

pi(x) = — E vji(x)pi(x) + E Vi (x) pj(x). (1.3)
J# J#
In matrix form (1.3) can be written as

p'(x) = v(x)p(x), (1.4)

where the left hand side is a vector of the derivatives and v(x) = (v;j(x))isaJ x J
matrix, where for i # j the elements v;;(x) are as defined in condition (1) above,
butfori =1, ..., J we take

Vi) = — Y vji(x), (1.5)
J#
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the negative of the hazard of leaving state i in age x. Notice that (1.4) is the
multistate counterpart of (2.2) of Chapter 4. Let us first consider two special cases.
First, the single cause of death case can be described as a two-state model with
states “alive” (j = 1) and “dead” (j = 2). The latter state is absorbing, or it has
vi2(x) = 0 for all x > 0. If we write v,;(x) = u(x), as before, then we have

_[-n) 0
V(x)—[ 1(x) 0]. (1.6)

In this case, p;(x) is given by (2.4) and (2.5) of Chapter 4, and p(x) = 1 — p;(x).
Second, assume that v(x) = v. By a direct calculation one can show that

p@x) = { Z(xu)f/i!}pw) (1.7)
i=0

satisfies the equation p’(x) = vp(x) (e.g., Gantmacher 1959; Schoen 1988, 72—
73). The matrix in brackets on the right hand side of (1.7) actually defines the
exponential function with matrix argument xv.

In fact, a slightly more general case can also be handled analytically. Suppose that
the v/(x) are simultaneously diagonalizable, i.e., we can write v(x) = U~y(x)V7,
where VI U =1, and v(x) = diag (y,(x), ..., y;(x)) has the eigenvalues of v(x).
Note that V' = U~! and the columns of U contain the eigenvectors of v(x) nor-
malized in some manner (cf., Rao 1973, 42-43). In other words, the spectral
decompositions of the matrices v(x) are such that the matrices V and U do not de-
pend on x. (We will discuss spectral decomposition further in Section 2.2.) Define,
forj=1,...,J,

X

I'j(x) =exp /){i(s)ds (1.8)

0

and let I'(x) = diag(I"(x), . .., [';(x)). Now, the solution of (1.4) is simply
p(x) = UT(x)V'p(0). (1.9)

To confirm that (1.4) is satisfied, note that v(x)p(x) = U’y(x)VTUI‘(x)VTp(O) =
Uy(x)L'(x)V'p(0) = p'(x).

Returning to the case where v(x) = v are constant, write 7y(x) = ~. Then we
have I';j(x) = exp(y;x) and I'(x) = I'(1)*. We now illustrate how the spectral
decomposition can be used to calculate the right hand side of (1.7) (cf., Hoem and
Funck Jensen 1982, 179).

Example 1.2. A Three-State Labor Force Model. Suppose we have only
three states: Employed (j = 1), Unemployed (j = 2), and Dead (j = 3), with
transition intensities

~0.08 0.05 0
v(x)=| 006 —0.07 0. (1.10)
002 002 0
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In other words, life expectancy is 1/0.02 = 50 years, irrespective of working
status; the probability of becoming unemployed is about 6% each year, and the
probability of getting a job is about 5% for an unemployed, per year. Consider a
person who is employed at the start of the study (or x = 0), so I(0) = (1, 0, 0)”
is the initial state. Note that under (1.10), the third (absorbing) component of the
vector p(x) does not influence the evolution of the first two in (1.4), so it can be
omitted in the following calculation. Using a software package with linear algebra
capabilities, such as Matlab or MATHEMATICA, one can calculate the spectral
decomposition of the 2 x 2 upper left corner of (1.10) as

—0.08 0.05| | —0.707107 —0.640184 | [ —0.13 0
0.06 —0.07 | 0.707107 —0.768221 0 —0.02

—0.771389 0.642824 (L11)
—0.710023 —0.710023 |- :

The middle matrix on the right has eigenvalues on the diagonal, the columns of
the first matrix on the right are the corresponding eigenvectors, and the last matrix
on the right is the inverse of the first. Using the starting value p(0) = (1, 0)7, the
solution (1.9) gets the form
(x) = |: 0.545455¢70-13 O.454545e‘0‘02"] (1.12)
P =1 _0.545455¢0-13x 4 0.545455¢—0.02¢ '

In general the decomposition (1.11) might involve complex eigenvalues and eigen-
vectors, but the solution (1.12) is always real. Note that the second component of
(1.12) is a nonmonotone function of x. {

Apart from the special cases, there is no analytical solution to (1.4). A formal
solution in terms of the so-called product integral is available (cf., Gantmacher
1959; Andersen et al. 1993, 88-95), but for a numerical solution we can work
directly with (1.4). A number of methods for solving it have been proposed (e.g.,
Schoen 1988, 75). Other than the constant hazards assumption, the most popular is
based on the assumed linearity of the solution. As noted by Rogers (1995, 96), this
can be viewed as a generalization of the linearity assumption in the single region
case (Example 2.2 and Exercise 9 of Chapter 4).

Example 1.3. Hazards Producing a Linear Solution. Suppose that (1.4) has a
solution of the form p(x) = (I + xB)a that has (componentwise) 0 < p(x) <1
for x € [0, 1]. Then we must have p(0) = a with 0 < a < 1. Also p’(x) = Ba, so
we must have v(x)(I + xB)a = Ba. As any J linearly independent vectors a with
0 < a < 1 actually span the whole space R”, it follows that v(x)(I + xB) = B, or
v(x) =BI + xB)~! provided that the inverse exists. Hence, we have B = v(0).
The linearity assumption may provide a reasonable numerical approximation in
many situations, but Hoem and Funck-Jensen (1982, 198-200) point out several
short-comings. ¢
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Given that closed-form analytical solutions are not to be had, for practical
computation we will resort to the Runge-Kutta method (1.1). This method will
easily extend to handle time-varying covariates. To solve the system of differen-
tial equations (1.4), in vector notation y’ = f(x, y), we substitute y = p(x) and
f(x,y) = v(x)p(x). A technical issue that comes up is that the algorithm does not
automatically ensure that 17 p(x) = 1 or that 0 < p(x) < 1. Adjustments to satisfy
these conditions can be made during each round of Runge-Kutta iteration. If the
problems are severe a shorter step size may be adopted.

We note that (1.1) can be started at any age x( by taking an arbitrary starting
value for p(x), such as p(xo) = e; for some j, and solving for p(x) when x > xo.
Any life table quantity can thus be obtained. For example, suppose an individual
is born into one of states j = 1, ..., J with probabilities given by the components
of the vector p(0). In analogy with (2.7) of Chapter 4, the vector of expected years
spent in different states over his or her life time is

[e¢]

eozfp(x)dx, (1.13)

0

where the integration is performed element by element. In the case of Example 1.2
the life expectancy of 50 years becomes divided into two parts: 26.9 years spent
working and 23.1 years unemployed. To verify, note that the integral of the first
component of (1.12) over x in (0, co) equals 0.545455/0.13 + 0.454545/0.02 =
26.9231, for example.

For life table construction we need conditional life expectancies by state. Define
pj(x) = E[I(x + 2)|I(x) = e,], i.e., it is the vector of probabilities of being in
different states in age x + z, given that the person was in state j at exact age x.
This vector of probabilities can be calculated for any z using Runge-Kutta, taking
op(x) = e; as the initial value. We can then define the vector of state-specific
remaining life expectancies, conditionally on I(x) = e;, as

[e¢]

e;j(x) = /zpj(x)dz- (1.14)

0

This is a multi-state generalization of the e, defined by formula (2.8) of Chap-
ter 4.

In multistate forecasting, considerations similar to those discussed in Section
3 of Chapter 4 apply. Let k;(¢) be the density of population in age ¢ in state j.
The expected survivors to different states from those who were in state j in age
[x, x + 1) one year earlier are given by

x+1

/ 1P (Ok;(t)dt. (1.15)

X
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Generalizing (3.6) of Chapter 4, we may define the vector of average survival
probabilities to age [x + 1, x + 2) as

2k;(x + 1)+ k;(x)
3(kj(x + 1) + k;(x))

2% ;(x) + kj(x + 1)
3(ki(x + 1)+ kj(x)
(1.16)

1pj(x) =1pj(x + 1) +1p;(x)

Define K , as the size of the population of state j who are in age [x, x + 1) ata
given moment. Then, the vector of expected survivors in age x 4 1 one year later
is

J
D 1P K. (1.17)
=1

For each x we go over the states, and then move to x + 1.

1.3. Duration-Dependent Life Tables

As above, we consider states j = 1,...,J with an indicator vector I(x) =
(Li(x), ..., I;(x))T, where I;(x) =1 if an individual is in state j in age x > 0
and /;(x) = 0 otherwise. Defining p(x) = E[I(x)], we have a vector of probabil-
ities of being in different states. A multistate life table is simply a set of tabulated
values of p(x) and some of its functionals, such as (1.14). The overall aim of the
table is to summarize the transition conditions of a chosen time period. Unfortu-
nately, tabulating such probabilities and state-specific expected waiting times is
cumbersome when starting ages and states vary.

Another aspect that sets a multistate life table apart from the single state life
table is the possible presence of population heterogeneity associated with past
event history. Heterogeneity may, in principle, arise from any aspect of past state
transitions, as illustrated in Section 4.3.3 of Chapter 4.

1.3.1. Heterogeneity Attributable to Duration

In this section we will develop a theory that can take certain aspects of duration
into account. By duration we may refer to the total time spent in a given state,
to the length of the last visit in a given state, or more generally, to any positive
functional of the sojourn times in a given state, such as those given by (7.9) of
Chapter 5.

Example 1.4. Remarriage Probability Varies with Time Spent Non-married. Fig-
ure 1 shows how the average relative risk of remarriage is related to duration since
end of marriage for those whose marriage ended due to divorce and for those who
became widowed, among women in Finland in 1998. (Here, the baseline against
which relative risk is measured is average intensity of marriage in a given age;
in Figure 1 average relative risk by duration is obtained by averaging such rela-
tive risk estimates over age.) For the divorced the relative risk of a new marriage
declines rapidly. This is consonant with the notion that finding a new spouse is
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Relative Risk
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FIGURE 1. Average Relative Risk of Remarriage Among Widowed (Solid) and Divorced
(Dashed) as a Function of the Duration of Widowhood and Divorce, Respectively.

often a cause of divorce. For the widowed the relative risk is below 1 for short
durations, but increases to about three in durations of 3—4 years, and declines to
one thereafter. That is, the effect of duration is not multiplicative between the two
populations. Although we do not show the details here, we note that among the
widowed the relative risk is roughly the same in each age. However, among the
young divorced the relative risk of a new marriage increases with the duration, so
a multiplicative model incorporating age and duration is not appropriate among
the divorced. These examples illustrate the limitations of the proportional hazards
model. ¢

1.3.2. Forms of Duration-Dependence

It is difficult (but not impossible, cf., Wolf 1988) to accommodate duration effects
into the calculation of life tables analytically, because we have a case of time vary-
ing covariates (cf., Section 7 of Chapter 5). It is easier to resort to simulation. If
proportional hazards are appropriate, one can estimate duration effects via Poisson
regression or via Cox regression (cf., Sections 3 and 7 of Chapter 5). Or, more
general hazard models can be used that allow for the interaction of duration and
age. Given the hazard estimates, one can simulate state transitions individual by
individual. In this manner a collection of state transition paths can be formed. It is
then a matter of simple arithmetic to estimate relevant probabilities and expecta-
tions. We will now describe both some theoretical and practical issues that come
up when implementing a multistate model'.

