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Preface to the fourth edition

Recursive Methods

Much of this book is about how to use recursive methods to study dynamic

macroeconomic models. Recursive methods are very important in the analysis

of dynamic systems in economics and other sciences. They originated after

World War II in diverse literatures promoted by Wald (sequential analysis),

Bellman (dynamic programming), and Kalman (Kalman filtering).

Dynamics

Dynamics studies sequences of vectors of random variables indexed by time,

called time series. Time series are immense objects, with as many components as

the number of variables times the number of time periods. A dynamic economic

model characterizes and interprets covariations among all of these components

in terms of the purposes and opportunities of economic agents. Agents choose

components of the time series in light of their opinions about other components.

Recursive methods break a dynamic problem into pieces by forming a se-

quence of problems, each one being a constrained choice between utility today

and utility tomorrow. The idea is to find a way to describe the position of

the system now, where it might be tomorrow, and how agents care now about

where it is tomorrow. Thus, recursive methods study dynamics indirectly by

characterizing a pair of functions: a transition function mapping the state today

into the state tomorrow, and another function mapping the state today into the

other endogenous variables of the model today. The state is a vector of variables

that characterizes the system’s current position. Time series are generated from

these objects by iterating transition laws.

Recursive methods focus on a tradeoff between the current period’s utility

and a continuation value for utility in all future periods and the evolution of

state variables that capture all consequences of today’s actions and events. Half

– xxiii –
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of the job is accomplished once we choose and understand the roles of suitable

state variables.

Another reason for learning about recursive methods is the increased im-

portance of numerical simulations in macroeconomics. Many computational

algorithms use recursive methods. When such numerical simulations are called

for in this book, we give some suggestions for how to proceed but rely on other

sources to provide important details.1

Philosophy

We think that only experience from solving practical problems fully conveys the

power of the recursive approach. Therefore, this book provides many applica-

tions. The book mixes tools and applications. We present the tools with just

enough technical sophistication for our applications, but little more. We aim to

give readers a taste of the power of the methods and to direct them to sources

where they can learn more.

Macroeconomic dynamics is now an immense field with diverse applications.

We do not pretend to survey the field, only to sample it. We intend our sample

to equip the reader to approach much of the field with confidence. Fortunately

for us, good books cover parts of the field that we neglect, for example, Adda and

Cooper (2003), Aghion and Howitt (1998), Altug and Labadie (1994), Azariadis

(1993), Barro and Sala-i-Martin (1995), Benassy (2011), Blanchard and Fischer

(1989), Christensen and Kiefer (2009), Canova (2007), Cooley (1995), Cooper

(1999), DeJong and Dave (2011), Farmer (1993), Gali (2008), Hansen and Sar-

gent (2013), Majumdar (2009), Pissarides (1990), Romer (1996), Shimer (2010),

Stachurski (2009), Walsh (1998), and Woodford (2000). Bertsekas (1976) and

Stokey and Lucas with Prescott (1989) remain standard references for recursive

methods in macroeconomics. Technical Appendix A in this book revises mate-

rial from chapter 2 of Sargent (1987b).

1 Judd (1998) and Miranda and Fackler (2002) provide good treatments of numerical

methods in economics.
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Changes in the fourth edition

This edition contains two new chapters and substantial revisions of many other

chapters from earlier editions. New to this edition are chapter 20 on recursive

formulations of optimal taxation problems and chapter 30 about the structure

underlying models with “matching functions” that map unemployment and va-

cancies into job-finding and job-filling probabilities. Chapter 19 has been exten-

sively revised and simplified in ways that closely link its formulation of Stackel-

berg plans to one in our new chapter 20. The new chapters and revisions cover

topics that widen and deepen the message that recursive methods are pervasive

and powerful.

New chapters

Chapter 20 applies “dynamic programming squared” to two of the optimal tax-

ation models studied in chapter 16, namely, Lucas and Stokey’s (1983) model of

optimal taxation and borrowing in an economy with complete markets, and an

incomplete markets version of that model. Among other insights that recursive

formulations bring to these models is a sharp characterization of the time in-

consistency of optimal plans that emerges in the form of two value functions for

each optimal taxation problem, one for time t = 0, another for all times t ≥ 1.

Distinct value functions, state vectors, decision rules, and Bellman equations at

times t = 0 and t ≥ 1 are tell-tale signs of time-inconsistency.

Chapter 30 studies the mechanics of matching models and sheds light on

them by exploring two substantive issues, the ‘Shimer puzzle’ and the role of

heterogeneity. The “Shimer puzzle” is the finding that common calibrations

of the standard matching model do not generate fluctuations in unemployment

rates nearly as large as those observed during business cycles.2 The chapter

looks under the hoods of various matching models that have been reconfigured

to generate big responses in unemployment to movements in productivity. An

outcome of this cross-model investigation is the discovery of a single channel that

we call “fundamental surplus” that is common across all of the models. Turning

to heterogeneity, we study a class of models with multiple type-specific matching

2 A puzzle is always relative to a model. A ‘puzzle’ is a prediction of a model that is

contradicted by data.
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functions whose equilibria have a block recursive structure in which value func-

tions and market tightnesses are independent of distributions of agents. Such

models deliver significant analytical tractability; but the “directed search” that

prevails within them also attenuates the congestion externalities that are at the

center of other kinds of matching models.

Ideas

Beyond emphasizing recursive methods, the economics of this book revolves

around several main ideas.

1. The competitive equilibrium model of a dynamic stochastic economy: This

model contains complete markets, meaning that all commodities at different

dates that are contingent on random events can be traded in a market with

a centralized clearing arrangement. In one version of the model, all trades

occur at the beginning of time. In another, trading in one-period claims

occurs sequentially. The model is a foundation for asset-pricing theory,

growth theory, real business cycle theory, and normative public finance.

There is no room for fiat money in the standard competitive equilibrium

model, so we shall have to alter the model to make room for fiat money.

2. A class of incomplete markets models with heterogeneous agents: These

models arbitrarily restrict the types of assets that can be traded, thereby

possibly igniting a precautionary motive for agents to hold those assets.

Such models have been used to study the distribution of wealth and the

evolution of an individual or family’s wealth over time. One model in this

class lets money in.

3. Several models of fiat money: We add a shopping time specification to a

competitive equilibrium model to get a simple vehicle for explaining ten

doctrines of monetary economics. These doctrines depend on the govern-

ment’s intertemporal budget constraint and the demand for fiat money,

aspects that transcend many models. We also use Samuelson’s overlapping

generations model, Bewley’s incomplete markets model, and Townsend’s

turnpike model to perform a variety of policy experiments.

4. Restrictions on government policy implied by the arithmetic of budget sets:

Most of the ten monetary doctrines reflect properties of the government’s
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budget constraint. Other important doctrines do too. These doctrines,

known as Modigliani-Miller and Ricardian equivalence theorems, have a

common structure that come from identifying an equivalence class of gov-

ernment policies that produce the same allocations. We display the struc-

ture of such theorems with an eye to finding features whose absence causes

them to fail, letting particular policies matter.

5. Ramsey taxation problems: What is the optimal tax structure when only

distorting taxes are available? The primal approach to taxation recasts this

question as a problem in which a government chooses allocations directly

and tax rates only indirectly. Permissible allocations are those that satisfy

resource constraints and implementability constraints, where the latter are

budget constraints in which the consumer and firm first-order conditions

are used to eliminate prices and tax rates. We study labor and capital

taxation, and examine the optimality of the inflation tax prescribed by the

Friedman rule.

6. Social insurance with private information and enforcement problems: We

use the recursive contracts approach to study a variety of problems in which

a benevolent social insurer balances providing insurance against providing

incentives. Applications include the provision of unemployment insurance

and the design of loan contracts when a lender has an imperfect capacity

to monitor a borrower.

7. Reputation models in macroeconomics: We study how far reputation can

go to overcome a government’s inability to commit to a policy. The theory

describes multiple systems of expectations about its behavior to which a

government wants to conform. The theory has many applications, including

implementing optimal taxation policies and making monetary policy in the

presence of a temptation to inflate offered by a Phillips curve.

8. Search models: Search theory makes assumptions different from ones under-

lying a complete markets competitive equilibrium model. It imagines that

there is no centralized place where exchanges can be made, or that there are

not standardized commodities. Buyers and/or sellers have to devote effort

to search for opportunities to buy or sell goods or factors of production,

opportunities that might arrive randomly. We describe the basic McCall

search model and various applications. We also describe some equilibrium
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versions of the McCall model and compare them with models of another

type that postulate matching functions.

9. Matching models. A matching function accepts measures of job seekers and

vacancies as inputs and maps them into opportunities to form matches.

Models with matching functions build in congestion externalities that job

searchers impose on other job searchers and that vacancy posters impose

on other job searchers. The models study how these externalities contend

with each other and how they shape job-finding rates, job-filling rates, and

unemployment rates. In the last fifteen years, matching models have been

revised in ways intended to make them fit business cycle facts and welfare

state outcomes.

10. Employment lotteries versus career time-averaging. A model that was pop-

ular until recently interpreted the aggregate labor supply as the fraction of

people that a planner assigns to work by using a lottery in which the losers

must work and the winners enjoy leisure. An alternative model instead fo-

cuses on an individual worker who chooses the fraction of his or her life to

work within a life-cycle model. The two frameworks have strikingly similar

implications about some aggregate outcomes, but not about others.

11. Heterogeneous beliefs. While for very good reasons most applied macroeco-

nomic models continue to assume rational expectations, it is useful to study

frameworks in which there are multiple beliefs either across people or, in

models of “ambiguity” and “robustness”, within the mind of one decision

maker. Parts of chapters 8 and 14 study such models.

Theory and evidence

Though this book aims to give the reader the tools to read about applications,

we spend little time on empirical applications. However, the empirical failures

of one class of models have been a main force prompting development of another

class of models. Thus, the perceived empirical failures of the standard complete

markets general equilibrium model stimulated the development of the incomplete

markets and recursive contracts models. For example, the complete markets

model forms a standard benchmark model or point of departure for theories

and empirical work on consumption and asset pricing. The complete markets



Preface to the fourth edition xxix

model has these empirical problems: (1) there is too much correlation between

individual income and consumption growth in micro data (e.g., Cochrane, 1991

and Attanasio and Davis, 1995); (2) the equity premium is larger in the data

than is implied by a representative agent asset-pricing model with reasonable

risk-aversion parameter (e.g., Mehra and Prescott, 1985); and (3) the risk-free

interest rate is too low relative to the observed aggregate rate of consumption

growth (Weil, 1989). While there have been numerous attempts to explain these

puzzles by altering the preferences in the standard complete markets model,

there has also been work that abandons the complete markets assumption and

replaces it with some version of either exogenously or endogenously incomplete

markets. The Bewley models of chapters 17 and 18 are examples of exogenously

incomplete markets. By ruling out complete markets, this model structure helps

with empirical problems 1 and 3 above (e.g., see Huggett, 1993), but not much

with problem 2. In chapter 21, we study some models that can be thought

of as having endogenously incomplete markets. They can also explain puzzle

1 mentioned earlier in this paragraph; at this time it is not really known how

far they take us toward solving problem 2, though Alvarez and Jermann (1999)

report promise.

Micro foundations

This book is about micro foundations for macroeconomics. Browning, Hansen,

and Heckman (1999) describe two justifications for putting microfoundations

underneath macroeconomic models. The first is aesthetic and preempirical:

models with micro foundations are by construction coherent and explicit. And

because they contain descriptions of agents’ purposes, they allow us to analyze

policy interventions using standard methods of welfare economics. Lucas (1987)

gives a distinct second reason: a model with micro foundations broadens the

sources of empirical evidence that can be used to assign numerical values to

the model’s parameters. Lucas endorses Kydland and Prescott’s (1982) pro-

cedure of borrowing parameter values from micro studies. Browning, Hansen,

and Heckman (1999) challenge Lucas’s recommended empirical strategy. Most

seriously, they point out that in many contexts the specifications underlying the

microeconomic studies cited by a calibrator conflict with those of the macroe-

conomic model being “calibrated.” It is typically not obvious how to transport
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parameters from one data set and model specification to another data set and

model specification.

Although we take seriously the doubts about Lucas’s justification for mi-

croeconomic foundations that Browning, Hansen and Heckman raise, we remain

strongly attached to micro foundations. For us, it remains enough to appeal to

the first justification, namely, the coherence provided by micro foundations and

the virtues that come from having the ability to “see the agents” in an artificial

economy. We see Browning, Hansen, and Heckman as raising many legitimate

questions about empirical strategies for implementing macro models with micro

foundations. We don’t think that the clock will soon be turned back to a time

when macroeconomics was done without micro foundations.

Road map

Chapter 1 is either a preview or review or both. It is either a reader’s guide

to what is to come or a concise review of main themes that have been studied.

There is a case for reading it quickly before diving into the other chapters, while

not expecting fully to understand everything that is written there. After many

of the other chapters have been mastered, it could be useful to read it again.

Chapter 2 describes two basic models of a time series: a Markov chain

and a linear first-order difference equation. In different ways, these models use

the algebra of first-order difference equations to form tractable models of time

series. Each model has its own notion of the state of a system. These time series

models define essential objects in terms of which the choice problems of later

chapters are formed and their solutions are represented.

Chapters 3, 4, and 5 introduce aspects of dynamic programming, includ-

ing numerical dynamic programming. Chapter 3 describes the basic functional

equation of dynamic programming, the Bellman equation, and several of its

properties. Chapter 4 describes some numerical ways for solving dynamic pro-

grams, based on Markov chains. Chapter 5 describes linear quadratic dynamic

programming and some uses and extensions of it, including how to use it to

approximate solutions of problems that are not linear quadratic. This chapter

also tells how the Kalman filter from chapter 2 is mathematically equivalent to
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the linear quadratic dynamic programming problem from chapter 5.3 Chapter 6

describes a classic two-action dynamic programming problem, the McCall search

model, as well as Jovanovic’s extension of it, a good application of the Kalman

filter.

While single agents appear in chapters 3 through 6, systems with multiple

agents, whose environments and choices must be reconciled through markets,

appear for the first time in chapters 7 and 8. Chapter 7 uses linear quadratic

dynamic programming to introduce two important and related equilibrium con-

cepts: rational expectations equilibrium and Markov perfect equilibrium. Each

of these equilibrium concepts can be viewed as a fixed point in a space of beliefs

about what other agents intend to do; and each is formulated using recursive

methods. Chapter 8 introduces two notions of competitive equilibrium in dy-

namic stochastic pure exchange economies, then applies them to pricing various

consumption streams.

Chapter 9 interprets an overlapping generations model as a version of the

general competitive model with a peculiar preference pattern. It then goes

on to use a sequential formulation of equilibria to display how the overlapping

generations model can be used to study issues in monetary and fiscal economics,

including Social Security.

Chapter 10 compares an important aspect of an overlapping generations

model with an infinitely lived agent model with a particular kind of incomplete

market structure. This chapter is thus our first encounter with an incomplete

markets model. The chapter analyzes the Ricardian equivalence theorem in two

distinct but isomorphic settings: one a model with infinitely lived agents who

face borrowing constraints, another with overlapping generations of two-period-

lived agents with a bequest motive. We describe situations in which the timing

of taxes does or does not matter, and explain how binding borrowing constraints

in the infinite-lived model correspond to nonoperational bequest motives in the

overlapping generations model.

Chapter 11 studies fiscal policy within a nonstochastic growth model with

distorting taxes. This chapter studies how foresight about future policies and

transient responses to past ones contribute to current outcomes. In particular,

this chapter describes ‘feedforward’ and ‘feedback’ components of mathematical

3 The equivalence is through duality, in the sense of mathematical programming.
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formulas for equilibrium outcomes. Chapter 12 describes the recursive com-

petitive equilibrium concept and applies it within the context of the stochastic

growth model.

Chapter 13 studies asset pricing and a host of practical doctrines associated

with asset pricing, including Ricardian equivalence again and Modigliani-Miller

theorems for private and government finance. Chapter 14 studies empirical

strategies for implementing asset pricing models. Building on work by Darrell

Duffie, Lars Peter Hansen, and their co-authors, chapter 14 discusses ways of

characterizing asset pricing puzzles associated with the preference specifications

and market structures commonly used in other parts of macroeconomics. It

then describes alterations of those structures that hold promise for resolving

some of those puzzles. Chapter 15 is about economic growth. It describes the

basic growth model, and analyzes the key features of the specification of the

technology that allows the model to exhibit balanced growth.

Chapter 16 studies competitive equilibria distorted by taxes and our first

mechanism design problems, namely, ones that seek to find the optimal temporal

pattern of distorting taxes. In a nonstochastic economy, a striking finding is that

the optimal tax rate on capital is zero in the long run.

Chapter 17 is about self-insurance. We study a single agent whose limited

menu of assets gives him an incentive to self-insure by accumulating assets. We

study a special case of what has sometimes been called the “savings problem,”

and analyze in detail the motive for self-insurance and the surprising implications

it has for the agent’s ultimate consumption and asset holdings. The type of agent

studied in this chapter will be a component of the incomplete markets models

to be studied in chapter 18.

Chapter 18 studies incomplete markets economies with heterogeneous agents

and imperfect markets for sharing risks. The models of market incompleteness

in this chapter come from simply ruling out markets in many assets, without

motivating the absence of those asset markets from the physical structure of the

economy. We wait until chapter 21 to study reasons that such markets may not

exist.

The next chapters describe recursive contracts. Chapter 19 describes what

we call “dynamic programming squared” and uses linear quadratic dynamic pro-

gramming to explain it in a context in which key objects can be computed easily.

A tell tale sign of a dynamic programming squared problem is that there is a

Bellman equation inside another Bellman equation. Chapter 20 uses dynamic
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programming squared to reformulate two optimal taxation models from chapter

16 recursively. Chapter 21 describes models in the mechanism design tradi-

tion, work that starts to provide a foundation for incomplete assets markets,

and that recovers specifications resembling models of chapter 18. Chapter 21 is

about the optimal provision of social insurance in the presence of information

and enforcement problems. Relative to earlier chapters, chapter 21 escalates the

sophistication with which recursive methods are applied, by utilizing promised

values as state variables. Chapter 22 extends the analysis to a general equi-

librium setting and draws out some implications for asset prices, among other

things. Chapter 23 uses recursive contracts to design optimal unemployment

insurance and worker compensation schemes.

Chapters 24 and 25 apply some of the same ideas to problems in “reputa-

tional macroeconomics,” using promised values to formulate a notion of credi-

bility. We study how a reputational mechanism can make policies sustainable

even when a government can’t commit – meaning choose a plan for all t ≥ 0

once-and-for-all at time 0 – in the way assumed in the analysis of chapter 16.

We use this reputational approach in chapter 27 to assess whether the Friedman

rule is sustainable. Chapter 26 describes a model of gradualism in trade policy

that has features in common with the first model of chapter 21.

Chapter 27 switches gears by adding money to a very simple competitive

equilibrium model, in a superficial way; the excuse for that superficial device

is that it permits us to present and unify ten well-known monetary doctrines.

Chapter 28 presents a less superficial model of money, the turnpike model of

Townsend, which is basically a special nonstochastic version of one of the models

of chapter 18. The specialization allows us to focus on a variety of monetary

doctrines.

Chapter 29 describes multiple agent models of search and matching. Except

for a section on money in a search model, we focus on applications to labor.

To bring out the economic forces at work in different frameworks, we examine

the general equilibrium effects of layoff taxes. Chapter 30 investigates some

fundamental forces common to a variety of otherwise quite disparate matching

models. Chapter 31 compares forces in an employment lotteries model with

those operating in a time-averaging model of aggregate labor supply.

Two appendixes collect various technical results on functional analysis and

linear projections and hidden Markov models.
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Alternative uses of the book

We have used parts of this book to teach both first- and second-year gradu-

ate courses in macroeconomics and monetary economics at the University of

Chicago, Stanford University, New York University, Princeton University, and

the Stockholm School of Economics. Here are some alternative plans for courses:

1. A one-semester first-year course: chapters 2–6, 8, 9, 10, and either chapter

13, 15, or 16.

2. A second-semester first-year course: add chapters 8, 12, 13, 14, 15, 16, parts

of 17 and 18, and all of 21.

3. A first course in monetary economics: chapters 9, 24, 25, 26, 27, 28, and

the last section of 29.

4. A second-year macroeconomics course: select from chapters 13–31.

5. A self-contained course about recursive contracts: chapters 19–26.

As an example, Sargent used the following structure for a one-quarter first-

year course at the University of Chicago: for the first and last weeks of the

quarter, students were asked to read the monograph by Lucas (1987). Students

were “prohibited” from reading the monograph in the intervening weeks. During

the middle eight weeks of the quarter, students read material from chapters 6

(about search theory); chapter 8 (about complete markets); chapters 9, 27, and

28 (about models of money); and a little bit of chapters 21, 22, and 23 (on social

insurance with incentive constraints). The substantive theme of the course was

the issues set out in a nontechnical way by Lucas (1987). However, to understand

Lucas’s arguments, it helps to know the tools and models studied in the middle

weeks of the course. Those weeks also exposed students to a range of alternative

models that could be used to measure Lucas’s arguments against some of the

criticisms made, for example, by Manuelli and Sargent (1988).

Another one-quarter course would assign Lucas’s (1992) article on efficiency

and distribution in the first and last weeks. In the intervening weeks of the

course, assign chapters 17, 18, and 21.

As another example, Ljungqvist used the following material in a four-week

segment on employment/unemployment in first-year macroeconomics at the

Stockholm School of Economics. Labor market issues command a strong in-

terest especially in Europe. Those issues help motivate studying the tools in
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chapters 6 and 29 (about search and matching models), and parts of 23 (on the

optimal provision of unemployment compensation). On one level, both chap-

ters 6 and 29 focus on labor markets as a central application of the theories

presented, but on another level, the skills and understanding acquired in these

chapters transcend the specific topic of labor market dynamics. For example,

the thorough practice on formulating and solving dynamic programming prob-

lems in chapter 6 is generally useful to any student of economics, and the models

of chapter 29 are an entry-pass to other heterogeneous-agent models like those

in chapter 18. Further, an excellent way to motivate the study of recursive con-

tracts in chapter 23 is to ask how unemployment compensation should optimally

be provided in the presence of incentive problems.

As a final example, Sargent used versions of the material in 6, 11, and 14

to teach undergraduate classes at Princeton and NYU.

Computer programs

Various exercises and examples use Matlab programs. These programs are

referred to in a special index at the end of the book. They can be down-

loaded from <www.tomsargent.com/source code/mitbook.zip> . Python and

Julia programs for some of the models studied in this book are described at

<https://lectures.quantecon.org/> .

Notation

We use the symbol to denote the conclusion of a proof. The editors of this

book requested that where possible, brackets and braces be used in place of

multiple parentheses to denote composite functions. Thus, the reader will often

encounter f [u(c)] to express the composite function f ◦ u .
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Brief history of the notion of the state

This book reflects progress economists have made in refining the notion of state

so that more and more problems can be formulated recursively. The art in ap-

plying recursive methods is to find a convenient definition of the state. It is often

not obvious what the state is, or even whether a finite-dimensional state exists

(e.g., maybe the entire infinite history of the system is needed to characterize

its current position). Extending the range of problems susceptible to recursive

methods has been one of the major accomplishments of macroeconomic theory

since 1970. In diverse contexts, this enterprise has been about discovering a

convenient state and constructing a first-order difference equation to describe

its motion. In models equivalent to single-agent control problems, state vari-

ables are either capital stocks or information variables that help predict the

future.4 In single-agent models of optimization in the presence of measurement

errors, the true state vector is latent or “hidden” from the optimizer and the

economist, and needs to be estimated. Here beliefs come to serve as the patent

state. For example, in a Gaussian setting, the mathematical expectation and

covariance matrix of the latent state vector, conditioned on the available history

of observations, serves as the state. In authoring his celebrated filter, Kalman

(1960) showed how an estimator of the hidden state could be constructed re-

cursively by means of a difference equation that uses the current observables

to update the estimator of last period’s hidden state.5 Muth (1960); Lucas

(1972), Kareken, Muench, and Wallace (1973); Jovanovic (1979); and Jovanovic

and Nyarko (1996) all used versions of the Kalman filter to study systems in

which agents make decisions with imperfect observations about the state.

For a while, it seemed that some very important problems in macroeco-

nomics could not be formulated recursively. Kydland and Prescott (1977) ar-

gued that it would be difficult to apply recursive methods to macroeconomic

4 Any available variables that Granger cause variables impinging on the optimizer’s ob-

jective function or constraints enter the state as information variables. See C.W.J. Granger

(1969).
5 In competitive multiple-agent models in the presence of measurement errors, the dimen-

sion of the hidden state threatens to explode because beliefs about beliefs about . . . naturally

appear, a problem studied by Townsend (1983). This threat has been overcome through

thoughtful and economical definitions of the state. For example, one way is to give up on

seeking a purely “autoregressive” recursive structure and to include a moving average piece

in the descriptor of beliefs. See Sargent (1991). Townsend’s equilibria have the property that

prices fully reveal the private information of diversely informed agents.
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policy design problems, including two examples about taxation and a Phillips

curve. As Kydland and Prescott formulated them, the problems were not re-

cursive: the fact that the public’s forecasts of the government’s future decisions

influence the public’s current decisions made the government’s problem simul-

taneous, not sequential. But soon Kydland and Prescott (1980) and Hansen,

Epple, and Roberds (1985) proposed a recursive formulation of such problems by

expanding the state of the economy to include a Lagrange multiplier or costate

variable associated with the government’s budget constraint. The costate vari-

able acts as the marginal cost of keeping a promise made earlier by the govern-

ment. Marcet and Marimon (1999) extended and formalized a recursive version

of such problems.

A significant breakthrough in the application of recursive methods was

achieved by several researchers including Spear and Srivastava (1987), Thomas

and Worrall (1988), and Abreu, Pearce, and Stacchetti (1990). They discovered

a state variable for recursively formulating an infinitely repeated moral hazard

problem. That problem requires the principal to track a history of outcomes

and to use it to construct statistics for drawing inferences about the agent’s

actions. Problems involving self-enforcement of contracts and a government’s

reputation share this feature. A continuation value promised by the principal

to the agent can summarize the history. Making the promised valued a state

variable allows a recursive solution in terms of a function mapping the inherited

promised value and random variables realized today into an action or allocation

today and a promised value for tomorrow. The sequential nature of the solu-

tion allows us to recover history-dependent strategies just as we use a stochastic

difference equation to find a “moving average” representation.6

It is now standard to use a continuation value as a state variable in models

of credibility and dynamic incentives. We shall study several such models in this

book, including ones for optimal unemployment insurance and for designing loan

contracts that must overcome information and enforcement problems.

6 Related ideas are used by Shavell and Weiss (1979); Abreu, Pearce, and Stacchetti (1986,

1990) in repeated games; and Green (1987) and Phelan and Townsend (1991) in dynamic

mechanism design. Andrew Atkeson (1991) extended these ideas to study loans made by

borrowers who cannot tell whether they are making consumption loans or investment loans.





Part I

Imperialism of Recursive Methods





Chapter 1
Overview

1.1. Warning

This chapter provides a nontechnical summary of some themes of this book. We

debated whether to put this chapter first or last. A way to use this chapter

is to read it twice, once before reading anything else in the book, then again

after having mastered the techniques presented in the rest of the book. That

second time, this chapter will be easy and enjoyable reading, and it will remind

you of connections that transcend a variety of apparently disparate topics. But

on first reading, this chapter will be difficult, partly because the discussion is

mainly literary and therefore incomplete. Measure what you have learned by

comparing your understandings after those first and second readings. Or just

skip this chapter and read it after the others.

1.2. A common ancestor

Clues in our mitochondrial DNA tell biologists that we humans share a com-

mon ancestor called Eve who lived 100,000 years ago. All of macroeconomics

too seems to have descended from a common source, Irving Fisher’s and Mil-

ton Friedman’s consumption Euler equation, the cornerstone of the permanent

income theory of consumption. Modern macroeconomics records the fruits and

frustrations of a long love-hate affair with the permanent income mechanism. As

a way of summarizing some important themes in our book, we briefly chronicle

some of the high and low points of this long affair.

– 3 –
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1.3. The savings problem

A consumer wants to maximize

E0

∞∑

t=0

βtu (ct) (1.3.1)

where β ∈ (0, 1), u is a twice continuously differentiable, increasing, strictly con-

cave utility function, and E0 denotes a mathematical expectation conditioned

on time 0 information. The consumer faces a sequence of budget constraints1

At+1 = Rt+1 (At + yt − ct) (1.3.2)

for t ≥ 0, where At+1 ≥ A is the consumer’s holdings of an asset at the

beginning of period t+1, A is a lower bound on asset holdings, yt is a random

endowment sequence, ct is consumption of a single good, and Rt+1 is the gross

rate of return on the asset between t and t + 1. In the general version of the

problem, both Rt+1 and yt can be random, though special cases of the problem

restrict Rt+1 further. A first-order necessary condition for this problem is

βEtRt+1
u′ (ct+1)

u′ (ct)
≤ 1, = if At+1 > A. (1.3.3)

This Euler inequality recurs as either the cornerstone or the straw man in many

theories contained in this book.

Different modeling choices put (1.3.3) to work in different ways. One can

restrict u, β , the return process Rt+1 , the lower bound on assets A , the in-

come process yt , and the consumption process ct in various ways. By making

alternative choices about restrictions to impose on subsets of these objects,

macroeconomists have constructed theories about consumption, asset prices,

and the distribution of wealth. Alternative versions of equation (1.3.3) also

underlie Chamley’s (1986) and Judd’s (1985b) striking results about eventually

not taxing capital.

1 We use a different notation in chapter 17: At here conforms to −bt in chapter 17.
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1.3.1. Linear quadratic permanent income theory

To obtain a version of the permanent income theory of Friedman (1955) and Hall

(1978), set Rt+1 = R , impose R = β−1 , assume the quadratic utility function

u(ct) = −(ct − γ)2 , and allow consumption ct to be negative. We also allow

{yt} to be an arbitrary stationary process, and dispense with the lower bound

A . The Euler inequality (1.3.3) then implies that consumption is a martingale:

Etct+1 = ct. (1.3.4)

Subject to a boundary condition that2 E0

∑∞
t=0 β

tA2
t < ∞ , equation (1.3.4)

and the budget constraints (1.3.2) can be solved to yield

ct =

[
r

1 + r

]
Et

∞∑

j=0

(
1

1 + r

)j
yt+j +At


 (1.3.5)

where 1 + r = R . Equation (1.3.5) expresses consumption as a fixed marginal

propensity to consume r
1+r that is applied to the sum of human wealth – namely[

Et
∑∞

j=0

(
1

1+r

)j
yt+j

]
– and financial wealth, A)t . This equation has the fol-

lowing notable features: (1) consumption is smoothed on average across time:

current consumption depends only on the expected present value of nonfinancial

income; (2) feature (1) opens the way to Ricardian equivalence: redistributions

of lump-sum taxes over time that leave the expected present value of nonfinancial

income unaltered do not affect consumption; (3) there is certainty equivalence:

increases in the conditional variances of future incomes about their forecast val-

ues do not affect consumption (though they do diminish the consumer’s utility);

(4) a by-product of certainty equivalence is that the marginal propensities to

consume out of financial and nonfinancial wealth are equal.

This theory continues to be a workhorse in much good applied work (see

Ligon (1998) and Blundell and Preston (1999) for creative applications). Chap-

ter 5 describes conditions under which certainty equivalence prevails, while chap-

ters 2 and 5 also describe the structure of the cross-equation restrictions that the

2 The motivation for using this boundary condition instead of a lower bound A on asset

holdings is that there is no “natural” lower bound on asset holdings when consumption is

permitted to be negative. Chapters 8 and 18 discuss what are called “natural borrowing

limits,” the lowest possible appropriate values of A in the case that c is nonnegative.
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hypothesis of rational expectations imposes and that empirical studies heavily

exploit.

1.3.2. Precautionary saving

A literature on “the savings problem” or “precautionary saving” investigates

the consequences of altering the assumption in the linear quadratic permanent

income theory that u is quadratic, an assumption that makes the marginal util-

ity of consumption become negative for large enough c . Rather than assuming

that u is quadratic, the literature on the savings problem assumes that u is

increasing and strictly concave. This assumption keeps the marginal utility of

consumption above zero. We retain other features of the linear quadratic model

(βR = 1, {yt} is a stationary process), but now impose a borrowing limit

At ≥ a .

With these assumptions, something amazing occurs: Euler inequality (1.3.3)

implies that the marginal utility of consumption is a nonnegative supermartin-

gale.3 That gives the model the striking implication that ct →as +∞ and

At →as +∞ , where →as means almost sure convergence. Consumption and

wealth will fluctuate randomly in response to income fluctuations, but so long

as randomness in income continues, they will drift upward over time without

bound. If randomness eventually expires in the tail of the income process, then

both consumption and income converge. But even small perpetual random

fluctuations in income are enough to cause both consumption and assets to di-

verge to +∞ . This response of the optimal consumption plan to randomness

is required by the Euler equation (1.3.3) and is called precautionary savings.

By keeping the marginal utility of consumption positive, precautionary savings

models arrest the certainty equivalence that prevails in the linear quadratic per-

manent income model. Chapter 17 studies the savings problem in depth and

struggles to understand the workings of the powerful martingale convergence

3 See chapter 17. The situation is simplest in the case that the yt process is i.i.d. so

that the value function can be expressed as a function of level yt + At alone: V (A + y) .

Applying the Benveniste-Scheinkman formula from chapter 3 shows that V ′(A + y) = u′(c) ,

which implies that when βR = 1, (1.3.3) becomes EtV
′(At+1 + yt+1) ≤ V ′(At + yt) , which

states that the derivative of the value function is a nonnegative supermartingale. That in turn

implies that A almost surely diverges to +∞ .
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theorem. The supermartingale convergence theorem also plays an important

role in the model insurance with private information in chapter 21.

1.3.3. Complete markets, insurance, and the distribution of wealth

To build a model of the distribution of wealth, we consider a setting with many

consumers. To start, imagine a large number of ex ante identical consumers

with preferences (1.3.1) who are allowed to share their income risk by trading

one-period contingent claims. For simplicity, assume that the saving possibility

represented by the budget constraint (1.3.2) is no longer available4 but that

it is replaced by access to an extensive set of insurance markets. Assume that

household i has an income process yit = gi(st) where st is a state vector gov-

erned by a Markov process with transition density π(s′|s), where s and s′ are

elements of a common state space S . (See chapters 2 and 8 for material about

Markov chains and their uses in equilibrium models.) Each period every house-

hold can trade one-period state-contingent claims to consumption next period.

Let Q(s′|s) be the price of one unit of consumption next period in state s′ when

the state this period is s . When household i has the opportunity to trade such

state-contingent securities, its first-order conditions for maximizing (1.3.1) are

Q (st+1|st) = β
u′
(
cit+1 (st+1)

)

u′
(
cit (st)

) π (st+1|st) . (1.3.6)

Notice that
∫
st+1

Q(st+1|st)dst+1 is the price of a risk-free claim on consumption

one period ahead: it is thus the reciprocal of the gross risk-free interest rate R .

Therefore, if we sum both sides of (1.3.6) over st+1 , we obtain our standard

consumption Euler condition (1.3.3) at equality.5 Thus, the complete markets

equation (1.3.6) is consistent with our complete markets Euler equation (1.3.3),

but (1.3.6) imposes more. We will exploit this fact extensively in chapter 16.

In a widely studied special case, there is no aggregate risk, so that
∫
i
yitd i =∫

i gi(st)d i = constant. In that case, it can be shown that the competitive

equilibrium state-contingent prices become

Q (st+1|st) = βπ (st+1|st) . (1.3.7)

4 It can be shown that even if it were available, people would not want to use it.
5 That the asset is risk-free becomes manifested in Rt+1 being a function of st , so that

it is known at t .
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This, in turn, implies that the risk-free gross rate of return R is β−1 .6 If we sub-

stitute (1.3.7) into (1.3.6), we discover that cit+1(st+1) = cit(st) for all (st+1, st).

Thus, the consumption of consumer i is constant across time and across states

of nature s , so that in equilibrium, all idiosyncratic risk is insured away. Higher

present-value-of-endowment consumers will have permanently higher consump-

tion than lower present-value-of-endowment consumers, so that there is a non-

degenerate cross-section distribution of wealth and consumption. In this model,

the cross-section distributions of wealth and consumption replicate themselves

over time, and furthermore each individual forever occupies the same position

in that distribution.

A model that has the cross-section distribution of wealth and consumption

being time invariant is not a bad approximation to the data. But there is ample

evidence that individual households’ positions within the distribution of wealth

move over time.7 Several models described in this book alter consumers’ trading

opportunities in ways designed to frustrate risk sharing enough to cause individ-

uals’ position in the distribution of wealth to change with luck and enterprise.

One class that emphasizes luck is the set of incomplete markets models started

by Truman Bewley. It eliminates the household’s access to almost all markets

and returns it to the environment of the precautionary savings model.

1.3.4. Bewley models

At first glance, the precautionary savings model with βR = 1 seems like a bad

starting point for building a theory that aspires to explain a situation in which

cross-section distributions of consumption and wealth are constant over time

even as individuals experience random fluctuations within that distribution. A

panel of households described by the precautionary savings model with βR = 1

would have cross-section distributions of wealth and consumption that march

upward and never settle down. What have come to be called Bewley models are

6 This follows because the price of a risk-free claim to consumption tomorrow at date t in

state st is
∑

st+1
Q(st+1|st) = β

∑
st+1

π(st+1|st) = β.

7 See Dı́az-Giménez, Quadrini and Ŕıos-Rull (1997); Krueger and Perri (2004, 2006); Ro-

driguez, Dı́az-Giménez, Quadrini and Ŕıos-Rull (2002); and Davies and Shorrocks (2000).
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constructed by lowering the interest rate R to allow those cross-section distri-

butions to settle down.8 Bewley models are arranged so that the cross section

distributions of consumption, wealth, and income are constant over time and

so that the asymptotic stationary distributions of consumption, wealth, and

income for an individual consumer across time equal the corresponding cross-

section distributions across people. A Bewley model can thus be thought of as

starting with a continuum of consumers operating according to the precaution-

ary savings model with βR = 1 and its diverging individual asset process. We

then lower the interest rate enough to make assets converge to a distribution

whose cross-section average clears a market for a risk-free asset. Different ver-

sions of Bewley models are distinguished by what the risk-free asset is. In some

versions it is a consumption loan from one consumer to another; in others it is

fiat money; in others it can be either consumption loans or fiat money; and in

yet others it is claims on physical capital. Chapter 18 studies these alternative

interpretations of the risk-free asset.

As a function of a constant gross interest rate R , Figure 1.3.1 plots the time

series average of asset holdings for an individual consumer. At R = β−1 , the

time series mean of the individual’s assets diverges, so that Ea(R) is infinite. For

R < β−1 , the mean exists. We require that a continuum of ex ante identical but

ex post different consumers share the same time series average Ea(R) and also

that the distribution of a over time for a given agent equals the distribution

of At+1 at a point in time across agents. If the asset in question is a pure

consumption loan, we require as an equilibrium condition that Ea(R) = 0, so

that borrowing equals lending. If the asset is fiat money, then we require that

Ea(R) = M
p , where M is a fixed stock of fiat money and p is the price level.

Thus, a Bewley model lowers the interest rate R enough to offset the pre-

cautionary savings force that with βR = 1 propels assets upward in the savings

problem. Precautionary saving remains an important force in Bewley models:

8 It is worth thinking about the sources of the following differences. In the complete

markets model sketched in subsection 1.3.3, an equilibrium risk-free gross interest rate R

satisfies Rβ = 1 and each consumer completely smooths consumption across both states and

time, so that the distribution of consumption trivially converges. The precautionary savings

model of section 1.3.2 assumes that Rβ = 1 and derives the outcome that each consumer’s

consumption and financial wealth both diverge toward +∞ . Why can βR = 1 be compatible

with non-exploding individual consumption and wealth levels in the complete markets model

of subsection 1.3.3, but not in the precautionary savings model of subsection 1.3.2?
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0 E[a(R)]

β−1

E[a(R)]

R

Figure 1.3.1: Mean of time series average of household con-

sumption as function of risk-free gross interest rate R .

an increase in the volatility of income generally pushes the Ea(R) curve to the

right, driving the equilibrium R downward.

1.3.5. History dependence in standard consumption models

Individuals’ positions in the wealth distribution are frozen in the complete mar-

kets model, but not in the Bewley model, reflecting the absence or presence, re-

spectively, of history dependence in equilibrium allocation rules for consumption.

The preceding version of the complete markets model erases history dependence,

while the savings problem model and the Bewley model do not.

History dependence is present in these models in an easy to handle recur-

sive way because the household’s asset level completely encodes the history of

endowment realizations that it has experienced. We want a way of represent-

ing history dependence more generally in contexts where a stock of assets does

not suffice to summarize history. History dependence can be troublesome be-

cause without a convenient low-dimensional state variable to encode history, it

requires that there be a separate decision rule for each date that expresses the

time t decision as a function of the history at time t , an object with a number

of arguments that grows exponentially with t . As analysts, we have a strong
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incentive to find a low-dimensional state variable. Fortunately, economists have

made tremendous strides in handling history dependence with recursive meth-

ods that summarize a history with a single number and that permit compact

time-invariant expressions for decision rules. We shall discuss history depen-

dence later in this chapter and will encounter many such examples in chapters

19 through 26.

1.3.6. Growth theory

Equation (1.3.3) is also a key ingredient of growth theory (see chapters 11 and

15). In the one-sector growth model, a representative household solves a version

of the savings problem in which the single asset is interpreted as a claim on

the return from a physical capital stock K that enters a constant returns to

scale production function F (K,L), where L is labor input. When returns to

capital are tax free, the theory equates the gross rate of return Rt+1 to the

gross marginal product of capital net of depreciation, namely, Fk,t+1 + (1− δ),

where Fk(k, t + 1) is the marginal product of capital and δ is a depreciation

rate. Suppose that we add leisure to the utility function, so that we replace

u(c) with the more general one-period utility function U(c, ℓ), where ℓ is the

household’s leisure. Then the appropriate version of the consumption Euler

condition (1.3.3) at equality becomes

Uc (t) = βUc (t+ 1) [Fk (t+ 1) + (1− δ)] . (1.3.8)

The constant returns to scale property implies that Fk(K,N) = f ′(k), where

k = K/N and F (K,N) = Nf(K/N). If there exists a steady state in which k

and c are constant over time, then equation (1.3.8) implies that it must satisfy

ρ+ δ = f ′ (k) (1.3.9)

where β−1 ≡ (1 + ρ). The value of k that solves this equation is called the

“augmented Golden rule” steady-state level of the capital-labor ratio. This

celebrated equation shows how technology (in the form of f and δ ) and time

preference (in the form of β ) are the determinants of the steady-state level of

capital when income from capital is not taxed. However, if income from capital

is taxed at the flat rate marginal rate τk,t+1 , then the Euler equation (1.3.8)

becomes modified

Uc (t) = βUc (t+ 1) [Fk (t+ 1) (1− τk,t+1) + (1− δ)] . (1.3.10)
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If the flat rate tax on capital is constant and if a steady-state k exists, it must

satisfy

ρ+ δ = (1− τk) f
′ (k) . (1.3.11)

This equation shows how taxing capital diminishes the steady-state capital labor

ratio. See chapter 11 for an extensive analysis of the one-sector growth model

when the government levies time-varying flat rate taxes on consumption, capital,

and labor, as well as offering an investment tax credit.

1.3.7. Limiting results from dynamic optimal taxation

Equations (1.3.9) and (1.3.11) are central to the dynamic theory of optimal

taxes. Chamley (1986) and Judd (1985b) forced the government to finance

an exogenous stream of government purchases, gave it the capacity to levy

time-varying flat rate taxes on labor and capital at different rates, formulated

an optimal taxation problem (a so-called Ramsey problem), and studied the

possible limiting behavior of the optimal taxes. Two Euler equations play a

decisive role in determining the limiting tax rate on capital in a nonstochastic

economy: the household’s Euler equation (1.3.10), and a similar consumption

Euler equation for the Ramsey planner that takes the form

Wc (t) = βWc (t+ 1) [Fk (t+ 1) + (1− δ)] (1.3.12)

where

W (ct, ℓt) = U (ct, ℓt) + Φ [Uc (t) ct − Uℓ (t) (1− ℓt)] (1.3.13)

and where Φ is a Lagrange multiplier on the government’s intertemporal budget

constraint. As Jones, Manuelli, and Rossi (1997) emphasize, if the function

W (c, ℓ) is simply viewed as a peculiar utility function, then what is called the

primal version of the Ramsey problem can be viewed as an ordinary optimal

growth problem with period utility function W instead of U .9

In a Ramsey allocation, taxes must be such that both (1.3.8) and (1.3.12)

always hold, among other equations. Judd and Chamley note the following

9 Notice that so long as Φ > 0 (which occurs whenever taxes are necessary), the objective

in the primal version of the Ramsey problem disagrees with the preferences of the household

over (c, ℓ) allocations. This conflict is the source of a time-inconsistency problem in the

Ramsey problem with capital.
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implication of the two Euler equations (1.3.8) and (1.3.12). If the government

expenditure sequence converges and if a steady state exists in which ct, ℓt, kt, τkt

all converge, then it must be true that (1.3.9) holds in addition to (1.3.11).

But both of these conditions can prevail only if τk = 0. Thus, the steady-state

properties of two versions of our consumption Euler equation (1.3.3) underlie

Chamley and Judd’s remarkable result that asymptotically it is optimal not to

tax capital.

In stochastic versions of dynamic optimal taxation problems, we shall glean

additional insights from (1.3.3) as embedded in the asset-pricing equations

(1.3.16) and (1.3.18). In optimal taxation problems, the government has the

ability to manipulate asset prices through its influence on the equilibrium con-

sumption allocation that contributes to the stochastic discount factor mt+1,t

defined in equation (1.3.16) below. The Ramsey government seeks a way wisely

to use its power to revalue its existing debt by altering state-history prices. To

appreciate what the Ramsey government is doing, it helps to know the theory

of asset pricing.

1.3.8. Asset pricing

The dynamic asset pricing theory of Breeden (1979) and Lucas (1978) also starts

with (1.3.3), but alters what is fixed and what is free. The Breeden-Lucas theory

is silent about the endowment process {yt} and sweeps it into the background. It

fixes a function u and a discount factor β , and takes a consumption process {ct}
as given. In particular, assume that ct = g(Xt), where Xt is a Markov process

with transition c.d.f. F (X ′|X). Given these inputs, the theory is assigned the

task of restricting the rate of return on an asset, defined by Lucas as a claim on

the consumption endowment:

Rt+1 =
pt+1 + ct+1

pt

where pt is the price of the asset. The Euler inequality (1.3.3) becomes

Etβ
u′ (ct+1)

u′ (ct)

(
pt+1 + ct+1

pt

)
= 1. (1.3.14)

This equation can be solved for a pricing function pt = p(Xt). In particular, if

we substitute p(Xt) into (1.3.14), we get Lucas’s functional equation for p(X).
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1.3.9. Multiple assets

If the consumer has access to several assets, a version of (1.3.3) holds for each

asset:

Etβ
u′ (ct+1)

u′ (ct)
Rj,t+1 = 1 (1.3.15)

where Rj,t+1 is the gross rate of return on asset j . Given a utility function u , a

discount factor β , and the hypothesis of rational expectations (which allows the

researcher to use empirical projections as counterparts of the theoretical projec-

tions Et ), equations (1.3.15) put extensive restrictions across the moments of

a vector time series for [ct, R1,t+1, . . . , RJ,t+1] . A key finding of the literature

(e.g., Hansen and Singleton, 1983) is that for u ’s with plausible curvature,10

consumption is too smooth for {ct, Rj,t+1} to satisfy equation (1.3.15), where

ct is measured as aggregate consumption.

Lars Hansen and others have elegantly organized this evidence as follows.

Define the stochastic discount factor

mt+1,t = β
u′ (ct+1)

u′ (ct)
(1.3.16)

and write (1.3.15) as

Etmt+1,tRj,t+1 = 1. (1.3.17)

Represent the gross rate of return as

Rj,t+1 =
ot+1

qt

where ot+1 is a one-period payout on the asset and qt is the price of the asset

at time t . Then (1.3.17) can be expressed as

qt = Etmt+1,tot+1. (1.3.18)

The structure of (1.3.18) justifies calling mt+1,t a stochastic discount factor: to

determine the price of an asset, multiply the random payoff for each state by

the discount factor for that state, then add over states by taking a conditional

expectation. Applying the definition of a conditional covariance and a Cauchy-

Schwartz inequality to this equation implies

qt
Etmt+1,t

≥ Etot+1 −
σt (mt+1,t)

Etmt+1,t
σt (ot+1) (1.3.19)

10 Chapter 14 describes Pratt’s (1964) mental experiment for deducing plausible curvature.
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where σt(yt+1) denotes the conditional standard deviation of yt+1 . Setting

ot+1 = 1 in (1.3.18) shows that Etmt+1,t must be the time t price of a risk-free

one-period security. Inequality (1.3.19) bounds the ratio of the price of a risky

security qt to the price of a risk-free security Etmt+1,1 by the right side, which

equals the expected payout on that risky asset minus its conditional standard

deviation σt(ot+1) times a “market price of risk” σt(mt+1,t)/Etmt+1,t . By

using data only on payouts ot+1 and prices qt , inequality (1.3.19) has been

used to estimate the market price of risk without restricting how mt+1,t relates

to consumption. If we take these atheoretical estimates of σt(mt+1,t)/Etmt+1,t

and compare them with the theoretical values of σt(mt+1,t)/Etmt+1,t that we

get with a plausible curvature for u , and by imposing m̂t+1,t = β u
′(ct+1)
u′(ct)

for

aggregate consumption, we find that the theoretical m̂ has far too little volatility

to account for the atheoretical estimates of the conditional coefficient of variation

of mt+1,t . As we discuss extensively in chapter 14, this outcome reflects the fact

that aggregate consumption is too smooth to account for atheoretical estimates

of the market price of risk.

There have been two broad types of response to the empirical challenge.

The first retains (1.3.17) but abandons (1.3.16) and instead adopts a statistical

model for mt+1,t . Even without the link that equation (1.3.16) provides to

consumption, equation (1.3.17) imposes restrictions across asset returns and

mt+1,t that can be used to identify the mt+1,t process. Equation (1.3.17)

contains no-arbitrage conditions that restrict the joint behavior of returns. This

has been a fruitful approach in the affine term structure literature (see Backus

and Zin (1993), Piazzesi (2000), and Ang and Piazzesi (2003)).11

Another approach has been to disaggregate and to write the household-i

version of (1.3.3):

βEtRt+1
u′ (ci,t+1)

u′ (cit)
≤ 1, = if Ai,t+1 > Ai. (1.3.20)

If at time t , a subset of households are on the corner, (1.3.20) will hold with

equality only for another subset of households. Households in the second set

price assets.12

11 Affine term structure models generalize earlier models that implemented rational ex-

pectations versions of the expectations theory of the term structure of interest rates. See

Campbell and Shiller (1991), Hansen and Sargent (1991), and Sargent (1979).
12 David Runkle (1991) and Gregory Mankiw and Steven Zeldes (1991) checked (1.3.20)

for subsets of agents.
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Chapter 22 describes a model of Harald Zhang (1997) and Alvarez and Jer-

mann (2000, 2001). The model introduces participation (collateral) constraints

and shocks in a way that makes a changing subset of agents i satisfy (1.3.20).

Zhang and Alvarez and Jermann formulate these models by adding participa-

tion constraints to the recursive formulation of the consumption problem based

on (1.4.7). Next we briefly describe the structure of these models and their

attitude toward our theme equation, the consumption Euler equation (1.3.3).

The idea of Zhang and Alvarez and Jermann was to meet the empirical asset

pricing challenges by disrupting (1.3.3). As we shall see, that requires eliminat-

ing some of the assets that some of the households can trade. These advanced

models exploit a convenient method for representing and manipulating history

dependence.

1.4. Recursive methods

The pervasiveness of the consumption Euler inequality will be a significant sub-

stantive theme of this book. We now turn to a methodological theme, the

imperialism of the recursive method called dynamic programming.

The notion that underlies dynamic programming is a finite-dimensional

object called the state that, from the point of view of current and future payoffs,

completely summarizes the current situation of a decision maker. If an optimum

problem has a low-dimensional state vector, immense simplifications follow. A

recurring theme of modern macroeconomics and of this book is that finding an

appropriate state vector is an art.

To illustrate the idea of the state in a simple setting, return to the savings

problem and assume that the consumer’s endowment process is a time-invariant

function of a state st that follows a Markov process with time-invariant one-

period transition density π(s′|s) and initial density π0(s), so that yt = y(st). To

begin, recall the description (1.3.5) of consumption that prevails in the special

linear quadratic version of the savings problem. Under our present assumption

that yt is a time-invariant function of the Markov state, (1.3.5) and the house-

hold’s budget constraint imply the following representation of the household’s

decision rule:

ct = f (At, st) (1.4.1a)
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At+1 = g (At, st) . (1.4.1b)

Equation (1.4.1a) represents consumption as a time-invariant function of a state

vector (At, st). The Markov component st appears in (1.4.1a) because it con-

tains all of the information that is useful in forecasting future endowments (for

the linear quadratic model, (1.3.5) reveals the household’s incentive to forecast

future incomes), and the asset level At summarizes the individual’s current fi-

nancial wealth. The s component is assumed to be exogenous to the household’s

decisions and has a stochastic motion governed by π(s′|s). But the future path

of A is chosen by the household and is described by (1.4.1b). The system formed

by (1.4.1) and the Markov transition density π(s′|s) is said to be recursive be-

cause it expresses a current decision ct as a function of the state and tells how

to update the state. By iterating (1.4.1b), notice that At+1 can be expressed

as a function of the history [st, st−1, . . . , s0] and A0 . The endogenous state

variable financial wealth thus encodes all payoff-relevant aspects of the history

of the exogenous component of the state st .

Define the value function V (A0, s0) as the optimum value of the savings

problem starting from initial state (A0, s0). The value function V satisfies the

following functional equation, known as a Bellman equation:

V (A, s) = max
c,A′

{u (c) + βE [V (A′, s′) |s]} (1.4.2)

where the maximization is subject to A′ = R(A+y−c) and y = y(s). Associated

with a solution V (A, s) of the Bellman equation is the pair of policy functions

c = f (A, s) (1.4.3a)

A′ = g (A, s) (1.4.3b)

from (1.4.1). The ex ante value (i.e., the value of (1.3.1) before s0 is drawn)

of the savings problem is then

v (A0) =
∑

s

V (A0, s)π0 (s) . (1.4.4)

We shall make ample use of the ex ante value function.
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1.4.1. Dynamic programming and the Lucas Critique

Dynamic programming is now recognized as a powerful method for studying

private agents’ decisions and also the decisions of a government that wants to

design an optimal policy in the face of constraints imposed on it by private

agents’ best responses to that government policy. But it has taken a long time

for the power of dynamic programming to be realized for government policy

design problems.

Dynamic programming had been applied since the late 1950s to design gov-

ernment decision rules to control an economy whose transition laws included

rules that described the decisions of private agents. In 1976 Robert E. Lucas,

Jr., published his now famous critique of dynamic-programming-based econo-

metric policy evaluation procedures. The heart of Lucas’s critique was the

implication for government policy evaluation of a basic property that pertains

to any optimal decision rule for private agents with a form (1.4.3) that attains

a Bellman equation like (1.4.2). The property is that the optimal decision rules

(f, g) depend on the transition density π(s′|s) for the exogenous component of

the state s . As a consequence, any widely understood government policy that

alters the law of motion for a state variable like s that appears in private agents’

decision rules should alter those private decision rules. (In the applications that

Lucas had in mind, the s in private agents’ decision problems included variables

useful for predicting tax rates, the money supply, and the aggregate price level.)

Therefore, Lucas asserted that econometric policy evaluation procedures that

assumed that private agents’ decision rules are fixed in the face of alterations in

government policy are flawed.13 Most econometric policy evaluation procedures

at the time were vulnerable to Lucas’s criticism. To construct valid policy eval-

uation procedures, Lucas advocated building new models that would attribute

rational expectations to decision makers.14 Lucas’s discussant Robert Gordon

predicted that after that ambitious task had been accomplished, we could then

use dynamic programming to compute optimal policies, i.e., to solve Ramsey

problems.

13 They were flawed because they assumed “no response” when they should have assumed

“best response” of private agents’ decision rules to government decision rules.
14 That is, he wanted private decision rules to solve dynamic programming problems with

the correct transition density π for s .
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1.4.2. Dynamic programming challenged

But Edward C. Prescott’s 1977 paper entitled “Should Control Theory Be Used

for Economic Stabilization?” asserted that Gordon was too optimistic. Prescott

claimed that in his 1977 JPE paper with Kydland he had proved that it was “log-

ically impossible” to use dynamic programming to find optimal government poli-

cies in settings where private traders face genuinely dynamic problems. Prescott

said that dynamic programming was inapplicable to government policy design

problems because the structure of best responses of current private decisions to

future government policies prevents the government policy design problem from

being recursive (a manifestation of the time inconsistency of optimal govern-

ment plans). The optimal government plan would therefore require a govern-

ment commitment technology, and the government policy must take the form of

a sequence of history-dependent decision rules that could not be expressed as a

function of natural state variables.

1.4.3. Imperialistic response of dynamic programming

Much of the subsequent history of macroeconomics belies Prescott’s claim of

“logical impossibility.” More and more problems that smart people like Prescott

in 1977 thought could not be attacked with dynamic programming can now be

solved with dynamic programming. Prescott didn’t put it this way in 1977,

but today we would: in 1977 we lacked a way to handle history dependence

within a dynamic programming framework. Finding a recursive way to handle

history dependence is a major achievement of the past 35 years and an important

methodological theme of this book that opens the way to a variety of important

applications.

We shall encounter important traces of the fascinating history of this topic

in various chapters. Important contributors to the task of overcoming Prescott’s

challenge seemed to work in isolation from one another, being unaware of the

complementary approaches being followed elsewhere. Important contributors

included Shavell and Weiss (1979); Kydland and Prescott (1980); Miller and

Salmon (1985); Pearlman; Currie and Levine (1985); Pearlman (1992), and

Hansen, Epple, and Roberds (1985). These researchers achieved truly indepen-

dent discoveries of the same important idea.
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As we discuss in detail in chapter 19, one important approach amounted

to putting a government costate vector on the costate equations of the private

decision makers, then proceeding as usual to use optimal control for the govern-

ment’s problem. (A costate equation is a version of an Euler equation.) Solved

forward, the costate equation depicts the dependence of private decisions on

forecasts of future government policies that Prescott was worried about. The

key idea in this approach was to formulate the government’s problem by taking

the costate equations of the private sector as additional constraints on the gov-

ernment’s problem. These amount to promise-keeping constraints (they are cast

in terms of derivatives of value functions, not value functions themselves, be-

cause costate vectors are gradients of value functions). After adding the costate

equations of the private sector (the “followers”) to the transition law of the gov-

ernment (the “leader”), one could then solve the government’s problem by using

dynamic programming as usual. One simply writes down a Bellman equation

for the government planner taking the private sector costate variables as pseudo-

state variables. Then it is almost business as usual (Gordon was correct!). We

say “almost” because after the Bellman equation is solved, there is one more

step: to pick the initial value of the private sector’s costate. To maximize the

government’s criterion, this initial condition should be set to zero because ini-

tially there are no promises to keep. The government’s optimal decision is a

function of the natural state variable and the costate variables. The date t

costate variables encode history and record the “cost” to the government at t of

confirming the private sector’s prior expectations about the government’s time

t decisions, expectations that were embedded in the private sector’s decisions

before t . The solution is time inconsistent (the government would always like

to reinitialize the time t multiplier to zero and thereby discard past promises,

but that is ruled out by the assumption that the government is committed to

follow the optimal plan). See chapter 19 for many technical details, computer

programs, and an application.
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1.4.4. History dependence and “dynamic programming squared”

Rather than pursue the “costate on the costate” approach further, we now turn

to a closely related approach that we illustrate in a dynamic contract design

problem. While superficially different from the government policy design prob-

lem, the contract problem has many features in common with it. What is again

needed is a recursive way to encode history dependence. Rather than use costate

variables, we move up a derivative and work with promised values. This leads

to value functions appearing inside value functions or “dynamic programming

squared.”

Define the history st of the Markov state by st = [st, st−1, . . . , s0] and let

πt(s
t) be the density over histories induced by π, π0 . Define a consumption

allocation rule as a sequence of functions, the time component of which maps st

into a choice of time t consumption, ct = σt(s
t), for t ≥ 0. Let c = {σt(st)}∞t=0 .

Define the (ex ante) value associated with an allocation rule as

v (c) =

∞∑

t=0

∑

st

βtu
(
σt
(
st
))
πt
(
st
)
. (1.4.5)

For each possible realization of the period zero state s0 , there is a continuation

history st|s0 . The observation that a continuation history is itself a complete

history is our first hint that a recursive formulation is possible.15 For each

possible realization of the first period s0 , a consumption allocation rule implies

a one-period continuation consumption rule c|s0 . A continuation consumption

rule is itself a consumption rule that maps histories into time series of consump-

tion. The one-period continuation history treats the time t + 1 component of

the original history evaluated at s0 as the time t component of the continuation

history. The period t consumption of the one-period continuation consumption

allocation conforms to the time t+ 1 component of original consumption allo-

cation evaluated at s0 . The time and state separability of (1.4.5) then allow us

to represent v(c) recursively as

v (c) =
∑

s0

[u (c0 (s0)) + βv (c|s0)]π0 (s0) , (1.4.6)

where v(c|s0) is the value of the continuation allocation. We call v(c|s0) the

continuation value. In a special case that successive components of st are i.i.d.

15 See chapters 8 and 24 for discussions of the recursive structure of histories.
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and have a discrete distribution, we can write (1.4.6) as

v =
∑

s

[u (cs) + βws] Πs, (1.4.7)

where Πs = Prob(yt = ys) and [y1 < y2 · · · < yS ] is a grid on which the endow-

ment resides, cs is consumption in state s given v , and ws is the continuation

value in state s given v . Here we use v in (1.4.7) to denote what was v(c) in

(1.4.6) and ws to denote what was v(c|s) in (1.4.6).

So far this has all been for an arbitrary consumption plan. Evidently, the

ex ante value v attained by an optimal consumption program must satisfy

v = max
{cs,ws}S

s=1

∑

s

[u (cs) + βws] Πs (1.4.8)

where the maximization is subject to constraints that summarize the individual’s

opportunities to trade current state-contingent consumption cs against future

state-contingent continuation values ws . In these problems, the value of v is an

outcome that depends, in the savings problem for example, on the household’s

initial level of assets. In fact, for the savings problem with i.i.d. endowment

shocks, the outcome is that v is a monotone function of A . This monotonicity

allows the following remarkable representation. After solving for the optimal

plan, use the monotone transformation to let v replace A as a state variable

and represent the optimal decision rule in the form

cs = f (v, s) (1.4.9a)

ws = g (v, s) . (1.4.9b)

The promised value v (a forward-looking variable if there ever was one)

is also the variable that functions as an index of history in (1.4.9). Equation

(1.4.9b) reminds us that v is a “backward looking” variable that registers the

cumulative impact of past states st . The definition of v as a promised value,

for example in (1.4.8), tells us that v is also a forward-looking variable that

encodes expectations (promises) about future consumption.
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1.4.5. Dynamic principal-agent problems

The right side of (1.4.8) tells the terms on which the household is willing to trade

current utility for continuation utility. Models that confront enforcement and

information problems use the trade-off identified by (1.4.8) to design intertem-

poral consumption plans that optimally balance risk sharing and intertemporal

consumption smoothing against the need to offer correct incentives. Next we

turn to such models.

We remove the household from the market and hand it over to a planner

or principal who offers the household a contract that the planner designs to

deliver an ex ante promised value v subject to enforcement or information con-

straints.16 Now v becomes a state variable that occurs in the planner’s value

function. We assume that the only way the household can transfer his endow-

ment over time is to deal with the planner. The saving or borrowing technology

(1.3.2) is no longer available to the agent, though it might be to the planner.

We continue to consider the i.i.d. case mentioned above. Let P (v) be the ex

ante optimal value of the planner’s problem. The presence of a value function

(for the agents) as an argument of the value function of the principal causes us

sometimes to speak of “dynamic programming squared.” The planner “earns”

yt− ct from the agent at time t by commandeering the agent’s endowment but

returning consumption ct . The value function P (v) for a planner who must

deliver promised value v satisfies

P (v) = max
{cs,ws}S

s=1

[ys − cs + βP (ws)] Πs, (1.4.10)

where the maximization is subject to the promise-keeping constraint (1.4.7) and

some other constraints that depend on details of the problem, as we indicate

shortly. The other constraints are context-specific incentive-compatibility con-

straints and describe the best response of the agent to the arrangement offered

by the principal. Condition (1.4.7) is a promise-keeping constraint. The planner

is constrained to provide a vector of {cs, ws}Ss=1 that delivers the value v .

We briefly describe two types of contract design problems and the con-

straints that confront the planner because of the opportunities that the envi-

ronment grants the agent.

To model the problem of enforcement without an information problem, as-

sume that while the planner can observe yt each period, the household always

16 Here we are sticking close to two models of Thomas and Worrall (1988, 1990).
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has the option of consuming its endowment yt and receiving an ex ante con-

tinuation value vaut with which to enter the next period, where vaut is the

ex ante value the consumer receives by always consuming his endowment. The

consumer’s freedom to walk away induces the planner to structure the insurance

contract so that it is never in the household’s interest to defect from the contract

(the contract must be “self-enforcing”). A self-enforcing contract requires that

the following participation constraints be satisfied:

u (cs) + βws ≥ u (ys) + βvaut ∀s. (1.4.11)

A self-enforcing contract provides imperfect insurance when occasionally some of

these participation constraints are binding. When they are binding, the planner

sacrifices consumption smoothing in the interest of providing incentives for the

contract to be self-enforcing.

An alternative specification eliminates the enforcement problem by assum-

ing that once the household enters the contract, it does not have the option to

walk away. A planner wants to supply insurance to the household in the most

efficient way, but now the planner cannot observe the household’s endowment.

The planner must trust the household to report its endowment. It is assumed

that the household will truthfully report its endowment only if it wants to. This

leads the planner to add to the promise-keeping constraint (1.4.7) the following

truth-telling constraints:

u (cs) + βws ≥ u (ys − yτ + cτ ) + βwτ ∀ (s, τ) , (1.4.12)

where constraint (1.4.12) pertains to a situation when the household’s true en-

dowment is ys but the household considers to falsely report that the endowment

instead is yτ . The left and right sides of (1.4.12) are the utility of telling the

truth and lying, respectively. If the household (falsely) reports yτ , the planner

awards the household a net transfer cτ − yτ and a continuation value wτ . If

(1.4.12) holds for all τ , the household will always choose to report the true

state s .

As we shall see in chapters 21 and 22, the planner elicits truthful reporting

by manipulating how continuation values vary with the reported state. House-

holds that report a low income today might receive a transfer today, but they

suffer an adverse consequence by getting a diminished continuation value start-

ing tomorrow. The planner structures this menu of choices so that only low-

endowment households, those that badly want a transfer today, are willing to
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accept the diminished continuation value that is the consequence of reporting

that low income today.

At this point, a supermartingale convergence theorem raises its ugly head

again. But this time it propels consumption and continuation utility downward .

The super martingale result leads to what some people have termed the “im-

miseration” property of models in which dynamic contracts are used to deliver

incentives to reveal information.

To enhance our appreciation for the immiseration result, we now touch on

another aspect of macroeconomic’s love-hate affair with the Euler inequality

(1.3.3). In both of the incentive models just described, one with an enforce-

ment problem, the other with an information problem, it is important that the

household not have access to a good risk-free investment technology like that

represented in the constraint (1.3.2) that makes (1.3.3) the appropriate first-

order condition in the savings problem. Indeed, especially in the model with

limited information, the planner makes ample use of his ability to reallocate

consumption intertemporally in ways that can violate (1.3.2) in order to elicit

accurate information from the household. In chapter 21, we shall follow Cole

and Kocherlakota (2001) by allowing the household to save (but not to dissave)

a risk-free asset that bears fixed gross interest rate R = β−1 . The Euler inequal-

ity comes back into play and alters the character of the insurance arrangement

so that outcomes resemble ones that occur in a Bewley model, provided that

the debt limit in the Bewley model is chosen appropriately.

1.4.6. More applications

We shall study many more applications of dynamic programming and dynamic

programming squared, including models of search in labor markets, reputation

and credible public policy, gradualism in trade policy, unemployment insurance,

and monetary economies. It is time to get to work seriously studying the math-

ematical and economic tools that we need to approach these exciting topics. Let

us begin.





Part II

Tools





Chapter 2
Time Series

2.1. Two workhorses

This chapter describes two tractable models of time series: finite state Markov

chains and first-order stochastic linear difference equations. These models are

organizing devices that put restrictions on a sequence of random vectors. They

are useful because they describe a time series with parsimony. In later chapters,

we shall make two uses each of Markov chains and stochastic linear difference

equations: (1) to represent the exogenous information flows impinging on an

agent or an economy, and (2) to represent an optimum or equilibrium outcome

of agents’ decision making. The Markov chain and the first-order stochastic

linear difference both use a sharp notion of a state vector. A state vector sum-

marizes the information about the current position of a system that is relevant

for determining its future. The Markov chain and the stochastic linear difference

equation will be useful tools for studying dynamic optimization problems.

2.2. Markov chains

A stochastic process is a sequence of random vectors. For us, the sequence

will be ordered by a time index, taken to be the integers in this book. So we

study discrete time models. We study a discrete-state stochastic process with

the following property:

Markov Property: A stochastic process {xt} is said to have the Markov

property if for all k ≥ 1 and all t ,

Prob (xt+1|xt, xt−1, . . . , xt−k) = Prob (xt+1|xt) .

We assume the Markov property and characterize the process by a Markov

chain. A time-invariant Markov chain is defined by a triple of objects, namely,

– 29 –
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an n-dimensional state space consisting of vectors ei, i = 1, . . . , n , where ei is

an n × 1 unit vector whose ith entry is 1 and all other entries are zero; an

n× n transition matrix P , which records the probabilities of moving from one

value of the state to another in one period; and an (n× 1) vector π0 whose ith

element is the probability of being in state i at time 0: π0i = Prob(x0 = ei).

The elements of matrix P are

Pij = Prob (xt+1 = ej|xt = ei) .

For these interpretations to be valid, the matrix P and the vector π0 must

satisfy the following assumption:

Assumption M:

a. For i = 1, . . . , n , the matrix P satisfies

n∑

j=1

Pij = 1. (2.2.1)

b. The vector π0 satisfies
n∑

i=1

π0i = 1.

A matrix P that satisfies property (2.2.1) is called a stochastic matrix. A

stochastic matrix defines the probabilities of moving from one value of the state

to another in one period. The probability of moving from one value of the state

to another in two periods is determined by P 2 because

Prob (xt+2 = ej |xt = ei)

=

n∑

h=1

Prob (xt+2 = ej |xt+1 = eh) Prob (xt+1 = eh|xt = ei)

=

n∑

h=1

PihPhj = P
(2)
ij ,

where P
(2)
ij is the i, j element of P 2 . Let P

(k)
i,j denote the i, j element of P k .

By iterating on the preceding equation, we discover that

Prob (xt+k = ej |xt = ei) = P
(k)
ij .
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The unconditional probability distributions of xt are determined by

π′
1 = Prob (x1) = π′

0P

π′
2 = Prob (x2) = π′

0P
2

...

π′
k = Prob (xk) = π′

0P
k,

where π′
t = Prob(xt) is the (1× n) vector whose ith element is Prob(xt = ei).

2.2.1. Stationary distributions

Unconditional probability distributions evolve according to

π′
t+1 = π′

tP. (2.2.2)

An unconditional distribution is called stationary or invariant if it satisfies

πt+1 = πt,

that is, if the unconditional distribution remains unaltered with the passage of

time. From the law of motion (2.2.2) for unconditional distributions, a station-

ary distribution must satisfy

π′ = π′P (2.2.3)

or

π′ (I − P ) = 0.

Transposing both sides of this equation gives

(I − P ′)π = 0, (2.2.4)

which determines π as an eigenvector (normalized to satisfy
∑n

i=1 πi = 1)

associated with a unit eigenvalue of P ′ . We say that P, π is a stationary Markov

chain if the initial distribution π is such that (2.2.3) holds.

The fact that P is a stochastic matrix (i.e., it has nonnegative elements

and satisfies
∑
j Pij = 1 for all i) guarantees that P has at least one unit

eigenvalue, and that there is at least one eigenvector π that satisfies equation
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(2.2.4). This stationary distribution may not be unique because P can have a

repeated unit eigenvalue.

Example 1. A Markov chain

P =



1 0 0

.2 .5 .3

0 0 1




has two unit eigenvalues with associated stationary distributions π′ = [ 1 0 0 ]

and π′ = [ 0 0 1 ] . Here states 1 and 3 are both absorbing states. Further-

more, any initial distribution that puts zero probability on state 2 is a stationary

distribution. See exercises 2.10 and 2.11 .

Example 2. A Markov chain

P =



.7 .3 0

0 .5 .5

0 .9 .1




stationary distribution π′ = [ 0 .6429 .3571 ] associated with its single unit

eigenvalue. Here states 2 and 3 form an absorbing subset of the state space.

2.2.2. Asymptotic stationarity

We often ask the following question about a Markov process: for an arbitrary

initial distribution π0 , do the unconditional distributions πt approach a sta-

tionary distribution

lim
t→∞

πt = π∞,

where π∞ solves equation (2.2.4)? If the answer is yes, then does the limit

distribution π∞ depend on the initial distribution π0 ? If the limit π∞ is inde-

pendent of the initial distribution π0 , we say that the process is asymptotically

stationary with a unique invariant distribution. We call a solution π∞ a sta-

tionary distribution or an invariant distribution of P .

We state these concepts formally in the following definition:

Definition 2.2.1. Let π∞ be a unique vector that satisfies (I − P ′)π∞ = 0.

If for all initial distributions π0 it is true that P t′π0 converges to the same
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π∞ , we say that the Markov chain is asymptotically stationary with a unique

invariant distribution.

The following theorems describe conditions under which a Markov chain is

asymptotically stationary.

Theorem 2.2.1. Let P be a stochastic matrix with Pij > 0 ∀(i, j) . Then P

has a unique stationary distribution, and the process is asymptotically station-

ary.

Theorem 2.2.2. Let P be a stochastic matrix for which Pnij > 0 ∀(i, j) for

some value of n ≥ 1 . Then P has a unique stationary distribution, and the

process is asymptotically stationary.

The conditions of Theorem 2.2.1 (and Theorem 2.2.2) state that from any state

there is a positive probability of moving to any other state in one (or n) steps.

Please note that some of the examples below will violate the conditions of The-

orem 2.2.2 for any n .

2.2.3. Forecasting the state

The minimum mean squared error forecast of the state next period is the con-

ditional mathematical expectation:

E [xt+1|xt = ei] =




Pi1

Pi2
...

Pin


 = P ′ei = P ′

i,· (2.2.5)

where P ′
i,· denotes the transpose of the ith row of the matrix P . In section

B.2 of this book’s appendix B, we use this equation to motivate the following

first-order stochastic difference equation for the state:

xt+1 = P ′xt + vt+1 (2.2.6)

where vt+1 is a random disturbance that evidently satisfies E[vt+1|xt] = 0.

Now let y be an n× 1 vector of real numbers and define yt = y′xt , so that

yt = yi if xt = ei . Evidently, we can write

yt+1 = ȳ′P ′xt + ȳ′vt+1. (2.2.7)
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The pair of equations (2.2.6), (2.2.7) becomes a simple example of a hidden

Markov model when the observation yt is too coarse to reveal the state. See

section B.2 of technical appendix B for a discussion of such models.

2.2.4. Forecasting functions of the state

From the conditional and unconditional probability distributions that we have

listed, it follows that the unconditional expectations of yt for t ≥ 0 are deter-

mined by Eyt = (π′
0P

t)y . Conditional expectations are determined by

E (yt+1|xt = ei) =
∑

j

Pijyj = (Py)i (2.2.8)

E (yt+2|xt = ei) =
∑

k

P
(2)
ik yk =

(
P 2y

)
i

(2.2.9)

and so on, where P
(2)
ik denotes the (i, k) element of P 2 and (·)i denotes the

ith row of the matrix (·). An equivalent formula from (2.2.6), (2.2.7) is

E[yt+1|xt] = ȳ′P ′xt = x′tP ȳ , which equals (P ȳ)i when xt = ei . Notice that

E [E (yt+2|xt+1 = ej) |xt = ei] =
∑

j

Pij
∑

k

Pjkyk

=
∑

k



∑

j

PijPjk


 yk =

∑

k

P
(2)
ik yk = E (yt+2|xt = ei) .

Equation the first and last terms yields E[E(yt+2|xt+1)|xt] = E[yt+2|xt] . This

is an example of the “law of iterated expectations.” The law of iterated ex-

pectations states that for any random variable z and two information sets J, I

with J ⊂ I , E[E(z|I)|J ] = E(z|J). As another example of the law of iterated

expectations, notice that

Ey1 =
∑

j

π1,jyj = π′
1y = (π′

0P ) y = π′
0 (Py)

and that

E [E (y1|x0 = ei)] =
∑

i

π0,i
∑

j

Pijyj =
∑

j

(
∑

i

π0,iPij

)
yj = π′

1y = Ey1.
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2.2.5. Forecasting functions

There are powerful formulas for forecasting functions of a Markov state. Again,

let y be an n× 1 vector and consider the random variable yt = y′xt . Then

E [yt+k|xt = ei] =
(
P ky

)
i

where (P ky)i denotes the ith row of P ky . Stacking all n rows together, we

express this as

E [yt+k|xt] = P ky. (2.2.10)

We also have
∞∑

k=0

βkE [yt+k|xt = ei] =
[
(I − βP )

−1
y
]
i
,

where β ∈ (0, 1) guarantees existence of (I − βP )−1 = (I + βP + β2P 2 + · · · ).
The matrix (I − βP )−1 is called a “resolvent operator.”

2.2.6. Enough one-step-ahead forecasts determine P

One-step-ahead forecasts of a sufficiently rich set of random variables character-

ize a Markov chain. In particular, one-step-ahead conditional expectations of n

independent functions (i.e., n linearly independent vectors h1, . . . , hn ) uniquely

determine the transition matrix P . Thus, let E[hk,t+1|xt = ei] = (Phk)i . We

can collect the conditional expectations of hk for all initial states i in an n× 1

vector E[hk,t+1|xt] = Phk . We can then collect conditional expectations for the

n independent vectors h1, . . . , hn as Ph = J where h = [h1 h2 . . . hn ] and

J is the n× n matrix consisting of all conditional expectations of all n vectors

h1, . . . , hn . If we know h and J , we can determine P from P = Jh−1 .
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2.2.7. Invariant functions and ergodicity

Let P, π be a stationary n-state Markov chain with the state space X = [ei, i =

1, . . . , n] . An n×1 vector y defines a random variable yt = y′xt . Let E[y∞|x0]
be the expectation of ys for s very large, conditional on the initial state. The

following is a useful precursor to a law of large numbers:

Theorem 2.2.3. Let y define a random variable as a function of an underlying

state x , where x is governed by a stationary Markov chain (P, π) . Then

1

T

T∑

t=1

yt → E [y∞|x0] (2.2.11)

with probability 1 .

To illustrate Theorem 2.2.3, consider the following example:

Example: Consider the Markov chain P =

[
1 0

0 1

]
, π0 =

[
p

(1− p)

]
for p ∈

(0, 1). Consider the random variable yt = ȳ′xt where ȳ =

[
10

0

]
. The chain

has two possible sample paths, yt = 10, t ≥ 0, which occurs with probability p

and yt = 0, t ≥ 0, which occurs with probability 1 − p . Thus, 1
T

∑T
t=1 yt → 10

with probability p and 1
T

∑T
t=1 yt → 0 with probability (1− p).

The outcomes in this example indicate why we might want something more

than (2.2.11). In particular, we would like to be free to replace E[y∞|x0] with
the constant unconditional mean E[yt] = E[y0] associated with the stationary

distribution π . To get this outcome, we must strengthen what we assume about

P by using the following concepts.

Suppose that (P, π) is a stationary Markov chain. Imagine repeatedly

drawing x0 from π and then generating xt, t ≥ 1 by successively drawing from

transition densities given by the matrix P . We use

Definition 2.2.2. A random variable yt = y′xt is said to be invariant if

yt = y0, t ≥ 0, for all realizations of xt, t ≥ 0 that occur with positive probability

under (P, π).

Thus, a random variable yt is invariant (or “an invariant function of the state”)

if it remains constant at y0 while the underlying state xt moves through the

state space X . Notice how the definition leaves open the possibility that y0
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itself might differ across sample paths indexed by different draws of the initial

condition x0 from the initial (and stationary) density π .

The stationary Markov chain (P, π) induces a joint density f(xt+1, xt)

over (xt+1, xt) that is independent of calendar time t ; P, π and the definition

yt = y′xt also induce a joint density fy(yt+1, yt) that is independent of calendar

time. In what follows, we compute mathematical expectations with respect to

the joint density fy(yt+1, yt).

For a finite-state Markov chain, the following theorem gives a convenient

way to characterize invariant functions of the state.

Theorem 2.2.4. Let (P, π) be a stationary Markov chain. If

E [yt+1|xt] = yt (2.2.12)

then the random variable yt = y′xt is invariant.

Proof. By using the law of iterated expectations, notice that

E (yt+1 − yt)
2
= E

[
E
(
y2t+1 − 2yt+1yt + y2t

)
|xt
]

= E
[
Ey2t+1|xt − 2E (yt+1|xt) yt + Ey2t |xt

]

= Ey2t+1 − 2Ey2t + Ey2t

= 0,

where the middle term on the right side of the second line uses that E[yt|xt] =
yt , the middle term on the right side of the third line uses hypothesis (2.2.12),

and the third line uses the hypothesis that π is a stationary distribution. In a

finite Markov chain, if E(yt+1 − yt)
2 = 0, then yt+1 = yt for all yt+1, yt that

occur with positive probability under the stationary distribution.

As we shall have reason to study in chapters 17 and 18, any (not necessarily

stationary) stochastic process yt that satisfies (2.2.12) is said to be amartingale.

Theorem 2.2.4 tells us that a martingale that is a function of a finite-state

stationary Markov state xt must be constant over time. This result is a special

case of the martingale convergence theorem that underlies some remarkable

results about savings to be studied in chapter 17.1

1 Theorem 2.2.4 tells us that a stationary martingale process has so little freedom to

move that it has to be constant forever, not just eventually, as asserted by the martingale

convergence theorem.



38 Time Series

Equation (2.2.12) can be expressed as Py = y or

(P − I) y = 0, (2.2.13)

which states that an invariant function of the state is a (right) eigenvector of

P associated with a unit eigenvalue. Thus, associated with unit eigenvalues of

P are (1) left eigenvectors that are stationary distributions of the chain (recall

equation (2.2.4)), and (2) right eigenvectors that are invariant functions of the

chain (from equation (2.2.13)).

Definition 2.2.3. Let (P, π) be a stationary Markov chain. The chain is said

to be ergodic if the only invariant functions y are constant with probability 1

under the stationary unconditional probability distribution π , i.e., yi = yj for

all i, j with πi > 0, πj > 0.

Remark: Let π̃(1), π̃(2), . . . , π̃(m) be m distinct ‘basis’ stationary distributions

for an n state Markov chain with transition matrix P . Each π̃(k) is an (n× 1)

left eigenvector of P associated with a distinct unit eigenvalue. Each π(j) is

scaled to be a probability vector (i.e., its components are nonnegative and sum

to unity). The set S of all stationary distributions is convex. An element

πb ∈ S can be represented as

πb = b1π̃
(1) + b2π̃

(2) + · · ·+ bmπ̃
(m),

where bj ≥ 0,
∑
j bj = 1 is a probability vector.

Remark: A stationary density πb for which the pair (P, πb) is an ergodic

Markov chain is an extreme point of the convex set S , meaning that it can be

represented as πb = π̃(j) for one of the ‘basis’ stationary densities.

A law of large numbers for Markov chains is:

Theorem 2.2.5. Let y define a random variable on a stationary and ergodic

Markov chain (P, π) . Then

1

T

T∑

t=1

yt → E [y0] (2.2.14)

with probability 1 .

This theorem tells us that the time series average converges to the popula-

tion mean of the stationary distribution.
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Three examples illustrate these concepts.

Example 1. A chain with transition matrix P =

[
0 1

1 0

]
has a unique sta-

tionary distribution π = [ .5 .5 ]
′
and the invariant functions are [α α ]

′
for

any scalar α . Therefore, the process is ergodic and Theorem 2.2.5 applies.

Example 2. A chain with transition matrix P =

[
1 0

0 1

]
has a continuum of

stationary distributions γ

[
1

0

]
+ (1 − γ)

[
0

1

]
for any γ ∈ [0, 1] and invariant

functions

[
0

α1

]
and

[
α2

0

]
for any scalars α1, α2 . Therefore, the process is

not ergodic when γ ∈ (0, 1), for note that neither invariant function is con-

stant across states that receive positive probability according to a stationary

distribution associated with γ ∈ (0, 1). Therefore, the conclusion (2.2.14) of

Theorem 2.2.5 does not hold for an initial stationary distribution associated

with γ ∈ (0, 1), although the weaker result Theorem 2.2.3 does hold. When

γ ∈ (0, 1), nature chooses state i = 1 or i = 2 with probabilities γ, 1 − γ ,

respectively, at time 0. Thereafter, the chain remains stuck in the realized time

0 state. Its failure ever to visit the unrealized state prevents the sample average

from converging to the population mean of an arbitrary function ȳ of the state.

Notice that conclusion (2.2.14) of Theorem 2.2.5 does hold for the stationary

distributions associated with γ = 0 and γ = 1.

Example 3. A chain with transition matrix P =



.8 .2 0

.1 .9 0

0 0 1


 has a contin-

uum of stationary distributions γ [ 1
3

2
3 0 ]′ + (1− γ) [ 0 0 1 ]′ for γ ∈ [0, 1]

and invariant functions α1 [ 1 1 0 ]
′
and α2 [ 0 0 1 ]

′
for any scalars α1, α2 .

The conclusion (2.2.14) of Theorem 2.2.5 does not hold for the stationary dis-

tributions associated with γ ∈ (0, 1), but Theorem 2.2.3 does hold. But again,

conclusion (2.2.14) does hold for the stationary distributions associated with

γ = 0 and γ = 1.
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2.2.8. Simulating a Markov chain

It is easy to simulate a Markov chain using a random number generator. The

Matlab program markov.m does the job. We’ll use this program in some later

chapters.2

2.2.9. The likelihood function

Let P be an n × n stochastic matrix with states 1, 2, . . . , n . Let π0 be an

n × 1 vector with nonnegative elements summing to 1, with π0,i being the

probability that the state is i at time 0. Let it index the state at time

t . The Markov property implies that the probability of drawing the path

(x0, x1, . . . , xT−1, xT ) = (ei0 , ei1 , . . . , eiT−1 , eiT ) is

L ≡ Prob
(
xiT , xiT−1 , . . . , xi1 , xi0

)

= PiT−1,iT PiT−2,iT−1 · · ·Pi0,i1π0,i0 .
(2.2.15)

The probability L is called the likelihood. It is a function of both the sample

realization x0, . . . , xT and the parameters of the stochastic matrix P . For a

sample x0, x1, . . . , xT , let nij be the number of times that there occurs a one-

period transition from state i to state j . Then the likelihood function can be

written

L = π0,i0
∏

i

∏

j

P
nij

i,j ,

a multinomial distribution.

Formula (2.2.15) has two uses. A first, which we shall encounter often, is to

describe the probability of alternative histories of a Markov chain. In chapter 8,

we shall use this formula to study prices and allocations in competitive equilibria.

A second use is for estimating the parameters of a model whose solution

is a Markov chain. Maximum likelihood estimation for free parameters θ of a

Markov process works as follows. Let the transition matrix P and the initial

distribution π0 be functions P (θ), π0(θ) of a vector of free parameters θ . Given

a sample {xt}Tt=0 , regard the likelihood function as a function of the parameters

θ . As the estimator of θ , choose the value that maximizes the likelihood function

L .

2 An index in the back of the book lists Matlab programs.
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2.3. Continuous-state Markov chain

In chapter 8, we shall use a somewhat different notation to express the same

ideas. This alternative notation can accommodate either discrete- or continuous-

state Markov chains. We shall let S denote the state space with typical element

s ∈ S . Let state transitions be described by the cumulative distribution function

Π(s′|s) = Prob(st+1 ≤ s′|st = s) and let the initial state s0 be described by the

cumulative distribution function Πo(s) = Prob(s0 ≤ s). The transition density

is π(s′|s) = d
ds′Π(s

′|s) and the initial density is π0(s) = d
dsΠ0(s). For all

s ∈ S, π(s′|s) ≥ 0 and
∫
s′ π(s

′|s)ds′ = 1; also
∫
s π0(s)ds = 1.3 Corresponding

to (2.2.15), the density over history st = [st, st−1, . . . , s0] is

π
(
st
)
= π (st|st−1) · · ·π (s1|s0)π0 (s0) . (2.3.1)

For t ≥ 1, the time t unconditional distributions evolve according to

πt (st) =

∫

st−1

π (st|st−1)πt−1 (st−1) d st−1.

A stationary or invariant distribution satisfies

π∞ (s′) =

∫

s

π (s′|s)π∞ (s) d s,

which is the counterpart to (2.2.3).

Definition: A Markov chain
(
π(s′|s), π0(s)

)
is said to be stationary if π0

satisfies

π0 (s
′) =

∫

s

π (s′|s)π0 (s) d s.

Definition: Paralleling our discussion of finite-state Markov chains, we can

say that the function φ(s) is invariant if

∫
φ (s′)π (s′|s) ds′ = φ (s) .

A stationary continuous-state Markov process is said to be ergodic if the only

invariant functions φ(s′) are constant with probability 1 under the stationary

distribution π∞ .

3 Thus, when S is discrete, π(sj |si) corresponds to Pi,j in our earlier notation.
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A law of large numbers for Markov processes states:

Theorem 2.3.1. Let y(s) be a random variable, a measurable function of

s , and let
(
π(s′|s), π0(s)

)
be a stationary and ergodic continuous-state Markov

process. Assume that E|y| < +∞ . Then

1

T

T∑

t=1

yt → Ey =

∫
y (s) π0 (s) ds

with probability 1 with respect to the distribution π0 .

2.4. Stochastic linear difference equations

The first-order linear vector stochastic difference equation is a useful example

of a continuous-state Markov process. Here we use xt ∈ IRn rather than st to

denote the time t state and specify that the initial distribution π0(x0) is Gaus-

sian with mean µ0 and covariance matrix Σ0 , and that the transition density

π(x′|x) is Gaussian with mean Ax and covariance CC′ .4 This specification

pins down the joint distribution of the stochastic process {xt}∞t=0 via formula

(2.3.1). The joint distribution determines all moments of the process.

This specification can be represented in terms of the first-order stochastic

linear difference equation

xt+1 = Axt + Cwt+1 (2.4.1)

for t = 0, 1, . . . , where xt is an n×1 state vector, x0 is a random initial condition

drawn from a probability distribution with mean Ex0 = µ0 and covariance

matrix E(x0 − µ0)(x0 − µ0)
′ = Σ0 , A is an n × n matrix, C is an n × m

matrix, and wt+1 is an m× 1 vector satisfying the following:

Assumption A1: wt+1 is an i.i.d. process satisfying wt+1 ∼ N (0, I).

4 An n× 1 vector z that is multivariate normal has the density function

f (z) = (2π)−.5n |Σ|−.5 exp
(
−.5 (z − µ)′ Σ−1 (z − µ)

)

where µ = Ez and Σ = E(z − µ)(z − µ)′ .
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We can weaken the Gaussian assumption A1. To focus only on first and

second moments of the x process, it is sufficient to make the weaker assumption:

Assumption A2: wt+1 is an m× 1 random vector satisfying:

Ewt+1|Jt = 0 (2.4.2a)

Ewt+1w
′
t+1|Jt = I, (2.4.2b)

where Jt = [wt, wt−1, . . . , w1, x0] is the information set at t , and E[ · |Jt]
denotes the conditional expectation. We impose no distributional assumptions

beyond (2.4.2). A sequence {wt+1} satisfying equation (2.4.2a) is said to be a

martingale difference sequence adapted to Jt .