! Based on our experiences in developing the C++ program MTABLE at the University of
Joensuu.
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The starting point is the differential equation p’(x) = v(x)p(x) in (1.4). Define
D(x) = (D1(x), ..., D;(x))T as the vector of durations at age x. At least two
possible concepts of duration seem relevant. One can choose D;(x) either as time
ever spent in j by age x or as time spent during the current visit® in j by age x. The
usual Cox model for the effect of duration assumes that

vij(x, D(x)) = vgi;(x) exp(B];D(x)), (1.18)

where vg;;(x) is the baseline intensity of those with D(x) = 0. Note that 3;; is
a vector. If only the duration D;(x) of the current sojourn is relevant, then a
general proportional hazards model assumes that there are functions g;;(.) > O such
that

;i (x, D(x)) = vo;j(x)gi;(D;(x)). (1.19)

A general duration-dependent intensity model assumes that the intensities are of
the form v;;(x, d) with 0 < d < x, and the intensity for a person with duration
d = Dj(x) at age x is v;j(x, D;(x)).

A possible problem in the proportional hazards formulations derives from the
imbalance in the data. To simplify, suppose that only the duration d of current
sojourn matters. Omitting dependency on i and j, the model (1.18) is equivalent to
amain effects log-linear model log v(x, d) = a, + B,. While this may be arealistic
model in some situations it is good to remember that our intuition from ordinary
2-way analysis of variance does not carry over, as such, to this case, because for
ages x =0, ..., w the possible values of duration are alsod =0, ..., w, but we
have to have d < x. Thus, estimates of B, for short durations depend on most ages,
but estimates for long durations depend only on the oldest ages.

1.3.3. Aspects of Computer Implementation

The model (1.4) is in continuous time, so in principle an unlimited number of state
transitions are possible during a time unit. We can always approximate the process
by taking the time unit small enough so that the possibility of more than one transi-
tion can be ignored. Suppose an individual starts atexactagex =0, 1, ..., 0 — 1,
at state j. First we use the Runge-Kutta method to calculate the vector of probabil-
ities (pj(x) = E[I(x + 1)[I(x) = e;]. Then we select the state at x + 1 randomly
using (p;(x).

If a transition to k from state j occurs, then the time spent in j must be specified.
As a first approximation we may choose the time of transition from a uniform
distribution U[0, 1]. This is equivalent to the assumption of Example 1.3. To
refine, one could use information concerning the derivative of the solution at the
end points of the interval (Exercise 5). If the randomly chosen state at x + 1 is also
Jj, then one time unit is added to the time spent in j.

Repeating the above procedure we obtain a path consisting of state transitions
and their times of occurrence. One can keep track of such characteristics of the

2 This particular case is a so-called age-dependent semi-Markov model, i.e., transition in-
tensities depend on state, age, and duration of current sojourn (Mode 1985, 244-245).
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paths that are of interest and store them for further processing. Using the output
one might wish to answer following types of questions:

(1) given that the person is in state j in age ¢, what is the probability that he

or she is in state k at age u > t;

(ii) given that the person is in state j in age ¢, what is the distribution of time
the person spends in state k by age u > t;

(iii) given that the person is in state j in age ¢, what is the distribution of the
waiting time until next entry to state k;

(iv) given that the person is in state j in age ¢ and enters state k in some age,
what is the probability that he or she exits state k via state & # k?

In all cases the answer can be numerically determined from a simulated prob-
ability distribution of the variable of interest. Summary measures such as the ex-
pectation, the standard deviation, or tail probabilities can also be calculated based
on the distribution.

1.3.4. Policy Significance of Duration-Dependence

Exposure distributions or duration distributions can have considerable significance
in social policy. Consider long-term unemployment, for example. The chance of
becoming unemployed may depend on population heterogeneity. Some people
may find work (or loose a job) more easily than others because their knowledge,
skills, and attitudes. On the other hand, being unemployed (or getting a job) may
be due to luck. If the chance of finding a new job decreases with the duration
of unemployment, bad luck may accumulate (cf., discussion of “randomness and
predestination” at the end of Section 2.4 of Chapter 4 and Section 8 of Chapter 5).
In the first case, remedial training might be an effective measure for improving
the job opportunities of the unemployed. In the latter case remedial measures may
not help, and the unemployed might be best helped with insurance mechanisms,
as in the case of disability, for example. Exposure distributions from duration-
dependent multistate life tables can show us whether chance alone could explain
the observed exposure distributions.

1.4. Nonparametric Intensity Estimation

The estimation of the transition intensities is challenging because a multistate pop-
ulation with J states can logically have up to J(J — 1) transition flows for each
age. Each flow may have idiosyncratic characteristics (e.g., mortality as compared
to the remarriage of widows). Different methods may turn out to be optimal for
each. For a general discussion, see Hoem and Funck Jensen (1982), and Ander-
sen et al. (1993). We present two nonparametric approaches that rely on local
linearity (Section 2.4 of Chapter 4) and kernel smoothing (Section 9 of Chapter
5). More general graduation methods are discussed by Keyfitz (1977, Ch. 10) and
nonparametrics by Hardle (1990) and Green and Silverman (1994). The nuptiality
example of Section 1.5 provides the background for our discussion of the general
duration-dependency model. Duration refers to duration during current sojourn
and is truncated to the nearest lower integer.
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Let N;;(t, d) be the number of transitions from state j to i, in exact age that
belongs to interval [z, t 4+ 1), given that duration in the beginning of the year was
inld,d+1),d=0,...,t. Let K}(t, d) be the number of individuals in the age
x duration category in the beginning of the year and Kj’.’(t, d) the number of indi-
viduals in the age x duration category at the end of the year. Person years can then
be approximated as K;(t,d) = (K_;-(t, d)+ K_;’ (t,d))/2, and the corresponding
ole rate is v;;(t, d) = N;;(t,d)/K;(t, d). Given the large number of pairs (¢, d),
the o/e rates may be unstable. Computation of local averages can often provide a
smoother estimate.

Preliminary analyses suggest that in the flows we consider age effects are larger
than duration effects. Therefore, we will adopt a two-stage estimating strategy,
trying first to get the age effects right under as few assumptions as possible. A
separate estimation of duration effects under smoothness assumptions is presented
afterwards. Let us write v;; (¢, d) = v;;(1);;(¢, d), where

thij(t,d)Kj(t,d)/ZKj(t,d) =1. (1.20)
d=0 d=0

Thus, v;;(?) is the average intensity at t, and ¥;; (¢, d) is the relative risk at duration
d. Define N;;(t) = X;4N;;(t, d), so that v;;(t) = N;;(t)/K (1) is an o/e rate.

Consider exact ages t = 1,2, ..., w — 1. Emulating the approach of Section
2.4 of Chapter 4, consider the interval [t — 1, r + 1). Suppose that the average rate
and the population density are locally linear. One can then deduce (Exercise 8)
that the estimator

Nijt =D+ Ny(@®) 20 = 1) —v;; O)K; (1 — 1) — K1)
Kt — 1)+ K;(1) 3(Kj(r — 1)+ K;(1)) '

Dy (1) =
(121

corrects for both linear effects at exact age . Having estimates available at ex-
act values of 7, we can use any interpolation technique (such as the Karup-King
formula, cf. Shryock and Siegel 1976, 554) to estimate the ages ¢ 4 0.5.

One way to estimate the relative risk parameters is to use kernel smoothing. Fix
t and d. Using a Gaussian kernel with smoothing parameter 2 > 0, we obtain the

following estimate for the relative riskatd = 0, .. ., 7, as compared to the average
risk at 7,
Ui (t, dlh)
w (S — t)2 w R (s B Z)Z
= ; vij(s, d)K (s, d)exp (—2—112 /; 0y ($)K (s, dyexp (5 ).
(1.22)

Since v;;(t, d)K ;(t) = N;;(t, d), the estimator is of the form “observed count =
expected count”, or it is a nonparametric form of indirect standardization (Section
3.3 of Chapter 5). For a given d, (1.22) weights o/e rates in different ages according
to how far they are from 7, and by person years. Conditioning on #, a rough
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confidence interval for v;;(¢, d|h) can be obtained by estimating Var(v;;(z, d)) by
vij(t,d)/K;(t, d).

Cross-validation can be used to choose & (e.g., Hirdle 1990). Define predicted
relative risk at # and d, 1,7/,7 (t, d|h), by (1.22) with the summation restricted in both

numerator and denominator fo s = d, ..., w with s # t. Define the corresponding
predicted residuals as
eij(t,d|h) = Nyj(t, d) — ¥ (t, d|h)D; (1)K (¢, d). (1.23)

A cross-validation estimator of the smoothing parameter is a value of /4 that min-
imizes the sum of squared predicted residuals for some set of values of (¢, d). In
the application of Section 1.5 discussed next we searched for a value i = h(t) for
each ¢, that minimizes the sum,

t
D eyt d|hY, (1.24)
d=0

for example.

1.5. Analysis of Nuptiality

What is the probability that a marriage ends in a divorce? As a multiple decrement
process a person’s marriage can end in a divorce or upon death of either spouse.
In popular press, one frequently sees estimates relating the number of divorces to
the number of new marriages in a given year. This practice can be approximate
at best, since (a) current divorces do not come from the same cohorts as the
current marriages, and (b) both past divorces and marriages influence the measure.
Statistical agencies sometimes calculate a “probability of divorce” in year ¢ by
adding the fractions of those marriages formed during each of the years y < ¢
that ended by divorce during year ¢. For example, the official statistics of Finland
use this measure, and around year 2000 the probability of a marriage ending in a
divorce is claimed to be about 50%. The measure is a bit analogous to the total
fertility rate (cf., Shryock and Siegel 1976, 346) but, unfortunately, patterns of past
divorces can bias this measure.

We have analyzed the nuptiality of the Finnish women in 1998 (using the pro-
gram MTABLE). The states of the system are Single, Married, Divorced, Widowed,
and Dead (cf., Figure 2).

The total number of person years coming from the four living states were
N = 601,100 + 1,004,000 + 234,800 + 269,000 = 2,108,900. With five states
there are potentially 5 x 4 = 20 flows, but in the case of nuptiality, only nine

FIGURE 2. Possible State Transitions in Nuptiality
Processes.




178 6. Multistate Models and Cohort-Component Book-Keeping
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FIGURE 3. Relative Risk of Death Among Married as a Function of the Duration of Marriage:
Average (Solid), in Age 30 (Dashed), in Age 40 (Dotted), and in Age 50 (Dash-Dotted).

are logically possible. Except for the flow from Single to Married, the intensities
may depend separately on age and on duration. As discussed in Example 1.4, a
proportional hazards assumption is not appropriate for all flows. Our results are
based on the general duration-dependent intensity model.

Data on state transitions were available from year 1998, by age x = 17, ..., 99
and duration d =0, ...,x — 17. The estimation consisted of three steps. (1)
Estimates of average intensity were calculated with (1.21) for exact ages x =
17,18, ..., 100, based on data from the two neighboring ages, when available. (2)
For each age, estimates of relative risk (1.22) were calculated. The smoothing pa-
rameter was determined by minimizing (1.24) for each age. Values were restricted
torange 2 < h < 10 on a priori grounds. A comparison to estimates obtained with
fixed values 1 = 5.0 and & = 7.5 showed that the estimates of transition intensities
were insensitive to the exact value of the smoothing parameter. (3) The relative risk
estimates were further smoothed across duration (using RSMOOTH of Minitab)
for each age.

Consider mortality (cf., Figure 1 of Chapter 4). For the divorced and the
widowed the duration effects (not shown) are relatively small, but we see in
Figure 3 that for the married there are systematic effects. Short marriage durations
are associated with high relative risk of mortality. The effect is more pronounced
in older ages than younger ages. Since most of the marriages occur in ages 20-30,
the finding is consonant with the notion that those who marry atypically late
initially experience a relatively high level of mortality which then declines as the
duration of marriage increases.

An analysis of the intensity of widowhood (or equivalently of husband’s death)
has a similar pattern, but the dependency on duration is even stronger (details
not shown). Since spouses are of a roughly similar age, this indicates, that male
mortality is similarly associated with the duration of marriage. We speculate that
marriage can act as a selection mechanism that first tends to select those who are
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FIGURE 4. Distribution of Time Spent in the Divorced State, if Ever Divorced, for a Single
at Age 17.

relatively healthy, due to genetics or life style, but does not provide much additional
protection. The genetic make-up or life style of those who are left out or divorce
may entail greater risks of a kind that a later marriage may reduce.

Returning to the question of the probability that a marriage ends in a divorce, we
can simply repeatedly begin a nuptiality history in age 17 in the Single state, calcu-
late the number of times entry into Marriage occurs, calculate the number of times
entry into Divorce occurs, and divided the latter by the former. This life table prob-
ability of divorce comes out 39%, considerably less than the official figure of 50%.

To illustrate other statistical characteristics, consider the time a woman will
spend in the divorced state, conditionally on her becoming divorced at all. Fig-
ure 4 has a simulated probability distribution for the time spent in divorce. We see
that the distribution is (essentially) bimodal. This is also a multiple decrement phe-
nomenon, in which the first mode is primarily due to those who remarry soon after
the divorce. The latter mode is primarily due to those who do not remarry, but exit
the state of Divorce via death.

1.6. A Model for Disability Insurance

To indicate the broad applicability of the simulation approach to the multistate
setting, consider a model for disability insurance. For a general discussion see
Haberman (1999); here we consider a highly stylized setting. Suppose there are
J = 4 states: j = 1 Employed; j = 2 Unemployed or outside the labor force but
able to work; j = 3 Disabled; j = 4 Dead. Consider an individual born into state
Jj = 2 at time ¢, who is in state I(x) at 4+ x. Suppose the salary of the individual
in age x is of the form s(x, d) given that he or she has worked d < x years in his or
her life time. A fraction 0 < ¢ < 1 is paid as a premium for disability insurance.
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Instead of a fixed benefit, suppose that the benefit is equal to b(d), if the number
of years worked is d when the entry to the state of disability occurs. How should
¢ be determined if the interest rate at time ¢ + x is p(¢t 4+ x)?

Suppose the times of entry into Employedare 0 < Y| < ¥, < - - - withrespective
durations Z;. Suppose the cumulative duration or employment before the i entry
is H;,with Hy =0and H; = Z,_; + - - - + Z, otherwise. At birth, the discounted
value of the entire salary is

Z; Yi+x
S=Z/S(Y,- +x,H +x)exp | — / o(u)du | dx. (1.25)
i=1
0 Y;
Similarly, suppose the ages of entry into Disability are 0 < X; < X, < ---. with

durations Dy, D, ... and H; years worked before the i th entry. Then, the total
value of the discounted benefits is

Xi+D; X

B = b(H}) / exp —/p(u)du dx. (1.26)
i=1 X, 0

Since the times of entries to and exists from the various states are random, both
S and B are random variables. The integrals involving interest rates in (1.25) and
(1.26) can be evaluated numerically.

To calculate the expectations of S and B, we can independently generate paths
i=1,..., N, calculate the value S; of (1.25) and B; of (1.26) for each, and then
take the averages S = (S; + - - - + Sy)/N and B = (B, + - - - + By)/N.Equating
the two expected values, we can determine the premium as fraction ¢ = B/S. Much
more complex benefit, salary, and payment schemes can be accommodated in a
similar manner. In addition, we may let the interest rates p(x) to be random.

2. Linear Growth Model

2.1. Matrix Formulation

The book-keeping of population change can be based on several slightly different
ways of data collection. Rather than pursue generality, we will give one set of
definitions that will be consonant with the estimation theory of Chapter 4. We
first define how time, age, and region are to be understood. Then, we proceed to
develop the necessary arithmetic in matrix form.

We will assume that the same units are used for age and time. Typically the unit
will be one year. Sometimes forecasters wish to enter less data by using five-year
age groups (or ages 0, 1-4, 5-9, 10-14, . ..). The theory we present assumes that
such data have been interpolated into one year age-groups. The population of year
t will refer to the population existing at a single point in time. We will assume
this is the beginning of the year, or January 1, year ¢. (Note that some countries
use the end of the year in their official statistics!) The jump-off population will
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be the population of year ¢+ = 0. This is the population that one wishes to treat as
the latest known population. The vital rates of year ¢ (relating to births, deaths,
and migration) will refer to time [z, ¢ + 1). The first forecasted births, deaths, and
migrations will then occur during year t = 0, and the first forecasted population
will be that of year r = 1.

Age x = 0 refers to those whose exact age is in the interval [0, 1), age x = 1
refers to the interval [1, 2) etc. The highest possible age is denoted by w, and it
refers to the open-ended interval [w, 00). Therefore, there are w + 1 ages in all.
Births are attributed to women only. The lowest age of childbearing is «, and the
highest age of childbearing is B (cf., Section 4.2 of Chapter 4). We will assume
that 0 < @ < B < w.

Population sizes of year ¢ are denoted by a vector of the form

V() = VO, 07, ..., Viw, ). 2.1

Three different interpretations will be given to the vector depending on the context.
First, suppose we have a female population of a single region. In that case V(x, 7)
is a scalar giving the number of women in age x. Second, suppose we have a popu-
lation consisting of both males and females. Then, V(x, 1) = (Vi (x, t), Va(x, )7,
where V) (x, ) is the number of females in age x and V,(x, t) is the number of males
in age x. Third, suppose we have a closed system consisting of males and females

from regions j = 1, ..., J. We can then write V(x, 1) = (V{(x, )T, Va(x, )17,
where V (x,1) = (Vi 1(x, 1), ..., Vij(x, )T and Vij(x,t) is the number of fe-
males in age x, inregion j = 1, ..., J. In analogy, we write for males V,(x, 1) =

(VZI(X, t)a DRI VZJ(xﬂ t))T
The cohort-component arithmetic of all three cases can be written in matrix
form as

V(r + 1) = ROV(@), (2.2)

once the matrix R(7) has been properly defined. The assumption required for (2.2)
to hold is that, in each case, the population is closed. An extension allowing for

migration will be given below. We will call (2.2) the linear growth model.

Define R(7) in terms of blocks, R(z) = (R(x, y, 1)), where x, y =0, 1, ..., w.
In all cases R(x, y,t) =0, unlessx =0anda <y <fB;ory=x—1,0rx =
y = w. In other words, the matrices are of the form (cf., Feeney 1970),

0 ... 0 RO,a,1)...R0,8,1 0 0
R(1,0,71) 0 0
0 R2 1L 0 ... 0
R(@) = 0 0 R3,2,1) 0 0
6 (.)R(w,w.—l,t)R(a),.w,t)
2.3)

3 In time series analysis the same term is sometimes used differently, to describe a state-
space model with a linear trend (e.g., Chatfield 1996, 184).
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In the case of female population we would have R(0, x, t) = expected number
of girls, born during ¢ per woman in age x, that survive to the beginning of next
year; R(x, x — 1, t) = proportion of survivors fromage x — 1 atttoage x att + 1;
and R(w, w, t) = proportion of survivors in age w.

If males are included we would have

C[RO.x.1) 0
RO.x.1) = [RQ(O,x,t) o]’

where R;(0, x, t) = expected number of girls, born during # per woman in age x,
that survive to the beginning of next year, and R,(0, x, t) = expected number of
boys, born during ¢ per woman in age x, that survive to the beginning of next year.
For survival we would have

2.4)

Ri(x,x—1,1) 0 i|’ 2.5)

R(x,x —1,1) = |: 0 Ry(x,x —1,1)

where Ri(x, x — 1, 1) gives the female proportion of survivors from age x — 1
to x during ¢, and R,(x, x — 1, 1) gives the corresponding proportion for males.
R(w, w, t) is defined analogously.

Finally, in the multiregional case R(0, x, #) is a 2J x 2J matrix consisting of
four blocks, as in (2.4). Each block is a J x J matrix. The matrix R;(0, x, ¢) has
the form

Ri11(0,x,2) Ri1200,x,8) ... Ry1y0,x,1)
Ri21(0,x,1) Ri2(0,x,t) ... Ri2y(0,x,1)

Ri(0,x,1) = ) . . ) , (2.6)
Rij1(0,x,t) Ryp0,x,1) ... Ry;;00,x,1)

where Ry;;(0, x, t) expected number of girls born to women in age x in region j
during ¢ that are alive in region i at the end of the year. Matrices R»(0, x, ) =
(R2i;(0, x, 1)) for boys are similarly defined. The remaining two blocks are J x J
matrices of all zeroes. For survival, 2J x 2J matrices of the form (2.5) are defined
where J x J matrices Ry(x, x — 1, 1) have the (i, j) elements Ry;;(x,x — 1,1) =
proportion of women in age x — 1 in region j at ¢ that survive to region i at the
end of the year, as in (2.6). Definitions for males are similar.

Assuming that we have an estimate of the jump-off population V(0) and that we
have forecasts R(t) fort =0,...,T — 1, then the cohort-component forecast of
V(T) is simply

V(T)=R(T — 1)---RO)V(0). 2.7)

We conclude with three comments relating to the generation of births in com-
puter simulations. First, it is common that births are generated using age-specific
fertility rates. In all cases the probability of a child’s survival to the end of the year
must be accounted for. Second, if the forecast is based on o/e rates, then the proper
multiplier is the number of person years during the year rather than the popula-
tion in the beginning of the year. In practice, survival of women can be simulated
and then person years can be calculated. Thus, a correct calculation can be made.
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However, when this is done, (2.2) does not exactly represent the actual calculation.
Third, it is conventional to attribute births to women only. Logically, they could
equally well be attributed to men, but women appear to be preferred for ease of data
collection. From this perspective we are using a so-called female dominance model.
This is a particular solution to the so-called rwo-sex problem that is particularly
relevant when, instead of births, one considers how the incidence of new marriages
is best to be modeled (e.g., Goodman 1967, McFarland 1972, Pollard 1975, Schoen
1988).4

Example 2.1. Two-Sex Problem. Fix a calender year and let Y, ~ Po(A,, K, ) be
the number of marriages among females of age x and males of age y. Suppose
there are N, females and M, males at risk of marriage. The intensity of mar-
riage in the two ages is estimated as ):x_\, =Y,,/K,,, but how should we think
about K, ? Suggestions include K, = N, (female dominance); K, = M, (male
dominance); K, = (N, + M,)/2 (arithmetic mean); K, = (N, M,)"/? (geomet-
ric mean); K., = N.M,/(N; + M,) (harmonic mean), etc. No suggestion has
found universal acceptance, however. Empirical evidence shows that there are
“marriage circles” defined by socio-economic factors and adopted life style, within
which spouses are typically found (Henry 1972, Bozon and Heran 1989). This het-
erogeneity is not explicitly considered in the classical proposals. Thus, one model
may be a good approximation in one cultural or geographic setting but another
model may be better in another (Alho, Saari and Juolevi 2000). ¢

2.2. Stable Populations

In Section 2.2.2 of Chapter 4 we introduced the concept of stable population
in connection with life tables. For some purposes, such as forecasting, stable
population theory is relatively unimportant because, unrealistically, it assumes that
the vital rates remain constant over time. Yet, the concepts of asymptotic growth
rate and asymptotic age-distribution are useful for understanding the long-term
implications of current rates. We will now develop the stable population theory in
the multistate case, based on the matrix representation (2.2).