An even weaker assumption is

Assumption A3: wt+1 is a process satisfying

Ewt+1 = 0

for all t and

Ewtw
′
t−j =

{
I, if j = 0;

0, if j 6= 0.

A process satisfying assumption A3 is said to be a vector “white noise.”5

Assumption A1 or A2 implies assumption A3 but not vice versa. Assump-

tion A1 implies assumption A2 but not vice versa. Assumption A3 is sufficient

to justify the formulas that we report below for second moments. We shall often

append an observation equation yt = Gxt to equation (2.4.1) and deal with the

augmented system

xt+1 = Axt + Cwt+1 (2.4.3a)

yt = Gxt. (2.4.3b)

Here yt is a vector of variables observed at t , which may include only some

linear combinations of xt . The system (2.4.3) is often called a linear state-

space system.

5 Note that (2.4.2a) by itself allows the distribution of wt+1 conditional on Jt to be

heteroskedastic.
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Example 1. Scalar second-order autoregression: Assume that zt and wt are

scalar processes and that

zt+1 = α+ ρ1zt + ρ2zt−1 + wt+1.

Represent this relationship as the system


zt+1

zt

1


 =



ρ1 ρ2 α

1 0 0

0 0 1






zt

zt−1

1


+



1

0

0


wt+1

zt = [ 1 0 0 ]




zt

zt−1

1




which has form (2.4.3).

Example 2. First-order scalar mixed moving average and autoregression: Let

zt+1 = ρzt + wt+1 + γwt.

Express this relationship as[
zt+1

wt+1

]
=

[
ρ γ

0 0

] [
zt

wt

]
+

[
1

1

]
wt+1

zt = [ 1 0 ]

[
zt

wt

]
.

Example 3. Vector autoregression: Let zt be an n × 1 vector of random

variables. We define a vector autoregression by a stochastic difference equation

zt+1 =
4∑

j=1

Ajzt+1−j + Cywt+1, (2.4.4)

where wt+1 is an n×1 martingale difference sequence satisfying equation (2.4.2)

with x′0 = [ z0 z−1 z−2 z−3 ] and Aj is an n×n matrix for each j . We can

map equation (2.4.4) into equation (2.4.1) as follows:



zt+1

zt

zt−1

zt−2


 =




A1 A2 A3 A4

I 0 0 0

0 I 0 0

0 0 I 0







zt

zt−1

zt−2

zt−3


+




Cy

0

0

0


wt+1. (2.4.5)

Define A as the state transition matrix in equation (2.4.5). Assume that A has

all of its eigenvalues bounded in modulus below unity. Then equation (2.4.4)

can be initialized so that zt is covariance stationary, a term we define soon.
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2.4.1. First and second moments

We can use equation (2.4.1) to deduce the first and second moments of the

sequence of random vectors {xt}∞t=0 . A sequence of random vectors is called a

stochastic process .

Definition 2.4.1. A stochastic process {xt} is said to be covariance stationary

if it satisfies the following two properties: (a) the mean is independent of time,

Ext = Ex0 for all t , and (b) the sequence of autocovariance matrices E(xt+j −
Ext+j)(xt − Ext)

′ depends on the separation between dates j = 0,±1,±2, . . .,

but not on t .

We use

Definition 2.4.2. A square real valued matrix A is said to be stable if all of

its eigenvalues modulus are strictly less than unity.

We shall often find it useful to assume that (2.4.3) takes the special form
[
x1,t+1

x2,t+1

]
=

[
1 0

0 Ã

] [
x1,t

x2t

]
+

[
0

C̃

]
wt+1 (2.4.6)

where Ã is a stable matrix. That Ã is a stable matrix implies that the only

solution of (Ã−I)µ2 = 0 is µ2 = 0 (i.e., 1 is not an eigenvalue of Ã). It follows

that the matrix A =

[
1 0

0 Ã

]
on the right side of (2.4.6) has one eigenvector

associated with a single unit eigenvalue: (A − I)

[
µ1

µ2

]
= 0 implies µ1 is an

arbitrary scalar and µ2 = 0. The first equation of (2.4.6) implies that x1,t+1 =

x1,0 for all t ≥ 0. Picking the initial condition x1,0 pins down a particular

eigenvector

[
x1,0

0

]
of A . As we shall see soon, this eigenvector is our candidate

for the unconditional mean of x that makes the process covariance stationary.

We will make an assumption that guarantees that there exists an initial

condition (µ0,Σ0) = (Ex0, E(x − Ex0)(x − Ex0)
′) that makes the xt process

covariance stationary. Either of the following conditions works:

Condition A1: All of the eigenvalues of A in (2.4.3) are strictly less than 1

in modulus.

Condition A2: The state-space representation takes the special form (2.4.6)

and all of the eigenvalues of Ã are strictly less than 1 in modulus.
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To discover the first and second moments of the xt process, we regard the

initial condition x0 as being drawn from a distribution with mean µ0 = Ex0

and covariance Σ0 = E(x−Ex0)(x−Ex0)′ . We shall deduce starting values for

the mean and covariance that make the process covariance stationary, though

our formulas are also useful for describing what happens when we start from

other initial conditions that generate transient behavior that stops the process

from being covariance stationary.

Taking mathematical expectations on both sides of equation (2.4.1) gives

µt+1 = Aµt (2.4.7)

where µt = Ext . We will assume that all of the eigenvalues of A are strictly

less than unity in modulus, except possibly for one that is affiliated with the

constant terms in the various equations. Then xt possesses a stationary mean

defined to satisfy µt+1 = µt , which from equation (2.4.7) evidently satisfies

(I −A)µ = 0, (2.4.8)

which characterizes the mean µ as an eigenvector associated with the single

unit eigenvalue of A . The condition that the remaining eigenvalues of A are

less than unity in modulus implies that starting from any µ0 , µt → µ .6

Notice that

xt+1 − µt+1 = A (xt − µt) + Cwt+1. (2.4.9)

From equation (2.4.9), we can compute that the law of motion of the covariance

matrices Σt ≡ E(xt − µt)(xt − µt)
′. Thus,

E (xt+1 − µt+1) (xt+1 − µt+1)
′ = AE (xt − µt) (xt − µt)

′A′ + CC′

or

Σt+1 = AΣtA
′ + CC′.

6 To understand this, assume that the eigenvalues of A are distinct, and use the repre-

sentation A = PΛP−1 where Λ is a diagonal matrix of the eigenvalues of A , arranged in

descending order of magnitude, and P is a matrix composed of the corresponding eigenvec-

tors. Then equation (2.4.7) can be represented as µ∗t+1 = Λµ∗t , where µ∗t ≡ P−1µt , which

implies that µ∗t = Λtµ∗0 . When all eigenvalues but the first are less than unity, Λt converges

to a matrix of zeros except for the (1, 1) element, and µ∗t converges to a vector of zeros except

for the first element, which stays at µ∗0,1 , its initial value, which we are free to set equal to

1, to capture the constant. Then µt = Pµ∗t converges to P1µ
∗
0,1 = P1 , where P1 is the

eigenvector corresponding to the unit eigenvalue.
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A fixed point of this matrix difference equation evidently satisfies

Σ∞ = AΣ∞A
′ + CC′. (2.4.10)

A fixed point Σ∞ is the covariance matrix E(xt−µ)(xt−µ)′ under a stationary

distribution of x . Equation (2.4.10) is a discrete Lyapunov equation in the n×n
matrix Σ∞ . It can be solved with the Matlab program doublej.m.

By virtue of (2.4.1) and (2.4.7), note that for j ≥ 0

(xt+j − µt+j) = Aj (xt − µt) + Cwt+j + · · ·+Aj−1Cwt+1.

Postmultiplying both sides by (xt−µt)′ and taking expectations shows that the

autocovariance sequence satisfies

Σt+j,t ≡ E (xt+j − µt+j) (xt − µt)
′
= AjΣt. (2.4.11)

Note that Σt+j,t depends on both j , the gap between dates, and t , the earlier

date.

In the special case that Σt = Σ∞ that solves the discrete Lyapunov equa-

tion (2.4.10), Σt+j,t = Aj0Σ∞ and so depends only on the gap j between time

periods. In this case, an autocovariance matrix sequence {Σt+j,t}∞j=0 is often

also called an autocovariogram.

Suppose that yt = Gxt . Then µyt = Eyt = Gµt and

E (yt+j − µyt+j) (yt − µyt)
′
= GΣt+j,tG

′, (2.4.12)

for j = 0, 1, . . . . Equations (2.4.12) show that the autocovariogram for a

stochastic process governed by a stochastic linear difference equation obeys the

nonstochastic version of that difference equation.
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2.4.2. Summary of moment formulas

Object Formula

unconditional mean µt+1 = Aµt

unconditional covariance Σt+1 = AΣtA
′ + CC′

E[xt|x0] Atx0

E(xt − E0xt)(xt − E0xt)
′

∑t−1
h=0A

hCC′(Ah)′

stationary mean (I −A)µ = 0

stationary variance Σ∞ = AΣ∞A
′ + CC′

stationary autocovariance Σt+j,t = AjΣ∞

The accompanying table summarizes some formulas for various conditional and

unconditional first and second moments of the state xt governed by our linear

stochastic state space system A,C,G . In section 2.5, we select some moments

and use them to form population linear regressions.

2.4.3. Impulse response function

Suppose that the eigenvalues of A not associated with the constant are bounded

above in modulus by unity. Using the lag operator L defined by Lxt+1 ≡ xt ,

express equation (2.4.1) as

(I −AL)xt+1 = Cwt+1. (2.4.13)

Iterate equation (2.4.1) forward from t = 0 to get

xt = Atx0 +
t−1∑

j=0

AjCwt−j (2.4.14)

Evidently,

yt = GAtx0 +G

t−1∑

j=0

AjCwt−j (2.4.15)

and Eyt|x0 = GAtx0 . Equations (2.4.14) and (2.4.15) are examples of a moving

average representation. Viewed as a function of lag j , hj = AjC or h̃j = GAjC

is called the impulse response function. The moving average representation and

the associated impulse response function show how xt+j or yt+j is affected by
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lagged values of the shocks, the wt+1 ’s. Thus, the contribution of a shock wt−j

to xt is AjC .7

Equation (2.4.15) implies that the t-step ahead conditional covariance ma-

trices are given by

E (yt − Eyt|x0) (yt − Eyt|x0)′ = G

[
t−1∑

h=0

AhCC′Ah′

]
G′. (2.4.16)

2.4.4. Prediction and discounting

From equation (2.4.1) we can compute the useful prediction formulas

Etxt+j = Ajxt (2.4.17)

for j ≥ 1, where Et(·) denotes the mathematical expectation conditioned on

xt = (xt, xt−1, . . . , x0). Let yt = Gxt , and suppose that we want to compute

Et
∑∞

j=0 β
jyt+j . Evidently,

Et

∞∑

j=0

βjyt+j = G (I − βA)
−1
xt, (2.4.18)

provided that the eigenvalues of βA are less than unity in modulus. Equation

(2.4.18) tells us how to compute an expected discounted sum, where the discount

factor β is constant.

7 The Matlab programs dimpulse.m and impulse.m compute impulse response functions.
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2.4.5. Geometric sums of quadratic forms

In some applications, we want to calculate

αt = Et

∞∑

j=0

βjx′t+jY xt+j

where xt obeys the stochastic difference equation (2.4.1) and Y is an n × n

matrix. To get a formula for αt , we use a guess-and-verify method. We guess

that αt can be written in the form

αt = x′tνxt + σ, (2.4.19)

where ν is an (n × n) matrix and σ is a scalar. The definition of αt and the

guess (2.4.19) imply8

αt = x′tY xt + βEt
(
x′t+1νxt+1 + σ

)

= x′tY xt + βEt
[
(Axt + Cwt+1)

′
ν (Axt + Cwt+1) + σ

]

= x′t (Y + βA′νA) xt + β trace (νCC′) + βσ.

It follows that ν and σ satisfy

ν = Y + βA′νA

σ = βσ + β trace νCC′.
(2.4.20)

The first equation of (2.4.20) is a discrete Lyapunov equation in the square

matrix ν and can be solved by using one of several algorithms.9 After ν has

been computed, the second equation can be solved for the scalar σ .

We mention two important applications of formulas (2.4.19) and (2.4.20).

8 Here we use the fact that for two conformable matrices A,B, traceAB = traceBA

to deduce E(w′
t+1C

′νCwt+1) = Etrace(νCwt+1w
′
t+1C

′) = trace(νCEwt+1w
′
t+1C

′) =

trace(νCC′) .
9 The Matlab control toolkit has a program called dlyap.m that works when all of the

eigenvalues of A are strictly less than unity; the program called doublej.m works even when

there is a unit eigenvalue associated with the constant.
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2.4.5.1. Asset pricing

Let yt be governed by the state-space system (2.4.3). In addition, assume that

there is a scalar random process zt given by

zt = Hxt.

Regard the process yt as a payout or dividend from an asset, and regard βtzt

as a stochastic discount factor. The price of a perpetual claim on the stream of

payouts is

αt = Et

∞∑

j=0

(
βjzt+j

)
yt+j . (2.4.21)

To compute αt , we simply set Y = H ′G in (2.4.19) and (2.4.20). In this

application, the term σ functions as a risk premium; it is zero when C = 0.

2.4.5.2. Evaluation of dynamic criterion

Let a state xt be governed by

xt+1 = Axt +But + Cwt+1 (2.4.22)

where ut is a control vector that is set by a decision maker according to a fixed

rule

ut = −F0xt. (2.4.23)

Substituting (2.4.23) into (2.4.22) gives

xt+1 = Aoxt + Cwt+1

where Ao = A−BF0 . We want to compute the value function

v (x0) = −E0

∞∑

t=0

βt [x′tRxt + u′tQut]

for fixed positive definite matrices R and Q , fixed decision rule F0 in (2.4.23)

and arbitrary initial condition x0 . Formulas (2.4.19) and (2.4.20) apply with

Y = R+F ′
0QF0 and A being replaced by Ao = A−BF0 . Express the solution

as

v (x0) = −x′0P0x0 − σ (2.4.24)
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where by applying formulas (2.4.19) and (2.4.20), P0 satisfies the following

formula:

P0 = R+ F ′
0QF0 + β (A−BF0)

′
P0 (A−BF0) , (2.4.25)

which can be recognized to be a discrete Lyapunov equation of the form of the

first equation (2.4.20). Given F0 , formula (2.4.25) determines the matrix P0

in the value function that describes the expected discounted value of the sum

of payoffs from sticking forever with this decision rule.

Now consider the following one-period problem. Suppose that we must use

decision rule F0 from time 1 onward, so that the value at time 1 on starting

from state x1 is

v (x1) = −x′1P0x1 − σ. (2.4.26)

Taking ut = −F0xt as given for t ≥ 1, what is the best choice of u0 ? This

leads to the optimum problem:

max
u0

−{x′0Rx0+u′0Qu0+βE (Ax0 +Bu0 + Cw1)
′
P0 (Ax0 +Bu0 + Cw1)+βσ}.

(2.4.27)

The first-order conditions for this problem can be rearranged to attain

u0 = −F1x0 (2.4.28)

where

F1 = β (Q+ βB′P0B)
−1
B′P0A. (2.4.29)

Given P0 , formula (2.4.29) gives the best decision rule u0 = −F1x0 if at t = 0

you are permitted only a one-period deviation from the rule ut = −F0xt that

has to be used for t ≥ 1. If F1 6= F0 , we say that the decision maker would

accept the opportunity to deviate from F0 for one period.

It is tempting to iterate on (2.4.29) and (2.4.25) as follows to seek a decision

rule from which a decision maker would not want to deviate for one period: (1)

given an F0 , find P0 ; (2) reset F equal to the F1 found in step 1, then to

substitute it for F0 in (2.4.25) to compute a new P , call it P1 ; (3) return to

step 1 and iterate to convergence. This leads to the two equations

Pj = R+ F ′
jQFj + β (A−BFj)

′
Pj (A−BFj)

Fj+1 = β (Q+ βB′PjB)
−1
B′PjA

(2.4.30)
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which are to be initialized from an arbitrary F0 that ensures that
√
β(A−BF0)

is a stable matrix. After this process has converged, one cannot find a value-

increasing one-period deviation from the limiting decision rule ut = −F∞xt .
10

As we shall see in chapter 4, this is an excellent algorithm for solving a

dynamic programming problem. It is an example of the Howard policy im-

provement algorithm. In chapter 5, we describe an alternative algorithm that

iterates on the following equations

Pj+1 = R+ F ′
jQFj + β (A−BFj)

′ Pj (A−BFj)

Fj = β (Q+ βB′PjB)
−1
B′PjA,

(2.4.31)

that is to be initialized from an arbitrary positive semi-definite matrix P0 .
11

2.5. Population regression

This section explains the notion of a population regression equation. Suppose

that we have a state-space system (2.4.3) with initial conditions that make it

covariance stationary. We can use the preceding formulas to compute the second

moments of any pair of random variables. These moments let us compute a linear

regression. Thus, let X be a p×1 vector of random variables somehow selected

from the stochastic process {yt} governed by the system (2.4.3). For example,

let p = 2m , where yt is an m× 1 vector, and take X =

[
yt

yt−1

]
for any t ≥ 1.

Let Y be any scalar random variable selected from the m×1 stochastic process

{yt} . For example, take Y = yt+1,1 for the same t used to define X , where

yt+1,1 is the first component of yt+1 .

We consider the following least-squares approximation problem: find a 1×p
vector of real numbers β that attain

min
β
E (Y − βX)

2
. (2.5.1)

Here βX is being used to estimate Y , and we want the value of β that minimizes

the expected squared error. The first-order necessary condition for minimizing

10 It turns out that if you don’t want to deviate for one period, then you would never want

to deviate, so that the limiting rule is optimal.
11 P0 = 0 is a popular choice.
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E(Y − βX)2 with respect to β is

E (Y − βX)X ′ = 0, (2.5.2)

which can be rearranged as12

β = (EY X ′) [E (XX ′)]
−1
. (2.5.3)

By using the formulas (2.4.8), (2.4.10), (2.4.11), and (2.4.12), we can

compute EXX ′ and EY X ′ for whatever selection of X and Y we choose. The

condition (2.5.2) is called the least-squares normal equation. It states that the

projection error Y − βX is orthogonal to X . Therefore, we can represent Y as

Y = βX + ǫ (2.5.4)

where EǫX ′ = 0. Equation (2.5.4) is called a population regression equa-

tion, and βX is called the least-squares projection of Y on X or the least-

squares regression of Y on X . The vector β is called the population least-

squares regression vector. The law of large numbers for continuous-state Markov

processes, Theorem 2.3.1, states conditions that guarantee that sample mo-

ments converge to population moments, that is, 1
S

∑S
s=1XsX

′
s → EXX ′ and

1
S

∑S
s=1 YsX

′
s → EY X ′ . Under those conditions, sample least-squares estimates

converge to β .

There are as many such regressions as there are ways of selecting Y,X . We

have shown how a model (e.g., a triple A,C,G , together with an initial distri-

bution for x0 ) restricts a regression. Going backward, that is, telling what a

given regression tells about a model, is more difficult. Many regressions tell little

about the model, and what little they have to say can be difficult to decode. As

we indicate in sections 2.6 and 2.8, the likelihood function completely describes

what a given data set says about a model in a way that is straightforward to

decode.

12 That EX′X is nonnegative definite implies that the second-order conditions for a min-

imum of condition (2.5.1) are satisfied.
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2.5.1. Multiple regressors

Now let Y be an n×1 vector of random variables and think of regression solving

the least squares problem for each of them to attain a representation

Y = βX + ǫ (2.5.5)

where β is now n× p and ǫ is now an n× 1 vector of least squares residuals.

The population regression coefficients are again given by

β = E (Y X ′) [E (XX ′)]
−1
. (2.5.6)

We will use this formula repeatedly in section 2.7 to derive the Kalman filter.

2.6. Estimation of model parameters

We have shown how to map the matrices A,C into all of the second moments

of the stationary distribution of the stochastic process {xt} . Linear economic

models typically give A,C as functions of a set of deeper parameters θ . We

shall give examples of such models in chapters 4 and 5. Such a model and the

formulas of this chapter give us a mapping from θ to these theoretical moments

of the {xt} process. That mapping is an important ingredient of econometric

methods designed to estimate a wide class of linear rational expectations models

(see Hansen and Sargent, 1980, 1981). Briefly, these methods use the following

procedures to match theory to data. To simplify, we shall assume that at time

t , observations are available on the entire state xt . As discussed in section 2.8,

the details are more complicated if only a subset of the state vector or a noisy

signal of the state is observed, though the basic principles remain the same.

Given a sample of observations for {xt}Tt=0 ≡ xt, t = 0, . . . , T , the likelihood

function is defined as the joint probability distribution f(xT , xT−1, . . . , x0). The

likelihood function can be factored using

f (xT , . . . , x0) = f (xT |xT−1, . . . , x0) f (xT−1|xT−2, . . . , x0) · · ·
f (x1|x0) f (x0) ,

(2.6.1)

where in each case f denotes an appropriate probability distribution. For sys-

tem (2.4.1), f(xt+1|xt, . . . , x0) = f(xt+1|xt), which follows from the Markov
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property possessed by equation (2.4.1). Then the likelihood function has the

recursive form

f (xT , . . . , x0) = f (xT |xT−1) f (xT−1|xT−2) · · · f (x1|x0) f (x0) . (2.6.2)

If we assume that the wt ’s are Gaussian, then the conditional distribution

f(xt+1|xt) is Gaussian with mean Axt and covariance matrix CC′ . Thus,

under the Gaussian distribution, the log of the conditional density of the n

dimensional vector xt+1 becomes

log f (xt+1|xt) = −.5n log (2π)− .5 log det (CC′)

− .5 (xt+1 −Axt)
′ (CC′)

−1
(xt+1 −Axt)

(2.6.3)

Given an assumption about the distribution of the initial condition x0 , equations

(2.6.2) and (2.6.3) can be used to form the likelihood function of a sample of

observations on {xt}Tt=0 . One computes maximum likelihood estimates by using

a hill-climbing algorithm to maximize the likelihood function with respect to free

parameters that determine A,C .13

When the state xt is not observed, we need to go beyond the likelihood

function for {xt} . One approach uses filtering methods to build up the likeli-

hood function for the subset of observed variables.14 In section 2.7, we derive

the Kalman filter as an application of the population regression formulas of sec-

tion 2.5. Then in section 2.8, we use the Kalman filter as a device that tells us

how to find state variables that allow us recursively to form a likelihood function

for observations of variables that are not themselves Markov.

13 For example, putting those free parameters into a vector θ , think of A,C as being the

matrix functions A(θ), C(θ) .
14 See Hamilton (1994), Canova (2007), DeJong and Dave (2011), and section 2.8 below.
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2.7. The Kalman filter

As a fruitful application of the population regression formula (2.5.6), we derive

the celebrated Kalman filter for the state space system for t ≥ 0:15

xt+1 = Axt + Cwt+1 (2.7.1)

yt = Gxt + vt (2.7.2)

where xt is an n × 1 state vector and yt is an m × 1 vector of signals on the

hidden state; wt+1 is a p×1 vector iid sequence of normal random variables with

mean 0 and identity covariance matrix, and vt is another iid vector sequence of

normal random variables with mean zero and covariance matrix R . We assume

that wt+1 and vs are orthogonal (i.e., Ewt+1v
′
s = 0) for all t+1 and s greater

than or equal to 0. We assume that

x0 ∼ N (x̂0,Σ0) . (2.7.3)

We assume that we observe yt, . . . , y0 but not xt, . . . , x0 at time t . We know

all first and second moments implied by the structure (2.7.1), (2.7.2), (2.7.3).

We work forward in time, starting at time t = 0 before we observe y0 .

Specification (2.7.2), (2.7.3) implies that the conditional distribution of y0 is

y0 ∼ N (Gx̂0, GΣ0G
′ +R) . (2.7.4)

For t ≥ 0, let yt = [yt, yt−1, . . . , y0] . We want seek an expression for the

probability distribution of yt conditional on history yt−1 that has a convenient

recursive representation. The Kalman filter attains that by constructing recur-

sive formulas for objects x̂t,Σt that appear in the following generalization of

(2.7.4)

yt ∼ N (Gx̂t, GΣtG
′ +R) . (2.7.5)

The objects x̂t,Σt characterize the population regression x̂t = E[xt|yt−1, . . . , y0]

and the covariance matrix Σt = E(xt − x̂t)(xt − x̂t)
′ .

At each date, our approach is to regresse what we don’t know on what we

know. Let’s start at date t = 0. We arrive at date 0 knowing x̂0,Σ0 . Then we

15 In exercise 2.22, we ask you to derive the Kalman filter for a state space system that

uses a different timing convention and that allows the state and measurement noises to be

correlated.
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observe y0 and make inferences. It will turn out that among the objects with

which we leave time t = 0 will be x̂1,Σ1 . This gives a perspective from which

“we are in the same situation at the start of period 1 that we were at the start

of period 0”, an insight that activates a recursion.

We use the insight that the information in y0 that is new relative to the

information (x̂0,Σ0) that we knew before observing y0 is a0 ≡ y0−Gx̂0 . Thus,
before we observe y0 , we regard x0 as a random vector with mean x̂0 and

covariance matrix Σ0 . Then we observe the random vector y0 linked to x0 by

the time 0 version of equation (2.7.2). We form revised beliefs about the mean

of x0 after observing y0 by computing the distribution of x0 conditional on y0 .

The conditional mean E[x0|y0] = x̂0 + L0(y0 − Gx̂0) satisfies the appropriate

version of the population regression formula (2.5.6), namely,

x0 − x̂0 = L0 (y0 −Gx̂0) + η (2.7.6)

where η is a matrix of least squares residuals whose orthogonality to (y0−Gx̂0)
characterizes L0 as population least squares regression coefficients. The least

squares orthogonality conditions are

E (x0 − x̂0) (y0 −Gx̂0)
′
= L0E (y0 −Gx̂0) (y0 −Gx̂0)

′
.

Evaluating the moment matrices and solving for L0 gives the formula

L0 = Σ0G
′ (GΣ0G

′ +R)
−1
. (2.7.7)

Having constructed E[x0|y0] , we can construct x̂1 = E[x1|y0] as follows.16

Equation (2.7.1) implies that E[x1|x̂0] = Ax̂0 and that

x1 = Ax̂0 +A (x0 − x̂0) + Cw1. (2.7.8)

Furthermore, applying (2.7.6) shows that Ex1|y0 = Ax̂0 + AL0(y0 − Gx̂0),

which we express as

x̂1 = Ax̂0 +K0 (y0 −Gx̂0) , (2.7.9)

where

K0 = AΣ0G
′ (GΣ0G

′ +R)
−1
. (2.7.10)

16 It is understood that we know x̂0 . Instead of writing E[x1|y0, x̂0] , we choose simply to

write E[x1|y0] , but we intend the meaning to be the same. More generally, when we write

E[xt|y
t−1] , it is understood that the mathematical expectation is also conditioned on x̂0 .
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Subtract (2.7.9) from (2.7.8) to get

x1 − x̂1 = A (x0 − x̂0) + Cw1 −K0 (y0 −Gx̂0) . (2.7.11)

Use this equation and y0 = Gx0 + v0 to compute the following formula for the

conditional variance E(x1 − x̂1)(x1 − x̂1)
′ = Σ1 :

Σ1 = (A−K0G) Σ0 (A−K0G)
′
+ (CC′ +K0RK

′
0) . (2.7.12)

Thus, we have deduced the conditional distribution x1|y0 ∼ N (x̂1,Σ1). Col-

lecting equations, we can write

a0 = y0 −Gx̂0 (2.7.13a)

K0 = AΣ0G
′ (GΣ0G

′ +R)
−1

(2.7.13b)

x̂1 = Ax̂0 +K0a0 (2.7.13c)

Σ1 = CC′ +K0RK
′
0 + (A−K0G) Σ0 (A−K0G)

′
. (2.7.13d)

Among the outcomes of system (2.7.13) is a conditional mean, covariance pair

(x̂1,Σ1). It is appropriate to view system (2.7.13) as a mapping a mean, co-

variance pair (x̂0,Σ0) into a mean, covariance pair (x̂1,Σ1), with auxiliary

intermediate outputs (a0,K0). The Kalman filter iterates on this mapping to

arrive at the following recursions for t ≥ 0:

at = yt −Gx̂t (2.7.14a)

Kt = AΣtG
′ (GΣtG

′ +R)
−1

(2.7.14b)

x̂t+1 = Ax̂t +Ktat (2.7.14c)

Σt+1 = CC′ +KtRK
′
t + (A−KtG)Σt (A−KtG)

′ . (2.7.14d)

System (2.7.14) is the celebrated Kalman filter, and Kt is called the Kalman

gain. Substituting for Kt from (2.7.14b) allows us to rewrite (2.7.14d) as

Σt+1 = AΣtA
′ + CC′ −AΣtG

′ (GΣtG
′ +R)

−1
GΣtA

′. (2.7.15)

Equation (2.7.15) is known as a matrix Riccati difference equation that restricts

a sequence of covariance matrices {Σt}∞t=0 .
17

17 In a different context, we shall encounter equations that will remind us of (2.7.14b),

(2.7.15). See chapter 5, page 142.
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2.7.0.1. Gram-Schmidt process

The Kalman filter in effect uses a sequence of least squares projections called

a Gram-Schmidt process to construct an orthogonal basis for the information

set yt−1, yt−2, . . . , y0 . Instead of computing E[xt|yt−1, yt−2, . . . , y0] as one big

least squares regression, the Gram-Schmidt process computes a sequence of

much smaller regressions on successive components as of an orthogonal basis

[at−1, at−2, . . . , a0] for the linear space spanned by [yt−1, yt−2, . . . , y0] .

The random vector at = yt−E[yt|yt−1, . . . , y0] is called the ‘innovation’ for

yt with respect to the information set yt−1 . It is the part of yt that cannot be

predicted from past values of y . Note that Eata
′
t = (GΣtG

′ +R), the moment

matrix whose inverse appears on the right side of the least squares regression

formula (2.7.14b). A direct calculation that uses at = G(xt − x̂t) + vt and

at−1 = G(xt−1 − x̂t−1) + vt−1 to compute expected values of products shows

that Eata
′
t−1 = 0, and more generally that E[at|at−1, . . . , a0] = 0.18

Sometimes (2.7.14) is called a ‘whitening filter’ that takes a process {yt}
of signals as an input and produces a process {at} of innovations as an output.

The linear space H(at) is an orthogonal basis for the linear space H(yt).

2.7.0.2. Hidden Markov model

System (2.7.1), (2.7.2), (2.7.3) is an example of a hidden Markov model.

The stochastic process {yt}∞t=0 of observables is not Markov, but the hid-

den process {xt}∞t=0 is Markov, and so is the process {x̂t,Σt} that consti-

tutes sufficient statistics for the probability distributions of yt conditional on

[yt−1, yt−2, . . . , y0] .

18 An alternative argument based on first principles proceeds as follows. Let H(yt) denote

the linear space of all linear combinations of yt . Note that at+1 = yt+1 − Eyt+1|y
t ; that

at ∈ H(yt) ; that by virtue of being a least-squares error, at+1 ⊥ H(yt) ; and that therefore

at+1 ⊥ at , and more generally, at+1 ⊥ at . Thus, {at} is a ‘white noise’ process of innovations

to the {yt} process.
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2.8. Estimation again

The innovations representation that emerges from the Kalman filter is

x̂t+1 = Ax̂t +Ktat (2.8.1a)

yt = Gx̂t + at (2.8.1b)

where for t ≥ 1, x̂t = E[xt|yt−1] and Eata
′
t = GΣtG

′ + R ≡ Ωt . Evidently,

for t ≥ 1, E[yt|yt−1] = Gx̂t and the distribution of yt conditional on yt−1

is N (Gx̂t,Ωt). The objects Gx̂t,Ωt emerging from the Kalman filter are thus

sufficient statistics for the distribution of yt conditioned on yt−1 for t ≥ 1.

The sufficient statistics and also the innovation at = yt−Gx̂t can be calculated

recursively from (2.7.14). The unconditional distribution of y0 is evidently

N (Gx̂0,Ω0).

As a counterpart to (2.6.2), we can factor the likelihood function for a

sample (yT , yT−1, . . . , y0) as

f (yT , . . . , y0) = f
(
yT |yT−1

)
f
(
yT−1|yT−2

)
· · · f (y1|y0) f (y0) . (2.8.2)

The log of the conditional density of the m× 1 vector yt is

log f
(
yt|yt−1

)
= −.5m log (2π)− .5 logdet (Ωt)− .5a′tΩ

−1
t at. (2.8.3)

We can use (2.8.3) and (2.7.14) to evaluate the likelihood function (2.8.2)

recursively for a given set of parameter values θ that underlie the matrices

A,G,C,R . Such calculations are at the heart of efficient strategies for computing

maximum-likelihood estimators of free parameters.19

The likelihood function is also an essential object for a Bayesian statisti-

cian.20 It completely summarizes how the data influence the Bayesian posterior

via the following application of Bayes’ law. Where θ is our parameter vector,

yT0 our data record, and p̃(θ) a probability density that summarizes our prior

19 See Hansen (1982); Eichenbaum (1991); Christiano and Eichenbaum (1992); Burnside,

Eichenbaum, and Rebelo (1993); and Burnside and Eichenbaum (1996a, 1996b) for alternative

estimation strategies.
20 See Canova (2007), Christensen and Kiefer (2009), and DeJong and Dave (2011) for

extensive descriptions of how Bayesian and maximum likelihood methods can be applied to

macroeconomic and other dynamic models.
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‘views’ or ‘information’ about θ before seeing yT0 , our views about θ after see-

ing yT0 are described by a posterior probability p̃(θ|yT0 ) that is constructed from

Bayes’s law via

p̃
(
θ|yT0

)
=

f
(
yT0 |θ

)
p̃ (θ)∫

f
(
yT0 |θ

)
p̃ (θ) d θ

,

where the denominator is the marginal joint density f(yT0 ) of yT0 .

2.9. Vector autoregressions and the Kalman filter

2.9.1. Conditioning on the semi-infinite past of y

Under conditions summarized, for example, by Anderson, Hansen, McGrat-

tan, and Sargent (1996), iterations on (2.7.14b), (2.7.14d) converge to time-

invariant K,Σ for any positive semi-definite initial covariance matrix Σ0 . A

time-invariant matrix Σt = Σ that solves (2.7.14d) is the covariance matrix of

xt around Ext|{yt−1
−∞} , where {yt−1

−∞} denotes the semi-infinite history of ys for

all dates on or before t− 1.21

2.9.2. A time-invariant VAR

Suppose that the fixed point of (2.7.14d) just described exists. If we initiate

(2.7.14d) from this fixed point Σ, then the innovations representation becomes

time invariant:

x̂t+1 = Ax̂t +Kat (2.9.1a)

yt = Gx̂t + at (2.9.1b)

where Eata
′
t = GΣG′ +R . Use (2.9.1) to express x̂t+1 = (A−KG)x̂t +Kyt .

If we assume that the eigenvalues of A − KG are bounded in modulus below

21 The Matlab program kfilter.m implements the time-invariant Kalman filter, allowing

for correlation between the wt+1 and vt Also see exercise 2.22.
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unity,22 we can solve the preceding equation to get

x̂t+1 =
∞∑

j=0

(A−KG)j Kyt−j. (2.9.2)

Then solving (2.9.1b) for yt gives the vector autoregression

yt = G

∞∑

j=0

(A−KG)
j
Kyt−j−1 + at, (2.9.3)

where by construction

E
[
aty

′
t−j−1

]
= 0 ∀j ≥ 0. (2.9.4)

The orthogonality conditions (2.9.4) identify (2.9.3) as a vector autoregression.

2.9.3. Interpreting VARs

Equilibria of economic models (or linear or log-linear approximations to them –

see chapter 11 and the examples in section 2.12 of this chapter and appendix C

of chapter 14) typically take the form of the state space system (2.7.1),(2.7.2).

This hidden Markov model disturbs the evolution of the state xt by the p× 1

shock vector wt+1 and it perturbs the m× 1 vector of observed variables yt by

the m × 1 vector of measurement errors. Thus, p +m shocks impinge on yt .

An economic theory typically makes wt+1, vt be directly interpretable as shocks

that impinge on preferences, technologies, endowments, information sets, and

measurements. The state space system (2.7.1),(2.7.2) is a representation of the

stochastic process yt in terms of these interpretable shocks. But the typical

situation is that these shocks can not be recovered directly from the yt s, even

when we know the matrices A,G,C,R .

The innovations representation (2.9.1a), (2.9.1b) represents the stochas-

tic process yt in terms of an m × 1 vector of shocks at that would be re-

covered by running an infinite-order (population) vector autoregression for yt .

Because of its role in constructing the mapping from the original representation

22 Anderson, Hansen, McGrattan, and Sargent (1996) show assumptions that guarantee

that the eigenvalue of A−KG are bounded in modulus below unity.
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(2.7.1),(2.7.2) to the one associated with the vector autoregression (2.9.3), the

Kalman filter is a very useful tool for interpreting vector autoregressions.

2.10. Applications of the Kalman filter

2.10.1. Muth’s reverse engineering exercise

Phillip Cagan (1956) and Milton Friedman (1957) posited that to form ex-

pectations of future values of a scalar yt , people use the following “adaptive

expectations” scheme:

y∗t+1 = K

∞∑

j=0

(1−K)
j
yt−j (2.10.1a)

or

y∗t+1 = (1−K) y∗t +Kyt, (2.10.1b)

where y∗t+1 is people’s expectation.23 Friedman used this scheme to describe

people’s forecasts of future income. Cagan used it to model their forecasts of

inflation during hyperinflations. Cagan and Friedman did not assert that the

scheme is an optimal one, and so did not fully defend it. Muth (1960) wanted

to understand the circumstances under which this forecasting scheme would be

optimal. Therefore, he sought a stochastic process for yt such that equation

(2.10.1) would be optimal. In effect, he posed and solved an “inverse optimal

prediction” problem of the form “You give me the forecasting scheme; I have

to find the stochastic process that makes the scheme optimal.” Muth solved

the problem using classical (nonrecursive) methods. The Kalman filter was first

described in print in the same year as Muth’s solution of this problem (Kalman,

1960). The Kalman filter lets us solve Muth’s problem quickly.

Muth studied the model

xt+1 = xt + wt+1 (2.10.2a)

yt = xt + vt, (2.10.2b)

23 See Hamilton (1994) and Kim and Nelson (1999) for diverse applications of the Kalman

filter. Appendix B (see Technical Appendixes) briefly describes a discrete-state nonlinear

filtering problem.



Applications of the Kalman filter 65

where yt, xt are scalar random processes, and wt+1, vt are mutually independent

i.i.d. Gaussian random processes with means of zero and variances Ew2
t+1 =

Q,Ev2t = R , and Evswt+1 = 0 for all t, s . The initial condition is that x0 is

Gaussian with mean x̂0 and variance Σ0 . Muth sought formulas for x̂t+1 =

E[xt+1|yt] , where yt = [yt, . . . , y0] .
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Figure 2.10.1: Graph of f(Σ) = Σ(R+Q)+QR
Σ+R , Q = R = 1,

against the 45-degree line. Iterations on the Riccati equation

for Σt converge to the fixed point.

For this problem, A = 1, CC′ = Q,G = 1, making the Kalman filtering

equations become

Kt =
Σt

Σt +R
(2.10.3a)

Σt+1 = Σt +Q− Σ2
t

Σt +R
. (2.10.3b)

The second equation can be rewritten

Σt+1 =
Σt (R+Q) +QR

Σt +R
. (2.10.4)

For Q = R = 1, Figure 2.10.1 plots the function f(Σ) = Σ(R+Q)+QR
Σ+R appearing

on the right side of equation (2.10.4) for values Σ ≥ 0 against the 45-degree



66 Time Series

line. Note that f(0) = Q . This graph identifies the fixed point of iterations

on f(Σ) as the intersection of f(·) and the 45-degree line. That the slope of

f(·) is less than unity at the intersection assures us that the iterations on f will

converge as t → +∞ starting from any Σ0 ≥ 0.

Muth studied the solution of this problem as t → ∞ . Evidently, Σt →
Σ∞ ≡ Σ is the fixed point of a graph like Figure 2.10.1. Then Kt → K and the

formula for x̂t+1 becomes

x̂t+1 = (1−K) x̂t +Kyt (2.10.5)

where K = Σ
Σ+R ∈ (0, 1). This is a version of Cagan’s adaptive expectations

formula. It can be shown that K ∈ [0, 1] is an increasing function of Q
R . Thus,

K is the fraction of the innovation at that should be regarded as ‘permanent’

and 1 − K is the fraction that is purely transitory. Iterating backward on

equation (2.10.5) gives x̂t+1 = K
∑t

j=0(1 −K)jyt−j + (1 −K)t+1x̂0, which is

a version of Cagan and Friedman’s geometric distributed lag formula. Using

equations (2.10.2), we find that E[yt+j|yt] = E[xt+j |yt] = x̂t+1 for all j ≥ 1.

This result in conjunction with equation (2.10.5) establishes that the adaptive

expectation formula (2.10.5) gives the optimal forecast of yt+j for all horizons

j ≥ 1. This finding is remarkable because for most processes, the optimal

forecast will depend on the horizon. That there is a single optimal forecast for

all horizons justifies the term permanent income that Milton Friedman (1955)

chose to describe the forecast of income.

The dependence of the forecast on horizon can be studied using the formulas

E
[
xt+j |yt−1

]
= Aj x̂t (2.10.6a)

E
[
yt+j |yt−1

]
= GAj x̂t (2.10.6b)

In the case of Muth’s example,

E
[
yt+j |yt−1

]
= ŷt = x̂t ∀j ≥ 0.

For Muth’s model, the innovations representation is

x̂t+1 = x̂t +Kat

yt = x̂t + at,
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where at = yt − E[yt|yt−1, yt−2, . . .] . The innovations representation implies

that

yt+1 − yt = at+1 + (K − 1)at. (2.10.7)

Equation (2.10.7) represents {yt} as a process whose first difference is a first-

order moving average process. Notice how Friedman’s adaptive expectations

coefficient K appears in this representation.

2.10.2. Jovanovic’s application

In chapter 6, we will describe a version of Jovanovic’s (1979) matching model,

at the core of which is a “signal-extraction” problem that simplifies Muth’s

problem. Let xt, yt be scalars with A = 1, C = 0, G = 1, R > 0. Let x0

be Gaussian with mean µ and variance Σ0 . Interpret xt (which is evidently

constant with this specification) as the hidden value of θ , a “match parameter”.

Let yt denote the history of ys from s = 0 to s = t . Define mt ≡ x̂t+1 ≡ E[θ|yt]
and Σt+1 = E(θ −mt)

2 . Then the Kalman filter becomes

mt = (1−Kt)mt−1 +Ktyt (2.10.8a)

Kt =
Σt

Σt +R
(2.10.8b)

Σt+1 =
ΣtR

Σt +R
. (2.10.8c)

The recursions are to be initiated from (m−1,Σ0), a pair that embodies all

“prior” knowledge about the position of the system. It is easy to see from

Figure 2.10.1 that when CC′ ≡ Q = 0, Σ = 0 is the limit point of iterations

on equation (2.10.8c) starting from any Σ0 ≥ 0. Thus, the value of the match

parameter is eventually learned.

It is instructive to write equation (2.10.8c) as

1

Σt+1
=

1

Σt
+

1

R
. (2.10.9)

The reciprocal of the variance is often called the precision of the estimate.

According to equation (2.10.9) the precision increases without bound as t grows,

and Σt+1 → 0.24

24 As a further special case, consider when there is zero precision initially (Σ0 = +∞ ).

Then solving the difference equation (2.10.9) gives 1
Σt

= t/R . Substituting this into equations
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We can represent the Kalman filter in the form

mt+1 = mt +Kt+1at+1

which implies that

E (mt+1 −mt)
2
= K2

t+1σ
2
a,t+1

where at+1 = yt+1 −mt and the variance of at is equal to σ2
a,t+1 = (Σt+1 +R)

from equation (5.6.5). This implies

E (mt+1 −mt)
2
=

Σ2
t+1

Σt+1 +R
.

For the purposes of our discrete-time counterpart of the Jovanovic model in

chapter 6, it will be convenient to represent the motion of mt+1 by means of

the equation

mt+1 = mt + gt+1ut+1

where gt+1 ≡
(

Σ2
t+1

Σt+1+R

).5
and ut+1 is a standardized i.i.d. normalized and

standardized with mean zero and variance 1 constructed to obey gt+1ut+1 ≡
Kt+1at+1 .

2.11. The spectrum

For a covariance stationary stochastic process, all second moments can be en-

coded in a complex-valued matrix called the spectral density matrix. The auto-

covariance sequence for the process determines the spectral density. Conversely,

the spectral density can be used to determine the autocovariance sequence.

Under the assumption that A is a stable matrix,25 the state xt converges to

a unique covariance stationary probability distribution as t approaches infinity.

(2.10.8) gives Kt = (t + 1)−1 , so that the Kalman filter becomes m0 = y0 and mt =

[1− (t+ 1)−1]mt−1 + (t+ 1)−1yt , which implies that mt = (t+ 1)−1
∑t
s=0 yt , the sample

mean, and Σt = R/t .
25 It is sufficient that the only eigenvalue of A not strictly less than unity in modulus is

that associated with the constant, which implies that A and C fit together in a way that

validates (2.11.2).
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The spectral density matrix of this covariance stationary distribution Sx(ω) is

defined to be the Fourier transform of the covariogram of xt :

Sx (ω) ≡
∞∑

τ=−∞

Cx (τ) e
−iωτ . (2.11.1)

For the system (2.4.1), the spectral density of the stationary distribution is

given by the formula

Sx (ω) =
[
I −Ae−iω

]−1
CC′

[
I −A′e+iω

]−1
, ∀ω ∈ [−π, π] . (2.11.2)

The spectral density summarizes all covariances. They can be recovered from

Sx(ω) by the Fourier inversion formula26

Cx (τ) = (1/2π)

∫ π

−π

Sx (ω) e
+iωτdω.

Setting τ = 0 in the inversion formula gives

Cx (0) = (1/2π)

∫ π

−π

Sx (ω)dω,

which shows that the spectral density decomposes covariance across frequen-

cies.27 A formula used in the process of generalized method of moments (GMM)

estimation emerges by setting ω = 0 in equation (2.11.1), which gives

Sx (0) ≡
∞∑

τ=−∞

Cx (τ) .

26 Spectral densities for continuous-time systems are discussed by Kwakernaak and Sivan

(1972). For an elementary discussion of discrete-time systems, see Sargent (1987a). Also see

Sargent (1987a, chap. 11) for definitions of the spectral density function and methods of

evaluating this integral.
27 More interestingly, the spectral density achieves a decomposition of covariance into com-

ponents that are orthogonal across frequencies.
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Figure 2.11.1: Impulse response, spectrum, covariogram,

and sample path of process (1− 1.3L+ .7L2)yt = wt .
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Figure 2.11.2: Impulse response, spectrum, covariogram,

and sample path of process (1− .9L)yt = wt .

2.11.1. Examples

To give some practice in reading spectral densities, we used the Matlab program

bigshow3.m to generate Figures 2.11.2, 2.11.3, 2.11.1, and 2.11.4 The program
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Figure 2.11.3: Impulse response, spectrum, covariogram,

and sample path of process (1− .8L4)yt = wt .
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Figure 2.11.4: Impulse response, spectrum, covariogram,

and sample path of process (1− .98L)yt = (1 − .7L)wt .

takes as an input a univariate process of the form

a (L) yt = b (L)wt,
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where wt is a univariate martingale difference sequence with unit variance,

where a(L) = 1−a2L−a3L2−· · ·−anLn−1 and b(L) = b1+b2L+ · · ·+bnLn−1 ,

and where we require that a(z) = 0 imply that |z| > 1. The program computes

and displays a realization of the process, the impulse response function from

w to y , and the spectrum of y . By using this program, a reader can teach

himself to read spectra and impulse response functions. Figure 2.11.2 is for

the pure autoregressive process with a(L) = 1 − .9L, b = 1. The spectrum

sweeps downward in what C.W.J. Granger (1966) called the “typical spectral

shape” for an economic time series. Figure 2.11.3 sets a = 1 − .8L4, b = 1.

This is a process with a strong seasonal component. That the spectrum peaks

at π and π/2 is a telltale sign of a strong seasonal component. Figure 2.11.1

sets a = 1 − 1.3L + .7L2, b = 1. This is a process that has a spectral peak in

the interior of (0, π) and cycles in its covariogram.28 Figure 2.11.4 sets a =

1 − .98L, b = 1 − .7L . This is a version of a process studied by Muth (1960).

After the first lag, the impulse response declines as .99j , where j is the lag

length.

2.12. Example: the LQ permanent income model

To illustrate several of the key ideas of this chapter, this section describes the

linear quadratic savings problem whose solution is a rational expectations ver-

sion of the permanent income model of Friedman (1956) and Hall (1978). We

use this model as a vehicle for illustrating impulse response functions, alterna-

tive notions of the state, the idea of cointegration, and an invariant subspace

method.

The LQ permanent income model is a modification (and not quite a special

case, for reasons that will be apparent later) of the following “savings problem”

to be studied in chapter 17. A consumer has preferences over consumption

streams that are ordered by the utility functional

E0

∞∑

t=0

βtu (ct) (2.12.1)

where Et is the mathematical expectation conditioned on the consumer’s time

t information, ct is time t consumption, u(c) is a strictly concave one-period

28 See Sargent (1987a) for a more extended discussion.
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utility function, and β ∈ (0, 1) is a discount factor. The consumer maximizes

(2.12.1) by choosing a consumption, borrowing plan {ct, bt+1}∞t=0 subject to the

sequence of budget constraints

ct + bt = R−1bt+1 + yt (2.12.2)

where yt is an exogenous stationary endowment process, R is a constant gross

risk-free interest rate, bt is one-period risk-free debt maturing at t , and b0 is a

given initial condition. We shall assume that R−1 = β . For example, we might

assume that the endowment process has the state-space representation

zt+1 = A22zt + C2wt+1 (2.12.3a)

yt = Uyzt (2.12.3b)

where wt+1 is an i.i.d. process with mean zero and identity contemporaneous

covariance matrix, A22 is a stable matrix, its eigenvalues being strictly below

unity in modulus, and Uy is a selection vector that identifies y with a partic-

ular linear combination of the zt . We impose the following condition on the

consumption, borrowing plan:

E0

∞∑

t=0

βtb2t < +∞. (2.12.4)

This condition suffices to rule out Ponzi schemes. The state vector confronting

the household at t is [ bt zt ]
′
, where bt is its one-period debt falling due at the

beginning of period t and zt contains all variables useful for forecasting its future

endowment. We impose this condition to rule out an always-borrow scheme that

would allow the household to enjoy bliss consumption forever. The rationale for

imposing this condition is to make the solution resemble the solution of problems

to be studied in chapter 17 that impose nonnegativity on the consumption path.

First-order conditions for maximizing (2.12.1) subject to (2.12.2) are29

Etu
′ (ct+1) = u′ (ct) , ∀t ≥ 0. (2.12.5)

For the rest of this section we assume the quadratic utility function u(ct) =

−.5(ct − γ)2 , where γ is a bliss level of consumption. Then (2.12.5) implies30

Etct+1 = ct. (2.12.6)

29 We shall study how to derive this first-order condition in detail in later chapters.
30 A linear marginal utility is essential for deriving (2.12.6) from (2.12.5). Suppose instead

that we had imposed the following more standard assumptions on the utility function: u′(c) >
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Along with the quadratic utility specification, we allow consumption ct to be

negative.31

To deduce the optimal decision rule, we have to solve the system of dif-

ference equations formed by (2.12.2) and (2.12.6) subject to the boundary

condition (2.12.4). To accomplish this, solve (2.12.2) forward and impose

limT→+∞ βT bT+1 = 0 to get

bt =
∞∑

j=0

βj (yt+j − ct+j) . (2.12.7)

Imposing limT→+∞ βT bT+1 = 0 suffices to impose (2.12.4) on the debt path.

Take conditional expectations on both sides of (2.12.7) and use (2.12.6) and

the law of iterated expectations to deduce

bt =
∞∑

j=0

βjEtyt+j −
1

1− β
ct (2.12.8)

or

ct = (1− β)




∞∑

j=0

βjEtyt+j − bt


 . (2.12.9)

If we define the net rate of interest r by β = 1
1+r , we can also express this

equation as

ct =
r

1 + r




∞∑

j=0

βjEtyt+j − bt


 . (2.12.10)

Equation (2.12.9) or (2.12.10) expresses consumption as equaling economic in-

come, namely, a constant marginal propensity to consume or interest factor r
1+r

times the sum of nonfinancial wealth
∑∞

j=0 β
jEtyt+j and financial wealth −bt .

Notice that (2.12.9) or (2.12.10) represents ct as a function of the state [bt, zt]

0, u′′(c) < 0, u′′′(c) > 0 and required that c ≥ 0. The Euler equation remains (2.12.5).

But the fact that u′′′ < 0 implies via Jensen’s inequality that Etu
′(ct+1) > u′(Etct+1) .

This inequality together with (2.12.5) implies that Etct+1 > ct (consumption is said to be a

‘submartingale’), so that consumption stochastically diverges to +∞ . The consumer’s savings

also diverge to +∞ . Chapter 17 discusses this ‘precautionary savings’ divergence result in

depth.
31 That ct can be negative explains why we impose condition (2.12.4) instead of an upper

bound on the level of borrowing, such as the natural borrowing limit of chapters 8, 17, and

18.
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confronting the household, where from (2.12.3) zt contains the information

useful for forecasting the endowment process.

2.12.1. Another representation

Pulling together our preceding results, we can regard zt, bt as the time t state,

where zt is an exogenous component of the state and bt is an endogenous com-

ponent of the state vector. The system can be represented as

zt+1 = A22zt + C2wt+1

bt+1 = bt + Uy

[
(I − βA22)

−1
(A22 − I)

]
zt

yt = Uyzt

ct = (1− β)
[
Uy (I − βA22)

−1
zt − bt

]
.

Another way to understand the solution is to show that after the optimal

decision rule has been obtained, there is a point of view that allows us to re-

gard the state as being ct together with zt and to regard bt as an outcome.

Following Hall (1978), this is a sharp way to summarize the implication of the

LQ permanent income theory. We now proceed to transform the state vector in

this way.

To represent the solution for bt , substitute (2.12.9) into (2.12.2) and after

rearranging obtain

bt+1 = bt +
(
β−1 − 1

) ∞∑

j=0

βjEtyt+j − β−1yt. (2.12.11)

Next, shift (2.12.9) forward one period and eliminate bt+1 by using (2.12.2) to

obtain

ct+1 = (1− β)

∞∑

j=0

Et+1β
jyt+j+1 − (1− β)

[
β−1 (ct + bt − yt)

]
.

If we add and subtract β−1(1 − β)
∑∞

j=0 β
jEtyt+j from the right side of the

preceding equation and rearrange, we obtain

ct+1 − ct = (1− β)
∞∑

j=0

βj (Et+1yt+j+1 − Etyt+j+1) . (2.12.12)
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The right side is the time t + 1 innovation to the expected present value of

the endowment process y . It is useful to express this innovation in terms of

a moving average representation for income yt . Suppose that the endowment

process has the moving average representation32

yt+1 = d (L)wt+1 (2.12.13)

where wt+1 is an i.i.d. vector process with Ewt+1 = 0 and contemporaneous

covariance matrix Ewt+1w
′
t+1 = I , d(L) =

∑∞
j=0 djL

j , where L is the lag

operator, and the household has an information set33 wt = [wt, wt−1, . . . , ] at

time t . Then notice that

yt+j − Etyt+j = d0wt+j + d1wt+j−1 + · · ·+ dj−1wt+1.

It follows that

Et+1yt+j − Etyt+j = dj−1wt+1. (2.12.14)

Using (2.12.14) in (2.12.12) gives

ct+1 − ct = (1− β) d (β)wt+1. (2.12.15)

The object d(β) is the present value of the moving average coefficients in the

representation for the endowment process yt .

After all of this work, we can represent the optimal decision rule for ct, bt+1

in the form of the two equations (2.12.12) and (2.12.8), which we repeat here

for convenience:

ct+1 = ct + (1− β)

∞∑

j=0

βj (Et+1yt+j+1 − Etyt+j+1) (2.12.16)

bt =

∞∑

j=0

βjEtyt+j −
1

1− β
ct. (2.12.17)

Equation (2.12.17) asserts that the household’s debt due at t equals the ex-

pected present value of its endowment minus the expected present value of its

32 Representation (2.12.3) implies that d(L) = Uy(I −A22L)
−1C2 .

33 A moving average representation for a process yt is said to be fundamental if the linear

space spanned by yt is equal to the linear space spanned by wt . A time-invariant innovations

representation, attained via the Kalman filter as in section 2.7, is by construction fundamental.
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consumption stream. A high debt thus indicates a large expected present value

of ‘surpluses’ yt − ct .

Recalling the form of the endowment process (2.12.3), we can compute

Et

∞∑

j=0

βjzt+j = (I − βA22)
−1
zt

Et+1

∞∑

j=0

βjzt+j+1 = (I − βA22)
−1
zt+1

Et

∞∑

j=0

βjzt+j+1 = (I − βA22)
−1
A22zt.

Substituting these formulas into (2.12.16) and (2.12.17) and using (2.12.3a)

gives the following representation for the consumer’s optimum decision rule:34

ct+1 = ct + (1− β)Uy (I − βA22)
−1
C2wt+1 (2.12.18a)

bt = Uy (I − βA22)
−1 zt −

1

1− β
ct (2.12.18b)

yt = Uyzt (2.12.18c)

zt+1 = A22zt + C2wt+1 (2.12.18d)

Representation (2.12.18) reveals several things about the optimal decision

rule. (1) The state consists of the endogenous part ct and the exogenous part

zt . These contain all of the relevant information for forecasting future c, y, b .

Notice that financial assets bt have disappeared as a component of the state be-

cause they are properly encoded in ct . (2) According to (2.12.18), consumption

is a random walk with innovation (1−β)d(β)wt+1 as implied also by (2.12.15).

This outcome confirms that the Euler equation (2.12.6) is built into the solu-

tion. That consumption is a random walk of course implies that it does not

possess an asymptotic stationary distribution, at least so long as zt exhibits

perpetual random fluctuations, as it will generally under (2.12.3).35 This fea-

ture is inherited partly from the assumption that βR = 1. (3) The impulse

34 See appendix A of chapter 17 for a reinterpretation of precisely these outcomes in terms

of a competitive equilibrium of a model with a complete set of markets in history- and date-

contingent claims to consumption.
35 The failure of consumption to converge will occur again in chapter 17 when we drop

quadratic utility and assume that consumption must be nonnegative.
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response function of ct is a box: for all j ≥ 1, the response of ct+j to an in-

crease in the innovation wt+1 is (1 − β)d(β) = (1 − β)Uy(I − βA22)
−1C2 . (4)

Solution (2.12.18) reveals that the joint process ct, bt possesses the property

that Granger and Engle (1987) called cointegration. In particular, both ct and

bt are non-stationary because they have unit roots (see representation (2.12.11)

for bt ), but there is a linear combination of ct, bt that is stationary provided

that zt is stationary. From (2.12.17), the linear combination is (1 − β)bt + ct .

Accordingly, Granger and Engle would call [ (1 − β) 1 ] a cointegrating vec-

tor that, when applied to the nonstationary vector process [ bt ct ]
′
, yields a

process that is asymptotically stationary. Equation (2.12.8) can be arranged to

take the form

(1− β) bt + ct = (1− β)Et

∞∑

j=0

βjyt+j, (2.12.19)

which asserts that the ‘cointegrating residual’ on the left side equals the condi-

tional expectation of the geometric sum of future incomes on the right.36

2.12.2. Debt dynamics

If we subtract equation (2.12.18b) evaluated at time t from equation (2.12.18b)

evaluated at time t+ 1 we obtain

bt+1 − bt = Uy (I − βA22)
−1

(zt+1 − zt)−
1

1− β
(ct+1 − ct) .

Substituting zt+1− zt = (A22 − I)zt+C2wt+1 and equation (2.12.18a) into the

above equation and rearranging gives

bt+1 − bt = Uy (I − βA22)
−1

(A22 − I) zt. (2.12.20)

36 See Campbell and Shiller (1988) and Lettau and Ludvigson (2001, 2004) for interesting

applications of related ideas.
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2.12.3. Two classic examples

We illustrate formulas (2.12.18) with the following two examples. In both ex-

amples, the endowment follows the process yt = z1t + z2t where
[
z1t+1

z2t+1

]
=

[
1 0

0 0

] [
z1t

z2t

]
+

[
σ1 0

0 σ2

] [
w1t+1

w2t+1

]

where wt+1 is an i.i.d. 2 × 1 process distributed as N (0, I). Here z1t is a

permanent component of yt while z2t is a purely transitory component.

Example 1. Assume that the consumer observes the state zt at time t . This

implies that the consumer can construct wt+1 from observations of zt+1 and

zt . Application of formulas (2.12.18) implies that

ct+1 − ct = σ1w1t+1 + (1− β) σ2w2t+1. (2.12.21)

Since 1−β = r
1+r where R = (1+r), formula (2.12.21) shows how an increment

σ1w1t+1 to the permanent component of income z1t+1 leads to a permanent one-

for-one increase in consumption and no increase in savings −bt+1 ; but how the

purely transitory component of income σ2w2t+1 leads to a permanent increment

in consumption by a fraction (1− β) of transitory income, while the remaining

fraction β is saved, leading to a permanent increment in −b . Application of

formula (2.12.20) to this example shows that

bt+1 − bt = −z2t = −σ2w2t, (2.12.22)

which confirms that none of σ1w1t is saved, while all of σ2w2t is saved.

Example 2. Assume that the consumer observes yt , and its history up to t , but

not zt at time t . Under this assumption, it is appropriate to use an innovation

representation to form A22, C2, Uy in formulas (2.12.18). In particular, using

our results from section 2.10.1, the pertinent state space representation for yt

is
[
yt+1

at+1

]
=

[
1 − (1−K)

0 0

] [
yt

at

]
+

[
1

1

]
at+1

yt = [ 1 0 ]

[
yt

at

]

where K is the Kalman gain and at = yt−E[yt|yt−1] . From subsection 2.10.1,

we know that K ∈ [0, 1] and that K increases as
σ2
1

σ2
2
increases, i.e., as the ratio
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of the variance of the permanent shock to the variance of the transitory shock

to income increases. Applying formulas (2.12.18) implies

ct+1 − ct = [1− β (1−K)] at+1 (2.12.23)

where the endowment process can now be represented in terms of the univariate

innovation to yt as

yt+1 − yt = at+1 − (1−K)at. (2.12.24)

Equation (2.12.24) indicates that the consumer regards a fraction K of an

innovation at+1 to yt+1 as permanent and a fraction 1−K as purely transitory.

He permanently increases his consumption by the full amount of his estimate

of the permanent part of at+1 , but by only (1 − β) times his estimate of the

purely transitory part of at+1 . Therefore, in total he permanently increments

his consumption by a fraction K + (1 − β)(1 − K) = 1 − β(1 − K) of at+1

and saves the remaining fraction β(1 − K) of at+1 . According to equation

(2.12.24), the first difference of income is a first-order moving average, while

(2.12.23) asserts that the first difference of consumption is i.i.d. Application of

formula (2.12.20) to this example shows that

bt+1 − bt = (K − 1) at, (2.12.25)

which indicates how the fraction K of the innovation to yt that is regarded as

permanent influences the fraction of the innovation that is saved.

2.12.4. Spreading consumption cross section

Starting from an arbitrary initial distribution for c0 and say the asymptotic

stationary distribution for z0 , if we were to apply formulas (2.4.11) and (2.4.12)

to the state space system (2.12.18), the common unit root affecting ct, bt would

cause the time t variance of ct to grow linearly with t . If we think of the initial

distribution as describing the joint distribution of c0, b0 for a cross section of ex

ante identical households ‘born at time 0, then these formulas would describe

the evolution of the cross-section for bt, ct as the population of households ages.

The distribution would spread out.37

37 See Deaton and Paxton (1994) and Storesletten, Telmer, and Yaron (2004) for evidence

that cross section distributions of consumption spread out with age.
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2.12.5. Invariant subspace approach

We can glean additional insights about the structure of the optimal decision rule

by solving the decision problem in a mechanical but quite revealing way that

easily generalizes to a host of problems, as we shall see later in chapter 5. We

can represent the system consisting of the Euler equation (2.12.6), the budget

constraint (2.12.2), and the description of the endowment process (2.12.3) as



β 0 0

0 I 0

0 0 1





bt+1

zt+1

ct+1


 =



1 −Uy 1

0 A22 0

0 0 1





bt

zt

ct


+




0

C2

C1


wt+1 (2.12.26)

where C1 is an undetermined coefficient. Premultiply both sides by the inverse

of the matrix on the left and write



bt+1

zt+1

ct+1


 = Ã



bt

zt

ct


+ C̃wt+1. (2.12.27)

We want to find solutions of (2.12.27) that satisfy the no-explosion condition

(2.12.4). We can do this by using machinery to be introduced in chapter 5. The

key idea is to discover what part of the vector [ bt zt ct ]
′ is truly a state from

the view of the decision maker, being inherited from the past, and what part

is a costate or jump variable that can adjust at t . For our problem bt, zt are

truly components of the state, but ct is free to adjust. The theory determines

ct at t as a function of the true state variables [bt, zt] . A powerful approach to

determining this function is the following so-called invariant subspace method

of chapter 5. Obtain the eigenvector decomposition of Ã :

Ã = V ΛV −1

where Λ is a diagonal matrix consisting of the eigenvalues of Ã and V is a

matrix of the associated eigenvectors. Let V −1 ≡
[
V 11 V 12

V 21 V 22

]
. Then applying

formula (5.5.12) of chapter 5 implies that if (2.12.4) is to hold, the jump variable

ct must satisfy

ct = −
(
V 22

)−1
V 21

[
bt

zt

]
. (2.12.28)

Formula (2.12.28) gives the unique value of ct that ensures that (2.12.4) is

satisfied, or in other words, that the state remains in the “stabilizing subspace.”
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Notice that the variables on the right side of (2.12.28) conform with those

called for by (2.12.10): −bt is there as a measure of financial wealth, and zt is

there because it includes all variables that are useful for forecasting the future

endowments that appear in (2.12.10).

2.13. Concluding remarks

In addition to giving us tools for thinking about time series, the Markov chain

and the stochastic linear difference equation have each introduced us to the

notion of the state vector as a description of the present position of a system.38

Subsequent chapters use both Markov chains and stochastic linear difference

equations. In the next chapter we study decision problems in which the goal

is optimally to manage the evolution of a state vector that can be partially

controlled.

A. Linear difference equations

2.A.1. A first-order difference equation

This section describes the solution of a linear first-order scalar difference equa-

tion. First, let |λ| < 1, and let {ut}∞t=−∞ be a bounded sequence of scalar real

numbers. Let L be the lag operator defined by Lxt ≡ xt−1 and let L−1 be the

forward shift operator defined by L−1xt ≡ xt+1 . Then

(1− λL) yt = ut, ∀t (2.A.1)

has the solution

yt = (1− λL)
−1
ut + kλt (2.A.2)

38 See Quah (1990) and Blundell and Preston (1998) for applications of some of the tools

of this chapter and of chapter 5 to studying some puzzles associated with a permanent income

model.
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for any real number k . You can verify this fact by applying (1 − λL) to both

sides of equation (2.A.2) and noting that (1 − λL)λt = 0. To pin down k we

need one condition imposed from outside (e.g., an initial or terminal condition)

on the path of y .

Now let |λ| > 1. Rewrite equation (2.A.1) as

yt−1 = λ−1yt − λ−1ut, ∀t (2.A.3)

or (
1− λ−1L−1

)
yt = −λ−1ut+1. (2.A.4)

A solution is

yt = −λ−1

(
1

1− λ−1L−1

)
ut+1 + kλt (2.A.5)

for any k . To verify that this is a solution, check the consequences of operating

on both sides of equation (2.A.5) by (1− λL) and compare to (2.A.1).

Solution (2.A.2) exists for |λ| < 1 because the distributed lag in u con-

verges. Solution (2.A.5) exists when |λ| > 1 because the distributed lead in u

converges. When |λ| > 1, the distributed lag in u in (2.A.2) may diverge, so

that a solution of this form does not exist. The distributed lead in u in (2.A.5)

need not converge when |λ| < 1.

2.A.2. A second-order difference equation

Now consider the second order difference equation

(1− λ1L) (1− λ2L) yt+1 = ut (2.A.6)

where {ut} is a bounded sequence, y0 is an initial condition, |λ1| < 1 and

|λ2| > 1. We seek a bounded sequence {yt}∞t=0 that satisfies (2.A.6). Using

insights from the previous subsection, operate on both sides of (2.A.6) by the

forward inverse of (1− λ2L) to rewrite equation (2.A.6) as

(1− λ1L) yt+1 = − λ−1
2

1− λ−1
2 L−1

ut+1

or

yt+1 = λ1yt − λ−1
2

∞∑

j=0

λ−j2 ut+j+1. (2.A.7)
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Thus, we obtained equation (2.A.7) by “solving stable roots (in this case λ1

backward, and unstable roots (in this case λ2 ) forward”. Equation (2.A.7) has

a form that we shall encounter often. λ1yt is called the ‘feedback part’ and

− λ−1
2

1−λ−1
2 L−1

ut+1 is called the “feed-forward part’ of the solution. We have al-

ready encountered solutions of this form. Thus, notice that equation (2.12.20)

from subsection 2.12.2 is almost of this form, ‘almost’ because in equation

(2.12.20), λ1 = 1. In section 5.5 of chapter 5 we return to these ideas in a

more general setting.
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Exercises

Exercise 2.1 Consider the Markov chain (P, π0) =

([
.9 .1
.3 .7

]
,

[
.5
.5

])
, and a

random variable yt = yxt where y =

[
1

5

]
. Compute the likelihood of the

following three histories for yt for t = 0, 1, . . . , 4:

a. 1, 5, 1, 5, 1.

b. 1, 1, 1, 1, 1.

c. 5, 5, 5, 5, 5.

Exercise 2.2 Consider a two-state Markov chain. Consider a random variable

yt = yxt where y =

[
1

5

]
. It is known that E(yt+1|xt) =

[
1.8

3.4

]
and that

E(y2t+1|xt) =
[
5.8

15.4

]
. Find a transition matrix consistent with these conditional

expectations. Is this transition matrix unique (i.e., can you find another one that

is consistent with these conditional expectations)?

Exercise 2.3 Consumption is governed by an n-state Markov chain P, π0

where P is a stochastic matrix and π0 is an initial probability distribution.

Consumption takes one of the values in the n× 1 vector c . A consumer ranks

stochastic processes of consumption t = 0, 1 . . . according to

E

∞∑

t=0

βtu (ct)

where E is the mathematical expectation and u(c) = c1−γ

1−γ for some parameter

γ ≥ 1. Let ui = u(ci). Let vi = E[
∑∞

t=0 β
tu(ct)|x0 = ei] and V = Ev , where

β ∈ (0, 1) is a discount factor.

a. Let u and v be the n × 1 vectors whose ith components are ui and vi ,

respectively. Verify the following formulas for v and V : v = (I − βP )−1u, and

V =
∑
i π0,ivi .

b. Consider the following two Markov processes:

Process 1: π0 =

[
.5

.5

]
, P =

[
1 0

0 1

]
.

Process 2: π0 =

[
.5

.5

]
, P =

[
.5 .5

.5 .5

]
.
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For both Markov processes, c =

[
1

5

]
.

Assume that γ = 2.5, β = .95. Compute the unconditional discounted expected

utility V for each of these processes. Which of the two processes does the

consumer prefer? Redo the calculations for γ = 4. Now which process does the

consumer prefer?

c. An econometrician observes a sample of 10 observations of consumption rates

for our consumer. He knows that one of the two preceding Markov processes

generates the data, but he does not know which one. He assigns equal “prior

probability” to the two chains. Suppose that the 10 successive observations on

consumption are as follows: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1. Compute the likelihood of

this sample under process 1 and under process 2. Denote the likelihood function

Prob(data|Modeli), i = 1, 2.

d. Suppose that the econometrician uses Bayes’ law to revise his initial proba-

bility estimates for the two models, where in this context Bayes’ law states:

Prob (Mi) |data =
(Prob (data)|Mi) · Prob (Mi)∑
j Prob (data)|Mj · Prob (Mj)

where Mi denotes model i . The denominator of this expression is the un-

conditional probability of the data. After observing the data sample, what

probabilities does the econometrician place on the two possible models?

e. Repeat the calculation in part d, but now assume that the data sample is

1, 5, 5, 1, 5, 5, 1, 5, 1, 5.

Exercise 2.4 Consider the univariate stochastic process

yt+1 = α+

4∑

j=1

ρjyt+1−j + cwt+1

where wt+1 is a scalar martingale difference sequence adapted to

Jt = [wt, . . . , w1, y0, y−1, y−2, y−3] , α = µ(1−∑j ρj) and the ρj ’s are such that

the matrix

A =




ρ1 ρ2 ρ3 ρ4 α

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1
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has all of its eigenvalues in modulus bounded below unity.

a. Show how to map this process into a first-order linear stochastic difference

equation.

b. For each of the following examples, if possible, assume that the initial con-

ditions are such that yt is covariance stationary. For each case, state the ap-

propriate initial conditions. Then compute the covariance stationary mean and

variance of yt assuming the following parameter sets of parameter values:

i. ρ = [ 1.2 −.3 0 0 ], µ = 10, c = 1.

ii. ρ = [ 1.2 −.3 0 0 ] , µ = 10, c = 2.

iii. ρ = [ .9 0 0 0 ], µ = 5, c = 1.

iv. ρ = [ .2 0 0 .5 ], µ = 5, c = 1.

v. ρ = [ .8 .3 0 0 ] , µ = 5, c = 1.

Hint 1: The Matlab command X=doublej(A,C*C’) computes the solution of

the matrix equation AXA′ + CC′ = X . 39

Hint 2: The mean vector is the eigenvector of A associated with a unit eigen-

value, scaled so that the mean of unity in the state vector is unity.

c. For each case in part b, compute the hj ’s in Etyt+5 = γ0 +
∑3
j=0 hjyt−j .

d. For each case in part b, compute the h̃j ’s in Et
∑∞

k=0 .95
kyt+k =

∑3
j=0 h̃jyt−j .

e. For each case in part b, compute the autocovariance E(yt − µy)(yt−k − µy)

for the three values k = 1, 5, 10.

Exercise 2.5 A consumer’s rate of consumption follows the stochastic process

(1)

ct+1 = αc +
2∑

j=1

ρjct−j+1 +
2∑

j=1

δjzt+1−j + ψ1w1,t+1

zt+1 =

2∑

j=1

γjct−j+1 +

2∑

j=1

φjzt−j+1 + ψ2w2,t+1

39 Matlab code for this book is at <www.tomsargent.com/source code/mitbook.zip> .
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where wt+1 is a 2× 1 martingale difference sequence, adapted to

Jt = [wt . . . w1 c0 c−1 z0 z−1 ] , with contemporaneous covariance ma-

trix Ewt+1w
′
t+1|Jt = I , and the coefficients ρj , δj , γj , φj are such that the

matrix

A =




ρ1 ρ2 δ1 δ2 αc

1 0 0 0 0

γ1 γ2 φ1 φ2 0

0 0 1 0 0

0 0 0 0 1




has eigenvalues bounded strictly below unity in modulus.

The consumer evaluates consumption streams according to

(2) V0 = E0

∞∑

t=0

.95tu (ct) ,

where the one-period utility function is

(3) u (ct) = −.5 (ct − 60)
2
.

a. Find a formula for V0 in terms of the parameters of the one-period utility

function (3) and the stochastic process for consumption.

b. Compute V0 for the following two sets of parameter values:

i. ρ = [ .8 −.3 ] , αc = 1, δ = [ .2 0 ] , γ = [ 0 0 ] , φ = [ .7 −.2 ], ψ1 = ψ2 =

1.

ii. Same as for part i except now ψ1 = 2, ψ2 = 1.

Hint: Remember doublej.m.

Exercise 2.6 Consider the stochastic process {ct, zt} defined by equations

(1) in exercise 2.5 . Assume the parameter values described in part b, item

i. If possible, assume the initial conditions are such that {ct, zt} is covariance

stationary.

a. Compute the initial mean and covariance matrix that make the process

covariance stationary.

b. For the initial conditions in part a, compute numerical values of the following

population linear regression:

ct+2 = α0 + α1zt + α2zt−4 + wt
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where Ewt [ 1 zt zt−4 ] = [ 0 0 0 ].

Exercise 2.7 Get the Matlab programs bigshow3.m and freq.m from

<www.tomsargent.com/source code/mitbook.zip> . Use bigshow3 to compute

and display a simulation of length 80, an impulse response function, and a

spectrum for each of the following scalar stochastic processes yt . In each of

the following, wt is a scalar martingale difference sequence adapted to its own

history and the initial values of lagged y ’s.

a. yt = wt .

b. yt = (1 + .5L)wt .

c. yt = (1 + .5L+ .4L2)wt .

d. (1 − .999L)yt = (1− .4L)wt .

e. (1− .8L)yt = (1 + .5L+ .4L2)wt .

f. (1 + .8L)yt = wt .

g. yt = (1 − .6L)wt .

Study the output and look for patterns. When you are done, you will be well

on your way to knowing how to read spectral densities.

Exercise 2.8 This exercise deals with Cagan’s money demand under rational

expectations. A version of Cagan’s (1956) demand function for money is

(1) mt − pt = −α (pt+1 − pt) , α > 0, t ≥ 0,

where mt is the log of the nominal money supply and pt is the price level at t .

Equation (1) states that the demand for real balances varies inversely with the

expected rate of inflation, (pt+1 − pt). There is no uncertainty, so the expected

inflation rate equals the actual one. The money supply obeys the difference

equation

(2) (1− L) (1− ρL)ms
t = 0

subject to initial condition for ms
−1,m

s
−2 . In equilibrium,

(3) mt ≡ ms
t ∀t ≥ 0
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(i.e., the demand for money equals the supply). For now assume that

(4) |ρα/ (1 + α) | < 1.

An equilibrium is a {pt}∞t=0 that satisfies equations (1), (2), and (3) for all t .

a. Find an expression for an equilibrium pt of the form

(5) pt =

n∑

j=0

wjmt−j + ft.

Please tell how to get formulas for the wj for all j and the ft for all t .

b. How many equilibria are there?

c. Is there an equilibrium with ft = 0 for all t?

d. Briefly tell where, if anywhere, condition (4) plays a role in your answer to

part a.

e. For the parameter values α = 1, ρ = 1, compute and display all the equilibria.

Exercise 2.9 The n× 1 state vector of an economy is governed by the linear

stochastic difference equation

(1) xt+1 = Axt + Ctwt+1

where Ct is a possibly time-varying matrix (known at t) and wt+1 is an m× 1

martingale difference sequence adapted to its own history with Ewt+1w
′
t+1|Jt =

I , where Jt = [wt . . . w1 x0 ] . A scalar one-period payoff pt+1 is given by

(2) pt+1 = Pxt+1

The stochastic discount factor for this economy is a scalar mt+1 that obeys

(3) mt+1 =
Mxt+1

Mxt
.

Finally, the price at time t of the one-period payoff is given by qt = ft(xt),

where ft is some possibly time-varying function of the state. That mt+1 is a

stochastic discount factor means that

(4) E (mt+1pt+1|Jt) = qt.
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a. Compute ft(xt), describing in detail how it depends on A and Ct .

b. Suppose that an econometrician has a time series data set

Xt = [ zt mt+1 pt+1 qt ] , for t = 1, . . . , T , where zt is a strict subset of the

variables in the state xt . Assume that investors in the economy see xt even

though the econometrician sees only a subset zt of xt . Briefly describe a way

to use these data to test implication (4). (Possibly but perhaps not useful hint:

recall the law of iterated expectations.)

Exercise 2.10 Let P be a transition matrix for a Markov chain. Suppose that

P ′ has two distinct eigenvectors π1, π2 corresponding to unit eigenvalues of P ′ .

Scale π1 and π2 so that they are vectors of probabilities (i.e., elements are

nonnegative and sum to unity). Prove for any α ∈ [0, 1] that απ1 + (1 − α)π2

is an invariant distribution of P .

Exercise 2.11 Consider a Markov chain with transition matrix

P =



1 0 0

.2 .5 .3

0 0 1




with initial distribution π0 = [π1,0 π2,0 π3,0 ]
′
. Let πt = [π1t π2t π3t ]

′
be

the distribution over states at time t . Prove that for t > 0

π1t = π1,0 + .2

(
1− .5t

1− .5

)
π2,0

π2t = .5tπ2,0

π3t = π3,0 + .3

(
1− .5t

1− .5

)
π2,0.

Exercise 2.12 Let P be a transition matrix for a Markov chain. For t =

1, 2, . . . , prove that the j th column of (P ′)t is the distribution across states at

t when the initial distribution is πj,0 = 1, πi,0 = 0∀i 6= j .

Exercise 2.13 A household has preferences over consumption processes {ct}∞t=0

that are ordered by

−.5
∞∑

t=0

βt
[
(ct − 30)

2
+ .000001b2t

]
(1)
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where β = .95. The household chooses a consumption, borrowing plan to

maximize (1) subject to the sequence of budget constraints

ct + bt = βbt+1 + yt

for t ≥ 0, where b0 is an initial condition, β−1 is the one-period gross risk-free

interest rate, bt is the household’s one-period debt that is due in period t , and

yt is its labor income, which obeys the second-order autoregressive process

(
1− ρ1L− ρ2L

2
)
yt+1 = (1− ρ1 − ρ2) 5 + .05wt+1

where ρ1 = 1.3, ρ2 = −.4.

a. Define the state of the household at t as xt = [ 1 bt yt yt−1 ]
′
and the

control as ut = (ct − 30). Then express the transition law facing the household

in the form (2.4.22). Compute the eigenvalues of A . Compute the zeros of the

characteristic polynomial (1−ρ1z−ρ2z2) and compare them with the eigenvalues

of A . (Hint: To compute the zeros in Matlab, set a = [ .4 −1.3 1 ] and call

roots(a). The zeros of (1−ρ1z−ρ2z2) equal the reciprocals of the eigenvalues

of the associated A .)

b. Write a Matlab program that uses the Howard improvement algorithm

(2.4.30) to compute the household’s optimal decision rule for ut = ct − 30.

Tell how many iterations it takes for this to converge (also tell your convergence

criterion).

c. Use the household’s optimal decision rule to compute the law of motion for

xt under the optimal decision rule in the form

xt+1 = (A−BF ∗)xt + Cwt+1,

where ut = −F ∗xt is the optimal decision rule. Using Matlab, compute the

impulse response function of [ ct bt ]
′
to wt+1 . Compare these with the theo-

retical expressions (2.12.18).

Exercise 2.14 Consider a Markov chain with transition matrix

P =




.5 .5 0 0

.1 .9 0 0

0 0 .9 .1

0 0 0 1
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with state space X = {ei, i = 1, . . . , 4} where ei is the ith unit vector. A

random variable yt is a function yt = [ 1 2 3 4 ]xt of the underlying state.

a. Find all stationary distributions of the Markov chain.

b. Can you find a stationary distribution for which the Markov chain ergodic?

c. Compute all possible limiting values of the sample mean 1
T

∑T−1
t=0 yt as T →

∞ .

Exercise 2.15 Suppose that a scalar is related to a scalar white noise wt with

variance 1 by yt = h(L)wt where h(L) =
∑∞

j=0 L
jhj and

∑∞
j=0 h

2
j < +∞ .

Then a special case of formula (2.11.2) coupled with the observer equation

yt = Gxt implies that the spectrum of y is given by

Sy (ω) = h (exp (−iω))h (exp (iω)) = |h (exp (−iω)) |2

where h(exp(−iω)) =∑∞
j=0 hj exp(−iωj).

In a famous paper, Slutsky investigated the consequences of applying the fol-

lowing filter to white noise: h(L) = (1 + L)n(1 − L)m (i.e., the convolution of

n two-period moving averages with m difference operators). Compute and plot

the spectrum of y for ω ∈ [−π, π] for the following choices of m,n :

a. m = 10, n = 10.

b. m = 10, n = 40.

c. m = 40, n = 10.

d. m = 120, n = 30.

e. Comment on these results.

Hint: Notice that h(exp(−iω)) = (1 + exp(−iω))n(1− exp(−iω))m .

Exercise 2.16 Consider an n-state Markov chain with state space X = {ei, i =
1, . . . , n} where ei is the ith unit vector. Consider the indicator variable Iit =

eixt which equals 1 if xt = ei and 0 otherwise. Suppose that the chain has a

unique stationary distribution and that it is ergodic. Let π be the stationary

distribution.

a. Verify that EIit = πi .
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b. Prove that

1

T

T−1∑

t=0

Iit = πi

as T → ∞ with probability one with respect to the stationary distribution π .

Exercise 2.17 Lake model

A worker can be in one of two states, state 1 (unemployed) or state 2 (employed).

At the beginning of each period, a previously unemployed worker has probability

λ =
∫ B
w̄ dF (w) of becoming employed. Here w̄ is his reservation wage and F (w)

is the c.d.f. of a wage offer distribution. We assume that F (0) = 0, F (B) = 1.

At the beginning of each period an unemployed worker draws one and only one

wage offer from F . Successive draws from F are i.i.d. The worker’s decision rule

is to accept the job if w ≥ w̄ , and otherwise to reject it and remain unemployed

one more period. Assume that w is such that λ ∈ (0, 1). At the beginning of

each period, a previously employed worker is fired with probability δ ∈ (0, 1).

Newly fired workers must remain unemployed for one period before drawing a

new wage offer.

a. Let the state space be X = {ei, i = 1, 2} where ei is the ith unit vec-

tor. Describe the Markov chain on X that is induced by the description above.

Compute all stationary distributions of the chain. Under what stationary dis-

tributions, if any, is the chain ergodic?

b. Suppose that λ = .05, δ = .25. Compute a stationary distribution. Compute

the fraction of his life that an infinitely lived worker would spend unemployed.

c. Drawing the initial state from the stationary distribution, compute the joint

distribution gij = Prob(xt = ei, xt−1 = ej) for i = 1, 2, j = 1, 2.

d. Define an indicator function by letting Iij,t = 1 if xt = ei, xt−1 = ej at time

t , and 0 otherwise. Compute

lim
T→∞

1

T

T∑

t=1

Iij,t

for all four i, j combinations.

e. Building on your results in part d, construct method of moments estimators

of λ and δ . Assuming that you know the wage offer distribution F, construct

a method of moments estimator of the reservation wage w̄ .
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f. Compute maximum likelihood estimators of λ and δ .

g. Compare the estimators you derived in parts e and f.

h. Extra credit. Compute the asymptotic covariance matrix of the maximum

likelihood estimators of λ and δ .

Exercise 2.18 Random walk

A Markov chain has state space X = {ei, i = 1, . . . , 4} where ei is the unit

vector and transition matrix

P =




1 0 0 0

.5 0 .5 0

0 .5 0 .5

0 0 0 1


 .

A random variable yt = yxt is defined by y = [ 1 2 3 4 ].

a. Find all stationary distributions of this Markov chain.

b. Under what stationary distributions, if any, is this chain ergodic? Compute

invariant functions of P .

c. Compute E[yt+1|xt] for xt = ei, i = 1, . . . , 4.

d. Compare your answer to part (c) with (2.2.12). Is yt = y′xt invariant? If

not, what hypothesis of Theorem 2.2.4 is violated?

e. The stochastic process yt = y′xt is evidently a bounded martingale. Verify

that yt converges almost surely to a constant. To what constant(s) does it

converge?

Exercise 2.19 IQ

An infinitely lived person’s ‘true intelligence’ θ ∼ N (100, 100), i.e., mean 100,

variance 100. For each date t ≥ 0, the person takes a ‘test’ with the outcome

being a univariate random variable yt = θ+ vt , where vt is an iid process with

distribution N (0, 100). The person’s initial IQ is IQ0 = 100 and at date t ≥ 1

before the date t test is taken it is IQt = Eθ|yt−1 , where yt−1 is the history of

test scores from date 0 until date t− 1.

a. Give a recursive formula for IQt and for E(IQt − θ)2 .
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b. Use Matlab to simulate 10 draws of θ and associated paths of yt, IQt for

t = 0, . . . , 50.

c. Prove that limt→∞E(IQt − θ)2 = 0.

Exercise 2.20 Random walk

A scalar process xt follows the process

xt+1 = xt + wt+1

where w is an iid N (0, 1) scalar process and x0 ∼ N (x̂0,Σ0). Each period, an

observer receives two signals in the form of a 2× 1 vector yt that obeys

yt =

[
1

1

]
xt + vt

where the 2 × 1 process vt is iid with distribution vt ∼ N (0, R) where R =[
1 0

0 1

]
.

a. Suppose that Σ0 = 1.36602540378444. For t ≥ 0, find formulas for

E[xt|yt−1] , where yt−1 is the history of ys for s from 0 to t− 1.

b. Verify numerically that the matrix A−KG in formula (2.9.3) is stable.

c. Find an infinite-order vector autoregression for yt .

Exercise 2.21 Impulse response for VAR

Find the impulse response function for the state space representation (2.9.1)

associated with a vector autoregression.

Exercise 2.22 Kalman filter with cross-products

Consider the state space system

xt+1 = Axt + Cwt+1

yt+1 = Gxt +Dwt+1

where xt is an n×1 state vector wt+1 is an m×1 iid process with distribution

N (0, I), yt is an m× 1 vector of observed variables, and x0 ∼ N (x̂0,Σ0). For

t ≥ 1, x̂t = E[xt|yt] where yt = [yt, . . . , y1] and Σt = E(xt − x̂t)(xt − x̂t)
′ .
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a. Show how to select wt+1, C , and D so that Cwt+1 and Dwt+1 are mutually

uncorrelated processes. Also give an example in which Cwt+1 and Dwt+1 are

correlated.

b. Construct a recursive representation for x̂t of the form:

x̂t+1 = Ax̂t +Ktat+1

yt+1 = Gx̂t + at+1

where at+1 = yt+1 − E[yt+1|yt] for t ≥ 0 and verify that

Kt = (CD′ +AΣtG
′) (DD′ +GΣtG

′)
−1

Σt+1 = (A−KtG)Σt (A−KtG)
′
+ (C −KtD) (C −KtD)

′

and Eat+1a
′
t+1 = GΣtG

′+DD′ . Hint: apply the population regression formula.

Exercise 2.23 A monopolist, learning, and ergodicity

A monopolist produces a quantity Qt of a single good in every period t ≥ 0

at zero cost. At the beginning of each period t ≥ 0, before output price pt is

observed, the monopolist sets quantity Qt to maximize

(1) Et−1ptQt

where pt satisfies the linear inverse demand curve

(2) pt = a− bQt + σpǫt

where b > 0 is a constant known to the firm, ǫt is an i.i.d. scalar with distribu-

tion ǫt ∼ N (0, 1), and the constant in the inverse demand curve a is a scalar

random variable unknown to the firm and whose unconditional distribution is

a ∼ N (µa, σ
2
a), where µa > 0 is large relative to σa > 0. Assume that the

random variable a is independent of ǫt for all t . Before the firm chooses Q0 ,

it knows the unconditional distribution of a , but not the realized value of a .

For each t ≥ 0, the firm wants to estimate a because it wants to make a good

decision about output Qt . At the end of each period t , when it must set Qt+1 ,

the firm observes pt and also of course knows the value of Qt that it had set.