Suppose we have R(f) =R for all t =0, 1,2, ..., where R is a real-valued
m x m matrix of the form (2.3). In case of a female population, m = @ + 1; in
case of a two-sex population we have m = 2(w + 1); and in case of a J region pop-
ulation we have m = 2J(w + 1). The matrix R has m eigenvalues y; and m linearly
independent right eigenvectors w; # 0 that satisfy the equation Rw; = y; w;. Since
R is not symmetric, it has separate linearly independent left eigenvectors u; # 0
such that u/ R = y;u/. Define T = diag(yy, ..., ¥m), W = [Wi, ..., W,], and
U =[uy, ..., u,]. Aleftand aright eigenvector that correspond to different eigen-
values are orthogonal, and they can be normalized so that UT W = 1. It then follows
that R has the spectral decomposition R = WI'UT = yywiul + .- + y,,w,ul,
(cf., Rao 1973, 43—-44; Karlin and Taylor 1975, 540-542). The eigenvalues satisfy

4 The problem is also central in enterprise demography, when mergers of firms are modeled.
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the characteristic equation |R — yI| = 0. This is a polynomial of order m of y,
with m real or complex roots that are the eigenvalues. No special properties are
required of R for these results to hold.

Suppose now that all fertility rates for ages @ < x < g and all transition rates
(relating to survival and migration) for ages 0 < x < f are strictly positive. To
carry through the technical argument we now make a detour. For the moment, let
us exclude all males, and all females in ages x > f, from consideration. That is,
we delete all elements relating to them from the vectors V(¢) and the matrix R,
so that, e.g., in the case of a single region female population R has g + 1 rows
and columns. Since o < B the strict positivity of the rates implies that from some
power j on, all elements of the reduced matrix R k > J, are strictly positive. The
so-called Perron-Frobenius theorem (Gantmacher 1959, Karlin and Taylor 1975,
542 ff) tells us then that R has a unique, strictly positive eigenvalue, say y;, such
that y; > |y;| for i > 1. The corresponding right and left eigenvectors can also
be chosen real and nonnegative. Using the spectral decomposition one can then
show that (R/y;)* — WlulT, as k — oo. It follows that for large k we have the
asymptotic approximation

RV(0) ~ yfwi{u] V(0)}, (2.8)

where ~ means that the elementwise ratios of left hand side and right hand side
converge to 1. We see that in the long run the initial population V(0) influences
only the level of population via the scalar u! V(0). The asymptotic age-distribution
is determined by w; (when normalized so the elements sum to one), and the
annual asymptotic (or intrinsic) growth rate is given by log(y;). The fact that
the asymptotic age-distribution and growth rate do not depend on the initial age-
distribution is called the ergodicity of the process. Note that the right hand side of
(2.8) defines a stable population, i.e., a population that grows exponentially and
whose age-distribution does not change (cf., Section 2.2.2 of Chapter 4).

Having established the result for the female population in age x < 8, we can
extend it to older females by noting that the surviving women in any age x > f are
(in this deterministic treatment) a constant fraction of those in age = 8. Hence, their
number will asymptotically also grow/decline exponentially. Assuming that the
female life expectancy is finite, we see that a representation of the form (2.8) holds
for females of all ages. Males can similarly be accommodated because the expected
number of male births is a constant multiple (= « /(1 + «)) in terms of the notation
of Chapter 4) of the female births, so they, and the numbers of male survivors, will
also grow exponentially. This completes the proof of the asymptotic behavior of
the population when fertility and mortality rates do not change over time. As shown
by Keiding and Hoem (1976) the results go through in a probabilistic context as
well when proportions are interpreted as probabilities and the average number of
children per woman is interpreted as a statistical expectation.

Although the assumption of unchanging transition rates is crude, the cohort-
component book-keeping, and the corresponding linear growth model, were im-
portant in the theory of population forecasting. Exponential and logistic models
used earlier for the total population had the drawback that they either lead to an
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increase or to a decrease, forever. In contrast, a population may have unchanging
transition rates, a positive current growth rate, but a negative intrinsic growth rate.

2.3. Weak Ergodicity

It is clear that if the matrices R(¢) change over time, there is no guarantee of
a particular long-term growth rate nor that there would necessarily be an age
distribution that the population might tend to. However, a more subtle asymptotic
property does hold. Subject to regularity conditions any two population vectors
will become proportional if subjected to the same sequence of matrices R(7). We
give the main ingredients of the result here, but leave the details into complements.

Suppose we have n x n matrices A(t) = (a;;(¢)),t =0, 1,2, ..., that all have
a strictly positive element in at least one location on every row. Let two sets of
vectors X(7) = (X, (?), ..., X,)" and Y(¢) = (Y (¢), ..., Y,())T evolve accord-
ing to X(¢ + 1) = A(®)X(#) and Y(r + 1) = A(¢)Y(?) from some strictly positive
starting values X(0) and Y(0). It follows that all elements of X(#)’s and Y(¢)’s are
strictly positive for all ¢. Consider the following ratios M, = max {X;(¢)/Y;(¢)|i =
1,...,n} and m, = min{X;(¢)/Y;(0)|i = 1, ..., n}. Clearly, M, > m,, but note
that M, = m, only if the vectors X(¢) and Y(¢) are proportional. Matrix multipli-
cation by a positive matrix has the following contraction property,

m, < X;+1D/Y;t+1) < M,, 2.9

foralli =1,...,n. It follows that M,’s form a non-increasing sequence that has
a limit M; - M as t — oo, and m,’s form an non-decreasing sequence with
limit m; — m < M as t — oo. The limits can be shown to be equal provided,
for example, that the following two conditions hold. First, the positive elements
in the matrices A(r) always occur in the same locations, are bounded from above,
and bounded away from zero. l.e., there are constants 0 < a < A such that for
those elements with a;;(¢) > O we actually havea < a;;(t) < A (e.g., LeBras 1977,
Caswell 2001, 375). Second, there is an integer j > 0O such that all elements of
any j-fold product of A(¢) matrices are strictly positive.

We can translate this result in demographic terms as follows. Consider the lin-
ear growth model (2.2) and assume that all transition rates and fertility rates are
bounded away from zero and bounded above. Then, two multistate population sys-
tems that are subject to the same sequence of matrices R(#) will have asymptotically
the same distribution by age, sex and region, although the common distribution
may change over time and the population has no fixed asymptotic growth rate.
This is the so-called weak ergodicity property of demography. Intuitively, it can
be interpreted as saying that all populations will eventually “forget” their earlier
age-distributions. The current age-distribution depends on past rates only.

Another way to think about the result is that a product of non-negative matrices
P(t) = R(¢)...R(0) resembles increasingly a matrix of rank = 1, in the sense
that there is a sequence M(#) of matrices of rank 1 such that the difference P(r) —
M(#) — 0ast — oo. (This can happen even though the rank of the product would
be n for all ¢!) Therefore, the population at # = 0 influences the asymptotic total
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size of the population, but not its age distribution. The age distribution changes as
a function of R(#)’s, as does the rate of growth.

3. Open Populations and Parametrization of Migration

3.1. Open Population Systems

The multistate linear growth model of a closed population system describes all in-
and out-migration flows within the J states. That is, there are J(J — 1) transition
flows by age and sex. Although this is, in principle, the most satisfactory way to
handle state transitions, it is often hard to apply in practice since the number of
flows that must be considered can be very large. Along with the difficulty of data
collection and the lack of international standards, these considerations have led to
the use of a various shortcut procedures.

The simplest way to handle migration is to make assumptions about the net
number of migrants by age and sex, for each future year. The method is appealing
if in-migration is large and out-migration is small. Under those circumstances
changes in population size do not have an important effect on out-migration, so not
much would be gained by considering out-migration via transition intensities. In-
migration typically cannot meaningfully be analyzed via such intensities, because
“the rest of the world” is a very heterogeneous risk population, and changes in its
size and composition may have little to do with migration into the area of interest.

We formulate the net-migration model by opening a system of J regions
to the rest of the world. Parallel to the definition of R in Section 2.1, define
N(x, 1) = (N;(x, )T, No(x, )T, where Ny(x,1) = (Ny;(x, 1), ..., Niy(x, )T
and N;;(x,t) is the net-number of female migrants from the rest of the
world in age x, to region j = 1,..., J. Similarly, write for males Ny(x, ) =
(Na1(x, 1), ..., Nay(x,1))T. Then, define N(z) = (N(0, 1), ..., N(w, )T)T, and
replace formula (2.2) by

V(t + 1) = ROOV() + N@). 3.1)

Starting from time ¢ = 0, the evolution of the population system to time 7 > 0
follows the equation

T-1 T
V(T) = {]_[ R(t)} VO) + )

—1
=0 k=0

T—1
{ I R(t)} N(k), (3.2)

t=k+1

where the products are “backward” as in (2.7), and a matrix product with no
elements (this occurs when k = T — 1) is defined as an identity matrix. When
J =1, the model (3.2) describes a single region, two-sex population that is open
to migration.

3.2. Parametric Models

Consider the internal flows among the J regions. There are several intermediate
models of out-migration rates. Notably, Rogers (1986) has used the so-called
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double exponential model to describe the level and age-structure of migration
intensity using ten parameters. Others have used data-analytic techniques (e.g.,
Van Imhoff et al. 1997, Lin 1999, Willekens 1999). We will briefly outline two
approaches of the latter type.

3.2.1. Migrant Pool Model

The migrant pool model uses out-migration rates that are not destination specific.
One first forecasts the total number (“pool”) of out-migrants from all regions. In-
migrants are then obtained by redistributing the migrant pool back to the regions
according to some forecasted shares. Statistically this means that destination is
independent of the origin, or that we have a log-linear model representation of net
migration from j to i,

Rsij(x+ l,x,t)=exp(0l5i(x,t)+,35j(x,t)), (33)

where s = 1 for females and s = 2 for males. Even simpler versions are obtained
by taking the parameters to be age-independent, for example ;i (x, 1) = oy (1) or
Bsj(x, 1) = By;(t). The parameters of the loglinear model can be estimated using
Poisson regression. However, due to the independence assumption one can directly
estimate the outmigration rates, and the shares, and do the multiplication.

The migrant pool model requires J out-migration rates, and J shares, for each
age and sex. If J is large, then a considerable reduction in the number of parameters
is achieved, compared to the full set of J(J — 1) interstate flows. For example,
Finland produces forecasts of the population of approximately J = 450 munici-
palities, so the model of full flows would have about 200,000 parameters for each
age and sex, whereas the pooled model only has 900. On the other hand, if J = 2,
no savings are achieved.

3.2.2. Bilinear Models

It is well-known that the intensity of migration is heavily age-dependent in a way
that is rather similar in most regions. Bilinear models of the type discussed in
Chapter 5 provide a description of age patterns.

Consider the following three (J = 3) regions of Finland: the Helsinki re-
gion (consisting of cities of Helsinki, Espoo, Vantaa, Kauniainen); North-Eastern
Finland (Lappland, North Carelia, and Kainuu); and the remaining West-Central
Finland. Helsinki region has typically gained migrants, and North-Eastern
Finland has lost. There are six flows. For sexes s = 1, 2, consider a bilinear model
of the form

Rsij(x + 1, x,1) = g (#) + vs(x) + asi (0)vs(x) + Bsj(0)ns(x) + &5 (x, 1),

(3.4
where E[egj(x,1)] =0. For interpretation and identifiability, we may as-
sume, for example, that X,y,(x) = Z,vs(x) = Zyns(x) = 0; Zys(x)vs(x) =
2 vs(0)ns(x) = Zevs(x)ng(x) = 0; and Exvs(x)z = me(x)z =lfors=1,2
separately. Then, 1i,;;(t) would determine the overall level of the intensity from
J to i during year ¢, and y,(x) would determine the dependence of migration in-
tensity on age, and the remaining two terms would represent interactions between



188 6. Multistate Models and Cohort-Component Book-Keeping

0.05 —

0.04 —

0.03 —

Density

0.02 —

0.01 —

0.00 —|

I I I I I I
Age 0 20 40 60 80 100

FIGURE 5. Average Density of Male Migration in Finland, Across Three Regions, During
1987-1997.

flows and age. Consider the males. Figure 5 provides the average distribution of
migration intensity, across the six flows and 11 years of observation. Principal
components were used to estimate the vectors (or “factors” in the terminology
of factor analysis; e.g., Afifi and Azen 1979, 324-325) (v,(0), ..., vs(@))" and
(15(0), ..., ns(w)T, see Figure 6. The solid curve depicting vs(x)’s accounts for
67% of the variation around the mean, and the dashed curve depicting n,(x)’s
adds 6%, for a total of 73%. We see from the solid curve that the most important
aspect of deviations from average, is in terms of how much of migration is concen-
trated in ages 19-29 as opposed to ages < 10, 30—40, and 60—70. A large positive
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FIGURE 7. Coefficients of Deviations from the Mean for the Six Flows (H = Helsinki,
CN = West-Central, N = North-East), During 1987-1997.