In (1), for t ≥ 1, Et−1(·) denotes the mathematical expectation conditional on
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the history of signals ps, qs, s = 0, . . . , t − 1; for t = 0, Et−1(·) denotes the

expectation conditioned on no previous observations of pt, Qt .

a. What is the optimal setting for Q0 ? For each date t ≥ 0, determine the

firm’s optimal setting for Qt as a function of the information pt−1, Qt−1 that

the firm has when it sets Qt .

b. Under the firm’s optimal policy, is the pair (pt, Qt) Markov?

c. ‘Finding the state is an art.’ Find a recursive representation of the firm’s

optimal policy for setting Qt for t ≥ 0. Interpret the state variables that you

propose.

d. Under the firm’s optimal rule for setting Qt , does the random variable

Et−1pt converge to a constant as t → +∞? If so, prove that it does and find

the limiting value. If not, tell why it does not converge.

e. Now suppose that instead of maximizing (1) each period, there is a single

infinitely lived monopolist who once and for all before time 0 chooses a plan for

an entire sequence {Qt}∞t=0 , where the Qt component has to be a measurable

function of (pt−1, qt−1), and where the monopolist’s objective is to maximize

(3) E−1

∞∑

t=0

βtptQt

where β ∈ (0, 1) and E−1 denotes the mathematical expectation conditioned

on the null history. Get as far as you can in deriving the monopolist’s optimal

sequence of decision rules.

Exercise 2.24 Stationarity

A pair of scalar stochastic processes (zt, yt) evolves according to the state system

for t ≥ 0:
zt+1 = .9zt + wt+1

yt = zt + vt

where wt+1 and vt are mutually uncorrelated scalar Gaussian random variables

with means of 0 and variances of 1. Furthermore, Ewt+1vs = 0 for all t, s

pairs. In addition, z0 ∼ N (ẑ0,Σ0).

a. Is {zt} Markov? Explain.

b. Is {yt} Markov? Explain.
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c. Define what it would mean for the scalar process {zt} to be covariance

stationary.

d. Find values of (ẑ0,Σ0) that make the process for {zt} covariance stationary.

e. Assume that yt is observable, but that zt is not. Define what it would mean

for the scalar process yt to be covariance stationary.

f. Describe in as much detail as you can how to represent the distribution of yt

conditional on the infinite history yt−1 in the form yt ∼ N (E[yt|yt−1],Ωt).

Exercise 2.25 Consumption

a. Please use formulas (2.12.18) to verify formulas (2.12.21) and (2.12.23)-

(2.12.24) of subsection 2.12.3.

b. Please use formulas (2.10.3) to compute the decision rules in formulas

(2.12.21) and (2.12.23) for the following parameter values: β = .95, σ1 = σ2 =

1.

c. Please use formulas (2.10.3) to compute the decision rules in formulas

(2.12.21) and (2.12.23) for the following parameter values: β = .95, σ1 =

2, σ2 = 1.

d. Please use formula (2.12.20) to confirm formulas (2.12.22) and (2.12.25).

Exercise 2.26 Math and verbal IQ’s

An infinitely lived person’s ‘true intelligence’ θ has two components, math abil-

ity θ1 and verbal ability θ2 , where θ ∼ N
([

100

100

]
,

[
100 0

0 100

])
. For each

date t ≥ 0, the person takes a single ‘test’ with the outcome being a univari-

ate random variable yt = Gtθ + vt , where vt is an iid process with distribu-

tion N (0, 50) and Gt = [ .9 .1 ] for t = 0, 2, 4, . . . and Gt = [ .01 .99 ] for

t = 1, 3, 5, . . .. Here the person takes a math test at t even and a verbal test at

t odd (but you have to know how to read English to survive the math test, and

you have to know how to tell time in order to plan your time allocation well for

the verbal test). The person’s initial IQ vector is IQ0 =

[
100

100

]
and at date

t ≥ 1 before the date t test is taken it is IQt = Eθ|yt−1 , where yt−1 is the

history of test scores from date 0 until date t− 1.

a. Give a recursive formula for IQt and for E(IQt − θ)(IQt − θ)′ .
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b. Use Matlab to simulate 10 draws of θ and associated paths of yt, IQt for

t = 0, . . . , 50.

c. Show computationally or analytically that limt→+∞E(IQt − θ)(IQt − θ)′ =[
0 0

0 0

]
.

Exercise 2.27 Permanent income model again

Each of two consumers named i = 1, 2 has preferences over consumption streams

that are ordered by the utility functional

(1) E0

∞∑

t=0

βtu
(
cit
)

where Et is the mathematical expectation conditioned on the consumer’s time

t information, cit is time t consumption of consumer i at time t , u(c) is a

strictly concave one-period utility function, and β ∈ (0, 1) is a discount fac-

tor. The consumer maximizes (1) by choosing a consumption, borrowing plan

{cit, bit+1}∞t=0 subject to the sequence of budget constraints

cit + bit = R−1bit+1 + yit

where yt is an exogenous stationary endowment process, R is a constant gross

risk-free interest rate, bit is one-period risk-free debt maturing at t , and bi0 = 0

is a given initial condition. Assume that R−1 = β . We impose the following

condition on the consumption, borrowing plan of consumer i :

E0

∞∑

t=0

βt
(
bit
)2
< +∞.

Assume the quadratic utility function u(ct) = −.5(ct − γ)2 , where γ > 0 is a

bliss level of consumption. Negative consumption rates are allowed.

Let st ∈ {0, 1} be an i.i.d. process with Prob(st = 1) = Prob(s1 = 0) = .5.

The endowment process of consumer 1 is y1t = 1 − .5st and the endowment

process of person 2 is y2t = .5 + .5st . Thus, the two consumers’ endowment

processes are perfectly negatively correlated i.i.d. processes with means of .75.
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a. Find optimal decision rules for consumption for both consumers. Prove that

the consumers’ optimal decisions imply the following laws of motion for b1t , b
2
t :

b1t+1 (st = 0) = b1t − .25

b1t+1 (st = 1) = b1t + .25

b2t+1 (st = 0) = b2t + .25

b2t+1 (st = 1) = b2t − .25

b. Show that for each consumer, cit, b
i
t are co-integrated.

c. Verify that bit+1 is risk-free in the sense that conditional on information

available at time t , it is independent of news arriving at time t+ 1.

d. Verify that with the initial conditions b10 = b20 = 0, the following two

equalities obtain:
b1t + b2t = 0 ∀t ≥ 1

c1t + c2t = 1.5 ∀t ≥ 1

Use these conditions to interpret the decision rules that you have computed

as describing a closed pure consumption loans economy in which consumers 1

and 2 borrow and lend with each other and in which the risk-free asset is a

one-period IOU from one of the consumers to the other.

e. Define the ‘stochastic discount factor of consumer i ’ as mi
t+1 =

βu′(cit+1)

u′(cit)
.

Show that the stochastic discount factors of consumer 1 and 2 are

m1
t+1 =




β + .25β(1−β)

(γ−c1t)
, if st+1 = 0;

β − .25β(1−β)
(γ−c1t)

, if st+1 = 1; .

m2
t+1 =




β − .25β(1−β)

(γ−c2t)
, if st+1 = 0;

β + .25β(1−β)
(γ−c2t)

, if st+1 = 1; .

Are the stochastic discount factors of the two consumers equal?

f. Verify that Etm
1
t+1 = Etm

2
t+1 = β .
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Exercise 2.28 Invertibility

A univariate stochastic process yt has a first-order moving average representa-

tion

(1) yt = ǫt − 2ǫt−1

where {ǫt} is an i.i.d. process distributed N (0, 1).

a. Argue that ǫt cannot be expressed as as linear combination of yt−j , j ≥ 0

where the sum of the squares of the weights is finite. This means that ǫt is not

in the space spanned by square summable linear combinations of the infinite

history yt .

b. Write equation (1) as a state space system, indicating the matrices A,C,G .

c. Using the matlab program kfilter.m to compute an innovations repre-

sentation for {yt} . Verify that the innovations representation for yt can be

represented as

(2) yt = at − .5at−1

where at = yt − E[yt|yt−1] is a serially uncorrelated process. Compute the

variance of at . Is it larger or smaller than the variance of ǫt ?

d. Find an autoregressive representation for yt of the form

(3) yt =
∞∑

j=1

Ajyt−j + at

where Eatyt−j = 0 for j ≥ 1. (Hint: either use formula (2) or else remember

formula (2.9.3).)

e. Is yt Markov? Is [ yt yt−1 ]
′ Markov? Is [ yt yt−1 · · · yt−10 ]

′ Markov?

f. Extra credit. Verify that ǫt can be expressed as a square summable linear

combination of yt+j, j ≥ 1.

Exercise 2.29 Pure prediction

Consider the Bellman equation

(1) µt = Rxt +A′µt+1,
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where xt+1 = Axt . Here xt is an n × 1 vector, A is an n × n stable matrix,

and R is an n× n positive definite matrix.

a. Show that

(2) µt = R

∞∑

j=0

A′jxt+j

is a solution of the forward-looking difference equation (1).

a. Guess that µt = Pxt , then verify that

(3) P = R+ A′PA.

c. Please compare formula (3) for P with formula (2.4.10) for the unconditional

covariance matrix of a vector governed by an autoregression.

d. Please compare formula (3) with the formula (2.4.25) for P that is a key

step in the Howard policy improvement algorithm.

e. Can you invent a counterpart of the Howard policy improvement algorithm

to compute a time-invariant version of the Kalman filter?

Exercise 2.30 Phelps and Pollak (1968) meet Howard

A sequence of decision makers at dates t = 0, 1, . . . , chooses {xt+1, ut}∞t=0 sub-

ject to

xt+1 = Axt +But, t ≥ 0

where A is an n×n matrix, B is an n×k matrix, ut is a k×1 vector of time t

“controls”, and x0 is a given initial condition. Let r(xt, ut) = −(x′tRxt+u
′
tQut),

where R and Q are positive definite matrices. A time t decision maker chooses

ut, xt+1 . A time t decision maker’s preferences are ordered by

(0) r (xt, ut) + δ
∞∑

j=1

βjr (xt+j , ut+j) ,

where β ∈ (0, 1) and δ ∈ (0, 1].

a. Let V (x) solve the following Bellman equation:

(1) V (x) = r (x,−Fx) + βV ((A−BF )x) .
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Please interpret V (x); i.e., please complete the sentence “V (x) is the value of

. . . ”.

b. For a given matrix F , please guess a functional form for V (x), then describe

an algorithm for solving the functional equation (1) for V (x). Please get as far

as you can in computing V (x).

c. Consider the functional equation

(2) U (x) = max
u

{r (x, u) + δβV (Ax+Bu)} ,

where V (x) satisfies the Bellman equation (1). Further, let U(x) be attained

by u = −Gx , so that

(2) U (x) = r (x,−Gx) + δβV ((A−BG) x) .

Please interpret U(x) as a value function.

d. Please define a Markov perfect equilibrium for the sequence of problems

solved by the sequence of decision makers who choose {ut}∞t=0 .

e. Please describe how to compute a Markov perfect equilibrium in this setting.

f. Please compare your algorithm for computing a Markov perfect equilibrium

with the Howard policy improvement algorithm.

g. Let ~a0 = {at}∞t=0 . Define ~a1 = {at}∞t=1 as the continuation of the sequence

~a0 . Is a continuation of a Markov perfect equilibrium a Markov perfect equilib-

rium?

h. Suppose instead that there is a dictator who at time 0 chooses {ut}∞t=0

to maximize the time t = 0 value of the criterion (0). Please write Bellman

equations and tell how to solve them for an optimal plan for the time 0 dictator.

i. Given x1 , a time 1 dictator chooses {ut}∞t=1 to maximize utility function (0)

for time t . Is a continuation of the time 0 dictator’s plan the time 1 dictator’s

plan?

j. Can you restrict δ ∈ (0, 1] so that the time 0 dictator’s plan equals the

outcome of the Markov perfect equilibrium that you described above?



Chapter 3
Dynamic Programming

This chapter introduces basic ideas and methods of dynamic programming.1

It sets out the basic elements of a recursive optimization problem, describes a

key functional equation called the Bellman equation, presents three methods for

solving the Bellman equation, and gives the Benveniste-Scheinkman formula for

the derivative of the optimal value function. Let’s dive in.

3.1. Sequential problems

Let β ∈ (0, 1) be a discount factor. We want to choose an infinite sequence of

“controls” {ut}∞t=0 to maximize

∞∑

t=0

βtr (xt, ut) , (3.1.1)

subject to xt+1 = g(xt, ut), with x0 ∈ IRn given. We assume that r(xt, ut)

is a concave function and that the set {(xt+1, xt) : xt+1 ≤ g(xt, ut), ut ∈ IRk}
is convex and compact. Dynamic programming seeks a time-invariant policy

function h mapping the state xt into the control ut , such that the sequence

{us}∞s=0 generated by iterating the two functions

ut = h (xt)

xt+1 = g (xt, ut) ,
(3.1.2)

starting from initial condition x0 at t = 0, solves the original problem. A

solution in the form of equations (3.1.2) is said to be recursive. To find the

policy function h we need to know another function V (x) that expresses the

optimal value of the original problem, starting from an arbitrary initial condition

x ∈ X . This is called the value function. In particular, define

V (x0) = max
{us}∞

s=0

∞∑

t=0

βtr (xt, ut) , (3.1.3)

1 This chapter aims to the reader to start using the methods quickly. We hope to promote

demand for further and more rigorous study of the subject. In particular see Bertsekas (1976),

Bertsekas and Shreve (1978), Stokey and Lucas (with Prescott) (1989), Bellman (1957), and

Chow (1981). This chapter covers much of the same material as Sargent (1987b, chapter 1).

– 105 –
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where again the maximization is subject to xt+1 = g(xt, ut), with x0 given. Of

course, we cannot possibly expect to know V (x0) until after we have solved the

problem, but let’s proceed on faith. If we knew V (x0), then the policy function

h could be computed by solving for each x ∈ X the problem

max
u

{r (x, u) + βV (x̃)}, (3.1.4)

where the maximization is subject to x̃ = g(x, u) with x given, and x̃ denotes

the state next period. Thus, we have exchanged the original problem of finding

an infinite sequence of controls that maximizes expression (3.1.1) for the prob-

lem of finding the optimal value function V (x) and a function h that solves

the continuum of maximum problems (3.1.4)—one maximum problem for each

value of x . This exchange doesn’t look like progress, but we shall see that it

often is.

Our task has become jointly to solve for V (x), h(x), which are linked by

the Bellman equation

V (x) = max
u

{r (x, u) + βV [g (x, u)]}. (3.1.5)

The maximizer of the right side of equation (3.1.5) is a policy function h(x)

that satisfies

V (x) = r [x, h (x)] + βV {g [x, h (x)]}. (3.1.6)

Equation (3.1.5) or (3.1.6) is a functional equation to be solved for the pair of

unknown functions V (x), h(x).

Methods for solving the Bellman equation are based on mathematical struc-

tures that vary in their details depending on the precise nature of the functions

r and g .2 All of these structures contain versions of the following four findings.

Under various particular assumptions about r and g , it turns out that

2 There are alternative sets of conditions that make the maximization (3.1.4) well behaved.

One set of conditions is as follows: (1) r is concave and bounded, and (2) the constraint set

generated by g is convex and compact, that is, the set of {(xt+1, xt) : xt+1 ≤ g(xt, ut)} for

admissible ut is convex and compact. See Stokey, Lucas, and Prescott (1989) and Bertsekas

(1976) for further details of convergence results. See Benveniste and Scheinkman (1979) and

Stokey, Lucas, and Prescott (1989) for the results on differentiability of the value function. In

Appendix A (see Technical Appendixes), we describe the mathematics for one standard set of

assumptions about (r, g) . In chapter 5, we describe it for another set of assumptions about

(r, g) .
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1. The functional equation (3.1.5) has a unique strictly concave solution.

2. This solution is approached in the limit as j → ∞ by iterations on

Vj+1 (x) = max
u

{r (x, u) + βVj (x̃)},

subject to x̃ = g(x, u), x given, starting from any bounded and continuous

initial V0 .

3. There is a unique and time-invariant optimal policy of the form ut = h(xt),

where h is chosen to maximize the right side of (3.1.5).

4. Off corners, the limiting value function V is differentiable.

Since the value function is differentiable, the first-order necessary condition

for problem (3.1.4) becomes3

r2(x, u) + βV ′{g (x, u)} g2(x, u) = 0. (3.1.7)

If we also assume that the policy function h(x) is differentiable, differentiation

of expression (3.1.6) yields4

V ′(x) = r1[x, h (x)] + r2[x, h (x)] h
′ (x)

+ βV ′{g [x, h (x)]}
{
g1[x, h (x)] + g2[x, h (x)] h

′ (x)
}
. (3.1.8)

When the states and controls can be defined in such a way that only u appears

in the transition equation, i.e., x̃ = g(u): the derivative of the value function

becomes, after substituting expression (3.1.7) with u = h(x) into (3.1.8),

V ′(x) = r1[x, h (x)] . (3.1.9)

This is a version of a formula of Benveniste and Scheinkman (1979).

At this point, we describe three broad computational strategies that apply

in various contexts.

3 Here and below, subscript 1 denotes the vector of derivatives with respect to the x

components and subscript 2 denotes the derivatives with respect to the u components.
4 Benveniste and Scheinkman (1979) proved differentiability of V (x) under broad condi-

tions that do not require that h(x) be differentiable. For conditions under which h(x) is

differentiable, see Santos (1991,1993).
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3.1.1. Three computational methods

There are three main types of computational methods for solving dynamic pro-

grams. All aim to solve the functional equation (3.1.4).

Value function iteration. The first method proceeds by constructing a

sequence of value functions and associated policy functions. The sequence is

created by iterating on the following equation, starting from V0 = 0, and con-

tinuing until Vj has converged:

Vj+1 (x) = max
u

{r (x, u) + βVj (x̃)}, (3.1.10)

subject to x̃ = g(x, u), x given.5 This method is called value function iteration

or iterating on the Bellman equation.

Guess and verify. A second method involves guessing and verifying a solution

V to equation (3.1.5). This method relies on the uniqueness of the solution to

the equation, but because it relies on luck in making a good guess, it is not

generally available.

Howard’s improvement algorithm. A third method, known as policy func-

tion iteration or Howard’s improvement algorithm, consists of the following

steps:

1. Pick a feasible policy, u = h0(x), and compute the value associated with

operating forever with that policy:

Vhj
(x) =

∞∑

t=0

βtr [xt, hj (xt)] ,

where xt+1 = g[xt, hj(xt)] , with j = 0.

2. Generate a new policy u = hj+1(x) that solves the two-period problem

max
u

{r (x, u) + βVhj
[g (x, u)]},

for each x .

5 See Appendix A on functional analysis (see Technical Appendixes) for what it means

for a sequence of functions to converge. A proof of the uniform convergence of iterations on

equation (3.1.10) is contained in that appendix.
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3. Iterate over j to convergence on steps 1 and 2.

In Appendix A (see Technical Appendixes), we describe some conditions

under which the policy improvement algorithm converges to the solution of the

Bellman equation. The policy improvement algorithm often converges faster

than does value function iteration (e.g., see exercise 3.1 at the end of this chap-

ter).6 The policy improvement algorithm is also a building block for methods

used to study government policy in chapter 24.

Each of our three methods for solving dynamic programming problems has

its uses. Each is easier said than done, because it is typically impossible analyt-

ically to compute even one iteration on equation (3.1.10). This fact thrusts us

into the domain of computational methods for approximating solutions: pencil

and paper are insufficient. Chapter 4 describes computational methods that

can applied to problems that cannot be solved by hand. Here we shall describe

the first of two special types of problems for which analytical solutions can be

obtained. It involves Cobb-Douglas constraints and logarithmic preferences.

Later, in chapter 5, we shall describe a specification with linear constraints and

quadratic preferences. For that special case, many analytic results are available.

These two classes have been important in economics as sources of examples and

as inspirations for approximations.

3.1.2. Cobb-Douglas transition, logarithmic preferences

Brock and Mirman (1972) used the following optimal growth example.7 A

planner chooses sequences {ct, kt+1}∞t=0 to maximize

∞∑

t=0

βt ln (ct)

subject to a given value for k0 and a transition law

kt+1 + ct = Akαt , (3.1.11)

where A > 0, α ∈ (0, 1), β ∈ (0, 1).

6 The speed of the policy improvement algorithm comes from its implementing Newton’s

method, which converges quadratically while iteration on the Bellman equation converges at

a linear rate. See chapter 4 and Appendix A (see Technical Appendixes).
7 See also Levhari and Srinivasan (1969).
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This problem can be solved “by hand,” using any of our three methods. We

begin with iteration on the Bellman equation. Start with v0(k) = 0, and solve

the one-period problem: choose c to maximize ln(c) subject to c + k̃ = Akα.

The solution is evidently to set c = Akα, k̃ = 0, which produces an optimized

value v1(k) = lnA + α ln k . At the second step, we find c = 1
1+βαAk

α, k̃ =
βα

1+βαAk
α, v2(k) = ln A

1+αβ + β lnA + αβ ln αβA
1+αβ + α(1 + αβ) ln k . Continuing,

and using the algebra of geometric series, gives the limiting policy functions

c = (1−βα)Akα, k̃ = βαAkα , and the value function v(k) = (1−β)−1{ln[A(1−
βα)] + βα

1−βα ln(Aβα)} + α
1−βα ln k .

Here is how the guess-and-verify method applies to this problem. Since we

already know the answer, we’ll guess a function of the correct form, but leave

its coefficients undetermined.8 Thus, we make the guess

v (k) = E + F ln k, (3.1.12)

where E and F are undetermined constants. The left and right sides of equation

(3.1.12) must agree for all values of k . For this guess, the first-order necessary

condition for the maximum problem on the right side of equation (3.1.10) implies

the following formula for the optimal policy k̃ = h(k), where k̃ is next period’s

value and k is this period’s value of the capital stock:

k̃ =
βF

1 + βF
Akα. (3.1.13)

Substitute equation (3.1.13) into the Bellman equation and equate the result

to the right side of equation (3.1.12). Solving the resulting equation for E and

F gives F = α/(1 − αβ) and E = (1 − β)−1[lnA(1 − αβ) + βα
1−αβ lnAβα]. It

follows that

k̃ = βαAkα. (3.1.14)

Note that the term F = α/(1 − αβ) can be interpreted as a geometric sum

α[1 + αβ + (αβ)2 + . . .] .

Equation (3.1.14) shows that the optimal policy is to have capital move

according to the difference equation kt+1 = Aβαkαt , or ln kt+1 = lnAβα +

α ln kt . That α is less than 1 implies that kt converges as t approaches infinity

for any positive initial value k0 . The stationary point is given by the solution

of k∞ = Aβαkα∞ , or kα−1
∞ = (Aβα)−1 .

8 This is called the method of undetermined coefficients.
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3.1.3. Euler equations

In many problems, there is no unique way of defining states and controls, and

several alternative definitions lead to the same solution of the problem. When

the states and controls can be defined in such a way that only u appears in the

transition equation, i.e., x̃ = g(u): the first-order condition for the problem on

the right side of the Bellman equation (expression (3.1.7)) in conjunction with

the Benveniste-Scheinkman formula (expression (3.1.9)) implies

r2(xt, ut) + β r1(xt+1, ut+1) g
′(ut) = 0, xt+1 = g (ut) .

The first equation is called an Euler equation. Under circumstances in which

the second equation can be inverted to yield ut as a function of xt+1 , using the

second equation to eliminate ut from the first equation produces a second-order

difference equation in xt , since eliminating ut+1 brings in xt+2 .

3.1.4. A sample Euler equation

As an example of an Euler equation, consider the Ramsey problem of choosing

{ct, kt+1}∞t=0 to maximize
∑∞
t=0 β

tu(ct) subject to ct + kt+1 = f(kt), where k0

is given and the one-period utility function satisfies u′(c) > 0, u′′(c) < 0, limctց0

u′(ct) = ∞ , and where f ′(k) > 0, f ′′(k) < 0. Let the state be k and the control

be k̃ , where k̃ denotes next period’s value of k . Substitute c = f(k) − k̃ into

the utility function and express the Bellman equation as

v (k) = max
k̃

{
u
[
f (k)− k̃

]
+ βv

(
k̃
)}

. (3.1.15)

Application of the Benveniste-Scheinkman formula gives

v′ (k) = u′
[
f (k)− k̃

]
f ′ (k) . (3.1.16)

Notice that the first-order condition for the maximum problem on the right

side of equation (3.1.15) is −u′[f(k) − k̃] + βv′(k̃) = 0, which, using equation

(3.1.16), gives

u′
[
f (k)− k̃

]
= βu′

[
f
(
k̃
)
− k̂
]
f ′
(
k̃
)
, (3.1.17)
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where k̂ denotes the two-period-ahead value of k . Equation (3.1.17) can be

expressed as

1 = β
u′ (ct+1)

u′ (ct)
f ′ (kt+1) ,

an Euler equation that is exploited extensively in the theories of finance, growth,

and real business cycles.

3.2. Stochastic control problems

We now consider a modification of problem (3.1.1) to permit uncertainty. Es-

sentially, we add some well-placed shocks to the previous nonstochastic prob-

lem. So long as the shocks are either independently and identically distributed

or Markov, straightforward modifications of the method for handling the non-

stochastic problem will work.

Thus, we modify the transition equation and consider the problem of max-

imizing

E0

∞∑

t=0

βtr (xt, ut) , 0 < β < 1, (3.2.1)

subject to

xt+1 = g (xt, ut, ǫt+1) , (3.2.2)

with x0 known and given at t = 0, where ǫt is a sequence of independently

and identically distributed random variables with cumulative probability distri-

bution function prob{ǫt ≤ e} = F (e) for all t ; Et(y) denotes the mathematical

expectation of a random variable y , given information known at t . At time

t , xt is assumed to be known, but xt+j , j ≥ 1 is not known at t . That is,

ǫt+1 is realized at (t + 1), after ut has been chosen at t . In problem (3.2.1)–

(3.2.2), uncertainty is injected by assuming that xt follows a random difference

equation.

Problem (3.2.1)–(3.2.2) continues to have a recursive structure, stemming

jointly from the additive separability of the objective function (3.2.1) in pairs

(xt, ut) and from the difference equation characterization of the transition law

(3.2.2). In particular, controls dated t affect returns r(xs, us) for s ≥ t but

not earlier. This feature implies that dynamic programming methods remain

appropriate.
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The problem is to maximize expression (3.2.1) subject to equation (3.2.2)

by choice of a “policy” or “contingency plan” ut = h(xt). The Bellman equation

(3.1.5) becomes

V (x) = max
u

{r (x, u) + βE [V [g (x, u, ǫ)] |x]}, (3.2.3)

where E{V [g(x, u, ǫ)]|x} =
∫
V [g(x, u, ǫ)]dF (ǫ) and where V (x) is the optimal

value of the problem starting from x at t = 0. The solution V (x) of equation

(3.2.3) can be computed by iterating on

Vj+1 (x) = max
u

{r (x, u) + βE [Vj [g (x, u, ǫ)] |x]}, (3.2.4)

starting from any bounded continuous initial V0 . Under various particular regu-

larity conditions, there obtain versions of the same four properties listed earlier.9

The first-order necessary condition for the problem on the right side of

equation (3.2.3) is

r2(x, u) + β E
{
V ′[g (x, u, ǫ)] g2(x, u, ǫ)

∣∣∣x
}
= 0,

which we obtained simply by differentiating the right side of equation (3.2.3),

passing the differentiation operation under the E (an integration) operator. Off

corners, the value function satisfies

V ′(x) = r1[x, h (x)] + r2[x, h (x)] h
′ (x)

+ β E
{
V ′{g [x, h (x) , ǫ]} {g1[x, h (x) , ǫ] + g2[x, h (x) , ǫ] h

′ (x)}
∣∣∣x
}
.

When the states and controls can be defined in such a way that x does not

appear in the transition equation, the formula for V ′(x) becomes

V ′(x) = r1[x, h (x)] .

Substituting this formula into the first-order necessary condition for the problem

gives the stochastic Euler equation

r2(x, u) + βE
[
r1(x̃, ũ) g2(x, u, ǫ)

∣∣∣x
]
= 0,

where tildes over x and u denote next-period values.

9 See Stokey and Lucas (with Prescott) (1989), or the framework presented in Appendix

A (see Technical Appendixes).
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3.3. Concluding remarks

This chapter has put forward basic tools and findings: the Bellman equation

and several approaches to solving it; the Euler equation; and the Benveniste-

Scheinkman formula. To appreciate and believe in the power of these tools

requires more words and more practice than we have yet supplied. In the next

several chapters, we put the basic tools to work in different contexts with par-

ticular specification of return and transition equations designed to render the

Bellman equation susceptible to further analysis and computation.

Exercise

Exercise 3.1 Howard’s policy iteration algorithm

Consider the Brock-Mirman problem: to maximize

E0

∞∑

t=0

βt ln ct,

subject to ct + kt+1 ≤ Akαt θt , k0 given, A > 0, 1 > α > 0, where {θt} is

an i.i.d. sequence with ln θt distributed according to a normal distribution with

mean zero and variance σ2 .

Consider the following algorithm. Guess at a policy of the form kt+1 =

h0(Ak
α
t θt) for any constant h0 ∈ (0, 1). Then form

J0 (k0, θ0) = E0

∞∑

t=0

βt ln (Akαt θt − h0Ak
α
t θt) .

Next choose a new policy h1 by maximizing

ln (Akαθ − k′) + βEJ0 (k
′, θ′) ,

where k′ = h1Ak
αθ . Then form

J1 (k0, θ0) = E0

∞∑

t=0

βt ln (Akαt θt − h1Ak
α
t θt) .

Continue iterating on this scheme until successive hj have converged.

Show that, for the present example, this algorithm converges to the optimal

policy function in one step.



Chapter 4

Practical Dynamic Programming

4.1. The curse of dimensionality

We often encounter problems where it is impossible to attain closed forms for

iterating on the Bellman equation. Then we have to adopt numerical approxi-

mations. This chapter describes two popular methods for obtaining numerical

approximations. The first method replaces the original problem with another

problem that forces the state vector to live on a finite and discrete grid of points,

then applies discrete-state dynamic programming to this problem. The “curse

of dimensionality” impels us to keep the number of points in the discrete state

space small. The second approach uses polynomials to approximate the value

function. Judd (1998) is a comprehensive reference about numerical analysis of

dynamic economic models and contains many insights about ways to compute

dynamic models.

4.2. Discrete-state dynamic programming

We introduce the method of discretization of the state space in the context of

a particular discrete-state version of an optimal savings problem. An infinitely

lived household likes to consume one good that it can acquire by spending labor

income or accumulated savings. The household has an endowment of labor at

time t , st , that evolves according to an m-state Markov chain with transition

matrix P and state space [s̄1, s̄2, . . . , s̄m] . If the realization of the process at t

is s̄i , then at time t the household receives labor income of amount ws̄i . The

wage w is fixed over time. We shall sometimes assume that m is 2, and that

st takes on value 0 in an unemployed state and 1 in an employed state. In this

case, w has the interpretation of being the wage of employed workers.

The household can choose to hold a single asset in discrete amounts at ∈ A
where A is a grid [a1 < a2 < · · · < an] . How the model builder chooses the

– 115 –
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end points of the grid A is important, as we describe in detail in chapter 18 on

incomplete market models. The asset bears a gross rate of return r that is fixed

over time.

The household’s maximum problem, for given values of (w, r ) and given

initial values (a0, s0 ), is to choose a policy for {at+1}∞t=0 to maximize

E
∞∑

t=0

βtu (ct) , (4.2.1)

subject to
ct + at+1 = (r + 1) at + wst

ct ≥ 0

at+1 ∈ A
(4.2.2)

where β ∈ (0, 1) is a discount factor and r is fixed rate of return on the assets.

We assume that β(1 + r) < 1. Here u(c) is a strictly increasing, concave one-

period utility function. Associated with this problem is the Bellman equation

v (a, s) = max
a′∈A

{
u [(r + 1)a+ ws− a′] + βEv (a′, s′) |s

}
,

where a is next period’s value of asset holdings, and s′ is next period’s value

of the shock; here v(a, s) is the optimal value of the objective function, starting

from asset, employment state (a, s). We seek a value function v(a, s) that sat-

isfies equation (18.2.3) and an associated policy function a′ = g(a, s) mapping

this period’s (a, s) pair into an optimal choice of assets to carry into next pe-

riod. Let assets live on the grid A = [a1, a2, . . . , an] . Then we can express the

Bellman equation as

v (ai, s̄j) = max
ah∈A

{
u [(r + 1)ai + ws̄j − ah] + β

m∑

l=1

Pjlv (ah, s̄l)
}
, (4.2.3)

for each i ∈ [1, . . . , n] and each j ∈ [1, . . . ,m] .
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4.3. Bookkeeping

For a discrete state space of small size, it is easy to solve the Bellman equation

numerically by manipulating matrices. Here is how to write a computer program

to iterate on the Bellman equation in the context of the preceding model of asset

accumulation.1 Let there be n states [a1, a2, . . . , an] for assets and two states

[s1, s2] for employment status. For j = 1, 2, define n × 1 vectors vj , j = 1, 2,

whose ith rows are determined by vj(i) = v(ai, sj), i = 1, . . . , n . Let 1 be the

n× 1 vector consisting entirely of ones. For j = 1, 2, define two n×n matrices

Rj whose (i, h) elements are

Rj (i, h) = u [(r + 1)ai + wsj − ah] , i = 1, . . . , n, h = 1, . . . , n.

Define an operator T ([v1, v2]) that maps a pair of n× 1 vectors [v1, v2] into a

pair of n× 1 vectors [tv1, tv2] :
2

tvj (i) = max
h

{
Rj (i, h) + βPj1v1 (h) + βPj2v2 (h)

}

for j = 1, 2, or
tv1 = max{R1 + βP111v

′
1 + βP121v

′
2}

tv2 = max{R2 + βP211v
′
1 + βP221v

′
2}.

(4.3.1)

Here it is understood that the “max” operator applied to an (n×m) matrix M

returns an (n× 1) vector whose ith element is the maximum of the ith row of

the matrix M . These two equations can be written compactly as
[
tv1

tv2

]
= max

{[
R1

R2

]
+ β (P ⊗ 1)

[
v′1
v′2

]}
, (4.3.2)

where ⊗ is the Kronecker product.3

1 Matlab versions of the program have been written by Gary Hansen, Selahattin İmrohoroğlu,

George Hall, and Chao Wei.
2 Programming languages like Python, Julia, and Matlab execute maximum operations

over vectors very efficiently. For example, for an n × m matrix A , the Matlab command

[r,index] =max(A) returns the two (1 × m) row vectors r,index, where rj = maxi A(i, j)

and indexj is the row i that attains maxiA(i, j) for column j [i.e., indexj = argmaxiA(i, j) ].

This command performs m maximizations simultaneously.
3 If A is an m× n matrix and B is a p× q matrix, then the Kronecker product A⊗B is

the mp× nq block matrix A⊗ B =



a11B · · · a1nB

...
. . .

...

am1B · · · amnB


 .
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The Bellman equation [v1v2] = T ([v1, v2]) can be solved by iterating to

convergence on [v1, v2]m+1 = T ([v1, v2]m).

4.4. Application of Howard improvement algorithm

Often computation speed is important. Exercise 3.1 showed that the policy

improvement algorithm can be much faster than iterating on the Bellman equa-

tion. It is also easy to implement the Howard improvement algorithm in the

present setting. At time t , the system resides in one of N predetermined

positions, denoted xi for i = 1, 2, . . . , N . There exists a predetermined set

M of (N × N) stochastic matrices P that are the objects of choice. Here

Pij = Prob [xt+1 = xj | xt = xi] , i = 1, . . . , N ; j = 1, . . . , N .

The matrices P satisfy Pij ≥ 0,
∑N

j=1 Pij = 1, and additional restrictions

dictated by the problem at hand that determine the set M . The one-period

return function is represented as cP , a vector of length N , and is a function of

P . The ith entry of cP denotes the one-period return when the state of the

system is xi and the transition matrix is P . The Bellman equation is

vP (xi) = max
P∈M

{cP (xi) + β
N∑

j=1

Pij vP (xj)}

or

vP = max
P∈M

{cP + βPvP } . (4.4.1)

We can express this as

vP = TvP ,

where T is the operator defined by the right side of (4.4.1). Following Putter-

man and Brumelle (1979) and Putterman and Shin (1978), define the operator

B = T − I,

so that

Bv = max
P∈M

{cP + βPv} − v.

In terms of the operator B , the Bellman equation is

Bv = 0. (4.4.2)
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The policy improvement algorithm consists of iterations on the following

two steps.

1. For fixed Pn , solve

(I − β Pn) vPn
= cPn

(4.4.3)

for vPn
.

2. Find Pn+1 such that

cPn+1 + (βPn+1 − I) vPn
= BvPn

(4.4.4)

Step 1 is accomplished by setting

vPn
= (I − βPn)

−1
cPn

. (4.4.5)

Step 2 amounts to finding a policy function (i.e., a stochastic matrix Pn+1 ∈ M)

that solves a two-period problem with vPn
as the terminal value function.

Following Putterman and Brumelle, the policy improvement algorithm can

be interpreted as a version of Newton’s method for finding the zero of Bv = v .

Using equation (4.4.3) for n+1 to eliminate cPn+1 from equation (4.4.4) gives

(I − βPn+1) vPn+1 + (βPn+1 − I) vPn
= BvPn

which implies

vPn+1 = vPn
+ (I − βPn+1)

−1
BvPn

. (4.4.6)

From equation (4.4.4), (βPn+1 − I) can be regarded as the gradient of BvPn
,

which supports the interpretation of equation (4.4.6) as implementing Newton’s

method.4

4 Newton’s method for finding the solution of G(z) = 0 is to iterate on zn+1 = zn −

G′(zn)−1G(zn).
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4.5. Numerical implementation

We shall illustrate Howard’s policy improvement algorithm by applying it to our

savings example. Consider a feasible policy function a′ = g(k, s). For each j ,

define the n× n matrices Jj by

Jj (a, a
′) =

{
1 if g (a, sj) = a′

0 otherwise .

Here j = 1, 2, . . . ,m where m is the number of possible values for st , and

Jj(a, a
′) is the element of Jj with rows corresponding to initial assets a and

columns to terminal assets a′ . For a given policy function a′ = g(a, s) define

the n× 1 vectors rj with rows corresponding to

rj (a) = u [(r + 1) a+ wsj − g (a, sj)] , (4.5.1)

for j = 1, . . . ,m .

Suppose the policy function a′ = g(a, s) is used forever. Let the value

associated with using g(a, s) forever be represented by the m (n × 1) vectors

[v1, . . . , vm] , where vj(ai) is the value starting from state (ai, sj). Suppose that

m = 2. The vectors [v1, v2] obey
[
v1

v2

]
=

[
r1

r2

]
+

[
βP11J1 βP12J1

βP21J2 βP22J2

] [
v1

v2

]
.

Then [
v1

v2

]
=

[
I − β

(P11J1 P12J1

P21J2 P22J2

)]−1 [
r1

r2

]
. (4.5.2)

Here is how to implement the Howard policy improvement algorithm.

Step 1. For an initial feasible policy function gτ (a, j) for τ = 1, form the

rj matrices using equation (4.5.1), then use equation (4.5.2) to evaluate

the vectors of values [vτ1 , v
τ
2 ] implied by using that policy forever.

Step 2. Use [vτ1 , v
τ
2 ] as the terminal value vectors in equation (4.3.2), and

perform one step on the Bellman equation to find a new policy function

gτ+1(a, s) for τ + 1 = 2. Use this policy function, increment τ by 1, and

repeat step 1.

Step 3. Iterate to convergence on steps 1 and 2.
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4.5.1. Modified policy iteration

Researchers have had success using the following modification of policy iteration:

for k ≥ 2, iterate k times on the Bellman equation. Take the resulting policy

function and use equation (4.5.2) to produce a new candidate value function.

Then starting from this terminal value function, perform another k iterations on

the Bellman equation. Continue in this fashion until the decision rule converges.

4.6. Sample Bellman equations

This section presents some examples. The first two examples involve no opti-

mization, just computing discounted expected utility. Appendix A of chapter 6

describes some related examples based on search theory.

4.6.1. Example 1: calculating expected utility

Suppose that the one-period utility function is the constant relative risk aversion

form u(c) = c1−γ/(1 − γ). Suppose that ct+1 = λt+1ct and that {λt} is an

n-state Markov process with transition matrix Pij = Prob(λt+1 = λ̄j |λt = λ̄i).

Suppose that we want to evaluate discounted expected utility

V (c0, λ0) = E0

∞∑

t=0

βtu (ct) , (4.6.1)

where β ∈ (0, 1). We can express this equation recursively:

V (ct, λt) = u (ct) + βEtV (ct+1, λt+1) (4.6.2)

We use a guess-and-verify technique to solve equation (4.6.2) for V (ct, λt).

Guess that V (ct, λt) = u(ct)w(λt) for some function w(λt). Substitute the

guess into equation (4.6.2), divide both sides by u(ct), and rearrange to get

w (λt) = 1 + βEt

(
ct+1

ct

)1−γ

w (λt+1)

or

wi = 1 + β
∑

j

Pij (λj)
1−γ wj . (4.6.3)
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Equation (4.6.3) is a system of linear equations in wi, i = 1, . . . , n whose solu-

tion can be expressed as

w =
[
1− βP diag

(
λ1−γ1 , . . . , λ1−γn

)]−1

1

where 1 is an n× 1 vector of ones.

4.6.2. Example 2: risk-sensitive preferences

Suppose we modify the preferences of the previous example to be of the recursive

form

V (ct, λt) = u (ct) + βRtV (ct+1, λt+1) , (4.6.4)

where

Rt (V ) =

(
2

σ

)
logEt

[
exp

(
σVt+1

2

)]
(4.6.5)

is an operator used by Jacobson (1973), Whittle (1990), and Hansen and Sargent

(1995) to induce a preference for robustness to model misspecification.5 Here

σ ≤ 0; when σ < 0, it represents a concern for model misspecification, or an

extra sensitivity to risk.

We leave it to the reader to propose a method for computing an approxi-

mation to a value function that solves the functional equation (4.6.4). (Hint:

the method used in example 1 will not apply directly because the homogeneity

property exploited there fails to prevail now.)

5 Also see Epstein and Zin (1989) and Weil (1989) for a version of the Rt operator.
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4.6.3. Example 3: costs of business cycles

Robert E. Lucas, Jr., (1987) proposed that the cost of business cycles be mea-

sured in terms of a proportional upward shift in the consumption process that

would be required to make a representative consumer indifferent between its

random consumption allocation and a nonrandom consumption allocation with

the same mean. This measure of business cycles is the fraction Ω that satisfies

E0

∞∑

t=0

βtu [(1 + Ω) ct] =

∞∑

t=0

βtu [E0 (ct)] . (4.6.6)

Suppose that the utility function and the consumption process are as in example

1. Then for given Ω, the calculations in example 1 can be used to calculate the

left side of equation (4.6.6). In particular, the left side just equals u[(1 +

Ω)c0]w(λ), where w(λ) is calculated from equation (4.6.3). To calculate the

right side, we have to evaluate

E0ct = c0
∑

λt,...,λ1

λtλt−1 · · ·λ1π (λt|λt−1)π (λt−1|λt−2) · · ·π (λ1|λ0) , (4.6.7)

where the summation is over all possible paths of growth rates between 0 and

t . In the case of i.i.d. λt , this expression simplifies to

E0ct = c0 (Eλ)
t
, (4.6.8)

where Eλt is the unconditional mean of λ . Under equation (4.6.8), the right

side of equation (4.6.6) is easy to evaluate.

Given γ, π , a procedure for constructing the cost of cycles—more precisely,

the costs of deviations from mean trend—to the representative consumer is first

to compute the right side of equation (4.6.6). Then we solve the following

equation for Ω:

u [(1 + Ω) c0]w (λ0) =
∞∑

t=0

βtu [E0 (ct)] .

Using a closely related but somewhat different stochastic specification, Lu-

cas (1987) calculated Ω. He assumed that the endowment is a geometric trend

with growth rate µ plus an i.i.d. shock with mean zero and variance σ2
z . Starting

from a base µ = µ0 , he found µ, σz pairs to which the household is indifferent,
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assuming various values of γ that he judged to be within a reasonable range.6

Lucas found that for reasonable values of γ , it takes a very small adjustment

in the trend rate of growth µ to compensate for even a substantial increase in

the “cyclical noise” σz , which meant to him that the costs of business cycle

fluctuations are small.

Subsequent researchers have studied how other preference specifications

would affect the calculated costs. Tallarini (1996, 2000) used a version of the

preferences described in example 2 and found larger costs of business cycles

when parameters are calibrated to match data on asset prices. Hansen, Sargent,

and Tallarini (1999) and Alvarez and Jermann (1999) considered local measures

of the cost of business cycles and provided ways to link them to the equity

premium puzzle, to be studied in chapter 14.

4.7. Polynomial approximations

Judd (1998) describes a method for iterating on the Bellman equation using

a polynomial to approximate the value function and a numerical optimizer to

perform the optimization at each iteration. We describe this method in the

context of the Bellman equation for a particular problem that we shall encounter

later.

In chapter 21, we shall study Hopenhayn and Nicolini’s (1997) model of

optimal unemployment insurance. A planner wants to provide incentives to an

unemployed worker to search for a new job while also partially insuring the

worker against bad luck in the search process. The planner seeks to deliver

discounted expected utility V to an unemployed worker at minimum cost while

providing proper incentives to search for work. Hopenhayn and Nicolini show

that the minimum cost C(V ) satisfies the Bellman equation

C (V ) = min
V u

{c+ β [1− p (a)]C (V u)} (4.7.1)

where c, a are given by

c = u−1 [max (0, V + a− β{p (a)V e + [1− p (a)]V u})] . (4.7.2)

6 See chapter 14 for a discussion of reasonable values of γ . See Table 1 of Manuelli and

Sargent (1988) for a correction to Lucas’s calculations.
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and

a = max

{
0,

log [rβ (V e − V u)]

r

}
. (4.7.3)

Here V is a discounted present value that an insurer has promised to an unem-

ployed worker, Vu is a value for next period that the insurer promises the worker

if he remains unemployed, 1− p(a) is the probability of remaining unemployed

if the worker exerts search effort a , and c is the worker’s consumption level.

Hopenhayn and Nicolini assume that p(a) = 1− exp(ra), r > 0.

4.7.1. Recommended computational strategy

To approximate the solution of the Bellman equation (4.7.1), we apply a compu-

tational procedure described by Judd (1996, 1998). The method uses a polyno-

mial to approximate the ith iterate Ci(V ) of C(V ). This polynomial is stored

on the computer in terms of n + 1 coefficients. Then at each iteration, the

Bellman equation is to be solved at a small number m ≥ n + 1 values of V .

This procedure gives values of the ith iterate of the value function Ci(V ) at

those particular V ’s. Then we interpolate (or “connect the dots”) to fill in the

continuous function Ci(V ). Substituting this approximation Ci(V ) for C(V )

in equation (4.7.1), we pass the minimum problem on the right side of equa-

tion (4.7.1) to a numerical minimizer. Programming languages like Matlab and

Gauss have easy-to-use algorithms for minimizing continuous functions of sev-

eral variables. We solve one such numerical problem minimization for each node

value for V . Doing so yields optimized value Ci+1(V ) at those node points. We

then interpolate to build up Ci+1(V ). We iterate on this scheme to convergence.

Before summarizing the algorithm, we provide a brief description of Chebyshev

polynomials.
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4.7.2. Chebyshev polynomials

Where n is a nonnegative integer and x ∈ IR , the nth Chebyshev polynomial,

is

Tn (x) = cos
(
n cos−1 x

)
. (4.7.4)

Given coefficients cj , j = 0, . . . , n , the nth-order Chebyshev polynomial approx-

imator is

Cn (x) = c0 +

n∑

j=1

cjTj (x) . (4.7.5)

We are given a real-valued function f of a single variable x ∈ [−1, 1].

For computational purposes, we want to form an approximator to f of the

form (4.7.5). Note that we can store this approximator simply as the n + 1

coefficients cj , j = 0, . . . , n . To form the approximator, we evaluate f(x) at

n+ 1 carefully chosen points, then use a least-squares formula to form the cj ’s

in equation (4.7.5). Thus, to interpolate a function of a single variable x with

domain x ∈ [−1, 1], Judd (1996, 1998) recommends evaluating the function at

the m ≥ n+ 1 points xk, k = 1, . . . ,m , where

xk = cos

(
2k − 1

2m
π

)
, k = 1, . . . ,m. (4.7.6)

Here xk is the zero of the k th Chebyshev polynomial on [−1, 1]. Given the

m ≥ n+ 1 values of f(xk) for k = 1, . . . ,m , choose the least-squares values of

cj

cj =

∑m
k=1 f (xk)Tj (xk)∑m

k=1 Tj (xk)
2 , j = 0, . . . , n (4.7.7)
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4.7.3. Algorithm: summary

In summary, applied to the Hopenhayn-Nicolini model, the numerical procedure

consists of the following steps:

1. Choose upper and lower bounds for V u , so that V and V u will be under-

stood to reside in the interval [V u, V
u
] . In particular, set V

u
= V e− 1

βp′(0) ,

the bound required to assure positive search effort, computed in chapter 21.

Set V u = Vrmaut .

2. Choose a degree n for the approximator, a Chebyshev polynomial, and a

number m ≥ n+ 1 of nodes or grid points.

3. Generate the m zeros of the Chebyshev polynomial on the set [1,−1], given

by (4.7.6).

4. By a change of scale, transform the zi ’s to corresponding points V uℓ in

[V u, V
u
] .

5. Choose initial values of the n+1 coefficients in the Chebyshev polynomial,

for example, cj = 0, . . . , n . Use these coefficients to define the function

Ci(V
u) for iteration number i = 0.

6. Compute the function C̃i(V ) ≡ c + β[1 − p(a)]Ci(V
u), where c, a are de-

termined as functions of (V, V u) from equations (4.7.2) and (4.7.3). This

computation builds in the functional forms and parameters of u(c) and

p(a), as well as β .

7. For each point V uℓ , use a numerical minimization program to find Ci+1(V
u
ℓ ) =

minV u C̃i(Vu).

8. Using these m values of Cj+1(V
u
ℓ ), compute new values of the coefficients

in the Chebyshev polynomials by using “least squares” [formula (4.7.7)].

Return to step 5 and iterate to convergence.
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4.7.4. Shape-preserving splines

Judd (1998) points out that because they do not preserve concavity, using

Chebyshev polynomials to approximate value functions can cause problems. He

recommends the Schumaker quadratic shape-preserving spline. It ensures that

the objective in the maximization step of iterating on a Bellman equation will

be concave and differentiable (Judd, 1998, p. 441). Using Schumaker splines

avoids the type of internodal oscillations associated with other polynomial ap-

proximation methods. The exact interpolation procedure is described in Judd

(1998, p. 233). A relatively small number of nodes usually is sufficient. Judd

and Solnick (1994) find that this approach outperforms linear interpolation and

discrete-state approximation methods in a deterministic optimal growth prob-

lem.7

4.8. Concluding remarks

This chapter has described two of three standard methods for approximating so-

lutions of dynamic programs numerically: discretizing the state space and using

polynomials to approximate the value function. The next chapter describes the

third method: making the problem have a quadratic return function and linear

transition law. A benefit of making the restrictive linear-quadratic assumptions

is that they make solving a dynamic program easy by exploiting the ease with

which stochastic linear difference equations can be manipulated.

7 The Matlab program schumaker.m (written by Leonardo Rezende of the University of

Illinois) can be used to compute the spline. Use the Matlab command ppval to evaluate the

spline.



Chapter 5
Linear Quadratic Dynamic Programming

5.1. Introduction

This chapter describes the class of dynamic programming problems in which

the return function is quadratic and the transition function is linear. This

specification leads to the widely used optimal linear regulator problem, for which

the Bellman equation can be solved quickly using linear algebra. We consider the

special case in which the return function and transition function are both time

invariant, though the mathematics is almost identical when they are permitted

to be deterministic functions of time.

After studying a recursive formulation and the associated Bellman equa-

tion, in section 5.5 we analyze a Lagrangian formulation that provides useful

insights about how Lagrange multipliers on transition laws relate to gradients

of value functions. These insights help us in chapter 19 when we study how the

methods of this chapter apply to problems in which a Stackelberg leader chooses

a sequence of actions to manipulate future decisions of a collection agents whose

decisions depend on forecasts of the leader’s decisions. In that chapter, we shall

get a sharp characterization of the time inconsistency of a Stackelberg plan.

In section 5.6 we tell how the Kalman filtering problem from chapter 2

relates to the linear-quadratic dynamic programming problem. Suitably rein-

terpreted, formulas that solve the optimal linear regulator are the Kalman filter.

– 129 –
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5.2. The optimal linear regulator problem

The undiscounted optimal linear regulator problem is to maximize over choice

of {ut}∞t=0 the criterion

−
∞∑

t=0

{x′tRxt + u′tQut}, (5.2.1)

subject to xt+1 = Axt + But , x0 given. Here xt is an (n × 1) vector of

state variables, ut is a (k × 1) vector of controls, R is a positive semidefinite

symmetric matrix, Q is a positive definite symmetric matrix, A is an (n × n)

matrix, and B is an (n× k) matrix.

We guess that the value function is quadratic, V (x) = −x′Px , where P is

a positive semidefinite symmetric matrix. Using the transition law to eliminate

next period’s state, the Bellman equation becomes

−x′Px = max
u

{−x′Rx− u′Qu− (Ax+Bu)
′
P (Ax+Bu)}. (5.2.2)

The first-order necessary condition for the maximum problem on the right side

of equation (5.2.2) is1

(Q+B′PB) u = −B′PAx, (5.2.3)

which implies the feedback rule for u :

u = − (Q+B′PB)
−1
B′PAx (5.2.4)

or u = −Fx, where
F = (Q+B′PB)

−1
B′PA. (5.2.5)

Substituting the optimizer (5.2.4) into the right side of equation (5.2.2) and

rearranging gives

P = R+A′PA−A′PB (Q+B′PB)
−1
B′PA. (5.2.6)

Equation (5.2.6) is called the algebraic matrix Riccati equation. It expresses

the matrix P as an implicit function of the matrices R,Q,A,B . Solving this

equation for P requires a computer whenever P is larger than a 2× 2 matrix.

1 We use the following rules for differentiating quadratic and bilinear matrix forms: ∂x′Ax
∂x =

(A+ A′)x; ∂y
′Bz
∂y = Bz, ∂y

′Bz
∂z = B′y . See appendix A of this chapter.



The optimal linear regulator problem 131

In exercise 5.1 , you are asked to derive the Riccati equation for the case

where the return function is modified to

− (x′tRxt + u′tQut + 2u′tHxt) .

5.2.1. Value function iteration

Under particular conditions to be discussed in section 5.4.1 about stability, equa-

tion (5.2.6) has a unique positive semidefinite solution that is approached in the

limit as j → ∞ by iterations on the matrix Riccati difference equation2

Pj+1 = R+A′PjA−A′PjB (Q+B′PjB)
−1
B′PjA, (5.2.7a)

starting from P0 = 0. The policy function associated with Pj is

Fj+1 = (Q+B′PjB)
−1
B′PjA. (5.2.7b)

Equation (5.2.7) is derived much like equation (5.2.6) except that one starts

from the iterative version of the Bellman equation rather than from the asymp-

totic version.

5.2.2. Discounted linear regulator problem

The discounted optimal linear regulator problem is to maximize

−
∞∑

t=0

βt{x′tRxt + u′tQut}, 0 < β < 1, (5.2.8)

subject to xt+1 = Axt + But, x0 given. This problem leads to the following

matrix Riccati difference equation modified for discounting:

Pj+1 = R+ βA′PjA− β2A′PjB (Q+ βB′PjB)
−1
B′PjA. (5.2.9)

The algebraic matrix Riccati equation is modified correspondingly. The value

function for the infinite horizon problem is V (x0) = −x′0Px0 , where P is the

2 If the eigenvalues of A are bounded in modulus below unity, this result obtains, but

much weaker conditions suffice. See Bertsekas (1976, chap. 4) and Sargent (1980).
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limiting value of Pj resulting from iterations on equation (5.2.9) starting from

P0 = 0. The optimal policy is ut = −Fxt , where F = β(Q+ βB′PB)−1B′PA .

The Matlab program olrp.m solves the discounted optimal linear regulator

problem. Matlab has a variety of other programs that solve both discrete- and

continuous-time versions of undiscounted optimal linear regulator problems.

5.2.3. Policy improvement algorithm

The policy improvement algorithm can be applied to solve the discounted opti-

mal linear regulator problem. We discussed aspects of this algorithm earlier in

section 2.4.5.2. Starting from an initial F0 for which the eigenvalues of A−BF0

are less than 1/
√
β in modulus, the algorithm iterates on the two equations

Pj = R+ F ′
jQFj + β (A−BFj)

′ Pj (A−BFj) (5.2.10)

Fj+1 = β (Q+ βB′PjB)
−1
B′PjA. (5.2.11)

The first equation pins down the matrix for the quadratic form in the value func-

tion associated with using a fixed rule Fj forever. The second equation gives the

matrix for the optimal first-period decision rule for a two-period problem with

second-period value function −x∗′Pjx∗ where x∗ is the second-period state.

The first equation is an example of a discrete Lyapunov or Sylvester equation,

which is to be solved for the matrix Pj that determines the value −x′tPjxt that
is associated with following policy Fj forever. The solution of this equation can

be represented in the form

Pj =

∞∑

k=0

βk (A−BFj)
′k (

R+ F ′
jQFj

)
(A−BFj)

k
.

If the eigenvalues of the matrix A − BFj are bounded in modulus by 1/
√
β ,

then a solution of this equation exists. There are several methods available

for solving this equation.3 The Matlab program policyi.m solves the undis-

counted optimal linear regulator problem using policy iteration. This algorithm

is typically much faster than the algorithm that iterates on the matrix Riccati

equation. Later we shall present a third method for solving for P that rests on

the link between P and shadow prices for the state vector.

3 The Matlab programs dlyap.m and doublej.m solve discrete Lyapunov equations. See

Anderson, Hansen, McGrattan, and Sargent (1996).
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5.3. The stochastic optimal linear regulator problem

The stochastic discounted linear optimal regulator problem is to choose a deci-

sion rule for ut to maximize

−E0

∞∑

t=0

βt{x′tRxt + u′tQut}, 0 < β < 1, (5.3.1)

subject to x0 given, and the law of motion

xt+1 = Axt +But + Cǫt+1, t ≥ 0, (5.3.2)

where ǫt+1 is an (n× 1) vector of random variables that is independently and

identically distributed according to the normal distribution with mean vector

zero and covariance matrix

Eǫtǫ
′
t = I. (5.3.3)

(See Kwakernaak and Sivan, 1972, for an extensive study of the continuous-time

version of this problem; also see Chow, 1981.)

The value function for this problem is

v (x) = −x′Px− d, (5.3.4)

where P is the unique positive semidefinite solution of the discounted algebraic

matrix Riccati equation corresponding to equation (5.2.9). As before, it is the

limit of iterations on equation (5.2.9) starting from P0 = 0. The scalar d is

given by

d = β (1− β)
−1

trace (PCC′) . (5.3.5)

Furthermore, the optimal policy continues to be given by ut = −Fxt , where

F = β (Q+ βB′P ′B)
−1
B′PA. (5.3.6)

A notable feature of this solution is:

Certainty Equivalence Principle: The decision rule (5.3.6) that solves

the stochastic optimal linear regulator problem is identical with the decision

rule for the corresponding nonstochastic linear optimal regulator problem.

Proof: Substitute guess (5.3.4) into the Bellman equation to obtain

v (x) = max
u

{
−x′Rx− u′Qu− βE

[
(Ax+Bu+ Cǫ)

′
P (Ax+Bu+ Cǫ)

]
− βd

}
,
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where ǫ is the realization of ǫt+1 when xt = x and where Eǫ|x = 0. The

preceding equation implies

v (x) =max
u

{−x′Rx− u′Qu− βE {x′A′PAx+ x′A′PBu

+ x′A′PCǫ+ u′B′PAx+ u′B′PBu+ u′B′PCǫ

+ ǫ′C′PAx+ ǫ′C′PBu+ ǫ′C′PCǫ} − βd} .

Evaluating the expectations inside the braces and using Eǫ|x = 0 gives

v (x) =max
u

−{x′Rx+ u′Qu+ βx′A′PAx+ β2x′A′PBu

+ βu′B′PBu+ βEǫ′C′PCǫ} − βd.

The first-order condition for u is

(Q+ βB′PB) u = −βB′PAx,

which implies equation (5.3.6). Using Eǫ′C′PCǫ = trace(PCC)′ , substituting

equation (5.3.6) into the preceding expression for v(x), and using equation

(5.3.4) gives

P = R+ βA′PA− β2A′PB (Q+ βB′PB)
−1
B′PA,

and

d = β (1− β)−1 trace (PCC′) .

5.3.1. Discussion of certainty equivalence

The remarkable thing is that, although through d the objective function (5.3.3)

depends on CC′ , the optimal decision rule ut = −Fxt is independent of CC′ .

This is the message of equation (5.3.6) and the discounted algebraic Riccati

equation for P , which are identical with the formulas derived earlier under

certainty. In other words, the optimal decision rule ut = h(xt) is indepen-

dent of the problem’s noise statistics.4 The certainty equivalence principle is

4 Therefore, in linear quadratic versions of the optimum savings problem, there are no

precautionary savings. Compare outcomes from section 2.12 of chapter 2 and chapters 17 and

18.
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a special property of the optimal linear regulator problem and comes from the

quadratic objective function, the linear transition equation, and the property

E(ǫt+1|xt) = 0. Certainty equivalence does not characterize stochastic control

problems generally.

5.4. Shadow prices in the linear regulator

For several purposes,5 it is helpful to interpret the gradient −2Pxt of the value

function −x′tPxt as a shadow price or Lagrange multiplier. Thus, associate

with the Bellman equation the Lagrangian

−x′tPxt = V (xt) = min
µt+1

max
ut,xt+1

−
{
x′tRxt + u′tQut + x′t+1Pxt+1

+ 2µ′
t+1 [Axt +But − xt+1]

}
,

where 2µt+1 is a vector of Lagrange multipliers. The first-order necessary con-

ditions for an optimum with respect to ut and xt+1 are

2Qut + 2B′µt+1 = 0

2Pxt+1 − 2µt+1 = 0.
(5.4.1)

Using the transition law and rearranging gives the usual formula for the optimal

decision rule, namely, ut = −(Q + B′PB)−1B′PAxt . Notice that by (5.4.1),

the shadow price vector satisfies µt+1 = Pxt+1 .

In section 5.5, we shall describe a computational strategy that solves for P

by directly finding the optimal multiplier process {µt} and representing it as

µt = Pxt . This strategy exploits the stability properties of optimal solutions of

the linear regulator problem, which we now briefly take up.

5 In a planning problem in a linear quadratic economy, the gradient of the value function

has information from which competitive equilibrium prices can be coaxed. See Hansen and

Sargent (2013).
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5.4.1. Stability

After substituting the optimal control ut = −Fxt into the law of motion xt+1 =

Axt + But , we obtain the optimal “closed-loop system” xt+1 = (A − BF )xt .

This difference equation governs the evolution of xt under the optimal control.

The system is said to be stable if limt→∞ xt = 0 starting from any initial

x0 ∈ Rn . Assume that the eigenvalues of (A − BF ) are distinct, and use

the eigenvalue decomposition (A − BF ) = DΛD−1 where the columns of D

are the eigenvectors of (A − BF ) and Λ is a diagonal matrix of eigenvalues of

(A−BF ). Write the “closed-loop” equation as xt+1 = DΛD−1xt . The solution

of this difference equation for t > 0 is readily verified by repeated substitution

to be xt = DΛtD−1x0 . Evidently, the system is stable for all x0 ∈ Rn if and

only if the eigenvalues of (A − BF ) are all strictly less than unity in absolute

value. When this condition is met, (A−BF ) is said to be a “stable matrix.”6

A vast literature is devoted to characterizing the conditions on A,B,R , and

Q that imply that F is such that the optimal closed-loop system matrix (A −
BF ) is stable. These conditions are surveyed by Anderson, Hansen, McGrattan,

and Sargent (1996) and can be briefly described here for the undiscounted case

β = 1. Roughly speaking, the conditions on A,B,R , and Q are as follows:

First, A and B must be such that it is possible to pick a control law ut = −Fxt
that drives xt to zero eventually, starting from any x0 ∈ Rn [“the pair (A,B)

must be stabilizable”]. Second, the matrix R must be such that it is desirable

to drive xt to zero as t→ ∞ .

It would take us too far afield to go deeply into this body of theory, but

we can give a flavor of the results by considering the following special assump-

tions and their implications. Similar results can obtain under weaker conditions

relevant for economic problems.7

Assumption A.1: The matrix R is positive definite.

There immediately follows:

Proposition 1: Under assumption A.1, if a solution to the undiscounted reg-

ulator exists, it satisfies limt→∞ xt = 0.

6 It is possible to amend the statements about stability in this section to permit A−BF

to have a single unit eigenvalue associated with a constant in the state vector. See chapter 2

for examples.
7 See Kwakernaak and Sivan (1972) and Anderson, Hansen, McGrattan, and Sargent

(1996) for much weaker conditions.
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Proof: If xt 6→ 0, then
∑∞

t=0 x
′
tRxt → ∞ .

Assumption A.2: The matrix R is positive semidefinite.

Under assumption A.2, R is similar to a triangular matrix R∗ :

R = T ′

(
R∗

11 0

0 0

)
T

where R∗
11 is positive definite and T is nonsingular. Notice that x′tRxt =

x∗1tR
∗
11x

∗
1t where x∗t = Txt =

(
T1

T2

)
xt =

(
x∗1t
x∗2t

)
. Let x∗1t ≡ T1xt . These

calculations support:

Proposition 2: Suppose that a solution to the optimal linear regulator exists

under assumption A.2. Then limt→∞ x∗1t = 0.

The following definition is used in control theory:

Definition: The pair (A,B) is said to be stabilizable if there exists a matrix

F for which (A−BF ) is a stable matrix.

The following indicates the flavor of a variety of stability theorems from

control theory:8 , 9

Theorem: If (A,B) is stabilizable and R is positive definite, then under the

optimal rule F , (A−BF ) is a stable matrix.

In the next section, we assume that A,B,Q,R satisfy conditions sufficient

to invoke such a stability proposition, and we use that assumption to justify

a solution method that solves the undiscounted linear regulator by searching

among the many solutions of the Euler equations for a stable solution.

8 These conditions are discussed under the subjects of controllability, stabilizability, recon-

structability, and detectability in the literature on linear optimal control. (For continuous-time

linear system, these concepts are described by Kwakernaak and Sivan, 1972; for discrete-time

systems, see Sargent, 1980.) These conditions subsume and generalize the transversality con-

ditions used in the discrete-time calculus of variations (see Sargent, 1987a). That is, the

case when (A − BF ) is stable corresponds to the situation in which it is optimal to solve

“stable roots backward and unstable roots forward.” See Sargent (1987a, chap. 9). Hansen

and Sargent (1981) describe the relationship between Euler equation methods and dynamic

programming for a class of linear optimal control systems. Also see Chow (1981).
9 The conditions under which (A− BF ) is stable are also the conditions under which xt

converges to a unique stationary distribution in the stochastic version of the linear regulator

problem.
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5.5. A Lagrangian formulation

This section describes a Lagrangian formulation of the optimal linear regula-

tor.10 Besides being useful computationally, this formulation carries insights

about connections between stability and optimality and also opens the way to

constructing solutions of dynamic systems not coming directly from an intertem-

poral optimization problem.11 The formulation is also the basis for constructing

fast algorithms for solving Riccati equations.

For the undiscounted optimal linear regulator problem, form the Lagrangian

L = −
∞∑

t=0

{
x′tRxt + u′tQut

+ 2µ′
t+1 [Axt +But − xt+1]

}
.

(5.5.1)

First-order conditions for maximization with respect to {ut, xt+1}∞t=0 are

2Qut + 2B′µt+1 = 0 , t ≥ 0

µt = Rxt +A′µt+1 , t ≥ 1.
(5.5.2)

Define µ0 to be the vector of shadow prices of x0 and apply an envelope con-

dition to (5.5.1) to deduce that

µ0 = Rx0 +A′µ1,

which is a time t = 0 counterpart to the second equation of system (5.5.1).

Recall from the second equation of (5.4.1) that µt+1 = Pxt+1 , where P is the

matrix that solves the algebraic Riccati equation. Thus, µt is the gradient of

the value function. The Lagrange multiplier vector µt is often called the costate

vector corresponding to the state vector xt . Solve the first equation of (5.5.2)

for ut in terms of µt+1 ; substitute into the law of motion xt+1 = Axt + But ;

arrange the resulting equation and the second equation of (5.5.2) into the form

L

(
xt+1

µt+1

)
= N

(
xt

µt

)
, t ≥ 0,

10 Such formulations are recommended by Chow (1997) and Anderson, Hansen, McGrattan,

and Sargent (1996).
11 Blanchard and Kahn (1980); Whiteman (1983); Hansen, Epple, and Roberds (1985); and

Anderson, Hansen, McGrattan and Sargent (1996) use and extend such methods.
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where

L =

(
I BQ−1B′

0 A′

)
, N =

(
A 0

−R I

)
.

When L is of full rank (i.e., when A is of full rank), we can write this system

as (
xt+1

µt+1

)
=M

(
xt

µt

)
(5.5.3)

where

M ≡ L−1N =

(
A+ BQ−1B′A′−1R −BQ−1B′A′−1

−A′−1R A′−1

)
. (5.5.4)

We seek to solve the difference equation system (5.5.3) for a sequence

{xt}∞t=0 that satisfies the initial condition for x0 and a terminal condition

limt→+∞ xt = 0 that expresses our wish for a stable solution. We inherit our

wish for stability of the {xt} sequence from a desire to maximize −∑∞
t=0

[
x′tRxt+

u′tQut
]
, which requires that x′tRxt converge to zero.

To proceed, we study properties of the (2n× 2n) matrix M . It is helpful

to introduce a (2n× 2n) matrix

J =

(
0 −In
In 0

)
.

The rank of J is 2n .

Definition: A matrix M is called symplectic if

MJM ′ = J. (5.5.5)

It can be verified directly that M in equation (5.5.4) is symplectic.

It follows from equation (5.5.5) and from the fact J−1 = J ′ = −J that for

any symplectic matrix M ,

M ′ = J−1M−1J. (5.5.6)

Equation (5.5.6) states that M ′ is related to the inverse of M by a similar-

ity transformation. For square matrices, recall that (a) similar matrices share

eigenvalues; (b) the eigenvalues of the inverse of a matrix are the inverses of

the eigenvalues of the matrix; and (c) a matrix and its transpose have the same
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eigenvalues. It then follows from equation (5.5.6) that the eigenvalues of M

occur in reciprocal pairs: if λ is an eigenvalue of M , so is λ−1 .

Write equation (5.5.3) as

yt+1 =Myt (5.5.7)

where yt =

(
xt

µt

)
. Consider the following triangularization of M

V −1MV =

(
W11 W12

0 W22

)

where each block on the right side is (n × n), where V is nonsingular, and

where W22 has all its eigenvalues exceeding 1 in modulus and W11 has all of its

eigenvalues less than 1 in modulus. The Schur decomposition and the eigenvalue

decomposition are two such decompositions.12 Write equation (5.5.7) as

yt+1 = VWV −1yt. (5.5.8)

The solution of equation (5.5.8) for arbitrary initial condition y0 is evidently

yt = V

[
W t

11 W12,t

0 W t
22

]
V −1y0 (5.5.9)

where W12,t =W12 for t = 1 and for t ≥ 2 obeys the recursion

W12,t =W t−1
11 W12,t−1 +W12,t−1W

t−1
22

and where W t
ii is Wii raised to the tth power.

Write equation (5.5.9) as

(
y∗1t
y∗2t

)
=

[
W t

11 W12,t

0 W t
22

] (
y∗10
y∗20

)

where y∗t = V −1yt , and in particular where

y∗2t = V 21xt + V 22µt, (5.5.10)

12 Evan Anderson’s Matlab program schurg.m attains a convenient Schur decomposition

and is very useful for solving linear models with distortions. See McGrattan (1994) for exam-

ples of distorted economies whose equilibria can be computed using a Schur decomposition.
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and where V ij denotes the (i, j) piece of the partitioned V −1 matrix.

Because W22 is an unstable matrix, unless y∗20 = 0, y∗t will diverge. Let

V ij denote the (i, j) piece of the partitioned V −1 matrix. To attain stability,

we must impose y∗20 = 0, which from equation (5.5.10) implies

V 21x0 + V 22µ0 = 0

or

µ0 = −
(
V 22

)−1
V 21x0.

This equation replicates itself over time in the sense that it implies

µt = −
(
V 22

)−1
V 21xt. (5.5.11)

But notice that because (V 21 V 22) is the second row block of the inverse of V,

(
V 21 V 22

) (
V11

V21

)
= 0

which implies

V 21V11 + V 22V21 = 0.

Therefore,

−
(
V 22

)−1
V 21 = V21V

−1
11 .

So we can write

µ0 = V21V
−1
11 x0 (5.5.12)

and

µt = V21V
−1
11 xt.

However, we know from equations (5.4.1) that µt = Pxt , where P occurs in the

matrix that solves the Riccati equation (5.2.6). Thus, the preceding argument

establishes that

P = V21V
−1
11 . (5.5.13)

This formula provides us with an alternative, and typically computationally very

efficient, way of computing the matrix P .

This same method can be applied to compute the solution of any system of

the form (5.5.3) if a solution exists, even if the eigenvalues of M fail to occur in

reciprocal pairs. The method will typically work so long as the eigenvalues of M
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split half inside and half outside the unit circle.13 Systems in which eigenvalues

(properly adjusted for discounting) fail to occur in reciprocal pairs arise when the

system being solved is an equilibrium of a model in which there are distortions

that prevent there being any optimum problem that the equilibrium solves.

See Woodford (1999) for an application of such methods to solve for linear

approximations of equilibria of a monetary model with distortions. See chapter

11 for some applications to an economy with distorting taxes.

5.6. The Kalman filter again

Suitably reinterpreted, the same recursion (5.2.7) that solves the optimal linear

regulator also determines the celebrated Kalman filter that we derived in section

2.7 of chapter 2. Recall that the Kalman filter is a recursive algorithm for

computing the mathematical expectation E[xt|yt−1, . . . , y0] of a hidden state

vector xt , conditional on observing a history yt, . . . , y0 of a vector of noisy

signals on the hidden state. The Kalman filter can be used to formulate or

simplify a variety of signal-extraction and prediction problems in economics.

We briefly remind the reader that the setting for the Kalman filter is the

following linear state-space system.14 Given x0 ∼ N (x̂0,Σ0), let

xt+1 = Axt + Cwt+1 (5.6.1a)

yt = Gxt + vt (5.6.1b)

where xt is an (n × 1) state vector, wt is an i.i.d. sequence Gaussian vector

with Ewtw
′
t = I , and vt is an i.i.d. Gaussian vector orthogonal to ws for all

t, s with Evtv
′
t = R ; and A,C , and G are matrices conformable to the vectors

they multiply. Assume that the initial condition x0 is unobserved but is known

to have a Gaussian distribution with mean x̂0 and covariance matrix Σ0 . At

time t , the history of observations yt ≡ [yt, . . . , y0] is available to estimate

the location of xt and the location of xt+1 . The Kalman filter is a recursive

algorithm for computing x̂t+1 = E[xt+1|yt] . The algorithm is

x̂t+1 = (A−KtG) x̂t +Ktyt (5.6.2)

13 See Whiteman (1983); Blanchard and Kahn (1980); and Anderson, Hansen, McGrattan,

and Sargent (1996) for applications and developments of these methods.
14 We derived the Kalman filter as a recursive application of population regression in chapter

2, page 57.
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where

Kt = AΣtG
′ (GΣtG

′ +R)
−1

(5.6.3a)

Σt+1 = AΣtA
′ + CC′ −AΣtG

′ (GΣtG
′ +R)

−1
GΣtA. (5.6.3b)

Here Σt = E(xt − x̂t)(xt − x̂t)
′ , and Kt is called the Kalman gain. Sometimes

the Kalman filter is written in terms of the “innovation representation”

x̂t+1 = Ax̂t +Ktat (5.6.4a)

yt = Gx̂t + at (5.6.4b)

where at ≡ yt − Gx̂t ≡ yt − E[yt|yt−1] . The random vector at is called the

innovation in yt , being the part of yt that cannot be forecast linearly from its

own past. Subtracting equation (5.6.4b) from (5.6.1b) gives at = G(xt−x̂t)+vt ;
multiplying each side by its own transpose and taking expectations gives the

following formula for the innovation covariance matrix:

Eata
′
t = GΣtG

′ +R. (5.6.5)

Equations (5.6.3) display extensive similarities to equations (5.2.7), the

recursions for the optimal linear regulator. Indeed, the mathematical structures

are identical when viewed properly. Note that equation (5.6.3b) is a Riccati

equation. With the judicious use of matrix transposition and reversal of time,

the two systems of equations (5.6.3) and (5.2.7) can be made to match.15 See

chapter 2, especially section 2.10, for some applications of the Kalman filter.16

15 See Hansen and Sargent (ch. 4, 2008) for an account of how the LQ dynamic programming

problem and the Kalman filter are connected through duality. That chapter formulates the

Kalman filtering problem in terms of a Lagrangian, then judiciously transforms the first-order

conditions into an associated optimal linear regulator.
16 The Matlab program kfilter.m computes the Kalman filter. Matlab has several pro-

grams that compute the Kalman filter for discrete time and continuous time models.
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5.7. Concluding remarks

In exchange for their restrictions, the linear quadratic dynamic optimization

problems of this chapter acquire tractability. The Bellman equation leads to

Riccati difference equations that are so easy to solve numerically that the curse

of dimensionality loses most of its force. It is easy to solve linear quadratic

control or filtering with many state variables. That it is difficult to solve those

problems otherwise is why linear quadratic approximations are widely used.

In chapter 7, we go beyond the single-agent optimization problems of this

chapter to study systems with multiple agents who simultaneously solve lin-

ear quadratic dynamic programming problems, with the decision rules of some

agents influencing transition laws of variables appearing in other agents’ decision

problems. We introduce two related equilibrium concepts to reconcile different

agents’ decisions.

A. Matrix formulas

Let (z, x, a) each be n× 1 vectors, A,C,D , and V each be (n× n) matrices,

B an (m× n) matrix, and y an (m× 1) vector. Then ∂a′x
∂x = a, ∂x

′Ax
∂x = (A+

A′)x, ∂
2(x′Ax)
∂x∂x′ = (A+A′), ∂x

′Ax
∂A = xx′, ∂y

′Bz
∂y = Bz, ∂y

′Bz
∂z = B′y, ∂y

′Bz
∂B = yz′.

The equation

A′V A+ C = V

to be solved for V is called a discrete Lyapunov equation, and its generalization

A′V D + C = V

is called the discrete Sylvester equation. The discrete Sylvester equation has a

unique solution if and only if the eigenvalues {λi} of A and {δj} of D satisfy

the condition λiδj 6= 1 ∀ i, j.
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Exercises

Exercise 5.1 Consider the modified version of the optimal linear regulator

problem where the objective is to maximize

−
∞∑

t=0

βt {x′tRxt + u′tQut + 2u′tHxt}

subject to the law of motion:

xt+1 = Axt +But.

Here xt is an n × 1 state vector, ut is a k × 1 vector of controls, and x0 is a

given initial condition. The matrices R,Q are positive definite and symmetric.

The maximization is with respect to sequences {ut, xt}∞t=0 .

a. Show that the optimal policy has the form

ut = − (Q+ βB′PB)
−1

(βB′PA+H)xt,

where P solves the algebraic matrix Riccati equation

P = R+ βA′PA− (βA′PB +H ′) (Q+ βB′PB)
−1

(βB′PA+H) . (1)

b. Write a Matlab program to solve equation (1) by iterating on P starting

from P being a matrix of zeros.

Exercise 5.2 Verify that equations (5.2.10) and (5.2.11) implement the policy

improvement algorithm for the discounted linear regulator problem.

Exercise 5.3 A household chooses {ct, at+1}∞t=0 to maximize

−
∞∑

t=0

βt
{
(ct − b)2 + γi2t

}

subject to

ct + it = rat + yt

at+1 = at + it

yt+1 = ρ1yt + ρ2yt−1.
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Here ct, it, at, yt are the household’s consumption, investment, asset holdings,

and exogenous labor income at t ; while b > 0, γ > 0, r > 0, β ∈ (0, 1), and

ρ1, ρ2 are parameters, and a0, y0, y−1 are initial conditions. Assume that ρ1, ρ2

are such that (1− ρ1z − ρ2z
2) = 0 implies |z| > 1.

a. Map this problem into an optimal linear regulator problem.

b. For parameter values [β, (1 + r), b, γ, ρ1, ρ2] = (.95, .95−1, 30, 1, 1.2,−.3),
compute the household’s optimal policy function using your Matlab program

from exercise 5.1 .

Exercise 5.4 Modify exercise 5.3 by assuming that the household seeks to

maximize

−
∞∑

t=0

βt
{
(st − b)2 + γi2t

}

Here st measures consumption services that are produced by durables or habits

according to

st = λht + πct

ht+1 = δht + θct

where ht is the stock of the durable good or habit, (λ, π, δ, θ) are parameters,

and h0 is an initial condition.

a. Map this problem into a linear regulator problem.

b. For the same parameter values as in exercise 5.3 and (λ, π, δ, θ) = (1, .05, .95, 1),

compute the optimal policy for the household.

c. For the same parameter values as in exercise 5.3 and (λ, π, δ, θ) = (−1, 1, .95, 1),

compute the optimal policy.

d. Interpret the parameter settings in part b as capturing a model of durable

consumption goods, and the settings in part c as giving a model of habit per-

sistence.

Exercise 5.5 A household’s labor income follows the stochastic process

yt+1 = ρ1yt + ρ2yt−1 + wt+1 + γwt,
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where wt+1 is a Gaussian martingale difference sequence with unit variance.

Calculate

E
∞∑

j=0

βj
[
yt+j|yt, wt

]
, (1)

where yt, wt denotes the history of y, w up to t .

a. Write a Matlab program to compute expression (1).

b. Use your program to evaluate expression (1) for the parameter values

(β, ρ1, ρ2, γ) = (.95, 1.2,−.4, .5).

Exercise 5.6 Finding the state is an art

For t ≥ 0, the endowment for a one-good economy dt is governed by the second

order stochastic difference equation

dt+1 = ρ0 + ρ1dt + ρ2dt−1 + σdǫt+1

where ǫt+1 is an i.i.d. process and ǫt+1 ∼ N (0, 1), ρ0, ρ1 , and ρ2 are scalars,

and d0, d1 are given initial conditions. A stochastic discount factor is given by

st = βt(b0 − b1dt), where b0 is a positive scalar, b1 ≥ 0, and β ∈ (0, 1). The

value of the endowment at time 0 is defined to be

(1) v0 = E0

∞∑

t=0

stdt

and E0 is the mathematical expectation operator conditioned on d0, d−1 .

a. Assume that v0 in equation (1) is finite. Carefully describe a recursive

algorithm for computing v0 .

b. Describe conditions on β, ρ1, ρ2 that are sufficient to make v0 finite.

Exercise 5.7 Dynamic Laffer curves

The demand for currency in a small country is described by

(1) Mt/pt = γ1 − γ2pt+1/pt,

where γ1 > γ2 > 0, Mt is the stock of currency held by the public at the

end of period t , and pt is the price level at time t . There is no randomness

in the country, so that there is perfect foresight. Equation (1) is a Cagan-like



148 Linear Quadratic Dynamic Programming

demand function for currency, expressing real balances as an inverse function of

the expected gross rate of inflation.

Speaking of Cagan, the government is running a permanent real deficit of

g per period, measured in goods, all of which it finances by currency creation.

The government’s budget constraint at t is

(2) (Mt −Mt−1) /pt = g,

where the left side is the real value of the new currency printed at time t . The

economy starts at time t = 0, with the initial level of nominal currency stock

M−1 = 100 being given.

For this model, define an equilibrium as a pair of positive sequences {pt >
0,Mt > 0}∞t=0 that satisfy equations (1) and (2) (portfolio balance and the

government budget constraint, respectively) for t ≥ 0, and the initial condition

assigned for M−1 .

a. Let γ1 = 100, γ2 = 50, g = .05. Write a computer program to compute

equilibria for this economy. Describe your approach and display the program.

b. Argue that there exists a continuum of equilibria. Find the lowest value of

the initial price level p0 for which there exists an equilibrium. (Hint 1: Notice

the positivity condition that is part of the definition of equilibrium. Hint 2: Try

using the general approach to solving difference equations described in section

5.5.)

c. Show that for all of these equilibria except the one that is associated with the

minimal p0 that you calculated in part b, the gross inflation rate and the gross

money creation rate both eventually converge to the same value. Compute this

value.

d. Show that there is a unique equilibrium with a lower inflation rate than the

one that you computed in part b. Compute this inflation rate.

e. Increase the level of g to .075. Compare the (eventual or asymptotic) infla-

tion rate that you computed in part b and the inflation rate that you computed

in part c. Are your results consistent with the view that “larger permanent

deficits cause larger inflation rates”?

f. Discuss your results from the standpoint of the Laffer curve.

Hint: A Matlab program dlqrmon.m performs the calculations. It is available

from the web site for the book.
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Exercise 5.8 A government faces an exogenous stream of government expen-

ditures {gt} that it must finance. Total government expenditures at t consist

of two components:

(1) gt = gTt + gPt

where gTt is transitory expenditures and gPt is permanent expenditures. At

the beginning of period t , the government observes the history up to t of both

gTt and gPt . Further, it knows the stochastic laws of motion of both, namely,

(2)
gPt+1 = gPt + c1ǫ1,t+1

gTt+1 = (1− ρ)µT + ρgTt + c2ǫ2t+1

where ǫt+1 =

[
ǫ1t+1

ǫ2t+1

]
is an i.i.d. Gaussian vector process with mean zero and

identity covariance matrix. The government finances its budget with a distorting

taxes. If it collects Tt total revenues at t , it bears a dead weight loss of W (Tt)

where W (T ) = w1Tt + .5w2T
2
t , where w1, w2 > 0. The government’s loss

functional is

(3) E

∞∑

t=0

βtW (Tt) , β ∈ (0, 1) .

The government can purchase or issue one-period risk-free loans at a constant

price q . Therefore, it faces a sequence of budget constraints

(4) gt + qbt+1 = Tt + bt,

where q−1 is the gross rate of return on one-period risk-free government loans.

Assume that b0 = 0. The government also faces the terminal value condition

lim
t→+∞

βtW ′ (Tt) bt+1 = 0,

which prevents it from running a Ponzi scheme. The government wants to design

a tax collection strategy expressing Tt as a function of the history of gTt, gPt, bt

that minimizes (3) subject to (1), (2), and (4).

a. Formulate the government’s problem as a dynamic programming problem.

Please carefully define the state and control for this problem. Write the Bellman

equation in as much detail as you can. Tell a computational strategy for solving
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the Bellman equation. Tell the forms of the optimal value function and the

optimal decision rule.

b. Using objects that you computed in part a, please state the form of the law

of motion for the joint process of gTt, gPt, Tt, bt+1 under the optimal government

policy.

Some background: Assume now that the optimal tax rule that you computed

above has been in place for a very long time. A macroeconomist who is studying

the economy observes time series on gt, Tt , but not on bt or the breakdown of gt

into its components gTt, gPt . The macroeconomist has a very long time series

for [gt, Tt] and proceeds to compute a vector autoregression for this vector.

c. Define a population vector autoregression for the [gt, Tt] process. (Feel free

to assume that lag lengths are infinite if this simplifies your answer.)

d. Please tell precisely how the vector autoregression for [gt, Tt] depends on

the parameters [ρ, β, µ, q, w1, w2, c1, c2] that determine the joint [gt, Tt] process

according to the economic theory you used in part a.

e. Now suppose that in addition to his observations on [Tt, gt ], the economist

gets an error-ridden time series on government debt bt :

b̃t = bt + c3w3t+1

where w3t+1 is an i.i.d. scalar Gaussian process with mean zero and unit variance

that is orthogonal to wis+1 for i = 1, 2 for all s and t . Please tell how the vector

autoregression for [gt, Tt, b̃t] is related to the parameters [ρ, β, µ, q, w1, w2, c1, c2, c3] .

Is there any way to use the vector autoregression to make inferences about those

parameters?

Exercise 5.9

A planner chooses a contingency plan for {ct, kt+1}∞t=0 to maximize

−.5E0

∞∑

t=0

βt
[
(ct − bt)

2 + ei2t

]

subject to the technology

ct + it = γkt + dt

kt+1 = (1− δ) kt + it,
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the laws of motion for the exogenous shock processes

bt+1 = µb (1− ρb) + ρbbt + σbǫb,t+1

dt+1 = µd (1− ρd) + ρddt + σdǫd,t+1,

and given initial conditions k0, b0, d0 . Here kt is physical capital, ct is con-

sumption, bt is a scalar stochastic process for bliss consumption, and dt is

an exogenous endowment process, β ∈ (0, 1), e > 0, δ ∈ (0, 1), ρb ∈ (0, 1),

ρd ∈ (0, 1), and the adjustment cost parameter e > 0. Also,

[
ǫb,t+1

ǫd,t+1

]
is an

i.i.d. process that is distributed ∼ N (0, I). We assume that βγ(1 − δ) = 1, a

condition that Hall and Friedman imposed to form permanent income models

of consumption. For convenience, group all parameters into the vector

θ = [β δ γ e µb µd ρb ρd σb σd ] .

Part I. Assume that the planner knows all parameters of the model. At time

t , the planner observes the history of ds, bs, ks for s ≤ t .

a. Formulate the planning problem as a discounted dynamic programming prob-

lem.

b. Use the Bellman equation for the planning problem to describe the effects

on the decision rule for ct and kt+1 of an increase in σb . Tell the effects of an

increase in σd .

c. Describe an algorithm to solve the Bellman equation.

Part II. An econometrician observes a time series {ct, it}Tt=0 for the economy

described in part I. (This economy is either a socialist economy with a benevolent

planner or a competitive economy with complete markets.) The econometrician

does not observe bt, dt, kt for any t but believes that


k0

b0

d0


 ∼ N (µ0,Σ0) .

The econometrician knows the value of β but not the remaining parameters in

θ .

a. Describe as completely as you can how the econometrician can form max-

imum likelihood estimates of the remaining parameters in θ given his sample

{ct, it}Tt=0 . If possible, find a recursive representation of the likelihood function.
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b. Suppose that the econometrician has a Bayesian prior distribution over the

unknown parameters in θ . Please describe an algorithm for constructing the

Bayesian posterior distribution for these parameters.

Exercise 5.10

A consumer values consumption, asset streams {ct, kt+1}∞t=0 according to

(1) −.5E0

∞∑

t=0

βt (ct − b)2

where β ∈ (0, 1) and

kt+1 = R (kt + yt − ct)

yt+1 = µy (1− ρ1 − ρ2) + ρ1yt + ρ2yt−1 + σyǫt+1

ct = αyt + (R− 1) kt, α ∈ (0, 1)

and k0, y0, y−1 are given initial conditions, and ǫt+1 is an i.i.d. shock with

ǫt+1 ∼ N (0, 1).

a. Tell how to compute the value of the objective function (1) under the pre-

scribed decision rule for ct . In particular, write a Bellman equation and get as

far as you can in solving it.

b. Tell how to use the Howard policy improvement algorithm to get a better

decision rule.

Exercise 5.11 Firm level adjustment costs

A competitive firms sells output yt at price pt and chooses a production plan

to maximize

(1)

∞∑

t=0

βtRt

where

(2) Rt = ptyt − .5d (yt+1 − yt)
2

subject to y0 being a given initial condition. Here β ∈ (0, 1) is a discount factor,

and d > 0 measures a cost of adjusting the rate of output. The firm is a price

taker. The price pt lies on the demand curve

(3) pt = A0 −A1Yt
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where A0 > 0, A1 > 0 and Yt is the market-wide level of output, being the

sum of output of n identical firms. The firm believes that market-wide output

follows the law of motion

(4) Yt+1 = H0 +H1Yt

where Y0 is a known initial condition. The firm observes Yt and yt at time t

when it chooses yt+1 .

a. Formulate a Bellman equation for the firm.

b. For parameter values β = .95, d = 2, A0 = 100, A1 = 1, H0 = 200, H1 = .8,

compute the firm’s optimal value function and optimal decision rule.

Exercise 5.12 Firm level adjustment cost, II

A competitive firms sells output yt at price pt and chooses a production plan

to maximize

(1) E0

∞∑

t=0

βtRt

where E0 denotes a mathematical expectation conditional on time 0 informa-

tion,

(2) Rt = ptyt − .5d (yt+1 − yt)
2

subject to y0 being a given initial condition. Here β ∈ (0, 1) is a discount factor,

and d > 0 measures a cost of adjusting the rate of output. The firm is a price

taker. The price pt lies on the demand curve

(3) pt = A0 −A1Yt + ut

where A0 > 0, A1 > 0 and Yt is the market-wide level of output, being the sum

of output of n identical firms. In (3), ut is a demand shock that follows the

first-order autoregressive process

(4) ut+1 = ρut + σuǫt+1

where ǫt+1 is an i.i.d. scalar process with ǫt+1 ∼ N (0, 1) and |ρ| < 1. The firm

believes that market-wide output follows the law of motion

(5) Yt+1 = H0 +H1Yt +H2ut
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where Y0 is a known initial condition. The firm observes Pt, Yt , and yt at time

t when it chooses yt+1 .

a. Formulate a Bellman equation for the firm.

b. For parameter values β = .95, d = 2, A0 = 100, A1 = 1, H0 = 200, H1 =

.8, H2 = 2, ρ = .9, σu = .05, compute the firm’s optimal value function and

optimal decision rule.

Exercise 5.13 Permanent income model

A household chooses a process {ct, at+1}∞t=0 to maximize

E0

∞∑

t=0

βt{−.5 (ct − b)
2 − .5ǫa2t}, β ∈ (0, 1)

subject to

at+1 + ct = Rat + yt

yt+1 = (1− ρ1 − ρ2) + ρ1yt + ρ2yt−1 + σyǫt+1

where ct is consumption, b > 0 is a bliss level of consumption, at is financial

assets at the beginning of t , R = β−1 is the gross rate of return on assets held

from t to t + 1, and ǫt+1 is an i.i.d. scalar process with ǫt+] ∼ N (0, 1). The

household faces known initial conditions a0, y0, y−1 .

a. Write a Bellman equation for the household’s problem.

b. Compute the household’s value function and optimal decision rule for the fol-

lowing parameter values: b = 1000, β = .95, R = β−1, ρ1 = 1.2, ρ2 = −.4, σy =

.05, ǫ = .000001.

c. Compute the eigenvalues of A−BF .

d. Compute the household’s value function and optimal decision rule for the fol-

lowing parameter values: b = 1000, β = .95, R = β−1, ρ1 = 1.2, ρ2 = −.4, σy =

.05, ǫ = 0. Compare what you obtain with your answers in part b.

Exercise 5.14 Permanent income model again

A household chooses a process {ct, at+1}∞t=0 to maximize

E0

∞∑

t=0

βt{−.5 (ct − b)
2 − .5ǫa2t}, β ∈ (0, 1)
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subject to

at+1 + ct = Rat + yt

yt+1 = (1− ρ1 − ρ2) + ρ1yt + ρ2yt−3 + σyǫt+1

where ct is consumption, b > 0 is a bliss level of consumption, at is financial

assets at the beginning of t , R = β−1 is the gross rate of return on assets held

from t to t + 1, and ǫt+1 is an i.i.d. scalar process with ǫt+1 ∼ N (0, 1). The

household faces known initial conditions a0, y0, y−1, y−2, y−3 .

a. Write a Bellman equation for the household’s problem.

b. Compute the household’s value function and optimal decision rule for the

following parameter values: b = 1000, β = .95, R = β−1, ρ1 = .55, ρ2 = .3, σy =

.05, ǫ = .000001.

c. Compute the eigenvalues of A−BF .

d. Compute the household’s value function and optimal decision rule for the

following parameter values: b = 1000, β = .95, R = β−1, ρ1 = .55, ρ2 = .3, σy =

.05, ǫ = 0. Compare what you obtain with your answers in part b.





Chapter 6
Search and Unemployment

6.1. Introduction

This chapter applies dynamic programming to a choice between two actions,

to accept or reject a take-it-or-leave-it job offer. An unemployed worker faces a

probability distribution of wage offers or job characteristics from which a limited

number of offers are drawn each period. Given his perception of the probability

distribution of offers, the worker must devise a strategy for deciding when to

accept an offer.

The theory of search is a tool for studying unemployment. Search theory

puts unemployed workers in a setting where they sometimes choose to reject

available offers and to remain unemployed now because they prefer to wait

for better offers later. We use the theory to study how workers respond to

variations in the rate of unemployment compensation, the perceived riskiness

of wage distributions, the probability of being fired, the quality of information

about jobs, and the frequency with which a wage distribution can be sampled.

This chapter provides an introduction to the techniques used in the search

literature and a sampling of search models. The chapter studies ideas intro-

duced in two important papers by McCall (1970) and Jovanovic (1979a). These

papers differ in the search technologies with which they confront an unemployed

worker.1 We also study a related model of occupational choice by Neal (1999).

We hope to convey some of the excitement that Robert E. Lucas, Jr. (1987,

p.57) expressed when he wrote this about the McCall search model: “Question-

ing a McCall worker is like having a conversation with an out-of-work friend:

‘Maybe you are setting your sights too high’ or ‘Why did you quit your old job

before you had a new one lined up?’ This is real social science: an attempt to

model, to understand , human behavior by visualizing the situations people find

1 Stigler’s (1961) important early paper studied a search technology different from both

McCall’s and Jovanovic’s. In Stigler’s model, an unemployed worker has to choose in advance

a number n of offers to draw, from which he takes the highest wage offer. Stigler’s formulation

of the search problem was not sequential.

– 157 –
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themselves in, the options they face and the pros and cons as they themselves

see them.” The modifications of the basic McCall model by Jovanovic, Neal,

and in the various sections and exercises of this chapter all come from visualizing

aspects of the situations in which workers find themselves.

6.2. Preliminaries

This section describes elementary properties of probability distributions that

are used extensively in search theory.

6.2.1. Nonnegative random variables

We begin with some properties of nonnegative random variables that possess

finite first moments. Consider a random variable p with a cumulative probability

distribution function F (P ) defined by Prob{p ≤ P} = F (P ). We assume that

F (0) = 0, that is, that p is nonnegative. We assume that F , a nondecreasing

function, is continuous from the right. We also assume that there is an upper

bound B <∞ such that F (B) = 1, so that p is bounded with probability 1.

The mean of p , Ep , is defined by

Ep =

∫ B

0

p dF (p) . (6.2.1)

Let u = 1−F (p) and v = p and use the integration-by-parts formula
∫ b
a
u dv =

uv
∣∣∣
b

a
−
∫ b
a
v du, to verify that

∫ B

0

[1− F (p)] dp =

∫ B

0

p dF (p) .

Thus, we have the following formula for the mean of a nonnegative random

variable:

Ep =

∫ B

0

[1− F (p)] dp = B −
∫ B

0

F (p) dp. (6.2.2)

Now consider two independent random variables p1 and p2 drawn from

the distribution F . Consider the event {(p1 < p) ∩ (p2 < p)} , which by the
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independence assumption has probability F (p)2 . The event {(p1 < p) ∩ (p2 <

p)} is equivalent to the event {max(p1, p2) < p} , where “max” denotes the

maximum. Therefore, if we use formula (6.2.2), the random variable max(p1, p2)

has mean

Emax (p1, p2) = B −
∫ B

0

F (p)
2
dp. (6.2.3)

Similarly, if p1, p2, . . . , pn are n independent random variables drawn from F ,

we have Prob{max(p1, p2, . . . , pn) < p} = F (p)n and

Mn ≡ Emax (p1, p2, . . . , pn) = B −
∫ B

0

F (p)n dp, (6.2.4)

where Mn is defined as the expected value of the maximum of p1, . . . , pn .

6.2.2. Mean-preserving spreads

Rothschild and Stiglitz introduced the idea of a mean-preserving spread as a

convenient way to characterize the riskiness of two distributions with the same

mean. Consider a class of distributions with the same mean. We index this

class by a parameter r belonging to some set R . For the r th distribution we

denote Prob{p ≤ P} = F (P, r) and assume that F (P, r) is differentiable with

respect to r for all P ∈ [0, B] . We assume that there is a single finite B such

that F (B, r) = 1 for all r in R and that F (0, r) = 0 for all r in R , so that

we are considering a class of distributions R for nonnegative, bounded random

variables.

From equation (6.2.2), we have

Ep = B −
∫ B

0

F (p, r) dp. (6.2.5)

Therefore, two distributions with the same value of
∫ B
0
F (θ, r)dθ have identical

means. We write this as the identical means condition:

(i)

∫ B

0

[F (θ, r1)− F (θ, r2)] dθ = 0.

Two distributions r1, r2 are said to satisfy the single-crossing property if there

exists a θ̂ with 0 < θ̂ < B such that

(ii) F (θ, r2)− F (θ, r1) ≤ 0 (≥ 0) when θ ≥ (≤) θ̂.
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1

F(   , r)

F(   , r  ) 

F(   , r  )

1

2

B

Figure 6.2.1: Two distributions, r1 and r2 , that satisfy the

single-crossing property.

Figure 6.2.1 illustrates the single-crossing property. If two distributions r1

and r2 satisfy properties (i) and (ii), we can regard distribution r2 as having

been obtained from r1 by a process that shifts probability toward the tails of

the distribution while keeping the mean constant.

Properties (i) and (ii) imply the following property:

(iii)

∫ y

0

[F (θ, r2)− F (θ, r1)] dθ ≥ 0, 0 ≤ y ≤ B .

Rothschild and Stiglitz regard properties (i) and (iii) as defining the concept

of a “mean-preserving spread.” In particular, a distribution indexed by r2 is said

to have been obtained from a distribution indexed by r1 by a mean-preserving

spread if the two distributions satisfy (i) and (iii).2

2 Rothschild and Stiglitz (1970, 1971) use properties (i) and (iii) to characterize mean-

preserving spreads rather than (i) and (ii) because (i) and (ii) fail to possess transitivity. That

is, if F (θ, r2) is obtained from F (θ, r1) via a mean-preserving spread in the sense that the

term has in (i) and (ii), and F (θ, r3) is obtained from F (θ, r2) via a mean-preserving spread

in the sense of (i) and (ii), it does not follow that F (θ, r3) satisfies the single-crossing property

(ii) vis-à-vis distribution F (θ, r1) . A definition based on (i) and (iii), however, does provide a

transitive ordering, which is a desirable feature for a definition designed to order distributions

according to their riskiness.

θ

θ

θ

θ
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For infinitesimal changes in r , Diamond and Stiglitz use the differential

versions of properties (i) and (iii) to rank distributions with the same mean in

order of riskiness. An increment in r is said to represent a mean-preserving

increase in risk if

(iv)

∫ B

0

Fr (θ, r) dθ = 0

(v)

∫ y

0

Fr (θ, r) dθ ≥ 0, 0 ≤ y ≤ B ,

where Fr(θ, r) = ∂F (θ, r)/∂r .

6.3. McCall’s model of intertemporal job search

We now consider an unemployed worker who is searching for a job under the

following circumstances: Each period the worker draws one offer w from the

same wage distribution F (W ) = Prob{w ≤ W} , with F (0) = 0, F (B) = 1 for

B < ∞ . The worker has the option of rejecting the offer, in which case he or

she receives c this period in unemployment compensation and waits until next

period to draw another offer from F ; alternatively, the worker can accept the

offer to work at w , in which case he or she receives a wage of w per period

forever. Neither quitting nor firing is permitted.

Let yt be the worker’s income in period t . We have yt = c if the worker

is unemployed and yt = w if the worker has accepted an offer to work at wage

w . The unemployed worker devises a strategy to maximize the mathematical

expectation of
∑∞

t=0 β
tyt where 0 < β < 1 is a discount factor.

Let v(w) be the expected value of
∑∞

t=0 β
tyt for a previously unemployed

worker who has offer w in hand, who is deciding whether to accept or to reject

it, and who behaves optimally. We assume no recall. The value function v(w)

satisfies the Bellman equation

v (w) = max
accept,reject

{
w

1− β
, c+ β

∫ B

0

v (w′) dF (w′)

}
, (6.3.1)

where the maximization is over the values of outcomes associated with the two

actions: (1) accept the wage offer w and work forever at wage w , or (2) reject
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the offer, receive c this period, and draw a new offer w′ from distribution

F next period. The value of accepting the offer is w
1−β , the present value

of the constant wage. The value of rejecting the offer is the unemployment

compensation c received today plus the discounted expected value β
∫ B
0
v(w′)

of drawing a new offer and deciding optimally tomorrow. Figure 6.3.1 graphs

the functional equation (6.3.1) and reveals that its solution is of the form

v (w) =





w

1− β
= c+ β

∫ B

0

v (w′) dF (w′) if w ≤ w

w

1− β
if w ≥ w.

(6.3.2)

v

w

Reject the offer Accept the offer

Q

w
_

Figure 6.3.1: The function v(w) = max{w/(1 − β), c +

β
∫ B
0 v(w′)dF (w′)} . The reservation wage w = (1 − β)[c +

β
∫ B
0
v(w′)dF (w′)] .
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Using equation (6.3.2), we can convert the functional equation (6.3.1) in the

value function v(w) into an ordinary equation in the reservation wage w . Eval-

uating v(w) and using equation (6.3.2), we have

w

1− β
= c+ β

∫ w

0

w

1− β
dF (w′) + β

∫ B

w

w′

1− β
dF (w′)

or

w

1− β

∫ w

0

dF (w′) +
w

1− β

∫ B

w

dF (w′)

= c+ β

∫ w

0

w

1− β
dF (w′) + β

∫ B

w

w′

1− β
dF (w′)

or

w

∫ w

0

dF (w′)− c =
1

1− β

∫ B

w

(βw′ − w) dF (w′) .

Adding w
∫ B
w
dF (w′) to both sides gives

(w − c) =
β

1− β

∫ B

w

(w′ − w) dF (w′) . (6.3.3)

Equation (6.3.3) is often used to characterize the reservation wage w . The left

side is the cost of searching one more time when an offer w is in hand. The right

side is the expected benefit of searching one more time in terms of the expected

present value associated with drawing w′ > w . Equation (6.3.3) instructs the

agent to set w so that the cost of searching one more time equals the benefit.

6.3.1. Characterizing reservation wage

Let us define the function on the right side of equation (6.3.3) as

h (w) =
β

1− β

∫ B

w

(w′ − w) dF (w′) . (6.3.4)

Notice that h(0) = Ewβ/(1−β), that h(B) = 0, and that h(w) is differentiable,

with derivative given by3

h′ (w) = − β

1− β
[1− F (w)] < 0.

3 To compute h′(w) , we apply Leibniz’s rule to equation (6.3.4). Let φ(t) =
∫ β(t)
α(t)

f(x, t)d x

for t ∈ [c, d] . Assume that f and ft are continuous and that α, β are differentiable on [c, d] .
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We also have

h′′ (w) =
β

1− β
F ′ (w) > 0,

so that h(w) is convex to the origin. Figure 6.3.2 graphs h(w) against (w − c)

and indicates how w is determined. From Figure 6.3.2 it is apparent that an

increase in unemployment compensation c leads to an increase in w .

w-c

w
_

h(w)

w

-c

β/(1−β)E(w) * 

Figure 6.3.2: The reservation wage w that satisfies w−c =
[β/(1− β)]

∫ B
w
(w′ − w)dF (w′) ≡ h(w).

Then Leibniz’s rule asserts that φ(t) is differentiable on [c, d] and

φ′ (t) = f [β (t) , t] β′ (t) − f [α (t) , t]α′ (t) +

∫ β(t)

α(t)

ft (x, t) d x.

To apply this formula to the equation in the text, let w play the role of t .
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To get another useful characterization of w , we express equation (6.3.3) as

w − c =
β

1− β

∫ B

w

(w′ − w) dF (w′) +
β

1− β

∫ w

0

(w′ − w) dF (w′)

− β

1− β

∫ w

0

(w′ − w) dF (w′)

=
β

1− β
Ew − β

1− β
w − β

1− β

∫ w

0

(w′ − w) dF (w′)

or

w − (1− β) c = βEw − β

∫ w

0

(w′ − w) dF (w′) .

Applying integration by parts to the last integral on the right side and rearrang-

ing, we have

w − c = β (Ew − c) + β

∫ w

0

F (w′) dw′. (6.3.5)

At this point it is useful to define the function

g (s) =

∫ s

0

F (p) dp. (6.3.6)

This function has the characteristics that g(0) = 0, g(s) ≥ 0, g′(s) = F (s) > 0,

and g′′(s) = F ′(s) > 0 for s > 0. Then equation (6.3.5) can be represented as

w− c = β(Ew− c)+βg(w). Figure 6.3.3 uses equation (6.3.5) to determine w .

6.3.2. Effects of mean-preserving spreads

Figure 6.3.3 can be used to establish two propositions about w . First, given F ,

w increases when the rate of unemployment compensation c increases. Second,

given c , a mean-preserving increase in risk causes w to increase. This second

proposition follows directly from Figure 6.3.3 and the characterization (iii) or

(v) of a mean-preserving increase in risk. From the definition of g in equation

(6.3.6) and the characterization (iii) or (v), a mean-preserving spread causes an

upward shift in β(Ew − c) + βg(w).

Since an increase in unemployment compensation and a mean-preserving

increase in risk both raise the reservation wage, it follows from the expression for

the value function in equation (6.3.2) that unemployed workers are also better
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[E(w)-c]β

[E(w)-c]β +β g(w)

ww

w-c

-c

_0

Figure 6.3.3: The reservation wage, w , that satisfies w−c =
β(Ew − c) + β

∫ w
0
F (w′)dw′ ≡ β(Ew − c) + βg(w).

off with both such increases. It is obvious that an increase in unemployment

compensation raises the welfare of unemployed workers but it might seem sur-

prising that a mean-preserving increase in risk does too. Intuition for this latter

finding can be gleaned from the result in option pricing theory that the value of

an option is an increasing function of the variance in the price of the underlying

asset. This is so because the option holder chooses to accept payoffs only from

the right tail of the distribution. In our context, the unemployed worker has the

option to accept a job and the asset value of a job offering wage rate w is equal

to w/(1− β). Under a mean-preserving increase in risk, the higher incidence of

very good wage offers increases the value of searching for a job while the higher

incidence of very bad wage offers is not detrimental because the option to work

will not be exercised at such low wages.
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6.3.3. Allowing quits

Thus far, we have supposed that the worker cannot quit. It happens that had

we allowed the worker to quit and search again, after being unemployed one

period, he would never exercise that option. To see this point, recall that the

reservation wage w in (6.3.2) satisfies

v (w) =
w

1− β
= c+ β

∫
v (w′) dF (w′) . (6.3.7)

Suppose the agent has in hand an offer to work at wage w . Assuming that

the agent behaves optimally after any rejection of a wage w , we can compute

the lifetime utility associated with three mutually exclusive alternative ways of

responding to that offer:

A1. Accept the wage and keep the job forever:

w

1− β
.

A2. Accept the wage but quit after t periods:

w − βtw

1− β
+ βt

(
c+ β

∫
v (w′) dF (w′)

)
=

w

1− β
− βt

w − w

1− β
.

A3. Reject the wage:

c+ β

∫
v (w′) dF (w′) =

w

1− β
.

We conclude that if w < w ,

A1 ≺ A2 ≺ A3,

and if w > w ,

A1 ≻ A2 ≻ A3.

The three alternatives yield the same lifetime utility when w = w .
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6.3.4. Waiting times

It is straightforward to derive the probability distribution of the waiting time

until a job offer is accepted. Let N be the random variable “length of time

until a successful offer is encountered,” with the understanding that N = 1

if the first job offer is accepted. Let λ =
∫ w
0 dF (w′) be the probability that

a job offer is rejected. Then we have Prob{N = 1} = (1 − λ). The event

that N = 2 is the event that the first draw is less than w , which occurs with

probability λ , and that the second draw is greater than w , which occurs with

probability (1−λ). By virtue of the independence of successive draws, we have

Prob{N = 2} = (1 − λ)λ . More generally, Prob{N = j} = (1− λ)λj−1 , so the

waiting time is geometrically distributed. The mean waiting time N̄ is given by

N̄ =
∞∑

j=1

j · Prob{N = j} =
∞∑

j=1

j (1− λ) λj−1 = (1− λ)
∞∑

j=1

j∑

k=1

λj−1

= (1− λ)
∞∑

k=0

∞∑

j=1

λj−1+k = (1− λ)
∞∑

k=0

λk (1− λ)−1 = (1− λ)−1 .

That is, the mean waiting time to a successful job offer equals the reciprocal of

the probability of accepting an offer on a single trial.4

To illustrate the power of a recursive approach, we can also compute the

mean waiting time N̄ as follows. First, because the environment is stationary

and associated with a constant reservation wage and a constant probability of

escaping unemployment, it follows that in any period the “remaining” mean

waiting time for all unemployed workers equals N̄ . That is, all unemployed

workers face a mean waiting time of N̄ regardless of how long of an unemploy-

ment spell they have endured. Second, the mean waiting time N̄ must then be

equal to the weighted sum of two possible outcomes: either the worker accepts

a job next period, with probability (1 − λ); or she remains unemployed in the

next period, with probability λ . In the first case, the worker will have ended

her unemployment after one last period of unemployment while in the second

4 An alternative way of deriving the mean waiting time is to use the algebra of z trans-

forms. Define h(z) =
∑∞

j=0 hjz
j and note that h′(z) =

∑∞
j=1 jhjz

j−1 and h′(1) =∑∞
j=1 jhj . (For an introduction to z transforms, see Gabel and Roberts, 1973.) The z

transform of the sequence (1−λ)λj−1 is given by
∑∞
j=1(1−λ)λj−1zj = (1−λ)z/(1−λz) .

Evaluating h′(z) at z = 1 gives, after some simplification, h′(1) = 1/(1 − λ) . Therefore, we

have that the mean waiting time is (1 − λ)
∑∞
j=1 jλ

j−1 = 1/(1 − λ) .
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case, the worker will have suffered one period of unemployment and will face a

remaining mean waiting time of N̄ periods. Hence, the mean waiting time must

satisfy:

N̄ = (1− λ) · 1 + λ ·
(
1 + N̄

)
=⇒ N̄ = (1− λ)

−1
.

We invite the reader to prove that, given F , the mean waiting time increases

with increases in the rate of unemployment compensation, c .

6.3.5. Firing

We now consider a modification of the job search model in which each period

after the first period on the job the worker faces probability α of being fired,

where 1 > α > 0. The probability α of being fired next period is assumed

to be independent of tenure. A previously unemployed worker samples wage

offers from a time-invariant and known probability distribution F . Unemployed

workers receive unemployment compensation in the amount c . The worker

receives a time-invariant wage w on a job until she is fired. A worker who is

fired becomes unemployed for one period before drawing a new wage. Only

previously employed workers are fired. A previously employed worker who is

fired at the beginning of a period cannot draw a new wage offer that period but

must be unemployed for one period.

Let v̂(w) be the expected present value of income of a previously unem-

ployed worker who has offer w in hand and who behaves optimally. If she rejects

the offer, she receives c in unemployment compensation this period and next

period draws a new offer w′ whose value to her now is β
∫
v̂(w′)dF (w′). If

she rejects the offer, v̂(w) = c + β
∫
v̂(w′)dF (w′). If she accepts the offer, she

receives w this period; next period with probability 1− α , she is not fired and

therefore what she receives is worth βv̂(w) today; with probability α , she is fired

next period, which has the consequence that after one period of unemployment

she draws a new wage, an outcome that today is worth β[c+ β
∫
v̂(w′)dF (w′)] .

Therefore, if she accepts the offer

v̂ (w) = w + β (1− α) v̂ (w) + βα

[
c+ β

∫
v̂ (w′) dF (w′)

]
.
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Thus, the Bellman equation becomes5

v̂ (w) = max
accept,reject

{
w + β (1− α) v̂ (w) + βα [c+ βEv̂] , c+ βEv̂

}
,

where Ev̂ =
∫
v̂(w′)dF (w′). Here the appearance of v̂(w) on the right side

recognizes that if the worker had accepted wage offer w last period with expected

discounted present value v̂(w), the stationarity of the problem (i.e., the fact that

F, α, c are all fixed) makes v̂(w) also be the continuation value associated with

retaining this job next period. This equation has a solution of the form6

v̂ (w) =





w + βα [c+ βEv̂]
1− β (1− α)

, if w ≥ w

c+ βEv̂, w ≤ w

where w solves
w + βα [c+ βEv̂]

1− β (1− α)
= c+ βEv̂,

which can be rearranged as

w

1− β
= c+ β

∫
v̂ (w′) dF (w′) . (6.3.8)

We can compare the reservation wage in (6.3.8) to the reservation wage in

expression (6.3.7) when there was no risk of being fired. The two expressions

look identical but the reservation wages differ because the value functions differ.

In particular, v̂(w) is strictly less than v(w). This is an immediate implication

of our argument that it cannot be optimal to quit if you have accepted a wage

strictly greater than the reservation wage in the situation without possible fir-

ings (see section 6.3.3). So even though workers who face no possible firings

5 If a worker who is fired at the beginning of a period were to have the opportunity to

draw a new offer that same period, then the Bellman equation would instead be

ṽ (w) = max
accept,reject

{
w + β (1− α) ṽ (w) + βα

∫
ṽ
(
w′
)
dF
(
w′
)
, c+ β

∫
ṽ
(
w′
)
dF
(
w′
)}

.

6 That it takes this form can be established by guessing that v̂(w) is nondecreasing in

w . This guess implies the equation in the text for v̂(w) , which is nondecreasing in w . This

argument verifies that v̂(w) is nondecreasing, given the uniqueness of the solution of the

Bellman equation.
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can mimic outcomes in situations where they would facing possible firings by

occasionally “firing themselves” by quitting into unemployment, they choose

not to do so because that would lower their expected present value of income.

Since the employed workers in the situation where they face possible firings are

worse off than employed workers in the situation without possible firings, it fol-

lows that v̂(w) lies strictly below v(w) over the whole domain because, even

at wages that are rejected, the value function partly reflects a stream of future

outcomes whose expectation is less favorable in the situation in which workers

face a chance of being fired.

Since the value function v̂(w) with firings lies strictly below the value func-

tion v(w) without firings, it follows from (6.3.8) and (6.3.7) that the reservation

wage w is strictly lower with firings. There is less of a reason to hold out for

high-paying jobs when a job is expected to last for a shorter period of time.

That is, unemployed workers optimally invest less in search when the payoffs

associated with wage offers have gone down because of the probability of being

fired.

6.4. A lake model

Consider an economy consisting of a continuum of ex ante identical workers

living in the environment described in the previous section. These workers

move recurrently between unemployment and employment. The mean duration

of each spell of employment is α−1 and the mean duration of unemployment

is [1 − F (w)]−1 . The average unemployment rate Ut across the continuum of

workers obeys the difference equation

Ut+1 = α (1− Ut) + F (w)Ut,

where α is the hazard rate of escaping employment and [1−F (w)] is the hazard
rate of escaping unemployment. Solving this difference equation for a stationary

solution, i.e., imposing Ut+1 = Ut = U , gives

U =
α

α+ 1− F (w)
=⇒ U =

1

1− F (w)
1

1− F (w)
+

1

α

. (6.4.1)



172 Search and Unemployment

Equation (6.4.1) expresses the stationary unemployment rate in terms of the

ratio of the average duration of unemployment to the sum of average durations

of unemployment and employment. The unemployment rate, being an average

across workers at each moment, thus reflects the average outcomes experienced

by workers across time. This way of linking economy-wide averages at a point

in time with the time-series average for a representative worker is our first en-

counter with a class of models sometimes referred to as Bewley models, which

we shall study in depth in chapter 18.

This model of unemployment is sometimes called a lake model and can be

depicted as in Figure 6.4.1, with two lakes denoted U and 1 − U representing

volumes of unemployment and employment, and streams of rate α from the

1 − U lake to the U lake and of rate 1 − F (w) from the U lake to the 1 − U

lake. Equation (6.4.1) allows us to study the determinants of the unemployment

rate in terms of the hazard rate of becoming unemployed α and the hazard rate

of escaping unemployment 1− F (w).

1−U
U

1−F(w)
_

α

Figure 6.4.1: Lake model with flows of rate α from em-

ployment state 1 − U to unemployment state U and of rate

[1− F (w)] from U to 1− U .
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6.5. A model of career choice

This section describes a model of occupational choice that Derek Neal (1999)

used to understand employment histories of recent high school graduates. Neal

wanted to explain why young men often switch jobs and careers early in their

work histories, then later focus their searches for jobs within a single career,

and finally settle down in a particular job. Neal’s model can be regarded as a

simplified version of Brian McCall’s (1991) model.

A worker chooses career-job (θ, ǫ) pairs subject to the following conditions:

There is no unemployment. The worker’s earnings at time t equal θt + ǫt ,

where θt is a component specific to a career and ǫt is a component specific to

a particular job. The worker maximizes E
∑∞

t=0 β
t(θt + ǫt). A career is a draw

of θ from c.d.f. F ; a job is a draw of ǫ from c.d.f. G . Successive draws are

independent, and G(0) = F (0) = 0, G(Bǫ) = F (Bθ) = 1. The worker can draw

a new career only if he also draws a new job. However, the worker is free to

retain his existing career θ , and to draw a new job ǫ′ . The worker decides at

the beginning of a period whether to stay in a career-job pair inherited from the

past, stay in an inherited career but draw a new job, or draw a new career-job

pair. There is no opportunity to recall past jobs or careers.

Let v(θ, ǫ) be the optimal value of the problem at the beginning of a period

for a worker currently having inherited career-job pair (θ, ǫ) and who is about

to decide whether to draw a new career and or job. The value function v(θ, ǫ)

satisfies the Bellman equation

v (θ, ǫ) = max

{
θ + ǫ+ βv (θ, ǫ) , θ +

∫
[ǫ′ + βv (θ, ǫ′)] dG (ǫ′) ,

∫ ∫
[θ′ + ǫ′ + βv (θ′, ǫ′)] dF (θ′) dG (ǫ′)

}
. (6.5.1)

Maximization is over three possible actions: (1) retain the present job-career

pair; (2) retain the present career but draw a new job; and (3) draw both a new

job and a new career. We might nickname these three alternatives ‘stay put’,

‘new job’, ‘new life’. The value function is increasing in both θ and ǫ .

Figures 6.5.1 and 6.5.2 display the optimal value function and the optimal

decision rule for Neal’s model where F and G are each distributed according to

discrete uniform distributions on [0, 5] with 50 evenly distributed discrete values

for each of θ and ǫ and β = .95. We computed the value function by iterating
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to convergence on the Bellman equation. The optimal policy is characterized

by three regions in the (θ, ǫ) space. For high enough values of ǫ+ θ , the worker

stays put. For high θ but low ǫ , the worker retains his career but searches for

a better job. For low values of θ + ǫ , the worker finds a new career and a new

job. In figures 6.5.1 and 6.5.2, the decision to retain both job and career occurs

in the high θ , high ǫ region of the state space; the decision to retain career θ

but search for a new job ǫ′ occurs in the high θ and low ǫ region of the state

space; and the decision to ‘get a new life’ by drawing both a new θ′ and a new

ǫ′ occurs in the low θ , low ǫ region.7
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Figure 6.5.1: Optimal value function for Neal’s model with

β = .95. The value function is flat in the reject (θ, ǫ) region;

increasing in θ only in the keep-career-but-draw-new-job re-

gion; and increasing in both θ and ǫ in the stay-put region.

When the career-job pair (θ, ǫ) is such that the worker chooses to stay put,

the value function in (6.5.1) attains the value (θ + ǫ)/(1 − β). Of course, this

happens when the decision to stay put weakly dominates the other two actions,

which occurs when
θ + ǫ

1− β
≥ max {C (θ) , Q} , (6.5.2)

7 The computations were performed by the Matlab program neal2.m.
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Figure 6.5.2: Optimal decision rule for Neal’s model. For

(θ, ǫ)’s within the white area, the worker changes both jobs

and careers. In the grey area, the worker retains his career

but draws a new job. The worker accepts (θ, ǫ) in the black

area.

where Q is the value of drawing both a new job and a new career,

Q ≡
∫ ∫

[θ′ + ǫ′ + βv (θ′, ǫ′)] dF (θ′) dG (ǫ′) ,

and C(θ) is the value of keeping θ but drawing a new job ǫ′ :

C (θ) = θ +

∫
[ǫ′ + βv (θ, ǫ′)] dG (ǫ′) .

For a given career θ , a job ǫ(θ) makes equation (6.5.2) hold with equality.

Evidently, ǫ(θ) solves

ǫ (θ) = max [(1− β)C (θ)− θ, (1− β)Q− θ] .

The decision to stay put is optimal for any career-job pair (θ, ǫ) that satisfies

ǫ ≥ ǫ(θ). When this condition is not satisfied, the worker will draw either a new

career-job pair (θ′, ǫ′) or only a new job ǫ′ . Retaining a career θ is optimal

when

C (θ) ≥ Q. (6.5.3)
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We can solve (6.5.3) for the critical career value θ satisfying

C
(
θ
)
= Q. (6.5.4)

Thus, independently of ǫ , the worker will never abandon any career θ ≥ θ . The

decision rule for accepting the current career can thus be expressed as follows:

accept the current career θ if θ ≥ θ or if the current career-job pair (θ, ǫ)

satisfies ǫ ≥ ǫ(θ).

We can say more about the cutoff value ǫ(θ) in the retain-θ region θ ≥ θ .

When θ ≥ θ , because we know that the worker will keep θ forever, it follows

that

C (θ) =
θ

1− β
+

∫
J (ǫ′) dG (ǫ′) ,

where J(ǫ) is the optimal value of
∑∞

t=0 β
tǫt for a worker who has already

decided to keep career θ , who has just drawn ǫ , and who can draw a new job

ǫ′ next period. The Bellman equation for J is

J (ǫ) = max

{
ǫ

1− β
, ǫ+ β

∫
J (ǫ′) dG (ǫ′)

}
. (6.5.5)

This resembles the Bellman equation for the optimal value function for the

basic McCall model, with a slight modification. The optimal policy is of the

reservation-job form: keep the job ǫ if ǫ ≥ ǫ , otherwise try a new job next

period. The absence of θ from (6.5.5) implies that in the range θ ≥ θ , ǫ is

independent of θ .

These results explain some features of the value function plotted in Figure

6.5.1 At the boundary separating the “new life” and “new job” regions of the

(θ, ǫ) plane, equation (6.5.4) is satisfied. At the boundary separating the “new

job” and “stay put” regions, θ+ǫ
1−β = C(θ) = θ

1−β +
∫
J(ǫ′)dG(ǫ′). Finally, be-

tween the “new life” and “stay put” regions, θ+ǫ
1−β = Q , which defines a diagonal

line in the (θ, ǫ) plane (see Figure 6.5.2). The value function is the constant

value Q in the “get a new life” region (i.e., the region in which the optimal

decision is to draw a new (θ, ǫ) pair). Equation (6.5.3) helps us understand

why there is a set of high θ ’s in Figure 6.5.2 for which v(θ, ǫ) rises with θ but

is flat with respect to ǫ .

Probably the most interesting feature of the model is that it is possible to

draw a (θ, ǫ) pair that makes the value of keeping the career (θ ) and drawing

a new job match (ǫ′ ) exceed both the value of stopping search and the value of
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starting again to search from the beginning by drawing a new (θ′, ǫ′) pair. This

outcome occurs when a large θ is drawn with a small ǫ . In this case, it can

occur that θ ≥ θ and ǫ < ǫ(θ).8

Viewed as a normative model for young workers, Neal’s model tells them:

don’t shop for a firm until you have found a career you like. As a positive

model, it predicts that workers will not switch careers after they have settled on

one. Neal presents data indicating that while this stark prediction does not hold

up perfectly, it is a good first approximation. He suggests that extending the

model to include learning, along the lines of Jovanovic’s model to be described in

section 6.8, could help explain the later career switches that his model misses.9

6.6. Offer distribution unknown

Consider the following modification of the McCall search model. An unemployed

worker wants to maximize the expected present value of
∑∞
t=0 β

tyt where yt

equals wage w when employed and unemployment compensation c when un-

employed. Each period the worker receives one offer to work forever at a wage

w drawn from one of two cumulative distribution functions F or G , where

F (0) = G(0) = 0 and F (B) = G(B) = 1 for B > 0. Nature draws from the

same distribution, either F or G , at all dates and the worker knows this, but

he or she does not know whether it is F or G . At time 0 before drawing a wage

offer, the worker attaches probability π−1 ∈ (0, 1) to the distribution being F .

We assume that the distributions have densities f and g , respectively, and that

they have common support. Before drawing a wage at time 0, the worker thus

believes that the density of w0 is h(w0;π−1) = π−1f(w0)+(1−π−1)g(w0). After

drawing w0 , the worker uses Bayes’ law to deduce that the posterior probability

8 Pavan (2011) builds on Neal’s model in interesting ways.
9 Neal’s model can be used to deduce waiting times to the event (θ ≥ θ)∪ (ǫ ≥ ǫ(θ)) . The

first event within the union is choosing a career that is never abandoned. The second event is

choosing a permanent job. Neal used the model to approximate and interpret observed career

and job switches of young workers.
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that the density is f(w) is10

π0 =
π−1f (w0)

π−1f (w0) + (1− π−1) g (w0)
.

More generally, after observing wt for the tth draw, the worker believes that

the probability that wt+1 is to be drawn from distribution F is

πt =
πt−1f (wt) /g (wt)

πt−1f (wt) /g (wt) + (1− πt−1)
(6.6.1)

and that the density of wt+1 is

h (wt+1;πt) = πtf (wt+1) + (1− πt) g (wt+1) . (6.6.2)

Notice that

E(πt|πt−1) =

∫ [ πt−1f(w)

πt−1f(w) + (1− πt−1)g(w)

][
πt−1f(w) + (1 − πt−1)g(w)

]
dw

= πt−1

∫
f(w)dw

= πt−1,

so that the process πt is a martingale bounded by 0 and 1. (In the first line

in the above string of equalities, the term in the first set of brackets is just πt

as a function of wt , while the term in the second set of brackets is the density

of wt conditional on πt−1 .) Notice that here we are computing E(πt|πt−1)

under the subjective density described in the second term in brackets. It follows

from the martingale convergence theorem (see appendix A of chapter 17) that

πt converges almost surely to a random variable in [0, 1]. Practically, this

means that probability one is attached to sample paths {πt}∞t=0 that converge.

However, different sample paths can converge to different limiting values. The

limit points of {πt}∞t=0 as t→ +∞ thus constitute a random variable with what

is in general a non-trivial distribution.

10 The worker’s initial beliefs induce a joint probability distribution over a potentially infi-

nite sequence of draws w0, w1, . . . . Bayes’ law is simply an application of the laws of probabil-

ity to compute the conditional distribution of the tth draw wt conditional on [w0, . . . , wt−1] .

Since we assume from the start that the decision maker knows the joint distribution and the

laws of probability, one respectable view is that Bayes’ law is less a ‘theory of learning’ than a

statement about the consequences of information inflows for a decision maker who thinks he

knows the truth (i.e., a joint probability distribution) from the beginning.
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Let v(wt, πt) be the optimal value of the problem for a previously unem-

ployed worker who has just drawn w and updated π according to (6.6.1). The

Bellman equation is

v (w, πt) = max
accept,reject

{
w

1− β
, c+ β

∫
v (w′, πt+1 (w

′))h (w′;πt) dw
′

}
(6.6.3)

subject to (6.6.1) and (6.6.2). The state vector is the worker’s current draw w

and his post-draw estimate of the probability that the distribution is f . The

second term on the right side of (6.6.3) integrates the value function evaluated

at next period’s state vector with respect to the worker’s subjective distribu-

tion h(w′;πt) of next period’s draw w′ . The value function for next period

recognizes that πt+1 will be updated in a way that depends on w′ via Bayes’

law as captured by equation (6.6.1). Evidently, the optimal policy is to set a

reservation wage w̄(πt) that depends on πt .

As an example, we have computed the optimal policy by backward induction

assuming that f is a uniform distribution on [0, 2] while g is a beta distribution

with parameters (3,1.2).11 We set unemployment compensation c = .6 and the

discount factor β = .95.12 The two densities are plotted in figure 6.6.1, which

shows that the g density provides better prospects for the worker than does the

uniform f density. It stands to reason that the worker’s reservation wage falls

as the posterior probability π that he places on density f rises, as figure 6.6.2

confirms.

Figure 6.6.3 shows empirical cumulative distribution functions for dura-

tions of unemployment and π at time of job acceptance under two alternative

assumptions about whether the uniform distribution F or the beta distribu-

tion G permanently governs the wage. We constructed these by simulating the

model 10,000 times at the parameter values just given, starting from a common

initial condition for beliefs π−1 = .5 and assuming that, unbeknownst to the

worker, either the uniform density f(w) or the beta density g(w) truly governs

successive wage draws. Only when πt approaches 1 will workers have learned

that nature is drawing from f and not g . Evidently, most workers accept jobs

long before a law of large numbers has enough time to teach them for sure which

11 The beta distribution for w is characterized by a density g(w;α, γ) ∝ wα−1(1−w)(γ−1) ,

where the factor of proportionality is chosen to make the density integrate to 1.
12 The matlab programs search learn francisco 3.m and search learn beta 2.m perform

these calculations.
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Figure 6.6.1: Two densities for wages, a uniform f(w) and

g(w) that is a beta distribution with parameters 3, 1.2.
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Figure 6.6.2: The reservation wage as a function of the

posterior probability π that the worker thinks that the wage

is drawn from the uniform density f .

of the two densities from which nature draws wage offers. Thus, workers usually
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choose not to collect enough observations for them to learn for sure which distri-

bution governs wage offers. In both panels, the lower line shows the cumulative

distribution function when nature draws from F and the lower panel shows the

c.d.f. when nature draws from G .13
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Figure 6.6.3: Top panel: CDF of duration of unemploy-

ment; bottom panel: CDF of π at time worker accepts wage

and leaves unemployment. In each panel, the lower filled line

is the CDF when nature permanently draws from the uni-

form density f while the dotted line is the CDF when nature

permanently draws from the beta density g .

A comparison of the CDF’s when nature draws from F and G , respectively,

is revealing. When G prevails, the cumulative distribution functions in the top

panel reveal that workers typically accept jobs earlier than when F prevails.

This captures what the interrogator of an unemployed McCall worker in the

passage of Lucas cited in the introduction might have had in mind when he

said ‘Maybe you are setting your sights too high’. The bottom panel reveals

that when nature permanently draws from G , employed workers put a higher

13 It is a useful exercise to use recall formula (6.2.2) for the mean of a nonnegative random

variable and then glance at the CDFs in the bottom panel to approximate the mean πt at

time of job acceptance.
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probability on their having actually sampled from G than from F , while the

reverse is true when nature draws permanently from F .

6.7. An equilibrium price distribution

The McCall search model confronts a worker with a given distribution of wages.

In this section, we ask why firms might conceivably choose to confront an ex

ante homogenous collection of workers with a nontrivial distribution of wages.

Knowing that the workers have a reservation wage policy, why would a firm ever

offer a worker more than the reservation wage? That question challenges us to

think about whether it is possible to conceive of a coherent setting in which it

would be optimal for a collection of profit maximizing firms somehow to make

decisions that generate a distribution of wages.

In this section, we take up this question, but for historical reasons inves-

tigate it in the context of a sequential search model in which buyers seek the

lowest price.14 Buyers can draw additional offers from a known distribution at

a fixed cost c for each additional batch of n independent draws from a known

price distribution. Both within and across batches, successive draws are in-

dependent. The buyer’s optimal strategy is to set a reservation price and to

continue drawing until the first time a price less than the reservation price has

been offered. Let p̃ be the reservation price.

Rothschild (1973) posed the following challenge for a model in which there

is a large number of identical buyers each of whom has reservation price p̃ . If

all sellers know the reservation price p̃ , why would any of them offer a price

less than p̃? This cogent question points to a force for the price distribution

to collapse, an outcome that would destroy the motive for search behavior on

the part of buyers. Thus, the challenge is to construct an equilibrium version of

a search model in which it is in firms’ interest to generate the non-trivial price

distribution that sustains buyers’ search activities.

Burdett and Judd (1983) met this challenge by creating an environment

in which ex ante identical buyers ex post receive differing numbers of price

offers that are drawn from a common distribution set by firms. They construct

14 See Burdett and Mortensen (1998) for a parallel analysis of the analogous issues in a

model of job search.
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an equilibrium in which a continuum of profit maximizing sellers are content to

generate this distribution of prices. Sellers set their prices to maximize expected

profit per customer. But sellers don’t know the number of other offers that

a prospective customer has received. Heterogeneity in the number of offers

received by buyers together with seller’s ignorance of the number and nature of

other offers received by a particular customer creates a tradeoff between profit

per customer and volume that makes possible a non-degenerate equilibrium price

distribution. Firms that post higher prices are lower-volume sellers. Firms

that post lower prices are higher-volume sellers. There exists an equilibrium

distribution of prices in which all types of firms expect to earn the same profit

per potential customer.

6.7.1. A Burdett-Judd setup

A continuum of buyers purchases a single good from one among a continuum

of firms. Each firm contacts a fixed measure ν of potential buyers. The firms

produce a homogeneous good at zero marginal cost. Each firm takes the c.d.f.

of prices charged by other firms as given and chooses a price. The firm wants

to maximize its expected profits per consumer. A firm’s expected profit per

consumer equals its price times the probability that its price is the minimum

among the set of acceptable offers received by the buyer. The distribution of

prices set by other firms impinges on a firm’s expected profits because it affects

the probability that its offer will be accepted by a buyer.

6.7.2. Consumer problem with noisy search

A consumer wants to purchase a good for a minimum price. Firms make

offers that buyers can view as being drawn from a distribution of nonnega-

tive prices with cumulative distribution function G(P ) = Prob(p ≤ P ) with

G(p) = 0, G(B) = 1. Assume that G is continuously differentiable and so

has an associated probability density. A buyer’s search activity is divided into

batches. Within each batch the buyer receives a random number of offers drawn

from the same distribution G . Burdett and Judd call this structure ‘noisy
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search’. In particular, at a cost of c > 0 per search round, with probabil-

ity q ∈ (0, 1) a buyer receives one offer drawn from G and with probabil-

ity 1 − q receives two offers. Thus, a ‘round’ consists of a ‘compound lot-

tery’ first of a random number of draws, then that number of i.i.d. random

draws price offers from the c.d.f. G . A buyer can recall offers within a round

but not across rounds. Evidently, Prob{min(p1, p2) ≥ p} = (1 − G(p))2 and

Prob{min(p1, p2) ≤ p} = 1− (1 −G(p))2 . Then ex ante the c.d.f. of low prices

drawn in a single round is

H (p) = qG (p) + (1− q)
(
1− (1−G (p))

2
)
. (6.7.1)

Let v(p) be the expected price including future search costs of a consumer

who has already paid c , has offer p in hand, and is about to decide whether to

accept or reject the offer. The Bellman equation is

v (p) = min
accept,reject

{
p, c+

∫ B

p

v (p′) dH (p′)
}
. (6.7.2)

The reservation price p̃ satisfies v(p̃) = p̃ = c+
∫ p̃
p p

′dH(p′), which implies15

c =

∫ p̃

p

H (p) d p. (6.7.3)

Combining equation (6.7.3) with the formula Ep =
∫ p̃
p
(1 − H(p))d p for the

mean of a nonnegative random variable implies that the reservation price p̃

satisfies

p̃ = c+ Ep,

which states that the reservation price equals the cost of one additional round

of search plus the mean price drawn from one more round of noisy search.

The challenge is to construct an equilibrium price distribution G , and thus an

implied distribution H , in which most firms choose to post prices less than the

buyer’s reservation price p̃ .

15 The Bellman equation implies p̃ = c +
∫ B
p̃
v(p′)dH(p) , which can be rearranged to

become
∫ p̃
p
(p̃ − p)dH(p) = c . Let u = p̃ − p and dv = dH(p) and apply the integration by

parts formula
∫
udv = uv −

∫
vdu to the previous equality to get

∫ p̃
p
H(p)dp = c .



An equilibrium price distribution 185

6.7.3. Firms

For simplicity and to focus our attention entirely on the search problem, we

assume that the good costs firms nothing to produce. In setting its price, we

assume that a firm seeks to maximize expected profit per customer. A firm

makes an offer to a customer without knowing whether this is the only offer

available to the customer or whether the customer, having drawn two offers,

possibly has a lower offer in hand. The firm begins by computing the fraction of

its customers who will have received one offer and the fraction of its customers

who will have received only one offer. Let there be a large number ν of total

potential buyers per batch, consisting of νq persons each of whom receives one

offer and ν(1− q) people each of whom receives two offers. The total number of

offers is evidently ν(1q+2(1−q)) = ν(2−q). Evidently, the fraction of all offers

that is received by customers who have received one offer is νq
ν(2−q) = q

2−q . This

calculation induces a typical firm to believe that the fraction of its customers

who receive one offer is

q̂ =
q

2− q
(6.7.4)

and the fraction who receive two offers is 1 − q̂ = 2(1−q)
2−q . The firm regards q̂

as its estimate of the probability that a given customer has received only its

offer, while it thinks that a fraction 1 − q̂ of its customers has also received a

competing offer from another firm.

There is a continuum of firms each of which takes as given a price offer

distribution of other firms with c.d.f. G(p), where G(p) = 0, G(p̃) = 1. We

have assume that G is differentiable.16 This distribution satisfies the outcome

that in equilibrium no firm makes an offer exceeding the buyer’s reservation

price p̃ . Let Q(p) be the probability that a consumer will accept an offer p ,

where p ≤ p ≤ p̃ . Evidently, a consumer who receives one offer p < p̃ will

accept it with probability 1. But only a fraction 1 − G(p) of consumer who

receive two offers will accept an offer p < p̃ . Why? because 1 − G(p) is the

16 Burdett and Judd (1983, p. 959, lemma 1) show that an equilibrium G is differentiable

when q ∈ (0, 1) and p̃ > 0. Their argument goes as follows. Suppose to the contrary that

there is a positive probability attached to a single price p′ ∈ (0, p̃) . Consider a firm that

contemplates charging p′ . When q < 1, the firm knows that there is a positive probability

that a prospective consumer has received another offer also of p′ . If the firm lowers its offer

infinitesimally, it can expect to steal that customer and thereby increase its expected profits.

Therefore, a decision to charge p′ can’t maximize expected profits for a typical firm. We have

been led to a contradiction by assuming that G has a discontinuity at p′ .
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fraction of consumers whose other offer exceeds p ; so a fraction G(p) of two-offer

customers who receive offer p will reject it because they have received an offer

lower than p . Therefore, the overall probability that a randomly encountered

consumer will accept an offer p ∈ [p, p̃] is

Q (p) = q̂ + (1− q̂) (1−G (p)) . (6.7.5)

6.7.4. Equilibrium

The objects in play are a reservation price p̃ and a value function v(p) for a

typical buyer; and a c.d.f. G(p) of prices that is the outcome of the independent

price-setting decisions of individual firms and that is taken as given by all buyers

and sellers.

Definition: An equilibrium is a c.d.f. of price offers G(p) on domain [p, p̃] ,

a c.d.f. of per-batch price offers to consumers H(p), and a reservation price p̃

such that (i) the c.d.f. of offers to buyers H(p) satisfies (6.7.1); (ii) p̃ is an

optimal reservation price for buyers that satisfies c =
∫ p̃
p dH(p); and (iii) firms

are indifferent with respect to charging any p ∈ [p, p̃] ; therefore, firms choose p

by randomizing using G(p).

We confirm an equilibrium by using a guess-and-verify method. Make the

following guess for an equilibrium c.d.f. G(p).17 First, set

p = q̂p̃ (6.7.6)

and then set

G (p) =





0 if p ≤ p

1− p̃−p
p

q̂
1−q̂ if p ∈

[
p, p̃
]

1 if p > p̃ .

(6.7.7)

Under this guess, Q(p) becomes

Q (p) =
p̃q̂

p
∀p ∈

[
p, p̃
]
.

17 We can make sure that the buyer’s search problem is consistent with this guess by setting

c to confirm (6.7.3).
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Therefore, the expected profit per customer for a firm that sets price p ∈ [p, p̃]

is

pQ (p) = p̃q̂, (6.7.8)

which is evidently independent of the firm’s choice of offer p in the interval [p, p̃] .

The firm is indifferent about the price it offers on this interval. In particular,

notice that The right side of equality (6.7.8) is the product of the fraction of a

firm’s buyers receiving one offer, q̂ , times the reservation price p̃ . This is the

expected profit per customer of a firm that charges the reservation price. The

left side of equality (6.7.8) is the product of the price p times probability Q(p)

that a buyer will accept price p , which as we have noted equals the expected

profit per customer for a firm that sets price p .

We assume that firms randomize over choices of p in such a way that G(p)

given by (6.7.7) emerges as the c.d.f. for prices.

6.7.5. Special cases

The Burdett-Judd model isolates forces for the price distribution to collapse and

countervailing forces that can sustain a nontrivial price distribution.

1. Consider the special case in which q = 1 (and therefore q̂ = 1). Here,

p = p̃ . The formula (6.7.7) shows that the distribution of prices collapses.

This case exhibits the Rothschild challenge with which we began.

2. Next, consider the opposite special case in which q = 0 (and therefore

q̂ = 0). Here, p = 0 and the c.d.f. G(p) = 1∀p ∈ [p, p̃] . Bertrand com-

petition drives all prices down to the marginal cost of production, which

we have assumed to be zero. This case exhibits another force for the price

distribution to collapse, again in the spirit of Rothschild’s challenge.

3 Finally, consider the general case in which q ∈ (0, 1) and therefore q̂ ∈
(0, 1)). When q is strictly in the interior of [p, p̃] , we can sustain a nontrivial

distribution of prices. Firms are indifferent between being high volume,

low price sellers and high price, low volume sellers. The equilibrium price

distribution G(p) renders a firm’s expected profits per prospective customer

pQ(p) independent of p .
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6.8. Jovanovic’s matching model

Another interesting effort to confront Rothschild’s questions about the source

of the equilibrium wage (or price) distribution comes from matching models,

in which the main idea is to reinterpret w not as a wage but instead, more

broadly, as a parameter characterizing the entire quality of a match occurring

between a pair of agents. The variable w is regarded as a summary measure of

the productivities or utilities jointly generated by the activities of the match.

We can consider pairs consisting of a firm and a worker, a man and a woman, a

house and an owner, or a person and a hobby. The idea is to analyze the way

in which matches form and maybe also dissolve by viewing both parties to the

match as being drawn from populations that are statistically homogeneous to

an outside observer, even though the match is idiosyncratic from the perspective

of the parties to the match.

Jovanovic (1979a) used a model of this kind supplemented by an hypothesis

that both sides of a match behave optimally but only gradually learn about the

quality of the match. Jovanovic was motivated by a desire to explain three

features of labor market data: (1) on average, wages rise with tenure on the

job, (2) quits are negatively correlated with tenure (that is, a quit has a higher

probability of occurring earlier in tenure than later), and (3) the probability of a

subsequent quit is negatively correlated with the current wage rate. Jovanovic’s

insight was that each of these empirical regularities could be interpreted as

reflecting the operation of a matching process with gradual learning about match

quality.

We consider a simplified version of Jovanovic’s model of matching. (Prescott

and Townsend, 1980, describe a discrete-time version of Jovanovic’s model,

which has been simplified here.) A market has two sides that could be var-

iously interpreted as consisting of firms and workers, or men and women, or

owners and renters, or lakes and fishermen. Following Jovanovic, we shall adopt

the firm-worker interpretation here. An unmatched worker and a firm form a

pair and jointly draw a random match parameter θ from a probability distri-

bution with cumulative distribution function Prob{θ ≤ s} = F (s). Here the

match parameter reflects the marginal productivity of the worker in the match.

In the first period, before the worker decides whether to work at this match or

to wait and to draw a new match next period from the same distribution F, the

worker and the firm both observe only y = θ + u , where the random noise u
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is uncorrelated with θ . Thus, in the first period, the worker-firm pair receives

only a noisy observation on θ . This situation corresponds to that when both

sides of the market form only an error-ridden impression of the quality of the

match at first. On the basis of this noisy observation, the firm, which is imagined

to operate competitively under constant returns to scale, offers to pay the worker

the conditional expectation of θ , given (θ + u), for the first period, with the

understanding that in subsequent periods it will pay the worker the expected

value of θ , depending on whatever additional information both sides of the

match receive.18Given this policy of the firm, the worker decides whether to

accept the match and to work this period for E[θ|(θ + u)] or to refuse the offer

and draw a new match parameter θ′ and noisy observation on it, (θ′ + u′),

next period. If the worker decides to accept the offer in the first period, then

in the second period both the firm and the worker are assumed to observe the

true value of θ . This situation corresponds to that in which both sides learn

about each other and about the quality of the match. In the second period the

firm offers to pay the worker θ then and forever more. The worker next decides

whether to accept this offer or to quit, be unemployed this period, and draw a

new match parameter and a noisy observation on it next period.

We can conveniently think of this process as having three stages. Stage 1 is

the “predraw” stage, in which a previously unemployed worker has yet to draw

the one match parameter and the noisy observation on it that he is entitled to

draw after being unemployed the previous period. We let Q denote the expected

present value of wages, before drawing, of a worker who was unemployed last

period and who behaves optimally. The second stage of the process occurs after

the worker has drawn a match parameter θ , has received the noisy observation

of (θ + u) on it, and has received the firm’s wage offer of E[θ|(θ + u)] for this

period. At this stage, the worker decides whether to accept this wage for this

period and the prospect of receiving θ in all subsequent periods. The third

stage occurs in the next period, when the worker and firm discover the true

value of θ and the worker must decide whether to work at θ this period and in

all subsequent periods that he remains at this job (match).

18 Jovanovic assumed firms to be risk neutral and to maximize the expected present value

of profits. They compete for workers by offering wage contracts. In a long-run equilibrium

the payments practices of each firm would be well understood, and this fact would support

the described implicit contract as a competitive equilibrium.
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We now add some more specific assumptions about the probability distri-

bution of θ and u . We assume that θ and u are independently distributed

random variables. Both are normally distributed, θ being normal with mean µ

and variance σ2
0 , and u being normal with mean 0 and variance σ2

u . Thus, we

write

θ ∼ N
(
µ, σ2

0

)
, u ∼ N

(
0, σ2

u

)
. (6.8.1)

In the first period, after drawing a θ , the worker and firm both observe the

noise-ridden version of θ , y = θ + u . Both worker and firm are interested in

making inferences about θ , given the observation (θ + u). They are assumed

to use Bayes’ law and to calculate the posterior probability distribution of θ ,

that is, the probability distribution of θ conditional on (θ+u). The probability

distribution of θ , given θ + u = y , is known to be normal, with mean m0 and

variance σ2
1 . Using the Kalman filtering formula in chapter 2, we have19

m0 = E (θ|y) = E (θ) +
cov (θ, y)

var (y)
[y − E (y)]

= µ+
σ2
0

σ2
0 + σ2

u

(y − µ) ≡ µ+K0 (y − µ) ,

σ2
1 = E

[
(θ −m0)

2 |y
]
=

σ2
0

σ2
0 + σ2

u

σ2
u = K0σ

2
u .

(6.8.2)

After drawing θ and observing y = θ + u the first period, the firm is assumed

to offer the worker a wage of m0 = E[θ|(θ + u)] the first period and a promise

to pay θ for the second period and thereafter. The worker has the choice of

accepting or rejecting the offer.

From equation (6.8.2) and the property that the random variable y − µ =

θ+ u− µ is normal, with mean zero and variance (σ2
0 + σ2

u), it follows that m0

is itself normally distributed, with mean µ and variance σ4
0/(σ

2
0 + σ2

u) = K0σ
2
0 :

m0 ∼ N
(
µ,K0σ

2
0

)
. (6.8.3)

Note that K0σ
2
0 < σ2

0 , so that m0 has the same mean but a smaller variance

than θ .

19 In the special case in which random variables are jointly normally distributed, linear

least-squares projections equal conditional expectations.
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6.8.1. Recursive formulation and solution

The worker seeks to maximize the expected present value of wages. We now

proceed to solve the worker’s problem by working backward. At stage 3, the

worker knows θ and is confronted by the firm with an offer to work this period

and forever more at a wage of θ . We let J(θ) be the expected present value of

wages of a worker at stage 3 who has a known match θ in hand and who behaves

optimally. The worker who accepts the match this period receives θ this period

and faces the same choice at the same θ next period. (The worker can quit next

period, though it will turn out that the worker who does not quit this period

never will.) Therefore, if the worker accepts the match, the value of match θ

is given by θ + βJ(θ), where β is the discount factor. The worker who rejects

the match must be unemployed this period and must draw a new match next

period. The expected present value of wages of a worker who was unemployed

last period and who behaves optimally is Q . Therefore, the Bellman equation

is J(θ) = max{θ + βJ(θ), βQ} . This equation is graphed in Figure 6.8.1 and

evidently has the solution

J (θ) =

{
θ + βJ (θ) = θ

1−β for θ ≥ θ

βQ for θ ≤ θ.
(6.8.4)

The optimal policy is a reservation wage policy: accept offers θ ≥ θ , and reject

offers θ ≤ θ , where θ satisfies

θ

1− β
= βQ. (6.8.5)

We now turn to the worker’s decision in stage 2, given the decision rule in

stage 3. In stage 2, the worker is confronted with a current wage offer m0 =

E[θ|(θ+u)] and a conditional probability distribution function that we write as

Prob{θ ≤ s|θ + u} = F (s|m0, σ
2
1). (Because the distribution is normal, it can

be characterized by the two parameters m0, σ
2
1 .) We let V (m0) be the expected

present value of wages of a worker at the second stage who has offer m0 in hand

and who behaves optimally. The worker who rejects the offer is unemployed this

period and draws a new match parameter next period. The expected present

value of this option is βQ . The worker who accepts the offer receives a wage of

m0 this period and a probability distribution of wages of F (θ′|m0, σ
2
1) for next

period. The expected present value of this option is m0+β
∫
J(θ′)dF (θ′|m0, σ

2
1).
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Reject the offer Accept the offer

Q

_

J(  )J

Figure 6.8.1: The function J(θ) = max{θ + βJ(θ), βQ} .
The reservation wage in stage 3, θ , satisfies θ/(1− β) = βQ .

The Bellman equation for the second stage therefore becomes

V (m0) = max

{
m0 + β

∫
J (θ′) dF

(
θ′|m0, σ

2
1

)
, βQ

}
. (6.8.6)

Note that both m0 and β
∫
J(θ′)dF (θ′|m0, σ

2
1) are increasing in m0 , whereas

βQ is a constant. For this reason a reservation wage policy will be an optimal

one. The functional equation evidently has the solution

V (m0) =

{
m0 + β

∫
J (θ′) dF

(
θ′|m0, σ

2
1

)
for m0 ≥ m0

βQ for m0 ≤ m0.
(6.8.7)

If we use equation (6.8.7), an implicit equation for the reservation wage m0 is

then

V (m0) = m0 + β

∫
J (θ′) dF

(
θ′|m0, σ

2
1

)
= βQ. (6.8.8)
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Using equations (6.8.8) and (6.8.4), we shall show that m0 < θ , so that the

worker becomes choosier over time with the firm. This force makes wages rise

with tenure.

Using equations (6.8.4) and (6.8.5) repeatedly in equation (6.8.8), we ob-

tain

m0 + β
θ

1− β

∫ θ

−∞

dF
(
θ′|m0, σ

2
1

)
+

β

1− β

∫ ∞

θ

θ′dF
(
θ′|m0, σ

2
1

)

=
θ

1− β
=

θ

1− β

∫ θ

−∞

dF
(
θ′|m0, σ

2
1

)

+
θ

1− β

∫ ∞

θ

dF
(
θ′|m0, σ

2
1

)
.

Rearranging this equation, we get

θ

∫ θ

−∞

dF
(
θ′|m0, σ

2
1

)
−m0 =

1

1− β

∫ ∞

θ

(
βθ′ − θ

)
dF
(
θ′|m0, σ

2
1

)
. (6.8.9)

Now note the identity

θ =

∫ θ

−∞

θdF
(
θ′|m0, σ

2
1

)
+

(
1

1− β
− β

1− β

)∫ ∞

θ

θdF
(
θ′|m0, σ

2
1

)
. (6.8.10)

Adding equation (6.8.10) to (6.8.9) gives

θ −m0 =
β

1− β

∫ ∞

θ

(
θ′ − θ

)
dF
(
θ′|m0, σ

2
1

)
. (6.8.11)

The right side of equation (6.8.11) is positive. The left side is therefore also

positive, so that we have established that

θ > m0. (6.8.12)

Equation (6.8.11) resembles equation (6.3.3) and has a related interpretation.

Given θ and m0 , the right side is the expected benefit of a match m0 , namely,

the expected present value of the match in the event that the match parame-

ter eventually turns out to exceed the reservation match θ so that the match

endures. The left side is the one-period cost of temporarily staying in a match
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paying less than the eventual reservation match value θ : having remained un-

employed for a period in order to have the privilege of drawing the match pa-

rameter θ , the worker has made an investment to acquire this opportunity and

must make a similar investment to acquire a new one. Having only the noisy

observation of (θ + u) on θ , the worker is willing to stay in matches m0 with

m0 < m0 < θ because it is worthwhile to speculate that the match is really

better than it seems now and will seem next period.

Now turning briefly to stage 1, we have defined Q as the predraw expected

present value of wages of a worker who was unemployed last period and who is

about to draw a match parameter and a noisy observation on it. Evidently, Q

is given by

Q =

∫
V (m0) dG

(
m0|µ,K0σ

2
0

)
(6.8.13)

where G(m0|µ,K0σ
2
0) is the normal distribution with mean µ and variance

K0σ
2
0 , which, as we saw before, is the distribution of m0 .

Collecting some of the equations, we see that the worker’s optimal policy

is determined by

J (θ) =

{
θ + βJ (θ) = θ

1−β for θ ≥ θ

βQ for θ ≤ θ
(6.8.14)

V (m0) =

{
m0 + β

∫
J (θ′) dF

(
θ′|m0, σ

2
1

)
for m0 ≥ m0

βQ for m0 ≤ m0

(6.8.15)

θ −m0 =
β

1− β

∫ ∞

θ

(
θ′ − θ

)
dF
(
θ′|m0, σ

2
1

)
(6.8.16)

Q =

∫
V (m0) dG

(
m0|µ,K0σ

2
0

)
. (6.8.17)

To analyze formally the existence and uniqueness of a solution to these equa-

tions, one would proceed as follows. Use equations (6.8.14), (6.8.15), and

(6.8.16) to write a single functional equation in V ,

V (m0) =max

{
m0 + β

∫
max

[
θ

1− β
,

β

∫
V (m′

1)dG
(
m′

1|µ,K0σ
2
0

)
]
dF (θ|m0, σ

2
1) ,

β

∫
V (m′

1)dG
(
m′

1|µ,K0σ
2
0

)
}
.
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The expression on the right defines an operator, T , mapping continuous

functions V into continuous functions TV . This functional equation can be

expressed V = TV . The operator T can be directly verified to satisfy the

following two properties: (1) it is monotone, that is, v(m) ≥ z(m) for all

m implies (Tv)(m) ≥ (Tz)(m) for all m ; (2) for all positive constants c ,

T (v+c) ≤ Tv+βc . These are Blackwell’s sufficient conditions for the functional

equation Tv = v to have a unique continuous solution. See Appendix A on

functional analysis (see Technical Appendixes).

6.8.2. Endogenous statistics

We now proceed to calculate probabilities and expectations of some interesting

events and variables. The probability that a previously unemployed worker

accepts an offer is given by

Prob{m0 ≥ m0} =

∫ ∞

m0

dG
(
m0|µ,K0σ

2
0

)
.

The probability that a previously unemployed worker accepts an offer and then

quits the second period is given by

Prob{
(
θ ≤ θ

)
∩ (m0 ≥ m0)} =

∫ ∞

m0

∫ θ

−∞

dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)
.

The probability that a previously unemployed worker accepts an offer the first

period and also elects not to quit the second period is given by

Prob{
(
θ ≥ θ

)
∩ (m0 ≥ m)} =

∫ ∞

m0

∫ ∞

θ

dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)
.

The mean wage of those employed the first period is given by

w1 =

∫ ∞

m0

m0 dG
(
m0|µ,K0σ

2
0

)

∫ ∞

m0

dG
(
m0|µ,K0σ

2
0

) , (6.8.18)

whereas the mean wage of those workers who are in the second period of tenure

is given by

w2 =

∫ ∞

m0

∫ ∞

θ

θ dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)

∫ ∞

m0

∫ ∞

θ

dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

) . (6.8.19)
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We shall now prove that w2 > w1 , so that wages rise with tenure. After

substituting m0 ≡
∫
θdF (θ|m0, σ

2
1) into equation (6.8.18),

w1 =

∫ ∞

m0

∫ ∞

−∞

θ dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)

∫ ∞

m0

dG
(
m0|µ,K0σ

2
0

)

=
1∫ ∞

m0

dG
(
m0|µ,K0σ

2
0

)

{∫ ∞

m0

∫ θ

−∞

θ dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)

+ w2

∫ ∞

m0

∫ ∞

θ

dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)
}

<

∫ ∞

m0

{
θ F

(
θ|m0, σ

2
1

)
+ w2

[
1− F

(
θ|m0, σ

2
1

)]}
dG
(
m0|µ,K0σ

2
0

)

∫ ∞

m0

dG
(
m0|µ,K0σ

2
0

)

< w2.

It is quite intuitive that the mean wage of those workers who are in the second

period of tenure must exceed the mean wage of all employed in the first period.

The former group is a subset of the latter group where workers with low pro-

ductivities, θ < θ , have left. Since the mean wages are equal to the true average

productivity in each group, it follows that w2 > w1 .

The model thus implies that “wages rise with tenure,” both in the sense

that mean wages rise with tenure and in the sense that θ > m0 , which asserts

that the lower bound on second-period wages exceeds the lower bound on first-

period wages. That wages rise with tenure was observation 1 that Jovanovic

sought to explain.

Jovanovic’s model also explains observation 2, that quits are negatively

correlated with tenure. The model implies that quits occur between the first

and second periods of tenure. Having decided to stay for two periods, the worker

never quits.

The model also accounts for observation 3, namely, that the probability

of a subsequent quit is negatively correlated with the current wage rate. The

probability of a subsequent quit is given by

Prob{θ′ < θ|m0} = F
(
θ|m0, σ

2
1

)
,
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which is evidently negatively correlated with m0 , the first-period wage. Thus,

the model explains each observation that Jovanovic sought to interpret. In the

version of the model that we have studied, a worker eventually becomes perma-

nently matched with probability 1. If we were studying a population of such

workers of fixed size, all workers would eventually be absorbed into the state of

being permanently matched. To provide a mechanism for replenishing the stock

of unmatched workers, one could combine Jovanovic’s model with the “firing”

model in section 6.3.5. By letting matches θ “go bad” with probability λ each

period, one could presumably modify Jovanovic’s model to get the implication

that, with a fixed population of workers, a fraction would remain unmatched

each period because of the dissolution of previously acceptable matches.

6.9. A longer horizon version of Jovanovic’s model

Here we consider a T +1 period version of Jovanovic’s model, in which learning

about the quality of the match continues for T periods before the quality of

the match is revealed by “nature.” (Jovanovic assumed that T = ∞ .) We use

the recursive projection technique (the Kalman filter) of chapter 2 to handle

the firm’s and worker’s sequential learning. The prediction of the true match

quality can then easily be updated with each additional noisy observation.

A firm-worker pair jointly draws a match parameter θ at the start of the

match, which we call the beginning of period 0. The value θ is revealed to

the pair only at the beginning of the (T + 1)th period of the match. After θ

is drawn but before the match is consummated, the firm-worker pair observes

y0 = θ + u0 , where u0 is random noise. At the beginning of each period of the

match, the worker-firm pair draws another noisy observation yt = θ + ut on

the match parameter θ . The worker then decides whether or not to continue

the match for the additional period. Let yt = {y0, . . . , yt} be the firm’s and

worker’s information set at time t . We assume that θ and ut are independently

distributed random variables with θ ∼ N (µ,Σ0) and ut ∼ N (0, σ2
u). For t ≥ 0

define mt = E[θ|yt] and m−1 = µ . The conditional means mt and variances

E(θ −mt)
2 = Σt+1 can be computed with the Kalman filter via the formulas

from chapter 2:

mt = (1−Kt)mt−1 +Ktyt (6.9.1a)
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Kt =
Σt

Σt +R
(6.9.1b)

Σt+1 =
ΣtR

Σt +R
, (6.9.1c)

where R = σ2
u and Σ0 is the unconditional variance of θ . The recursions are

to be initiated from m−1 = µ , and given Σ0 .

Using the formulas from chapter 2, we have that conditional on yt , mt+1 ∼
N (mt,Kt+1Σt+1) and θ ∼ N (mt,Σt+1) where Σ0 is the unconditional variance

of θ .

6.9.1. The Bellman equations

For t ≥ 0, let vt(mt) be the value of the worker’s problem at the beginning of

period t for a worker who optimally estimates that the match value is mt after

having observed yt . At the start of period T + 1, we suppose that the value of

the match is revealed without error. Thus, at time T , θ ∼ N (mT ,ΣT+1). The

firm-worker pair estimates θ by mt for t = 0, . . . , T , and by θ for t ≥ T + 1.

Then the following functional equations characterize the solution of the problem:

vT+1 (θ) = max

{
θ

1− β
, βQ

}
, (6.9.2)

vT (m) = max
{
m+ β

∫
vT+1 (θ) dF (θ | m,ΣT+1) , βQ

}
, (6.9.3)

vt (m) = max
{
m+ β

∫
vt+1 (m

′) dF (m′|m,Kt+1Σt+1) , βQ
}
,

t = 0, . . . , T − 1, (6.9.4)

Q =

∫
v0 (m) dF (m|µ,K0Σ0) , (6.9.5)

with Kt and Σt from the Kalman filter. Starting from vT+1 and reasoning

backward, it is evident that the worker’s optimal policy is to set reservation

wages mt, t = 0, . . . , T that satisfy

mT+1 = θ = β (1− β)Q ,

mT + β

∫
vT+1 (θ) dF (θ|mT ,ΣT+1) = βQ , (6.9.6)

mt + β

∫
vt+1 (m

′) dF (m′ | mt,Kt+1Σt+1) = βQ , t = 1, . . . , T − 1 .
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To compute a solution to the worker’s problem, we can define a mapping

from Q into itself, with the property that a fixed point of the mapping is the

optimal value of Q . Here is an algorithm:

a. Guess a value of Q , say Qi with i = 1.

b. Given Qi , compute sequentially the value functions in equations (6.9.2)

through (6.9.4). Let the solutions be denoted viT+1(θ) and vit(m) for t =

0, . . . , T .

c. Given vi1(m), evaluate equation (6.9.5) and call the solution Q̃i .

d. For a fixed “relaxation parameter” g ∈ (0, 1), compute a new guess of Q

from

Qi+1 = gQi + (1− g) Q̃i .

e. Iterate on this scheme to convergence.

We now turn to the case where the true θ is never revealed by nature,

that is, T = ∞ . Note that (Σt+1)
−1 = (σ2

u)
−1 + (Σt)

−1 , so Σt+1 < Σt and

Σt+1 → 0 as t→ ∞ . In other words, the accuracy of the prediction of θ becomes

arbitrarily good as the information set yt becomes large. Consequently, the

firm and worker eventually learn the true θ , and the value function “at infinity”

becomes

v∞ (θ) = max

{
θ

1− β
, βQ

}
,

and the Bellman equation for any finite tenure t is given by equation (6.9.4),

and Q in equation (6.9.5) is the value of an unemployed worker. The optimal

policy is a reservation wage mt , one for each tenure t . In fact, in the absence

of a final date T + 1 when θ is revealed by nature, the solution is actually a

time-invariant policy function m(σ2
t ) with an acceptance and a rejection region

in the space of (m,σ2).

To compute a numerical solution when T = ∞ , we would still have to rely

on the procedure that we have outlined based on the assumption of some finite

date when the true θ is revealed, say in period T̂ + 1. The idea is to choose

a sufficiently large T̂ so that the conditional variance of θ at time T̂ , σ2
T̂
, is

close to zero. We then examine the approximation that σ2
T̂+1

is equal to zero.

That is, equations (6.9.2) and (6.9.3) are used to truncate an otherwise infinite

series of value functions.
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6.10. Concluding remarks

The situations analyzed in this chapter are ones in which a currently unem-

ployed worker rationally chooses to refuse an offer to work, preferring to remain

unemployed today in exchange for better prospects tomorrow. The worker is

voluntarily unemployed in one sense, having chosen to reject the current draw

from the distribution of offers. In this model, the activity of unemployment is

an investment incurred to improve the situation faced in the future. A theory

in which unemployment is voluntary permits an analysis of the forces imping-

ing on the choice to remain unemployed. Thus we can study the response of

the worker’s decision rule to changes in the distribution of offers, the rate of

unemployment compensation, the number of offers per period, and so on.

Chapter 23 studies the optimal design of unemployment compensation.

That issue is a trivial one in the present chapter with risk-neutral agents and

no externalities. Here the government should avoid any policy that affects the

workers’ decision rules since it would harm efficiency, and the first-best way

of pursuing distributional goals is through lump-sum transfers. In contrast,

chapter 23 assumes risk-averse agents and incomplete insurance markets, which

together with information asymmetries, make for an intricate contract design

problem in the provision of unemployment insurance.

Chapter 29 presents various equilibrium models of search and matching. We

study workers searching for jobs in an island model, workers and firms forming

matches in a model with a “matching function,” and how a medium of exchange

can overcome the problem of “double coincidence of wants” in a search model

of money.
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A. More numerical dynamic programming

This appendix describes two more examples using the numerical methods of

chapter 4.

6.A.1. Example 4: search

An unemployed worker wants to maximize E0

∑∞
t=0 β

tyt where yt = w if the

worker is employed at wage w , yt = 0 if the worker is unemployed, and β ∈
(0, 1). Each period an unemployed worker draws a positive wage from a discrete-

state Markov chain with transition matrix P . Thus, wage offers evolve according

to a Markov process with transition probabilities given by

P (i, j) = Prob (wt+1 = w̃j |wt = w̃i) .

Once he accepts an offer, the worker works forever at the accepted wage. There

is no firing or quitting. Let v be an (n × 1) vector of values vi representing

the optimal value of the problem for a worker who has offer wi, i = 1, . . . , n in

hand and who behaves optimally. The Bellman equation is

vi = max
accept,reject





wi
1− β

, β

n∑

j=1

Pijvj





or

v = max{w̃/ (1− β) , βPv}.

Here w̃ is an (n × 1) vector of possible wage values. This matrix equation

can be solved using the numerical procedures described earlier. The optimal

policy depends on the structure of the Markov chain P . Under restrictions on

P making w positively serially correlated, the optimal policy has the following

reservation wage form: there is a w such that the worker should accept an offer

w if w ≥ w .
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6.A.2. Example 5: a Jovanovic model

Here is a simplified version of the search model of Jovanovic (1979a). A newly

unemployed worker draws a job offer from a distribution given by µi = Prob(w1 =

w̃i), where w1 is the first-period wage. Let µ be the (n × 1) vector with ith

component µi . After an offer is drawn, subsequent wages associated with the

job evolve according to a Markov chain with time-varying transition matrices

Pt (i, j) = Prob (wt+1 = w̃j |wt = w̃i) ,

for t = 1, . . . , T . We assume that for times t > T , the transition matrices

Pt = I , so that after T a job’s wage does not change anymore with the passage

of time. We specify the Pt matrices to capture the idea that the worker-firm

pair is learning more about the quality of the match with the passage of time.

For example, we might set

Pt =




1− qt qt 0 0 . . . 0 0

qt 1− 2qt qt 0 . . . 0 0

0 qt 1− 2qt qt . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 1− 2qt qt

0 0 0 0 . . . qt 1− qt




,

where q ∈ (0, 1). In the following numerical examples, we use a slightly more

general form of transition matrix in which (except at endpoints of the distribu-

tion),
Prob (wt+1 = w̃k±m|wt = w̃k) = Pt (k, k ±m) = qt

Pt (k, k) = 1− 2qt.
(6.A.1)

Here m ≥ 1 is a parameter that indexes the spread of the distribution.

At the beginning of each period, a previously matched worker is exposed

with probability λ ∈ (0, 1) to the event that the match dissolves. We then have

a set of Bellman equations

vt = max{w̃ + β (1− λ)Ptvt+1 + βλQ, βQ + c}, (6.A.2a)

for t = 1, . . . , T, and

vT+1 = max{w̃ + β (1− λ) vT+1 + βλQ, βQ + c}, (6.A.2b)
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Q = µ′v1 ⊗ 1

c = c⊗ 1

where ⊗ is the Kronecker product, and 1 is an (n × 1) vector of ones. These

equations can be solved by using calculations of the kind described previously.

The optimal policy is to set a sequence of reservation wages {wj}Tj=1 .

Wage distributions

We can use recursions to compute probability distributions of wages at tenures

1, 2, . . . , n . Let the reservation wage for tenure j be wj ≡ w̃ρ(j) , where ρ(j) is

the index associated with the cutoff wage. For i ≥ ρ(1), define

δ1 (i) = Prob {w1 = w̃i | w1 ≥ w1} =
µi∑n

h=ρ(1) µh
.

Then

γ2 (j) = Prob {w2 = w̃j | w1 ≥ w1} =
n∑

i=ρ(1)

P1 (i, j) δ1 (i) .

For i ≥ ρ(2), define

δ2 (i) = Prob{w2 = w̃i | w2 ≥ w2 ∩ w1 ≥ w1}

or

δ2 (i) =
γ2 (i)∑n

h=ρ(2) γ2 (h)
.

Then

γ3 (j) = Prob{w3 = w̃j | w2 ≥ w2 ∩ w1 ≥ w1} =

n∑

i=ρ(2)

P2 (i, j) δ2 (i) .

Next, for i ≥ ρ(3), define δ3(i) = Prob{w3 = w̃i | (w3 ≥ w3)∩(w2 ≥ w2)∩(w1 ≥
w1)} . Then

δ3 (i) =
γ3 (i)∑n

h=ρ(3) γ3 (h)
.

Continuing in this way, we can define the wage distributions δ1(i), δ2(i),

δ3(i), . . . . The mean wage at tenure k is given by

∑

i≥ρ(k)

w̃iδk (i) .
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Separation probabilities

The probability of rejecting a first period offer is Q(1) =
∑

h<ρ(1) µh . The prob-

ability of separating at the beginning of period j ≥ 2 is Q(j) =
∑
h<ρ(j) γj(h).

Numerical examples

Figures 6.A.1, 6.A.2, and 6.A.3 report some numerical results for three versions

of this model. For all versions, we set β = .95, c = 0, q = .5, and T + 1 = 21.

For all three examples, we used a wage grid with 60 equispaced points on the

interval [0, 10].

For the initial distribution µ we used the uniform distribution. We used

a sequence of transition matrices of the form (6.A.1), with a “gap” parameter

of m . For the first example, we set m = 6 and λ = 0, while the second sets

m = 10 and λ = 0 and third sets m = 10 and λ = .1.

Figure 6.A.1 shows the reservation wage falls as m increases from 6 to 10,

and that it falls further when the probability of being fired λ rises from zero

to .1. Figure 6.A.2 shows the same pattern for average wages. Figure 6.A.3

displays quit probabilities for the first two models. They fall with tenure, with

shapes and heights that depend to some degree on m,λ .

Exercises

Exercise 6.1 Being unemployed with a chance of an offer

An unemployed worker samples wage offers on the following terms: each period,

with probability φ , 1 > φ > 0, she receives no offer (we may regard this as a

wage offer of zero forever). With probability (1−φ) she receives an offer to work

for w forever, where w is drawn from a cumulative distribution function F (w).

Assume that F (0) = 0, F (B) = 1 for some B > 0. Successive draws across

periods are independently and identically distributed. The worker chooses a

strategy to maximize

E

∞∑

t=0

βtyt, where 0 < β < 1,
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Figure 6.A.1: Reservation wages as a function of tenure for

model with three different parameter settings [m = 6, λ = 0]

(the dots), [m = 10, λ = 0] (the line with circles), and [m =

10, λ = .1] (the dashed line).
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Figure 6.A.2: Mean wages as a function of tenure for model

with three different parameter settings [m = 6, λ = 0] (the

dots), [m = 10, λ = 0] (the line with circles), and [m =

10, λ = .1] (the dashed line).
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Figure 6.A.3: Quit probabilities as a function of tenure for

Jovanovic model with [m = 6, λ = 0] (line with dots) and

[m = 10, λ = .1] (the line with circles).

yt = w if the worker is employed, and yt = c if the worker is unemployed.

Here c is unemployment compensation, and w is the wage at which the worker

is employed. Assume that, having once accepted a job offer at wage w , the

worker stays in the job forever.

Let v(w) be the expected value of
∑∞
t=0 β

tyt for an unemployed worker who

has offer w in hand and who behaves optimally. Write the Bellman equation

for the worker’s problem.

Exercise 6.2 Two offers per period

Consider an unemployed worker who each period can draw two independently

and identically distributed wage offers from the cumulative probability distri-

bution function F (w). The worker will work forever at the same wage after

having once accepted an offer. In the event of unemployment during a period,

the worker receives unemployment compensation c . The worker derives a de-

cision rule to maximize E
∑∞

t=0 β
tyt , where yt = w or yt = c , depending on

whether she is employed or unemployed. Let v(w) be the value of E
∑∞
t=0 β

tyt

for a currently unemployed worker who has best offer w in hand.

a. Formulate the Bellman equation for the worker’s problem.
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b. Prove that the worker’s reservation wage is higher than it would be had

the worker faced the same c and been drawing only one offer from the same

distribution F (w) each period.

Exercise 6.3 A random number of offers per period

An unemployed worker is confronted with a random number, n , of job offers

each period. With probability πn , the worker receives n offers in a given period,

where πn ≥ 0 for n ≥ 1, and
∑N

n=1 πn = 1 for N < +∞ . Each offer is drawn

independently from the same distribution F (w). Assume that the number of

offers n is independently distributed across time. The worker works forever at

wage w after having accepted a job and receives unemployment compensation

of c during each period of unemployment. He chooses a strategy to maximize

E
∑∞

t=0 β
tyt where yt = c if he is unemployed, yt = w if he is employed.

Let v(w) be the value of the objective function of an unemployed worker

who has best offer w in hand and who proceeds optimally. Formulate the

Bellman equation for this worker.

Exercise 6.4 Cyclical fluctuations in number of job offers

Modify exercise 6.3 as follows: Let the number of job offers n follow a Markov

process, with

Prob{Number of offers next period = m|Number of offers this period = n}
= πmn, m = 1, . . . , N, n = 1, . . . , N

N∑

m=1

πmn = 1 for n = 1, . . . , N.

Here [πmn] is a “stochastic matrix” generating a Markov chain. Keep all other

features of the problem as in exercise 6.3 . The worker gets n offers per period,

where n is now generated by a Markov chain so that the number of offers is

possibly correlated over time.

a. Let v(w, n) be the value of E
∑∞
t=0 β

tyt for an unemployed worker who has

received n offers this period, the best of which is w . Formulate the Bellman

equation for the worker’s problem.

b. Show that the optimal policy is to set a reservation wage w(n) that depends

on the number of offers received this period.
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Exercise 6.5 Choosing the number of offers

An unemployed worker must choose the number of offers n to solicit. At a cost

of k(n) the worker receives n offers this period. Here k(n + 1) > k(n) for

n ≥ 1. The number of offers n must be chosen in advance at the beginning

of the period and cannot be revised during the period. The worker wants to

maximize E
∑∞

t=0 β
tyt . Here yt consists of w each period she is employed but

not searching, [w − k(n)] the first period she is employed but searches for n

offers, and [c − k(n)] each period she is unemployed but solicits and rejects n

offers. The offers are each independently drawn from F (w). The worker who

accepts an offer works forever at wage w .

Let Q be the value of the problem for an unemployed worker who has not

yet chosen the number of offers to solicit. Formulate the Bellman equation for

this worker.

Exercise 6.6 Mortensen externality

Two parties to a match (say, worker and firm) jointly draw a match parameter θ

from a c.d.f. F (θ). Once matched, they stay matched forever, each one deriving

a benefit of θ per period from the match. Each unmatched pair of agents can

influence the number of offers received in a period in the following way. The

worker receives n offers per period, where n = f(c1+ c2) and c1 represents the

resources the worker devotes to searching and c2 represents the resources the

typical firm devotes to searching. Symmetrically, the representative firm receives

n offers per period where n = f(c1 + c2). (We shall define the situation so that

firms and workers have the same reservation θ so that there is never unrequited

love.) Both c1 and c2 must be chosen at the beginning of the period, prior

to searching during the period. Firms and workers have the same preferences,

given by the expected present value of the match parameter θ , net of search

costs. The discount factor β is the same for worker and firm.

a. Consider a Nash equilibrium in which party i chooses ci , taking cj , j 6= i ,

as given. Let Qi be the value for an unmatched agent of type i before the level

of ci has been chosen. Formulate the Bellman equation for agents of types 1

and 2.

b. Consider the social planning problem of choosing c1 and c2 sequentially so

as to maximize the criterion of λ times the utility of agent 1 plus (1−λ) times

the utility of agent 2, 0 < λ < 1. Let Q(λ) be the value for this problem for two
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unmatched agents before c1 and c2 have been chosen. Formulate the Bellman

equation for this problem.

c. Comparing the results in a and b, argue that, in the Nash equilibrium, the

optimal amount of resources has not been devoted to search.

Exercise 6.7 Variable labor supply

An unemployed worker receives each period a wage offer w drawn from the

distribution F (w). The worker has to choose whether to accept the job—

and therefore to work forever—or to search for another offer and collect c in

unemployment compensation. The worker who decides to accept the job must

choose the number of hours to work in each period. The worker chooses a

strategy to maximize

E

∞∑

t=0

βtu (yt, lt) , where 0 < β < 1,

and yt = c if the worker is unemployed, and yt = w(1 − lt) if the worker is

employed and works (1 − lt) hours; lt is leisure with 0 ≤ lt ≤ 1.

Analyze the worker’s problem. Argue that the optimal strategy has the

reservation wage property. Show that the number of hours worked is the same

in every period.

Exercise 6.8 Wage growth rate and the reservation wage

An unemployed worker receives each period an offer to work for wage wt forever,

where wt = w in the first period and wt = φtw after t periods on the job.

Assume φ > 1, that is, wages increase with tenure. The initial wage offer is

drawn from a distribution F (w) that is constant over time (entry-level wages are

stationary); successive drawings across periods are independently and identically

distributed.

The worker’s objective function is to maximize

E

∞∑

t=0

βtyt, where 0 < β < 1,

and yt = wt if the worker is employed and yt = c if the worker is unemployed,

where c is unemployment compensation. Let v(w) be the optimal value of the

objective function for an unemployed worker who has offer w in hand. Write
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the Bellman equation for this problem. Argue that, if two economies differ only

in the growth rate of wages of employed workers, say φ1 > φ2 , the economy

with the higher growth rate has the smaller reservation wage. Note: Assume

that φiβ < 1, i = 1, 2.

Exercise 6.9 Search with a finite horizon

Consider a worker who lives two periods. In each period the worker, if unem-

ployed, receives an offer of lifetime work at wage w , where w is drawn from a

distribution F . Wage offers are identically and independently distributed over

time. The worker’s objective is to maximize E{y1 + βy2} , where yt = w if

the worker is employed and is equal to c—unemployment compensation—if the

worker is not employed.

Analyze the worker’s optimal decision rule. In particular, establish that the

optimal strategy is to choose a reservation wage in each period and to accept

any offer with a wage at least as high as the reservation wage and to reject offers

below that level. Show that the reservation wage decreases over time.

Exercise 6.10 Finite horizon and mean-preserving spread

Consider a worker who draws every period a job offer to work forever at wage w .