(negative) coefficient for this pattern in a given year for a given flow would indicate
that there were relatively few (many) males in ages 19-29 in that flow. The second
most important way the flows differ is in terms of how many 18-21 year olds have
moved as opposed to 24-27 year olds. The younger age bracket coincides with
the beginning of higher education and/or leaving military service, and the latter
with family formation and seeking of permanent employment. Figure 7 shows the
coefficients (or “factor loadings™) («;;s(¢), Bijs(t)) as points on a plane for years
1987, ..., 1997, for each of the six flows. Although the evolution of time has not
been indicated in the plot, we note that for some flows the age pattern has changed
in aregular manner (notably flow CN, or the flow from West-Central to North-East)
but in others changes have been more erratic.

4. Demographic Functionals

The notion of a multistate population system is motivated by two types of consid-
erations. First, we may primarily be interested in the size of the total population,
but disaggregating the population by state other than age and sex may be helpful
in formulating the forecasts of the vital rates. For example, we might wish to dis-
aggregate the population by ethnic categories and marital status for the purpose
of analyzing either fertility or survival, if it is known that fertility, mortality, and
migration depend heavily on ethnicity.

Second, the states may be of direct interest by themselves. For example, we
may be interested in marriage patterns on their own right; we may wish to analyze
trends in unemployment, etc. In these applications, the possible differences in the
vital rates of the different states may be of secondary interest, and the states may
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be viewed as functions of the total populations via the prevalence rates of the states
by age and sex.

More generally, we define a demographic functional as a function of either a
population vector or a vector of vital rates. Since both vectors can be viewed as
functions of age, we are speaking of a function of function, or functional. The
function may also be random given the total population vector or vital rates.

Example4.1. Marriage Prevalence as a Functional. Let;(x, t)be the fraction of
those in age x attime 7, inregion j, of sex s, who belong to a specific subpopulation,
e.g., those in the Married state. Then, 7ry;(x, t) is called the prevalence of marriage.
The total married female population at time ¢ in region j is then the following
demographic functional,

D e, Vi(x, 1), 4.1)
x=0

Forecasting (4.1) involves two sources of uncertainty: how accurately can we
forecast the vector Vy;(¢), and how accurately can we forecast the correspond-
ing (random) vector of prevalences 7 ;(¢). The approach that analyses multistate
problems via prevalence rates is sometimes called Sullivan’s method. For reasons
similar to the ones discussed in Section 4.3.3 of Chapter 4, prevalence rates are
actually complicated functions of past transitions between the states, so care is
needed in their application. ¢

Example 4.2. Life Expectancy as a Functional. The remaining life expectancy
ey, as defined in (2.8) of Chapter 4, is a nonrandom, nonlinear functional of the
age-specific mortality rates. We can view its forecast as a functional forecast.

Example 4.3. Age Dependency Ratio. One of the most useful functions of age-
distributions is the so-called age dependency ratio. It is usually defined as the ratio
of the population in ages <15 or >64 to those who are in ages 15-64. Therefore,
conditionally on the population vector its value is a fixed (i.e., nonrandom), non-
linear function of the population vector. The age dependency ratio gives a rough
indication of how many dependents each person in working age must support. ¢

Example 4.4. A Relation Between Prevalence and Incidence. In the folklore of
epidemiology the following argument concerning prevalence is sometimes given.
Suppose a population of size N is composed of those D who are diseased and
N — D who are not. Let the average duration of the disease be d and let the
incidence of disease be v. Then, we should have D = (number of new cases per
year) x (average duration) = v(N — D)d. The prevalence of diseaseis p = D/N.
Then we have that p/(1 — p) = vd, or prevalence odds = incidence x duration.
For the argument to hold, one has to assume that (i) the population being studied
is stationary, and (ii) incidence and expected duration of illness are uncorrelated
as functions of age (cf., Alho 1992c). Both assumptions may fail (e.g., intensities
of most flows of Section 1.5 depend heavily on age leading to a possible violation
of (ii)), so the formula is a rough approximation only. ¢
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5. Elementwise Aspects of the Matrix Formulation

The matrix formulation of Section 2 is helpful in showing the broad outlines of
population renewal. However, examination of some of the elementwise relation-
ships provides additional insights. We consider first survival in a closed multi-state
setting, and then the renewal of female births in a single state case.

Consider the number of individuals of sex s in region j, who are in age x > ¢
at time ¢. They were in age x — ¢ at jump-off time ¢ = 0, so their number is

J J J
Ve, ) =Y ) e Y Vg (x — £, 0)explry i —t + 1L.x —1,1)

io=lij=1  i_=I

oo, (e, x — 1,0 = D). (5.1)

In later chapters we will treat the elements of the matrices R(#) as random variables.
In the single region case (J = 1) the sum reduces to a single exponential term, so
the stochastic analysis of survival involves merely a sum in the log-scale. However,
when J > 1, we have a sum of J' terms (this can be a large number: e.g., when
J =2,andt = 50, we have 2°° &~ 10" summands), and no transformation reduces
(5.1) into a linear form exactly. Taylor-series approximations can be provided, but
loss of accuracy cannot be avoided.

Assume now that J = 1, and consider the youngest female age-group during
year ¢t > (. At that time all women giving birth have, themselves, been born after
the jump-off year. It follows that for j = 1 we can write

B
Vij0.0) =Y V100, 1 — x)expl{ri;(1,0, 1 —x) + - +rij(x, x — 1,1 = 2)

X=a

+ 710, x,t — D} (5.2)

This is called a renewal equation for the youngest age, because it expresses the
value of year ¢ in terms of the values of past years + — x. Under the assumption of
constant vital rates, one can solve the renewal equation to determine the asymptotic
growth rate of the population defined in Section 2.2. (In this case the exponential
terms of (5.2) comprise the net maternity function appearing on the right hand side
of (4.4) of Chapter 4.) We will come back to this in Section 5.1 of Chapter 9.

6. Markov Chain Models

When individuals move from state to state in a multistate demographic system, they
create migration histories that can be described probabilistically. The simplest such
model is the Markov chain in which an individual moves in discrete time among
a finite or countably infinite number of states and the probability of moving at
step n from state j to state k only depends on j and k, and not what states the
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individual had visited prior to n (e.g., Cinlar 1975).°> The theory of Markov chains
is related to the theory of stable populations, as discussed in Section 2.2. Instead
of pursuing those topics we provide an ecological example that uses both Markov
chain ideas and capture-recapture techniques to analyze a multistate population
system.

Example 6.1. Metapopulation of Butterflies. Consider butterflies that live in J
meadows. Each meadow may be too small to sustain a separate population, but
migrants from other meadows may regenerate a population that has become extinct
due to a storm, for example. A population consisting of such communicating sub-
populations is called a metapopulation in ecology. The situation is of ecological
interest, because human intervention may alter the pattern of meadows and forest
land and pose a threat to the butterflies (Wahlberg, Moilanen, and Hanski 1996).
The parameters of ecological interest include the probability of death within a
meadow and the probability of death during migration. These are hard to estimate
because it is impracticable to keep track of all butterflies in an experimental situa-
tion. Instead, ecologists use capture-recapture techniques to study the population.

Assume thatduringdayst = 1, ..., T atotal of N butterflies have been captured
and marked. This generates a capture history of locations s, ..., s, and times
t] <--- <y, for each captured butterfly i = 1, ..., N, where n; is the number
of captures. Movements of butterflies can be viewed as having no memory: the
probability of leaving a meadow for another at time ¢ depends only on the meadow
the butterfly is in, not on the path before 7. Therefore, a Markov chain model is
appropriate. Let j = 1, ..., J correspond to different meadows. Define a J x J
matrix of transition probabilities P = (p(j, k)) with

p(j, k) = P(state is k at time 7 + state is j at time 7). 6.1)

These probabilities depend on mortality during the transition, and mortality while
in a meadow. For each ¢ there is a set of meadows B(¢) in which catches were
made with capture probabilities 0 < p;(¢) < 1 for j € B(z). These probabilities
are primarily influenced by the weather. We omit the complex details, but note
that the probability of the observed path can then be expressed in terms of the
transition matrix P and the capture probabilities p;(¢). As discussed in Hanski,
Alho, and Moilanen (2000) it is natural to let transition probabilities to depend
on the area of the meadows, their mutual distances, and mortality, via parametric
models. The object is to estimate P and the capture probabilities. In this application
it is impracticable to calculate the derivatives of the likelihood function. However,
the maximization can be carried out using global optimization methods such as
simulated annealing that rely on a stochastic search of the parameter space (Press
et al. 1992, 436ff). In fact, Markov chain theory provides a practical method for
carrying the search (cf., Ripley 1987, 181-182). {

5 For example, the random walk model used to describe leadership duration in Section 8 of
Chapter 5 is Markov chain with states {r,...,0,1,2,...}.
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Exercises and Complements (*)

1. Show that if u(z) = b/(1 — bt) for t € [0, 1], then the Runge-Kutta method
with & = 1 produces an exact solution for p(1).

2. Use the Runge-Kutta method to solve numerically the value of the survival
function p(¢) fort =0, 1, ..., 100, when the force of mortality is given by
the Gompertz-Makeham law with A = 0.00376, R = 0.0000274, and « =
0.104. Compare the result to the exact value obtained by integrating the
hazard.

3. Consider a four state system with states employed (j = 1), unemployed (j =
2), outside workforce (j = 3), and dead (j = 4). Being absorbing, the last
state can be left out. Use the spectral representation to calculate p(¢) for
t =0,1,...,20 when the constant transition intensities are given by the
matrix

—0.08, 0.03 0.10
0.02 -0.07 0.10 |,
0.04 0.02 -0.22

and the person starts from outside the workforce.

4. Continuation. Calculate the expected years spent in different states (during
[0, 20]) in the setting of Problem 3.

*35. Consider a function y(x), x € [0, 1], such that y(0) = 0, y(1) = 1, y'(0) =
B, and y'(1) = y. Determine a, b and c so that function z(x) = ax + bx> +
cx® has z(x) = y(x) and 7/(x) = y'(x) at x =0, l. Interpreting y(x) =
E[I(x) =¢;|1(0) =e¢;]/E[I(1) = e|I(0) = e;] the values for B and y are
available from the Runge-Kutta output. Neglecting the possibility of more
than one transition one might then impute the time of departure from j as
7 '(U), where U ~ UJ0, 1]. This solution is only feasible if z(x) turns out
to be monotone.

6. Consider the setting of Example 1.3 withp(x) = I+ xB)aandv(x) = B +
xB)~! for x € [0, 1]. Suppose we estimate transition intensities by o/e rates,
say, v(1/2) = ©. Then, deduce from the latter equation the estimate B=(1-
(1/2))~'o. Substitute into the first equation to get p = (I — (1/2)2)~ ' +
(x — 1/2)D)a. (cf., Rogers and Ledent 1976).