Successive offers are independently and identically distributed drawings from a

distribution Fi(w), i = 1, 2. Assume that F1 has been obtained from F2 by a

mean-preserving spread. The worker’s objective is to maximize

E

T∑

t=0

βtyt, 0 < β < 1,

where yt = w if the worker has accepted employment at wage w and is zero

otherwise. Assume that both distributions, F1 and F2 , share a common upper

bound, B .

a. Show that the reservation wages of workers drawing from F1 and F2 coincide

at t = T and t = T − 1.

b. Argue that for t ≤ T − 2 the reservation wage of the workers that sample

wage offers from the distribution F1 is higher than the reservation wage of the

workers that sample from F2 .

c. Now introduce unemployment compensation: the worker who is unemployed

collects c dollars. Prove that the result in part a no longer holds; that is, the
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reservation wage of the workers that sample from F1 is higher than the one

corresponding to workers that sample from F2 for t = T − 1.

Exercise 6.11 Pissarides’ analysis of taxation and variable search in-

tensity

An unemployed worker receives each period a zero offer (or no offer) with prob-

ability [1− π(e)] . With probability π(e) the worker draws an offer w from the

distribution F . Here e stands for effort—a measure of search intensity—and

π(e) is increasing in e . A worker who accepts a job offer can be fired with

probability α , 0 < α < 1. The worker chooses a strategy, that is, whether to

accept an offer or not and how much effort to put into search when unemployed,

to maximize

E
∞∑

t=0

βtyt, 0 < β < 1,

where yt = w if the worker is employed with wage w and yt = 1− e+ z if the

worker spends e units of leisure searching and does not accept a job. Here z is

unemployment compensation. For the worker who searched and accepted a job,

yt = w − e − T (w); that is, in the first period the wage is net of search costs.

Throughout, T (w) is the amount paid in taxes when the worker is employed.

We assume that w − T (w) is increasing in w . Assume that w − T (w) = 0 for

w = 0, that if e = 0, then π(e) = 0—that is, the worker gets no offers—and

that π′(e) > 0, π′′(e) < 0.

a. Analyze the worker’s problem. Establish that the optimal strategy is to

choose a reservation wage. Display the condition that describes the optimal

choice of e , and show that the reservation wage is independent of e .

b. Assume that T (w) = t(w − a) where 0 < t < 1 and a > 0. Show that

an increase in a decreases the reservation wage and increases the level of effort,

increasing the probability of accepting employment.

c. Show under what conditions a change in t has the opposite effect.

Exercise 6.12 Search and financial income

An unemployed worker receives every period an offer to work forever at wage

w , where w is drawn from the distribution F (w). Offers are independently

and identically distributed. Every agent has another source of income, which

we denote ǫt , that may be regarded as financial income. In every period all
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agents get a realization of ǫt , which is independently and identically distributed

over time, with distribution function G(ǫ). We also assume that wt and ǫt are

independent. The objective of a worker is to maximize

E

∞∑

t=0

βtyt, 0 < β < 1,

where yt = w+φǫt if the worker has accepted a job that pays w , and yt = c+ǫt

if the worker remains unemployed. We assume that 0 < φ < 1 to reflect the

fact that an employed worker has less time to collect financial income. Assume

1 > Prob{w ≥ c+ (1− φ)ǫ} > 0.

Analyze the worker’s problem. Write down the Bellman equation, and show

that the reservation wage increases with the level of financial income.

Exercise 6.13 Search and asset accumulation

A previously unemployed worker receives an offer to work forever at wage w ,

but only if he chooses to do so, where w is drawn from the distribution F (w).

Previously employed workers receive no offers to work. But a previously em-

ployed worker is free to quit in any period, receive unemployment compensation

that period, and so become a previously unemployed worker in the following

period. Wage offers are identically and independently distributed over time.

The worker maximizes

E

∞∑

t=0

βt (u (ct) + v (lt)) , 0 < β < 1,

where ct is consumption and lt is leisure. Assume that u(c) is strictly increas-

ing, twice continuously differentiable, bounded, and strictly concave, while v(l)

is strictly increasing, twice continuously differentiable, and strictly concave; that

ct ≥ 0; and that lt ∈ {0, 1} , so that the person can either work full time (here

lt = 0) or not at all (here lt = 1). A gross return on assets at held between t

and t+1 is Rt+1 and is i.i.d. with c.d.f. H(R). The budget constraint is given

by

at+1 ≤ Rt+1 (at + wt − ct)

if the worker has a job that pays wt . The random gross return Rt+1 is observed

at the beginning of period t + 1 before the worker chooses nt+1, ct+1 . If the

worker is unemployed, the budget constraint is at+1 ≤ Rt+1(at + z − ct) and
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lt = 1. Here z is unemployment compensation. It is assumed that at , the

worker’s asset position, cannot be negative. This is a no-borrowing assumption.

Write a Bellman equation for this problem.

Exercise 6.14 Temporary unemployment compensation

Each period an unemployed worker draws one, and only one, offer to work

forever at wage w . Wages are i.i.d. draws from the c.d.f. F , where F (0) = 0

and F (B) = 1. The worker seeks to maximize E
∑∞
t=0 β

tyt , where yt is the

sum of the worker’s wage and unemployment compensation, if any. The worker

is entitled to unemployment compensation in the amount γ > 0 only during

the first period that she is unemployed. After one period on unemployment

compensation, the worker receives none.

a. Write the Bellman equations for this problem. Prove that the worker’s

optimal policy is a time-varying reservation wage strategy.

b. Show how the worker’s reservation wage varies with the duration of unem-

ployment.

c. Show how the worker’s “hazard of leaving unemployment” (i.e., the proba-

bility of accepting a job offer) varies with the duration of unemployment.

Now assume that the worker is also entitled to unemployment compensation

if she quits a job. As before, the worker receives unemployment compensation

in the amount of γ during the first period of an unemployment spell, and zero

during the remaining part of an unemployment spell. (To qualify again for

unemployment compensation, the worker must find a job and work for at least

one period.)

The timing of events is as follows. At the very beginning of a period, a

worker who was employed in the previous period must decide whether or not to

quit. The decision is irreversible; that is, a quitter cannot return to an old job.

If the worker quits, she draws a new wage offer as described previously, and if

she accepts the offer she immediately starts earning that wage without suffering

any period of unemployment.

d. Write the Bellman equations for this problem. Hint: At the very beginning

of a period, let ve(w) denote the value of a worker who was employed in the

previous period with wage w (before any wage draw in the current period).

Let vu1 (w
′) be the value of an unemployed worker who has drawn wage offer
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w′ and who is entitled to unemployment compensation, if she rejects the offer.

Similarly, let vu+(w
′) be the value of an unemployed worker who has drawn wage

offer w′ but who is not eligible for unemployment compensation.

e. Characterize the three reservation wages, we , wu1 , and wu+ , associated with

the value functions in part d. How are they related to γ ? (Hint: Two of the

reservation wages are straightforward to characterize, while the remaining one

depends on the actual parameterization of the model.)

Exercise 6.15 Seasons, I

An unemployed worker seeks to maximize E
∑∞

t=0 β
tyt , where β ∈ (0, 1), yt is

her income at time t , and E is the mathematical expectation operator. The

person’s income consists of one of two parts: unemployment compensation of

c that she receives each period she remains unemployed, or a fixed wage w

that the worker receives if employed. Once employed, the worker is employed

forever with no chance of being fired. Every odd period (i.e., t = 1, 3, 5, . . .)

the worker receives one offer to work forever at a wage drawn from the c.d.f.

F (W ) = Prob(w ≤ W ). Assume that F (0) = 0 and F (B) = 1 for some

B > 0. Successive draws from F are independent. Every even period (i.e.,

t = 0, 2, 4, . . .), the unemployed worker receives two offers to work forever at a

wage drawn from F . Each of the two offers is drawn independently from F .

a. Formulate the Bellman equations for the unemployed person’s problem.

b. Describe the form of the worker’s optimal policy.

Exercise 6.16 Seasons, II

Consider the following problem confronting an unemployed worker. The worker

wants to maximize

E0

∞∑

0

βtyt, β ∈ (0, 1) ,

where yt = wt in periods in which the worker is employed and yt = c in

periods in which the worker is unemployed, where wt is a wage rate and c is a

constant level of unemployment compensation. At the start of each period, an

unemployed worker receives one and only one offer to work at a wage w drawn

from a c.d.f. F (W ), where F (0) = 0, F (B) = 1 for some B > 0. Successive

draws from F are identically and independently distributed. There is no recall

of past offers. Only unemployed workers receive wage offers. The wage is fixed
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as long as the worker remains in the job. The only way a worker can leave a job

is if she is fired. At the beginning of each odd period (t = 1, 3, . . .), a previously

employed worker faces the probability of π ∈ (0, 1) of being fired. If a worker

is fired, she immediately receives a new draw of an offer to work at wage w . At

each even period (t = 0, 2, . . .), there is no chance of being fired.

a. Formulate a Bellman equation for the worker’s problem.

b. Describe the form of the worker’s optimal policy.

Exercise 6.17 Gittins indexes for beginners

At the end of each period,20 a worker can switch between two jobs, A and B,

to begin the following period at a wage that will be drawn at the beginning of

next period from a wage distribution specific to job A or B, and to the worker’s

history of past wage draws from jobs of either type A or type B. The worker

must decide to stay or leave a job at the end of a period after his wage for this

period on his current job has been received, but before knowing what his wage

would be next period in either job. The wage at either job is described by a

job-specific n-state Markov chain. Each period the worker works at either job

A or job B. At the end of the period, before observing next period’s wage on

either job, he chooses which job to go to next period. We use lowercase letters

(i, j = 1, . . . , n) to denote states for job A, and uppercase letters (I, J = 1, . . . n)

for job B. There is no option of being unemployed.

Let wa(i) be the wage on job A when state i occurs and wb(I) be the wage

on job B when state I occurs. Let A = [Aij ] be the matrix of one-step transition

probabilities between the states on job A, and let B = [Bij ] be the matrix for

job B. If the worker leaves a job and later decides to return to it, he draws

the wage for his first new period on the job from the conditional distribution

determined by his last wage working at that job.

The worker’s objective is to maximize the expected discounted value of his

lifetime earnings, E0

∑∞
t=0 β

tyt , where β ∈ (0, 1) is the discount factor, and

where yt is his wage from whichever job he is working at in period t .

a. Consider a worker who has worked at both jobs before. Suppose that wa(i)

was the last wage the worker receives on job A and wb(I) the last wage on job

B. Write the Bellman equation for the worker.

20 See Gittins (1989) for more general versions of this problem.
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b. Suppose that the worker is just entering the labor force. The first time

he works at job A, the probability distribution for his initial wage is πa =

(πa1, . . . , πan). Similarly, the probability distribution for his initial wage on

job B is πb = (πb1, . . . , πbn) Formulate the decision problem for a new worker,

who must decide which job to take initially. Hint: Let va(i) be the expected

discounted present value of lifetime earnings for a worker who was last in state

i on job A and has never worked on job B; define vb(I) symmetrically.

Exercise 6.18 Jovanovic (1979b)

An employed worker in the tth period of tenure on the current job receives a

wage wt = xt(1 − φt − st) where xt is job-specific human capital, φt ∈ (0, 1)

is the fraction of time that the worker spends investing in job-specific human

capital, and st ∈ (0, 1) is the fraction of time that the worker spends searching

for a new job offer. If the worker devotes st to searching at t , then with

probability π(st) ∈ (0, 1) at the beginning of t + 1 the worker receives a new

job offer to begin working at new job-specific capital level µ′ drawn from the

c.d.f. F (·). That is, searching for a new job offer promises the prospect of

instantaneously reinitializing job-specific human capital at µ′ . Assume that

π′(s) > 0, π′′(s) < 0. While on a given job, job-specific human capital evolves

according to

xt+1 = G (xt, φt) = g (xtφt)− δxt,

where g′(·) > 0, g′′(·) < 0, δ ∈ (0, 1) is a depreciation rate, and x0 = µ where

t is tenure on the job, and µ is the value of the “match” parameter drawn at

the start of the current job. The worker is risk neutral and seeks to maximize

E0

∑∞
τ=0 β

τyτ , where yτ is his wage in period τ .

a. Formulate the worker’s Bellman equation.

b. Describe the worker’s decision rule for deciding whether to accept an offer

µ′ at the beginning of next period.

c. Assume that g(xφ) = A(xφ)α for A > 0, α ∈ (0, 1). Assume that π(s) = s.5 .

Assume that F is a discrete n-valued distribution with probabilities fi ; for

example, let fi = n−1 . Write a Matlab program to solve the Bellman equation.

Compute the optimal policies for φ, s and display them.
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Exercise 6.19 Value function iteration and policy improvement algo-

rithm, donated by Pierre-Olivier Weill

The goal of this exercise is to study, in the context of a specific problem, two

methods for solving dynamic programs: value function iteration and Howard’s

policy improvement. Consider McCall’s model of intertemporal job search.

An unemployed worker draws one offer from a c.d.f. F , with F (0) = 0 and

F (B) = 1, B < ∞ . If the worker rejects the offer, she receives unemployment

compensation c and can draw a new wage offer next period. If she accepts the

offer, she works forever at wage w . The objective of the worker is to maximize

the expected discounted value of her earnings. Her discount factor is 0 < β < 1.

a. Write the Bellman equation. Show that the optimal policy is of the reser-

vation wage form. Write an equation for the reservation wage w∗ .

b. Consider the value function iteration method. Show that at each iteration,

the optimal policy is of the reservation wage form. Let wn be the reservation

wage at iteration n . Derive a recursion for wn . Show that wn converges to w∗

at rate β .

c. Consider Howard’s policy improvement algorithm. Show that at each it-

eration, the optimal policy is of the reservation wage form. Let wn be the

reservation wage at iteration n . Derive a recursion for wn . Show that the rate

of convergence of wn towards w∗ is locally quadratic. Specifically use a Taylor

expansion to show that, for wn close enough to w∗ , there is a constant K such

that wn+1 − w∗ ∼= K(wn − w∗)2 .

Exercise 6.20

Different types of unemployed workers are identical, except that they sample

from different wage distributions. Each period an unemployed worker of type α

draws a single new offer to work forever at a wage w from a cumulative distri-

bution function Fα that satisfies Fα(w) = 0 for w < 0, Fα(0) = α, Fα(B) = 1,

where B > 0 and Fα is a right continuous function mapping [0, B] into [0, 1].

The c.d.f. of a type α worker is given by

Fα (w) =





α for 0 ≤ w ≤ αB ;

w/B for αB < w < B − αB ;

1− α for B − αB ≤ w < B;

1 for w = B
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where α ∈ [0, .5). An unemployed α worker seeks to maximize the expected

value of
∑∞
t=0 β

tyt , where β ∈ (0, 1) and yt = w if the worker is employed

and yt = c if he or she is unemployed, where 0 < c < B is a constant level of

unemployment compensation. By choosing a strategy for accepting or rejecting

job offers, the worker affects the distribution with respect to which the expected

value of
∑∞

t=0 β
tyt is calculated. The worker cannot recall past offers. If a

previously unemployed worker accepts an offer to work at wage w this period,

he must work forever at that wage (there is neither quitting nor firing nor

searching for a new job while employed).

a. Formulate a Bellman equation for a type α worker. Prove that the worker’s

optimal strategy is to set a time-invariant reservation wage.

b. Consider two types of workers, α = 0 and α = .3. Can you tell which type

of worker has a higher reservation wage?

c. Which type of worker would you expect to find a job more quickly?

Exercise 6.21 Searching for the lowest price

A buyer wants to purchase an item at the lowest price, net of total search costs.

At a cost of c > 0 per draw, the buyer can draw an offer to buy the item

at a price p that is drawn from the c.d.f. F (P ) = Prob(p ≤ P ) where P is

a non-decreasing, right-continuous function with F (B) = 0, F (B) = 1, where

0 < B < B < +∞ . All search occurs within one period.

a. Find the buyer’s optimal strategy.

b. Find an expression for the expected value of the purchase price net of all

search costs.

Exercise 6.22 Quits

Each period an unemployed worker draws one offer to work at a nonnegative

wage w , where w is governed by a c.d.f F that satisfies F (0) = 0 and F (B) = 1

for some B > 0. The worker seeks to maximize the expected value of
∑∞
t=0 β

tyt

where yt = w if the worker is employed and c if the worker is unemployed. At

the beginning of each period a worker employed at wage w the previous period is

exposed to a probability of α ∈ (0, 1) of having his job reclassified, which means

that he will be given a new wage w′ drawn from F . A reclassified worker has

the option of working at wage w′ until reclassified again, or quitting, receiving
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unemployment compensation of c this period, and drawing a new wage offer the

next period.

a. Formulate the Bellman equation for an unemployed worker.

b. Describe the decision rule for a previously unemployed worker.

c. Describe the decision rule for quitting or staying for a previously employed

worker.

d. Describe how to compute the probability that a previously employed worker

will quit.

Exercise 6.23 A career ladder

Each period a previously unemployed worker draws one offer to work at a non-

negative wage w , where w is governed by a c.d.f F that satisfies F (0) = 0 and

F (B) = 1 for some B > 0. The worker seeks to maximize the expected value of∑∞
t=0 β

tyt where β ∈ (0, 1) and yt = w if the worker is employed and c if the

worker is unemployed. At the beginning of each period a worker employed at

wage w the previous period is exposed to a probability of α ∈ (0, 1) of getting

a promotion, which means that he will be given a new wage γw where γ > 1.

This new wage will prevail until a next promotion.

a. Formulate a Bellman equation for a previously employed worker.

b. Formulate a Bellman equation for a previously unemployed worker.

c. Describe the decision rule for an unemployed worker.

d. Describe the decision rule for a previously employed worker.

Exercise 6.24 Human capital

A previously unemployed worker draws one offer to work at a wage wh , where

h is his level of human capital and w is drawn from a c.d.f. F where F (0) =

0, F (B) = 1 for B > 0. The worker retains w , but not h , so long as he

remains in his current job (or employment spell). The worker knows his cur-

rent level of h before he draws w . Wage draws are independent over time.

When employed, the worker’s human capital h evolves according to a dis-

crete state Markov chain on the space [h̄1, h̄2, . . . , h̄n] with transition den-

sity He where He(i, j) = Prob[ht+1 = h̄j |ht = h̄i] . When unemployed,

the worker’s human capital h evolves according to a discrete state Markov
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chain on the same space [h̄1, h̄2, . . . , h̄n] with transition density Hu where

Hu(i, j) = Prob[ht+1 = h̄j |ht = h̄i] . The two transition matrices He and

Hu are such that an employed worker’s human capital grows probabilistically

(meaning that it is more likely that next period’s human capital will be higher

than this period’s) and an unemployed worker’s human capital decays proba-

bilistically (meaning that it is more likely that next period’s human capital will

be lower than this period’s). An unemployed worker receives unemployment

compensation of c per period. The worker wants to maximize the expected

value of
∑∞
t=0 β

tyt where yt = wht when employed, and c when unemployed.

At the beginning of each period, employed workers receive their new human cap-

ital realization from the Markov chain He . Then they are free to quit, meaning

that they surrender their previous w , retain their newly realized level of human

capital but immediately become unemployed, and can immediately draw a new

w from F . They can accept that new draw immediately or else choose to be

unemployed for at least one period while waiting for new opportunities to draw

one w offer per period from F .

a. Obtain a Bellman equation or Bellman equations for the worker’s problem.

b. Describe qualitatively the worker’s optimal decision rule. Do you think

employed workers might ever decide to quit?

c. Describe an algorithm to solve the Bellman equation or equations.

Exercise 6.25 Markov wages

Each period, a previously unemployed worker draws one offer to work forever

at wage w . The worker wants to maximize E
∑∞

t=0 β
tyt , where β ∈ (0, 1) and

yt = c > 0 if the worker is unemployed, and yt = w if the worker is employed.

Quitting is not allowed and once hired the worker cannot be fired. Successive

draws of the wage are from a Markov chain with transition probabilities arranged

in the n×n transition matrix P with (i, j) element Pij = Prob(wt+1 = wj |wt =
wi) where w1 < w2 < · · · < wn .

a. Construct a Bellman equation for the worker.

b. Can you prove that the worker’s optimal strategy is to set a reservation

wage?
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c. Assume that β = .95, c = 1, [w1 w2 · · · wn ] = [ 1 2 3 4 5 ] and

P =




.8 .2 0 0 0

.18 .8 .02 0 0

.25 .25 0 .25 .25

0 0 .02 .8 .18

0 0 0 .2 .8



.

Please write a Matlab or R or C++ program to solve the Bellman equation.

Show the optimal policy function and the value function.

d. Assume that all parameters are the same as in part c except for β , which

now equals .99. Please find the optimal policy function and the optimal value

function.

e. Please discuss whether, why, and how your answers to parts c and d differ.

Exercise 6.26 Neal model’s Markov implications

This will be yet another exercise that illustrates the theme that finding the state

is an art. Consider the version of the Neal (1999) career choice model that we

analyzed in the text. In the text, a worker’s state is the job, career pair ǫ, θ

with which the worker enters the period. Knowing the structure of the outcome

and the optimal decision rule, let’s use figure 6.5.2 to partition the state space

(ǫ, θ) into three sets that define the three new states st ∈ {1, 2, 3} that we’ll

use to define the states in a Markov chain. We say that st = 1 if the worker

wants a “new life”, i.e., he wants to draw a new job, career pair next period.

We say that st = 2 if the worker wants a new job, i.e., if he is content with

his career θ but wants to draw a new job ǫ′ next period. We say that st = 3

if the worker plans to remain in his current job, career pair next period. Let

Pij = Prob(st+1 = j|st = i). Assume that the initial probability distribution is

π0 = Prob(s0 = 1) = 1.

a. Show that P has the following structure

P =



1− P12 − P13 P12 P13

0 1− P23 P23

0 0 1




and please tell how to compute the nontrivial elements of P from the information

used to compute figure 6.5.2.
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b. Describe the invariant distribution(s) of the Markov chain (π0, P ).

c. Is the Markov chain ergodic?

d. A labor economist has a panel of quarterly observations on a cohort of N

1995 high school graduates who did not go to college but instead went to work

immediately (so Neal’s model seems to apply). The observations record dates

at which workers switched jobs and whether or not those were also associated

with new occupations. Please describe how the economist might use those data

to estimate the probabilities Pij in Neal’s model.

Exercise 6.27 Neal model with unemployment

Consider the following modification of the Neal (1999) model. A worker chooses

career-job (θ, ǫ) pairs subject to the following conditions. If employed, the

worker’s earnings at time t equal θt + ǫt , where θt is a component specific to

a career and ǫt is a component specific to a particular job. If unemployed, the

worker receives unemployment compensation equal to c . The worker maximizes

E
∑∞

t=0 β
tyt where yt = (θt + ǫt) if the worker is employed and yt = c if the

worker is unemployed. A career is a draw of θ from c.d.f. F ; a job is a draw

of ǫ from c.d.f. G . Successive draws are independent, and G(0) = F (0) = 0,

G(Bǫ) = F (Bθ) = 1. The worker can draw a new career only if he also draws

a new job. However, the worker is free to retain his existing career (θ ), and

to draw a new job (ǫ′ ) next period. The worker decides at the beginning of a

period whether to stay in a career-job pair inherited from the past, stay in the

inherited career but draw a new job for next period , or draw a new career-job

pair (θ′, ǫ′) for next period. If the worker decides to draw either a new θ′ or a

new ǫ′ for next period, he or she must become unemployed this period.

a. Let v(θ, ǫ) be the optimal value of the problem at the beginning of a period

for a worker currently having inherited career-job pair (θ, ǫ) and who is about

to decide whether to decide whether to become unemployed in order to draw a

new career and or job next period. Formulate a Bellman equation.

b. Characterize the worker’s optimal policy.
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Competitive Equilibria and Applications





Chapter 7
Recursive Competitive Equilibrium: I

7.1. An equilibrium concept

This chapter formulates competitive and oligopolistic equilibria in some dynamic

settings. Up to now, we have studied single-agent problems where components

of the state vector not under the control of the agent were taken as given. In

this chapter, we describe multiple-agent settings in which components of the

state vector that one agent takes as exogenous are determined by the deci-

sions of other agents. We study partial equilibrium models of a kind applied

in microeconomics.1 We describe two closely related equilibrium concepts for

such models: a rational expectations or recursive competitive equilibrium, and

a Markov perfect equilibrium. The first equilibrium concept jointly restricts a

Bellman equation and a transition law that is taken as given in that Bellman

equation. The second equilibrium concept leads to pairs (in the duopoly case)

or sets (in the oligopoly case) of Bellman equations and transition equations

that are to be solved by simultaneous backward induction.

Though the equilibrium concepts introduced in this chapter transcend linear

quadratic setups, we choose to present them in the context of linear quadratic

examples because this renders the Bellman equations tractable.

1 For example, see Rosen and Topel (1988) and Rosen, Murphy, and Scheinkman (1994)

– 225 –
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7.2. Example: adjustment costs

This section describes a model of a competitive market with producers who face

adjustment costs.2 In the course of the exposition, we introduce and exploit a

version of the ‘big K , little k ’ trick that is widely used in macroeconomics and

applied economic dynamics.3 The model consists of n identical firms whose

profit function makes them want to forecast the aggregate output decisions of

other firms just like them in order to choose their own output. We assume that

n is a large number so that the output of any single firm has a negligible effect

on aggregate output and, hence, firms are justified in treating their forecast of

aggregate output as unaffected by their own output decisions. Thus, one of n

competitive firms sells output yt and chooses a production plan to maximize

∞∑

t=0

βtRt (7.2.1)

where

Rt = ptyt − .5d (yt+1 − yt)
2

(7.2.2)

subject to y0 being a given initial condition. Here β ∈ (0, 1) is a discount factor,

and d > 0 measures a cost of adjusting the rate of output. The firm is a price

taker. The price pt lies on the inverse demand curve

pt = A0 −A1Yt (7.2.3)

where A0 > 0, A1 > 0 and Yt is the market-wide level of output, being the

sum of output of n identical firms. The firm believes that market-wide output

follows the law of motion

Yt+1 = H0 +H1Yt ≡ H (Yt) , (7.2.4)

where Y0 is a known initial condition. The belief parameters H0, H1 are equi-

librium objects, but for now we proceed on faith and take them as given. The

firm observes Yt and yt at time t when it chooses yt+1 . The adjustment cost

d(yt+1 − yt)
2 gives the firm the incentive to forecast the market price, but since

2 The model is a version of one analyzed by Lucas and Prescott (1971) and Sargent (1987a).

The recursive competitive equilibrium concept was used by Lucas and Prescott (1971) and

described further by Prescott and Mehra (1980).
3 Also see section 12.8 of chapter 12.
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the market price is a function of market output Yt via the demand equation

(7.2.3), this in turn motivates the firm to forecast future values of Y . To state

the firm’s optimization problem completely requires that we specify laws of mo-

tion for all state variables, including ones like Y that it cares about but does

not control. For this reason, the perceived law of motion (7.2.4) for Y is among

the constraints that the firm faces.

Substituting equation (7.2.3) into equation (7.2.2) gives

Rt = (A0 −A1Yt) yt − .5d (yt+1 − yt)
2 .

The firm’s incentive to forecast the market price translates into an incentive to

forecast the level of market output Y . We can write the Bellman equation for

the firm as

v (y, Y ) = max
y′

{
A0y −A1yY − .5d (y′ − y)

2
+ βv (y′, Y ′)

}
(7.2.5)

where the maximization is subject to the perceived law of motion Y ′ = H(Y ).

Here ′ denotes next period’s value of a variable. The Euler equation for the

firm’s problem is

−d (y′ − y) + βvy (y
′, Y ′) = 0. (7.2.6)

Noting that for this problem the control is y′ and applying the Benveniste-

Scheinkman formula from chapter 3 gives

vy (y, Y ) = A0 −A1Y + d (y′ − y) .

Substituting this equation into equation (7.2.6) gives

−d (yt+1 − yt) + β [A0 −A1Yt+1 + d (yt+2 − yt+1)] = 0. (7.2.7)

In the process of solving its Bellman equation, the firm sets an output path

that satisfies equation (7.2.7), taking equation (7.2.4) as given, subject to the

initial conditions (y0, Y0) as well as an extra terminal condition. The terminal

condition is

lim
t→∞

βtytvy (yt, Yt) = 0. (7.2.8)

This is called the transversality condition and acts as a first-order necessary

condition “at infinity.” The firm’s decision rule solves the difference equation

(7.2.7) subject to the given initial condition y0 and the terminal condition
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(7.2.8). Solving Bellman equation (7.2.5) by backward induction automatically

incorporates both equations (7.2.7) and (7.2.8).

The firm’s optimal policy function is

yt+1 = h (yt, Yt) . (7.2.9)

Then with n identical firms, setting Yt = nyt makes the actual law of motion

for output for the market

Yt+1 = nh (Yt/n, Yt) . (7.2.10)

Thus, when firms believe that the law of motion for market-wide output is

equation (7.2.4), their optimizing behavior makes the actual law of motion

equation (7.2.10).

For this model, we adopt the following definition:

Definition: A recursive competitive equilibrium4 of the model with adjust-

ment costs is a value function v(y, Y ), an optimal policy function h(y, Y ), and

a law of motion H(Y ) such that

a. Given H, v(y, Y ) satisfies the firm’s Bellman equation and h(y, Y ) is the

optimal policy function.

b. The law of motion H satisfies H(Y ) = nh(Y/n, Y ).

A recursive competitive equilibrium equates the actual and perceived laws

of motion (7.2.4) and (7.2.10). The firm’s optimum problem induces a mapping

M from a perceived law of motion for output H to an actual law of motion

M(H). The mapping is summarized in equation (7.2.10). The H component

of a rational expectations equilibrium is a fixed point of the operator M .

This is a special case of a recursive competitive equilibrium, to be defined

more generally in section 7.3. How might we find an equilibrium? The mapping

M is not a contraction and there is no guarantee that direct iterations on M
will converge.5 In fact, in many contexts, including the present one, there exist

admissible parameter values for which divergence of iterations on M prevails.

4 This is also often called a rational expectations equilibrium.
5 A literature that studies whether models populated with agents who learn can converge

to rational expectations equilibria features iterations on a modification of the mapping M

that can be approximated as γM+(1−γ)I where I is the identity operator and γ ∈ (0, 1) is

a relaxation parameter. See Marcet and Sargent (1989) and Evans and Honkapohja (2001) for
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The next subsection shows another method that works when the equilibrium

solves an associated planning problem. For convenience, we’ll assume from now

on that the number of firms n is one, while retaining the assumption of price-

taking behavior.

7.2.1. A planning problem

Our approach to computing an equilibrium is to seek to match the Euler equa-

tions of the market problem with those for a planning problem that can be posed

as a single-agent dynamic programming problem. The optimal quantities from

the planning problem are then the recursive competitive equilibrium quantities,

and the equilibrium price is a shadow price in the planning problem.

For convenience we set n = 1. To construct a planning problem, we first

compute the sum St of consumer and producer surplus at time t , defined as

St = S (Yt, Yt+1) =

∫ Yt

0

(A0 −A1x) d x− .5d (Yt+1 − Yt)
2
. (7.2.11)

The first term is the area under the demand curve. The planning problem is to

choose a production plan to maximize

∞∑

t=0

βtS (Yt, Yt+1) (7.2.12)

subject to an initial condition Y0 . The Bellman equation for the planning

problem is

V (Y ) = max
Y ′

{
A0Y − A1

2
Y 2 − .5d (Y ′ − Y )

2
+ βV (Y ′)

}
. (7.2.13)

The Euler equation is

−d (Y ′ − Y ) + βV ′ (Y ′) = 0. (7.2.14)

statements and applications of this approach to establish conditions under which collections

of adaptive agents who use least squares learning converge to a rational expectations equi-

librium. The Marcet-Sargent-Evans-Honkapohja approach provides foundations for a method

that Krusell and Smith (1998) use to approximation a rational expectations equilibrium of an

incomplete-markets economy. See chapter 18.
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Applying the Benveniste-Scheinkman formula gives

V ′ (Y ) = A0 −A1Y + d (Y ′ − Y ) . (7.2.15)

Substituting this into equation (7.2.14) and rearranging gives

βA0 + dYt − [βA1 + d (1 + β)]Yt+1 + dβYt+2 = 0. (7.2.16)

Return to equation (7.2.7) and set yt = Yt for all t . (Remember that we

have set n = 1. When n 6= 1 we have to adjust pieces of the argument for n .)

Notice that with yt = Yt , equations (7.2.16) and (7.2.7) are identical. The Euler

equation for the planning problem matches the second-order difference equation

that we derived by first finding the Euler equation of the representative firm and

substituting into it the expression Yt = nyt that “makes the representative firm

representative”. Thus, if it is appropriate to apply the same terminal conditions

for these two difference equations, which it is, then we have verified that a

solution of the planning problem also is an equilibrium. Setting yt = Yt in

equation (7.2.7) amounts to dropping equation (7.2.4) and instead solving for

the coefficients H0, H1 that make yt = Yt true and that jointly solve equations

(7.2.4) and (7.2.7).

It follows that for this example we can compute an equilibrium by forming

the optimal linear regulator problem corresponding to the Bellman equation

(7.2.13). The optimal policy function for this problem is the law of motion

Y ′ = H(Y ) that a firm faces within a rational expectations equilibrium.6

6 Lucas and Prescott (1971) used the method of this section. The method exploits the

connection between equilibrium and Pareto optimality expressed in the fundamental theorems

of welfare economics. See Mas-Colell, Whinston, and Green (1995).
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7.3. Recursive competitive equilibrium

The equilibrium concept of the previous section is widely used. Following

Prescott and Mehra (1980), it is useful to define the equilibrium concept more

generally as a recursive competitive equilibrium. Let x be a vector of state

variables under the control of a representative agent and let X be the vector

of those same variables chosen by “the market.” Let Z be a vector of other

state variables chosen by “nature,” that is, determined outside the model. The

representative agent’s problem is characterized by the Bellman equation

v (x,X,Z) = max
u

{R (x,X,Z, u) + βv (x′, X ′, Z ′)} (7.3.1)

where ′ denotes next period’s value, and where the maximization is subject to

the restrictions:

x′ = g (x,X,Z, u) (7.3.2)

X ′ = G (X,Z) (7.3.3)

Z ′ = ζ (Z) . (7.3.4)

Here g describes the impact of the representative agent’s controls u on his state

x′ ; G and ζ describe his beliefs about the evolution of the aggregate state. The

solution of the representative agent’s problem is a decision rule

u = h (x,X,Z) . (7.3.5)

To make the representative agent representative, we impose X = x , but

only “after” we have solved the agent’s decision problem. Substituting equation

(7.3.5) and X = xt into equation (7.3.2) gives the actual law of motion

X ′ = GA (X,Z) , (7.3.6)

where GA(X,Z) ≡ g[X,X,Z, h(X,X,Z)] . We are now ready to propose a

definition:

Definition: A recursive competitive equilibrium is a policy function h , an

actual aggregate law of motion GA , and a perceived aggregate law G such that

(a) given G , h solves the representative agent’s optimization problem; and (b)

h implies that GA = G .
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This equilibrium concept is also sometimes called a rational expectations

equilibrium. The equilibrium concept makes G an outcome. The functions giv-

ing the representative agent’s expectations about the aggregate state variables

contribute no free parameters and are outcomes of the analysis. There are no

free parameters that characterize expectations.7

7.4. Equilibrium human capital accumulation

As an example of a recursive competitive equilibrium, we formulate what we

regard as a schooling model of the type used by Sherwin Rosen. A household

chooses an amount of labor to send to a school that takes four periods to produce

an educated worker. Time is a principal input into the schooling technology.

7.4.1. Planning problem

A planner chooses a contingency plan for new entrants nt to maximize

E0

∞∑

t=0

βt
{
f0 + (f1 + θt)Nt −

f2
2
N2
t − d

2
n2
t

}

subject to the laws of motion

θt+1 = ρθt + σθǫt+1

Nt+1 = δNt + nt−3,
(7.4.1)

where Nt is the stock of educated labor at time t , nt is the number of new

entrants into school at time t , δ ∈ (0, 1) is one minus a depreciation rate,

θt is a technology shock, and ǫt+1 is an i.i.d. random process distributed as

N (0, 1). The planner confronts initial conditions θ0, N0, n−1, n−2, n−3 . No-

tice how (7.4.1) incorporates a four period time to build stocks of labor. The

planner’s problem can be formulated as a stochastic discounted optimal linear

regulator problem, i.e., a linear-quadratic dynamic programming problem of the

type studied in chapter 5. We ask the reader to verify that it suffices to take

Xt =

[
θt

Nt+3

]
as the state for the planner’s problem. A solution of the planner’s

7 This is the sense in which rational expectations models make expectations disappear.
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problem is then a law of motion Xt+1 = (A − BF )Xt + Cǫt+1 and a decision

rule nt = −FXt .

For the purpose of defining a recursive competitive equilibrium, it is useful

to note that it is also possible to define the state for the planner’s problem more

profligately as X̃t = [ θ Nt nt−1 nt−2 nt−3 ]
′
with associated decision rule

nt = −F̃ X̃t and law of motion

X̃t+1 =
(
Ã− B̃F̃

)
X̃t + C̃ǫt+1. (7.4.2)

We can use this representation to express a shadow wage w̃t = f1 − f2Nt + θt

as w̃t = SwX̃t .

7.4.2. Decentralization

A firm and a representative household are price takers in a recursive competitive

equilibrium. The firm faces a competitive wage process {wt}∞t=0 as a price taker

and chooses a contingency plan for {Nt}∞t=0 to maximize

E0

∞∑

t=0

βt
{
f0 + (f1 + θt)Nt −

f2
2
N2
t − wtNt

}
.

The first-order condition for the firm’s problem is

wt = f1 − f2Nt + θt, (7.4.3)

which we can regard as an inverse demand function for the stock of labor.

A representative household chooses a contingency plan for {nt, Nt+4}∞t=0

to maximize

E0

∞∑

t=0

βt
{
wtNt −

d

2
n2
t

}
(7.4.4)

subject to (7.4.1) and initial conditions in the form of given values for Nt for

t = 0, 1, 2, 3. To deduce first order conditions for this problem, it is helpful first

to notice that (7.4.1) implies that for j ≥ 4,

Nt+j = δj−3Nt+1 + δj−4nt + δj−3nt+1 + . . . δnt+j−5 + nt+j−4, (7.4.5)

so that
∂
∑∞

j=0 β
jwt+jNt+j

∂nt
= β4

∞∑

j=0

(βδ)j wt+j+4.
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It follows that the first-order conditions for maximizing (7.4.4) subject to (7.4.1)

are

nt = d−1Etβ
4

∞∑

j=0

(βδ)j wt+j+4, t ≥ 0 (7.4.6)

We can regard (7.4.6) as a supply curve for a flow of new entrants into the

schooling technology. It expresses the supply of new entrants into school nt as

a linear function of the expected present value of wages.

A rational expectations equilibrium is a stochastic process {wt, Nt, nt} such

that (a) given the wt process, Nt, nt solves the household’s problem, and (b)

given the wt process, Nt solves the firms’ problem. Evidently, a rational ex-

pectations equilibrium can also be characterized as a {wt, Nt, nt} process that

equates demand for labor (equation (7.4.3)) to supply of labor (equations (7.4.5)

and (7.4.6)).

To formulate the firm’s and household’s problems within a recursive com-

petitive equilibrium, we can guess that the shadow wage w̃t mentioned above

equals the competitive equilibrium wage. We can then confront the household

with an exogenous wage governed by the stochastic process for wt governed by

the state space representation

X̃t+1 =
(
Ã− B̃F̃

)
X̃t + C̃ǫt+1

wt = SwX̃t.

7.5. Equilibrium occupational choice

As another example of a recursive competitive equilibrium, we formulate a mod-

ification of a Rosen schooling model designed to focus on occupational choice.8

Like the model in the previous section, this one focuses on the cost of acquir-

ing human capital via a time-to-build technology. Investment times now differ

across occupations.

Output of a single good is produced via the following production function:

Yt = f0 + f1

[
Ut

St

]
−
[
Ut

St

]′
f2

[
Ut

St

]
(7.5.1)

8 For applications see Siow (1984) and Ryoo and Rosen (2004).
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where Ut is a stock of skilled labor and St is a stock of unskilled labor, and f2

is a positive semi-definite matrix parameterizing whether skilled and unskilled

labor are complements or substitutes in production. Stocks of the two types of

labor evolve according to the laws of motion

Ut+1 = δUUt + nUt

St+1 = δSSt + nSt−2

(7.5.2)

where flows into the two types of skills are restricted by

nUt + nSt = nt, (7.5.3)

where nt is an exogenous flow of new entrants into the labor market governed

by the stochastic process

nt+1 = µn (1− ρ) + ρnt + σnǫt+1 (7.5.4)

where ǫt+1 is an i.i.d. scalar stochastic process with time t+ 1 component dis-

tributed as N (0, 1). Equations (7.5.2), (7.5.3), (7.5.4) express a time-to-build

or schooling technology for converting new entrants nt into increments in stocks

of unskilled labor (this takes one period of waiting) and of skilled labor (this

takes three periods of waiting). Stocks of skilled and unskilled labors depreciate,

say through death or retirement, at the rates (1 − δS), (1 − δU ), respectively,

where δS ∈ (0, 1) and δU ∈ (0, 1). In addition, we assume that there is an

output cost of e
2n

2
st associated with allocating new workers (or ‘students’) to

the skilled worker pool.
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7.5.1. A planning problem

Let’s start with a planning problem, then construct a competitive equilibrium.

Given initial conditions (U0, S0, nS,−1, nS,−2, n0), a planner chooses nSt, nUt to

maximize

E0

∞∑

t=0

βt
{
f0 + f1

[
Ut

St

]
− .5

[
Ut

St

]′
f2

[
Ut

St

]
− e

2
n2
St

}
(7.5.5)

subject to (7.5.2), (7.5.3), (7.5.4). This is a stochastic discounted optimal linear

regulator problem. Define the state as Xt = [Ut St 1 nS,t−1 nS,t−2 nt ]

and the control as nSt . An optimal decision rule has the form nSt = −FXt

and the law of motion of the state under the optimal decision is

Xt+1 = (A−BF )Xt + Cǫt+1. (7.5.6)

Define shadow wages

[
w̃Ut

w̃St

]
= f1 − f2

[
Ut

St

]
≡
[
SU

SS

]
Xt, (7.5.7)

where SU and SS are the appropriate selector vectors. The expected present

value of entering school to become an unskilled worker is evidently

Etβ

∞∑

j=1

(βδU )
j−1

w̃U,t+j = βSU (I − (A−BF )βδU )
−1

(A−BF )Xt

and the expected present value of entering school at t to become a skilled worker

is

Etβ
3

∞∑

j=3

(βδS)
j−3 w̃S,t+j = β3SS (I − (A−BF ) βδS)

−1 (A−BF )3Xt.
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7.5.2. Decentralization

We can decentralize the planning problem by finding a recursive competitive

equilibrium whose allocation matches that associated with the planning prob-

lem. A competitive firm hires stocks of skilled and unskilled workers at com-

petitive wages wSt, wUt each period. Taking those wages as given, it chooses

St, Ut to maximize

E0

∞∑

t=0

βt
{
f0 + f1

[
Ut

St

]
− .5

[
Ut

St

]′
f2

[
Ut

St

]
− wUtUt − wStSt

}
. (7.5.8)

Notice that the absence of intertemporal linkages in this problem makes it break

into a sequence of static problems. The firm doesn’t have to know the law of

motion for wages. The firm equates the marginal products of each type of labor

to that type’s wage.

A representative family faces wages {wSt, wUt} as a price taker and chooses

contingency plans for {nSt, Ut+1, St+1}∞t=0 to maximize

E0

∞∑

t=0

βt
{
wUtUt + wstSt −

e

2
n2
St

}
(7.5.9)

subject to the perceived law of motion for wUt, wSt
[
wUt

wSt

]
= UwX̃t

X̃t+1 = ÃX̃t + C̃ǫt+1

(7.5.10)

and (7.5.2) and (7.5.3). According to (7.5.9), the family allocates nt between

nUt and nSt to maximize the expected present value of earnings from both types

of labor, minus the present value of ‘adjustment costs’ e
2n

2
St . The state vector

confronting the representative family is [Ut St X̃t ] where X̃t has dimension

comparable to Xt ; ÃX+Cε is a perceived law of motion for X̃ . In a recursive

competitive equilibrium, it will turn out that Ã = A − BF , where A − BF is

the optimal law of motion obtained from the planning problem.

In the spirit of Siow (1984) and Sherwin Rosen, it is interesting to focus on

the special case in which e = 0. Here the competitive equilibrium features the

outcome that

βEt

∞∑

j=1

(βδU )
j wU,t+j = Etβ

3
∞∑

j=3

(βδS)
j−3 wS,t+j. (7.5.11)
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This condition says that the family allocates new entrants to equate the present

values of earnings across occupations, a calculation that takes into account that

it takes longer to train for some occupations than for others. The laws of motion

of competitive equilibrium quantities adjust to equalize the present values of

wages in the two occupations.

7.6. Markov perfect equilibrium

It is instructive to consider a dynamic model of duopoly. A market has two

firms. Each firm recognizes that its output decision will affect the aggregate

output and therefore influence the market price. Thus, we drop the assumption

of price-taking behavior.9 The one-period return function of firm i is

Rit = ptyit − .5d (yit+1 − yit)
2
. (7.6.1)

There is a demand curve

pt = A0 −A1 (y1t + y2t) . (7.6.2)

Substituting the demand curve into equation (7.6.1) lets us express the return

as

Rit = A0yit −A1y
2
it −A1yity−i,t − .5d (yit+1 − yit)

2
, (7.6.3)

where y−i,t denotes the output of the firm other than i . Firm i chooses a

decision rule that sets yit+1 as a function of (yit, y−i,t) and that maximizes

∞∑

t=0

βtRit.

Temporarily assume that the maximizing decision rule is yit+1 = fi(yit, y−i,t).

Given the function f−i , the Bellman equation of firm i is

vi (yit, y−i,t) = max
yit+1

{Rit + βvi (yit+1, y−i,t+1)} , (7.6.4)

9 One consequence of departing from the price-taking framework is that the market out-

come will no longer maximize welfare, measured as the sum of consumer and producer surplus.

See exercise 7.4 for the case of a monopoly.
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where the maximization is subject to the perceived decision rule of the other

firm

y−i,t+1 = f−i (y−i,t, yit) . (7.6.5)

Note the cross-reference between the two problems for i = 1, 2.

We now advance the following definition:

Definition: A Markov perfect equilibrium is a pair of value functions vi and

a pair of policy functions fi for i = 1, 2 such that

a. Given f−i ,vi satisfies the Bellman equation (7.6.4).

b. The policy function fi attains the right side of the Bellman equation (7.6.4).

The adjective Markov denotes that the equilibrium decision rules depend

on the current values of the state variables yit only, not other parts of their

histories. Perfect means ‘complete’, i.e., that the equilibrium is constructed by

backward induction and therefore builds in optimizing behavior for each firm

for all possible future states, including many that will not be realized when we

iterate forward on the pair of equilibrium strategies fi .

7.6.1. Computation

If it exists, a Markov perfect equilibrium can be computed by iterating to con-

vergence on the pair of Bellman equations (7.6.4). In particular, let vji , f
j
i be

the value function and policy function for firm i at the j th iteration. Then

imagine constructing the iterates

vj+1
i (yit, y−i,t) = max

yi,t+1

{
Rit + βvji (yit+1, y−i,t+1)

}
, (7.6.6)

where the maximization is subject to

y−i,t+1 = f j−i (y−i,t, yit) . (7.6.7)

In general, these iterations are difficult.10 In the next section, we de-

scribe how the calculations simplify for the case in which the return function is

quadratic and the transition laws are linear.

10 See Levhari and Mirman (1980) for how a Markov perfect equilibrium can be computed

conveniently with logarithmic returns and Cobb-Douglas transition laws. Levhari and Mirman

construct a model of fish and fishers.
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7.7. Linear Markov perfect equilibria

In this section, we show how the optimal linear regulator can be used to solve a

model like that in the previous section. That model should be considered to be

an example of a dynamic game. A dynamic game consists of these objects: (a)

a list of players; (b) a list of dates and actions available to each player at each

date; and (c) payoffs for each player expressed as functions of the actions taken

by all players.

The optimal linear regulator is a good tool for formulating and solving dy-

namic games. The standard equilibrium concept—subgame perfection—in these

games requires that each player’s strategy be computed by backward induction.

This leads to an interrelated pair of Bellman equations. In linear quadratic

dynamic games, these “stacked Bellman equations” become “stacked Riccati

equations” with a tractable mathematical structure.

We now consider the following two-player, linear quadratic dynamic game.

An (n× 1) state vector xt evolves according to a transition equation

xt+1 = Atxt +B1tu1t +B2tu2t (7.7.1)

where ujt is a (kj × 1) vector of controls of player j . We start with a finite

horizon formulation, where t0 is the initial date and t1 is the terminal date for

the common horizon of the two players. Player 1 maximizes

−
t1−1∑

t=t0

(
xTt R1xt + uT1tQ1u1t + uT2tS1u2t

)
(7.7.2)

where R1 and S1 are positive semidefinite and Q1 is positive definite. Player

2 maximizes

−
t1−1∑

t=t0

(
xTt R2xt + uT2tQ2u2t + uT1tS2u1t

)
(7.7.3)

where R2 and S2 are positive semidefinite and Q2 is positive definite.

We formulate a Markov perfect equilibrium as follows. Player j employs

linear decision rules

ujt = −Fjtxt, t = t0, . . . , t1 − 1

where Fjt is a (kj × n) matrix. Assume that player i knows {F−i,t; t =

t0, . . . , t1 − 1} . Then player 1’s problem is to maximize expression (7.7.2) sub-

ject to the known law of motion (7.7.1) and the known control law u2t = −F2txt
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of player 2. Symmetrically, player 2’s problem is to maximize expression (7.7.3)

subject to equation (7.7.1) and u1t = −F1txt . A Markov perfect equilibrium is

a pair of sequences {F1t, F2t; t = t0, t0 + 1, . . . , t1 − 1} such that {F1t} solves

player 1’s problem, given {F2t} , and {F2t} solves player 2’s problem, given

{F1t} . We have restricted each player’s strategy to depend only on xt , and

not on the history ht = {(xs, u1s, u2s), s = t0, . . . , t} . This restriction on strat-

egy spaces accounts for the adjective “Markov” in the phrase “Markov perfect

equilibrium.”

Player 1’s problem is to maximize

−
t1−1∑

t=t0

{
xTt
(
R1 + FT2tS1F2t

)
xt + uT1tQ1u1t

}

subject to

xt+1 = (At −B2tF2t)xt +B1tu1t.

This is an optimal linear regulator problem, and it can be solved by working

backward. Evidently, player 2’s problem is also an optimal linear regulator

problem.

The solution of player 1’s problem is given by

F1t =
(
BT1tP1t+1B1t +Q1

)−1
BT1tP1t+1 (At −B2tF2t) (7.7.4)

t = t0, t0 + 1, . . . , t1 − 1

where P1t is the solution of the following matrix Riccati difference equation
with terminal condition P1t1 = 0:

P1t = (At −B2tF2t)
T P1t+1 (At −B2tF2t) +

(
R1 + FT2tS1F2t

)

− (At −B2tF2t)
T P1t+1B1t

(
BT1tP1t+1B1t +Q1

)−1

BT1tP1t+1 (At −B2tF2t) .

(7.7.5)

The solution of player 2’s problem is

F2t =
(
BT2tP2t+1B2t +Q2

)−1
BT2tP2t+1 (At −B1tF1t) (7.7.6)

where P2t solves the following matrix Riccati difference equation, with terminal

condition P2t1 = 0:

P2t = (At −B1tF1t)
T P2t+1 (At −B1tF1t) +

(
R2 + FT1tS2F1t

)

− (At −B1tF1t)
T
P2t+1B2t

(
BT2tP2t+1B2t +Q2

)−1
BT2tP2t+1 (At −B1tF1t) .

(7.7.7)
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The equilibrium sequences {F1t, F2t; t = t0, t0+1, . . . , t1− 1} can be calcu-

lated from the pair of coupled Riccati difference equations (7.7.5) and (7.7.7).

In particular, we use equations (7.7.4), (7.7.5), (7.7.6), and (7.7.7) to “work

backward” from time t1 − 1. Notice that given P1t+1 and P2t+1 , equations

(7.7.4) and (7.7.6) are a system of (k2 × n) + (k1 × n) linear equations in the

(k2 × n) + (k1 × n) unknowns in the matrices F1t and F2t .

Notice how j ’s control law Fjt is a function of {Fis, s ≥ t, i 6= j} . Thus,

agent i ’s choice of {Fit; t = t0, . . . , t1 − 1} influences agent j ’s choice of control

laws. However, in the Markov perfect equilibrium of this game, each agent

is assumed to ignore the influence that his choice exerts on the other agent’s

choice.11

We often want to compute the solutions of such games for infinite horizons,

in the hope that the decision rules Fit settle down to be time invariant as

t1 → +∞ . In practice, we usually fix t1 and compute the equilibrium of an

infinite horizon game by driving t0 → −∞ . Judd followed that procedure in

the following example.

7.7.1. An example

This section describes the Markov perfect equilibrium of an infinite horizon

linear quadratic game proposed by Kenneth Judd (1990). The equilibrium is

computed by iterating to convergence on the pair of Riccati equations defined

by the choice problems of two firms. Each firm solves a linear quadratic op-

timization problem, taking as given and known the sequence of linear decision

rules used by the other player. The firms set prices and quantities of two goods

interrelated through their demand curves. There is no uncertainty. Relevant

variables are defined as follows:

Iit = inventories of firm i at beginning of t .

qit = production of firm i during period t .

pit = price charged by firm i during period t .

Sit = sales made by firm i during period t .

Eit = costs of production of firm i during period t .

11 In an equilibrium of a Stackelberg or dominant player game, the timing of moves is so

altered relative to the present game that one of the agents called the leader takes into account

the influence that his choices exert on the other agent’s choices. See chapter 19.
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Cit = costs of carrying inventories for firm i during t .

The firms’ cost functions are

Cit = ci1 + ci2Iit + .5ci3I
2
it

Eit = ei1 + ei2qit + .5ei3q
2
it

where eij , cij are positive scalars.

Inventories obey the laws of motion

Ii,t+1 = (1− δ) Iit + qit − Sit

Demand is governed by the linear schedule

St = dpit +B

where St = [S1t S2t ]
′
, d is a (2 × 2) negative definite matrix, and B is a

vector of constants. Firm i maximizes the undiscounted sum

lim
T→∞

1

T

T∑

t=0

(pitSit − Eit − Cit)

by choosing a decision rule for price and quantity of the form

uit = −Fixt
where uit = [ pit qit ]

′
, and the state is xt = [ I1t I2t ] .

In the web site for the book, we supply a Matlab program nnash.m that

computes a Markov perfect equilibrium of the linear quadratic dynamic game

in which player i maximizes

−
∞∑

t=0

{x′trixt + 2x′twiuit + u′itqiuit + u′jtsiujt + 2u′jtmiuit}

subject to the law of motion

xt+1 = axt + b1u1t + b2u2t

and a control law ujt = −fjxt for the other player; here a is n × n ; b1 is

n× k1 ; b2 is n× k2 ; r1 is n× n ; r2 is n× n ; q1 is k1 × k1 ; q2 is k2 × k2 ; s1

is k2 × k2 ; s2 is k1 × k1 ; w1 is n× k1 ; w2 is n× k2 ; m1 is k2 × k1 ; and m2

is k1 × k2 . The equilibrium of Judd’s model can be computed by filling in the

matrices appropriately. A Matlab tutorial judd.m uses nnash.m to compute the

equilibrium.
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7.8. Concluding remarks

This chapter has introduced two equilibrium concepts and illustrated how dy-

namic programming algorithms are embedded in each. For the linear models we

have used as illustrations, the dynamic programs become optimal linear regula-

tors, making it tractable to compute equilibria even for large state spaces. We

chose to define these equilibria concepts in partial equilibrium settings that are

more natural for microeconomic applications than for macroeconomic ones. In

the next chapter, we use the recursive equilibrium concept to analyze a general

equilibrium in an endowment economy. That setting serves as a natural starting

point for addressing various macroeconomic issues.

Exercises

These problems aim to teach about (1) mapping problems into recursive forms,

(2) different equilibrium concepts, and (3) using Matlab. Computer programs

are available from the web site for the book.12

Exercise 7.1 A competitive firm

A competitive firm seeks to maximize

∞∑

t=0

βtRt (1)

where β ∈ (0, 1), and time t revenue Rt is

Rt = ptyt − .5d (yt+1 − yt)
2
, d > 0, (2)

where pt is the price of output, and yt is the time t output of the firm. Here

.5d(yt+1 − yt)
2 measures the firm’s cost of adjusting its rate of output. The

firm starts with a given initial level of output y0 . The price lies on the market

demand curve

pt = A0 −A1Yt, A0, A1 > 0 (3)

12 The web site is <www.tomsargent.com/source code/mitbook.zip> .
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where Yt is the market level of output, which the firm takes as exogenous, and

which the firm believes follows the law of motion

Yt+1 = H0 +H1Yt, (4)

with Y0 as a fixed initial condition.

a. Formulate the Bellman equation for the firm’s problem.

b. Formulate the firm’s problem as a discounted optimal linear regulator prob-

lem, being careful to describe all of the objects needed. What is the state for

the firm’s problem?

c. Use the Matlab program olrp.m to solve the firm’s problem for the following

parameter values: A0 = 100, A1 = .05, β = .95, d = 10, H0 = 95.5, and H1 =

.95. Express the solution of the firm’s problem in the form

yt+1 = h0 + h1yt + h2Yt, (5)

giving values for the hj ’s.

d. If there were n identical competitive firms all behaving according to equation

(5), what would equation (5) imply for the actual law of motion (4) for the

market supply Y ?

e. Formulate the Euler equation for the firm’s problem.

Exercise 7.2 Rational expectations

Now assume that the firm in problem 1 is “representative.” We implement

this idea by setting n = 1. In equilibrium, we will require that yt = Yt , but

we don’t want to impose this condition at the stage that the firm is optimizing

(because we want to retain competitive behavior). Define a rational expectations

equilibrium to be a pair of numbers H0, H1 such that if the representative firm

solves the problem ascribed to it in problem 1, then the firm’s optimal behavior

given by equation (5) implies that yt = Yt ∀ t ≥ 0.

a. Use the program that you wrote for exercise 7.1 to determine which if any of

the following pairs (H0, H1) is a rational expectations equilibrium: (i) (94.0888,

.9211); (ii) (93.22, .9433), and (iii) (95.08187459215024, .95245906270392)?

b. Describe an iterative algorithm that uses the program that you wrote for

exercise 7.1 to compute a rational expectations equilibrium. (You are not being

asked actually to use the algorithm you are suggesting.)
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Exercise 7.3 Maximizing welfare

A planner seeks to maximize the welfare criterion

∞∑

t=0

βtSt, (1)

where St is “consumer surplus plus producer surplus” defined to be

St = S (Yt, Yt+1) =

∫ Yt

0

(A0 −A1x) d x− .5d (Yt+1 − Yt)
2 .

a. Formulate the planner’s Bellman equation.

b. Formulate the planner’s problem as an optimal linear regulator, and, for

the same parameter values in exercise 7.1, solve it using the Matlab program

olrp.m. Represent the solution in the form Yt+1 = s0 + s1Yt .

c. Compare your answer in part b with your answer to part a of exercise 7.2 .

Exercise 7.4 Monopoly

A monopolist faces the industry demand curve (3) and chooses Yt to maximize∑∞
t=0 β

tRt where Rt = ptYt − .5d(Yt+1 − Yt)
2 and where Y0 is given.

a. Formulate the firm’s Bellman equation.

b. For the parameter values listed in exercise 7.1 , formulate and solve the firm’s

problem using olrp.m.

c. Compare your answer in part b with the answer you obtained to part b of

exercise 7.3 .

Exercise 7.5 Duopoly

An industry consists of two firms that jointly face the industry-wide inverse

demand curve pt = A0 − A1Yt , where now Yt = y1t + y2t . Firm i = 1, 2

maximizes
∞∑

t=0

βtRit (1)

where Rit = ptyit − .5d(yi,t+1 − yit)
2 .

a. Define a Markov perfect equilibrium for this industry.
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b. Formulate the Bellman equation for each firm.

c. Use the Matlab program nash.m to compute an equilibrium, assuming the

parameter values listed in exercise 7.1 .

Exercise 7.6 Self-control

This is a model of a human who has time inconsistent preferences, of a type

proposed by Phelps and Pollak (1968) and used by Laibson (1994).13 The

human lives from t = 0, . . . , T . Think of the human as actually consisting of

T+1 personalities, one for each period. Each personality is a distinct agent (i.e.,

a distinct utility function and constraint set). Personality T has preferences

ordered by u(cT ) and personality t < T has preferences that are ordered by

u (ct) + δ

T−t∑

j=1

βju (ct+j) ,

where u(·) is a twice continuously differentiable, increasing, and strictly concave

function of consumption of a single good; β ∈ (0, 1), and δ ∈ (0, 1]. When

δ < 1, preferences of the sequence of personalities are time inconsistent (that is,

not recursive). At each t , let there be a savings technology described by

kt+1 + ct ≤ f (kt) ,

where f is a production function with f ′ > 0, f ′′ ≤ 0.

a. Define a Markov perfect equilibrium for the T + 1 personalities.

b. Argue that the Markov perfect equilibrium can be computed by iterating on

the following functional equations:

Vj+1 (k) = max
c

{u (c) + βδWj (k
′)}

Wj+1 (k) = u [cj+1 (k)] + βWj [f (k)− cj+1 (k)]

where cj+1(k) is the maximizer of the right side of the first equation above for

j + 1, starting from W0(k) = u[f(k)] . Here Wj(k) is the value of u(cT−j) +

βu(cT−j+1) + . . . + βT−ju(cT ), taking the decision rules ch(k) as given for

h = 0, 1, . . . , j .

13 See Gul and Pesendorfer (2000) for a single-agent recursive representation of preferences

exhibiting temptation and self-control.
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c. State the optimization problem of the time 0 person who is given the power

to dictate the choices of all subsequent persons. Write the Bellman equations

for this problem. The time 0 person is said to have a commitment technology

for “self-control” in this problem.

Exercise 7.7 Equilibrium search

An economy consists of a continuum of ex ante identical workers each of whom

is either employed or unemployed. A worker wants to maximize the expected

value of
∑∞

t=0 β
tyt where β ∈ (0, 1) and

yt =

{
w if employed

c (U) if unemployed .

Each period, an unemployed worker draws one and only one offer to work

(until fired) at a wage w drawn from a c.d.f. F (W ) = Prob(w ≤ W ) where

F (0) = 0, F (B) = 1 for B > 0. Successive draws from F are i.i.d. If a worker

accepts a job, he receives w this period and enters the beginning of next period

as ‘employed’. At the beginning of each period, each such previously employed

worker is exposed to a probability of λ ∈ (0, 1) of being fired; with probability

1 − λ he is not fired and again receives the previously drawn w as a wage. If

fired, the worker becomes newly unemployed and has the same opportunity as

all other unemployed workers, i.e., he draws an offer w from c.d.f. F . If an

unemployed worker rejects that offer, he receives unemployment compensation

c(U) = c
[

1
1+exp(−6U) − .5

]
and enters next period unemployed. Here U is the

aggregate unemployment rate at the beginning of the period. The unemploy-

ment rate tomorrow U∗ is related to the unemployment rate U today by the

law of motion

U∗ = λ (1− U) + (1− φ (U))U,

where φ(U) is the fraction of unemployed workers who accept a wage offer this

period.

a. Write a Bellman equation for an unemployed worker.

b. Describe the form of an unemployed worker’s optimal decision rule.

c. Describe how φ(U) is implied by a typical worker’s optimal decision rule.

d. Define a recursive competitive equilibrium for this environment.



Chapter 8
Equilibrium with Complete Markets

8.1. Time 0 versus sequential trading

This chapter describes competitive equilibria of a pure exchange infinite horizon

economy with stochastic endowments. These are useful for studying risk shar-

ing, asset pricing, and consumption. We describe two systems of markets: an

Arrow-Debreu structure with complete markets in dated contingent claims all

traded at time 0, and a sequential-trading structure with complete one-period

Arrow securities . These two entail different assets and timings of trades, but

have identical consumption allocations. Both are referred to as complete markets

economies. They allow more comprehensive sharing of risks than do the incom-

plete markets economies to be studied in chapters 17 and 18, or the economies

with imperfect enforcement or imperfect information, studied in chapters 21 and

22.

8.2. The physical setting: preferences and endowments

In each period t ≥ 0, there is a realization of a stochastic event st ∈ S . Let

the history of events up and until time t be denoted st = [s0, s1, . . . , st] . The

unconditional probability of observing a particular sequence of events st is given

by a probability measure πt(s
t). For t > τ , we write the probability of observing

st conditional on the realization of sτ as πt(s
t|sτ ). In this chapter, we shall

assume that trading occurs after observing s0 , which we capture by setting

π0(s0) = 1 for the initially given value of s0 .
1

In section 8.9 we shall follow much of the literatures in macroeconomics

and econometrics and assume that πt(s
t) is induced by a Markov process. We

wait to impose that special assumption until section 8.9 because some important

findings do not require making that assumption.

1 Most of our formulas carry over to the case where trading occurs before s0 has been

realized; just postulate a nondegenerate probability distribution π0(s0) over the initial state.

– 249 –
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There are I consumers named i = 1, . . . , I . Consumer i owns a stochastic

endowment of one good yit(s
t) that depends on the history st . The history st

is publicly observable. Consumer i purchases a history-dependent consumption

plan ci = {cit(st)}∞t=0 and orders these consumption streams by

Ui
(
ci
)
=

∞∑

t=0

∑

st

βtui
[
cit
(
st
)]
πt
(
st
)
, (8.2.1)

where 0 < β < 1. The right side is equal to E0

∑∞
t=0 β

tui(c
i
t), where E0 is the

mathematical expectation operator, conditioned on s0 . Here ui(c) is an increas-

ing, twice continuously differentiable, strictly concave function of consumption

c ≥ 0 of one good. The utility function satisfies the Inada condition2

lim
c↓0

u′i (c) = +∞.

Throughout the body of this chapter, we adopt the assumption, routinely em-

ployed in much of macroeconomics, that consumers share probabilities πt(s
t)

for all t and st .3

A feasible allocation satisfies

∑

i

cit
(
st
)
≤
∑

i

yit
(
st
)

(8.2.2)

for all t and for all st .

2 This Inada condition implies that each agent chooses strictly positive consumption for

every date-history pair. Those interior solutions enable us to confine our analysis to Euler

equations that hold with equality and also guarantee that ‘natural debt limits’ don’t bind in

economies with sequential trading of Arrow securities.
3 Exercises 8.15 - 8.19 study examples in which we replace (8.2.1) with

Ui
(
ci
)
=

∞∑

t=0

∑

st

βtui
[
cit

(
st
)]
πit

(
st
)
,

where πi(st) is a personal probability distribution specific to consumer i . Blume and Easley

(2006) studied such settings and focused particularly on whose beliefs ultimately influence

tails of allocations and prices. We discuss related consequences of heterogenous beliefs and

heterogenous discounting in appendices to this chapter.
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8.3. Alternative trading arrangements

For a two-event stochastic process st ∈ S = {0, 1} , the trees in Figures 8.3.1 and

8.3.2 give two portraits of how histories st unfold. From the perspective of time

0 given s0 = 0, Figure 8.3.1 portrays all prospective histories possible up to

time 3. Figure 8.3.2 portrays a particular history that it is known the economy

has indeed followed up to time 2, together with the two possible one-period

continuations into period 3 that can occur after that history.

(0,1,1,1)

(0,1,1,0)

(0,1,0,1)

(0,1,0,0)

(0,0,1,1)

(0,0,1,0)

(0,0,0,1)

(0,0,0,0)

t=0 t=1 t=2 t=3

Figure 8.3.1: The Arrow-Debreu commodity space for a

two-state Markov chain. At time 0, there are trades in time

t = 3 goods for each of the eight nodes that signify histories

that can possibly be reached starting from the node at time

0.

In this chapter we shall study two distinct trading arrangements that cor-

respond, respectively, to the two views of the economy in Figures 8.3.1 and

8.3.2. One is what we shall call the Arrow-Debreu structure. Here markets

meet at time 0 to trade claims to consumption at all times t > 0 and that are

contingent on all possible histories up to t , st . In that economy, at time 0,
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t=1t=0 t=2 t=3

(1|0,0,1)

(0|0,0,1)

Figure 8.3.2: The commodity space with Arrow securities.

At date t = 2, there are trades in time 3 goods for only those

time t = 3 nodes that can be reached from the realized time

t = 2 history (0, 0, 1).

consumers trade claims on the time t consumption good at all nodes st and

for all t ≥ 1. After time 0, no further trades occur, but deliveries agreed to at

time 0 are made. The other economy has sequential trading of only one-period-

ahead state-contingent claims. Here trades of one-period ahead state-contingent

claims occur at each date t ≥ 0. Trades for history st+1 –contingent date t+ 1

goods occur only at the particular date t history st that has been reached at

t , as in Figure 8.3.2. It turns out that these two trading arrangements support

identical equilibrium allocations. Those allocations share the notable property

that they are functions only of the aggregate endowment realization
∑I
i=1 y

i
t(s

t)

and time-invariant parameters describing the initial distribution of wealth.

8.3.1. History dependence

A natural measure of consumer i ’s luck in life is {yi0(s0), yi1(s1), . . . , } , whose
time t component evidently in general depends on the history st . A question

that will occupy us in this chapter and in chapters 18 and 21 is whether, af-

ter trading, the consumer’s consumption allocation at time t is also history

dependent. Remarkably, in the complete markets models of this chapter, the

consumption allocation at time t depends only on some time-invariant parame-

ters that describe the time 0 initial distribution of wealth and on the realization

of the aggregate endowment realization at time t , and not in addition on the

particular history that led to that aggregate endowment. The market incom-

pleteness of chapter 18 and the information and enforcement frictions of chapter

21 will break that result and put history dependence into equilibrium allocations.
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8.4. Pareto problem

As a benchmark against which to measure allocations attained by a market

economy, we seek efficient allocations. An allocation is said to be efficient if it

is Pareto optimal, meaning that it has the property that any reallocation that

makes one consumer strictly better off also makes one or more other consumers

worse off. We can find efficient allocations by posing a Pareto problem for

a fictitious social planner. The planner attaches nonnegative Pareto weights

λi, i = 1, . . . , I to the consumers’ utilities and chooses allocations ci, i = 1, . . . , I

to maximize

W =

I∑

i=1

λiUi
(
ci
)

(8.4.1)

subject to (8.2.2). We call an allocation efficient if it solves this problem for

some set of nonnegative λi ’s. Let θt(s
t) be a nonnegative Lagrange multiplier

on the feasibility constraint (8.2.2) for time t and history st , and form the

Lagrangian

L =

∞∑

t=0

∑

st

{
I∑

i=1

λiβ
tui
(
cit
(
st
))
πt
(
st
)
+ θt

(
st
) I∑

i=1

[
yit
(
st
)
− cit

(
st
)]
}
.

The first-order condition for maximizing L with respect to cit(s
t) is

βtu′i
(
cit
(
st
))
πt
(
st
)
= λ−1

i θt
(
st
)

(8.4.2)

for each i, t, st . Taking the ratio of (8.4.2) for consumers i and 1, respectively,

gives
u′i
(
cit (s

t)
)

u′1 (c
1
t (s

t))
=
λ1
λi

(8.4.3)

which implies

cit
(
st
)
= u′−1

i

(
λ−1
i λ1u

′
1

(
c1t
(
st
)))

. (8.4.4)

Substituting (8.4.4) into feasibility condition (8.2.2) at equality gives

∑

i

u′−1
i

(
λ−1
i λ1u

′
1

(
c1t
(
st
)))

=
∑

i

yit
(
st
)
. (8.4.5)

Equation (8.4.5) is one equation in the one unknown c1t (s
t). The right side of

(8.4.5) is the realized aggregate endowment, so the left side is a function only
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of the aggregate endowment. Thus, given {λi}Ii=1 , c
1
t (s

t) depends only on the

current realization of the aggregate endowment and not separately either on the

date t or on the specific history st leading up to that aggregate endowment

or the cross-section distribution of individual endowments realized at t . Equa-

tion (8.4.4) then implies that for all i , cit(s
t) depends only on the aggregate

endowment realization. We thus have:

Proposition 1: An efficient allocation is a function of the realized aggregate

endowment and does not depend separately on either the specific history st

leading up to that aggregate endowment or on the cross-section distribution of

individual endowments realized at t : cit(s
t) = ciτ (s̃

τ ) for st and s̃τ such that∑
j y

j
t (s

t) =
∑
j y

j
τ (s̃

τ ).

To compute an optimal allocation, first solve (8.4.5) for c1t (s
t), then solve

(8.4.4) for cit(s
t). Note from (8.4.4) that only the ratios of the Pareto weights

matter, so that we are free to normalize the weights, e.g., to impose
∑

i λi = 1.

8.4.1. Time invariance of Pareto weights

Through equations (8.4.4) and (8.4.5), the allocation cit(s
t) assigned to con-

sumer i depends in a time-invariant way on the aggregate endowment
∑

j y
j
t (s

t).

Consumer i ’s share of the aggregate endowment varies directly with his Pareto

weight λi . In chapter 21, we shall see that the constancy through time of

the Pareto weights {λj}Ij=1 is a telltale sign that there are no enforcement-

or information-related incentive problems in this economy. When we introduce

those imperfections into the environment, the time invariance of Pareto weights

evaporates.
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8.5. Time 0 trading: Arrow-Debreu securities

We now describe how an optimal allocation can be attained by a competitive

equilibrium with the Arrow-Debreu timing. Consumers trade a complete set

of dated history-contingent claims to consumption. Trades occur at time 0,

after s0 has been realized. At t = 0, consumers can exchange claims on time t

consumption, contingent on history st at price q0t (s
t), measured in some unit of

account. The superscript 0 refers to the date at which trades occur, while the

subscript t refers to the date that deliveries are to be made. The consumer’s

budget constraint is

∞∑

t=0

∑

st

q0t
(
st
)
cit
(
st
)
≤

∞∑

t=0

∑

st

q0t
(
st
)
yit
(
st
)
. (8.5.1)

The consumer’s problem is to choose ci to maximize expression (8.2.1) subject

to inequality (8.5.1).

Underlying the single budget constraint (8.5.1) is the fact that multilateral

trades are possible through a clearing operation that keeps track of net claims.4

All trades occur at time 0. After time 0, trades that were agreed to at time 0

are executed, but no more trades occur.

Attach a Lagrange multiplier µi to each consumer’s budget constraint

(8.5.1). We obtain the first-order conditions for the consumer’s problem:

∂Ui
(
ci
)

∂cit (s
t)

= µiq
0
t

(
st
)
, (8.5.2)

for all i, t, st . The left side is the derivative of total utility with respect to

the time t , history st component of consumption. Each consumer has its own

Lagrange multiplier µi that is independent of time. With specification (8.2.1)

of the utility functional, we have

∂Ui
(
ci
)

∂cit (s
t)

= βtu′i
[
cit
(
st
)]
πt
(
st
)
. (8.5.3)

This expression implies that equation (8.5.2) can be written

βtu′i
[
cit
(
st
)]
πt
(
st
)
= µiq

0
t

(
st
)
. (8.5.4)

4 In the language of modern payments systems, this is a system with net settlements, not

gross settlements, of trades.
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We use the following definitions:

Definitions: A price system is a sequence of functions {q0t (st)}∞t=0 . An allo-

cation is a list of sequences of functions ci = {cit(st)}∞t=0 , one for each i .

Definition: A competitive equilibrium is a feasible allocation and a price system

such that, given the price system, the allocation solves each consumer’s problem.

Notice that equation (8.5.4) implies

u′i
[
cit (s

t)
]

u′j

[
cjt (s

t)
] =

µi
µj

(8.5.5)

for all pairs (i, j). Thus, ratios of marginal utilities between pairs of agents are

constant across all histories and dates.

An equilibrium allocation solves equations (8.2.2), (8.5.1), and (8.5.5).

Note that equation (8.5.5) implies that

cit
(
st
)
= u′−1

i

{
u′1
[
c1t
(
st
)] µi
µ1

}
. (8.5.6)

Substituting this into equation (8.2.2) at equality gives

∑

i

u′−1
i

{
u′1
[
c1t
(
st
)] µi
µ1

}
=
∑

i

yit
(
st
)
. (8.5.7)

The right side of equation (8.5.7) is the current realization of the aggregate

endowment. Therefore, the left side, and so c1t (s
t), must also depend only on the

current aggregate endowment, as well as on the ratios { µi

µ1
}Ii=2 . It follows from

equation (8.5.6) that the equilibrium allocation cit(s
t) for each i depends only

on the economy’s aggregate endowment as well as on {µj

µ1
}Ij=2 . We summarize

this analysis in the following proposition:

Proposition 2: The competitive equilibrium allocation is a function of the

realized aggregate endowment and does not depend on time t or the specific

history or on the cross section distribution of endowments: cit(s
t) = ciτ (s̃

τ ) for

all histories st and s̃τ such that
∑

j y
j
t (s

t) =
∑

j y
j
τ (s̃

τ ).
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8.5.1. Equilibrium pricing function

Suppose that ci , i = 1, . . . , I is an equilibrium allocation. Then the marginal

condition (8.5.2) or (8.5.4) can be regarded as determining the price system

q0t (s
t) as a function of the equilibrium allocation assigned to consumer i , for

any i . But to exploit this fact in computation, we need a way first to compute

an equilibrium allocation without simultaneously computing prices. As we shall

see soon, solving the planning problem provides a convenient way to do that.

Because the units of the price system are arbitrary, one of the prices can

be normalized at any positive value. We shall set q00(s0) = 1, putting the price

system in units of time 0 goods. This choice implies that µi = u′i[c
i
0(s0)] .

8.5.2. Optimality of equilibrium allocation

A competitive equilibrium allocation is a particular Pareto optimal allocation,

one that sets the Pareto weights λi = µ−1
i . These weights are unique up to

multiplication by a positive scalar. Furthermore, at a competitive equilibrium

allocation, the shadow prices θt(s
t) for the associated planning problem equal

competitive equilibrium prices q0t (s
t) for goods to be delivered at date t at

history st . That allocations for the planning problem and the competitive equi-

librium are identical reflects the two fundamental theorems of welfare economics

(see Mas-Colell, Whinston, and Green (1995)). The first welfare theorem states

that a competitive equilibrium allocation is efficient. The second welfare theo-

rem states that there exist a price system and an initial distribution of wealth

that can support an efficient allocation as a competitive equilibrium allocation.
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8.5.3. Interpretation of trading arrangement

In the competitive equilibrium with Arrow-Debreu timing, all trades occur at

t = 0 in one market. Deliveries occur after t = 0, but no more trades. A vast

clearing or credit system operates at t = 0. It ensures that condition (8.5.1)

holds for each consumer i . A symptom of the once-and-for-all and net-clearing

trading arrangement is that each consumer faces one budget constraint that

restricts trades across all dates and histories.

In section 8.8, we describe another trading arrangement with more trading

dates.

8.5.4. Equilibrium computation

To compute an equilibrium, we have somehow to determine ratios of the La-

grange multipliers, µi/µ1 , i = 1, . . . , I , that appear in equations (8.5.6) and

(8.5.7). The following Negishi algorithm accomplishes this.5

1. Fix a positive value for one µi , say µ1 , throughout the algorithm. Guess

positive values for the remaining µi ’s. Then solve equations (8.5.6) and (8.5.7)

for a candidate consumption allocation ci, i = 1, . . . , I .

2. Use (8.5.4) for any consumer i to solve for the price system q0t (s
t).

3. For i = 1, . . . , I , check the budget constraint (8.5.1). For those i ’s for which

the cost of consumption exceeds the value of their endowment, raise µi , while

for those i ’s for which the reverse inequality holds, lower µi .

4. Iterate to convergence on steps 1-3.

Multiplying all of the µi ’s by a positive scalar simply changes the units of

the price system. That is why we are free to normalize as we have in step 1.

In general, the equilibrium price system and distribution of wealth are mu-

tually determined. Along with the equilibrium allocation, they solve a vast

system of simultaneous equations. The Negishi algorithm provides one way to

solve those equations. In applications, it can be complicated to implement.

Therefore, in order to simplify things, most of the examples and exercises in

this chapter specialize preferences in a way that eliminates the dependence of

equilibrium prices on the distribution of wealth.

5 See Negishi (1960).



Simpler computational algorithm 259

8.6. Simpler computational algorithm

The preference specification in the following example enables us to avoid iterat-

ing on Pareto weights as in the Negishi algorithm.

8.6.1. Example 1: risk sharing

Suppose that the agents have identical preference orderings where the one-period

utility function is of the constant relative risk-aversion (CRRA) form

u (c) = (1− γ)−1 c1−γ , γ > 0.

Then equation (8.5.5) implies

[
cit
(
st
)]−γ

=
[
cjt
(
st
)]−γ µi

µj

or

cit
(
st
)
= cjt

(
st
)(µi

µj

)− 1
γ

. (8.6.1)

Equation (8.6.1) states that time t elements of consumption allocations to dis-

tinct agents are constant fractions of one another. With a power utility function,

it says that individual consumption is perfectly correlated with the aggregate

endowment or aggregate consumption.6

The fractions of the aggregate endowment assigned to each individual are

independent of the realization of st . Thus, there is extensive cross-history and

cross-time consumption sharing. The constant-fractions-of-consumption char-

acterization comes from two aspects of the theory: (1) complete markets and

(2) a homothetic one-period utility function.

6 Equation (8.6.1) implies that conditional on the history st , time t consumption cit(s
t) is

independent of the consumer’s individual endowment at t, st , yit(s
t) . Mace (1991), Cochrane

(1991), and Townsend (1994) have tested and rejected versions of this conditional indepen-

dence hypothesis. In chapter 21, we study how particular impediments to trade explain these

rejections.
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8.6.2. Implications for equilibrium computation

Equation (8.6.1) and the pricing formula (8.5.4) imply that an equilibrium price

vector satisfies

q0t
(
st
)
= µ−1

i α−γ
i βt

(
yt
(
st
))−γ

πt
(
st
)
, (8.6.2)

where cit(st) = αiyt(s
t), yt(s

t) =
∑

i y
i
t(s

t), and αi is consumer i ’s fixed

consumption share of the aggregate endowment. We are free to normalize the

price system by setting µiα
−γ
i for one consumer to an arbitrary positive number.

The homothetic CRRA preference specification that leads to equation (8.6.2)

allows us to compute an equilibrium using the following steps:

1. Use (8.6.2) to compute an equilibrium price system.

2. Use this price system and consumer i ’s budget constraint to compute

αi =

∑∞
t=0

∑
st q

0
t (s

t) yit (s
t)∑∞

t=0

∑
st q

0
t (s

t) ȳt (st)
.

Thus, consumer i ’s fixed consumption share αi equals its share of aggregate

wealth evaluated at the competitive equilibrium price vector.

8.6.3. Example 2: no aggregate uncertainty

In this example, the endowment structure is sufficiently simple that we can com-

pute an equilibrium without assuming a homothetic one-period utility function.

Let the stochastic event st take values on the unit interval [0, 1]. There are two

consumers, with y1t (s
t) = st and y2t (s

t) = 1 − st . Note that the aggregate en-

dowment is constant,
∑

i y
i
t(s

t) = 1. Then equation (8.5.7) implies that c1t (s
t)

is constant over time and across histories, and equation (8.5.6) implies that

c2t (s
t) is also constant. Thus, the equilibrium allocation satisfies cit(s

t) = c̄i for

all t and st , for i = 1, 2. Then from equation (8.5.4),

q0t
(
st
)
= βtπt

(
st
) u′i

(
c̄i
)

µi
, (8.6.3)

for all t and st , for i = 1, 2. Consumer i ’s budget constraint implies

u′i
(
c̄i
)

µi

∞∑

t=0

∑

st

βtπt
(
st
) [
c̄i − yit

(
st
)]

= 0.
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Solving this equation for c̄i gives

c̄i = (1− β)

∞∑

t=0

∑

st

βtπt
(
st
)
yit
(
st
)
. (8.6.4)

Summing equation (8.6.4) verifies that c̄1 + c̄2 = 1.7

8.6.4. Example 3: periodic endowment processes

Consider the special case of the previous example in which st is deterministic

and alternates between the values 1 and 0; s0 = 1, st = 0 for t odd, and st = 1

for t even. Thus, the endowment processes are perfectly predictable sequences

(1, 0, 1, . . .) for the first agent and (0, 1, 0, . . .) for the second agent. Let s̃t be

the history of (1, 0, 1, . . .) up to t . Evidently, πt(s̃
t) = 1, and the probability

assigned to all other histories up to t is zero. The equilibrium price system is

then

q0t
(
st
)
=

{
βt, if st = s̃t;

0, otherwise;

when using the time 0 good as numeraire, q00(s̃0) = 1. From equation (8.6.4),

we have

c̄1 = (1− β)
∞∑

j=0

β2j =
1

1 + β
, (8.6.5a)

c̄2 = (1− β)β
∞∑

j=0

β2j =
β

1 + β
. (8.6.5b)

7 If we let β−1 = 1 + r , where r is interpreted as the risk-free rate of interest, then note

that (8.6.4) can be expressed as

c̄i =

(
r

1 + r

)
E0

∞∑

t=0

(1 + r)−t yit

(
st
)
.

Hence, equation (8.6.4) is a version of Milton Friedman’s permanent income model, which

asserts that a consumer with zero financial assets consumes the annuity value of its human

wealth defined as the expected discounted value of its labor income (which for present pur-

poses we take to be yit(s
t)). In the present example, the consumer completely smooths its

consumption across time and histories, something that the consumer in Friedman’s model

typically cannot do. See chapter 17.
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Consumer 1 consumes more every period because he is richer by virtue of re-

ceiving his endowment earlier.

8.6.5. Example 4

In this example, we assume that the one-period utility function is c1−γ

1−γ . There

are two consumers named i = 1, 2. Their endowments are y1t = y2t = .5 for

t = 0, 1 and y1t = st and y2t = 1− st for t ≥ 2. The event space S = {0, 1} and

st is governed by a Markov chain with probability π(s0 = 1) = 1 for the initial

state and time-varying transition probabilities π1(s1 = 1|s0 = 1) = 1, π2(s2 =

1|s1 = 1) = π2(s2 = 0|s1 = 1) = .5, πt(st = 1|st−1 = 1) = 1, πt(st = 0|st−1 =

0) = 1 for t > 2. This specification implies that πt(1, 1, . . . , 1, 1, 1) = .5 and

πt(0, 0, . . . , 0, 1, 1) = .5 for all t > 2.

We can apply the method of subsection 8.6.2 to compute an equilibrium.

The aggregate endowment is yt(s
t) = 1 for all t and all st . Therefore, an

equilibrium price vector is q01(1, 1) = β, q02(0, 1, 1) = q02(1, 1, 1) = .5β2 and

q0t (1, 1, . . . , 1, 1) = q0t (0, 0, . . . , 1, 1) = .5βt for t > 2. Use these prices to com-

pute the value of agent i ’s endowment:
∑

t

∑
st q

0
t (s

t)yit(s
t) =

∑
t β

t.5[.5+ .5+

0 + . . . + 0] +
∑

t β
t.5[.5 + .5 + 1 + . . . + 1] = 2

∑
t β

t.5[.5 + .5 + . . . + .5] =

.5
∑
t β

t = .5
1−β . Consumer i ’s budget constraint is satisfied when he consumes

a constant consumption of .5 each period in each state: cit(s
t) = .5 for all t for

all st .

In subsection 8.9.4, we shall use the equilibrium allocation from the Arrow-

Debreu economy in this example to synthesize an equilibrium in an economy

with sequential trading.
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8.7. Primer on asset pricing

Many asset-pricing models assume complete markets and price an asset by

breaking it into a sequence of history-contingent claims, evaluating each com-

ponent of that sequence with the relevant “state price deflator” q0t (s
t), then

adding up those values. The asset is redundant , in the sense that it offers a bun-

dle of history-contingent dated claims, each component of which has already

been priced by the market. While we shall devote chapters 13 and 14 entirely

to asset-pricing theories, it is useful to give some pricing formulas at this point

because they help illustrate the complete market competitive structure.

8.7.1. Pricing redundant assets

Let {dt(st)}∞t=0 be a stream of claims on time t , history st consumption, where

dt(s
t) is a measurable function of st . The price of an asset entitling the owner

to this stream must be

p00 (s0) =
∞∑

t=0

∑

st

q0t
(
st
)
dt
(
st
)
. (8.7.1)

If this equation did not hold, someone could make unbounded profits by syn-

thesizing this asset through purchases or sales of history-contingent dated com-

modities and then either buying or selling the asset. We shall elaborate this

arbitrage argument below and later in chapter 13 on asset pricing.

8.7.2. Riskless consol

As an example, consider the price of a riskless consol, that is, an asset offering

to pay one unit of consumption for sure each period. Then dt(s
t) = 1 for all t

and st , and the price of this asset is

∞∑

t=0

∑

st

q0t
(
st
)
. (8.7.2)
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8.7.3. Riskless strips

As another example, consider a sequence of strips of payoffs on the riskless

consol. The time t strip is just the payoff process dτ = 1 if τ = t ≥ 0, and

0 otherwise. Thus, the owner of the strip is entitled to the time t coupon only.

The value of the time t strip at time 0 is evidently
∑

st

q0t
(
st
)
.

Compare this to the price of the consol (8.7.2). We can think of the t-period

riskless strip as a t-period zero-coupon bond. See appendix C of chapter 14 for

an account of a closely related model of yields on such bonds.

8.7.4. Tail assets

Return to the stream of dividends {dt(st)}t≥0 generated by the asset priced in

equation (8.7.1). For τ ≥ 1, suppose that we strip off the first τ − 1 periods

of the dividend and want the time 0 value of the remaining dividend stream

{dt(st)}t≥τ . Specifically, we seek the value of this asset for a particular possible

realization of sτ . Let p0τ (s
τ ) be the time 0 price of an asset that entitles the

owner to dividend stream {dt(st)}t≥τ if history sτ is realized,

p0τ (s
τ ) =

∑

t≥τ

∑

st|sτ

q0t
(
st
)
dt
(
st
)
, (8.7.3)

where the summation over st|sτ means that we sum over all possible subsequent

histories s̃t such that s̃τ = sτ . When the units of the price are time 0, state s0

goods, the normalization is q00(s0) = 1. To convert the price into units of time

τ , history sτ consumption goods, divide by q0τ (s
τ ) to get

pττ (s
τ ) ≡ p0τ (s

τ )

q0τ (s
τ )

=
∑

t≥τ

∑

st|sτ

q0t (s
t)

q0τ (s
τ )
dt
(
st
)
. (8.7.4)

Notice that8

qτt
(
st
)
≡ q0t (s

t)

q0τ (s
τ )

=
βtu′i

[
cit (s

t)
]
πt (s

t)

βτu′i [c
i
τ (s

τ )]πτ (sτ )

= βt−τ
u′i
[
cit (s

t)
]

u′i [c
i
τ (s

τ )]
πt
(
st|sτ

)
.

(8.7.5)

8 Because the marginal conditions hold for all consumers, this condition holds for all i .
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Here qτt (s
t) is the price of one unit of consumption delivered at time t , history st

in terms of the date τ , history sτ consumption good; πt(s
t|sτ ) is the probability

of history st conditional on history sτ at date τ . Thus, the price at time τ ,

history sτ for the “tail asset” is

pττ (s
τ ) =

∑

t≥τ

∑

st|sτ

qτt
(
st
)
dt
(
st
)
. (8.7.6)

When we want to create a time series of, say, equity prices, we use the

“tail asset” pricing formula (8.7.6). An equity purchased at time τ entitles the

owner to the dividends from time τ forward. Our formula (8.7.6) expresses the

asset price in terms of prices with time τ , history sτ good as numeraire.

8.7.5. One-period returns

The one-period version of equation (8.7.5) is

qττ+1

(
sτ+1

)
= β

u′i
[
ciτ+1

(
sτ+1

)]

u′i [c
i
τ (s

τ )]
πτ+1

(
sτ+1|sτ

)
.