7. What is the average age at retirement? As in the case of mean age at child-
bearing (cf., Section 4.2 of Chapter 4), different answers to this question can
be given depending on what the goal of the calculation is. First, one can
simply calculate the average age at retirement of those who retire in a given
year. This may be what is wanted, but this average depends on the sizes of the
earlier birth cohorts, and on the earlier transitions to the state of retirement,
so it is certainly not a pure period summary of transition intensities. How can
a multistate model be used to define the concept?

8. Consider a transition j — i, but omit the indices from N;;(¢) and K ;(¢) to sim-
plify the notation. Suppose the density of population is k(s) = ko + ki (t — s)
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and the average rate is v(s) = vg + v;(t —s) for s € [t — 1, ¢ + 1). Deduce
that

t+1
Kt-1)+ K@) = f k(s)ds = 2ko;
t—1

t+1
Nt—-—1D+N@) = f v($)k(s)ds = 2voko + 2v1k /3.

t—1

Use the estimates
vi=v@t)—vit—1); k=K@ —K@{t-1)

to obtain the estimator (1.21) for vy.

*9. A “quick and dirty” way to assess the statistical significance of multistate
life table summaries is as follows. Consider (1.13), and suppose first that
we observe a cohort of size N under no censoring. In this case, we estimate
the components of (1.13) by 7; = average time spentin j =1, ..., J. Let
V; = variance of the times spent in j, so the standard error is (V;/N )2,
Second, instead of cohort data, suppose we have period data that come from
a stationary population of size N. In this case we could repeatedly gener-
ate samples of size N using the estimated transition intensities, and perform
the same calculations as for a cohort. These bootstrap replications would
give us an estimate of the sampling distribution of (1.13). Our proposal is
to use the above period data procedure, even if the data do not come from
a stationary population, and to call standard errors calculated in this way
stationary equivalent standard errors or SESE’s. In this case we determine
the birth rate of the stationary population underlying simulation so that N =
person years lived in the population from which the data came. (a) Can you
see why T; and V; can be estimated from any number (# N) of simula-
tions rounds? (b) When would you expect SESE’s to be too small, or too
large? (Hint: think of younger and older age-distributions than the stationary
one.)

10. Consider eigenvectors Rw; = ~y;w; and uJTR = ’)’_I‘u; with ~; # ;. Show
that uj' w; = 0.

11. Consider a female population in two regions (J = 2). Suppose the female
population in age x = f is exponentially increasing with rate y, or

Vij(B,t) = Vi;(B, 0)exp(y1),

for j = 1, 2. Suppose the probability that a person in age 8 inregion i survives
to be of age x > B in region j is p;;(x, B) fori = 1,2 and j = 1, 2. Show
that the Vi (x, t) and Vi,(x, t) also evolve exponentially at rate y .
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Consider a female population, closed to migration, that has constant fertility
and mortality rates. Restrict attentiontoages x = 0, ..., 8. Suppose the limits
of childbearing ages are « = 2 and 8 = 4. The matrix R is of the form

0 0 *x *x =x

*= 0 0 0 O

R=(0 x 0 0 O],
00 = 0 0
0 0 0 % O

where * denotes some strictly positive fertility rate (on first row) or survival
probability (on first subdiagonal). Show that there is a power j such that all
elements of R* with k > j are strictly positive. (Hint: One way to do this is
to replace * by, e.g., 1, and to carry out the multiplications with a computer.)
Consider amatrix R = (r;;) withi =0, ..., 8and j =0, ..., B. Suppose the
elements ro; = f; are strictly positive for j = «, ..., B. Similarly, assume
that the elements r; | ; are strictly positive. All other elements of R are zero.
Consider the eigenvalue problem,

Rw = \w,

where w = (wy, ..., Wﬁ)T is non-zero vector. Define
X
Px = H”i,i—l-
i=1
Show first that if X is an eigenvalue, then the corresponding eigenvector has
the form w, = cp,/A* forx =1, ..., B and wy = ¢ is some constant.
Using this, show that A must satisfy the polynomial equation,

B
AP = Z fxpx)hﬁ_x'
X=o

Note that the coefficients f p, on the right hand side are the discrete version
of the net maternity function (provided that only female births are considered
in f,!).

By considering values A > 0, show that a positive, real solution to the poly-
nomial equation of Exercise 13 exists. To show that it is unique requires more
work (cf., Keyfitz 1977, 48).

Solve the polynomial equation of Exercise 3 numerically (using the secant
method, Newton’s method, or by using existing software) for a data set of
your country.

Exponential population growth. Suppose population at time ¢ is V (¢). Assume
that its growth rate satisfies the differential equation V'(¢)/ V(t) = r(¢). If
V(0) = A, show that for r < 0,

t

V(t) = Aexp /r(s)ds

0
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Logistic population growth. Suppose the population growth rate satisfies the
equation V'(¢)/V(t) = r(t)(M — V(t))/M, where M > 0 is some constant.
Show that if V(0) = A < M, then by defining B = (M — A)/A we get

1

V(t) = M exp /r(s)ds / B+exp/r(s)ds
0

0

Prove the relationship (2.9) by showing that

Xt + /Y + 1) = > wi(0X,(1)/ Y1),

j=1
where w;;(t) = a;;(1)Y;(t)/ Zpain(t)Y,(2).
Continuation. Suppose the non-zero elements of matrices A(¢) are located in
fixed locations in such a way that for some j > 1 any j-fold product A(z +
J— DA+ j —2)---A(t) = B(t) = (b;;(¢)) has only strictly positive ele-
ments (cf., Exercise 12). Then, (2.9) holds for the subsequences X*(t + 1) =
A*)X*(1) and Y*(r + 1) = A*(1)Y*(2), where A*(1) = (a};(1)) = B(z)) for
t =0,1,2,..., and the starting values are X*(0) = X(0) and Y*(0) = Y(0).
Le., we are picking every j" vector from the original sequences. (a)
Show that if the non-zero elements in A(t) satisfy 0<a<ai) <A,
then there are constants 0 < a* < A* such that a* < a] (t) < A*. (b) De-
fine w; (t) =a] (t)Y*(t)/Zha (Y (1), and show that O <c*/n < wl](t)
where c* = (a”‘/A”‘)2 (Hint: conclude from Y*(r) = A*(t)Y*(t — 1) that
A*TpY (t = 1) > Y (1) > a* Yyt — 1))

Continuation. Define M} and m} for the X*(¢) and Y*(¢) processes as for the
original ones.
(a) Show that M}, | —my = M/ | —m;_,, where

*( )

MtJrl = max; Z(wl](t) —c /n) 0
j=

)

(
My, = min; Z(ww(t) —ch )Y*(z)

(b) Show first that
M, < M}y (wii(t) = c'h) = Mj(1—c"),
j=1

and then that m; | > mjy (1 — c*).

(c) Conclude that M} | —m}, < (M] — m*)(l —c¢*). Since 0 < ¢* < 1,
this proves that the limits of M;* and m, and hence those of M, and
m;, are equal. This proof of Weak ergodlclty is due to LeBras (1977).

Consider a single region. An alternative to additive net migration is to use

the so-called census survival rates or census survival probabilities in place
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of ordinary survival proportions. The idea is that one corrects the mortality
rate (and birth rates) to reflect the net effect of migration in each age.
Suppose the transition probabilities (6.1) of a Markov chain are given by a
J x J matrix P. Suppose each state can be reached in one step from any state.
Check that a column vector of J ones is a right eigenvector of P corresponding
to eigenvalue 1. Note that the j™ row of the product P* gives the k-step
transition probabilities of the chain. Using the Perron-Frobenius theorem,
show that 1 is the largest eigenvalue and there is a J-vectoru = (uy, ..., uy)
such that u; > 0 is the probability that the chain is in state j for large k
irrespective of the state it has started from. This is an ergodic property of
Markov chains. The u;’s determine the invariant distribution of the chain
when they are normalized to sum to 1.



7

Approaches to Forecasting
Demographic Rates

Statistical prediction theory accepts, as a starting point, that error cannot be
avoided. The best forecast is the one that minimizes error according to the chosen
criterion. This is in contrast with the “crystal ball” usage, in which it is assumed
that forecasting is possible only when the future can be seen clearly, without error.
We believe that the statistical outlook has much to offer to demography. In partic-
ular, recognizing uncertainty leads towards its quantification. This aids in decision
making by helping us to prepare for realistic future alternatives in a systematic or
at least thoughtful manner.

In this chapter we develop a conceptual basis for the discussion of statistical
aspects of demographic time series, and provide guidance to the critical use of
time series models in demography. The emphasis will be on simple models rather
than theoretical generality. In Section 1 we discuss the basic building blocks of
time series models. In Section 2 we refine the models by allowing for intermediate
levels of autocorrelation. Section 3 discusses the various ways nonconstant means
can be handled. Then, in Section 4 we discuss models for processes whose variance
changes over time.

1. Trends, Random Walks, and Volatility

A collection of random variables Y, where ¢ belongs to some index set is called a
stochastic process'. Earlier, the assumption of independence was natural in many
applications. For example, in Chapter 5 we used random variables Y, 1>, ..., ¥, to
represent observations coming from different individuals (or different age-groups,
different sexes etc.). Here, we associate the observed value Y; = y, to time ¢, so
the random variables can be used as a probabilistic model for a time series. This
creates a natural ordering for the variables, and many forms of dependence can be
entertained.

! The random variables are assumed to be defined on the same probability space.

198
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It Y, = ¢, where €1, €, ..., &, is an i.i.d. sequence of random variables with
Ele;] = 0 and Var(e,) = 052, then (especially in engineering literature) one often
speaks of white noise or a white noise process.

Define Z, =Y, +---+Y, =1+ ---+¢&,fort =1,2,...,n, and Z; = 0.
This is a random walk. 1t is characterized by the fact that the first differences,
or increments, Z, — Z,_| = &, form an independent sequence. Suppose we have
observed the process Z, fort =1, ..., n, and we would like to forecast its future
values. Since the increments &,41, &42, . . . are independent of Z;, t < n, and they
have mean zero, the minimum mean squared error forecast is the latest observed
value of Z,,, forever after.

Random walks have long been used as models for stock prices, because in ef-
ficient markets stock prices should be unpredictable (e.g., Bachelier 1900; Taqqu
2001; Bernstein 1998). In continuous time the corresponding model is called Brow-
nian motion. It has been used as a model for the erratic movement of particles in
liquids, where collisions with other particles occur continuously. We will present
evidence in Example 4.1 of Chapter 8 that a random walk also provides a service-
able approximation for the (logarithm of the) total fertility rate in industrialized
countries. This provides us intuition concerning the relationship between period
and cohort fertility.

Example 1.1. Cohort Fertility Is Smoother. Figure 1, dashed line, is a realization
of a process 7, = 1.7 x exp(Z,), where Z, is a random walk with the standard
deviation of the unit increment o, = 0.06. (Motivation for this particular choice
will be provided in Example 4.1 of Chapter 8.) At ¢ = 0 the process starts at 1.7.

20 —

Total Fertility

0.5 —

0.0 —

] ] ] ] ]
Year 10 20 30 40 50

FIGURE 1. Hypothetical Cohort (Solid) and Period (Dashed) Fertility Under a Pure Period
Random Walk Model.