The right side is the one-period pricing kernel at time τ . If we want to find the

price at time τ at history sτ of a claim to a random payoff ω(sτ+1), we use

pττ (s
τ ) =

∑

sτ+1

qττ+1

(
sτ+1

)
ω (sτ+1)

or

pττ (s
τ ) = Eτ

[
β
u′ (cτ+1)

u′ (cτ )
ω (sτ+1)

]
, (8.7.7)

where Eτ is the conditional expectation operator. We have deleted the i sub-

scripts on the utility function and the i superscripts on consumption, with the

understanding that equation (8.7.7) is true for any consumer i ; we have also

rendered implicit the dependence of cτ on sτ .

Let Rτ+1 ≡ ω(sτ+1)/p
τ
τ (s

τ ) be the one-period gross return on the asset.

Then for any asset, equation (8.7.7) implies

1 = Eτ

[
β
u′ (cτ+1)

u′ (cτ )
Rτ+1

]
≡ Eτ [mτ+1Rτ+1] . (8.7.8)
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The term mτ+1 ≡ βu′(cτ+1)/u
′(cτ ) functions as a stochastic discount factor.

Like Rτ+1 , it is a random variable measurable with respect to sτ+1 , given sτ .

Equation (8.7.8) is a restriction on the conditional moments of returns and

mt+1 . Applying the law of iterated expectations to equation (8.7.8) gives the

unconditional moments restriction

1 = E

[
β
u′ (cτ+1)

u′ (cτ )
Rτ+1

]
≡ E [mτ+1Rτ+1] . (8.7.9)

In chapters 13 and 14 we shall see many more instances of this equation.

In the next section, we display another market structure in which the one-

period pricing kernel qtt+1(s
t+1) also plays a decisive role. This structure uses

the celebrated one-period “Arrow securities,” the sequential trading of which

substitutes perfectly for the comprehensive trading of long horizon claims at

time 0.

8.8. Sequential trading

This section describes an alternative market structure that preserves both the

equilibrium allocation and the key one-period asset-pricing formula (8.7.7).

8.8.1. Arrow securities

We build on an insight of Arrow (1964). At each date t ≥ 0, only at the history

st actually realized, trades occur in a complete set of claims to one-period-ahead

state-contingent consumption. A competitive equilibrium of this sequential-

trading economy attains the same allocation as the competitive equilibrium

with all trades at time 0 that we described earlier.
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8.8.2. Financial wealth as an endogenous state variable

A key step in constructing a sequential-trading arrangement is to identify a

variable to serve as the state in a value function for the consumer at date t

and history st . We find this state by taking an equilibrium allocation and

price system for the (Arrow-Debreu) time 0 trading structure and applying a

guess-and-verify method. We begin by asking the following question. In the

competitive equilibrium where all trading takes place at time 0, what is the

implied continuation wealth of consumer i at time t after history st ? The

answer is obtained by summing up the value of the consumer’s holdings of claims

to current and future consumption at time t and history st . Since history st

has been realized, we discard all claims contingent on time t histories s̃t 6= st

that were not realized. Hence, the implied wealth is determined simply by the

trades that were undertaken by consumer i at the outset of a time 0 trading

equilibrium, when the consumer can be thought of as having sold the entire

endowment stream on the right side of budget constraint (8.5.1) in order to

acquire the contingent consumption claims on the left side of budget constraint

(8.5.1).

The differences in a sequential-trading arrangement are that (Arrow) one-

period securities are traded period by period, and that consumers retain the

ownership to their endowment processes throughout time. Hence, from the per-

spective of a sequential-trading arrangement, the wealth of consumer i at a point

in time can be decomposed into financial wealth and non-financial wealth.9 Fi-

nancial wealth at time t after history st is the consumer’s beginning-of-period

holdings of Arrow securities that are contingent on the current state st being

realized, while the present value of the consumer’s current and future endow-

ment constitutes non-financial wealth. From Arrow’s (1964) insight that the

two trading arrangements yield identical equilibrium allocations, a consumer’s

financial wealth in a sequential trading equilibrium should be equal to its con-

tinuation wealth in a time 0 trading equilibrium minus the continuation value

of its current and future endowment (i.e., its non-financial wealth), also evalu-

ated in terms of prices for a time-0-trading competitive equilibrium. Thus, the

financial wealth of consumer i at time t after history st , expressed in terms of

9 In some applications, financial wealth is also called ‘non-human wealth’ and non-financial

wealth is called ‘human wealth’.
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the date t , history st consumption good is

Υit
(
st
)
=

∞∑

τ=t

∑

sτ |st

qtτ (s
τ )
[
ciτ (s

τ )− yiτ (s
τ )
]
. (8.8.1)

Notice that budget constraint (8.5.1) at equality implies that each consumer

starts with zero financial wealth at time 0, Υi0(s
0) = 0 for all i . At t > 0,

financial wealth Υit(s
t) typically differs from zero for consumer i , but it sums

to zero across i ,
I∑

i=1

Υit
(
st
)
= 0, ∀t, st,

which follows from feasibility constraint (8.2.2) at equality. That is, the Arrow

securities that make up financial wealth are in zero net supply – positive holdings

of some consumers constitute indebtedness of the other consumers who have

issued those securities.

8.8.3. Reopening markets

Formula (8.7.5) takes the form of a pricing function for a complete markets

economy with date- and history-contingent commodities whose markets can be

regarded as having been reopened at date τ , history sτ , starting from a distri-

bution of wealth implied by the tails of each consumer’s endowment and con-

sumption streams for a complete markets economy that originally convened at

t = 0. We leave it as an exercise to the reader to prove the following proposition.

Proposition 3: Start from the distribution of time t , history st financial

wealth that is implicit in a time 0 Arrow-Debreu equilibrium. If markets are

reopened at date t after history st , no trades occur. That is, given the price

system (8.7.5), all consumers choose to continue the tails of their original con-

sumption plans.
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8.8.4. Debt limits

In moving from the Arrow-Debreu economy to one with sequential trading, we

propose to match the time t , history st wealth of the consumer in the sequential

economy with the equilibrium tail wealth Υit(s
t) from the Arrow-Debreu econ-

omy computed in equation (8.8.1). But first we have to say something about

debt limits, objects that were only implicit in the time 0 budget constraint

(8.5.1) in the Arrow-Debreu economy. In moving to the sequential formula-

tion, we restrict asset trades to prevent Ponzi schemes. We want the weakest

possible restrictions. We synthesize restrictions that work by starting from the

equilibrium allocation of the Arrow-Debreu economy (with time 0 markets),

and find some state-by-state debt limits that support the equilibrium alloca-

tion that emerged from the Arrow-Debreu economy under a sequential trading

arrangement. Often we’ll refer to these weakest possible debt limits as the “nat-

ural debt limits.” These limits come from the common sense requirement that

it has to be feasible for the consumer to repay his state contingent debt in every

possible state. Together with our assumption that cit(s
t) must be nonnegative,

that feasibility requirement leads to the natural debt limits.

Let qtτ (s
τ ) be the Arrow-Debreu price, denominated in units of the date

t , history st consumption good. Consider the value of the tail of agent i ’s

endowment sequence at time t in history st :

Ait
(
st
)
=

∞∑

τ=t

∑

sτ |st

qtτ (s
τ ) yiτ (s

τ ) . (8.8.2)

We call Ait(s
t) the natural debt limit at time t and history st . It is the maxi-

mal value that agent i can repay starting from that period, assuming that his

consumption is zero always. With sequential trading, we shall require that con-

sumer i at time t−1 and history st−1 cannot promise to pay more than Ait(s
t)

conditional on the realization of st tomorrow, because it will not be feasible to

repay more. Consumer i at time t− 1 faces one such borrowing constraint for

each possible realization of st .
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8.8.5. Sequential trading

There is a sequence of markets in one-period-ahead state-contingent claims. At

each date t ≥ 0, consumers trade claims to date t + 1 consumption, whose

payment is contingent on the realization of st+1 . Let ãit(s
t) denote the claims

to time t consumption, other than its time t endowment yit(s
t), that consumer

i brings into time t in history st . Suppose that Q̃t(st+1|st) is a pricing kernel

to be interpreted as follows: Q̃t(st+1|st) is the price of one unit of time t + 1

consumption, contingent on the realization st+1 at t + 1, when the history at

t is st . The consumer faces a sequence of budget constraints for t ≥ 0, where

the time t , history st budget constraint is

c̃it
(
st
)
+
∑

st+1

ãit+1

(
st+1, s

t
)
Q̃t
(
st+1|st

)
≤ yit

(
st
)
+ ãit

(
st
)
. (8.8.3)

At time t , a consumer chooses c̃it(s
t) and {ãit+1(st+1, s

t)} , where {ãit+1(st+1, s
t)}

is a vector of claims on time t+ 1 consumption, there being one element of the

vector for each value of the time t + 1 realization of st+1 . To rule out Ponzi

schemes, we impose the state-by-state borrowing constraints

−ãit+1

(
st+1

)
≤ Ait+1

(
st+1

)
, (8.8.4)

where Ait+1(s
t+1) is computed in equation (8.8.2).

Let ηit(s
t) and νit(s

t; st+1) be nonnegative Lagrange multipliers on the bud-

get constraint (8.8.3) and the borrowing constraint (8.8.4), respectively, for time

t and history st . Form the Lagrangian

Li =

∞∑

t=0

∑

st

{
βtui(c̃

i
t(s

t))πt(s
t)

+ ηit(s
t)
[
yit(s

t) + ãit(s
t)− c̃it(s

t)−
∑

st+1

ãit+1(st+1, s
t)Q̃t(st+1|st)

]

+
∑

st+1

νit(s
t; st+1)

[
Ait+1(s

t+1) + ãit+1(s
t+1)

]}
,

for a given initial wealth ãi0(s0). First-order conditions for maximizing Li with

respect to c̃it(s
t) and {ãit+1(st+1, s

t)}st+1 are

βtu′i(c̃
i
t(s

t))πt(s
t)− ηit(s

t) = 0 , (8.8.5a)

−ηit(st)Q̃t(st+1|st) + νit(s
t; st+1) + ηit+1(st+1, s

t) = 0 , (8.8.5b)
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for all st+1 , t , s
t . The natural debt limits (8.8.4) do not bind and the La-

grange multipliers νit(s
t; st+1) all equal zero for the following reason: if there

were any history st+1 leading to a binding natural debt limit, the consumer

would from then on have to set consumption equal to zero in order to honor

its debt. Because the consumer’s utility function satisfies the Inada condition

limc↓0 u
′
i(c) = +∞ , that would mean that all future marginal utilities would be

infinite. Thus, it would be easy to find alternative affordable allocations that

yield higher expected utility by postponing earlier consumption to periods after

such a binding constraint.

After setting νit(s
t; st+1) = 0 in equation (8.8.5b), the first-order conditions

imply the following restrictions on the optimal consumption allocation:

Q̃t(st+1|st) = β
u′i(c̃

i
t+1(s

t+1))

u′i(c̃
i
t(s

t))
πt(s

t+1|st), (8.8.6)

for all st+1 , t , s
t .

Definition: A distribution of wealth is a vector ~̃at(s
t) = {ãit(st)}Ii=1 satisfying∑

i ã
i
t(s

t) = 0.

Definition: A competitive equilibrium with sequential trading of one-period

Arrow securities is an initial distribution of wealth ~̃a0(s0), a collection of bor-

rowing limits {Ait(st)} satisfying (8.8.2) for all i , for all t , and for all st ,

a feasible allocation {c̃i}Ii=1 , and pricing kernels Q̃t(st+1|st) such that (a)

given the pricing kernels and ãi0(s0) and the borrowing limits {Ait(st) for

all i , the consumption allocation c̃i and portfolio {ãit+1(st+1, s
t)}} solves the

consumer’s problem for all i ; and (b) for all realizations of {st}∞t=0 , alloca-

tions and portfolios {c̃it(st), {ãit+1(st+1, s
t)}}i satisfy

∑
i c̃
i
t(s

t) =
∑

i y
i
t(s

t) and∑
i ã
i
t+1(st+1, s

t) = 0.

This definition leaves open the initial distribution of wealth. We’ll say more

about the initial distribution of wealth soon.
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8.8.6. Equivalence of allocations

By making an appropriate guess about the form of the pricing kernels, it is

easy to show that a competitive equilibrium allocation of the complete markets

model with time 0 trading is also an allocation for a competitive equilibrium

with sequential trading of one-period Arrow securities, one with a particular

initial distribution of wealth. Thus, take q0t (s
t) as given from the Arrow-Debreu

equilibrium and suppose that the pricing kernel Q̃t(st+1|st) makes the following

recursion true:

q0t+1(s
t+1) = Q̃t(st+1|st)q0t (st),

or

Q̃t(st+1|st) = qtt+1(s
t+1), (8.8.7)

where recall that qtt+1(s
t+1) =

q0t+1(s
t+1)

q0t (s
t)

.

Let {cit(st)} be a competitive equilibrium allocation in the Arrow-Debreu

economy. If equation (8.8.7) is satisfied, that allocation is also a sequential-

trading competitive equilibrium allocation. To show this fact, take the con-

sumer’s first-order conditions (8.5.4) for the Arrow-Debreu economy from two

successive periods and divide one by the other to get

βu′i[c
i
t+1(s

t+1)]π(st+1|st)
u′i[c

i
t(s

t)]
=
q0t+1(s

t+1)

q0t (s
t)

= Q̃t(st+1|st). (8.8.8)

If the pricing kernel satisfies equation (8.8.7), this equation is equivalent with the

first-order condition (8.8.6) for the sequential-trading competitive equilibrium

economy. It remains for us to choose the initial wealth of the sequential-trading

equilibrium so that the sequential-trading competitive equilibrium duplicates

the Arrow-Debreu competitive equilibrium allocation.

We conjecture that the initial wealth vector ~̃a0(s0) of the sequential-trading

economy should be chosen to be the zero vector. This is a natural conjecture,

because it means that each consumer must rely on its own endowment stream

to finance consumption, in the same way that consumers are constrained to

finance their history-contingent purchases for the infinite future at time 0 in

the Arrow-Debreu economy. To prove that the conjecture is correct, we must

show that the zero initial wealth vector enables consumer i to finance {cit(st)}
and leaves no room to increase consumption in any period after any history.
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The proof proceeds by guessing that, at time t ≥ 0 and history st , consumer

i chooses a portfolio given by ãit+1(st+1, s
t) = Υit+1(s

t+1) for all st+1 . The value

of this portfolio expressed in terms of the date t , history st consumption good

is

∑

st+1

ãit+1(st+1, s
t)Q̃t(st+1|st) =

∑

st+1|st

Υit+1(s
t+1)qtt+1(s

t+1)

=

∞∑

τ=t+1

∑

sτ |st

qtτ (s
τ )
[
ciτ (s

τ )− yiτ (s
τ )
]
, (8.8.9)

where we have invoked expressions (8.8.1) and (8.8.7).10 To demonstrate that

consumer i can afford this portfolio strategy, we now use budget constraint

(8.8.3) to compute the implied consumption plan {c̃iτ (sτ )} . First, in the initial

period t = 0 with ãi0(s0) = 0, substitution of equation (8.8.9) into budget

constraint (8.8.3) at equality yields

c̃i0(s0) +

∞∑

t=1

∑

st

q0t (s
t)
[
cit(s

t)− yit(s
t)
]
= yit(s0) + 0 .

This expression together with budget constraint (8.5.1) at equality imply c̃i0(s0) =

ci0(s0). In other words, the proposed portfolio is affordable in period 0 and the

associated consumption plan is the same as in the competitive equilibrium of the

Arrow-Debreu economy. In all consecutive future periods t > 0 and histories

st , we replace ãit(s
t) in constraint (8.8.3) by Υit(s

t), and after noticing that the

value of the asset portfolio in (8.8.9) can be written as

∑

st+1

ãit+1(st+1, s
t)Q̃t(st+1|st) = Υit(s

t)−
[
cit(s

t)− yit(s
t)
]
, (8.8.10)

it follows immediately from (8.8.3) that c̃it(s
t) = cit(s

t) for all periods and

histories.

10 We have also used the following identities,

qt+1
τ (sτ )qtt+1(s

t+1) =
q0τ (s

τ )

q0t+1(s
t+1)

q0t+1(s
t+1)

q0t (s
t)

= qtτ (s
τ ) for τ > t.
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We have shown that the proposed portfolio strategy attains the same con-

sumption plan as in the competitive equilibrium of the Arrow-Debreu economy,

but what precludes consumer i from further increasing current consumption by

reducing some component of the asset portfolio? The answer lies in the debt

limit restrictions to which the consumer must adhere. In particular, if the con-

sumer wants to ensure that consumption plan {ciτ (sτ )} can be attained starting

next period in all possible future states, the consumer should subtract the value

of this commitment to future consumption from the natural debt limit in (8.8.2).

Thus, the consumer is facing a state-by-state borrowing constraint that is more

restrictive than restriction (8.8.4): for any st+1 ,

−ãit+1(s
t+1) ≤ Ait+1(s

t+1)−
∞∑

τ=t+1

∑

sτ |st+1

qt+1
τ (sτ )ciτ (s

τ ) = −Υit+1(s
t+1),

or

ãit+1(s
t+1) ≥ Υit+1(s

t+1).

Hence, consumer i does not want to increase consumption at time t by reducing

next period’s wealth below Υit+1(s
t+1) because that would jeopardize attaining

the preferred consumption plan that satisfies first-order conditions (8.8.6) for

all future periods and histories.

8.9. Recursive competitive equilibrium

We have established that equilibrium allocations are the same in the Arrow-

Debreu economy with complete markets in dated contingent claims all traded

at time 0 and in a sequential-trading economy with a complete set of one-

period Arrow securities. This finding holds for arbitrary individual endowment

processes {yit(st)}i that are measurable functions of the history of events st ,

which in turn are governed by some arbitrary probability measure πt(s
t). At this

level of generality, the pricing kernels Q̃t(st+1|st) and the wealth distributions
~̃at(s

t) in the sequential-trading economy both depend on the history st , so

both are time-varying functions of all past events {sτ}tτ=0 . This can make it

difficult to formulate an economic model that can be used to confront empirical

observations. We want a framework in which economic outcomes are functions

of a limited number of “state variables” that summarize the effects of past events
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and current information. This leads us to make the following specialization of

the exogenous forcing processes that facilitates a recursive formulation of the

sequential-trading equilibrium.

8.9.1. Endowments governed by a Markov process

Let π(s′|s) be a Markov chain with given initial distribution π0(s) and state

space s ∈ S . That is, Prob(st+1 = s′|st = s) = π(s′|s) and Prob(s0 = s) =

π0(s). As we saw in chapter 2, the chain induces a sequence of probability

measures πt(s
t) on histories st via the recursions

πt(s
t) = π(st|st−1)π(st−1|st−2) . . . π(s1|s0)π0(s0). (8.9.1)

In this chapter, we have assumed that trading occurs after s0 has been observed,

which we capture by setting π0(s0) = 1 for the initially given value of s0 .

Because of the Markov property, the conditional probability πt(s
t|sτ ) for

t > τ depends only on the state sτ at time τ and does not depend on the

history before τ ,

πt(s
t|sτ ) = π(st|st−1)π(st−1|st−2) . . . π(sτ+1|sτ ). (8.9.2)

Next, we assume that consumers’ endowments in period t are time invariant

measurable functions of st , y
i
t(s

t) = yi(st) for each i . All of our previous results

continue to hold, but the Markov assumption for st imparts further structure

to equilibrium prices and quantities.
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8.9.2. Equilibrium outcomes inherit the Markov property

Proposition 2 asserted a particular kind of history independence of the equilib-

rium allocation that prevails under any stochastic process for the endowments.

In particular, each individual’s consumption is a function only of the current re-

alization of the aggregate endowment and does not depend on the specific history

leading to that outcome.11 Under our present assumption that yit(s
t) = yi(st)

for each i , it follows immediately that

cit(s
t) = c̄i(st). (8.9.3)

Substituting (8.9.2) and (8.9.3) into (8.8.6) shows that the pricing kernel

in the sequential-trading equilibrium is a function only of the current state,

Q̃t(st+1|st) = β
u′i(c̄

i(st+1))

u′i(c̄
i(st))

π(st+1|st) ≡ Q(st+1|st). (8.9.4)

After similar substitutions with respect to equation (8.7.5), we can also establish

history independence of relative prices in the Arrow-Debreu economy:

Proposition 4: If time t endowments are a function of a Markov state st , the

Arrow-Debreu equilibrium price of date-t ≥ 0, history st consumption goods

expressed in terms of date τ (0 ≤ τ ≤ t), history sτ consumption goods is not

history dependent: qτt (s
t) = qjk(s̃

k) for j, k ≥ 0 such that t − τ = k − j and

[sτ , sτ+1, . . . , st] = [s̃j , s̃j+1, . . . , s̃k] .

Using this proposition, we can verify that both the natural debt limits

(8.8.2) and consumers’ wealth levels (8.8.1) exhibit history independence,

Ait(s
t) = Āi(st) , (8.9.5)

Υit(s
t) = Ῡi(st) . (8.9.6)

The finding concerning wealth levels (8.9.6) conveys a useful insight into how

the sequential-trading competitive equilibrium attains the first-best outcome

in which no idiosyncratic risk is borne by individual consumers. In particular,

each consumer enters every period with a wealth level that is independent of past

realizations of his endowment. That is, his past trades have fully insured him

11 Of course, the equilibrium allocation also depends on the distribution of {yit(s
t)} pro-

cesses across agents i , as reflected in the relative values of the Lagrange multipliers µi .



Recursive competitive equilibrium 277

against the idiosyncratic outcomes of his endowment. And from that very same

insurance motive, the consumer now enters the present period with a wealth level

that is a function of the current state st . It is a state-contingent wealth level

that was chosen by the consumer in the previous period t− 1, and this wealth

will be just sufficient to continue a trading strategy previously designed to insure

against future idiosyncratic risks. The optimal holding of wealth is a function

of st alone because the current state st determines the current endowment and

the current pricing kernel and contains all information relevant for predicting

future realizations of the consumer’s endowment process as well as future prices.

It can be shown that a consumer especially wants higher wealth levels for those

states next period that either make his next period endowment low or more

generally signal poor future prospects for its endowment into the more distant

future. But aggregate shocks cannot be diversified away. An “invisible hand”

uses the pricing kernel Q(st|st−1) and cleared markets to coordinate consumers’

transactions at time t − 1 in such a way that consumers bear only aggregate

risk.

8.9.3. Recursive formulation of optimization and equilibrium

The fact that the pricing kernel Q(s′|s) and the endowment yi(s) are both

functions only of a Markov state s motivates us to seek a recursive formulation

of the consumer’s optimization problem. Consumer i ’s state at time t is its

wealth ait and the current realization st . We seek a pair of optimal policy

functions hi(a, s), gi(a, s, s′) such that the consumer’s optimal decisions are

cit = hi(ait, st), (8.9.7a)

ait+1(st+1) = gi(ait, st, st+1). (8.9.7b)

Let vi(a, s) be the optimal value of consumer i ’s problem starting from

state (a, s); vi(a, s) is the maximum expected discounted utility that consumer

i with current wealth a can attain in state s . The Bellman equation for the

consumer’s problem is

vi(a, s) = max
c,â(s′)

{
ui(c) + β

∑

s′

vi[â(s′), s′]π(s′|s)
}

(8.9.8)
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where the maximization is subject to the following version of constraint (8.8.3):

c+
∑

s′

â(s′)Q(s′|s) ≤ yi(s) + a (8.9.9)

and also

c ≥ 0, (8.9.10a)

−â(s′) ≤ Āi(s′), ∀s′. (8.9.10b)

Let the optimum decision rules be

c = hi(a, s), (8.9.11a)

â(s′) = gi(a, s, s′). (8.9.11b)

Note that the solution of the Bellman equation implicitly depends on Q(·|·)
because it appears in the constraint (8.9.9). In particular, use the first-order

conditions for the problem on the right of equation (8.9.8) and the Benveniste-

Scheinkman formula and rearrange to get

Q(st+1|st) =
βu′i(c

i
t+1)π(st+1|st)
u′i(c

i
t)

, (8.9.12)

where it is understood that cit = hi(ait, st) and cit+1 = hi(ait+1(st+1), st+1) =

hi(gi(ait, st, st+1), st+1).

Definition: A recursive competitive equilibrium is an initial distribution of

wealth ~a0 , a set of borrowing limits {Āi(s)}Ii=1 , a pricing kernel Q(s′|s), sets
of value functions {vi(a, s)}Ii=1 , and decision rules {hi(a, s), gi(a, s, s′)}Ii=1 such

that

(a) The state-by-state borrowing constraints satisfy the recursion

Āi(s) = yi(s) +
∑

s′

Q(s′|s)Āi(s′|s). (8.9.13)

(b) For all i , given ai0 , Ā
i(s), and the pricing kernel, the value functions and

decision rules solve the consumer’s problem;

(c) For all realizations of {st}∞t=0 , the consumption and asset portfolios {{cit,
{âit+1(s

′)}s′}i}t implied by the decision rules satisfy
∑
i c
i
t =

∑
i y
i(st) and∑

i â
i
t+1(s

′) = 0 for all t and s′ .



Recursive competitive equilibrium 279

We shall use the recursive competitive equilibrium concept extensively in

our discussion of asset pricing in chapter 13.

8.9.4. Computing an equilibrium with sequential trading of Arrow-
securities

We use example 4 from subsection 8.6.5 to illustrate the following algorithm for

computing an equilibrium in an economy with sequential trading of a complete

set of Arrow securities:

1. Compute an equilibrium of the Arrow-Debreu economy with time 0 trading.

2. Set the equilibrium allocation for the sequential trading economy to the

equilibrium allocation from Arrow-Debreu time 0 trading economy.

3. Compute equilibrium prices from formula (8.9.12) for a Markov economy

or the corresponding formula (8.8.8) for a non-Markov economy.

4. Compute debt limits from (8.9.13).

5. Compute portfolios of one-period Arrow securities by first computing im-

plied time t , history st wealth Υit(s
t) from (8.8.1) evaluated at the Arrow-

Debreu equilibrium prices, then set ait(st) = Υit(s
t).

Applying this procedure to example 4 from section 8.6.5 gives us the price

system Q0(s1 = 1|s0 = 1) = β,Q0(s1 = 0|s0 = 1) = 0, Q1(s2 = 1|s1 = 1) =

.5β,Q1(s2 = 0|s1 = 0) = .5β and Qt(st+1 = 1|st = 1) = Qt(st+1 = 0|st = 0) =

β for t ≥ 2. Also, Υit(s
t) = 0 for i = 1, 2 and t = 0, 1. For t ≥ 2, Υ1

t (st =

1) =
∑

τ≥t β
τ−t[.5 − 1] = −.5

1−β and Υ2
t (st = 1) =

∑
τ≥t β

τ−t[.5 − 0] = .5
1−β .

Therefore, in period 1, the first consumer trades Arrow securities in amounts

a12(s2 = 1) = −.5
1−β , a

1
2(s2 = 0) = .5

1−β , while the second consumer trades Arrow

securities in amounts a12(s2 = 1) = .5
1−β , a

1
2(s2 = 0) = −.5

1−β After period 2, the

consumers perpetually roll over their debts or assets of either .5
1−β or −.5

1−β .
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8.10. j -step pricing kernel

We are sometimes interested in the price at time t of a claim to one unit of

consumption at date τ > t contingent on the time τ state being sτ , regardless

of the particular history by which sτ is reached at τ . We let Qj(s
′|s) denote

the j -step pricing kernel to be interpreted as follows: Qj(s
′|s) gives the price

of one unit of consumption j periods ahead, contingent on the state in that

future period being s′ , given that the current state is s . For example, j = 1

corresponds to the one-step pricing kernel Q(s′|s).
With markets in all possible j -step-ahead contingent claims, the counter-

part to constraint (8.8.3), the consumer’s budget constraint at time t , is

cit +

∞∑

j=1

∑

st+j

Qj(st+j |st)zit,j(st+j) ≤ yi(st) + ait. (8.10.1)

Here zit,j(st+j) is consumer i ’s holdings at the end of period t of contingent

claims that pay one unit of the consumption good j periods ahead at date t+j ,

contingent on the state at date t+ j being st+j . The consumer’s wealth in the

next period depends on the chosen asset portfolio and the realization of st+1 ,

ait+1(st+1) = zit,1(st+1) +

∞∑

j=2

∑

st+j

Qj−1(st+j |st+1)z
i
t,j(st+j).

The realization of st+1 determines which element of the vector of one-period-

ahead claims {zit,1(st+1)} pays off at time t+ 1, and also the capital gains and

losses inflicted on the holdings of longer horizon claims implied by equilibrium

prices Qj(st+j+1|st+1).

With respect to zit,j(st+j) for j > 1, use the first-order condition for the

problem on the right of (8.9.8) and the Benveniste-Scheinkman formula and

rearrange to get

Qj(st+j |st) =
∑

st+1

βu′i[c
i
t+1(st+1)]π(st+1|st)

u′i(c
i
t)

Qj−1(st+j |st+1). (8.10.2)

This expression, evaluated at the competitive equilibrium consumption alloca-

tion, characterizes two adjacent pricing kernels.12 Together with first-order

12 According to expression (8.9.3), the equilibrium consumption allocation is not history

dependent, so that (cit, {c
i
t+1(st+1)}st+1 ) = (c̄i(st), {c̄

i(st+1)}st+1 ) . Because marginal con-

ditions hold for all consumers, the characterization of pricing kernels in (8.10.2) holds for any

i .
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condition (8.9.12), formula (8.10.2) implies that the kernels Qj, j = 2, 3, . . . ,

can be computed recursively:

Qj(st+j |st) =
∑

st+1

Q1(st+1|st)Qj−1(st+j |st+1). (8.10.3)

8.10.1. Arbitrage-free pricing

It is useful briefly to describe how arbitrage free pricing theory deduces re-

strictions on asset prices by manipulating budget sets with redundant assets.

We now present an arbitrage argument as an alternative way of deriving re-

striction (8.10.3) that was established above by using consumers’ first-order

conditions evaluated at the equilibrium consumption allocation. In addition to

j -step-ahead contingent claims, we illustrate the arbitrage-free pricing theory

by augmenting the trading opportunities in our Arrow securities economy by

letting the consumer also trade an ex-dividend Lucas tree. Because markets are

already complete, these additional assets are redundant. They have to be priced

in a way that leaves the budget set unaltered.13

Assume that at time t , in addition to purchasing a quantity zt,j(st+j) of

j -step-ahead claims paying one unit of consumption at time t + j if the state

takes value st+j at time t+j , the consumer also purchases Nt units of a stock or

Lucas tree. Let the ex-dividend price of the tree at time t be p(st). Next period,

the tree pays a dividend d(st+1) depending on the state st+1 . Ownership of the

Nt units of the tree at the beginning of t+1 entitles the consumer to a claim on

Nt[p(st+1) + d(st+1)] units of time t + 1 consumption.14 As before, let at be

the wealth of the consumer, apart from his endowment, y(st). In this setting,

the augmented version of constraint (8.10.1), the consumer’s budget constraint,

is

ct +

∞∑

j=1

∑

st+j

Qj(st+j |st)zt,j(st+j) + p(st)Nt ≤ at + y(st) (8.10.4a)

13 That the additional assets are redundant follows from the fact that trading Arrow secu-

rities is sufficient to complete markets.
14 We calculate the price of this asset using a different method in chapter 13.
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and
at+1(st+1) = zt,1(st+1) + [p(st+1) + d(st+1)]Nt

+

∞∑

j=2

∑

st+j

Qj−1(st+j |st+1)zt,j(st+j).
(8.10.4b)

Multiply equation (8.10.4b) by Q1(st+1|st), sum over st+1 , solve for∑
st+1

Q1(st+1|st)zt,1(st), and substitute this expression in (8.10.4a) to get

ct+



p(st)−

∑

st+1

Q1(st+1|st)[p(st+1) + d(st+1)]



Nt

+
∞∑

j=2

∑

st+j



Qj(st+j |st)−

∑

st+1

Qj−1(st+j |st+1)Q1(st+1|st)



 zt,j(st+j)

+
∑

st+1

Q1(st+1|st)at+1(st+1) ≤ at + y(st). (8.10.5)

If the two terms in braces are not zero, the consumer can attain unbounded

consumption and future wealth by purchasing or selling either the stock (if the

first term in braces is not zero) or a state-contingent claim (if any of the terms

in the second set of braces is not zero). Therefore, so long as the utility function

has no satiation point, in any equilibrium, the terms in the braces must be zero.

Thus, we have the arbitrage-free pricing formulas

p(st) =
∑

st+1

Q1(st+1|st)[p(st+1) + d(st+1)], (8.10.6a)

Qj(st+j |st) =
∑

st+1

Qj−1(st+j |st+1)Q1(st+1|st). (8.10.6b)

These are called arbitrage-free pricing formulas because if they were violated,

there would exist an arbitrage. An arbitrage is defined as a risk-free transaction

that earns positive profits.
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8.11. Term structure of yields on risk-free claims

Assume that we are in the setting of section 8.9. Recall formula (8.9.12) for

the price Qτ (st+τ |st) of a τ -period ahead Arrow security in Markov state st .

At time t in Markov state st , the price of a risk-free claim on one unit of

consumption at time t+ τ is15

pτ (st) =
∑

st+τ

Qτ (st+τ |st).

At time t , the “yield to maturity” or just “yield” of a sure claim to one unit of

time t+ j consumption is the scalar ρτ (st) that satisfies

pτ (st) = exp(−τρτ (st))

or

ρτ (st) = − log pτ (st)

τ
. (8.11.1)

The vector ρτ (st)
T
τ=1 is called the “term structure of interest rates.” Theories

of the term structure of interest rates to be outlined in chapters 13 and 14 seek

to explain the evolution of ρτ (st)
T
τ=1 over time.

8.11.1. Constructing yields

Often prices pτ (st) are not observed directly because claims to risk-free promises

to goods t+j periods ahead are not traded. But when enough distinct bundles of

such claims are traded, there are ways to estimate the pτ (st)’s by appropriately

unbundling a set of bond prices. Here is a brief account of how. Suppose that

at time t observations are available on the prices of bonds i = 1, . . . , I . The

ith bond is a claim to a stream of risk-free claims to di,t+τ units of time t+ τ

consumption for horizons τ = 1, 2, . . . , T . Some components of di,t+τ can be

zero. According to our theory, the observed price vi,t of bond i at t satisfies

vi,t(st) =

T∑

τ=1

di,t+τpτ (st).

15 The one-period gross return on this risk-free claim on consumption at time t+ τ is risky

and equals

Rτ (st+1, st) =
pτ−1(st+1)− pτ (st)

pτ (st)
.
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Represent this equation for our collection of bonds as i = 1, . . . , I as




v1,t

v2,t
...

vI,t


 =




d1,t+1 d1,t+2 · · · d1,t+τ

d2,t+1 d2,t+2 · · · d2,t+τ
...

...
...

...

dI,t+1 dI,t+2 · · · dI,t+τ







p1(st)

p2(st)
...

pI(st)




or

Vt = DtPt.

If we observe Vt and Dt , we can recover the prices Pt by applying an appropriate

inverse or generalized inverse to each side of this matrix equation. If I = T and

Dt is of full rank, we use

Pt = D−1
t Vt,

while if I > T we use the least squares formula

P̂t = (D′
tDt)

−1D′
tVt (8.11.2)

and if T > I we use the formula

P̂t = D′
t(DtD

′
t)

−1Vt. (8.11.3)

We use formula (8.11.2) when there are too many securities and formula (8.11.3)

when there are too few securities relative to the primitive securities whose prices

Pt we want to infer. After we have constructed Pt or P̂t , we construct yields

from equation (8.11.1).
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8.12. Recursive version of Pareto problem

At the outset of this chapter, we characterized Pareto optimal allocations. By

formulating a Pareto problem recursively, this section gives a preview of things

to come in chapters 21 and 24. For this purpose, we consider a special case of

the section 8.6.3 example 2 of an economy with a constant aggregate endowment

and two types of consumer with y1t = st , y
2
t = 1 − st . We assume that the

st process is i.i.d., so that πt(s
t) = π(st)π(st−1) · · ·π(s0). Also, let’s assume

that st has a discrete distribution so that st ∈ [s1, . . . , sS ] with probabilities

Πi = Prob(st = si) where si+1 > si and s1 ≥ 0 and sS ≤ 1.

In our recursive formulation, each period a planner delivers a pair of previ-

ously promised discounted utility streams by assigning a state-contingent con-

sumption allocation today and a pair of state-contingent promised discounted

utility streams starting tomorrow. Both the state-contingent consumption to-

day and the promised discounted utility tomorrow are functions of the initial

promised discounted utility levels.

Define v as the expected discounted utility of a type 1 person and P (v) as

the maximal expected discounted utility that can be offered to a type 2 person,

given that a type 1 person is offered at least v . Each of these expected values

is to be evaluated before the realization of the state at the initial date.

The Pareto problem is to choose stochastic processes {c1t (st), c2t (st)}∞t=0

to maximize P (v) subject to c1t (s
t) + c2t (s

t) = 1 and the utility constraint∑∞
t=0

∑
st β

tu1(c
1
t (s

t))πt(s
t) ≥ v. In terms of the competitive equilibrium al-

location calculated for the section 8.6.3 example 2 economy above, let c = c1

be the constant consumption allocated to a type 1 person and 1 − c = c2 be

the constant consumption allocated to a type 2 person. Since we have shown

that the competitive equilibrium allocation is a Pareto optimal allocation, we

already know one point on the Pareto frontier P (v). In particular, when a type

1 person is promised v = u1(c)/(1− β), a type 2 person attains life-time utility

P (v) = u2(1− c)/(1− β).

We can express the discounted values v and P (v) recursively16 as

v =
S∑

s=1

[u1(cs) + βws] Πi

16 This is our first example of a ‘dynamic program squared’. We call it that because the

state variable v that appears in the Bellman equation for P (v) itself satisfies another Bellman

equation.
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and

P (v) =

S∑

s=1

[u2(1− cs) + βP (ws)] Πs,

where cs is consumption of the type 1 person in state s , ws is the continuation

value assigned to the type 1 person in state s ; and 1 − cs and P (ws) are

the consumption and the continuation value, respectively, assigned to a type

2 person in state s . Assume that the continuation values ws ∈ V , where V

is a set of admissible discounted values of utility. In this section, we assume

that V = [u1(ǫ)/(1− β), u1(1)/(1− β)] where ǫ ∈ (0, 1) is an arbitrarily small

number.

In effect, before the realization of the current state, a Pareto optimal allo-

cation offers the type 1 person a state-contingent vector of consumption cs in

state s and a state-contingent vector of continuation values ws in state s , with

each ws itself being a present value of one-period future utilities. In terms of

the pair of values (v, P (v)), we can express the Pareto problem recursively as

P (v) = max
{cs,ws}S

s=1

S∑

s=1

[u2(1− cs) + βP (ws)]Πs (8.12.1)

where the maximization is subject to

S∑

s=1

[u1(cs) + βws]Πs ≥ v (8.12.2)

where cs ∈ [0, 1] and ws ∈ V .

To solve the Pareto problem, form the Lagrangian

L =
S∑

s=1

Πs[u2(1− cs) + βP (ws) + θ(u1(cs) + βws)]− θv

where θ is a Lagrange multiplier on constraint (8.12.2). First-order conditions

with respect to cs and ws , respectively, are

−u′2(1− cs) + θu′1(cs) = 0, (8.12.3a)

P ′(ws) + θ = 0. (8.12.3b)

The envelope condition is P ′(v) = −θ . Thus, (8.12.3b) becomes P ′(ws) =

P ′(v). But P (v) happens to be strictly concave, so this equality implies ws = v .
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Therefore, any solution of the Pareto problem leaves the continuation value ws

independent of the state s . Equation (8.12.3a) implies that

u′2(1− cs)

u′1(cs)
= −P ′(v). (8.12.4)

Since the right side of (8.12.4) is independent of s , so is the left side, and

therefore c is independent of s . And since v is constant over time (because

ws = v for all s), it follows that c is constant over time.

Notice from (8.12.4) that P ′(v) serves as a relative Pareto weight on the

type 1 person. The recursive formulation brings out that, because P ′(ws) =

P ′(v), the relative Pareto weight remains constant over time and is independent

of the realization of st . The planner imposes complete risk sharing.

In chapter 21, we shall encounter recursive formulations again. Impedi-

ments to risk sharing that occur in the form either of enforcement or of informa-

tion constraints will impel the planner sometimes to make continuation values

respond to the current realization of shocks to endowments or preferences.

8.13. Concluding remarks

The framework in this chapter serves much of macroeconomics either as foun-

dation or straw man (“benchmark” is a kinder phrase than “straw man”). It

is the foundation of extensive literatures on asset pricing and risk sharing. We

describe the literature on asset pricing in more detail in chapters 13 and 14.

The model also serves as benchmark, or point of departure, for a variety of

models designed to confront observations that seem inconsistent with complete

markets. In particular, for models with exogenously imposed incomplete mar-

kets, see chapters 17 on precautionary saving and 18 on incomplete markets.

For models with endogenous incomplete markets, see chapters 21 and 22 on en-

forcement and information problems. For models of money, see chapters 27 and

28. To take monetary theory as an example, complete markets models assign no

role to money because they contain an efficient multilateral trading mechanism,

with such extensive netting of claims that no additional asset is required to facil-

itate bilateral exchanges. Any modern model of money introduces frictions that

impede complete markets. Some monetary models (e.g., the cash-in-advance

model of Lucas, 1981) impose minimal impediments to complete markets in
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ways that preserve many of the asset-pricing implications of complete markets

models while also activating classical monetary doctrines like the quantity the-

ory of money. The shopping time model of chapter 27 is constructed in a similar

spirit. Other monetary models, such as the Townsend turnpike model of chapter

28 or the Kiyotaki-Wright search model of chapter 29, impose more extensive

frictions on multilateral exchanges and leave the complete markets model far-

ther behind. Before leaving the complete markets model, we’ll put it to work in

several of the following chapters.
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Appendices: Departures from key assumptions

The finding that the equilibrium consumption of a consumer depends in a time-

invariant way on the aggregate endowment hinges on this chapter’s assumptions

that there are complete markets and that consumers share the same discount

factor and the same probabilities. In appendix A, we show that when consumers

have heterogeneous discount factors, equilibrium allocations eventually entail

efficient immiserization: at equilibrium prices, less patient consumers choose to

consume almost nothing as time approaches infinity. In appendix B, we show

that when consumers have heterogeneous beliefs, as time passes equilibrium

allocations assign less and less to those with less accurate beliefs. Consumers’

asset choices accompany these outcomes in ways that reflect their disparate

probability assessments. Appendix C shows that if markets are incomplete, there

no longer prevails an inextricable link between either the degree of patience or

the accuracy of beliefs and which consumers continue to consume asymptotically.

Instead, many things can happen.

A. Heterogenous discounting

We now modify (8.2.1) to allow for heterogenous discount factors. Let βi denote

the subjective discount factor of consumer i , where 1 > β1 ≥ β2 . . . ≥ βI > 0.

Counterparts to first-order conditions (8.4.3) for the Pareto problem become

[
βi
β1

]t
u′i(c

i
t(s

t))

u′1(c
1
t (s

t))
=
λ1
λi
. (8.A.1)

These imply that ratios of marginal utilities in an efficient allocation are no

longer time invariant. Specifically, let λti be the Pareto weight attached to

consumer i ’s utility in a remainder Pareto problem at date t . It is instructive

to normalize the weight assigned to the most patient consumer at the value

assigned in the initial time t = 0 Pareto problem, i.e., λt1 = λ1 for all t ≥ 0.

From expression (8.A.1) we can then infer that the continuation Pareto weight

on consumer i ’s utility satisfies

λti =

[
βi
β1

]t
λi,
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where λi is the weight on consumer i ’s utility in the initial Pareto problem.

For a consumer i with βi < β1 , λ
t
i converges to zero. The most patient type

of consumer eventually consumes everything.

B. Heterogenous beliefs

Instead of our highly restrictive specification (8.2.1), namely,

Ui(c
i) =

∞∑

t=0

∑

st

βtui[c
i
t(s

t)]πt(s
t),

we could follow Debreu (1954, 1959) and impute more general preferences to con-

sumer i . We could just posit I distinct preference orderings Ui(c
i). The func-

tions Ui(c
i) could directly specify attitudes about tradeoffs among consumption

goods at different times and histories. There is no need to say anything directly

about how likely the s∞ paths are from anyone’s point of view, including the

planner’s. To the Pareto planner, all that matters are the preferences Ui(c
i)

of the I consumers and the aggregate resources available at different dates and

histories. The outcome of a Pareto problem is an allocation across people for

all times and all histories. The theory can be silent about probabilities over

histories {s∞} .
We break that silence when we assign probabilities πt(s

t) over histories

st to someone either inside the model or outside the model. In the body of

this chapter, we assigned the same probabilities to all agents inside the model.

In particular, when we adopted our restrictive expected utility specification

(8.2.1), we imputed a common probability specification {πt(st)} to all con-

sumers i = 1, . . . , I . At various points in the body of the chapter and in chapters

13 and 14 about asset pricing, we go beyond that to impute the same common

probability model shared by agents inside the model both to outside economists

and to ‘nature’. Nature is also often called the actual history-generating or data-

generating mechanism. Imputing common beliefs to everyone inside a model,

to nature, and to the author of the model too, is to embrace the “rational ex-

pectations hypothesis.” Widely used in macroeconomics, finance, and public

finance, this “communism of probability models” assumption imposes substan-

tially more structure than did Debreu. By equating probability distributions
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across all agents inside a model, nature, and an outside econometrician, the ra-

tional expectations hypothesis eliminates parameters that would be required to

describe heterogeneous beliefs. In doing this it combines and confounds distinct

roles that actual and perceived probabilities πt(s
t) play in influencing not only

actual outcomes but also individuals’ preferences, and through them, Pareto op-

timal allocations and competitive equilibrium prices. To indicate some of these

conceptually distinct roles, it is useful temporarily to abandon the assumption of

common beliefs and to follow Blume and Easley (2006) by considering a setting

with disparate beliefs. This will allow us to evaluate Milton Friedman’s (1953, p.

22) conjecture that, by redistributing wealth towards people with more accurate

beliefs, market forces eventually make outcomes resemble a rational expectations

equilibrium.

Thus, suppose that we modify the utility functional (8.2.1) for consumer i

to allow for different personal probabilities

Ui(c
i) =

∞∑

t=0

∑

st

βtui(c
i
t(s

t))πit(s
t). (8.B.1)

With preferences altered in this way, assume that the planner maximizes the

same welfare function W defined in (8.4.1). Then counterparts to first-order

conditions (8.4.3) become

πit(s
t)

π1
t (s

t)

u′i(c
i
t(s

t))

u′1(c
1
t (s

t))
=
λ1
λi

. (8.B.2)

The likelihood ratios πit(s
t)/π1

t (s
t), which are identically unity when there are

common beliefs, now influence optimal allocations. For a given vector of time 0

Pareto weights {λi}Ii=1 , the Pareto planner assigns relatively more consumption

to people who place higher probabilities on a date-history pair.

It is useful once again to let λti(s
t) be the Pareto weight attached to con-

sumer i ’s utility in a remainder or continuation Pareto problem as of date t ,

history st . A continuation Pareto planner chooses a continuation allocation

{ciτ (sτ ); for all τ ≥ t, sτ |st} , i = 1, . . . , I to maximize

Wt(s
t) =

∑

i

λti(s
t)

∞∑

τ=t

∑

sτ |st

βtui(c
i
τ (s

τ ))πiτ (s
τ |st).

Under heterogenous beliefs, the allocations chosen by every continuation planner

equal continuations of the original allocation provided that continuation Pareto
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weights satisfy

λti(s
t) =

[
πit(s

t)

π1
t (s

t)

]
λi.

8.B.1. Example: one type’s beliefs are closer to the truth

The Pareto problem above does not mention nature’s probability specification.

But sometimes we want to compute a distribution of consumption implied by

(8.B.2) under a probability distribution that we pretend is nature’s. We now

describe an example that illustrates the principle that the consumer whose prob-

ability specification is closest to nature’s will eventually consume the entire ag-

gregate endowment.

Suppose that st is truly independent and identically distributed and that

Prob(st = s) = π(s) > 0 for all s ∈ S , and
∑
s π(s) = 1. Consumer i also

believes that st is independent and identically distributed but with subjective

probabilities Prob(st = s) = πi(s) > 0 for all s ∈ S , and
∑

s π
i(s) = 1. The

entropy of the actual distribution π relative to consumer i ’s distribution πi is

ent(π, πi) =
∑

s

π(s) log

(
π(s)

πi(s)

)
.

Relative entropy is a nonnegative function that attains a minimum value of

0 when πi = π .17 Relative entropy measures the divergence of probability

distribution πi from probability distribution π .18

Let the beliefs of consumer 1 be closer to the truth than those of other

consumers, as measured by relative entropy, so that ent(π, πi) > ent(π, π1) ≥ 0

17 To show that relative entropy is a nonnegative function, note that the negative of

ent(π, πi) is bounded from above by zero:

−ent(π, πi) =
∑

s

π(s) log

(
πi(s)

π(s)

)
≤ log

(
∑

s

π(s)
πi(s)

π(s)

)
= log

(
∑

s

πi(s)

)
= 0,

where the weak inequality follows from Jensen’s inequality and concavity of the natural log

function. Equality holds for πi = π , and by strict concavity of the log function, ent(π, πi) > 0

for all πi 6= π .
18 Relative entropy also governs statistical properties of likelihood ratio tests for discrimi-

nating one statistical model from another in large samples.
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for all i > 1. Under our assumption of i.i.d. uncertainty, first-order conditions

(8.B.2) can be written

u′i(c
i
t(s

t))

u′1(c
1
t (s

t))
=
λ1
λi

∏t
τ=0 π

1(sτ )∏t
τ=0 π

i(sτ )
=
λ1
λi

∏t
τ=0

π(sτ )
πi(sτ )

∏t
τ=0

π(sτ )
π1(sτ )

, (8.B.3)

where the second equality is obtained after multiplying and dividing by πt(s
t) =∏t

τ=0 π(sτ ). After taking logarithms and then dividing by t , expression (8.B.3)

becomes

1

t
log

[
u′i(c

i
t(s

t))

u′1(c
1
t (s

t))

]
=

1

t
log

(
λ1
λi

)
+

1

t

t∑

τ=0

[
log

(
π(sτ )

πi(sτ )

)
− log

(
π(sτ )

π1(sτ )

)]
.

Since the log likelihood ratios log
(
π(sτ )
πi(sτ )

)
are independent and identically dis-

tributed random variables, by the law of large numbers

1

t

t∑

τ=0

log

(
π(sτ )

πi(sτ )

)
→
∑

s

π(s) log

(
π(s)

πi(s)

)
= ent(π, πi).

Consequently,

1

t
log

[
u′i(c

i
t(s

t))

u′1(c
1
t (s

t))

]
→ ent(π, πi)− ent(π, π1) > 0, (8.B.4)

so the strictly positive right side implies that the ratio of marginal utilities

diverges to +∞ for all i > 1. Since the marginal utility in the denominator

is bounded below because of the finite aggregate endowment, we conclude that

the marginal utility of consumer i goes to infinity and hence limt c
i
t(s

t) → 0.

This example is a special case of Blume and Easley’s (2006) more general

proposition that in the limit as t → +∞ , the consumer with beliefs closest to

the truth, as measured by relative entropy, receives the entire allocation.
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8.B.2. Equilibrium prices reflect beliefs

Do competitive equilibrium prices “accurately reflect available information?” If

“accurately” means “embed correct probability assessments,” the theory pre-

sented in this appendix answers “no, not at first, but yes asymptotically”. The

“yes asymptotically” answer formalizes Milton Friedman’s assertion that com-

petition and survival of the fittest will eventually align the personal beliefs re-

flected in competitive equilibrium prices of risky securities with the objective

probabilities that generate the data.

8.B.3. Mispricing?

In our example, what drives the divergence outcome is that the consumer with

the less accurate beliefs “pays too much” when buying insurance and “accepts

too little” when selling insurance. The inexorable working of the law of large

numbers eventually transfers more and more wealth to consumers with more

accurate beliefs.

8.B.4. Learning

While we have presented simple examples in which agents don’t learn about

probabilities, the same basic force continues to drive outcomes when consumers

can learn. Thus, Blume and Easley (2006) presented richer examples with

heterogeneous beliefs across agents who update using Bayes’ rule. Blume and

Easley’s analysis covers cases in which the sole source of heterogeneity is that dif-

ferent Bayesian agents have different priors. They construct examples in which

agents with either a looser or a less accurate prior receive equilibrium allocations

that approach zero asymptotically. Relative entropies again play a key role.
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8.B.5. Role of complete markets

In the body of this chapter, we showed that Pareto optimal consumption alloca-

tions are competitive equilibrium allocations for two alternative trading struc-

tures with complete markets, one with trading of many securities only at time 0,

and another with trading each period t ≥ 0 of far fewer one-period securities. In

studying these structures, we maintained the homogeneous beliefs of preference

specification (8.2.1). Equivalence of Pareto optimal allocations to competitive

equilibrium allocations also applies to the heterogenous beliefs setting of this

appendix.

The assertions about limiting allocations that we have made in this ap-

pendix all come from manipulating first-order condition (8.B.2) for our Pareto

problem. These assertions about outcomes in complete markets economies don’t

carry over to incomplete market economies, for example, of the type to be

analyzed in chapter 18. Indeed, there exist examples of incomplete markets

economies in which the consumption of the consumer with less accurate beliefs

grows over time.19

C. Incomplete markets

Beker and Chattopadhyay (2010) analyze infinite horizon economies with two

consumers, one good, and incomplete markets. So long as an equilibrium re-

mains effectively constrained by market incompleteness, Beker and Chattopad-

hyay prove that either (a) the consumption of both consumers is arbitrarily close

to zero infinitely often, or (b) the consumption of one consumer converges to

zero. The result prevails whether or not beliefs are heterogeneous. Moreover, a

consumer whose consumption eventually vanishes can be marginally more pa-

tient or have more accurate beliefs than another consumer whose consumption

remains positive. These outcomes stand in contrast to those with complete

markets, as illustrated by an example to be presented in section 8.C.2.

To attain an outcome in which both consumers’ consumptions remain pos-

itive, Beker and Chattopadhyay show that it is sufficient to assume that indi-

viduals’ endowments are uniformly positive and governed by a Markov process.

Imposition of a uniform bound on the value of a consumer’s debt prevents a

19 See Blume and Easley (2006) and Cogley, Sargent, and Tsyrennikov (2014).
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consumer’s consumption from vanishing: even the most unfortunate run of low

endowments will eventually be interrupted by lucky draws of higher endowments

that had not earlier been fully mortgaged to support past consumption.20

A possible limitation of by Beker and Chattopadhyay’s analysis is that they

assumed that equilibrium outcomes are such that consumers’ Euler equations

always hold with equality. But in an incomplete-market economy in which Ponzi

schemes are ruled out by imposing ad hoc borrowing limits, a consumer’s Euler

equation will occasionally hold as a strict inequality (see chapter 17).

To assure that Euler equations always hold with equality in an equilib-

rium, we recommend loosening borrowing limits as much as possible by impos-

ing natural debt limits. As discussed in chapter 18, natural debt limits in an

incomplete-market economy depend on worst-case scenarios, i.e., they require

that if a worst possible state were to last forever, a consumer would be able

to service debt set at his natural debt limit by setting consumption identically

to zero forever. Under our maintained assumption that preferences satisfy an

Inada condition that asserts that the marginal utility of consumption becomes

infinite when consumption goes to zero, it follows that a consumer will always

choose debt to be strictly less than his natural debt limit, making the Euler

equation hold with equality always.

8.C.1. An example economy

There are two types of consumers in equal numbers, so we refer to one repre-

sentative consumer for each type, indexed by i = 1, 2. Agent i has preferences

ordered by

Ui(c
i) =

∞∑

t=0

∑

st

βti ui[c
i
t(s

t)]πit(s
t), (8.C.1)

where u1(c) = c1−γ/(1 − γ), for γ ∈ (0, 1) and γ > 1, and u2(c) = ln(c).

For all t ≥ 0, and all st the true probabilities πt(s
t) > 0 and the subjective

probabilities πit(s
t) > 0 for all i . The aggregate endowment is always strictly

positive and stochastic: for all t ≥ 0 and all st , Yt(s
t) > 0; and there exist

st+1|st and s̃t+1|st such that Yt+1(s
t+1) 6= Yt+1(s̃

t+1). Agent 2 receives the

20 Finding that nobody’s consumption asymptotically vanishes in an incomplete-market

economy with Markov endowments is reassuring for the way we compute stationary equilibria

in the class of so-called Bewley models of chapter 18.
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entire aggregate endowment in the initial period 0, but nothing there afterwards:

(y10(s
0), y20(s

0)) = (0, Y0(s
0)) and (y1t (s

t), y2t (s
t)) = (Yt(s

t), 0) for all t > 0 and

all st .

Agents sequentially trade a single one-period asset available in zero net

supply having exogenous gross payoffs µt+1(s
t+1) > 0 for all t ≥ 0 and all

st+1 . One unit of the asset acquired in period t at history st bears gross payoff

µt+1(st+1, s
t) at t + 1 when state st+1 is realized. Let bit+1(s

t) denote the

quantity of the single asset purchased (or sold, if the quantity is negative) by

consumer i at an equilibrium price pt(s
t). The one-period budget constraint of

consumer i is

cit(s
t) + pt(s

t)bit+1(s
t) ≤ ait(s

t), (8.C.2)

where ait(s
t) is consumer i ’s accumulated wealth at the beginning of period t ,

history st , including his endowment (this differs from our definition of ait(s
t) in

the body of this chapter that excluded current period’s endowment), i.e.,

ait(s
t) = µt(s

t)bit(s
t−1) + yit(s

t). (8.C.3)

Agent i ’s choice of asset bit+1(s
t) satisfies an Euler equation

pt(s
t) = βi

∑
st+1|st π

i
t+1(s

t+1|st)µt+1(s
t+1)[cit+1(s

t+1)]−γ

[cit(s
t)]−γ

, (8.C.4)

with preference parameter γ > 0 for consumer 1 and γ = 1 for consumer 2.

Agent 2’s logarithmic utility function and the fact that his sole endowment

is received at time 0 imply that consumer 2’s decision rules are 21

c2t (s
t) = (1− β2)a

2
t (s

t), (8.C.5a)

21 We guess, and then verify, that consumer 2’s value function takes the form vt(a
2
t (s

t), st) =

ln[a2t (s
t)]/(1 − β2) + v̂t(s

t) , i.e., the value function can be decomposed into two additively

separable terms. The consumer can exert control over wealth in the first term, while the

second term is a function of prices that are taken as given by the consumer. The Bellman

equation, with our guess of the value function, becomes

vt(a
2
t (s

t), st) = max
b2
t+1

(st)

{
ln
[
a2t (s

t)− pt(s
t)b2t+1(s

t)
]

+ β2

∑

st+1|st

π2t+1(s
t+1|st)

(
ln
[
µt+1(s

t+1)b2t+1(s
t)
]

1− β2
+ v̂t+1(s

t+1)

)}
, (⋆)

where the budget constraint (8.C.2) and the law of motion for wealth (8.C.3) are substituted

into the utility function and the next period’s value function, respectively. Taking a first-order
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b2t+1(s
t) = β2a

2
t (s

t)/pt(s
t), (8.C.5b)

so consumer 2 consumes a constant fraction (1− β2) of his beginning-of-period

wealth and saves the rest. Substituting decision rule (8.C.5a) for next period’s

consumption c2t+1(s
t+1) in consumer 2’s Euler equation (8.C.4) and invoking

the law of motion for wealth in (8.C.3) gives

pt(s
t) = β2

∑
st+1|st π

2
t+1(s

t+1|st)µt+1(s
t+1)[(1 − β2)µt+1(s

t+1)b2t+1(s
t)]−1

[c2t (s
t)]−1

= β2
[(1− β2)b

2
t+1(s

t)]−1
∑

st+1|st π
2
t+1(s

t+1|st)
[c2t (s

t)]−1

= β2
µt+1(s̃

t+1)[c2t+1(s̃
t+1)]−1

[c2t (s
t)]−1

, (8.C.6)

for any s̃t+1|st . Equality (8.C.6) implies that the product µt+1(s
t+1)[c2t+1(s

t+1)]−1

of two st+1 -measurable random variables equals an st -measurable random vari-

able.

Market clearing dictates that

c1t (s
t) = Yt(s

t)− c2t (s
t), (8.C.7a)

b1t+1(s
t) = −b2t+1(s

t), (8.C.7b)

for all t ≥ 0 and all st . For t > 0, we can use consumer 2’s consumption

decision rule (8.C.5a) and the law of motion for wealth in (8.C.3) to express

consumption market clearing condition (8.C.7a) as

c1t (s
t) = Yt(s

t)− (1 − β2)µt(s
t)b2t (s

t−1), (8.C.8)

condition with respect to b2t+1(s
t) and rearranging, yields asset decision rule (8.C.5b), which

after substituted into budget constraint (8.C.2), yields consumption decision rule (8.C.5a).

Next, we substitute this optimal choice into the right side of (⋆) , and rearrange,

vt(a
2
t (s

t), st) =
ln[a2t (s

t)]

1− β2
+ ln(1− β2) + β2

∑

st+1|st

π2t+1(s
t+1|st)

·

(
1

1− β2
ln

[
β2
µt+1(s

t+1)

pt(st)

]
+ v̂t+1(s

t+1)

)
≡

ln[a2t (s
t)]

1− β2
+ v̂t(s

t),

which is the form of value function that we had conjectured. Another way to demonstrate the

optimality of decision rules (8.C.5), is to consider the corresponding finite-horizon problem

and recursively, compute time-dependent value functions as well as decision rules. As the

remainder problem goes to infinity, the decision rules can be shown to converge to (8.C.5).
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for all t > 0 and all st .

To characterize an equilibrium, it is useful to compute

ξit(s̃
t) =

µt(s̃
t)[cit(s̃

t)]−γ∑
st|st−1 πit(s

t|st−1)µt(st)[cit(s
t)]−γ

, (8.C.9)

for s̃t|st−1 . The random variable ξit(s̃
t) has conditional mean one. For consumer

2, we showed in (8.C.6) that the product µt(s
t)[c2t (s

t)]−1 is constant across

realizations of the stochastic event st and hence, ξ2t (s̃
t) = 1. For consumer 1,

we can use market-clearing condition (8.C.8) to deduce

ξ1t (s̃
t) =

µt(s̃
t)[Yt(s̃

t)− (1− β2)µt(s̃
t)b2t (s

t−1)]−γ∑
st|st−1 π1

t (s
t|st−1)µt(st)[Yt(st)− (1− β2)µt(st)b2t (s

t−1)]−γ

(8.C.10)

for s̃t|st−1 .

8.C.2. Asset payoff correlated with i.i.d. aggregate endowment

We now assume that asset payoffs are perfectly correlated with the aggre-

gate endowment, µt(s
t) = Yt(s

t) that in turn is governed by an i.i.d. process,

Yt(s
t) = Y (st) with probability πt(s

t) = π(st) > 0, for st ∈ S . Agent i knows

that the stochastic outcomes are governed by an i.i.d. process; his subjective

probabilities are πi(s) > 0 for s ∈ S .

Substituting µt(s
t) = Yt(s

t) into (8.C.10) yields

ξ1t (s̃
t) =

[Yt(s̃
t)]1−γ [1− (1 − β2)b

2
t (s

t−1)]−γ∑
st|st−1 π1

t (s
t|st−1)[Yt(st)]1−γ [1− (1− β2)b2t (s

t−1)]−γ

=
[Y (s̃t)]

1−γ

∑
s∈S π

1(s)[Y (s)]1−γ
≡ ξ1(s̃t), (8.C.11)

where the second equality invokes the assumption of i.i.d. aggregate endowment.

Substituting µt(s
t) = Yt(s

t) into Euler equation (8.C.4) and equating the

left sides for consumers 1 and 2, thereby eliminating pt(s
t), yields

β1

∑
st+1|st π

1
t+1(s

t+1|st)Yt+1(s
t+1)[c1t+1(s

t+1)]−γ

[c1t (s
t)]−γ

= β2
Yt+1(s̃

t+1)[c2t+1(s̃
t+1)]−1

[c2t (s
t)]−1

, (8.C.12)
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where the expression for consumer 2 is taken from (8.C.6). Recall that we

can pick any s̃t+1|st , because the product µt+1(s̃
t+1)[c2t+1(s̃

t+1)]−1 is constant

across realizations of s̃t+1|st . Now let s̃t+1 denote the particular event that is

realized at time t+1 so that the realized history becomes s̃t+1 . Next, multiply

and divide the left side of (8.C.12) by Yt+1(s̃
t+1)[c1t+1(s̃

t+1)]−γ ,

β1
1

ξ1t+1(s̃
t+1)

[c1t+1(s̃
t+1)]−γ

[c1t (s
t)]−γ

= β2
[c2t+1(s̃

t+1)]−1

[c2t (s
t)]−1

,

then rearrange to get

[c1t+1(s̃
t+1)]γ

c2t+1(s̃
t+1)

=
β1
β2

1

ξ1t+1(s̃
t+1)

[c1t (s̃
t)]γ

c2t (s̃
t)

=

[
β1
β2

]t+1
1

∏t+1
j=1 ξ

1(s̃j)

[c10(s̃
0)]γ

c20(s̃
0)

, (8.C.13)

where the second equality is obtained by iterating. We have also invoked the

assumption of an i.i.d. stochastic process so that ξ1t (s̃
t) = ξ1(s̃t), as defined in

(8.C.11).

Given a preference parameter γ 6= 1 for consumer 1, we now show that∏T
j=1 ξ

1(s̃j) → 0 as T goes to infinity for {π1(s); s ∈ S} sufficiently close to

{π(s); s ∈ S} . It suffices to show that limT→∞
1
T

∑T
j=1 log(ξ

1(s̃j)) < 0, i.e.,


 lim
T→∞

1

T

T∑

j=1

log
(
[Y (s̃j)]

1−γ
)

− log

(
∑

s∈S

π1(s)[Y (s)]1−γ

)
< 0. (8.C.14)

Since the aggregate endowment is an i.i.d. process, by the law of large numbers,

1

T

T∑

j=1

log
(
[Y (s̃j)]

1−γ
)
→
∑

s∈S

π(s) log
(
[Y (s)]1−γ

)
,

and so, by Jensen’s inequality, there exists ǫ > 0 such that


 lim
T→∞

1

T

T∑

j=1

log
(
[Y (s̃j)]

1−γ
)

− log

(
∑

s∈S

π(s)[Y (s)]1−γ

)
< −ǫ,

where by continuity, the inequality in (8.C.14) also holds for {π1(s); s ∈ S}
sufficiently close to {π(s); s ∈ S} .
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It now follows from (8.C.13) that if both consumers have the same discount

factor, β1 = β2 , and if both hold the same true beliefs π1(s) = π2(s) = π(s)

for all s ∈ S , then the ratio of consumer 1’s consumption to consumer 2’s

consumption diverges to +∞ . Given that feasibility (market clearing) imposes

an upper bound on consumer 1’s consumption, c1t (s
t) ≤ Yt(s

t), we conclude that

c2T (s
T ) → 0 as T goes to infinity, i.e., consumer 2’s consumption vanishes with

probability one. In contrast, in a complete market economy, the consumption

allocation would be invariant to calender time and just depend on the aggregate

endowment realization (and a set of time-invariant Pareto weights).

Actually, our finding in this example does not depend on the beliefs held

by consumer 2, since his subjective probabilities {π2(s); s ∈ S} are absent from

equilibrium expression (8.C.13). For the sake of the argument, suppose that

consumer 2 holds the true beliefs but that consumer 1 has incorrect beliefs. As

shown above, for {π1(s); s ∈ S} sufficiently close to {π(s); s ∈ S} , consumer 2’s

consumption eventually vanishes. This differs from the outcome in the complete

market economy that we studied in section 8.B.1, where the consumer with the

true beliefs would eventually consume the entire aggregate endowment.

Using the same line of reasoning, another implication of (8.C.13) is that

even if consumer 1 is marginally less patient than consumer 2, β1 < β2 , and

allowing for the possibility that consumer 1 also has marginally incorrect beliefs,

it still follows that consumer 2’s consumption goes to zero as time goes to

infinity. The consumption of a more patient consumer with more accurate beliefs

could not vanish in a complete market economy.

8.C.3. Beneficial market incompleteness

Modifying the preceding example, we now assume that the preference param-

eter of consumer 1 is γ = 1, i.e., both consumers have a logarithmic utility

function, and that discount factors are identical, β1 = β2 = β . According to

(8.C.11), ξ1(s̃) = 1 for all s̃ ∈ S and hence, the consumption ratio c1t (s̃
t)/c2t (s̃

t)

in (8.C.13) remains constant over time. In this incomplete markets economy,

it turns out that the consumption allocation does not depend on whether con-

sumers’ beliefs are correct or incorrect. Furthermore, the allocation equals the

allocation that would prevail in a complete markets economy with correct beliefs.

This outcome motivates our section title ‘beneficial’ market incompleteness; we
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use quotation marks to acknowledge a paternalistic view that the welfare of con-

sumers who maximize expected utility are to be evaluated from the perspective

of true probabilities.22

First, we compute the allocation of a complete markets economy in which

everyone has correct beliefs. Referring to our sections 8.6.1 and 8.6.2 analysis

of an economy with a common utility function of the constant relative risk-

aversion (CRRA) form, an equilibrium allocation assigns consumers constant

fractions of the aggregate endowment at all times and histories. Those fractions

equal consumers’ shares of the aggregate present-value wealth evaluated at the

competitive equilibrium price vector. Let λi denote the consumption share of

consumer i . Using the good in period 0 as numeraire, Arrow-Debreu security

prices are

q0t (s
t) = βtπt(s

t)
[λiYt(s

t)]−1

[λiY0(s0)]−1
= βtπt(s

t)
Y0(s

0)

Yt(st)
. (8.C.15)

The value of consumer 1’s wealth is
∑∞

t=1

∑
st q

0
t (s

t)Yt(s
t) and consumer 2’s

wealth is Y0(s
0), so the share λ2 of consumer 2 is

λ2 =
Y0(s

0)

Y0(s
0) +

∞∑

t=1

∑

st

q0t (s
t)Yt(s

t)

=
Y0(s

0)

Y0(s
0) +

βY0(s
0)

1− β

= 1− β, (8.C.16)

where the second equality invokes the equilibrium expression for prices (8.C.15).

The corresponding consumption share of consumer 1 is λ1 = β .

Second, we verify that regardless of whether consumers’ beliefs are cor-

rect, the allocation equals the equilibrium allocation for the incomplete markets

22 One qualification to calling it ‘beneficial’ market incompleteness is that an consumer

with subjective probabilities that differ from the true probabilities would at any point in time

prefer to make other choices if there were complete rather than incomplete markets and thus,

the consumer is constantly under the subjective perception of being deprived of preferable

options that he could have chosen under complete markets. One countercriticism in favor

of the paternalistic view is that with utility functions defined over actual consumption at

each point in time, what matters are the histories of consumption that will eventually be

realized. That is, there is no loss of utility per se from a deluded consumer holding dismal

subjective beliefs about future consequences of having had to make choices from a restricted

set of options. But rather, market incompleteness is beneficial by compelling the consumer

period-by-period to choose a better allocation (in terms of expected utility under the true

probability distribution).
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economy. We have already verified equality for t = 0 because the allocation

c20(s
0) = λ2Y0(s

0) = (1− β)Y0(s
0) is indeed the consumption of consumer 2 in

an incomplete market economy, as given by (8.C.5a), where consumer 2 con-

sumes a fraction (1−β) of his initially accumulated wealth a20(s
0) = Y0(s

0). To

confirm that it is the equilibrium allocation for all future periods, we conjecture

that consumption shares (λ1, λ2) constitute an incomplete market equilibrium,

then compute the implied equilibrium prices pt(s
t) from Euler equations. Next,

given those prices, we compute consumers’ choices of consumption and verify

that they coincide with the conjectured consumption shares (λ1, λ2). We do

this with consumer 2’s Euler equation (8.C.6),

pt(s
t) = β

Yt+1(s̃
t+1)[λ2Yt+1(s̃

t+1)]−1

[λ2Yt(st)]−1
= βYt(s

t). (8.C.17)

Given these prices, we use consumer 2’s decision rule in (8.C.5b) to compute

his asset choice at time 0, b21(s
0) = βY0(s

0)/p0(s
0) = 1, i.e., consumer 2 pur-

chases one unit of the asset with asset payoffs next period equal to µ1(s
1) =

Y1(s
1). It follows that consumer 2’s beginning-of-period wealth in period 1 is

a21(s
1) = Y1(s

1), so we can apply the same reasoning to period 1: according to

decision rules (8.C.5), consumer 2 consumes a fraction (1 − β) of a21(s
1) and

saves the rest by purchasing assets b22(s
1) = βa21(s

1)/p1(s
1) = 1. This continues

ad infinitum, where in each period, consumer 2 lends a fraction β of his accu-

mulated wealth to consumer 1 in exchange for consumer 1’s entire endowment

next period. In this way we verify our conjecture that the incomplete mar-

ket economy has an equilibrium allocation with constant consumption shares

(λ1, λ2) = (β, 1−β). Because our argument has not involved any mathematical

expectations, consumers’ beliefs can be either correct or incorrect.23

What features of the example explain why the equilibrium allocation of

the incomplete market economy, with or without correct beliefs, equals that of

the complete market economy with correct beliefs? Starting with the case of

correct beliefs, we know from section 8.6.1 that a common utility function of

23 Why don’t consumers’ beliefs matter in the incomplete markets economy? Actually, our

assertion that no expectations were involved in the above reasoning is subject to a qualification.

That qualification is best seen by replacing consumer 2’s Euler equation in the above reasoning

with that of consumer 1, as given by (8.C.4). This switch reinserts expectations into our

reasoning, but as before for consumer 2 in (8.C.6), these expectations now also vanish for

consumer 1 when the product µt+1(s
t+1)[c1t+1(s

t+1)]−1 is constant across realizations of

next period’s stochastic event st+1 .
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the constant relative risk-aversion (CRRA) form implies that an efficient alloca-

tion prescribes that each consumer consumes a constant share of the aggregate

endowment in all periods and all states. So it seems to be important that the ex-

ogenously specified payoffs of the single asset in the incomplete market economy

are perfectly correlated with the aggregate endowment.

What role is played by the exogenous package of Arrow securities implicit in

the single asset in the incomplete market economy? How can we be certain that

this mix can support the same allocation that would prevail in a complete market

economy? The answer is that consumer 1 owns the entire aggregate endowment

after period 0 and hence, the efficient risk sharing characterized here by having

each distinct consumer consume a constant fraction of the aggregate endowment

can be achieved by trading Arrow securities for each possible state next period in

proportion to the realizations of the aggregate endowment in those states. The

trades implicit in the bundle associated with the single asset in the incomplete

market economy accomplish exactly this.

Exercises

Exercise 8.1 Family economics, I

There is one consumption good and one input, labor. A family has two members

named 1 and 2. The family is run by person 1. His welfare function is

λ1 log c1 + λ2[log c2 − n2],

where λ1 and λ2 are positive Pareto weights, c1, c2 are consumption of person

1 and person 2, respectively, and n2 is labor supplied by person 2. Person

2 has no labor but is endowed with s units of the consumption good, where

s > 0. Feasible allocations satisfy

c1 + c2 ≤ n2 + s.

a. Formulate the Pareto problem as a Lagrangian.

b. Solve the Pareto problem for an optimal allocation and Lagrange multiplier.
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c. Interpret the Lagrange multiplier as a “shadow price”, and tell the object of

which it is the shadow price.

d. Describe how the family could be reorganized as a competitive economy,

being careful to identify an initial distribution of property and a price system.

e. Compute a competitive equilibrium of the economy that you identified in

part d.

f. Please tell how n2 would respond to different values of s .

Exercise 8.2 Family economics, II

Modify the economy in exercise 8.1 in the following way only. Instead of being

endowed with s units of consumption, household 1 is endowed with 1 unit of

the consumption good; and one unit of labor now produces sn2 units of the

consumption good, where s > 0. So a feasible allocation now satisfies

c1 + c2 ≤ sn2 + 1.

Preferences are identical with those described in exercise 8.25. Please answer

counterparts of parts a – f for this family.

Exercise 8.3 Existence of representative consumer

Suppose consumers 1 and 2 have one-period utility functions u(c1) and w(c2),

respectively, where u and w are both increasing, strictly concave, twice differ-

entiable functions of a scalar consumption rate. Let c > 0 be the total amount

the single consumption good available to be allocated between consumers 1 and

2. Where θ ∈ (0, 1) is a Pareto weight, consider the Pareto problem:

vθ(c) = max
{c1,c2}

[θu(c1) + (1 − θ)w(c2)]

subject to the constraint c1 + c2 = c . Show that the solution of this problem

has the form of a concave utility function vθ(c), which depends on the Pareto

weight θ . Where {c1(c, θ), c2(c, θ)} is a Pareto optimal allocation, show that

v′θ(c) = θu′(c1(c, θ)) = (1− θ)w′(c2(c, θ)).

The function vθ(c) is the utility function of a representative consumer. A

representative consumer always lurks within a complete markets competitive

equilibrium even with heterogeneous preferences. At a competitive equilibrium,
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the marginal utilities of the representative agent and each and every agent are

proportional.

Exercise 8.4 Term structure of interest rates

Consider an economy with a single consumer. There is one good in the economy,

which arrives in the form of an exogenous endowment obeying24

yt+1 = λt+1yt,

where yt is the endowment at time t and {λt+1} is governed by a two-state

Markov chain with transition matrix

P =

[
p11 1− p11

1− p22 p22

]
,

and initial distribution πλ = [π0 1− π0 ] . The value of λt is given by λ̄1 = .98

in state 1 and λ̄2 = 1.03 in state 2. Assume that the history of ys, λs up to

t is observed at time t . The consumer has endowment process {yt} and has

preferences over consumption streams that are ordered by

E0

∞∑

t=0

βtu(ct)

where β ∈ (0, 1) and u(c) = c1−γ

1−γ , where γ ≥ 1.

a. Define a competitive equilibrium, being careful to name all of the objects of

which it consists.

b. Tell how to compute a competitive equilibrium.

For the remainder of this problem, suppose that p11 = .8, p22 = .85, π0 = .5,

β = .96, and γ = 2. Suppose that the economy begins with λ0 = .98 and

y0 = 1.

c. Compute the (unconditional) average growth rate of consumption, computed

before having observed λ0 .

d. Compute the time 0 prices of three risk-free discount bonds, in particu-

lar, those promising to pay one unit of time j consumption for j = 0, 1, 2,

respectively.

24 Such a specification was adopted by Mehra and Prescott (1985).
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e. Compute the time 0 prices of three bonds, in particular, ones promising

to pay one unit of time j consumption contingent on λj = λ̄1 for j = 0, 1, 2,

respectively.

f. Compute the time 0 prices of three bonds, in particular, ones promising to

pay one unit of time j consumption contingent on λj = λ̄2 for j = 0, 1, 2,

respectively.

g. Compare the prices that you computed in parts d, e, and f.

Exercise 8.5 An economy consists of two infinitely lived consumers named

i = 1, 2. There is one nonstorable consumption good. Consumer i consumes cit
at time t . Consumer i ranks consumption streams by

∞∑

t=0

βtu(cit),

where β ∈ (0, 1) and u(c) is increasing, strictly concave, and twice continu-

ously differentiable. Consumer 1 is endowed with a stream of the consumption

good yit = 1, 0, 0, 1, 0, 0, 1, . . .. Consumer 2 is endowed with a stream of the

consumption good 0, 1, 1, 0, 1, 1, 0, . . .. Assume that there are complete markets

with time 0 trading.

a. Define a competitive equilibrium.

b. Compute a competitive equilibrium.

c. Suppose that one of the consumers markets a derivative asset that promises

to pay .05 units of consumption each period. What would the price of that asset

be?

Exercise 8.6 Consider a pure endowment economy with a single representative

consumer; {ct, dt}∞t=0 are the consumption and endowment processes, respec-

tively. Feasible allocations satisfy

ct ≤ dt.

The endowment process is described by25

dt+1 = λt+1dt.

25 See Mehra and Prescott (1985).
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The growth rate λt+1 is described by a two-state Markov process with transition

probabilities

Pij = Prob(λt+1 = λ̄j |λt = λ̄i).

Assume that

P =

[
.8 .2

.1 .9

]
,

and that

λ̄ =

[
.97

1.03

]
.

In addition, λ0 = .97 and d0 = 1 are both known at date 0. The consumer has

preferences over consumption ordered by

E0

∞∑

t=0

βt
c1−γt

1− γ
,

where E0 is the mathematical expectation operator, conditioned on information

known at time 0, γ = 2, β = .95.

Part I

At time 0, after d0 and λ0 are known, there are complete markets in date- and

history-contingent claims. The market prices are denominated in units of time

0 consumption goods.

a. Define a competitive equilibrium, being careful to specify all the objects

composing an equilibrium.

b. Compute the equilibrium price of a claim to one unit of consumption at date

5, denominated in units of time 0 consumption, contingent on the following

history of growth rates: (λ1, λ2, . . . , λ5) = (.97, .97, 1.03, .97, 1.03). Please give

a numerical answer.

c. Compute the equilibrium price of a claim to one unit of consumption at date

5, denominated in units of time 0 consumption, contingent on the following

history of growth rates: (λ1, λ2, . . . , λ5) = (1.03, 1.03, 1.03, 1.03, .97).

d. Give a formula for the price at time 0 of a claim on the entire endowment

sequence.

e. Give a formula for the price at time 0 of a claim on consumption in period

5, contingent on the growth rate λ5 being .97 (regardless of the intervening

growth rates).
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Part II

Now assume a different market structure. Assume that at each date t ≥ 0 there

is a complete set of one-period forward Arrow securities.

f. Define a (recursive) competitive equilibrium with Arrow securities, being

careful to define all of the objects that compose such an equilibrium.

g. For the representative consumer in this economy, for each state compute the

“natural debt limits” that constrain state-contingent borrowing.

h. Compute a competitive equilibrium with Arrow securities. In particular,

compute both the pricing kernel and the allocation.

i. An entrepreneur enters this economy and proposes to issue a new security

each period, namely, a risk-free two-period bond. Such a bond issued in period

t promises to pay one unit of consumption at time t+1 for sure. Find the price

of this new security in period t , contingent on λt .

Exercise 8.7

An economy consists of two consumers, named i = 1, 2. The economy exists

in discrete time for periods t ≥ 0. There is one good in the economy, which

is not storable and arrives in the form of an endowment stream owned by each

consumer. The endowments to consumers i = 1, 2 are

y1t = st

y2t = 1

where st is a random variable governed by a two-state Markov chain with values

st = s̄1 = 0 or st = s̄2 = 1. The Markov chain has time invariant transition

probabilities denoted by π(st+1 = s′|st = s) = π(s′|s), and the probability

distribution over the initial state is π0(s). The aggregate endowment at t is

Y (st) = y1t + y2t .

Let ci denote the stochastic process of consumption for agent i . Consumer

i orders consumption streams according to

U(ci) =

∞∑

t=0

∑

st

βt ln[cit(s
t)]πt(s

t),

where πt(s
t) is the probability of the history st = (s0, s1, . . . , st).
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a. Give a formula for πt(s
t).

b. Let θ ∈ (0, 1) be a Pareto weight on consumer 1. Consider the planning

problem

max
c1,c2

{
θU(c1) + (1− θ)U(c2)

}

where maximization is subject to

c1t (s
t) + c2t (s

t) ≤ Y (st), ∀t, ∀st.

Solve the Pareto problem, taking θ as a parameter.

c. Define a competitive equilibrium with history-dependent Arrow-Debreu secu-

rities traded once and for all at time 0. Be careful to define all of the objects

that compose a competitive equilibrium.

d. Compute the competitive equilibrium price system (i.e., find the prices of all

Arrow-Debreu securities).

e. Tell the relationship between the solutions (indexed by θ ) of the Pareto

problem and the competitive equilibrium allocation. If you wish, refer to the

two welfare theorems.

f. Briefly tell how you can compute the competitive equilibrium price system

before you have figured out the competitive equilibrium allocation.

g. Now define a recursive competitive equilibrium with trading every period

in one-period Arrow securities only. Describe all of the objects of which such

an equilibrium is composed. (Please denominate the prices of one-period time

t+ 1 state-contingent Arrow securities in units of time t consumption.) Define

“natural borrowing limits” for each consumer in each state. Tell how to compute

these natural borrowing limits.

h. Tell how to compute the prices of one-period Arrow securities. How many

prices are there (i.e., how many numbers do you have to compute)? Compute

all of these prices in the special case that β = .95 and π(sj |si) = Pij where

P =

[
.8 .2

.3 .7

]
.

i. Within the one-period Arrow securities economy, a new asset is introduced.

One of the consumers decides to market a one-period-ahead riskless claim to

one unit of consumption. Compute the equilibrium price of this security when
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st = 0 and when st = 1. Justify your formula for these prices in terms of first

principles.

j. Within the one-period Arrow securities equilibrium, a new asset is introduced.

One of the consumers decides to market a two-period-ahead riskless claim to one

unit of consumption (a two-period real bill). Compute the equilibrium prices of

this security when st = 0 and when st = 1.

k. Within the one-period Arrow securities equilibrium, a new asset is intro-

duced. One of the consumers decides at time t to market five-period-ahead

claims to consumption at t + 5 contingent on the value of st+5 . Compute the

equilibrium prices of these securities when st = 0 and st = 1 and st+5 = 0 and

st+5 = 1.

Exercise 8.8 Optimal taxation

The government of a small country must finance an exogenous stream of govern-

ment purchases {gt}∞t=0 . Assume that gt is described by a discrete-state Markov

chain with transition matrix P and initial distribution π0 . Let πt(g
t) denote

the probability of history gt = gt, gt−1, . . . , g0 , conditioned on g0 . The state

of the economy is completely described by the history gt . There are complete

markets in date-history claims to goods. At time 0, after g0 has been realized,

the government can purchase or sell claims to time t goods contingent on his-

tory gt at a price p0t (g
t) = βtπt(g

t), where β ∈ (0, 1). The date-state prices

are exogenous to the small country. The government finances its expenditures

by raising history-contingent tax revenues of Rt = Rt(g
t) at time t . The p

value of its expenditures must not exceed the value of its revenues, where values

are calculated using Arrow-Debreu prices to evaluate state-contingent streams

of consumption goods.

Raising revenues by taxation is distorting. The government confronts a

dead weight loss function W (Rt) that measures the distortion at time t . As-

sume that W is an increasing, twice differentiable, strictly convex function that

satisfies W (0) = 0,W ′(0) = 0,W ′(R) > 0 for R > 0 and W ′′(R) > 0 for

R ≥ 0. The government devises a state-contingent taxation and borrowing plan

to minimize

E0

∞∑

t=0

βtW (Rt), (1)

where E0 is the mathematical expectation conditioned on g0 .
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Suppose that gt takes two possible values, ḡ1 = .2 (peace) and ḡ2 = 1

(war) and that P =

[
.8 .2

.5 .5

]
. Suppose that g0 = .2. Finally, suppose that

W (R) = .5R2 .

a. Please write out (1) long hand, i.e., write out an explicit expression for the

mathematical expectation E0 in terms of a summation over the appropriate

probability distribution.

b. Compute the optimal tax and borrowing plan. In particular, give analytic

expressions for Rt = Rt(g
t) for all t and all gt .

c. There is an equivalent market setting in which the government can buy and

sell one-period Arrow securities each period. Find the price of one-period Arrow

securities at time t , denominated in units of the time t good.

d. Let Bt(gt) be the one-period Arrow securities at t that the government

issued for state gt at time t − 1. For t > 0, compute Bt(gt) for gt = ḡ1 and

gt = ḡ2 .

e. Use your answers to parts b and d to describe the government’s optimal

policy for taxing and borrowing.

Exercise 8.9 A competitive equilibrium

An endowment economy consists of two type of consumers. Consumers of type

1 order consumption streams of the one good according to

∞∑

t=0

βtc1t

and consumers of type 2 order consumption streams according to

∞∑

t=0

βt ln(c2t )

where cit ≥ 0 is the consumption of a type i consumer and β ∈ (0, 1) is a

common discount factor. The consumption good is tradable but nonstorable.

There are equal numbers of the two types of consumer. The consumer of type

1 is endowed with the consumption sequence

y1t = µ > 0 ∀t ≥ 0
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where µ > 0. The consumer of type 2 is endowed with the consumption sequence

y2t =

{
0 if t ≥ 0 is even

α if t ≥ 0 is odd

where α = µ(1 + β−1).

a. Define a competitive equilibrium with time 0 trading. Be careful to include

definitions of all of the objects of which a competitive equilibrium is composed.

b. Compute a competitive equilibrium allocation with time 0 trading.

c. Compute the time 0 wealths of the two types of consumers using the com-

petitive equilibrium prices.

d. Define a competitive equilibrium with sequential trading of Arrow securities.

e. Compute a competitive equilibrium with sequential trading of Arrow securi-

ties.

Exercise 8.10 Corners

A pure endowment economy consists of two type of consumers. Consumers of

type 1 order consumption streams of the one good according to

∞∑

t=0

βtc1t

and consumers of type 2 order consumption streams according to

∞∑

t=0

βt ln(c2t )

where cit ≥ 0 is the consumption of a type i consumer and β ∈ (0, 1) is a

common discount factor. Please note the nonnegativity constraint on consump-

tion of each person (the force of this is that cit is consumption, not production).

The consumption good is tradable but nonstorable. There are equal numbers

of the two types of consumer. The consumer of type 1 is endowed with the

consumption sequence

y1t = µ > 0 ∀t ≥ 0

where µ > 0. The consumer of type 2 is endowed with the consumption sequence

y2t =

{
0 if t ≥ 0 is even

α if t ≥ 0 is odd
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where

α = µ(1 + β−1). (1)

a. Define a competitive equilibrium with time 0 trading. Be careful to include

definitions of all of the objects of which a competitive equilibrium is composed.

b. Compute a competitive equilibrium allocation with time 0 trading. Compute

the equilibrium price system. Please also compute the sequence of one-period

gross interest rates. Do they differ between odd and even periods?

c. Compute the time 0 wealths of the two types of consumers using the com-

petitive equilibrium prices.

d. Now consider an economy identical to the preceding one except in one respect.

The endowment of consumer 1 continues to be 1 each period, but we assume

that the endowment of consumer 2 is larger (though it continues to be zero in

every even period). In particular, we alter the assumption about endowments

in condition (1) to the new condition

α > µ(1 + β−1).

Compute the competitive equilibrium allocation and price system for this econ-

omy.

e. Compute the sequence of one-period interest rates implicit in the equilibrium

price system that you computed in part d. Are interest rates higher or lower

than those you computed in part b?

Exercise 8.11 Equivalent martingale measure

Let {dt(st)}∞t=0 be a stream of payouts. Suppose that there are complete mar-

kets. From (8.5.4) and (8.7.1), the price at time 0 of a claim on this stream of

dividends is

a0 =
∑

t=0

∑

st

βt
u′(cit(s

t))

µi
πt(s

t)dt(st).

Show that this a0 can also be represented as

a0 =
∑

t

bt
∑

st

dt(st)π̃t(s
t) (1)

= Ẽ0

∞∑

t=0

btdt(st)
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where Ẽ is the mathematical expectation with respect to the twisted measure

π̃t(s
t) defined by

π̃t(s
t) = b−1

t βt
u′(cit(s

t))

µi
πt(s

t)

bt =
∑

st

βt
u′(cit(s

t))

µi
πt(s

t).

Prove that π̃t(s
t) is a probability measure. Interpret bt itself as a price of

particular asset. Note: π̃t(s
t) is called an equivalent martingale measure. See

chapters 13 and 14.

Exercise 8.12 Harrison-Kreps prices

Show that the asset price in (1) of exercise 8.11 can also be represented as

a0 =

∞∑

t=0

∑

st

βtp0t (s
t)dt(s

t)πt(s
t)

= E0

∞∑

t=0

βtp0tdt

where p0t (s
t) = q0t (s

t)/[βtπt(s
t)] .

Exercise 8.13 Early resolution of uncertainty

An economy consists of two consumers named i = 1, 2. Each consumer evaluates

streams of a single consumption good according to
∑∞

t=0

∑
st β

tu[cit(s
t)]πt(s

t).

Here u(c) is an increasing, twice continuously differentiable, strictly concave

function of consumption c of one good. The utility function satisfies the In-

ada condition limc↓0 u
′(c) = +∞. A feasible allocation satisfies

∑
i c
i
t(s

t) ≤∑
i y
i(st). The consumers’ endowments of the one nonstorable good are both

functions of a state variable st ∈ S = {0, 1, 2} ; st is described by a time in-

variant Markov chain with initial distribution π0 = [ 0 1 0 ]′ and transition

density defined by the stochastic matrix

P =



1 0 0

.5 0 .5

0 0 1


 .

The endowments of the two consumers are

y1t = st/2

y2t = 1− st/2.
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a. Define a competitive equilibrium with Arrow securities.

b. Compute a competitive equilibrium with Arrow securities.

c. By hand, simulate the economy. In particular, for every possible realization

of the histories st , describe time series of c1t , c
2
t and the wealth levels ait of the

consumers. (Note: Usually this would be an impossible task by hand, but this

problem has been set up to make the task manageable.)

Exercise 8.14 donated by Pierre-Olivier Weill

An economy is populated by a continuum of infinitely lived consumers of types

j ∈ {0, 1} , with a measure one of each. There is one nonstorable consumption

good arriving in the form of an endowment stream owned by each consumer.

Specifically, the endowments are

y0t (st) = (1− st)ȳ
0

y1t (st) = stȳ
1,

where st is a two-state time-invariant Markov chain valued in {0, 1} and ȳ0 <

ȳ1 . The initial state is s0 = 1. Transition probabilities are denoted π(s′|s) for

(s, s′) ∈ {0, 1}2 , where ′ denotes a next period value. The aggregate endowment

is yt(st) ≡ (1 − st)ȳ
0 + stȳ

1 . Thus, this economy fluctuates stochastically

between recessions yt(0) = ȳ0 and booms yt(1) = ȳ0 . In a recession, the

aggregate endowment is owned by type 0 consumers, while in a boom it is owned

by a type 1 consumers. A consumer orders consumption streams according to:

U(cj) =

∞∑

t=0

∑

st

βtπ(st|s0)
cjt (s

t)1−γ

1− γ
,

where st = (st, st−1, . . . , s0) is the history of the state up to time t , β ∈ (0, 1)

is the discount factor, and γ > 0 is the coefficient of relative risk aversion.

a. Define a competitive equilibrium with time 0 trading. Compute the price

system {q0t (st)}∞t=0 and the equilibrium allocation {cj(st)}∞t=0 , for j ∈ {0, 1} .

b. Find a utility function Ū(c) = E0

(∑∞
t=0 β

tu(ct)
)
such that the price system

q0t (s
t) and the aggregate endowment yt(st) is an equilibrium allocation of the

single-agent economy
(
Ū , {yt(st)}∞t=0

)
. How does your answer depend on the

initial distribution of endowments yjt (st) among the two types j ∈ {0, 1}? How

would you defend the representative agent assumption in this economy?
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c. Describe the equilibrium allocation under the following three market struc-

tures: (i) at each node st , agents can trade only claims on their entire endow-

ment streams; (ii) at each node st , there is a complete set of one-period ahead

Arrow securities; and (iii) at each node st , agents can only trade two risk-free

assets, namely, a one-period zero-coupon bond that pays one unit of consump-

tion for sure at t+ 1 and a two-period zero-coupon bond that pays one unit of

the consumption good for sure at t+2. How would you modify your answer in

the absence of aggregate uncertainty?

d. Assume that π(1|0) = 1, π(0|1) = 1, and as before s0 = 1. Compute the

allocation in an equilibrium with time 0 trading. Does the type j = 1 agent

always consume the largest share of the aggregate endowment? How does it

depend on parameter values? Provide economic intuition for your results.

e. Assume that π(1|0) = 1 and π(0|1) = 1. Remember that s0 = 1. Assume

that at t = 1 agent j = 0 is given the option to default on her financial

obligation. For example, in the time 0 trading economy, these obligations are

deliveries of goods. Upon default, it is assumed that the agent is excluded from

the market and has to consume her endowment forever. Will the agent ever

exercise her option to default?

Exercise 8.15 Diverse beliefs, I

A pure endowment economy is populated by two consumers. Consumer i has

preferences over history-contingent consumption sequences {cit(st)} that are

ordered by
∞∑

t=0

∑

st

βtu(cit(s
t))πit(s

t),

where u(c) = ln(c) and where πit(s
t) is a density that consumer i assigns to

history st . The state space is time invariant. In particular, st ∈ S = {0, .5, 1}
for all t ≥ 0. Only two histories are possible for t = 0, 1, 2, . . .:

history 1 : .5, 1, 1, 1, 1, . . .

history 2 : .5, 0, 0, 0, 0, . . .

Consumer 1 assigns probability 1/3 to history 1 and probability 2/3 to his-

tory 2, while consumer 2 assigns probability 2/3 to history 1 and probability

1/3 to history 2. Nature assigns equal probabilities to the two histories. The

endowments of the two consumers are:
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y1t = st

y2t = 1− st.

a. Define a competitive equilibrium with sequential trading of a complete set of

one-period Arrow securities.

b. Compute a competitive equilibrium with sequential trading of a complete

set of one-period Arrow securities.

c. Is the equilibrium allocation Pareto optimal?

Exercise 8.16 Diverse beliefs, II

Consider the following I person pure endowment economy. There is a state

variable st ∈ S for all t ≥ 0. Let st denote a history of s from 0 to t . The

time t aggregate endowment is a function of the history, so Yt = Yt(s
t). Agent

i attaches a personal probability of πit(s
t) to history st . The history st is

observed by all I people at time t . Assume that for all i , πit(st) > 0 if and

only if π1
t (st) > 0 (so the consumers agree about which histories have positive

probability). Consumer i ranks consumption plans cit(s
t) that are measurable

functions of histories via the expected utility functional

(1)

∞∑

t=0

∑

st

βt ln(cit(s
t))πit(s

t)

The ownership structure of the economy is not yet determined.

A planner puts positive Pareto weights λi > 0 on consumers i = 1, . . . , I and

solves a time 0 Pareto problem that respects each consumer’s preferences as

represented by (1).

a. Show how to solve for a Pareto optimal allocation. Display an expression for

cit(s
t) as a function of Yt(s

t) and other pertinent variables.

b. Under what circumstances does the Pareto plan imply complete risk-sharing

among the I consumers?

c. Under what circumstances does the Pareto plan imply an allocation that

is not history dependent? By ‘not history dependent’, we mean that Yt(s
t) =

Yt(s̃
t) would imply the same allocation at time t?
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d. For a given set of Pareto weights, find an associated equilibrium price vector

and an initial distribution of wealth among the I consumers that makes the

Pareto allocation be the allocation associated with a competitive equilibrium

with time 0 trading of history-contingent claims on consumption.

e. Find a formula for the equilibrium price vector in terms of equilibrium

quantities and the beliefs of consumers.

f. Suppose that I = 2. Show that as λ2/λ1 → +∞ , the planner would

distribute initial wealth in a way that makes consumer 2’s beliefs more and

more influential in determining equilibrium prices.

Exercise 8.17 Diverse beliefs, III

An economy consists of two consumers named i = 1, 2. Each consumer evaluates

streams of a single nonstorable consumption good according to

∞∑

t=0

∑

st

βt ln[cit(s
t)]πit(s

t).

Here πit(s
t) is consumer i ’s subjective probability over history st . A feasi-

ble allocation satisfies
∑

i c
i
t(s

t) ≤ ∑
i y
i(st) for all t ≥ 0 and for all st .

The consumers’ endowments of the one good are functions of a state variable

st ∈ S = {0, 1, 2}. In truth, st is described by a time invariant Markov chain

with initial distribution π0 = [ 0 1 0 ]
′
and transition density defined by the

stochastic matrix

P =



1 0 0

.5 0 .5

0 0 1




where Pij = Prob[st+1 = j − 1|st = i − 1] for i = 1, 2, 3 and j = 1, 2, 3. The

endowments of the two consumers are

y1t = st/2

y2t = 1− st/2.

In part I, both consumers know the true probabilities over histories st (i.e., they

know both π0 and P ). In part II, the two consumers have different subjective

probabilities.
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Part I:

Assume that both consumers know (π0, P ), so that π1
t (s

t) = π2
t (s

t) for all t ≥ 0

for all st .

a. Show how to deduce πit(s
t) from (π0, P ).

b. Define a competitive equilibrium with sequential trading of Arrow securities.

c. Compute a competitive equilibrium with sequential trading of Arrow securi-

ties.

d. By hand, simulate the economy. In particular, for every possible realization

of the histories st , describe time series of c1t , c
2
t and the wealth levels for the

two consumers.

Part II:

Now assume that while consumer 1 knows (π0, P ), consumer 2 knows π0 but

thinks that P is

P̂ =



1 0 0

.4 0 .6

0 0 1


 .

e. Deduce π2
t (s

t) from (π0, P̂ ) for all t ≥ 0 for all st .

f. Formulate and solve a Pareto problem for this economy.

g. Define an equilibrium with time 0 trading of a complete set of Arrow-Debreu

history-contingent securities.

h. Compute an equilibrium with time 0 trading of a complete set of Arrow-

Debreu history-contingent securities.

i. Compute an equilibrium with sequential trading of Arrow securities. For

every possible realization of st for all t ≥ 0, please describe time series of c1t , c
2
t

and the wealth levels for the two consumers.

Exercise 8.18 Diverse beliefs, IV

A pure exchange economy is populated by two consumers. Consumer i has

preferences over history-contingent consumption sequences {cit(st)} that are

ordered by
∞∑

t=0

∑

st

βtu(cit(s
t))πit(s

t),
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where u(c) = ln(c), β ∈ (0, 1), and πit(s
t) is a density that consumer i assigns

to history st . The state space is time invariant. In particular, st ∈ S = {0, .5, 1}
for all t ≥ 0. Only two histories are possible for t = 0, 1, 2, . . .:

history 1 : .5, 1, 1, 1, 1, . . .

history 2 : .5, 0, 0, 0, 0, . . .

Consumer 1 assigns probability 1 to history 1 and probability 0 to history 2,

while consumer 2 assigns probability 0 to history 1 and probability 1 to history

2. Nature assigns equal probabilities to the two histories. The endowments of

the two consumers are:

y1t = st

y2t = 1− st.

a. Formulate and solve a Pareto problem for this economy.

b. Define a competitive equilibrium with sequential trading of a complete set

of one-period Arrow securities.

c. Does a competitive equilibrium with sequential trading of a complete set of

one-period Arrow securities exist for this economy? If it does, compute it. If it

does not, explain why.

Exercise 8.19 Diverse beliefs, V

A pure exchange economy is populated by two consumers. Consumer i has

preferences over history-contingent consumption sequences {cit(st)} that are

ordered by
∞∑

t=0

∑

st

βtu(cit(s
t))πit(s

t),

where u(c) = ln(c), β ∈ (0, 1), and πit(s
t) is a density that consumer i assigns

to history st . The state space is time invariant. In particular, st ∈ S = {0, .5, 1}
for all t ≥ 0. Only two histories are possible for t = 0, 1, 2, . . .:

history 1 : .5, 1, 1, 1, 1, . . .

history 2 : .5, 0, 0, 0, 0, . . .

Consumer 1 assigns probability 1 to history 1 and probability 0 to history 2,

while consumer 2 assigns probability 0 to history 1 and probability 1 to history
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2. Nature assigns equal probabilities to the two histories. The endowments of

the two consumers are:

y1t = 1− st

y2t = st.

a. Formulate and solve a Pareto problem for this economy.

b. Define a competitive equilibrium with sequential trading of a complete set

of one-period Arrow securities.

c. Does a competitive equilibrium with sequential trading of a complete set of

one-period Arrow securities exist for this economy? If it does, compute it. If it

does not, explain why.

Exercise 8.20 Risk-free bonds

An economy consists of a single representative consumer who ranks streams of a

single nonstorable consumption good according to
∑∞
t=0

∑
st β

t ln[ct(s
t)]πt(s

t).

Here πt(s
t) is the subjective probability that the consumer attaches to a history

st of a Markov state st , where st ∈ {1, 2} . Assume that the subjective probabil-

ity πt(s
t) equals the objective probability. Feasibility for this pure endowment

economy is expressed by the condition ct ≤ yt , where yt is the endowment at

time t . The endowment is exogenous and governed by

yt+1 = λt+1λt · · ·λ1y0

for t ≥ 0 where y0 > 0. Here λt is a function of the Markov state st . Assume

that λt = 1 when st = 1 and λt = 1 + ζ when st = 2, where ζ > 0. States

st = [st, . . . , s0] are known at time t , but future states are not. The state st is

described by a time invariant Markov chain with initial probability distribution

π0 = [ 1 0 ]
′
and transition density defined by the stochastic matrix

P =

[
P11 P12

P21 P22

]

where Pij = Prob[st+1 = j|st = i] for i = 1, 2 and j = 1, 2. Assume that

Pij ≥ 0 for all pairs (i, j).

a. Show how to deduce πt(s
t) from (π0, P ).

b. Define a competitive equilibrium with sequential trading of Arrow securities.
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c. Compute a competitive equilibrium with sequential trading of Arrow securi-

ties.

d. Let pbt be the time t price of a risk-free claim to one unit of consumption at

time t+1. Define a competitive equilibrium with sequential trading of risk-free

claims to consumption one period ahead.

e. Let Rt = (pbt)
−1 be the one-period risk-free gross interest rate. Give a

formula for Rt and tell how it depends on the history st .

f. Suppose that β = .95, ζ = .02 and P =

[
1 0

.5 .5

]
. Please compute Rt when

st = 1. Then compute Rt when st = 2.

g. What parts of your answers depend on assuming that the subjective proba-

bility πt(s
t) equals the objective probability?

Exercise 8.21 Entropy

Let f̃(s) and f(s) be two alternative probability density functions for a random

variable s . Define the relative entropy of f with respect to f̃ by

ent(f, f̃) =

∫
log

(
f̃(s)

f(s)

)
f̃(s)ds =

∫
log

(
f̃(s)

f(s)

)(
f̃(s)

f(s)

)
f(s)ds.

Prove that ent(f, f̃) ≥ 0 and that ent(f̃ , f̃) = 0.

Hint 1: Define m(s) =
(
f̃(s)
f(s)

)
and express entropy as

∫
m(s) logm(s)f(s)ds.

Hint 2: Verify that m logm ≥ m− 1.

Hint 3: Verify that
∫
m(s)f(s) = 1.

Exercise 8.22 Heterogeneous beliefs again

Consider an example of the heterogeneous beliefs economy described in Ap-

pendix B of this chapter. Suppose that S = {0, 1}, I = 2, and that agent i

believes that st is independently and identically distributed with Prob(st =

0) = αi . Assume that ui(c
i
t) = log cit for both consumers. The aggregate en-

dowment is yt(s
t) = 1 − .5st . Feasibility requires c1t + c2t ≤ yt(s

t). A time 0
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Pareto planner puts weight λ ∈ (0, 1) on consumer 1 and weight (1 − λ) on

consumer 2. Suppose that {st}∞t=1 is truly independently and identically dis-

tributed with Prob(st = 0) = α̃ . Assume that I = 2, α2 = α̃, α1 6= α̃ , so that

consumer 2 knows the true distribution, while consumer 1 does not.

a. Let L2
t (s

t) =
π2
t (s

t)

π1
t (s

t)
. Show that a Pareto optimal allocation satisfies

c2t (s
t) =

[
(1− λ)L2(st)

λ+ (1− λ)L2
t (s

t)

]
yt(s

t).

b. Find a formula for the price Q̃(st+1|st) of Arrow securities.

c. State assumptions under which you can show that

Q̃t(st+1|st) → β

(
yt(st)

yt+1(st+1)

)
π2
t (st+1|st),

as t→ +∞ in some sense. Describe the sense in which what you claim is true.

d. Use your findings from part c to argue that the “tail” of the economy

resembles a representative consumer economy.

Exercise 8.23 Recursive version of Pareto problem

a. Please reread section 8.12.

b. Assume exactly the same setting as in section 8.12, except now assume that

consumer 1 believes probabilities Π1
s and that consumer two believes probabil-

ities Π2
s .

c. Formulate a recursive version of the Pareto problem in terms of the Bellman

equation

P (v) = max
{cs,ws}

S∑

i=s

[u2(1− cs) + βP (ws)]Π
2
s

where the maximization is subject to

S∑

s=1

[u1(cs) + βws]Π
1
s ≥ v
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where cs is consumption assigned to consumer 1, 1−cs is consumption assigned

to consumer 2, v is the promised value assigned to consumer 1, ws is a contin-

uation value assigned to consumer 1, P (v) is the value attained by consumer 2,

and P (ws) is the continuation value assigned to consumer 2.

d. Assuming that P (v) is concave and differentiable, find first-order conditions

for cs, ws for s = 1, . . . , S .

e. Argue that these first-order conditions imply that for states i such that
Π1

s

Π2
s
> 1, the Pareto planner gives larger values of both c1s and w1

s than he or

she does in states for which
Π1

s

Π2
s
< 1.

f. How do the outcomes described in item e relate to the asymptotic outcomes

described in Appendix B of this chapter?

Exercise 8.24 Recovering probabilities from prices

Consider a representative agent economy with an exogenous endowment of a

single consumption good governed by a two-state Markov chain with state

st ∈ {1, 2} having transition matrix P with typical element Pij = Prob(st+1 =

j|st = i). The representative consumer’s endowment yt is a time invariant func-

tion y(st) > 0 of the Markov state. So is his consumption. The representative

consumer orders consumption streams by

E0

∞∑

t=0

βtu(ct),

where β ∈ (0, 1) and u(c) = 1
1−γ c

1−γ for γ > 0. At each date t ≥ 0, there

are complete markets in h-step ahead Arrow securities of horizons h = 1, 2.

Recall formula (8.10.3) for the h-step ahead Arrow securities prices, which for

convenience we repeat here

Qh(st+h|st) =
∑

st+1

Q1(st+1|st)Qh−1(st+h|st+1).

a. With an abuse of notation, arrange the one-period Arrow security prices into

a 2× 2 matrix Q defined according to

Qij = Q(st+1 = j|st = i).
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Then show that formula (8.10.3) can be represented as

Qh = QQh−1

for h ≥ 2.

b. Suppose that you observe a complete set of one and two period ahead Arrow

securities prices for one and only one state i . That is, you know the ith row

of both Q and Q2 . Show how you can recover both rows of Q from this

information.

c. Recall that consumption of a representative consumer is a time-invariant

function of the Markov state. Find a formula for each element of Q in terms of

β, γ , the consumption rates in the two states, and P .

d. Prove that if you know all elements of Q , you can infer β and all elements

of P even if you don’t know γ .

Exercise 8.25 Recovering probabilities from prices, II

Consider a representative agent economy with an exogenous endowment of a

single consumption good whose geometric growth rate is governed by a two-

state Markov chain with state st ∈ {1, 2} having transition matrix P with

typical element Pij = Prob(st+1 = j|st = i). The growth rate of the consumer’s

endowment yt is a time invariant function λ(st) > 0 of the Markov state. The

endowment obeys yt+1 = λt+1yt for t ≥ 0. The representative consumer orders

consumption streams by

E0

∞∑

t=0

βtu(ct),

where β ∈ (0, 1) and u(c) = 1
1−γ c

1−γ for γ > 0. There are complete markets

in one and two period Arrow securities.

a. With an abuse of notation, arrange the one-period Arrow security prices into

a 2× 2 matrix Q defined according to

Qij = Q(st+1 = j|st = i).

Then show that formula (8.10.3) can be represented as

Qh = QQh−1
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for h ≥ 2.

b. Suppose that you observe all one and two period Arrow securities prices for

a single state i . That is, you know the ith row of both Q and Q2 . Show how

you can recover both rows of Q from this information.

c. Find a formula for each element of Q in terms of β, γ , and P .

d. Prove that if you know all elements of Q , you cannot infer β and all elements

of P even if you know γ .

Exercise 8.26 Recovering probabilities from prices, III

Consider a representative agent economy with an exogenous endowment of a

single consumption good governed by a two-state Markov chain with state st ∈
{1, 2} having transition matrix P with typical element Pij = Prob(st+1 =

j|st = i). The representative consumer’s endowment yt is a time invariant

function y(st) > 0 of the Markov state. So is his consumption ct = c(st). The

representative consumer orders consumption streams by

E0

∞∑

t=0

βtu(ct),

where β ∈ (0, 1), u(c) = 1
1−γ c

1−γ for γ > 0, and E0 denotes a mathematical

expectation conditioned on date 0 information, in this case the time 0 value s0

of the state. At each date t ≥ 0, there are complete markets in one-step ahead

Arrow securities. There are also markets in h-period risk-free pure discount

bonds. A risk-free pure discount h-period bond issued at t promises to pay one

unit of consumption at date t+ h for sure. At time t , the equilibrium price of

a sure claim on one unit of consumption at time t+ h is ptt+h .

a. Please present a formula for a stochastic discount factor for pricing h-period

ahead risky claims for this economy. Is this stochastic discount factor unique?

b. Please find formulas for the equilibrium price ptt+h of h-period risk-free pure

discount bonds for h ≥ 1.

c. At a single date t , you observe the state of the economy st . You also observe

ptt+h for h = 1, 2, 3, 4. Your friend tells you that from these four observations

you can infer β, P11, P22 , and
(
c(1)
c(2)

)−γ
for this economy. Do you agree? Provide

an argument.
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Exercise 8.27 Corners

Consider an economy with exogenous endowments governed by a Markov chain

with matrix P =

[
λ (1− λ)

1− δ δ

]
that governs transitions of a state st ∈

{s̄1, s̄2} , where λ ∈ (0, 1), δ ∈ (0, 1). The initial probability distribution of

s0 is π0 . The Markov chain induces a sequence {πt(st)}∞t=0 of distributions

over histories st = [st, st−1, . . . , s0] . There are equal numbers of two types of

consumers. A consumer of type i receives an exogenous endowment yi(st) ≥ 0

of a nonstorable consumption good at time, Markov state t, st . Consumers of

type 1 order consumption streams of the one good according to

V1 =

∞∑

t=0

∑

st

βtc1t (s
t)πt(s

t)

and consumers of type 2 order consumption streams according to

V2 =

∞∑

t=0

∑

st

βt ln(c2t (s
t))πt(s

t)

where cit(s
t) ≥ 0 is the consumption of a type i consumer and β ∈ (0, 1) is a

common discount factor. Please note the nonnegativity constraint on consump-

tion of each person (the force of this is that cit is consumption, not production).

The consumption good is tradable but nonstorable. There are equal numbers

of the two types of consumer.

a. A Pareto planner chooses a consumption allocation to maximize the criterion

αV1 + (1 − α)V2,

where α ∈ (0, 1). Maximization is subject to the feasibility restrictions
∑
i c
i
t(s

t) ≤∑
i y
i(st) for all t ≥ 0 for all st . Please characterize a Pareto optimal alloca-

tion and get as far as you can in computing it. Under what circumstances is the

constraint cit(s
t) ≥ 0 binding? When it is binding, how is the optimal allocation

related to the aggregate endowment y1(st) + y2(st)?

b. Please define a competitive equilibrium with trading each period t ≥ 0 at

each history st of a complete set of Arrow one-period-ahead state-contingent

securities, being careful to include descriptions of all objects that comprise a

competitive equilibrium.
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c. Compute all objects that comprise a competitive equilibrium with trading

each period t ≥ 0 at each history st of a complete set of Arrow one-period-ahead

state-contingent securities under the following alternative auxiliary assumptions:

Auxiliary Assumption 1: The equilibrium allocation is such that the restric-

tions cit(s
t) ≥ 0 never bind for any i .

Auxiliary Assumption 2: The equilibrium allocation is such that the restric-

tions cit(s
t) ≥ 0 always bind for some i .

Exercise 8.28 Recovering probabilities from prices, IV

Consider an economy with an exogenous endowment governed by a Markov

chain with transition matrix P =

[
λ (1 − λ)

1− δ δ

]
that governs transitions of

a state st ∈ {s̄1, s̄2} , where λ ∈ (0, 1), δ ∈ (0, 1). The initial distribution over

s0 is π0 . The Markov chain induces a sequence {πt(st)}∞t=0 of distributions over

histories st = [st, st−1, . . . , s0] . There is a representative consumer who orders

consumption plans according to

∞∑

t=0

∑

st

βtu(ct(s
t))πt(s

t)

where u(c) = (1 − γ)−1c1−γ and γ > 0 and β ∈ (0, 1). There is one consumer

called the representative consumer. The representative consumer’s endowment

is yt = ȳ1 > 0 if st = s̄1 and yt = ȳ2 > 0 if st = s̄2 .

a. Define a competitive equilibrium with trading at each date, history pair

t, st of one-period-ahead Arrow state contingent securities. Please define all

components of a competitive equilibrium, including the allocation and the price

system.

b. Show that equilibrium one-period Arrow state-contingent security prices can

be arranged into a (2×2) matrix Q(1) whose (i, j) component Q
(1)
i,j is the price

of one unit of consumption when Markov state st+1 = s̄j tomorrow when the

Markov state st today is in state s̄i . Please give formulas for all elements of

Q(1) in terms of the fundamental parameters of the economy β, γ, λ, δ, ȳ1, ȳ2 .

c. Define a competitive equilibrium with trading at each date, history pair

t, st of both one-period-ahead and two-period-ahead Arrow state contingent

securities. Let two-period Arrow state-contingent security prices be arranged
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into a (2 × 2) matrix Q(2) whose (i, j) component Q
(2)
i,j is the price of one

unit of consumption when Markov state st+2 = s̄j two periods ahead when the

Markov state st today is in state s̄i . Please give formulas for all elements of

Q(2) in terms of the fundamental parameters of the economy β, γ, λ, δ, ȳ1, ȳ2 .

d. (“inverse problem”) An outsider observes this economy. The outsider knows

the theoretical structure of the economy but does not know the parameter val-

ues [λ, δ, β, γ, ȳ1, ȳ2] . But at a particular date at which st = s̄1 , the outsider

observes

[Q(1)(1, 1), Q(1)(1, 2), Q(2)(1, 1), Q(2)(1, 2)].

Please interpret these observations. From these observations alone, can the

outsider infer λ, δ, β ? Please explain your answer.



Chapter 9
Overlapping Generations

This chapter describes the pure exchange overlapping generations model of Paul

Samuelson (1958). We begin with an abstract presentation that treats the over-

lapping generations model as a special case of the chapter 8 general equilibrium

model with complete markets and all trades occurring at time 0. A peculiar

type of heterogeneity across agents distinguishes the model. Each individual

cares about consumption only at two adjacent dates, and the set of individuals

who care about consumption at a particular date includes some who care about

consumption one period earlier and others who care about consumption one pe-

riod later. We shall study how this special preference and demographic pattern

affects some of the outcomes of the chapter 8 model.

While it helps to reveal the fundamental structure, allowing complete mar-

kets with time 0 trading in an overlapping generations model strains credulity.

The formalism envisions that equilibrium price and quantity sequences are set at

time 0, before the participants who are to execute the trades have been born.

For that reason, most applied work with the overlapping generations model

adopts a sequential-trading arrangement, like the sequential trade in Arrow

securities described in chapter 8. The sequential-trading arrangement has all

trades executed by agents living in the here and now. Nevertheless, equilibrium

quantities and intertemporal prices are equivalent between these two trading

arrangements. Therefore, analytical results found in one setting transfer to the

other.

Later in the chapter, we use versions of the model with sequential trading

to tell how the overlapping generations model provides a framework for thinking

about equilibria with government debt and/or valued fiat currency, intergener-

ational transfers, and fiscal policy.

– 331 –
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9.1. Endowments and preferences

Time is discrete, starts at t = 1, and lasts forever, so t = 1, 2, . . . . There is an

infinity of agents named i = 0, 1, . . . . We can also regard i as agent i ’s period of

birth. There is a single good at each date. The good is not storable. There is no

uncertainty. Each agent has a strictly concave, twice continuously differentiable,

one-period utility function u(c), which is strictly increasing in consumption c

of the one good. Agent i consumes a vector ci = {cit}∞t=1 and has the special

utility function

U i(ci) = u(cii) + u(cii+1), i ≥ 1, (9.1.1a)

U0(c0) = u(c01). (9.1.1b)

Notice that agent i only wants goods dated i and i+ 1. The interpretation of

equations (9.1.1) is that agent i lives during periods i and i+ 1 and wants to

consume only when he is alive.

Each household has an endowment sequence yi satisfying yii ≥ 0, yii+1 ≥
0, yit = 0 ∀t 6= i or i + 1. Thus, households are endowed with goods only when

they are alive.

9.2. Time 0 trading

We use the definition of competitive equilibrium from chapter 8. Thus, we

temporarily suspend disbelief and proceed in the style of Debreu (1959) with

time 0 trading. Specifically, we imagine that there is a “clearinghouse” at time

0 that posts prices and, at those prices, aggregates demands and supplies for

goods in different periods. An equilibrium price vector makes markets for all

periods t ≥ 2 clear, but there may be excess supply in period 1; that is, the

clearinghouse might end up with goods left over in period 1. Any such excess

supply of goods in period 1 can be given to the initial old generation without

any effects on the equilibrium price vector, since those old agents optimally

consume all their wealth in period 1 and do not want to buy goods in future

periods. The reason for our special treatment of period 1 will become clear as

we proceed.
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Thus, at date 0, there are complete markets in time t consumption goods

with date 0 price q0t . A household’s budget constraint is

∞∑

t=1

q0t c
i
t ≤

∞∑

t=1

q0t y
i
t. (9.2.1)

Letting µi be a Lagrange multiplier attached to consumer i ’s budget constraint,

the consumer’s first-order conditions are

µiq0i = u′(cii), (9.2.2a)

µiq0i+1 = u′(cii+1), (9.2.2b)

cit = 0 if t /∈ {i, i+ 1}. (9.2.2c)

Evidently an allocation is feasible if for all t ≥ 1,

ctt + ct−1
t ≤ ytt + yt−1

t . (9.2.3)

Definition: An allocation is stationary if cii+1 = co, c
i
i = cy ∀i ≥ 1.

Here the subscript o denotes old and y denotes young. Note that we do not

require that c01 = co . We call an equilibrium with a stationary allocation a

stationary equilibrium.

9.2.1. Example equilibria

Let ǫ ∈ (0, .5). The endowments are

yii = 1− ǫ, ∀i ≥ 1,

yii+1 = ǫ, ∀i ≥ 0,

yit = 0 otherwise.

(9.2.4)

This economy has many equilibria. We describe two stationary equilibria

now, and later we shall describe some nonstationary equilibria. We can use a

guess-and-verify method to confirm the following two equilibria.

1. Equilibrium H: a high-interest-rate equilibrium. Set q0t = 1 ∀t ≥ 1 and

cii = cii+1 = .5 for all i ≥ 1 and c01 = ǫ . To verify that this is an equilibrium,
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notice that each household’s first-order conditions are satisfied and that the

allocation is feasible. Extensive intergenerational trade occurs at time 0 at

the equilibrium price vector q0t . Constraint (9.2.3) holds with equality

for all t ≥ 2 but with strict inequality for t = 1. Some of the t = 1

consumption good is left unconsumed.

2. Equilibrium L: a low-interest-rate equilibrium. Set q01 = 1,
q0t+1

q0t
= u′(ǫ)

u′(1−ǫ) =

α > 1. Set cit = yit for all i, t . This equilibrium is autarkic, with prices

being set to eradicate all trade.

9.2.2. Relation to welfare theorems

As we shall explain in more detail later, equilibrium H Pareto dominates equi-

librium L. In equilibrium H every generation after the initial old one is better off

and no generation is worse off than in equilibrium L. The equilibrium H alloca-

tion is strange because some of the time 1 good is not consumed, leaving room

to set up a giveaway program to the initial old that makes them better off and

costs subsequent generations nothing. We shall see how the institution of either

perpetual government debt or of fiat money can accomplish this purpose.1

Equilibrium L is a competitive equilibrium that evidently fails to satisfy one

of the assumptions needed to deliver the first fundamental theorem of welfare

economics, which identifies conditions under which a competitive equilibrium

allocation is Pareto optimal.2 The condition of the theorem that is violated by

equilibrium L is the assumption that the value of the aggregate endowment at

the equilibrium prices is finite.3

1 See Karl Shell (1971) for an investigation that characterizes why some competitive equi-

libria in overlapping generations models fail to be Pareto optimal. Shell cites earlier studies

that had sought reasons why the welfare theorems seem to fail in the overlapping generations

structure.
2 See Mas-Colell, Whinston, and Green (1995) and Debreu (1954).
3 Note that if the horizon of the economy were finite, then the counterpart of equilibrium

H would not exist and the allocation of the counterpart of equilibrium L would be Pareto

optimal.
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9.2.3. Nonstationary equilibria

Our example economy has more equilibria. To construct more equilibria, we

summarize preferences and consumption decisions in terms of an offer curve.

We describe a graphical apparatus proposed by David Gale (1973) and used to

good advantage by William Brock (1990).

Definition: The household’s offer curve is the locus of (cii, c
i
i+1) that solves

max
{ci

i
,ci

i+1
}
U(ci)

subject to

cii + αic
i
i+1 ≤ yii + αiy

i
i+1.

Here αi ≡ q0i+1

q0
i

, the reciprocal of the one-period gross rate of return from period

i to i+ 1, is treated as a parameter.

Evidently, the offer curve solves the following pair of equations:

cii + αic
i
i+1 = yii + αiy

i
i+1 (9.2.5a)

u′(cii+1)

u′(cii)
= αi (9.2.5b)

for αi > 0. We denote the offer curve by

ψ(cii, c
i
i+1) = 0.

The graphical construction of the offer curve is illustrated in Figure 9.2.1.

We trace it out by varying αi in the household’s problem and reading tangency

points between the household’s indifference curve and the budget line. The

resulting locus depends on the endowment vector and lies above the indifference

curve through the endowment vector. By construction, the following property is

also true: at the intersection between the offer curve and a straight line through

the endowment point, the straight line is tangent to an indifference curve.4

4 Given our assumptions on preferences and endowments, the conscientious reader will

note that Figure 9.2.1 appears distorted because the offer curve really ought to intersect the

feasibility line along the 45 degree line with ctt = ctt+1 , i.e., at the allocation affiliated with

equilibrium H above.
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Offer curve

Feasibility line

to the endowment
corresponding

Indifference curve

c t

t+1
c

t-1

t

yt

t

y
t

t+1

c
t

t

,

Figure 9.2.1: The offer curve and feasibility line.

Following Gale (1973), we can use the offer curve and a straight line de-

picting feasibility in the (cii, c
i−1
i ) plane to construct a machine for computing

equilibrium allocations and prices. In particular, we can use the following pair

of difference equations to solve for an equilibrium allocation. For i ≥ 1, the

equations are5

ψ(cii, c
i
i+1) = 0, (9.2.6a)

cii + ci−1
i = yii + yi−1

i . (9.2.6b)

We take c11 as an initial condition. After the allocation has been computed, the

equilibrium price system can be computed from

q0i = u′(cii)

for all i ≥ 1.

5 By imposing equation (9.2.6b) with equality, we are implicitly possibly including a give-

away program to the initial old.
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9.2.4. Computing equilibria

Example 1: Gale’s equilibrium computation machine: A procedure for con-

structing an equilibrium is illustrated in Figure 9.2.2, which reproduces a version

of a graph of David Gale (1973). Start with a proposed c11 , a time 1 allocation

to the initial young. Then use the feasibility line to find the maximal feasible

value for c10 , the time 1 allocation to the initial old. In the Arrow-Debreu equi-

librium, the allocation to the initial old will be less than this maximal value, so

that some of the time 1 good is thrown away. The reason for this is that the

budget constraint of the initial old, q01(c
0
1−y01) ≤ 0, implies that c01 = y01 .

6 The

candidate time 1 allocation is thus feasible, but the time 1 young will choose

c11 only if the price α1 is such that (c12, c
1
1) lies on the offer curve. Therefore, we

choose c12 from the point on the offer curve that cuts a vertical line through c11 .

Then we proceed to find c22 from the intersection of a horizontal line through

c12 and the feasibility line. We continue recursively in this way, choosing cii as

the intersection of the feasibility line with a horizontal line through ci−1
i , then

choosing cii+1 as the intersection of a vertical line through cii and the offer curve.

We can construct a sequence of αi ’s from the slope of a straight line through

the endowment point and the sequence of (cii, c
i
i+1) pairs that lie on the offer

curve.

If the offer curve has the shape drawn in Figure 9.2.2, any c11 between the

upper and lower intersections of the offer curve and the feasibility line is an equi-

librium setting of c11 . Each such c11 is associated with a distinct allocation and

αi sequence, all but one of them converging to the low -interest-rate stationary

equilibrium allocation and interest rate.

Example 2: Endowment at +∞ : Take the preference and endowment struc-

ture of the previous example and modify only one feature. Change the endow-

ment of the initial old to be y01 = ǫ > 0 and “δ = 1−ǫ > 0 units of consumption

at t = +∞ ,” by which we mean that we take
∑

t

q0t y
0
t = q01ǫ+ δ lim

t→∞
q0t .

It is easy to verify that the only competitive equilibrium of the economy with this

specification of endowments has q0t = 1 ∀t ≥ 1, and thus αt = 1 ∀t ≥ 1. The

6 Soon we shall discuss another market structure that avoids throwing away any of the

initial endowment by augmenting the endowment of the initial old with a particular zero-

dividend infinitely durable asset.
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Figure 9.2.2: A nonstationary equilibrium allocation.

reason is that all the “low-interest-rate” equilibria that we computed in example

1 would assign an infinite value to the endowment of the initial old. Confronted

with such prices, the initial old would demand unbounded consumption. That

is not feasible. Therefore, such a price system cannot be an equilibrium.

Example 3: A Lucas tree: Take the preference and endowment structure to

be the same as example 1 and modify only one feature. Endow the initial old

with a “Lucas tree,” namely, a claim to a constant stream of d > 0 units of

consumption for each t ≥ 1.7 Thus, the budget constraint of the initial old

person now becomes

q01c
0
1 = d

∞∑

t=1

q0t + q01y
0
1 .

The offer curve of each young agent remains as before, but now the feasibility

line is

cii + ci−1
i = yii + yi−1

i + d

7 This is a version of an example of Brock (1990). The ‘Lucas tree’ refers to a colorful

interpretation of a dividend stream as ‘fruit’ falling from a ‘tree’ in a pure exchange economy

studied by Lucas (1978). See chapter 13.
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for all i ≥ 1. Note that young agents are endowed below the feasibility line.

From Figure 9.2.3, it seems that there are two candidates for stationary equi-

libria, one with constant α < 1, another with constant α > 1. The one with

α < 1 is associated with the steeper budget line in Figure 9.2.3. However, the

candidate stationary equilibrium with α > 1 cannot be an equilibrium for a

reason similar to that encountered in example 2. At the price system associ-

ated with an α > 1, the wealth of the initial old would be unbounded, which

would prompt them to consume an unbounded amount, which is not feasible.

This argument rules out not only the stationary α > 1 equilibrium but also all

nonstationary candidate equilibria that converge to that constant α . Therefore,

there is a unique equilibrium; it is stationary and has α < 1.

Unique equilibrium

Feasibility line

Offer curve

c t

t+1
c

t-1

t

y
t

t+1

without tree

Feasibility line
with tree

yt

t

Not an equilibrium

(R>1)

R>1

R<1

dividend

,

c t

t

Figure 9.2.3: Unique equilibrium with a fixed-dividend as-

set.

If we interpret the gross rate of return on the tree as α−1 = p+d
p , where

p =
∑∞

t=1 q
0
t d , we can compute that p = d

R−1 where R = α−1 . Here p is the

price of the Lucas tree.
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In terms of the logarithmic preference example 5 below, the difference equa-

tion (9.2.9) becomes modified to

αi =
1 + 2d

ǫ
− ǫ−1 − 1

αi−1
. (9.2.7)

Example 4: Government expenditures: Take the preferences and endowments

to be as in example 1 again, but now alter the feasibility condition to be

cii + ci−1
i + g = yii + yi−1

i

for all i ≥ 1 where g > 0 is a positive level of government purchases. The

“clearinghouse” is now looking for an equilibrium price vector such that this

feasibility constraint is satisfied. We assume that government purchases do not

give utility. The offer curve and the feasibility line look as in Figure 9.2.4.

Notice that the endowment point (yii , y
i
i+1) lies outside the relevant feasibility

line. Formally, this graph looks like example 3, but with a “negative dividend

d .” Now there are two stationary equilibria with α > 1, and a continuum of

equilibria converging to the higher α equilibrium (the one with the lower slope

α−1 of the associated budget line). Equilibria with α > 1 cannot be ruled out

by the argument in example 3 because no one’s endowment sequence receives

infinite value when α > 1.

Later, we shall interpret this example as one in which a government finances

a constant deficit either by money creation or by borrowing at a negative real

net interest rate. We shall discuss this and other examples in a setting with

sequential trading.

Example 5: Log utility: Suppose that u(c) = ln c and that the endowment is

described by equations (9.2.4). Then the offer curve is given by the recursive

formulas cii = .5(1 − ǫ + αiǫ), c
i
i+1 = α−1

i cii . Let αi be the gross rate of return

facing the young at i . Feasibility at i and the offer curves then imply

1

2αi−1
(1 − ǫ+ αi−1ǫ) + .5(1− ǫ+ αiǫ) = 1. (9.2.8)

This implies the difference equation

αi = ǫ−1 − ǫ−1 − 1

αi−1
. (9.2.9)
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Figure 9.2.4: Equilibria with debt- or money-financed gov-

ernment deficit finance.

See Figure 9.2.2. An equilibrium αi sequence must satisfy equation (9.2.8)

and have αi > 0 for all i . Evidently, αi = 1 for all i ≥ 1 is an equilibrium

α sequence. So is any αi sequence satisfying equation (9.2.8) and α1 ≥ 1;

α1 < 1 will not work because equation (9.2.8) implies that the tail of {αi} is

an unbounded negative sequence. The limiting value of αi for any α1 > 1 is
1−ǫ
ǫ = u′(ǫ)/u′(1− ǫ), which is the interest factor associated with the stationary

autarkic equilibrium. Notice that Figure 9.2.2 suggests that the stationary αi =

1 equilibrium is not stable, while the autarkic equilibrium is.
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9.3. Sequential trading

We now alter the trading arrangement to bring them into line with standard

presentations of the overlapping generations model. We abandon the time 0,

complete markets trading arrangement and replace it with sequential trading in

which a durable asset, either government debt or unbacked fiat money or claims

on a Lucas tree, is passed from old to young. Some cross-generation transfers

occur with voluntary exchanges, while others are engineered by government tax

and transfer programs.

9.4. Money

In Samuelson’s (1958) version of the model, trading occurs sequentially through

a medium of exchange, an inconvertible (or “fiat”) currency. In Samuelson’s

model, preferences and endowments are as described above, with one impor-

tant additional component of the endowment. At date t = 1, old agents are

endowed in the aggregate with M > 0 units of intrinsically worthless currency.

No one has promised to redeem the currency for goods. The currency is not

“backed” by any government promise to redeem it for goods. But as Samuelson

showed, there exists a system of expectations that makes unbacked currency

be valued. Currency will be valued today if people expect it to be valued to-

morrow. Samuelson thus envisioned a situation in which currency is backed by

expectations without promises.

For each date t ≥ 1, young agents purchase mi
t units of currency at a price

of 1/pt units of the time t consumption good. Here pt ≥ 0 is the time t price

level. At each t ≥ 1, each old agent exchanges his holdings of currency for the

time t consumption good. The budget constraints of a young agent born in

period i ≥ 1 are

cii +
mi
i

pi
≤ yii, (9.4.1)

cii+1 ≤ mi
i

pi+1
+ yii+1, (9.4.2)

mi
i ≥ 0. (9.4.3)
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If mi
i ≥ 0, inequalities (9.4.1) and (9.4.2) imply

cii + cii+1

(
pi+1

pi

)
≤ yii + yii+1

(
pi+1

pi

)
. (9.4.4)

Provided that we set
pi+1

pi
= αi =

q0i+1

q0i
,

this budget set is identical with equation (9.2.1).

We use the following definitions:

Definition: A nominal price sequence is a positive sequence {pi}i≥1 .

Definition: An equilibrium with valued fiat money is a feasible allocation and

a nominal price sequence with pt < +∞ for all t such that given the price

sequence, the allocation solves the household’s problem for each i ≥ 1.

The qualification that pt < +∞ for all t means that fiat money is valued. Some-

times we call an equilibrium with valued fiat money a ‘monetary equilibrium’.

If 1
pt

= +∞ , we sometimes call it a ‘nonmonetary equilibrium’.

9.4.1. Computing more equilibria with valued fiat currency

Summarize the household’s optimal decisions with a saving function

yii − cii = s(αi; y
i
i, y

i
i+1). (9.4.5)

Then the equilibrium conditions for the model are

M

pi
= s(αi; y

i
i, y

i
i+1) (9.4.6a)

αi =
pi+1

pi
, (9.4.6b)

where it is understood that cii+1 = yii+1 +
M
pi+1

. Equation (9.4.6a) states that

at time i the net of saving of generation i (the expression on the right side)

equals the net dissaving of generation i− 1 (the expression on the left side). To

compute an equilibrium, we solve the difference equations (9.4.6) for {pi}∞i=1 ,

then get the allocation from the household’s budget constraints evaluated at

equality at the equilibrium level of real balances. As an example, suppose that
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u(c) = ln(c), and that (yii , y
i
i+1) = (w1, w2) with w1 > w2 . The saving function

is s(αi) = .5(w1 − αiw2). Then equation (9.4.6a) becomes

.5(w1 − w2
pt+1

pt
) =

M

pt

or

pt = 2M/w1 +

(
w2

w1

)
pt+1. (9.4.7)

This is a difference equation whose solutions with a positive price level are

pt =
2M

w1(1− w2

w1
)
+ c

(
w1

w2

)t
, (9.4.8)

for any scalar c > 0.8 The solution c = 0 is the unique stationary solution.

Solutions with c > 0 have uniformly higher price levels than the c = 0 solution,

and have the value of currency approaching zero in the limit as t→ +∞ .

9.4.2. Equivalence of equilibria

We briefly look back at the equilibria with time 0 trading and note that the

equilibrium allocations are the same under time 0 and sequential trading. Thus,

the following proposition asserts that with an adjustment to the endowment and

the consumption allocated to the initial old, a competitive equilibrium allocation

with time 0 trading is an equilibrium allocation in the fiat money economy (with

sequential trading).

Proposition: Let ci denote a competitive equilibrium allocation (with time 0

trading) and suppose that it satisfies c11 < y11 . Then there exists an equilibrium

(with sequential trading) of the monetary economy with allocation that satisfies

cii = cii, c
i
i+1 = cii+1 for i ≥ 1.

Proof: Take the competitive equilibrium allocation and price system and form

αi = q0i+1/q
0
i . Set m

i
i/pi = yii−cii . Set mi

i =M for all i ≥ 1, and determine p1

from M
p1

= y11−c11 . This last equation determines a positive initial price level p1

provided that y11 − c11 > 0. Determine subsequent price levels from pi+1 = αipi .

Determine allocation to initial old from c01 = y01 +
M
p1

= y01 + (y11 − c11).

8 See the appendix to chapter 2.
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In the monetary equilibrium, time t real balances equal the per capita

saving of the young and the per capita dissaving of the old. To be a monetary

equilibrium, both quantities must be positive for all t ≥ 1.

A converse of the proposition is true.

Proposition: Let ci be an equilibrium allocation for the fiat money economy.

Then there is a competitive equilibrium with time 0 trading with the same

allocation, provided that the endowment of the initial old is augmented with an

appropriate transfer from the clearinghouse.

To verify this proposition, we have to construct the required transfer from

the clearinghouse to the initial old. Evidently, it is y11−c11 . We invite the reader

to complete the proof.

9.5. Deficit finance

For the rest of this chapter, we shall assume sequential trading. With sequential

trading of fiat currency, this section reinterprets one of our earlier examples with

time 0 trading, the example with government spending.

Consider the following overlapping generations model: The population is

constant. At each date t ≥ 1, N identical young agents are endowed with

(ytt , y
t
t+1) = (w1, w2), where w1 > w2 > 0. A government levies lump-sum

taxes of τ1 on each young agent and τ2 on each old agent alive at each t ≥ 1.

There are N old people at time 1 each of whom is endowed with w2 units

of the consumption good and M0 > 0 units of inconvertible, perfectly durable

fiat currency. The initial old have utility function c01 . The young have utility

function u(ctt) + u(ctt+1). For each date t ≥ 1 the government augments the

currency supply according to

Mt −Mt−1 = pt(g − τ1 − τ2), (9.5.1)

where g is a constant stream of government expenditures per capita and 0 <

pt ≤ +∞ is the price level. If pt = +∞ , we intend that equation (9.5.1) be

interpreted as

g = τ1 + τ2. (9.5.2)

For each t ≥ 1, each young person’s behavior is summarized by

st = f(Rt; τ1, τ2) = argmax
s≥0

[u(w1 − τ1 − s) + u(w2 − τ2 +Rts)] . (9.5.3)
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Definition: An equilibrium with valued fiat currency is a pair of positive

sequences {Mt, pt} such that (a) given the price level sequence, Mt/pt = f(Rt)

(the dependence on τ1, τ2 being understood); (b) Rt = pt/pt+1 ; and (c) the

government budget constraint (9.5.1) is satisfied for all t ≥ 1.

The condition f(Rt) =Mt/pt can be written as f(Rt) =Mt−1/pt+(Mt−
Mt−1)/pt . The left side is the saving of the young. The first term on the right

side is the dissaving of the old (the real value of currency that they exchange

for time t consumption). The second term on the right is the dissaving of the

government (its deficit), which is the real value of the additional currency that

the government prints at t and uses to purchase time t goods from the young.

To compute an equilibrium, define d = g − τ1 − τ2 and write equation

(9.5.1) as
Mt

pt
=
Mt−1

pt−1

pt−1

pt
+ d

for t ≥ 2 and
M1

p1
=
M0

p1
+ d

for t = 1. Substitute the equilibrium condition Mt/pt = f(Rt) into these

equations to get

f(Rt) = f(Rt−1)Rt−1 + d (9.5.4a)

for t ≥ 2 and

f(R1) =
M0

p1
+ d. (9.5.4b)

Given p1 , which determines an initial R1 by means of equation (9.5.4b),

equations (9.5.4) form an autonomous difference equation in Rt . With ap-

propriate transformations of variables, this system can be solved using Figure

9.2.4.
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9.5.1. Steady states and the Laffer curve

Let’s seek a stationary solution of equations (9.5.4), a quest rendered reasonable

by the fact that f(Rt) is time invariant (because the endowment and the tax

patterns as well as the government deficit d are time-invariant). Guess that

Rt = R for t ≥ 1. Then equations (9.5.4) become

f(R)(1 −R) = d, (9.5.5a)

f(R) =
M0

p1
+ d. (9.5.5b)

For example, suppose that u(c) = ln(c). Then f(R) = w1−τ1
2 − w2−τ2

2R . We

have graphed f(R)(1−R) against d in Figure 9.5.1. Notice that if there is one

solution for equation (9.5.5a), then there are at least two.

ReciprocalHigh inflation
equilibrium

(low interest rate)

Low inflation
equilibrium

(high interest rate)

government
spendings

Seigneuriage earnings

of the gross inflation rate

Figure 9.5.1: The Laffer curve in revenues from the inflation

tax.

Here (1−R) can be interpreted as a tax rate on real balances, and f(R)(1−
R) is a Laffer curve for the inflation tax rate. The high-return (low-tax) R = R

is associated with the good Laffer curve stationary equilibrium, and the low-

return (high-tax) R = R comes with the bad Laffer curve stationary equilibrium.

Once R is determined, we can determine p1 from equation (9.5.5b).

Figure 9.5.1 is isomorphic with Figure 9.2.4. The saving rate function f(R)

can be deduced from the offer curve. Thus, a version of Figure 9.2.4 can be used

to solve the difference equation (9.5.4a) graphically. If we do so, we discover a

continuum of nonstationary solutions of equation (9.5.4a), all but one of which

have Rt → R as t→ ∞ . Thus, the bad Laffer curve equilibrium is stable.
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The stability of the bad Laffer curve equilibrium arises under perfect fore-

sight dynamics. Bruno and Fischer (1990) and Marcet and Sargent (1989) an-

alyze how the system behaves under two different types of adaptive dynamics.

They find that either under a crude form of adaptive expectations or under a

least-squares learning scheme, Rt converges to R . This finding is comforting be-

cause the comparative dynamics are more plausible at R (larger deficits bring

higher inflation). Furthermore, Marimon and Sunder (1993) present experi-

mental evidence pointing toward the selection made by the adaptive dynamics.

Marcet and Nicolini (2003) build and calibrate an adaptive model of several

Latin American hyperinflations that rests on this selection. Sargent, Williams,

and Zha (2009) extend and estimate the model.

9.6. Equivalent setups

This section describes some alternative asset structures and trading arrange-

ments that support the same equilibrium allocation. We take a model with a

government deficit and show how it can be supported with sequential trading in

government-indexed bonds, sequential trading in fiat currency, or time 0 trading

of Arrow-Debreu dated securities.

9.6.1. The economy

An overlapping generations economy has one agent born at each t ≥ 1 and an

initial old person at t = 1. Young agents born at date t have endowment pattern

(ytt , y
t
t+1) and utility function described earlier. An initial old person is endowed

with M0 > 0 units of unbacked currency and y01 units of the consumption good.

A stream of per-young-person government purchases is {gt} .

Definition: An equilibrium is a sequence {Mt, pt}∞t=1 with 0 < pt < +∞ and

Mt > 0 that (a) given {pt} satisfies

Mt = argmax
M̃≥0

[
u(ytt − M̃/pt) + u(ytt+1 + M̃/pt+1)

]
; (9.6.1a)

and (b) satisfies

Mt −Mt−1 = ptgt. (9.6.1b)
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Now consider a version of the same economy in which there is no currency

but rather indexed government bonds. The demographics and endowments are

identical with the preceding economy, but now each initial old person is endowed

with B1 units of a maturing bond, denominated in units of time 1 consumption

good. In period t , the government sells new one-period bonds to the young

to finance its purchases gt of time t goods and to pay off the one-period debt

falling due at time t . Let Rt > 0 be the gross real one-period rate of return on

government debt between t and t+ 1.

Definition: An equilibrium with bond-financed government deficits is a se-

quence {Bt+1, Rt}∞t=1 that satisfies (a) given {Rt} ,

Bt+1 = argmax
B̃

[u(ytt − B̃/Rt) + u(ytt+1 + B̃)]; (9.6.2a)

and (b)

Bt+1/Rt = Bt + gt, (9.6.2b)

with B1 ≥ 0 given.

These two types of equilibria are isomorphic in the following sense: Take

an equilibrium of the economy with money-financed deficits and transform it

into an equilibrium of the economy with bond-financed deficits as follows: set

Bt = Mt−1/pt, Rt = pt/pt+1 . It can be verified directly that these settings

of bonds and interest rates, together with the original consumption allocation,

form an equilibrium of the economy with bond-financed deficits.

Each of these two types of equilibria is evidently also isomorphic to the

following equilibrium formulated with time 0 markets:

Definition: Let Bg1 represent claims to time 1 consumption owed by the

government to the old at time 1. An equilibrium with time 0 trading is an

initial level of government debt Bg1 , a price system {q0t }∞t=1 , and a sequence

{st}∞t=1 such that (a) given the price system,

st = argmax
s̃

{
u(ytt − s̃) + u

[
ytt+1 +

(
q0t
q0t+1

)
s̃

]}
;

and (b)

q01B
g
1 +

∞∑

t=1

q0t gt = 0. (9.6.3)
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Condition b is the Arrow-Debreu version of the government budget con-

straint. Condition a is the optimality condition for the intertemporal consump-

tion decision of the young of generation t .

The government budget constraint in condition b can be represented recur-

sively as

q0t+1B
g
t+1 = q0tB

g
t + q0t gt. (9.6.4)

If we solve equation (9.6.4) forward and impose limT→∞ q0t+TB
g
t+T = 0, we

obtain the budget constraint (9.6.3) for t = 1. Condition (9.6.3) makes it

evident that when
∑∞

t=1 q
0
t gt > 0, Bg1 < 0, so that the government has negative

net worth. This negative net worth corresponds to the unbacked claims that

the market nevertheless values in the sequential-trading version of the model.

9.6.2. Growth

It is easy to extend these models to the case in which there is growth in the

population. Let there be Nt = nNt−1 identical young people at time t , with

n > 0. For example, consider the economy with money-financed deficits. The

total money supply is NtMt , and the government budget constraint is

NtMt −Nt−1Mt−1 = Ntptg,

where g is per-young-person government purchases. Dividing both sides of the

budget constraint by Nt and rearranging gives

Mt

pt+1

pt+1

pt
= n−1Mt−1

pt
+ g. (9.6.5)

This equation replaces equation (9.6.1b) in the definition of an equilibrium with

money-financed deficits. (Note that in a steady state, R = n is the high-interest-

rate equilibrium.) Similarly, in the economy with bond-financed deficits, the

government budget constraint would become

Bt+1

Rt
= n−1Bt + gt.

It is also easy to modify things to permit the government to tax young and

old people at t . In that case, with government bond finance the government

budget constraint becomes

Bt+1

Rt
= n−1Bt + gt − τ tt − n−1τ t−1

t ,
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where τst is the time t tax on a person born in period s .

9.7. Optimality and the existence of monetary equilibria

Wallace (1980) discusses the connection between nonoptimality of the equilib-

rium without valued money and existence of monetary equilibria. Abstracting

from his assumption of a storage technology, we study how the arguments ap-

ply to a pure endowment economy. The environment is as follows. At any

date t , the population consists of Nt young agents and Nt−1 old agents where

Nt = nNt−1 with n > 0. Each young person is endowed with y1 > 0 goods, and

an old person receives the endowment y2 > 0. Preferences of a young agent at

time t are given by the utility function u(ctt, c
t
t+1), which is twice differentiable

with indifference curves that are convex to the origin. The two goods in the

utility function are normal goods, and

θ(c1, c2) ≡ u1(c1, c2)/u2(c1, c2),

the marginal rate of substitution function, approaches infinity as c2/c1 ap-

proaches infinity and approaches zero as c2/c1 approaches zero. The welfare

of the initial old agents at time 1 is strictly increasing in c01 , and each one of

them is endowed with y2 goods and m0
0 > 0 units of fiat money. Thus, the

beginning-of-period aggregate nominal money balances in the initial period 1

are M0 = N0m
0
0 .

For all t ≥ 1, Mt , the post-transfer time t stock of fiat money obeys

Mt = zMt−1 with z > 0. The time t transfer (or tax), (z − 1)Mt−1 , is divided

equally at time t among the Nt−1 members of the current old generation. The

transfers (or taxes) are fully anticipated and are viewed as lump-sum: they do

not depend on consumption and saving behavior. The budget constraints of a

young agent born in period t are

ctt +
mt
t

pt
≤ y1, (9.7.1)

ctt+1 ≤ y2 +
mt
t

pt+1
+

(z − 1)

Nt

Mt

pt+1
, (9.7.2)

mt
t ≥ 0, (9.7.3)
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where pt > 0 is the time t price level. In a nonmonetary equilibrium, the price

level is infinite, so the real values of both money holdings and transfers are zero.

Since all members in a generation are identical, the nonmonetary equilibrium is

autarky with a marginal rate of substitution equal to

θaut ≡
u1(y1, y2)

u2(y1, y2)
.

We ask two questions about this economy. Under what circumstances does a

monetary equilibrium exist? And, when it exists, under what circumstances

does it improve matters?

Let m̂t denote the equilibrium real money balances of a young agent at time

t , m̂t ≡ Mt/(Ntpt). Substitution of equilibrium money holdings into budget

constraints (9.7.1) and (9.7.2) at equality yield ctt = y1 − m̂t and ctt+1 =

y2 +nm̂t+1 . In a monetary equilibrium, m̂t > 0 for all t and the marginal rate

of substitution θ(ctt, c
t
t+1) satisfies

θ(y1 − m̂t, y2 + nm̂t+1) =
pt
pt+1

> θaut, ∀t ≥ 1. (9.7.4)

The equality part of (9.7.4) is the first-order condition for money holdings of an

agent born in period t evaluated at the equilibrium allocation. Since ctt < y1

and ctt+1 > y2 in a monetary equilibrium, the inequality in (9.7.4) follows from

the assumption that the two goods in the utility function are normal goods.

Another useful characterization of the equilibrium rate of return on money,

pt/pt+1 , can be obtained as follows. By the rule generating Mt and the equi-

librium condition Mt/pt = Ntm̂t , we have for all t ,

pt
pt+1

=
Mt+1

zMt

pt
pt+1

=
Nt+1m̂t+1

zNtm̂t
=
n

z

m̂t+1

m̂t
. (9.7.5)

We are now ready to address our first question, under what circumstances does

a monetary equilibrium exist?

Proposition: θautz < n is necessary and sufficient for the existence of at least

one monetary equilibrium.

Proof: We first establish necessity. Suppose to the contrary that there is a

monetary equilibrium and θautz/n ≥ 1. Then, by the inequality part of (9.7.4)

and expression (9.7.5), we have for all t ,

m̂t+1

m̂t
>
zθaut
n

≥ 1. (9.7.6)
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If zθaut/n > 1, one plus the net growth rate of m̂t is bounded uniformly above

one and, hence, the sequence {m̂t} is unbounded, which is inconsistent with

an equilibrium because real money balances per capita cannot exceed the en-

dowment y1 of a young agent. If zθaut/n = 1, the strictly increasing sequence

{m̂t} in (9.7.6) might not be unbounded but converge to some constant m̂∞ .

According to (9.7.4) and (9.7.5), the marginal rate of substitution will then

converge to n/z , which by assumption is now equal to θaut , the marginal rate

of substitution in autarky. Thus, real balances must be zero in the limit, which

contradicts the existence of a strictly increasing sequence of positive real bal-

ances in (9.7.6).

To show sufficiency, we prove the existence of a unique equilibrium with

constant per capita real money balances when θautz < n . Substitute our can-

didate equilibrium, m̂t = m̂t+1 ≡ m̂ , into (9.7.4) and (9.7.5), which yields two

equilibrium conditions,

θ(y1 − m̂, y2 + nm̂) =
n

z
> θaut.

The inequality part is satisfied under the parameter restriction of the proposi-

tion, and we only have to show the existence of m̂ ∈ [0, y1] that satisfies the

equality part. But the existence (and uniqueness) of such a m̂ is trivial. Note

that the marginal rate of substitution on the left side of the equality is equal

to θaut when m̂ = 0. Next, our assumptions on preferences imply that the

marginal rate of substitution is strictly increasing in m̂ , and approaches infinity

when m̂ approaches y1 .

The stationary monetary equilibrium in the proof will be referred to as the

m̂ equilibrium. In general, there are other nonstationary monetary equilibria

when the parameter condition of the proposition is satisfied. For example, in

the case of logarithmic preferences and a constant population, recall the con-

tinuum of equilibria indexed by the scalar c > 0 in expression (9.4.8). But

here we choose to focus solely on the stationary m̂ equilibrium and its welfare

implications. The m̂ equilibrium will be compared to other feasible allocations

using the Pareto criterion. Evidently, an allocation C = {c01; (ctt, ctt+1), t ≥ 1} is

feasible if

Ntc
t
t +Nt−1c

t−1
t ≤ Nty1 +Nt−1y2, ∀t ≥ 1,

or, equivalently,
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nctt + ct−1
t ≤ ny1 + y2, ∀t ≥ 1. (9.7.7)

The definition of Pareto optimality is:

Definition: A feasible allocation C is Pareto optimal if there is no other

feasible allocation C̃ such that

c̃01 ≥ c01,

u(c̃tt, c̃
t
t+1) ≥ u(ctt, c

t
t+1), ∀t ≥ 1,

and at least one of these weak inequalities holds with strict inequality.

We first examine under what circumstances the nonmonetary equilibrium

(autarky) is Pareto optimal.

Proposition: θaut ≥ n is necessary and sufficient for the optimality of the

nonmonetary equilibrium (autarky).

Proof: To establish sufficiency, suppose to the contrary that there exists an-

other feasible allocation C̃ that is Pareto superior to autarky and θaut ≥ n .

Without loss of generality, assume that the allocation C̃ satisfies (9.7.7) with

equality. (Given an allocation that is Pareto superior to autarky but that does

not satisfy (9.7.7), one can easily construct another allocation that is Pareto

superior to the given allocation, and hence to autarky.) Let period t be the first

period when this alternative allocation C̃ differs from the autarkic allocation.

The requirement that the old generation in this period is not made worse off,

c̃t−1
t ≥ y2 , implies that the first perturbation from the autarkic allocation must

be c̃tt < y1 , with the subsequent implication that c̃tt+1 > y2 . It follows that

the consumption of young agents at time t+ 1 must also fall below y1 , and we

define

ǫt+1 ≡ y1 − c̃t+1
t+1 > 0. (9.7.8)

Now, given c̃t+1
t+1 , we compute the smallest number ct+1

t+2 that satisfies

u(c̃t+1
t+1, c

t+1
t+2) ≥ u(y1, y2).

Let ct+1
t+2 be the solution to this problem. Since the allocation C̃ is Pareto

superior to autarky, we have c̃t+1
t+2 ≥ ct+1

t+2 . Before using this inequality, though,

we want to derive a convenient expression for ct+1
t+2 .
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Consider the indifference curve of u(c1, c2) that yields a fixed utility equal

to u(y1, y2). In general, along an indifference curve, c2 = h(c1), where h′ =

−u1/u2 = −θ and h′′ > 0. Therefore, applying the intermediate value theorem

to h , we have

h(c1) = h(y1) + (y1 − c1)[−h′(y1) + f(y1 − c1)], (9.7.9)

where the function f is strictly increasing and f(0) = 0.

Now, since (c̃t+1
t+1, c

t+1
t+2) and (y1, y2) are on the same indifference curve, we

can use (9.7.8) and (9.7.9) to write

ct+1
t+2 = y2 + ǫt+1[θaut + f(ǫt+1)],

and after invoking c̃t+1
t+2 ≥ ct+1

t+2 , we have

c̃t+1
t+2 − y2 ≥ ǫt+1[θaut + f(ǫt+1)]. (9.7.10)

Since C̃ satisfies (9.7.7) at equality, we also have

ǫt+2 ≡ y1 − c̃t+2
t+2 =

c̃t+1
t+2 − y2

n
. (9.7.11)

Substitution of (9.7.10) into (9.7.11) yields

ǫt+2 ≥ ǫt+1
θaut + f(ǫt+1)

n

> ǫt+1,

(9.7.12)

where the strict inequality follows from θaut ≥ n and f(ǫt+1) > 0 (implied by
ǫt+1 > 0). Continuing these computations of successive values of ǫt+k yields

ǫt+k ≥ ǫt+1

k−1∏

j=1

θaut + f(ǫt+j)

n
> ǫt+1

[
θaut + f(ǫt+1)

n

]k−1

, for k > 2,

where the strict inequality follows from the fact that {ǫt+j} is a strictly increas-

ing sequence. Thus, the ǫ sequence is bounded below by a strictly increasing

exponential and hence is unbounded. But such an unbounded sequence violates

feasibility because ǫ cannot exceed the endowment y1 of a young agent. It fol-

lows that we can rule out the existence of a Pareto superior allocation C̃ , and

conclude that θaut ≥ n is a sufficient condition for the optimality of autarky.
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To establish necessity, we prove the existence of an alternative feasible al-

location Ĉ that is Pareto superior to autarky when θaut < n . First, pick an

ǫ > 0 sufficiently small so that

θaut + f(ǫ) ≤ n, (9.7.13)

where f is defined implicitly by equation (9.7.9). Second, set ĉtt = y1 − ǫ ≡ ĉ1 ,

and

ĉtt+1 = y2 + ǫ[θaut + f(ǫ)] ≡ ĉ2, ∀t ≥ 1. (9.7.14)

That is, we have constructed a consumption bundle (ĉ1, ĉ2) that lies on the

same indifference curve as (y1, y2), and from (9.7.13) and (9.7.14), we have

ĉ2 ≤ y2 + nǫ,

which ensures that the condition for feasibility (9.7.7) is satisfied for t ≥ 2. By

setting ĉ01 = y2 + nǫ , feasibility is also satisfied in period 1 and the initial old

generation is then strictly better off under the alternative allocation Ĉ .

With a constant nominal money supply, z = 1, the two propositions show

that a monetary equilibrium exists if and only if the nonmonetary equilibrium

is suboptimal. In that case, the following proposition establishes that the sta-

tionary m̂ equilibrium is optimal.

Proposition: Given θautz < n , then z ≤ 1 is necessary and sufficient for the

optimality of the stationary monetary equilibrium m̂ .

Proof: The class of feasible stationary allocations with (ctt, c
t
t+1) = (c1, c2) for

all t ≥ 1, is given by

c1 +
c2
n

≤ y1 +
y2
n
, (9.7.15)

i.e., the condition for feasibility in (9.7.7). It follows that the m̂ equilibrium

satisfies (9.7.15) at equality, and we denote the associated consumption alloca-

tion of an agent born at time t ≥ 1 by (ĉ1, ĉ2). It is also the case that (ĉ1, ĉ2)

maximizes an agent’s utility subject to budget constraints (9.7.1) and (9.7.2).

The consolidation of these two constraints yields

c1 +
z

n
c2 ≤ y1 +

z

n
y2 +

z

n

(z − 1)

Nt

Mt

pt+1
, (9.7.16)
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where we have used the stationary rate or return in (9.7.5), pt/pt+1 = n/z .

After also invoking zMt = Mt+1 , n = Nt+1/Nt , and the equilibrium condition

Mt+1/(pt+1Nt+1) = m̂ , expression (9.7.16) simplifies to

c1 +
z

n
c2 ≤ y1 +

z

n
y2 + (z − 1)m̂. (9.7.17)

To prove the statement about necessity, Figure 9.7.1 depicts the two curves

(9.7.15) and (9.7.17) when condition z ≤ 1 fails to hold, i.e., we assume that

z > 1. The point that maximizes utility subject to (9.7.15) is denoted (c1, c2).

Transitivity of preferences and the fact that the slope of budget line (9.7.17)

is flatter than that of (9.7.15) imply that (ĉ1, ĉ2) lies southeast of (c1, c2). By

revealed preference, then, (c1, c2) is preferred to (ĉ1, ĉ2) and all generations

born in period t ≥ 1 are better off under the allocation C . The initial old

generation can also be made better off under this alternative allocation since it

is feasible to strictly increase their consumption,

c01 = y2 + n(y1 − c11) > y2 + n(y1 − ĉ11) = ĉ01.

Thus, we have established that z ≤ 1 is necessary for the optimality of the

stationary monetary equilibrium m̂ .

To prove sufficiency, note that (9.7.4), (9.7.5) and z ≤ 1 imply that

θ(ĉ1, ĉ2) =
n

z
≥ n.

We can then construct an argument that is analogous to the sufficiency part of

the proof to the preceding proposition.

As pointed out by Wallace (1980), the proposition implies no connection be-

tween the path of the price level in an m̂ equilibrium and the optimality of that

equilibrium. Thus, there may be an optimal monetary equilibrium with positive

inflation, for example, if θaut < n < z ≤ 1; and there may be a nonoptimal mon-

etary equilibrium with a constant price level, for example, if z = n > 1 > θaut .

What counts is the nominal quantity of fiat money. The proposition suggests

that the quantity of money should not be increased. In particular, if z ≤ 1,

then an optimal m̂ equilibrium exists whenever the nonmonetary equilibrium is

nonoptimal.
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Figure 9.7.1: The feasibility line (9.7.15) and the budget

line (9.7.17) when z > 1. The consumption allocation in the

monetary equilibrium is (ĉ1, ĉ2), and the point that maxi-

mizes utility subject to the feasibility line is denoted (c1, c2).

9.7.1. Balasko-Shell criterion for optimality

For the case of constant population, Balasko and Shell (1980) have established

a convenient general criterion for testing whether allocations are optimal.9 Bal-

asko and Shell permit diversity among agents in terms of endowments [wtht , w
th
t+1]

and utility functions uth(ctht , c
th
t+1), where w

th
s is the time s endowment of an

agent named h who is born at t and cths is the time s consumption of agent

named h born at t . Balasko and Shell assume fixed populations of types h

over time. They impose several kinds of technical conditions that serve to rule

out possible pathologies. The two main ones are these. First, they assume

that indifference curves have neither flat parts nor kinks, and they also rule

out indifference curves with flat parts or kinks as limits of sequences of indif-

ference curves for given h as t → ∞ . Second, they assume that the aggregate

endowments
∑

h(w
th
t + wt−1,h

t ) are uniformly bounded from above and that

there exists an ǫ > 0 such that wsht > ǫ for all s, h , and for t ∈ {s, s + 1} .
They consider consumption allocations uniformly bounded away from the axes.

9 Balasko and Shell credit David Cass (1971) with having authored a version of their

criterion.
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With these conditions, Balasko and Shell consider the class of allocations in

which all young agents at t share a common marginal rate of substitution

1 + rt ≡ uth1 (ctht , c
th
t+1)/u

th
2 (ctht , c

th
t+1) and in which all of the endowments are

consumed. Then Balasko and Shell show that an allocation is Pareto optimal if

and only if
∞∑

t=1

t∏

s=1

[1 + rs] = +∞, (9.7.18)

that is, if and only if the infinite sum of t-period gross interest rates,
∏t
s=1[1 +

rs] , diverges.

The Balasko-Shell criterion for optimality succinctly summarizes the sense

in which low-interest-rate economies are not optimal. We have already en-

countered repeated examples of the situation that, before an equilibrium with

valued currency can exist, the equilibrium without valued currency must be a

low-interest-rate economy in just the sense identified by Balasko and Shell’s cri-

terion, (9.7.18). Furthermore, by applying the Balasko-Shell criterion, (9.7.18),

or generalizations of it that allow for a positive net growth rate of population

n , it can be shown that, among equilibria with valued currency, only equilibria

with high rates of return on currency are optimal.

9.8. Within-generation heterogeneity

This section describes an overlapping generations model having within-generation

heterogeneity of endowments. We shall follow Sargent and Wallace (1982) and

Smith (1988) and use this model as a vehicle for talking about some issues in

monetary theory that require a setting in which government-issued currency

coexists with and is a more-or-less good substitute for private IOUs.

We now assume that within each generation born at t ≥ 1, there are J

groups of agents. There is a constant number Nj of group j agents. Agents of

group j are endowed with w1(j) when young and w2(j) when old. The saving

function of a household of group j born at time t solves the time t version of

problem (9.5.3). We denote this savings function f(Rt, j). If we assume that all

households of generation t have preferences U t(ct) = ln ctt + ln ctt+1 , the saving

function is

f(Rt, j) = .5

(
w1(j)−

w2(j)

Rt

)
.
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At t = 1, there are old people who are endowed in the aggregate with H = H(0)

units of an inconvertible currency.

For example, assume that J = 2, that (w1(1), w2(1)) = (α, 0) and that

(w1(2), w2(2)) = (0, β), where α > 0, β > 0. The type 1 people are lenders,

while the type 2 are borrowers. For the case of log preference we have the savings

functions f(R, 1) = α/2, f(R, 2) = −β/(2R).

9.8.1. Nonmonetary equilibrium

A nonmonetary equilibrium consists of sequences (R, sj) of rates of return R

and savings rates for j = 1, . . . , J and t ≥ 1 that satisfy (1)stj = f(Rt, j),

and (2)
∑J

j=1Njf(Rt, j) = 0. Condition (1) builds in household optimization;

condition (2) says that aggregate net savings equals zero (borrowing equals

lending).

For the case in which the endowments, preferences, and group sizes are

constant across time, the interest rate is determined at the intersection of the

aggregate savings function with the R axis, depicted as R1 in Figure 9.8.1. No

intergenerational transfers occur in the nonmonetary equilibrium. The equi-

librium consists of a sequence of separate two-period pure consumption loan

economies of a type analyzed by Irving Fisher (1907).

9.8.2. Monetary equilibrium

In an equilibrium with valued fiat currency, at each date t ≥ 1 the old receive

goods from the young in exchange for the currency stock H . For any variable x ,

~x = {xt}∞t=1 . An equilibrium with valued fiat money is a set of sequences ~R, ~p,~s

such that (1) ~p is a positive sequence, (2) Rt = pt/pt+1 , (3) sjt = f(Rt, j),

and (4)
∑J

j=1Njf(Rt, j) =
H
pt
. Condition (1) states that currency is valued at

all dates. Condition (2) states that currency and consumption loans are perfect

substitutes. Condition (3) requires that saving decisions are optimal. Condition

(4) equates the net saving of the young (the left side) to the net dissaving of the

old (the right side). The old supply currency inelastically.

We can determine a stationary equilibrium graphically. A stationary equi-

librium satisfies pt = p for all t , which implies R = 1 for all t . Thus, if it
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exists, a stationary equilibrium solves

J∑

j=1

Njf(1, j) =
H

p
(9.8.1)

for a positive price level. (See Figure 9.8.1.) Evidently, a stationary monetary

equilibrium exists if the net savings of the young are positive for R = 1.

f (R   , j) 
 t

N 
j  Σ

R
1

 s
H/p0

1

R

Figure 9.8.1: The intersection of the aggregate savings func-

tion with a horizontal line at R = 1 determines a stationary

equilibrium value of the price level, if positive.

For the special case of logarithmic preferences and two classes of young

people, the aggregate savings function of the young is time invariant and equal

to ∑

j

f(R, j) = .5(N1α−N2
β

R
).

Note that the equilibrium condition (9.8.1) can be written

.5N1α = .5N2
β

R
+
H

p
.
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The left side is the demand for savings or the demand for “currency” while the

right side is the supply, consisting of privately issued IOU’s (the first term) and

government-issued currency. The right side is thus an abstract version of what

is called M1, which is a sum of privately issued IOUs (demand deposits) and

government-issued reserves and currency.

9.8.3. Nonstationary equilibria

Mathematically, the equilibrium conditions for the model with log preferences

and two groups have the same structure as the model analyzed previously in

equations (9.4.7) and (9.4.8), with simple reinterpretations of parameters. We

leave it to the reader here and in an exercise to show that if there exists a

stationary equilibrium with valued fiat currency, then there exists a continuum

of equilibria with valued fiat currency, all but one of which have the real value

of government currency approaching zero asymptotically. A linear difference

equation like (9.4.7) supports this conclusion.

9.8.4. The real bills doctrine

In nineteenth-century Europe and the early days of the Federal Reserve system

in the United States, central banks conducted open market operations not by

purchasing government securities but by purchasing safe (risk-free) short-term

private IOUs. We now analyze this old-fashioned type of open market operation.

We allow the government to issue additional currency each period. It uses the

proceeds exclusively to purchase private IOUs (make loans to private agents)

in the amount Lt at time t . Such open market operations are subject to the

sequence of restrictions

Lt = Rt−1Lt−1 +
Ht −Ht−1

pt
(9.8.2)

for t ≥ 1 and H0 = H > 0 given, L0 = 0. Here Lt is the amount of the time t

consumption good that the government lends to the private sector from period t

to period t+1. Equation (9.8.2) states that the government finances these loans

in two ways: first, by rolling over the proceeds Rt−1Lt−1 from the repayment

of last period’s loans, and second, by injecting new currency in the amount
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Ht −Ht−1 . With the government injecting new currency and purchasing loans

in this way each period, the equilibrium condition in the loan market becomes

J∑

j=1

Njf(Rt, j) + Lt =
Ht−1

pt
+
Ht −Ht−1

pt
(9.8.3)

where the first term on the right is the real dissaving of the old at t (their

real balances) and the second term is the real value of the new money printed

by the monetary authority to finance purchases of private IOUs issued by the

young at t . The left side is the net savings of the young plus the savings of the

government.

Under several guises, the effects of open market operations like this have

concerned monetary economists for centuries.10 We state the following propo-

sition:

Irrelevance of Open Market Operations: Open market operations are

irrelevant: all positive sequences {Lt, Ht}∞t=0 that satisfy the constraint (9.8.2)

are associated with the same equilibrium allocation, interest rate, and price level

sequences.

Proof: Evidently, we can write the equilibrium condition (9.8.3) as

J∑

j=1

Njf(Rt, j) + Lt =
Ht

pt
. (9.8.4)

For t ≥ 1, iterating (9.8.2) once and using Rt−1 = pt−1

pt
gives

Lt = Rt−1Rt−2Lt−2 +
Ht −Ht−2

pt
.

Iterating back to time 0 and using L0 = 0 gives

Lt =
Ht −H0

pt
. (9.8.5)

Substituting (9.8.5) into (9.8.4) gives

J∑

j=1

Njf(Rt, j) =
H0

pt
. (9.8.6)

10 One issue concerned the effects on the price level of allowing banks to issue private bank

notes. Nothing in our model makes us take seriously that the notes Ht are issued by the

government. We can also think of them as being issued by a private bank.
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This is the same equilibrium condition in the economy with no open market

operations, i.e., the economy with Lt ≡ 0 for all t ≥ 1. Any price level and rate

of return sequence that solves (9.8.6) also solves (9.8.3) for any Lt sequence

satisfying (9.8.2).

This proposition captures the spirit of Adam Smith’s real bills doctrine,

which states that if the government issues bank notes to purchase safe evidences

of private indebtedness, it is not inflationary. Sargent and Wallace (1982) go on

to analyze settings in which the money market is initially separated from the

credit market by some legal restrictions that inhibit intermediation. Then open

market operations are no longer irrelevant because they can partially undo the

legal restrictions. Sargent and Wallace show how those legal restrictions can

help stabilize the price level at a cost in terms of economic efficiency. Kahn and

Roberds (1998) extend the Sargent and Wallace model to study issues about

regulating electronic payments systems.

9.9. Gift-giving equilibrium

Michihiro Kandori (1992) and Lones Smith (1992) have used ideas from the

literature on reputation (see chapter 24) to study whether there exist history-

dependent sequences of gifts that support an optimal allocation. Their idea is

to set up the economy as a game played with a sequence of players. We briefly

describe a gift-giving game for an overlapping generations economy in which

voluntary intergenerational gifts support an optimal allocation. Suppose that

the consumption of an initial old person is

c01 = y01 + s1

and the utility of each young agent is

u(yii − si) + u(yii+1 + si+1), i ≥ 1 (9.9.1)

where si ≥ 0 is the gift from a young person at i to an old person at i . Suppose

that the endowment pattern is yii = 1− ǫ, yii+1 = ǫ , where ǫ ∈ (0, .5).

Consider the following system of expectations, to which a young person

chooses whether to conform:

si =

{
.5− ǫ if vi = v;

0 otherwise.
(9.9.2a)
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vi+1 =

{
v if vi = v and si = .5− ǫ;

v otherwise.
(9.9.2b)

Here we are free to take v = 2u(.5) and v = u(1 − ǫ) + u(ǫ). These are

“promised utilities.” We make them serve as “state variables” that summarize

the history of intergenerational gift giving. To start, we need an initial value v1 .

Equations (9.9.2) act as the transition laws that young agents face in choosing

si in (9.9.1).

An initial condition v1 and the rule (9.9.2) form a system of expectations

that tells the young person of each generation what he is expected to give. His

gift is immediately handed over to an old person. A system of expectations is

called an equilibrium if for each i ≥ 1, each young agent chooses to conform.

We can immediately compute two equilibrium systems of expectations. The

first is the “autarky” equilibrium: give nothing yourself and expect all future

generations to give nothing. To represent this equilibrium within equations

(9.9.2), set v1 6= v . It is easy to verify that each young person will confirm

what is expected of him in this equilibrium. Given that future generations will

not give, each young person chooses not to give.

For the second equilibrium, set v1 = v . Here each household chooses to

give the expected amount, because failure to do so causes the next generation

of young people not to give; whereas affirming the expectation to give passes

that expectation along to the next generation, which affirms it in turn. Each

of these equilibria is credible, in the sense of subgame perfection, to be studied

extensively in chapter 24.

Narayana Kocherlakota (1998) has compared gift giving and monetary equi-

libria in a variety of environments and has used the comparison to provide a

precise sense in which “money” substitutes for “memory”.
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9.10. Concluding remarks

The overlapping generations model is a workhorse in analyses of public finance,

welfare economics, and demographics. Diamond (1965) studied some fiscal pol-

icy issues within a version of the model with a neoclassical production. He

showed that, depending on preference and productivity parameters, equilibria

of the model can have too much capital, and that such capital overaccumula-

tion can be corrected by having the government issue and perpetually roll over

unbacked debt.11 Auerbach and Kotlikoff (1987) formulated a long-lived over-

lapping generations model with capital, labor, production, and various kinds of

taxes. They used the model to study a host of fiscal issues. Rios-Rull (1994a)

used a calibrated overlapping generations growth model to examine the quanti-

tative importance of market incompleteness for insuring against aggregate risk.

See Attanasio (2000) for a review of theories and evidence about consumption

within life-cycle models.

Several authors in a 1980 volume edited by John Kareken and Neil Wallace

argued through example that the overlapping generations model is useful for

analyzing a variety of issues in monetary economics. We refer to that volume,

McCandless and Wallace (1992), Champ and Freeman (1994), Brock (1990),

and Sargent (1987b) for a variety of applications of the overlapping generations

model to issues in monetary economics.

Exercises

Exercise 9.1 At each date t ≥ 1, an economy consists of overlapping generations

of a constant number N of two-period-lived agents. Young agents born in t

have preferences over consumption streams of a single good that are ordered by

u(ctt) + u(ctt+1), where u(c) = c1−γ/(1 − γ), and where cit is the consumption

of an agent born at i in time t . It is understood that γ > 0, and that when

γ = 1, u(c) = ln c . Each young agent born at t ≥ 1 has identical preferences

and endowment pattern (w1, w2), where w1 is the endowment when young and

w2 is the endowment when old. Assume 0 < w2 < w1 . In addition, there

are some initial old agents at time 1 who are endowed with w2 of the time 1

11 Abel, Mankiw, Summers, and Zeckhauser (1989) propose an empirical test of whether

there is capital overaccumulation in the U.S. economy, and conclude that there is not.
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consumption good, and who order consumption streams by c01 . The initial old

(i.e., the old at t = 1) are also endowed with M units of unbacked fiat currency.

The stock of currency is constant over time.

a. Find the saving function of a young agent.

b. Define an equilibrium with valued fiat currency.

c. Define a stationary equilibrium with valued fiat currency.

d. Compute a stationary equilibrium with valued fiat currency.

e. Describe how many equilibria with valued fiat currency there are. (You are

not being asked to compute them.)

f. Compute the limiting value as t → +∞ of the rate of return on currency

in each of the nonstationary equilibria with valued fiat currency. Justify your

calculations.

Exercise 9.2 Consider an economy with overlapping generations of a constant

population of an even number N of two-period-lived agents. New young agents

are born at each date t ≥ 1. Half of the young agents are endowed with w1

when young and 0 when old. The other half are endowed with 0 when young

and w2 when old. Assume 0 < w2 < w1 . Preferences of all young agents are as

in problem 1, with γ = 1. Half of the N initial old are endowed with w2 units

of the consumption good and half are endowed with nothing. Each old person

orders consumption streams by c01 . Each old person at t = 1 is endowed with

M units of unbacked fiat currency. No other generation is endowed with fiat

currency. The stock of fiat currency is fixed over time.

a. Find the saving function of each of the two types of young person for t ≥ 1.

b. Define an equilibrium without valued fiat currency. Compute all such equi-

libria.

c. Define an equilibrium with valued fiat currency.

d. Compute all the (nonstochastic) equilibria with valued fiat currency.

e. Argue that there is a unique stationary equilibrium with valued fiat currency.

f. How are the various equilibria with valued fiat currency ranked by the Pareto

criterion?
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Exercise 9.3 Take the economy of exercise 9.1 , but make one change. Endow

the initial old with a tree that yields a constant dividend of d > 0 units of the

consumption good for each t ≥ 1.

a. Compute all the equilibria with valued fiat currency.

b. Compute all the equilibria without valued fiat currency.

c. If you want, you can answer both parts of this question in the context of the

following particular numerical example: w1 = 10, w2 = 5, d = .000001.

Exercise 9.4 Take the economy of exercise 9.1 and make the following two

changes. First, assume that γ = 1. Second, assume that the number of young

agents born at t is N(t) = nN(t − 1), where N(0) > 0 is given and n ≥ 1.

Everything else about the economy remains the same.

a. Compute an equilibrium without valued fiat money.

b. Compute a stationary equilibrium with valued fiat money.

Exercise 9.5 Consider an economy consisting of overlapping generations of two-

period-lived consumers. At each date t ≥ 1 there are born N(t) identical young

people each of whom is endowed with w1 > 0 units of a single consumption good

when young and w2 > 0 units of the consumption good when old. Assume that

w2 < w1 . The consumption good is not storable. The population of young

people is described by N(t) = nN(t− 1), where n > 0. Young people born at t

rank utility streams according to ln(ctt) + ln(ctt+1) where cit is the consumption

of the time t good of an agent born in i . In addition, there are N(0) old people

at time 1, each of whom is endowed with w2 units of the time 1 consumption

good. The old at t = 1 are also endowed with one unit of unbacked pieces of

infinitely durable but intrinsically worthless pieces of paper called fiat money.

a. Define an equilibrium without valued fiat currency. Compute such an equi-

librium.

b. Define an equilibrium with valued fiat currency.

c. Compute all equilibria with valued fiat currency.

d. Find the limiting rates of return on currency as t → +∞ in each of the

equilibria that you found in part c. Compare them with the one-period interest

rate in the equilibrium in part a.



Exercises 369

e. Are the equilibria in part c ranked according to the Pareto criterion?

Exercise 9.6 Exchange rate determinacy

The world consists of two economies, named i = 1, 2, which except for their

governments’ policies are “copies” of one another. At each date t ≥ 1, there

is a single consumption good, which is storable, but only for rich people. Each

economy consists of overlapping generations of two-period-lived agents. For

each t ≥ 1, in economy i , N poor people and N rich people are born. Let

cht (s), y
h
t (s) be the time s (consumption, endowment) of a type h agent born

at t . Poor agents are endowed with [yht (t), y
h
t (t + 1)] = (α, 0); rich agents are

endowed with [yht (t), y
h
t (t+ 1)] = (β, 0), where β >> α . In each country, there

are 2N initial old who are endowed in the aggregate with Hi(0) units of an

unbacked currency and with 2Nǫ units of the time 1 consumption good. For

the rich people, storing k units of the time t consumption good produces Rk

units of the time t+ 1 consumption good, where R > 1 is a fixed gross rate of

return on storage. Rich people can earn the rate of return R either by storing

goods or by lending to either government by means of indexed bonds. We

assume that poor people are prevented from storing capital or holding indexed

government debt by the sort of denomination and intermediation restrictions

described by Sargent and Wallace (1982).

For each t ≥ 1, all young agents order consumption streams according to

ln cht (t) + ln cht (t+ 1).

For t ≥ 1, the government of country i finances a stream of purchases (to

be thrown into the ocean) of Gi(t) subject to the following budget constraint:

(1) Gi(t) +RBi(t− 1) = Bi(t) +
Hi(t)−Hi(t− 1)

pi(t)
+ Ti(t),

where Bi(0) = 0; pi(t) is the price level in country i ; Ti(t) are lump-sum taxes

levied by the government on the rich young people at time t ; Hi(t) is the stock of

i ’s fiat currency at the end of period t ; Bi(t) is the stock of indexed government

interest-bearing debt (held by the rich of either country). The government does

not explicitly tax poor people, but might tax through an inflation tax. Each

government levies a lump-sum tax of Ti(t)/N on each young rich citizen of its

own country.