2 If made audible via a transmitter, the process sounds like noise you hear in between stations
on radio.
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The process T; represents the period total fertility rate. The solid curve is moving
average of the series, with weights w; > 0, wys + - - - + wy9 = 1. The weights
used in the graph correspond to the distribution of total fertility to single years of
age, as estimated for 1985 in Italy; cf., Example 4.1. Thus, the solid curve can be
interpreted as the cohort total fertility rate. (For an example of an observed cohort
total fertility series, see Figure 7 of Chapter 4.) The curves have been matched so
that the cohort value has been plotted for the year when the cohort is of age =
28, the mean of the fertility distribution. That is, the solid curve can be defined as
C, =wisTi—13 + ... + waoT;421. We find that the cohort curve is much smoother
than the period curve although, by construction, all variation is due to period

effects. O

In principle, the example could be turned around so that period fertility would
be represented as a weighted average of cohort fertility. However, in the absence of
period effects it would be difficult to imagine why cohorts in their different phases
of childbearing might coordinate their timing to produce the observed variations
in period fertility.

The example shows that the relative smoothness of the cohort curve is to be
expected even when there are no cohort effects. It is certainly plausible that the
cohort point of view is useful in understanding the childbearing decisions of the
couples. However, in order to be able to capitalize on the regularities of the cohort
fertility in forecasting, more is needed than mere smoothness!

Let us now take u # 0, and define first Y; = u + &, and then Z, = Y; + - - - +
Yi=tu+e +---+e¢,fort =1,2,...,n.The Z; process is a random walk with
a drift. For u > 0 this process tends to wander up and for u < 0 it tends to wander
down. We see that an assumption of nonzero mean for the increments actually
induces a linear trend into the summed series, E[Z,] = fu. In long-term analysis
of stock prices it is necessary to take into account the fact that stocks have appre-
ciated at an average rate of several percent per year. Thus, a rough approximation
of the development of a stock’s price would be to assume that in ¢ years’ time
the current price will be multiplied by a factor exp(fu + &1 + -+ - + &), u > 0. In
contrast, in the analysis of mortality we typically observe declines that are inter-
rupted by plateaus or even increases. Thus, a model of the same type with u < 0
may provide a serviceable approximation for many ages. In both cases, it is not
simply the value of w that is of interest, but also the value of o2, or the volatility,
because it determines how much the process tends to wander around the trend. In
fact, since the sum of i.i.d. terms with mean zero and finite variance is (subject to
regularity conditions) approximately normally distributed, the change in value has
an approximate log-normal distribution. Therefore, if the values of u and o, are
known, and the process starts from value V at t = 0, then the probability is ap-
proximately 95% that the process is within limits Vexp(tu & 1.960,¢!/ Zyatt > 0.
This is an example of a prediction interval, i.e., an interval that has a prescribed
probability of containing the value of a random variable. (In contrast, a confidence
interval is a random interval with a prescribed probability of including a constant,
such as a mean.)
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In addition to giving rise to random walks, white noise provides a basis for
simulating arbitrarily correlated variables. To see this, define € = (g1, ..., ¢,)" a
vector of i.i.d. variables with o> = 1. Let X be an arbitrary covariance matrix. The
Cholesky decomposition gives us a way to find a lower triangular matrix C such
that ¥ = CCT . It follows that a vector Y = Ce has covariance matrix X, because
Cov(Y) = CCov(e)CT = X. Note that the lower triangularity implies that any Y,
dependson¢;,i =1,...,¢, butnotoni > t.

Example 1.2. Cholesky Decomposition. Suppose the target covariance 3 and the
Cholesky matrix are of the form

1g0<p2 ct 0 0
Y=o le |, C=|cucn 0 |, (1.1
pr o 1 €31 €32 €33

where |@| < 1. Write ¢ = (1 — ¢*)!/2, for short. By a direct matrix multiplica-
tion one can show that a solutionis c;; = 1, c21 = @, c31 = @2, ¢ = ¢, 3 = @C,
c33 = c. (Note that the decomposition is only unique up the sign of the diag-
onal terms.) Consider the transformed values Y = Ce. We find that Y| = ¢,
Yy = @& + cer, Y3 = p%e) + @cesr + ce3.0ne consequence of these relationships
is that we can write Y, = ¢Y,_| + c¢, for t = 2 and r = 3. This is an example of
the so-called autoregressive processes that will be discussed in more detail in the
next section. ¢

2. Linear Stationary Processes

Inthe 1920’s, 1930’s, and 1940’s, when demographers were developing the cohort-
component forecasting system, probabilists developed foundations for the so-
called stationary processes. This theory was based on a linear transformation of
white noise, much the same way as the Cholesky decomposition was used above.
Although the main features of the theory were essentially perfected by the begin-
ning of the 1950’s (cf., Doob 1953), their practical application in statistics did not
become standard until the publication of the monograph by Box and Jenkins in
1970 (second edition 1976, third 1994). Early examples of their use in demography
include Saboia (1974, 1977). In this section we will develop the theory with two
primary purposes in mind. First, we want to be able to discuss the strengths and
limitations of basic time series techniques. Second, we will establish a number of
formulas regarding the prediction errors of such processes that will later be useful
in the description of qualitative aspects of errors of different types of forecasts. For
details about practical modeling, and time series analysis in general, we refer to
standard textbooks such as Box and Jenkins (1976), Chatfield (1996), or Harvey
(1989).
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2.1. Properties and Modeling
2.1.1. Definition and Basic Properties

Let...,Y_y, Yo, Y1, Y2, ...bea(doubly infinite) sequence of random variables. As
above, we associate the observed value Y, = y, with time. A particular realization

<oy Y—1, Y0, Y1, Y2, - - . of the process is called a sample path. Suppose the i.i.d.
sequence ..., e_p, €9, €1, €2, . .. with E[g,;] = 0 and Var(e,) = 082 is white noise.
As in the case of Cholesky decomposition (Example 1.2), let us assume that each
Y; can be written in the form

Y = Yo& + Yi&—1 FYnga+ -, 2.1

where ¥y = 1, and the series of the absolute values of 1/;’s converges. The process
&, is also called an innovation process, because its values generate the Y,’s.> The
process (2.1) is called a linear process, because each Y; is a linear function of the
innovation process. Since the expectation of each term on the right hand side of
(2.1) is zero, it follows that E[Y;] = O for all ¢. In practice, processes (2.1) are
used for centered data (i.e., for variables from which the estimated mean has been
subtracted) so the assumption of mean zero is not a limitation. If the estimated
mean is imprecise, e.g., if the number of observations is too small, the theory is
only an approximate guide.
The variance of Y, is finite, and of the form

o0

Var(Y,) = o2 "7, 2.2)
j=0
for all . More generally, we have that
Cov(Y,, Yi) = 02 Y Yithi (2.3)
i=0

for all ¢, and k > 0.

We have observed that the mean of the process Y; does not change over time.
Moreover, since the autocovariance (2.3) only depends on the lag k (not on ), the
process is called stationary (in the wide sense).

Define y; = Cov(Y;, Yi4x). The autocorrelation function of the process is
given by pr = yx/yo for k =0,1,2,.... When data for t = 1, ..., n are avail-
able, autocovariance is usually estimated by the sample autocovariance c; =
(Y, = V) Yiar — Y)/n, where ¥ = (Y, +---+Y,)/n and the summation is
over t = 1,...,n — k. Autocorrelation is estimated by the sample autocorrela-
tion ry = ¢y /co.

3 From a mathematical point of view the &,’s form an orthonormal basis of a vector space
(Hilbert space) on which each of the Y; is defined, with coordinates given by the v;’s. For
most aspects of the theory, an assumption of uncorrelatedness of the innovations would
suffice.
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Autocorrelation is a useful tool in the identification of a linear model. Unfor-
tunately, as a rule of thumb, the standard error of the first sample autocorrelation
is approximately n~'/? (e.g., Box and Jenkins 1976, 34-36). A time series must
have at least 50-100 observations to allow for a somewhat precise estimate of
the autocorrelations. This in itself is a strong reason for considering parsimonious
models, i.e., models with a small number of parameters.

2.1.2. ARIMA Models

We now define a subclass of linear processes that depend on a small number of
parameters. An advantage is the availability of relatively objective methods of
identifying a model from the class.

Example 2.1. MA(q) Processes. Assume v, # 0, and /; = 0 for j > ¢. Then,
(2.1) defines a moving average process of order g, which is usually denoted as
M A(q). Written with the customary symbolism ; = —6, the MA(1) process is of
the form Y, = &, — 6¢,_, for example. Its variance is Var(Y;) = ‘722(1 + 6?), and
its autocorrelation function is zero except p; = —0/(1 + 6%). An MA(2) process is
usually written as Y, = &, — 61&,_1 — 62&,_, etc. As a limiting case, takingg = 0
we obtain the white noise discussed in Section 1.

Moving averages are frequently used in demography and economics to smooth
out random variation. Suppose, for example that D, ~ Po(u, K;) is the number of
deaths in year ¢ (in a given age range, in a given area), where , is the hazard and
K, is the number of person years. Define m, = D,/K, as the observed mortality
rate. Using 5 years on both sides to estimate the local level for year ¢ we get the
smoothed value

5
(t) = Z wim;_j, (2.4)
j==5

where w; > 0and w_s + - - - + ws = 1. Then the smoothed values are essentially
moving average processes, and as such autocorrelated. To illustrate the possible
consequences of smoothing, suppose that u, = u and K, = K for all ¢. In this
case E[m,] = n and Var(m,) = u/K. Suppose the deaths during different years
are independent with © = 0.01 and K = 10,000, so 100 deaths are expected every
year. Let w; = 1/11. Figure 2 has a graph of such a process fort =1, ..., 100.
We see that smoothing creates artificial waves in the plot of the estimate even
though the underlying time series values are i.i.d. This is called a Slutsky effect in
recognition of the pioneering work of Slutsky (1927).

Example 2.2. AR(1) Processes. An autoregressive process of order 1, or an AR(1)
process, satisfies the recursive equation,

Y =Y 1 + &, (2.5)

where |¢| < 1. Using the recursion (2.5) for r — 1, and substituting back in, we
getthatY, =& + &, + ©*Y,_,. Continuing in this manner we get after n steps
that Y, =& + @e_1 + -+ ¢"e_, + ¢"Y,_,_1. Since |¢| < 1, the last term
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FIGURE 2. Hypothetical Mortality Rates and a Moving Average Estimate of their Level.

converges to zero, as n — oo. Thus, an AR(1) process is obtained by taking ¥; =
¢/ forall j, in (2.1). Note that the assumption |¢| < 1 guarantees that the variance
(2.2) is finite. In fact, Var(Y;) = 082/(1 — ¢?) and Cov(Y;, Y,40) = af(pk/(l —¢?).
It follows that the autocorrelation function is p; = (pk forallk =0,1, 2, ... Thus,
in contrast with the MA(1) process, whose autocorrelation is zero after one lag,
the current value of the AR(1) process is correlated with all earlier (and future)
values. We can interpret &, as a one-step ahead prediction error, because if Y;_; is
known we predict Y; by ¢Y,_1. O

In analogy with (2.5) one can define the general autoregressive process of order
p, or AR(p), by the recursion, ¥, = ¢ Y,y + -+ + ¢, Y,_, + &, where ¢, # 0.*
To provide a compact description, it is customary to define a back shift (or lag)
operator B such that BY; = Y,_;, B%Y, = Y,_, etc. We can define a polynomial
operator ®(B) =1 — ¢ B — --- — ¢, B”. Then, the AR(p) process can be written
as ®(B)Y; = ¢;.

To guarantee that such a recursive process has a representation (2.1) (i.e., that
it defines a stationary process with a finite variance) the coefficients ¢; must be
such that the roots of the polynomial equation ®(B) = 0 are strictly greater than 1
in absolute value. For example, when p = 1, we have 1 —¢B =0, or B = 1/¢,
so the condition is satisfied in Example 2.2. In this case we have (1 — ¢ B)Y, = ¢,
or Y, =1 —¢B) 'es, =1+ @B+ ¢?>B*>+ - e,

Define another operator @(B) =1—6;B —--- —0,B%. Then, the MA(q)
process of Example 2.1 can be written as Y; = ©®(B)g,. An autoregressive
moving average process, or ARMA(p, q) process, is defined by the equation
d(B)Y, = O(B)eg,.Forexample, when p = g = 1, we getthe ARMAC(1,1) process

4 This notion generalizes further to vector-valued autoregressive (VAR) processes, in which
the coefficients are matrices (cf., Chatfield 1996, Ch. 12).
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Y, — Y, =& —60g_1. The ARMA(2,2) process is usually written as Y, —
oY1 — Y0 =& — 0181 — bre, 5 elc.

It is clear from the defining recursive equation of the AR(p) processes that &;
can be expressed in terms of the Y;_;’s for j > 0. To guarantee the same for the
MA(q) processes, and ARMA(p, g) processes in general, we must require that the
roots of the polynomial equation ®(B) = 0 are greater than one in absolute value.
Such processes are called invertible. In the case of MA(1) process, this means that
we must have |#| < 1, for example.

A final piece in the description of ARMA(p, g) processes is to tie up the repre-
sentation ®(B)Y; = O(B)g,; with (2.1). Define a power series W(B) = 1 + Y| B +
YyB? 4 -, 50 (2.1) can be written as Y, = W(B)g,. The representation (2.1) of
ARMA(p, g) processes is obtained by equating the two power series W(B) =
®(B)~'O(B). In the case of ARMA(1,1) process we get ¥; = (¢ — 0)p’/ ! for
j > 0, for example. We see that the ARMA(p, q) processes are a subclass of linear
processes such that W(B) is a ratio of two polynomials.

The concept of ARIMA(p, d, q) models, or autoregressive integrated mov-
ing average models, is obtained by assuming that the d-fold difference of the
process follows an ARMA(p, g) model. For example, suppose Y; follows an
ARMA(p, ¢) model, and define Z, = Y + - - - 4+ Y;. Inthis case Z; is the summed,
or integrated, version of Y;, and we have that (1 — B)Z, = Y;. Therefore, Z;
follows the ARIMA(p, 1, g) model. Furthermore, if X, = Zy+ --- + Z,, then
(1 — B)X, = Z, and (1 — B)>X, = Y,, so X, is an ARIMA(p, 2, q) process etc.

Example 2.3. EWMA Processes. Consider an ARIMA(0,1,1) model of the form
(1—-B)Z, =& —0g_1,where 0 < 8 < 1. With some algebra, one can show that
Z; = & + m,;_,, where

mi =0 —0)Zi_1+60Z 2 +6%Z 3+ (2.6)

can be viewed as the “level” of the process at time ¢. Since the weights (1 —
0)87, j =0,1,... sum to 1 and fall off exponentially, this estimate of level is
often called exponentially weighted moving average, or EWMA. We see from
(2.6) that m; = (1 — 0)Z, + 6m,_,, so for 0 < 6 < 1, the estimate of the level
is updated as a weighted average of the new observation and previous estimate.
Substituting in Z, = & + m;_; we see that the updating equation can also be
expressed as m;, = (1 — 0)e; + m,_,. This is the so-called error-correction form
of the updating formula. Even before the systematic development of the theory
of ARMA models by Box and Jenkins, the EWMA method had evolved into a
forecasting method on its own right (cf., Muth 1960). In this approach, a forecast
of Z,,, is m,, because the future error &,,; has mean zero and is independent
of the past observations. From the error correction form we see that in general,
the forecast is Z,,x = m,. In estimating m, one often uses judgment to select the
parameter 6 rather than estimate it from the data. In this case it is customary to
call 1 — @ as the smoothing parameter. One way to think about the smoothing
parameter is that it determines the weighting involved in the computation of the
local level (2.6). If we have a (subjective) view of how far back the data are relevant
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in the determination of the local level, then a value may possibly be determined.
Chatfield (1996, 70) notes that values of the smoothing parameter in the range
from 0.1 to 0.3 are often preferred. An illustration will be given in Figure 6. ¢

2.1.3. Practical Modeling

The first step in modeling is to plot the data. This reveals if there are unusual ob-
servations that may have a large influence on estimation. Sometimes the unusual
observations are data errors that should be corrected before proceeding further. At
other times they may be real, but reflect unusual aspects of the process. Examples
include peaks in mortality or fluctuations in fertility caused by wars, epidemics
or famines; level shifts in population data caused by changes in national or other
administrative borders; or discontinuities caused by changes in migration or nat-
uralization policies.

Whether the series varies around a fixed mean with a constant variance often can
be seen from the plot. Note that apart from social, economic, or political factors,
the volatility of a demographic process may change simply as a consequence
of population growth because the variance of a binomial or Poisson variable is
proportional to the expected value of the number of events.

In addition to the plot, one would typically compute the autocorrelation func-
tion. We see from (2.3) that the autocorrelation of all linear processes (2.1) must
eventually converge to zero because the absolute convergence of the series of ¥/;’s
implies that 1/; — 0 as j — oco. In contrast, if the series has a polynomial trend
then, depending on the length of series, the lag, and the order of the polynomial,
many types of persistent fluctuating patterns can manifest themselves. Thus, if
the autocorrelations do not approach zero quickly, then the series may be best
approximated by a nonstationary model.

For example, a visual inspection of the sex ratio at birth in Figure 6 of Chap-
ter 4 suggests that the process does not have a constant mean. This shows up in
the autocorrelation function. It starts from 0.52 at lag = 1, and then declines in
roughly monotone manner, but at lag = 51 we still observe a value as high as 0.23.
The latter value appears to be statistically significant because there are n = 250
observations. (If the k™ autocorrelation is approximately ¢'*!, then the variance of
an autocorrelation beyond the first is approximately n~!(1 + ¢?)(1 — ¢*)~! (Box
and Jenkins, 1976, 35), and the estimated standard error is about 0.08.) In con-
trast, the autocorrelations of the first differences begin from —0.41 at lag = 1,
and remain small in absolute value, with one value at 0.15 and the rest much
smaller. A comparison of parsimonious ARIMA(p, 1, g) models shows that an
ARIMA(0,1,1) model provides an approximate representation for the series.

5> Nonlinear models are also an alternative. They are capable of representing different
behavior when the series is at a relatively high level as compared to being at a relatively
low level; when it is increasing as compared to decreasing, etc. (Complement 15) Existing
models appear to have been mostly motivated by economic considerations (e.g., Granger
and Terdsvirta 1993), but they may eventually provide useful alternatives for demographic
data, as well.
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Example 2.4. Vital Processes Appear Nonstationary. We analyzed the logarithm
of white age-specific fertility rates in 1921-1988 in ages 14,15,..., 46, and the
logarithm of mortality rates for males and females in 1940-1988 in ages 1, 2, 3,
4, 5-9, 10-14,..., 80-84, 85+ in the U.S. Based on plots and the study of au-
tocorrelations we concluded that all series appeared nonstationary (see also Lee
and Tuljapurkar 1994; Lee 1974). The autocorrelations did not approach zero, as
they should for a linear process. We then looked for the smallest d such that the
d-th difference both looked stationary in a plot and had an autocorrelation that
did approach zero fairly quickly. Fertility had to be differenced twice to remove
persistent patterns from autocorrelations in ages 19—44. Mortality had to be differ-
enced twice for stationarity in ages 3049 for males and in ages 20—49 for females.
For other rates differencing once was sufficient. The sample first-autocorrelations
r of the first differences of the U.S. fertility series mentioned above varied from
—0.24 t0 0.75. with average = 0.41. For the first differences of the mortality rates
we had —0.39 < r; < 0.53 with male average —0.02 and female average —0.03.
The analysis indicates that while there are opportunities for ARMA modeling
of the first differences of these series, the representations may be approximate
only. ¢

Once a stationary looking series is found, one tries to identify an ARMA(p, ¢q)
model for it. Although there is no theoretical limit for the values of p and ¢, it is
relatively rare that demographically meaningful models would have p + ¢ > 3,
when annual data are used. (Monthly data displaying seasonality are a different
matter that will not be discussed here.) Even values p = 3 or ¢ = 3 yield models
that are rarely interpretable, because they imply an independent influence from
year t — 3 on the value of the process at year ¢, even when one controls for the
values of the process in years r — 1 and r — 2. (This effect can be quantified in terms
of partial autocorrelations; Complement 12.) In any event, it is advisable to fit at
least all of the remaining models and to compare them based on the residual sum
of squares, the significance of the parameter estimates, and estimated residuals,
much the same way ordinary regression models are identified.

Sometimes there is a peak in autocorrelation at a lag k that defies explanation.
Although such peaks can theoretically arise from infinitely many ARMA(p, ¢)
processes, it sometimes happens that the correlation is due to a small number,
possibly just one, pair of observations k steps apart, (¥;, Y;_;) for some . Such
pairs may be difficult to detect from the plot of the series itself. A useful diagnostic
tool for investigating this possibility is to make a so-called lag-plot with lag k, i.e.,
a plot of the pairs (Y;, Y;_) for all . We will illustrate this in Section 2.2.2.

As a practical example of the application of the ARIMA models we will consider
the annual growth rate of the U.S. population in 1900-1999. The population is
the so-called mid-year population, or the population as of July 1, each year.% In

® The data are from Population Estimates Program, Population Division, U.S. Census
Bureau, Internet Release Date: April 11, 2000, Revised date: June 28, 2000, http:/
eire.census.gov/popest/archives/pre1980/popclockest.txt.
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FIGURE 3. The Growth Rate of the U.S. Population in 1900-1999, and Three Forecasts:
AR(1) (dashes) and ARIMA(2,1,0) with (dot-dashes) and without a Constant Term (short
dashes).

1900-1949 the figures exclude Alaska and Hawaii. Thus, there is a level shift from
1949 to 1950. The population comprises the national resident population (or de
Jjure population) except that in years 1917-1919 and 1940-1979 the armed forces
overseas have been included. This has the effect of smoothing the growth rate,
notably around 1917-1919. Although adjustments could be made, we chose not
to do so because their effect would be minor.

Define V; as the size of the population in year . Then, log(V;+1/ V;) is the growth
rate from ¢ to r 4 1. Figure 3 has a plot of the growth rate of the U.S. population
for 1900-1999, together with three point forecast that will be discussed at the end
of this example. The plot shows that the series has a declining trend. The nonsta-
tionarity shows up in the autocorrelation function, which declines roughly linearly
from 0.85 atlag = 1 to —0.37 atlag = 25. A plot suggests that the first differences
vary around a constant mean. (In Section 4.1 we will see that the variance is not
constant, however.) The first seven autocorrelations are —0.122, —0.372, 0.255,
0.149, —0.248, —0.140, 0.278. Beyond lag = 7 the correlations are < 0.2 in abso-
lute value. Lag-plots (not shown) indicate that the negative autocorrelation at lag
2 and the positive autocorrelation at lag 7 are largely due to outliers (e.g., declines
in 1918-1919 and 1945 coupled with increases in 1920-1921 and 1947). Thus,
the best fitting ARIMA model need not be best model for forecasting purposes.
We will come back to this issue later, but proceed now with the data as they are.

Since the growth rate is the first difference of log population sizes, an
ARMA(p, q) model for the first difference of the growth rate is the same as an
ARIMA(p, 1, g) model for the log population size. Slight differences in numerical
output may occur, however, depending on how the endpoints of the series are han-
dled in estimation. Various ARIMA(p, 1, g) models were fitted. Based on residual
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checks, models ARIMA(0,1,1), ARIMA(1,1,0), and ARIMA(1,1,1) are not accept-
able. ARIMA(2,1,0) fits better than ARIMA(0,1,2), and just about equally well as
ARIMA(0,1,3).