Poor people in both countries are free to hold whichever currency they

prefer. Rich people can hold debt of either government and can also store;

storage and both government debts bear a constant gross rate of return R .
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a. Define an equilibrium with valued fiat currencies (in both countries).

b. In a nonstochastic equilibrium, verify the following proposition: if an equilib-

rium exists in which both fiat currencies are valued, the exchange rate between

the two currencies must be constant over time.

c. Suppose that government policy in each country is characterized by specified

(exogenous) levels Gi(t) = Gi, Ti(t) = Ti , Bi(t) = 0, ∀t ≥ 1. (The remaining

elements of government policy adjust to satisfy the government budget con-

straints.) Assume that the exogenous components of policy have been set so

that an equilibrium with two valued fiat currencies exists. Under this descrip-

tion of policy, show that the equilibrium exchange rate is indeterminate.

d. Suppose that government policy in each country is described as follows:

Gi(t) = Gi, Ti(t) = Ti, Hi(t + 1) = Hi(1), Bi(t) = Bi(1) ∀t ≥ 1. Show that if

there exists an equilibrium with two valued fiat currencies, the exchange rate is

determinate.

e. Suppose that government policy in country 1 is specified in terms of exoge-

nous levels of s1 = [H1(t) − H1(t − 1)]/p1(t) ∀t ≥ 2, and G1(t) = G1 ∀t ≥
1. For country 2, government policy consists of exogenous levels of B2(t) =

B2(1), G2(t) = G2∀t ≥ 1. Show that if there exists an equilibrium with two

valued fiat currencies, then the exchange rate is determinate.

Exercise 9.7 Credit controls

Consider the following overlapping generations model. At each date t ≥ 1 there

appear N two-period-lived young people, said to be of generation t , who live

and consume during periods t and (t+ 1). At time t = 1 there exist N old

people who are endowed with H(0) units of paper “dollars,” which they offer to

supply inelastically to the young of generation 1 in exchange for goods. Let p(t)

be the price of the one good in the model, measured in dollars per time t good.

For each t ≥ 1, N/2 members of generation t are endowed with y > 0 units of

the good at t and 0 units at (t+ 1), whereas the remaining N/2 members of

generation t are endowed with 0 units of the good at t and y > 0 units when

they are old. All members of all generations have the same utility function:

u[cht (t), c
h
t (t+ 1)] = ln cht (t) + ln cht (t+ 1),

where cht (s) is the consumption of agent h of generation t in period s . The old

at t = 1 simply maximize ch0 (1). The consumption good is nonstorable. The

currency supply is constant through time, so H(t) = H(0), t ≥ 1.
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a. Define a competitive equilibrium without valued currency for this model.

Who trades what with whom?

b. In the equilibrium without valued fiat currency, compute competitive equi-

librium values of the gross return on consumption loans, the consumption al-

location of the old at t = 1, and that of the “borrowers” and “lenders” for

t ≥ 1.

c. Define a competitive equilibrium with valued currency. Who trades what

with whom?

d. Prove that for this economy there does not exist a competitive equilibrium

with valued currency.

e. Now suppose that the government imposes the restriction that lht (t)[1 +

r(t)] ≥ −y/4, where lht (t)[1 + r(t)] represents claims on (t+ 1)–period con-

sumption purchased (if positive) or sold (if negative) by household h of gener-

ation t . This is a restriction on the amount of borrowing. For an equilibrium

without valued currency, compute the consumption allocation and the gross rate

of return on consumption loans.

f. In the setup of part e, show that there exists an equilibrium with valued

currency in which the price level obeys the quantity theory equation p(t) =

qH(0)/N . Find a formula for the undetermined coefficient q . Compute the

consumption allocation and the equilibrium rate of return on consumption loans.

g. Are lenders better off in economy b or economy f? What about borrowers?

What about the old of period 1 (generation 0)?

Exercise 9.8 Inside money and real bills

Consider the following overlapping generations model of two-period-lived people.

At each date t ≥ 1 there are born N1 individuals of type 1 who are endowed

with y > 0 units of the consumption good when they are young and zero units

when they are old; there are also born N2 individuals of type 2 who are endowed

with zero units of the consumption good when they are young and Y > 0 units

when they are old. The consumption good is nonstorable. At time t = 1, there

are N old people, all of the same type, each endowed with zero units of the

consumption good and H0/N units of unbacked paper called “fiat currency.”

The populations of type 1 and 2 individuals, N1 and N2 , remain constant for all

t ≥ 1. The young of each generation are identical in preferences and maximize
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the utility function ln cht (t)+ln cht (t+ 1) where cht (s) is consumption in the sth

period of a member h of generation t .

a. Consider the equilibrium without valued currency (that is, the equilibrium

in which there is no trade between generations). Let [1+ r(t)] be the gross rate

of return on consumption loans. Find a formula for [1 + r(t)] as a function of

N1, N2, y , and Y .

b. Suppose that N1, N2, y , and Y are such that [1+r(t)] > 1 in the equilibrium

without valued currency. Then prove that there can exist no quantity-theory-

style equilibrium where fiat currency is valued and where the price level p(t)

obeys the quantity theory equation p(t) = q ·H0 , where q is a positive constant

and p(t) is measured in units of currency per unit good.

c. Suppose that N1, N2, y , and Y are such that in the nonvalued-currency

equilibrium 1 + r(t) < 1. Prove that there exists an equilibrium in which

fiat currency is valued and that there obtains the quantity theory equation

p(t) = q · H0 , where q is a constant. Construct an argument to show that

the equilibrium with valued currency is not Pareto superior to the nonvalued-

currency equilibrium.

d. Suppose that N1, N2, y , and Y are such that, in the preceding nonvalued-

currency economy, [1 + r(t)] < 1, there exists an equilibrium in which fiat

currency is valued. Let p̄ be the stationary equilibrium price level in that

economy. Now consider an alternative economy, identical with the preceding

one in all respects except for the following feature: a government each period

purchases a constant amount Lg of consumption loans and pays for them by

issuing debt on itself, called “inside money” MI , in the amount MI(t) = Lg·p(t).
The government never retires the inside money, using the proceeds of the loans

to finance new purchases of consumption loans in subsequent periods. The

quantity of outside money, or currency, remains H0 , whereas the “total high-

power money” is now H0 +MI(t).

(i) Show that in this economy there exists a valued-currency equilibrium in

which the price level is constant over time at p(t) = p̄ , or equivalently, with

p̄ = qH0 where q is defined in part c.

(ii) Explain why government purchases of private debt are not inflationary in

this economy.
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(iii) In many models, once-and-for-all government open-market operations in

private debt normally affect real variables and/or price level. What ac-

counts for the difference between those models and the one in this exercise?

Exercise 9.9 Social security and the price level

Consider an economy (“economy I”) that consists of overlapping generations of

two-period-lived people. At each date t ≥ 1 there is born a constant number

N of young people, who desire to consume both when they are young, at t ,

and when they are old, at (t+ 1). Each young person has the utility function

ln ct(t) + ln ct(t+ 1), where cs(t) is time t consumption of an agent born at

s . For all dates t ≥ 1, young people are endowed with y > 0 units of a single

nonstorable consumption good when they are young and zero units when they

are old. In addition, at time t = 1 there are N old people endowed in the

aggregate with H units of unbacked fiat currency. Let p(t) be the nominal

price level at t , denominated in dollars per time t good.

a. Define and compute an equilibrium with valued fiat currency for this econ-

omy. Argue that it exists and is unique. Now consider a second economy

(“economy II”) that is identical to economy I except that economy II possesses

a social security system. In particular, at each date t ≥ 1, the government taxes

τ > 0 units of the time t consumption good away from each young person and

at the same time gives τ units of the time t consumption good to each old

person then alive.

b. Does economy II possess an equilibrium with valued fiat currency? De-

scribe the restrictions on the parameter τ , if any, that are needed to ensure the

existence of such an equilibrium.

c. If an equilibrium with valued fiat currency exists, is it unique?

d. Consider the stationary equilibrium with valued fiat currency. Is it unique?

Describe how the value of currency or price level would vary across economies

with differences in the size of the social security system, as measured by τ .

Exercise 9.10 Seignorage

Consider an economy consisting of overlapping generations of two-period-lived

agents. At each date t ≥ 1, there are born N1 “lenders” who are endowed with

α > 0 units of the single consumption good when they are young and zero units

when they are old. At each date t ≥ 1, there are also born N2 “borrowers” who
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are endowed with zero units of the consumption good when they are young and

β > 0 units when they are old. The good is nonstorable, and N1 and N2 are

constant through time. The economy starts at time 1, at which time there are

N old people who are in the aggregate endowed with H(0) units of unbacked,

intrinsically worthless pieces of paper called dollars. Assume that α, β,N1 , and

N2 are such that
N2β

N1α
< 1.

Assume that everyone has preferences

u[cht (t), c
h
t (t+ 1)] = ln cht (t) + ln cht (t+ 1),

where cht (s) is consumption of time s good of agent h born at time t .

a. Compute the equilibrium interest rate on consumption loans in the equilib-

rium without valued currency.

b. Construct a brief argument to establish whether or not the equilibrium

without valued currency is Pareto optimal.

The economy also contains a government that purchases and destroys Gt

units of the good in period t , t ≥ 1. The government finances its purchases

entirely by currency creation. That is, at time t ,

Gt =
H(t)−H(t− 1)

p(t)
,

where [H(t)−H(t− 1)] is the additional dollars printed by the government at

t and p(t) is the price level at t . The government is assumed to increase H(t)

according to

H(t) = zH(t− 1), z ≥ 1,

where z is a constant for all time t ≥ 1.

At time t , old people who carried H(t − 1) dollars between (t − 1) and

t offer these H(t − 1) dollars in exchange for time t goods. Also at t the

government offers H(t) −H(t− 1) dollars for goods, so that H(t) is the total

supply of dollars at time t , to be carried over by the young into time (t+ 1).

c. Assume that 1/z > N2β/N1α . Show that under this assumption there exists

a continuum of equilibria with valued currency.
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d. Display the unique stationary equilibrium with valued currency in the form

of a “quantity theory” equation. Compute the equilibrium rate of return on

currency and consumption loans.

e. Argue that if 1/z < N2β/N1α , then there exists no valued-currency equilib-

rium. Interpret this result. (Hint: Look at the rate of return on consumption

loans in the equilibrium without valued currency.)

f. Find the value of z that maximizes the government’s Gt in a stationary

equilibrium. Compare this with the largest value of z that is compatible with

the existence of a valued-currency equilibrium.

Exercise 9.11 Unpleasant monetarist arithmetic

Consider an economy in which the aggregate demand for government currency

for t ≥ 1 is given by [M(t)p(t)]d = g[R1(t)] , where R1(t) is the gross rate of

return on currency between t and (t+ 1), M(t) is the stock of currency at t ,

and p(t) is the value of currency in terms of goods at t (the reciprocal of the

price level). The function g(R) satisfies

(1) g(R)(1−R) = h(R) > 0 for R ∈ (R, 1),

where h(R) ≤ 0 for R < R,R ≥ 1, R > 0 and where h′(R) < 0 for R >

Rm , h′(R) > 0 for R < Rm h(Rm) > D , where D is a positive number to

be defined shortly. The government faces an infinitely elastic demand for its

interest-bearing bonds at a constant-over-time gross rate of return R2 > 1. The

government finances a budget deficit D , defined as government purchases minus

explicit taxes, that is constant over time. The government’s budget constraint

is

(2) D = p(t)[M(t)−M(t− 1)] +B(t)−B(t− 1)R2, t ≥ 1,

subject to B(0) = 0,M(0) > 0. In equilibrium,

(3) M(t)p(t) = g[R1(t)].

The government is free to choose paths of M(t) and B(t), subject to equations

(2) and (3).

a. Prove that, for B(t) = 0, for all t > 0, there exist two stationary equilibria

for this model.
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b. Show that there exist values of B > 0, such that there exist stationary

equilibria with B(t) = B , M(t)p(t) =Mp .

c. Prove a version of the following proposition: among stationary equilibria, the

lower the value of B , the lower the stationary rate of inflation consistent with

equilibrium. (You will have to make an assumption about Laffer curve effects

to obtain such a proposition.)

This problem displays some of the ideas used by Sargent andWallace (1981).

They argue that, under assumptions like those leading to the proposition stated

in part c, the “looser” money is today [that is, the higher M(1) and the lower

B(1)], the lower the stationary inflation rate.

Exercise 9.12 Grandmont-Hall

Consider a nonstochastic, one-good overlapping generations model consisting of

two-period-lived young people born in each t ≥ 1 and an initial group of old

people at t = 1 who are endowed with H(0) > 0 units of unbacked currency

at the beginning of period 1. The one good in the model is not storable. Let

the aggregate first-period saving function of the young be time-invariant and be

denoted f [1 + r(t)] where [1 + r(t)] is the gross rate of return on consumption

loans between t and (t+ 1). The saving function is assumed to satisfy f(0) =

−∞ , f ′(1 + r) > 0, f(1) > 0.

Let the government pay interest on currency, starting in period 2 (to holders

of currency between periods 1 and 2). The government pays interest on currency

at a nominal rate of [1 + r(t)]p(t + 1)/p̄ , where [1 + r(t)] is the real gross rate

of return on consumption loans, p(t) is the price level at t , and p̄ is a target

price level chosen to satisfy

p̄ = H(0)/f(1).

The government finances its interest payments by printing new money, so that

the government’s budget constraint is

H(t+ 1)−H(t) =

{
[1 + r(t)]

p(t + 1)

p̄
− 1

}
H(t), t ≥ 1,

given H(1) = H(0) > 0. The gross rate of return on consumption loans in this

economy is 1 + r(t). In equilibrium, [1 + r(t)] must be at least as great as the

real rate of return on currency

1 + r(t) ≥ [1 + r(t)]p(t)/p̄ = [1 + r(t)]
p(t + 1)

p̄

p(t)

p(t+ 1)
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with equality if currency is valued,

1 + r(t) = [1 + r(t)]p(t)/p̄, 0 < p(t) <∞.

The loan market-clearing condition in this economy is

f [1 + r(t)] = H(t)/p(t).

a. Define an equilibrium.

b. Prove that there exists a unique monetary equilibrium in this economy and

compute it.

Exercise 9.13 Bryant-Keynes-Wallace

Consider an economy consisting of overlapping generations of two-period-lived

agents. There is a constant population of N young agents born at each date

t ≥ 1. There is a single consumption good that is not storable. Each agent born

in t ≥ 1 is endowed with w1 units of the consumption good when young and

with w2 units when old, where 0 < w2 < w1 . Each agent born at t ≥ 1 has

identical preferences ln cht (t) + ln cht (t+ 1), where cht (s) is time s consumption

of agent h born at time t . In addition, at time 1, there are alive N old people

who are endowed with H(0) units of unbacked paper currency and who want

to maximize their consumption of the time 1 good.

A government attempts to finance a constant level of government purchases

G(t) = G > 0 for t ≥ 1 by printing new base money. The government’s budget

constraint is

G = [H(t)−H(t− 1)]/p(t),

where p(t) is the price level at t , and H(t) is the stock of currency carried over

from t to (t+ 1) by agents born in t . Let g = G/N be government purchases

per young person. Assume that purchases G(t) yield no utility to private agents.

a. Define a stationary equilibrium with valued fiat currency.

b. Prove that, for g sufficiently small, there exists a stationary equilibrium with

valued fiat currency.

c. Prove that, in general, if there exists one stationary equilibrium with valued

fiat currency, with rate of return on currency 1+ r(t) = 1+ r1 , then there exists
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at least one other stationary equilibrium with valued currency with 1 + r(t) =

1 + r2 6= 1 + r1 .

d. Tell whether the equilibria described in parts b and c are Pareto optimal,

among allocations among private agents of what is left after the government

takes G(t) = G each period. (A proof is not required here: an informal argument

will suffice.)

Now let the government institute a forced saving program of the following

form. At time 1, the government redeems the outstanding stock of currency

H(0), exchanging it for government bonds. For t ≥ 1, the government offers

each young consumer the option of saving at least F worth of time t goods in

the form of bonds bearing a constant rate of return (1+r2). A legal prohibition

against private intermediation is instituted that prevents two or more private

agents from sharing one of these bonds. The government’s budget constraint

for t ≥ 2 is

G/N = B(t)−B(t− 1)(1 + r2),

where B(t) ≥ F . Here B(t) is the saving of a young agent at t . At time t = 1,

the government’s budget constraint is

G/N = B(1)− H(0)

Np(1)
,

where p(1) is the price level at which the initial currency stock is redeemed at

t = 1. The government sets F and r2 .

Consider stationary equilibria with B(t) = B for t ≥ 1 and r2 and F

constant.

e. Prove that if g is small enough for an equilibrium of the type described in

part a to exist, then a stationary equilibrium with forced saving exists. (Either

a graphical argument or an algebraic argument is sufficient.)

f. Given g , find the values of F and r2 that maximize the utility of a repre-

sentative young agent for t ≥ 1.

g. Is the equilibrium allocation associated with the values of F and (1 + r2)

found in part f optimal among those allocations that give G(t) = G to the

government for all t ≥ 1? (Here an informal argument will suffice.)



Chapter 10
Ricardian Equivalence

10.1. Borrowing limits and Ricardian equivalence

This chapter studies whether the timing of taxes matters. Under some assump-

tions it does and under others it does not. The Ricardian doctrine describes

assumptions under which the timing of lump taxes does not matter. In this

chapter, we will study how the timing of taxes interacts with restrictions on the

ability of households to borrow. We study the issue in two equivalent settings:

(1) an infinite horizon economy with an infinitely lived representative agent; and

(2) an infinite horizon economy with a sequence of one-period-lived agents, each

of whom cares about its immediate descendant. We assume that the interest

rate is exogenously given. For example, the economy might be a small open

economy that faces a given interest rate determined in the international capital

market. Chapters 11 amd 13 will describe general equilibrium analyses of the

Ricardian doctrine where the interest rate is determined within the model.

The key findings of the chapter are that in the infinite horizon model, Ricar-

dian equivalence holds under what we earlier called the natural borrowing limit,

but not under more stringent ones. The natural borrowing limit lets households

borrow up to the capitalized value of their endowment sequences. These results

have limited counterparts in the overlapping generations model, since that model

is equivalent to an infinite horizon model with a no-borrowing constraint.1 In

the overlapping generations model, a no-borrowing constraint translates into a

requirement that bequests be nonnegative. Thus, in the overlapping generations

model, the domain of the Ricardian proposition is restricted, at least relative to

the infinite horizon model under the natural borrowing limit.

1 This is one of the insights in the influential paper of Barro (1974) that reignited modern

interest in Ricardian equivalence.

– 379 –
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10.2. Infinitely lived agent economy

Each of N identical households orders a consumption stream by
∞∑

t=0

βtu(ct), (10.2.1)

where β ∈ (0, 1) and u(·) is a strictly increasing, strictly concave, twice-

differentiable utility function. We impose the Inada condition limc↓0 u
′(c) =

+∞. This Inada condition is important because we will be stressing the feature

that c ≥ 0. There is no uncertainty. The household can invest in a single risk-

free asset bearing a fixed gross one-period rate of return R > 1, a loan either

to foreigners or to the government. At time t , the household faces the budget

constraint

ct +R−1bt+1 ≤ yt + bt, (10.2.2)

where b0 is given. Throughout this chapter, we assume that Rβ = 1. Here

{yt}∞t=0 is a given nonstochastic nonnegative endowment sequence and
∑∞

t=0 β
tyt

<∞ .

We investigate two alternative restrictions on asset holdings {bt}∞t=0 . One

is that bt ≥ 0 for all t ≥ 0, which allows the household to lend but not borrow.

The alternative is to permit the household to borrow, but only an amount that

it is feasible to repay. To discover this amount, set ct = 0 for all t in formula

(10.2.2) and solve forward for bt to get

b̃t = −
∞∑

j=0

R−jyt+j , (10.2.3)

where we have ruled out Ponzi schemes by imposing the transversality condition

lim
T→∞

R−T bt+T = 0. (10.2.4)

Following Aiyagari (1994), we call b̃t the natural debt limit.2 Thus, our alter-

native restriction on assets is

bt ≥ b̃t, (10.2.5)

which, because b̃t is typically negative, is evidently weaker than bt ≥ 0.3

2 Even with ct = 0, the consumer cannot repay more than b̃t .
3 We encountered a more general version of equation (10.2.5) in chapter 8 when we dis-

cussed Arrow securities.
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10.2.1. Optimal consumption/savings decision when bt+1 ≥ 0

Consider the household’s problem of choosing {ct, bt+1}∞t=0 to maximize expres-

sion (10.2.1) subject to a given initial condition for initial assets b0 , the budget

constraints (10.2.2), and bt+1 ≥ 0 for all t . The first-order conditions for this

problem are

u′(ct) ≥ βRu′(ct+1), ∀t ≥ 0; (10.2.6a)

and

u′(ct) > βRu′(ct+1) implies bt+1 = 0. (10.2.6b)

Because βR = 1, these conditions and the constraint (10.2.2) imply that ct+1 =

ct when bt+1 > 0, but when the consumer is borrowing constrained, bt+1 = 0

and yt + bt = ct < ct+1 . The optimal consumption plan evidently depends on

the {yt} path, as the following examples illustrate.

Example 1: Assume b0 = 0 and endowment path {yt}∞t=0 = {yh, yl, yh, yl, . . .} ,
where yh > yl > 0. The present value of the household’s endowment is

∞∑

t=0

βtyt =

∞∑

t=0

β2t(yh + βyl) =
yh + βyl
1− β2

.

The annuity value c̄ that has the same present value as the endowment stream

satisfies
c̄

1− β
=
yh + βyl
1− β2

, or c̄ =
yh + βyl
1 + β

.

The solution to the household’s optimization problem is the constant consump-

tion stream ct = c̄ for all t ≥ 0. Using the budget constraint (10.2.2), we can

back out the associated savings plan: bt+1 = (yh − yl)/(1 + β) for even t , and

bt+1 = 0 for odd t . The consumer is never borrowing constrained.4

Example 2: Assume b0 = 0 and endowment path {yt}∞t=0 = {yl, yh, yl, yh, . . .} ,
where yh > yl > 0. The optimal plan is c0 = yl and b1 = 0, and from period

1 onward, the solution is the same as in example 1. Hence, the consumer is

borrowing constrained the first period.5

4 Note bt = 0 does not imply that the consumer is borrowing constrained. We say that

he is borrowing constrained if the Lagrange multiplier on the constraint bt ≥ 0 is not zero.
5 Examples 1 and 2 illustrate a general result stated in chapter 17. Given a borrowing

constraint and a nonstochastic endowment stream, the impact of the borrowing constraint

will not vanish until the household reaches the period with the highest annuity value for the

remainder of the endowment stream.
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Example 3: Assume b0 = 0 and yt = λt where 1 < λ < R . Notice that

λβ < 1. The solution with the borrowing constraint bt ≥ 0 is ct = λt, bt = 0

for all t ≥ 0. The consumer is always borrowing constrained.

10.2.2. Optimal consumption/savings decision when bt+1 ≥ b̃t+1

Example 4: Assume the same b0 and same endowment sequence yt = λt as

in example 3, but now impose only the natural borrowing constraint (10.2.5).

The present value of the household’s endowment is

∞∑

t=0

βtλt =
1

1− λβ
.

The household’s budget constraint for each t is satisfied at a constant consump-

tion level ĉ satisfying

ĉ

1− β
=

1

1− λβ
, or ĉ =

1− β

1− λβ
.

Substituting this consumption rate into formula (10.2.2) and solving forward

gives

bt =
1− λt

1− βλ
. (10.2.7)

The consumer issues more and more debt as time passes and uses his rising

endowment to service it. The consumer’s debt always satisfies the natural debt

limit at t ; in particular, bt > b̃t = −λt/(1− βλ).

Example 5: Take the specification of example 3, but now impose λ < 1. Note

that the solution (10.2.7) implies bt ≥ 0, so that the constant consumption

path ct = ĉ in example 4 is now the solution even if the borrowing constraint

bt ≥ 0 is imposed.
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10.3. Government finance

Add a government to the model in a way that leaves the consumer’s preferences

over consumption plans continue to be ordered by (10.2.1). The government

purchases a stream {gt}∞t=0 per household. This stream does not appear in

the consumer’s utility functional. The government levies a stream of lump-sum

taxes {τt}∞t=0 on the household, subject to the sequence of budget constraints

Bt + gt = τt +R−1Bt+1, (10.3.1)

where Bt is one-period debt due at t , denominated in the time t consumption

good, that the government owes the households or foreign investors. Notice that

we allow the government to borrow, even though in examples 1, 2, 3, and 5 we

did not permit the household to borrow. (If Bt < 0, the government lends to

households or to foreign investors.) Solving the government’s budget constraint

forward gives the intertemporal constraint

Bt =

∞∑

j=0

R−j(τt+j − gt+j) (10.3.2)

for t ≥ 0, where we have ruled out Ponzi schemes by imposing the transversality

condition

lim
T→∞

R−TBt+T = 0.

10.3.1. Effect on household

We must now deduct τt from the household’s endowment in equation (10.2.2),

ct +R−1bt+1 ≤ yt − τt + bt. (10.3.3)

Solving this tax-adjusted budget constraint forward and invoking transversality

condition (10.2.4) yield

bt =

∞∑

j=0

R−j(ct+j + τt+j − yt+j). (10.3.4)

The natural debt limit is obtained by setting ct = 0 for all t in (10.3.4),

bt ≥ b̃t =
∞∑

j=0

R−j(τt+j − yt+j). (10.3.5)
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A comparison of equations (10.2.3) and (10.3.5) indicates how taxes affect b̃t

We use the following definition:

Definition: Given initial conditions (b0, B0), an equilibrium is a household

plan {ct, bt+1}∞t=0 and a government policy {gt, τt, Bt+1}∞t=0 such that (a) the

government policy satisfies the government budget constraint (10.3.1), and (b)

given {τt}∞t=0 , the household’s plan is optimal.

We can now state a Ricardian proposition under the natural debt limit.

Proposition 1: Suppose that the natural debt limit prevails. Given initial

conditions (b0, B0), let {c̄t, b̄t+1}∞t=0 and {ḡt, τ̄t, B̄t+1}∞t=0 be an equilibrium.

Consider any other tax policy {τ̂t}∞t=0 satisfying

∞∑

t=0

R−tτ̂t =

∞∑

t=0

R−tτ̄t. (10.3.6)

Then {c̄t, b̂t+1}∞t=0 and {ḡt, τ̂t, B̂t+1}∞t=0 is also an equilibrium where

b̂t =

∞∑

j=0

R−j(c̄t+j + τ̂t+j − yt+j) (10.3.7)

and

B̂t =

∞∑

j=0

R−j(τ̂t+j − ḡt+j). (10.3.8)

Proof: The first point of the proposition is that the same consumption plan

{c̄t}∞t=0 , but adjusted borrowing plan {b̂t+1}∞t=0 , solve the household’s optimum

problem under the altered government tax scheme. Under the natural debt limit,

the household in effect faces a single intertemporal budget constraint (10.3.4).

At time 0, the household can be thought of as choosing an optimal consumption

plan subject to the single constraint,

b0 =
∞∑

t=0

R−t(ct − yt) +
∞∑

t=0

R−tτt.

Thus, the household’s budget set, and therefore its optimal plan, does not de-

pend on the timing of taxes, only their present value. The altered tax plan

leaves the household’s intertemporal budget set unaltered and therefore doesn’t
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affect its optimal consumption plan. Next, we construct the adjusted borrow-

ing plan {b̂t+1}∞t=0 by solving the budget constraint (10.3.3) forward to obtain

(10.3.7).6 The adjusted borrowing plan trivially satisfies the (adjusted) natural

debt limit in every period, since the consumption plan {c̄t}∞t=0 is a nonnegative

sequence.

The second point of the proposition is that the altered government tax

and borrowing plans continue to satisfy the government’s budget constraint. In

particular, we see that the government’s budget set at time 0 does not depend

on the timing of taxes, only their present value,

B0 =

∞∑

t=0

R−tτt −
∞∑

t=0

R−tgt.

Thus, under the altered tax plan with an unchanged present value of taxes,

the government can finance the same expenditure plan {ḡt}∞t=0 . The adjusted

borrowing plan {B̂t+1}∞t=0 is computed in a similar way as above to arrive at

(10.3.8).

6 It is straightforward to verify that the adjusted borrowing plan {b̂t+1}
∞
t=0 must satisfy

the transversality condition (10.2.4). In any period (k−1) ≥ 0, solving the budget constraint

(10.3.3) backward yields

bk =

k∑

j=1

Rj
[
yk−j − τk−j − ck−j

]
+ Rkb0.

Evidently, the difference between b̄k of the initial equilibrium and b̂k is equal to

b̄k − b̂k =

k∑

j=1

Rj
[
τ̂k−j − τ̄k−j

]
,

and after multiplying both sides by R1−k ,

R1−k
(
b̄k − b̂k

)
= R

k−1∑

t=0

R−t [τ̂t − τ̄t] .

The limit of the right side is zero when k goes to infinity due to condition (10.3.6), and hence,

the fact that the equilibrium borrowing plan {b̄t+1}
∞
t=0 satisfies transversality condition

(10.2.4) implies that so must {b̂t+1}
∞
t=0 .
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This proposition depends on imposing on the household the natural debt

limit, which is weaker than the no-borrowing constraint. Under the no-borrowing

constraint, we require that the asset choice bt+1 at time t satisfy budget con-

straint (10.3.3) and not fall below zero. That is, under the no-borrowing con-

straint, we have to check more than just a single intertemporal budget constraint

for the household at time 0. Changes in the timing of taxes that obey equa-

tion (10.3.6) evidently alter the right side of equation (10.3.3) and can, for

example, cause a previously binding borrowing constraint no longer to be bind-

ing, and vice versa. Binding borrowing constraints in either the initial {τ̄t}∞t=0

equilibrium or the new {τ̂t}∞t=0 equilibria eliminates a Ricardian proposition as

general as Proposition 1. More restricted versions of the proposition evidently

hold across restricted equivalence classes of taxes that do not alter when the

borrowing constraints are binding across the two equilibria being compared.

Proposition 2: Consider an initial equilibrium with consumption path {c̄t}∞t=0

in which bt+1 > 0 for all t ≥ 0. Let {τ̄t}∞t=0 be the tax rate in the initial

equilibrium, and let {τ̂t}∞t=0 be any other tax-rate sequence for which

b̂t =

∞∑

j=0

R−j(c̄t+j + τ̂t+j − yt+j) ≥ 0

for all t ≥ 0. Then {c̄t}∞t=0 is also an equilibrium allocation for the {τ̂t}∞t=0 tax

sequence.

We leave the proof of this proposition to the reader.
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10.4. Linked generations interpretation

Much of the preceding analysis with borrowing constraints applies to a setting

with overlapping generations linked by a bequest motive. Assume that there is

a sequence of one-period-lived agents. For each t ≥ 0 there is a one-period-lived

agent who values consumption and the utility of his direct descendant, a young

person at time t+ 1. Preferences of a young person at t are ordered by

u(ct) + βV (bt+1),

where u(c) is the same utility function as in the previous section, bt+1 ≥ 0 are

bequests from the time t person to the time t + 1 person, and V (bt+1) is the

maximized utility function of a time t+1 agent. The maximized utility function

is defined recursively by

V (bt) = max
ct,bt+1

{u(ct) + βV (bt+1)} (10.4.1)

where the maximization is subject to

ct + R−1bt+1 ≤ yt − τt + bt (10.4.2)

and bt+1 ≥ 0. The constraint bt+1 ≥ 0 requires that bequests cannot be

negative. Notice that a person cares about his direct descendant, but not vice

versa. We continue to assume that there is an infinitely lived government whose

taxes and purchasing and borrowing strategies are as described in the previous

section.

In consumption outcomes, this model is equivalent to the previous model

with a no-borrowing constraint. Bequests here play the role of savings bt+1

in the previous model. A positive savings condition bt+1 > 0 in the previous

version of the model becomes an “operational bequest motive” in the overlapping

generations model.

It follows that we can obtain a restricted Ricardian equivalence proposition,

qualified as in Proposition 2. The qualification is that the initial equilibrium

must have an operational bequest motive for all t ≥ 0, and that the new tax

policy must not be so different from the initial one that it renders the bequest

motive inoperative.
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10.5. Concluding remarks

The arguments in this chapter were cast in a setting with an exogenous interest

rate R and a capital market that is outside of the model. When we discussed

potential failures of Ricardian equivalence due to households facing no-borrowing

constraints, we were also implicitly contemplating changes in the government’s

outside asset position. For example, consider an altered tax plan {τ̂t}∞t=0 that

satisfies (10.3.6) and shifts taxes away from the future toward the present. A

large enough change will definitely ensure that the government is a lender in

early periods. But since the households are not allowed to become indebted,

the government must lend abroad and we can show that Ricardian equivalence

breaks down.

The readers might be able to anticipate the nature of the general equilibrium

proof of Ricardian equivalence in chapter 13. First, private consumption and

government expenditures must then be consistent with the aggregate endowment

in each period, ct+gt = yt , which implies that an altered tax plan cannot affect

the consumption allocation as long as government expenditures are kept the

same. Second, interest rates are determined by intertemporal marginal rates of

substitution evaluated at the equilibrium consumption allocation, as studied in

chapter 8. Hence, an unchanged consumption allocation implies that interest

rates are also unchanged. Third, at those very interest rates, it can be shown

that households would like to choose asset positions that exactly offset any

changes in the government’s asset holdings implied by an altered tax plan. For

example, in the case of the tax change contemplated in the preceding paragraph,

the households would demand loans exactly equal to the rise in government

lending generated by budget surpluses in early periods. The households would

use those loans to meet the higher taxes and thereby finance an unchanged

consumption plan.

The finding of Ricardian equivalence in the infinitely lived agent model is

a useful starting point for identifying alternative assumptions under which the

irrelevance result might fail to hold,7 such as our imposition of borrowing con-

straints that are tighter than the “natural debt limit.” Another deviation from

the benchmark model is finitely lived agents, as analyzed by Diamond (1965)

and Blanchard (1985). But as suggested by Barro (1974) and shown in this

7 Seater (1993) reviews the theory and empirical evidence on Ricardian equivalence.
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chapter, Ricardian equivalence will continue to hold if agents are altruistic to-

ward their descendants and there is an operational bequest motive. Bernheim

and Bagwell (1988) take this argument to its extreme and formulate a model

where all agents are interconnected because of linkages across dynastic families.

They show how those linkages can become extensive enough to render neutral

all redistributive policies, including ones attained via distortionary taxes. But,

in general, replacing lump-sum taxes by distortionary taxes is a sure-fire way to

undo Ricardian equivalence (see, e.g., Barsky, Mankiw, and Zeldes, 1986). We

will return to the question of the timing of distortionary taxes in chapter 16.

Kimball and Mankiw (1989) describe how incomplete markets can make the tim-

ing of taxes interact with a precautionary savings motive in a way that disarms

Ricardian equivalence. We take up precautionary savings and incomplete mar-

kets in chapters 17 and 18. Finally, by allowing distorting taxes to be history

dependent, Bassetto and Kocherlakota (2004) attain a Ricardian equivalence

result for a variety of taxes.





Chapter 11

Fiscal Policies in a GrowthModel

11.1. Introduction

This chapter studies effects of technology and fiscal shocks on equilibrium out-

comes in a nonstochastic growth model. We use the model to state some classic

doctrines about the effects of various types of taxes and also as a laboratory

to exhibit numerical techniques for approximating equilibria and to display the

structure of dynamic models in which decision makers have perfect foresight

about future government decisions. Foresight imparts effects on prices and al-

locations that precede government actions that cause them.

Following Hall (1971), we augment a nonstochastic version of the standard

growth model with a government that purchases a stream of goods and that

finances itself with an array of distorting flat-rate taxes. We take government

behavior as exogenous,1 which means that for us a government is simply a list

of sequences for government purchases {gt}∞t=0 and taxes {τct, τkt, τnt, τht}∞t=0 .

Here τct, τkt, τnt are, respectively, time-varying flat-rate rates on consumption,

earnings from capital, and labor earnings; and τht is a lump-sum tax (a “head

tax” or “poll tax”).

Distorting taxes prevent a competitive equilibrium allocation from solving

a planning problem. Therefore, to compute an equilibrium allocation and price

system, we solve a system of nonlinear difference equations consisting of the

first-order conditions for decision makers and the other equilibrium conditions.

We first use a method called shooting. It produces an accurate approximation.

Less accurate but in some ways more revealing approximations can be found

by following Hall (1971), who solved a linear approximation to the equilibrium

conditions. We apply the lag operators described in appendix A of chapter 2 to

find and represent the solution in a way that is especially helpful in revealing the

dynamic effects of perfectly foreseen alterations in taxes and expenditures and

1 In chapter 16, we take up a version of the model in which the government chooses taxes

to maximize the utility of a representative consumer.

– 391 –
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how current values of endogenous variables respond to paths of future exogenous

variables.2

11.2. Economy

11.2.1. Preferences, technology, information

There is no uncertainty, and decision makers have perfect foresight. A represen-

tative household has preferences over nonnegative streams of a single consump-

tion good ct and leisure 1− nt that are ordered by

∞∑

t=0

βtU(ct, 1− nt), β ∈ (0, 1) (11.2.1)

where U is strictly increasing in ct and 1−nt , twice continuously differentiable,

and strictly concave. We require that ct ≥ 0 and nt ∈ [0, 1]. We’ll typically

assume that U(c, 1 − n) = u(c) + v(1 − n). Common alternative specifications

in the real business cycle literature are U(c, 1 − n) = log c + ζ log(1 − n) and

U(c, 1−n) = log c+ζ(1−n).3 We shall also focus on another frequently studied

special case that has v = 0 so that U(c, 1− n) = u(c).

The technology is

gt + ct + xt ≤ F (kt, nt) (11.2.2a)

kt+1 = (1− δ)kt + xt (11.2.2b)

where δ ∈ (0, 1) is a depreciation rate, kt is the stock of physical capital, xt

is gross investment, and F (k, n) is a linearly homogeneous production function

with positive and decreasing marginal products of capital and labor.4 It is

2 See Sargent (1987a) for a more comprehensive account of lag operators. By using lag

operators, we extend Hall’s results to allow arbitrary fiscal policy paths.
3 See Hansen (1985) for a comparison of these two specifications. Both of these specifica-

tions fulfill the necessary conditions for the existence of a balance growth path set forth by

King, Plosser, and Rebelo (1988), which require that income and substitution effects cancel

in an appropriate way.
4 In section 11.11, we modify the production function to admit labor augmenting technical

change, a form that respects the King, Plosser, and Rebelo (1988) necessary conditions for

the existence of a balance growth path.
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sometimes convenient to eliminate xt from (11.2.2) and express the technology

as

gt + ct + kt+1 ≤ F (kt, nt) + (1− δ)kt. (11.2.3)

11.2.2. Components of a competitive equilibrium

There is a competitive equilibrium with all trades occurring at time 0. The

household owns capital, makes investment decisions, and rents capital and labor

to a representative production firm. The representative firm uses capital and

labor to produce goods with the production function F (kt, nt). A price system

is a triple of sequences {qt, ηt, wt}∞t=0 , where qt is the time 0 pretax price of one

unit of investment or consumption at time t (xt or ct ), ηt is the pretax price

at time t that the household receives from the firm for renting capital at time

t , and wt is the pretax price at time t that the household receives for renting

labor to the firm at time t . The prices wt and ηt are expressed in terms of

time t goods, while qt is expressed in terms of the numeraire at time 0.

We extend the chapter 8 definition of a competitive equilibrium to include

activities of a government. We say that a government expenditure and tax plan

that satisfy a budget constraint is budget feasible. A set of competitive equilibria

is indexed by alternative budget-feasible government policies.

The household faces the budget constraint:

∞∑

t=0

qt {(1 + τct)ct + [kt+1 − (1− δ)kt]}

≤
∞∑

t=0

qt {ηtkt − τkt(ηt − δ)kt + (1− τnt)wtnt − τht} .
(11.2.4)

Here we have assumed that the government gives a depreciation allowance δkt

from the gross rentals on capital ηtkt and so collects taxes τkt(ηt − δ)kt on

rentals from capital. The government faces the budget constraint

∞∑

t=0

qtgt ≤
∞∑

t=0

qt

{
τctct + τkt(ηt − δ)kt + τntwtnt + τht

}
. (11.2.5)

There is a sense in which we have given the government access to too many kinds

of taxes, because when lump-sum taxes are available, the government should not
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use any distorting taxes. We include all of these taxes because, like Hall (1971),

we want a framework that is sufficiently general to allow us to analyze how the

various taxes distort production and consumption decisions.

11.3. The term structure of interest rates

The price system {qt}∞t=0 evidently embeds within it a term structure of interest

rates. It is convenient to represent qt as

qt = q0
q1
q0

q2
q1

· · · qt
qt−1

= q0m0,1m1,2 · · ·mt−1,t

where mt,t+1 = qt+1

qt
. We can represent the one-period discount factor mt,t+1

as

mt,t+1 = R−1
t,t+1 =

1

1 + rt,t+1
≈ exp(−rt,t+1). (11.3.1)

Here Rt,t+1 is the gross one-period rate of interest between t and t + 1 and

rt,t+1 is the net one-period rate of interest between t and t+1. Notice that qt

can also be expressed as

qt = q0 exp(−r0,1) exp(−r1,2) · · · exp(−rt−1,t)

= q0 exp
(
−(r0,1 + r1,2 + · · ·+ rt−1,t)

)

= q0 exp(−tr0,t)

where

r0,t = t−1(r0,1 + r1,2 + · · ·+ rt−1,t). (11.3.2)

Here r0,t is the net t-period rate of interest between 0 and t . Since qt is the

time 0 price of one unit of time t consumption, r0,t is said to be the yield to

maturity on a ‘zero coupon bond’ that matures at time t . A zero coupon bond

promises no coupons before the date of maturity and pays only the principal due

at the date of maturity. Equation (11.3.2) expresses the expectations theory

of the term structure of interest rates, according to which interest rates on t-

period (long) loans are averages of rates on one period (short) loans expected

to prevail over the horizon of the long loan. More generally, the s-period long

rate at time t is

rt,t+s =
1

s
(rt,t+1 + rt+1,t+2 + · · ·+ rt+s−1,t+s). (11.3.3)
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A graph of rt,t+s against s for s = 1, 2, . . . , S is called the (real) yield curve at

t .

An insight about the expectations theory of the term structure of interest

rates can be gleaned from computing gross one-period holding period returns on

zero coupon bonds of maturities 1, 2, . . . . Consider the gross return earned by

someone who at time 0 purchases one unit of time t consumption for qt units

of the numeraire and then sells it at time 1. The person pays qt
q0

units of time

0 consumption goods to earn qt
q1

units of time 1 consumption goods. The gross

rate of return from this trade measured in time 1 consumption goods per unit

of time 0 consumption goods is q0
q1
, which does not depend on the date t of

the good bought at time 0 and then sold at time 1. Evidently, at time 0 the

one-period return is identical for pure discount bonds of all maturities t ≥ 1.

More generally, at time t the one-period holding period gross return on zero

coupon bonds of all maturities equals qt
qt+1

.

A way to characterize the expectations theory of the term structure of

interest rates is by the requirement that the price vector {qt}∞t=0 of zero coupon

bonds must be such that one-period holding period yields are equated across

zero coupon bonds of all maturities. Note also how the price system {qt}∞t=0

contains forecasts of one-period holding period yields on zero coupon bonds of

all maturities at all dates t ≥ 0.

In subsequent sections, we’ll indicate how the growth model with taxes and

government expenditures links the term structure of interest rates to aspects of

government fiscal policy.

11.4. Digression: sequential version of government
budget constraint

We have used the time 0 trading abstraction described in chapter 8. Sequential

trading of one-period risk-free debt can also support the equilibrium allocations

that we shall study in this chapter. It is especially useful explicitly to describe

the sequence of one-period government debt that is implicit in the equilibrium

tax policies here.
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We presume that the government enters period 0 with no government

debt.5 Define total tax collections as Tt = τctct + τkt(ηt − δ)kt + wtτntnt + τht

and express the government budget constraint as

∞∑

t=0

qt(gt − Tt) = 0. (11.4.1)

This can be written as

g0 − T0 =
∞∑

t=1

qt
q0

(Tt − gt),

which states that the government deficit g0 − T0 at time 0 equals the present

value of future government surpluses. Here B0 ≡∑∞
t=1

qt
q0
(Tt − gt) is the value

of government debt issued at time 0, denominated in units of time 0 goods. We

can use this definition of B0 to deduce

B0
q0
q1

= T1 − g1 +

∞∑

t=2

qt
q1

(Tt − gt)

or, by recalling from the previous subsection that R0,1 ≡ q0
q1

denotes the gross

one-period real interest rate between time 0 and time 1,

B0R0,1 = T1 − g1 +B1

where now

B1 ≡
∞∑

t=2

qt
q1

(Tt − gt)

is the value of government debt issued in period 1 in units of time 1 consump-

tion. Iterating this construction forward gives us a sequence of period-by-period

government budget constraints

gt + Rt−1,tBt−1 = Tt +Bt (11.4.2)

for t ≥ 1, where Rt−1,t =
qt−1

qt
and

Bt ≡
∞∑

s=t+1

qs
qt
(Ts − gs). (11.4.3)

5 Letting B−1 = 0 be the government debt owed at time −1 allows us to apply equation

(11.4.2) to date t = 0 too.
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The left side of equation (11.4.2) is time t government expenditures including

interest and principal payments on its debt, while the right side is total revenues

including those raised by issuing new one-period debt in the amount Bt .

Thus, embedded in a government policy that satisfies (11.2.5) is a sequence

of one-period government debts satisfying (11.4.3). The value of government

debt at t is the present value of government surpluses from date t+ 1 onward.

Equation (11.4.3) states that government debts at time t signal future surpluses .

Equation (11.4.2) can be represented as

Bt −Bt−1 = gt − Tt + rt−1,tBt−1. (11.4.4)

Here gt − Tt is what is commonly called either the net-of-interest government

deficit or the operational government deficit or the primary government deficit,

while rt−1,tBt−1 are net interest payments on the government debt and gt−Tt+
rt−1,tBt−1 is the gross-of-interest government deficit. Equation (11.4.4) asserts

that the change in government debt equals the gross-of-interest government

deficit.

The Arrow-Debreu budget constraint (11.4.1) automatically enforces a ‘no-

Ponzi scheme’ condition on the path of government debt {Bt} . To see this, first

recall that qs
qt

= R−1
t,t+1 · · ·R−1

s−1,s and write (11.4.3) as

Bt =

T∑

s=t+1

qs
qt
(Ts − gs) +

∞∑

s=T+1

qs
qt
(Ts − gs)

or

Bt ≡
T∑

s=t+1

qs
qt
(Ts − gs) +

qT
qt
BT

or

Bt ≡
T∑

s=t+1

qs
qt
(Ts − gs) +R−1

t,t+1 · · ·R−1
T−1,TBT .

An argument like that in subsection 11.5.1 can be applied to show that in an

equilibrium limT→+∞ qTBT+1 = 0.
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11.4.1. Irrelevance of maturity structure of government debt

At time t , the government issues a list of bonds that in the aggregate promise

to pay a stream {ξts}∞s=1 of goods at time s > t satisfying

Bt =
∞∑

s=t+1

qs
qt
ξts. (11.4.5)

The only restriction that our model puts on the term structure of payments

{ξts}∞s=1 is that it must satisfy

∞∑

s=t+1

qs
qt
ξts =

∞∑

s=t+1

qs
qt
(Ts − gs) ≡ Bt (11.4.6)

The model of this chapter asserts that one payment stream {ξts}∞s=t+1 that sat-

isfies (11.4.6) is as good as any other. The model pins down the total value

of the continuation government IOU stream {ξts}∞s=t+1 at each t , but it leaves

the maturity structure of payments, whether early or late, for example, unde-

termined.6 Two polar examples of maturity structures of the government debt

are:

1. All debt consists of one-period pure discount bonds that are rolled over every

period:

ξts =

{
ξ̄t if s = t+ 1

0 if s ≥ t+ 2

where ξ̄t satisfies qt+1

qt
ξ̄t = Bt .

2. All debt consists of consols that in the aggregate promise to pay a constant

total coupon ξ̂t for s ≥ t+ 1, where ξ̂t satisfies

ξ̂t
∞∑

s=t+1

qs
qt

= Bt.

6 For models that restrict the maturity structure of government debt by imposing more

imperfections than we does this chapter, see Lucas and Stokey (1983), Angeletos (2002), Buera

and Nicolini (2004), and Shin (2007). Lucas and Stokey show how to set the maturity structure

of debt payments to induce a sequence of authorities responsible for choosing flat rate taxes

on labor to implement a Ramsey plan. Angeletos (2002), Buera and Nicolini (2004), and

Shin (2007) use variations over time in the maturity structure of risk-free government debt to

complete markets.
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The sequence of period-by-period net returns on the government debt {rt,t+1Bt}∞t=0

is independent of the government’s choice of sequences {{ξts}∞s=t+1}∞t=0 .

11.5. Competitive equilibria with distorting taxes

A representative household chooses a sequence {ct, nt, kt+1}∞t=0 to maximize

(11.2.1) subject to (11.2.4). A representative firm chooses {kt, nt}∞t=0 to max-

imize
∑∞

t=0 qt[F (kt, nt) − ηtkt − wtnt] .
7 A budget-feasible government policy

is an expenditure plan {gt}∞t=0 and a tax plan that satisfy (11.2.5). A feasible

allocation is a sequence {ct, xt, nt, kt}∞t=0 that satisfies (11.2.3).

Definition: A competitive equilibrium with distorting taxes is a budget-feasible

government policy, a feasible allocation, and a price system such that, given the

price system and the government policy, the allocation solves the household’s

problem and the firm’s problem.

11.5.1. The household: no-arbitrage and asset-pricing formulas

A no-arbitrage argument implies a restriction on prices and tax rates across time

from which there emerges a formula for the “user cost of capital” (see Hall and

Jorgenson, 1967). Collect terms in similarly dated capital stocks and thereby

rewrite the household’s budget constraint (11.2.4) as

∞∑

t=0

qt
[
(1 + τct)ct

]
≤

∞∑

t=0

qt(1− τnt)wtnt −
∞∑

t=0

qtτht

+
∞∑

t=1

[
((1− τkt)(ηt − δ) + 1)qt − qt−1

]
kt

+
[
(1− τk0) (η0 − δ) + 1

]
q0k0 − lim

T→∞
qT kT+1

(11.5.1)

The terms
[
(1− τk0) (η0 − δ) + 1

]
q0k0 and − limT→∞ qTkT+1 remain after cre-

ating the weighted sum in kt ’s for t ≥ 1.

7 Note the contrast with the setup in chapter 12, which has two types of firms. Here we

assign to the household the physical investment decisions made by the type II firms of chapter

12.
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The household inherits a given k0 that it takes as an initial condition, and

it is free to choose any sequence {ct, nt, kt+1}∞t=0 that satisfies (11.5.1) where

all prices and tax rates are taken as given. The objective of the household is to

maximize lifetime utility (11.2.1), which is increasing in consumption {ct}∞t=0

and, for one of our preference specifications below, also increasing in leisure

{1− nt}∞t=0 .

All else equal, the household would be happier with larger values on the

right side of (11.5.1), preferably plus infinity, which would enable it to purchase

unlimited amounts of consumption goods. Because resources are finite, we know

that the right side of the household’s budget constraint must be bounded in an

equilibrium. This fact leads to an important restriction on the price and tax

sequences. If the right side of the household’s budget constraint is to be bounded,

then the terms multiplying kt for t ≥ 1 must all equal zero because if any of

them were strictly positive (negative) for some date t , the household could make

the right side of (11.5.1) an arbitrarily large positive number by choosing an

arbitrarily large positive (negative) value of kt . On the one hand, if one such

term were strictly positive for some date t , the household could purchase an

arbitrarily large capital stock kt assembled at time t − 1 with a present-value

cost of qt−1kt and then sell the rental services and the undepreciated part of

that capital stock to be delivered at time t , with a present-value income of

[(1− τkt)(ηt − δ) + 1]qtkt . If such a transaction were to yield a strictly positive

profit, it would offer the consumer a pure arbitrage opportunity and the right

side of (11.5.1) would become unbounded. On the other hand, if there is one

term multiplying kt that is strictly negative for some date t , the household can

make the right side of (11.5.1) arbitrarily large and positive by “short selling”

capital by setting kt < 0. The household could turn to purchasers of capital

assembled at time t − 1 and sell “synthetic” units of capital to them. Such a

transaction need not involve any actual physical capital: the household could

merely undertake trades that would give the other party to the transaction the

same costs and incomes as those associated with purchasing capital assembled

at time t−1. If such short sales of capital yield strictly positive profits, it would

provide the consumer with a pure arbitrage opportunity and the right side of

(11.5.1) would become unbounded. Therefore, the terms multiplying kt must

equal zero for all t ≥ 1, so that

qt
qt+1

= [(1− τkt+1)(ηt+1 − δ) + 1] (11.5.2)
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for all t ≥ 0. These are zero-profit or no-arbitrage conditions. We have derived

these conditions by using only the weak property that U(c, 1− n) is increasing

in consumption (i.e., that the household always prefers more to less).

It remains to be determined how the household sets the last term on the

right side of (11.5.1), − limT→∞ qT kT+1 . According to our preceding argument,

the household would not purchase an amount of capital that would make this

term strictly negative in the limit because that would reduce the right side of

(11.5.1) and hence diminish the household’s resources available for consump-

tion. Instead, the household would like to make this term strictly positive and

unbounded, so that the household could purchase unlimited amounts of con-

sumption goods. But the market would stop the household from undertaking

such a short sale in the limit, since no party would like to be on the other side of

the transaction. This is obvious when considering a finite-horizon model where

everyone would like to short sell capital in the very last period because there

would then be no future period in which to fulfil the obligations of those short

sales. Therefore, in our infinite-horizon model, as a condition of optimality, we

impose the terminal condition that − limT→∞ qT kT+1 = 0. Once we impose

formula (11.5.5a) below linking qt to U1t , this terminal condition puts the

following restriction on the equilibrium allocation:

− lim
T→∞

βT
U1T

(1 + τcT )
kT+1 = 0. (11.5.3)

The household’s initial capital stock k0 is given. According to (11.5.1), its

value is [(1 − τk0)(η0 − δ) + 1]q0k0 .

11.5.2. User cost of capital formula

The no-arbitrage conditions (11.5.2) can be rewritten as the following expression

for the “user cost of capital” ηt+1 :

ηt+1 = δ +

(
1

1− τkt+1

)(
qt
qt+1

− 1

)
. (11.5.4)

Recalling from (11.3.1) that m−1
t,t+1 = Rt,t+1 = (1 + rt,t+1) = qt

qt+1
, equation

(11.5.4) can be expressed as

ηt+1 = δ +

(
rt,t+1

1− τkt+1

)
.
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The user cost of capital takes into account the rate of taxation of capital earn-

ings, the capital gain or loss from t to t+ 1, and a depreciation cost.8

11.5.3. Household first-order conditions

So long as the no-arbitrage conditions (11.5.2) prevail, households are indifferent

about how much capital they hold. Recalling that the one-period utility function

is U(c, 1− n), let U1 = ∂U
∂c and U2 = ∂U

∂1−n so that ∂U
∂n = −U2 . Then we have

that the household’s first-order conditions with respect to ct, nt are:

βtU1t = µqt(1 + τct) (11.5.5a)

βtU2t ≤ µqtwt(1− τnt), = if nt < 1, (11.5.5b)

where µ is a nonnegative Lagrange multiplier on the household’s budget con-

straint (11.2.4). Multiplying the price system by a positive scalar simply rescales

the multiplier µ , so we are free to choose a numeraire by setting µ to an arbi-

trary positive number.

11.5.4. A theory of the term structure of interest rates

Equation (11.5.5a) allows us to solve for qt as a function of consumption

µqt = βtU1t/(1 + τct) (11.5.6a)

or in the special case that U(ct, 1− nt) = u(ct)

µqt = βtu′(ct)/(1 + τct). (11.5.6b)

In conjunction with the observations made in subsection 11.3, these formulas

link the term structure of interest rates to the paths of ct, τct . The government

policy {gt, τct, τnt, τkt, τht}∞t=0 affects the term structure of interest rates directly

via τct and indirectly via its impact on the path for {ct}∞t=0 .

8 This is a discrete-time version of a continuous-time formula derived by Hall and Jorgenson

(1967).
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11.5.5. Firm

Zero-profit conditions for the representative firm impose additional restrictions

on equilibrium prices and quantities. The present value of the firm’s profits is

∞∑

t=0

qt
[
F (kt, nt)− wtnt − ηtkt

]
.

Applying Euler’s theorem on linearly homogeneous functions to F (k, n), the

firm’s present value is:

∞∑

t=0

qt [(Fkt − ηt)kt + (Fnt − wt)nt] .

No-arbitrage (or zero-profit) conditions are:

ηt = Fkt

wt = Fnt.
(11.5.7)

11.6. Computing equilibria

The definition of a competitive equilibrium and the concavity conditions that

we have imposed on preferences imply that an equilibrium is a price system

{qt, ηt, wt} , a budget feasible government policy {gt, τt} ≡ {gt, τct, τnt, τkt, τht} ,
and an allocation {ct, nt, kt+1} that solve the system of nonlinear difference

equations consisting of (11.2.3), (11.5.2), (11.5.5), and (11.5.7) subject to the

initial condition that k0 is given and the terminal condition (11.5.3). In this

chapter, we shall simplify things by treating {gt, τt} ≡ {gt, τct, τnt, τkt} as ex-

ogenous and then use
∑∞
t=0 qtτht as a slack variable that we choose to balance

the government’s budget. We now attack this system of difference equations.
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11.6.1. Inelastic labor supply

We’ll start with the following special case. (The general case is just a little more

complicated, and we’ll describe it below.) Set U(c, 1 − n) = u(c), so that the

household gets no utility from leisure, and set n = 1. We define f(k) = F (k, 1)

and express feasibility as

kt+1 = f(kt) + (1− δ)kt − gt − ct. (11.6.1)

Notice that Fk(k, 1) = f ′(k) and Fn(k, 1) = f(k)−f ′(k)k . Substitute (11.5.5a),

(11.5.7), and (11.6.1) into (11.5.2) to get

u′
(
f(kt) + (1 − δ)kt − gt − kt+1

)

(1 + τct)

− β
u′(f(kt+1) + (1 − δ)kt+1 − gt+1 − kt+2)

(1 + τct+1)
×

[(1 − τkt+1)(f
′(kt+1)− δ) + 1] = 0.

(11.6.2)

Given the government policy sequences, (11.6.2) is a second-order difference

equation in capital. We can also express (11.6.2) as

u′(ct) = βu′(ct+1)
(1 + τct)

(1 + τct+1)

[
(1− τkt+1)(f

′(kt+1)− δ) + 1
]
. (11.6.3)

To compute an equilibrium, we must find a solution of the difference equa-

tion (11.6.2) that satisfies two boundary conditions. As mentioned above, one

boundary condition is supplied by the given level of k0 and the other by (11.5.3).

To determine a particular terminal value k∞ , we restrict the path of government

policy so that it converges, a way to impose (11.5.3).
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11.6.2. The equilibrium steady state

Tax rates and government expenditures serve as forcing functions for the dif-

ference equations (11.6.1) and (11.6.3). Let zt = [ gt τkt τct ]
′
and write

(11.6.2) as

H(kt, kt+1, kt+2; zt, zt+1) = 0. (11.6.4)

To allow convergence to a steady state, we assume government policies that are

eventually constant, i.e., that satisfy

lim
t→∞

zt = z. (11.6.5)

When we actually solve our models, we’ll set a date T after which all components

of the forcing sequences that comprise zt are constant. A terminal steady-state

capital stock k evidently solves

H(k, k, k, z, z) = 0. (11.6.6)

For our model, we can solve (11.6.6) by hand. In a steady state, (11.6.3)

becomes

1 = β[(1− τk)(f
′(k)− δ) + 1].

Notice that an eventually constant consumption tax τc does not distort k vis-

a-vis its value in an economy without distorting taxes. Letting β = 1
1+ρ , we

can express the preceding equation as

δ +
ρ

1− τ̄k
= f ′(k). (11.6.7)

When τk = 0, equation (11.6.7) becomes (ρ+ δ) = f ′(k), which is a celebrated

formula for the so-called “augmented Golden Rule” capital-labor ratio.

When the exogenous sequence {gt}∞t=0 converges, the steady state capital-

labor ratio that solves (ρ + δ) = f ′(k) is the asymptotic value of the capital-

labor ratio that would be approached by a benevolent planner who chooses

{ct, kt+1}∞t=0 to maximize
∑∞

t=0 β
tu(ct) subject to k0 given and the sequence

of constraints ct + kt+1 + gt ≤ f(kt) + (1 − δ)kt .
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11.6.3. Computing the equilibrium path with the shooting
algorithm

Having computed the terminal steady state, we are now in a position to apply

the shooting algorithm to compute an equilibrium path that starts from an arbi-

trary initial condition k0 , assuming a possibly time-varying path of government

policy.9The shooting algorithm solves the two-point boundary value problem

by searching for an initial c0 that makes the Euler equation (11.6.2) and the

feasibility condition (11.2.3) imply that kS ≈ k , where S is a finite but large

time index meant to approximate infinity and k is the terminal steady value

associated with the policy being analyzed. We let T be the value of t after

which all components of zt are constant. Here are the steps of the algorithm.10

1. Solve (11.6.4) for the terminal steady-state k that is associated with the

permanent policy vector z (i.e., find the solution of (11.6.7)).

2. Select a large time index S >> T and guess an initial consumption rate c0 .

(A good guess comes from the linear approximation to be described in section

11.10.) Compute u′(c0) and solve (11.6.1) for k1 .

3. For t = 0, use (11.6.3) to solve for u′(ct+1). Then invert u′ and compute

ct+1 . Use (11.6.1) to compute kt+2 .

4. Iterate on step 3 to compute candidate values k̂t, t = 1, . . . , S .

5. Compute k̂S − k .

6. If k̂S > k , raise c0 and compute a new k̂t, t = 1, . . . , S .

7. If k̂S < k , lower c0 .

8. In this way, search for a value of c0 that makes k̂S ≈ k .

9. Compute
∑∞
t=0 qtτht that satisfies the government budget constraint at

equality.

9 We recommend a suite of computer programs called dynare. We have used dynare to

execute the numerical experiments described in this chapter. See Barillas, Bhandari, Bigio,

Colacito, Juillard, Kitao, Matthes, Sargent, and Shin (2012) for dynare code that performs

these and other calculations. See <http://www.dynare.org> .
10 This algorithm proceeds in the spirit of the invariant-subspace method (implemented

via a Schur decomposition) for solving the first-order conditions associated with the optimal

linear regulator that we described in section 5.5 of chapter 5.
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11.6.4. Other equilibrium quantities

After we solve (11.6.2) for an equilibrium {kt} sequence, we can recover other

equilibrium quantities and prices from the following equations:

ct = f(kt) + (1− δ)kt − kt+1 − gt (11.6.8a)

qt = βtu′(ct)/(1 + τct) (11.6.8b)

ηt = f ′(kt) (11.6.8c)

wt = f(kt)− ktf
′(kt) (11.6.8d)

R̄t+1 =
(1 + τct)

(1 + τct+1)

[
(1− τkt+1)(f

′(kt+1)− δ) + 1

]

=
(1 + τct)

(1 + τct+1)
Rt,t+1 (11.6.8e)

R−1
t,t+1 = mt,t+1 = β

u′(ct+1)

u′(ct)

(1 + τct)

(1 + τct+1)
(11.6.8f)

rt,t+1 ≡ Rt,t+1 − 1 = (1− τk,t+1)(f
′(kt+1)− δ) (11.6.8g)

It is convenient to express (11.6.3) as

u′ (ct) = βu′ (ct+1) R̄t+1 (11.6.8h)

or

R̄−1
t+1 = βu′ (ct+1) /u

′ (ct) .

The left side of this equation is the rate which the market and the tax system

allow the household to substitute consumption at t for consumption at t+1. The

right side is the rate at which the household is willing to substitute consumption

at t for consumption at t+ 1.

An equilibrium satisfies equations (11.6.8). In the case of constant relative

risk aversion (CRRA) utility u(c) = (1− γ)−1c1−γ , γ ≥ 1, (11.6.8h) implies

log

(
ct+1

ct

)
= γ−1 logβ + γ−1 log R̄t+1, (11.6.9)

which shows that the log of consumption growth varies directly with R̄t+1 .

Variations in distorting taxes have effects on consumption and investment that

are intermediated through this equation, as several experiments below highlight.
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11.6.5. Steady-state R̄

Using (11.6.7) and formula (11.6.8e), we can determine that the steady state

value of R̄t+1 is11

R̄t+1 = (1 + ρ) . (11.6.10)

11.6.6. Lump-sum taxes available

If the government can impose lump-sum taxes, we can implement the shooting

algorithm for a specified g, τk, τc , solve for equilibrium prices and quantities,

and then find an associated value for q · τh =
∑∞

t=0 qtτht that balances the

government budget. This calculation treats the present value of lump-sum taxes

as a residual that balances the government budget. In calculations presented

later in this chapter, we shall assume that lump-sum taxes are available and so

shall use this procedure.

11.6.7. No lump-sum taxes available

If lump-sum taxes are not available, then an additional step is required to com-

pute an equilibrium. In particular, we have to ensure that taxes and expen-

ditures are such that the government budget constraint (11.2.5) is satisfied at

an equilibrium price system with τht = 0 for all t ≥ 0. Braun (1994) and Mc-

Grattan (1994b) accomplish this by employing an iterative algorithm that alters

a particular distorting tax until (11.2.5) is satisfied. The idea is first to com-

pute a candidate equilibrium for one arbitrary tax policy with possibly nonzero

lump sum taxes, then to check whether the government budget constraint is

satisfied. Usually we will find that lump sum taxes must be levied to balance

the government budget in this candidate equilibrium. To find an equilibrium

with zero lump sum taxes, we can proceed as follows. If the government budget

would have have a deficit in present value without lump sum taxes (i.e., if the

present value of lump sum taxes is positive in the candidate equilibrium), then

either decrease some elements of the government expenditure sequence or in-

crease some elements of the tax sequence and try again. Because there exist so

11 To compute steady states, we assume that all tax rates and government expenditures

are constant from some date T forward.



A digression on back-solving 409

many equilibria, the class of tax and expenditure processes has to be restricted

drastically to narrow the search for an equilibrium.12

11.7. A digression on back-solving

The shooting algorithm takes sequences for gt and the various tax rates as

given and finds paths of the allocation {ct, kt+1}∞t=0 and the price system that

solve the system of difference equations formed by (11.6.3) and (11.6.8). Thus,

the shooting algorithm views government policy as exogenous and the price

system and allocation as endogenous. Sims (1989) proposed another way to solve

the growth model that exchanges the roles of some exogenous and endogenous

variables. In particular, his back-solving approach takes a path {ct}∞t=0 as given,

and then proceeds as follows.

Step 1: Given k0 and sequences for the various tax rates, solve (11.6.3) for a

sequence {kt+1} .

Step 2: Given the sequences for {ct, kt+1} , solve the feasibility condition (11.6.8a)

for a sequence of government expenditures {gt}∞t=0 .

Step 3: Solve formulas (11.6.8b)–(11.6.8e) for an equilibrium price system.

The present model can be used to illustrate other applications of back-

solving. For example, we could start with a given process for {qt} , use (11.6.8b)
to solve for {ct} , and proceed as in steps 1 and 2 above to determine processes

for {kt+1} and {gt} , and then finally compute the remaining prices from the as

yet unused equations in (11.6.8).

Sims recommended this method because it adopts a flexible or “symmetric”

attitude toward exogenous and endogenous variables. Diaz-Giménez, Prescott,

Fitzgerald, and Alvarez (1992), Sargent and Smith (1997), and Sargent and

Velde (1999) have all used the method. We shall not use it in the remainder of

this chapter, but it is a useful method to have in our toolkit.13

12 See chapter 16 for theories about how to choose taxes in socially optimal ways.
13 Constantinides and Duffie (1996) used back-solving to reverse engineer a cross-section of

endowment processes that, with incomplete markets, would prompt households to consume

their endowments at a given stochastic process of asset prices.
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11.8. Effects of taxes on equilibrium allocations and
prices

We use the model to analyze the effects of government expenditure and tax

sequences. The household can affect his payments of a distorting by altering

a decision. The household cannot affect his payments of a nondistorting tax.

In the present model, τk, τc, τn are distorting taxes and the lump-sum tax τh

is nondistorting. We can deduce the following outcomes from (11.6.8) and

(11.6.7).

1. Lump-sum taxes and Ricardian equivalence. Suppose that the distort-

ing taxes are all zero and that only lump-sum taxes are used to raise government

revenues. Then the equilibrium allocation is identical with one that solves a ver-

sion of a planning problem in which gt is taken as an exogenous stream that is

deducted from output. To verify this claim, notice that lump-sum taxes appear

nowhere in formulas (11.6.8), and that these equations are identical with the

first-order conditions and feasibility conditions for a planning problem. The

timing of lump-sum taxes is irrelevant because only the present value of taxes∑∞
t=0 qtτht appears in the budget constraints of the government and the house-

hold.

2. When the labor supply is inelastic, constant τc and τn are not

distorting. When the labor supply is inelastic, τn is not a distorting tax. A

constant level of τc is not distorting.

3. Variations in τc over time are distorting. They affect the path of

capital and consumption through equation (11.6.8g ).

4. Capital taxation is distorting. Constant levels of the capital tax τk are

distorting (see (11.6.8g ) and (11.6.7)).
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11.9. Transition experiments with inelastic labor supply

We continue to study the special case with U(c, 1 − n) = u(c). Figures 11.9.1

through 11.9.5 apply the shooting algorithm to an economy with u(c) = (1 −
γ)−1c1−γ , f(k) = kα with parameter values α = .33, δ = .2, β = .95 and an

initial constant level of g of .2. All of the experiments except one to be described

in figure 11.9.2 set the critical utility curvature parameter γ = 2. We initially set

all distorting taxes to zero and consider perturbations of them that we describe

in the experiments below.

Figures 11.9.1 to 11.9.5 show responses to foreseen once-and-for-all increases

in g , τc , and τk , that occur at time T = 10, where t = 0 is the initial time

period. Prices induce effects that precede the policy changes that cause them.

We start all of our experiments from an initial steady state that is appropriate for

the pre-jump settings of all government policy variables. In each panel, a dashed

line displays a value associated with the steady state at the initial constant

values of the policy vector. A solid line depicts an equilibrium path under the

new policy. It starts from the value that was associated with an initial steady

state that prevailed before the policy change at T = 10 was announced. Before

date t = T = 10, the response of each variable is entirely due to expectations

about future policy changes. After date t = 10, the response of each variable

represents a purely transient response to a new stationary level of the “forcing

function” in the form of the exogenous policy variables. That is, before t = T ,

the forcing function is changing as date T approaches; after date T , the policy

vector has attained its new permanent level, so that the only sources of dynamics

are transient.

Discounted future values of fiscal variables impinge on current outcomes,

where the discount rate in question is endogenous, while departures of the capital

stock from its terminal steady-state value set in place a force for it to decay

toward its steady state rate at a particular rate. These two forces, discounting

of the future and transient decay back toward the terminal steady state, are

evident in the experiments portrayed in Figures 11.9.1–11.9.5. In section 11.10.6,

we express the decay rate as a function of the key curvature parameter γ in

the one-period utility function u(c) = (1 − γ)−1c1−γ , and we note that the

endogenous rate at which future fiscal variables are discounted is tightly linked

to that decay rate.
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Figure 11.9.1: Response to foreseen once-and-for-all in-

crease in g at t = 10. From left to right, top to bottom:

k, c, R̄, η, g . The dashed line is the original steady state.
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crease in τc at t = 10. From left to right, top to bottom:
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Figure 11.9.2: Response to foreseen once-and-for-all in-

crease in g at t = 10. From left to right, top to bottom:

k, c, R̄, η, g . The dashed lines show the original steady state.

The solid lines are for γ = 2, while the dashed-dotted lines

are for γ = .2

Foreseen jump in gt . Figure 11.9.1 shows the effects of a foreseen permanent

increase in g at t = T = 10 that is financed by an increase in lump-sum taxes.

Although the steady-state value of the capital stock is unaffected (this follows

from the fact that g disappears from the steady state version of the Euler

equation (11.6.2)), consumers make the capital stock vary over time. If the

government consumes more, the household must consume less. The competitive

economy sends a signal to consumers that they must consume less in the form of

an increase in the stream of lump sum taxes that the government uses to finance

the increase in its expenditures. Because consumers care about the present value

of lump-sum taxes and are indifferent to their timing, an adverse wealth effect on

consumption precedes the actual rise in government expenditures. Consumers

choose immediately to increase their saving in response to the adverse wealth

effect that they suffer from the increase in lump-sum taxes that finances the

permanently higher level of government expenditures. Because the present value

of lump-sum taxes jumps immediately, consumption also falls immediately in

anticipation of the increase in government expenditures. This leads to a gradual
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Figure 11.9.3: Response to foreseen once-and-for-all in-

crease in g at t = 10. From left to right, top to bottom:

c, q, rt,t+1 and yield curves rt,t+s for t = 0 (solid line), t = 10

(dash-dotted line) and t = 60 (dashed line); term to maturity

s is on the x axis for the yield curve, time t for the other

panels.

build-up of capital in the dates between 0 and T , followed by a gradual fall after

T . Variation over time in the capital stock helps smooth consumption over time,

so that the main force at work is the consumption-smoothing motive featured

in Milton Friedman’s permanent income theory. The variation over time in R̄

reconciles the consumer to a consumption path that is not completely smooth.

According to (11.6.9), the gradual increase and then the decrease in capital

are inversely related to variations in the gross interest rate that reconcile the

household to a consumption path that varies over time.

Figure 11.9.2 compares the responses to a foreseen increase in g at t = 10

for two economies, our original economy with γ = 2, shown in the solid line,

and an otherwise identical economy with γ = .2, shown in the dashed-dotted

line. The utility curvature parameter γ governs the household’s willingness to

substitute consumption across time. Lowering γ increases the household’s will-

ingness to substitute consumption across time. This shows up in the equilibrium
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lines depict equilibrium outcomes when γ = 2, the dashed-
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outcomes in figure 11.9.2. For γ = .2, consumption is much less smooth than

when γ = 2, and is closer to being a mirror image of the government expen-

diture path, staying high until government expenditures rise at t = 10. There

are much smaller build ups and draw downs of capital, and this leads to smaller

fluctuations in R̄ and η . These two experiments reveal the dependence of the

strength of both the ‘feedforward’ anticipation effect and the ‘feedback’ tran-

sient effect that wears off initial conditions on the magnitude of γ . We discuss

this more later in section 11.10.6 with the aid of equation (11.10.16).

For γ = 2 again, figure 11.9.3 describes the response of qt and the term

structure of interest rates to a foreseen increase in gt at t = 10. The second

panel on the top compares qt for the initial steady state with qt after the

increase in g is foreseen at t = 0, while the third panel compares the implied

short rate rt computed via the section 11.3 formula rt,t+1 = − log(qt+1/qt) =

− log
[
β u

′(ct+1)
u′(ct)

(1+τct)
(1+τc,t+1)

]
and the fourth panel reports the term structure of

interest rates rt,t+s computed via formula (11.3.3) for t = 0, 10 and t = 60

in three separate yield curves for those three dates. In this panel, the term

to maturity s is on the x axis, while in the other panels, calendar time t is
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on the x axis. In this model, qt = βtc−γt and rt,t+1 = − logβ
(
ct+1

ct

)−γ
, so

the term structure of interest rates reflects the equilibrium path for {ct}∞t=0 .

At t = 60, the system has converged to the new steady state and the term

structure of interest rates is flat. At t = 10, the term structure of interest

rates is upward sloping because, as the top left panel showing consumption

reveals, the rate of growth of consumption is expected to increase over time. At

t = 0, the term structure of interest rate is ‘U-shaped’, declining until maturity

10, then increasing for longer maturities. This pattern reflects the pattern for

consumption growth, which declines at an increasing rate until t = 10, then at

a decreasing rate after that.

Foreseen jump in τc . Figure 11.9.4 portrays the response to a foreseen in-

crease in the consumption tax. As we have remarked, with an inelastic labor

supply, the Euler equation (11.6.2) and the other equilibrium conditions show

that constant consumption taxes do not distort decisions, but that anticipated

changes in them do. Indeed, (11.6.2) or (11.6.3) indicates that a foreseen in-

crease in τct (i.e., a decrease in (1+τct)
(1+τct+1)

) operates like an increase in τkt .

Notice that while all variables in Figure 11.9.4 eventually return to their initial

steady-state values, the anticipated increase in τct leads to an immediate jump

in consumption at time 0, followed by a consumption binge that sends the cap-

ital stock downward until the date t = T = 10, at which τct rises. The fall in

capital causes R̄ to rise over time, which via (11.6.9) requires the growth rate

of consumption to rise until t = T . The jump in τc at t = T = 10 causes

R̄ to be depressed below 1, which via (11.6.9) accounts for the drastic fall in

consumption at t = 10. From date t = T onward, the effects of the anticipated

distortion stemming from the fluctuation in τct are over, and the economy is

governed by the transient dynamic response associated with a capital stock that

is now below the appropriate terminal steady-state capital stock. From date T

onward, capital must rise. That requires austerity: consumption plummets at

date t = T = 10. As the interest rate gradually falls, consumption grows at a

diminishing rate along the path toward the terminal steady state.

Foreseen jump in τkt . For the two γ values 2 and .2, Figure 11.9.5 shows the

response to a foreseen permanent jump in τkt at t = T = 10. Because the path

of government expenditures is held fixed, the increase in τkt is accompanied by

a reduction in the present value of lump-sum taxes that leaves the government

budget balanced. The increase in τkt has effects that precede it. Capital starts
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declining immediately due to a rise in current consumption and a growing flow

of consumption. The after-tax gross rate of return on capital starts rising at

t = 0 and increases until t = 9. It falls precipitously at t = 10 (see formula

(11.6.8e) because of the foreseen jump in τk . Thereafter, R̄ rises, as required

by the transition dynamics that propel kt toward its new lower steady state.

Consumption is lower in the new steady state because the new lower steady-

state capital stock produces less output. Consumption is smoother when γ = 2

than when γ = .2. Alterations in R̄ accompany effects of the tax increase at

t = 10 on consumption at earlier and later dates.

So far we have explored consequences of foreseen once-and-for-all changes

in government policy. Next we describe some experiments in which there is a

foreseen one-time change in a policy variable (a “pulse”).

Foreseen one-time pulse in g10 . Figure 11.9.6 shows the effects of a foreseen

one-time increase in gt at date t = 10 that is financed entirely by alterations

in lump sum taxes. Consumption drops immediately, then falls further over

time in anticipation of the one-time surge in g . Capital is accumulated before

t = 10. At t = T = 10, capital jumps downward because the government

consumes it. The reduction in capital is accompanied by a jump in R̄ above its

steady-state value. The gross return R̄ then falls toward its steady rate level

and consumption rises at a diminishing rate toward its steady-state value. This

experiment highlights what again looks like a version of a permanent income

theory response to a foreseen decrease in the resources available for the public

to spend (that is what the increase in g is about), with effects that are modified

by the general equilibrium adjustments of the gross return R̄ .
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Figure 11.9.6: Response to foreseen one-time pulse increase

in g at t = 10. From left to right, top to bottom: k, c, R̄, η, g .

11.10. Linear approximation

The present model is simple enough that it is very easy to apply the shooting

algorithm. But for models with larger state spaces, it can be more difficult to

apply the shooting algorithm. For those models, a frequently used procedure

is to obtain a linear or log linear approximation around a steady state of the

difference equation for capital, then to solve it to get an approximation of the

dynamics in the vicinity of that steady state. The present model is a good lab-

oratory for illustrating how to construct linear approximations. In addition to

providing an easy way to approximate a solution, the method illuminates impor-

tant features of the solution by partitioning it into two parts:14 (1) a “feedback”

part that portrays the transient response of the system to an initial condition

k0 that deviates from an asymptotic steady state, and (2) a “feedforward” part

that shows the current effects of foreseen tax rates and expenditures.15

To obtain a linear approximation, perform the following steps:16

14 Hall (1971) employed linear approximations to exhibit some of this structure.
15 Vector autoregressions embed the consequences of both backward-looking (transient) and

forward-looking (foresight) responses to government policies.
16 For an extensive treatment of lag operators and their uses, see Sargent (1987a).
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1. Set the government policy zt = z , a constant level. Solve H(k, k, k, z, z) = 0

for a steady-state k .

2. Obtain a first-order Taylor series approximation around (k, z):

Hkt

(
kt − k

)
+Hkt+1

(
kt+1 − k

)
+Hkt+2

(
kt+2 − k

)

+Hzt (zt − z) +Hzt+1 (zt+1 − z) = 0
(11.10.1)

3. Write the resulting system as

φ0kt+2 + φ1kt+1 + φ2kt = A0 +A1zt +A2zt+1 (11.10.2)

or

φ (L) kt+2 = A0 +A1zt +A2zt+1 (11.10.3)

where L is the lag operator (also called the backward shift operator) defined by

Lxt = xt−1 . Factor the characteristic polynomial on the left as

φ (L) = φ0 + φ1L+ φ2L
2 = φ0 (1− λ1L) (1− λ2L) . (11.10.4)

For most of our problems, it will turn out that one of the λi ’s exceeds unity and

that the other is less than unity. We shall therefore adopt the convention that

|λ1| > 1 and |λ2| < 1. At this point, we ask the reader to accept that the values

of λi split in this way. We discuss why they do so in section 11.10.2. Notice

that equation (11.10.4) implies that φ2 = λ1λ2φ0 . To obtain the factorization

(11.10.4), we proceed as follows. Note that (1 − λiL) = −λi
(
L− 1

λi

)
. Thus,

φ (L) = λ1λ2φ0

(
L− 1

λ1

)(
L− 1

λ2

)
= φ2

(
L− 1

λ1

)(
L− 1

λ2

)
(11.10.5)

because φ2 = λ1λ2φ0 . Equation (11.10.5) identifies 1
λ1
, 1
λ2

as the zeros of

the polynomial φ(ζ), i.e., λi = ζ−1
0 where φ(ζ0) = 0.17 We want to operate

on both sides of (11.10.3) with the inverse of (1 − λ1L), but that inverse is

unstable backward (i.e., the power series
∑∞

j=0 λ
j
1L

j has coefficients that diverge

in higher powers of L). Fortunately (1−λ1L) has a stable inverse in the forward

direction, i.e., in terms of the forward shift operator L−1 .18 In particular, notice

17 The Matlab roots command roots(phi) finds zeros of polynomials, but you must arrange

the polynomial as φ = [φ2 φ1 φ0 ] .
18 See appendix A of chapter 2.
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that (1−λ1L) = −λ1L(1−λ−1
1 L−1).19 Using this result and φ2 = λ1λ2φ0 , we

can rewrite φ(L) as20

φ (L) = − 1

λ2
φ2
(
1− λ−1

1 L−1
)
(1− λ2L)L.

Represent equation (11.10.2) as

−λ−1
2 φ2L

(
1− λ−1

1 L−1
)
(1− λ2L) kt+2 = A0 +A1zt +A2zt+1. (11.10.6)

Operate on both sides of (11.10.6) by −(φ2/λ2)
−1(1 − λ−1

1 L−1)−1 to get the

following representation:21

(1− λ2L) kt+1 =
−λ2φ−1

2

1− λ−1
1 L−1

[A0 +A1zt +A2zt+1] . (11.10.7)

This concludes the procedure.

Equation (11.10.7) is our linear approximation to the equilibrium kt se-

quence. It can be expressed as

kt+1 = λ2kt − λ2φ
−1
2

∞∑

j=0

(λ1)
−j

[A0 +A1zt+j +A2zt+j+1] . (11.10.8)

We can summarize the process of obtaining this approximation as solving stable

roots backward and unstable roots forward. Solving the unstable root forward

imposes the terminal condition (11.5.3). This step corresponds to the step in

the shooting algorithm that adjusts the initial investment rate to ensure that the

capital stock eventually approaches the terminal steady-state capital stock.22

The term λ2kt is sometimes called the “feedback” part. The coefficient λ2

measures the transient response rate, in particular, the rate at which capital

returns to a steady state when it starts away from it. The remaining terms on

the right side of (11.10.8) are sometimes called the “feedforward” parts. They

depend on the infinite future of the exogenous zt (which for us contain the

19 Notice that (1− λ1L)
−1 = −λ−1

1 L−1
∑∞
j=0 λ

−j
1 L−j .

20 Justifications for these steps are described at length in Sargent (1987a) and with rigor

in Gabel and Roberts (1973).
21 We have thus solved the stable root backward and the unstable root forward.
22 The invariant subspace methods described in chapter 5 are also all about solving stable

roots backward and unstable roots forward.
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components of government policy) and measure the effect on the current capital

stock kt of perfectly foreseen paths of fiscal policy. The decay parameter λ−1
1

measures the rate at which expectations of future fiscal policies are discounted in

terms of their effects on current investment decisions. To a linear approximation,

every rational expectations model has embedded within it both feedforward

and feedback parts. The decay parameters λ2 and λ−1
1 of the feedback and

feedforward parts are determined by the roots of the characteristic polynomial.

Equation (11.10.8) thus neatly exhibits the mixture of the pure foresight and

the pure transient responses that are reflected in our examples in Figures 11.9.1

through 11.9.5. The feedback part captures the purely transient response and

the feedforward part captures the perfect foresight component.

11.10.1. Relationship between the λi ’s

It is a remarkable fact that if an equilibrium solves a planning problem, then

the roots are linked by λ1 = 1
βλ2

, where β ∈ (0, 1) is the planner’s discount

factor.23 In this case, the feedforward decay rate λ−1
1 = βλ2 . Therefore, when

the equilibrium allocation solves a planning problem, one of the λi ’s is less than
1√
β
and the other exceeds 1√

β
(this follows because λ1λ2 = 1

β ).
24 From this it

follows that one of the λi ’s, say λ1 , satisfies λ1 >
1√
β
> 1 and the other λi , say

λ2 satisfies λ2 <
1√
β
. Thus, for β close to 1, the condition λ1λ2 = 1

β almost

implies our earlier assumption that λ1λ2 = 1, but not quite. Having λ2 <
1√
β

is sufficient to allow our linear approximation for kt to satisfy
∑∞

t=0 β
tk2t < +∞

for all zt sequences that satisfy
∑∞
t=0 β

tzt · zt < +∞ .

A relationship between the feedforward and feedback decay rates appears

evident in the experiments depicted in Figure 11.9.2. In particular, when the

utility curvature parameter γ = 2, the rates at which future events are dis-

counted in influencing outcomes before t = 10 and the rates of convergence

back to steady state after t = 10 are both lower than when γ = .2.

23 See Sargent (1987a, chap. XI) for a discussion.
24 Notice that this means that the solution (11.10.8) remains valid for those divergent zt

processes, provided that they satisfy
∑∞

t=0 β
tz2jt < +∞ .
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11.10.2. Conditions for existence and uniqueness

For equilibrium allocations that do not solve planning problems, it ceases to be

true that λ1λ2 = 1
β . In this case, the location of the zeros of the characteristic

polynomial can be used to assess the existence and uniqueness of an equilibrium

up to a linear approximation. If both λi ’s exceed
1√
β
, there exists no equilib-

rium allocation for which
∑∞

t=0 β
tk2t <∞. If both λi ’s are less than

1√
β
, there

exists a continuum of equilibria that satisfy that inequality. If the λi ’s split,

with one exceeding and the other being less than 1√
β
, there exists a unique

equilibrium.

11.10.3. Once-and-for-all jumps

Next we specialize (11.10.7) to capture some examples of foreseen policy changes

that we have studied above. Consider the special case treated by Hall (1971) in

which the j th component of zt follows the path

zjt =

{
0 if t ≤ T − 1

zj if t ≥ T
(11.10.9)

We define

vt ≡
∞∑

i=0

λ−i1 zt+i,j

=





(
1
λ1

)T−t
zj

1−
(

1
λ1

) if t ≤ T

1

1−
(

1
λ1

)zj if t ≥ T

(11.10.10)

ht ≡
∞∑

i=0

(
1

λ1

)i
zt+i+1,j

=





(
1
λ1

)T−(t+1)
zj

1−
(

1
λ1

) if t ≤ T − 1

1

1−
(

1
λ1

)zj if t ≥ T − 1.

(11.10.11)

Using these formulas, let the vector zt follow the path

zt =

{
0 if t ≤ T − 1

z if t ≥ T
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where z is a vector of constants. Then applying (11.10.10) and (11.10.11) to

(11.10.7) gives the formulas

kt+1 =





λ2kt − (φ0λ1)
−1A0

1−
(

1
λ1

) − (φ0λ1)
−1
(

1
λ1

)T−t

1−
(

1
λ1

) (A1 +A2λ1) z if t ≤ T − 1

λ2kt − (φ0λ1)
−1

1−
(

1
λ1

) [A0 + (A1 +A2) z] if t ≥ T .

11.10.4. Simplification of formulas

These formulas can be simultaneously generalized and simplified by using the

following trick. Let zt be governed by the state-space system

x̄t+1 = Axx̄t (11.10.12a)

zt = Gz x̄t, (11.10.12b)

with initial condition x̄0 given. In chapter 2, we saw that many finite-dimensional

linear time series models could be represented in this form, so that we are ac-

commodating a large class of tax and expenditure processes. Then notice that

(
A1

1− λ−1
1 L−1

)
zt = A1Gz

(
I − λ−1

1 Ax
)−1

x̄t (11.10.13a)

(
A2

1− λ−1
1 L−1

)
zt+1 = A2Gz

(
I − λ−1

1 Ax
)−1

Axx̄t (11.10.13b)

Substituting these expressions into (11.10.8) gives

kt+1 =λ2kt − λ2φ
−1
2

[
(1− λ−1

1 )−1A0 +A1Gz(I − λ−1
1 Ax)

−1x̄t

+A2Gz(I − λ−1
1 Ax)

−1Axx̄t
]
. (11.10.13c)

Taken together, system (11.10.13) gives a complete description of the joint evo-

lution of the exogenous state variables x̄t driving zt (our government policy

variables) and the capital stock. System (11.10.13) concisely displays the cross-

equation restrictions that are the hallmark of rational expectations models: non-

linear functions of the parameter occurring in Gz , Ax in the law of motion for

the exogenous processes appear in the equilibrium representation (11.10.13c)

for the endogenous state variables.
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We can easily use the state space system (11.10.13) to capture the special

case (11.10.9). In particular, to portray x̄j,t+1 = x̄j+1,t , set the T × T matrix

A to be

A =

[
0T−1×1 IT−1×T−1

01×T−1 1

]
(11.10.14)

and take the initial condition x̄0 = [ 0 0 · · · 0 1 ]
′
. To represent an element

of zt that jumps once and for all from 0 to zj at T = 0, set the j th component

of Gz equal to Gzj = [ zj 0 · · · 0 ].

11.10.5. A one-time pulse

We can modify the transition matrix (11.10.14) to model a one-time pulse in a

component of zt that occurs at and only at t = T . To do this, we simply set

A =

[
0T−1×1 IT−1×T−1

01×T−1 0

]
. (11.10.15)

11.10.6. Convergence rates and anticipation rates

Equation (11.10.8) shows that up to a linear approximation, the feedback co-

efficient λ2 equals the geometric rate at which the model returns to a steady

state after a transient displacement away from a steady state. For our bench-

mark values of our other parameters δ = .2, β = .95, α = .33 and all distorting

taxes set to zero, we can compute that λ2 is the following function of the utility

curvature parameter γ that appears in u(c) = (1− γ)−1c1−γ :25

λ2 =
γ

a1γ−1 + a2 + a3(γ−1 + a4γ−2 + a5)
1
2

(11.10.16)

where a1 = .975, a2 = .0329, a3 = .0642, a4 = .00063, a5 = .0011. Figure 11.10.1

plots this function. When γ = 0, the period utility function is linear and the

household’s willingness to substitute consumption over time is unlimited. In

this case, λ2 = 0, which means that in response to a perturbation of the capital

stock away from a steady state, the return to a steady state is immediate.

25 We used the Matlab symbolic toolkit to compute this expression.
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Furthermore, as mentioned above, because there are no distorting taxes in the

initial steady state, we know that λ1 = 1
βλ2

, so that according to (11.10.8), the

feedforward response to future z ’s is a discounted sum that decays at rate βλ2 .

Thus, when γ = 0, anticipations of future z ’s have no effect on current k . This

is the other side of the coin of the immediate adjustment associated with the

feedback part.

As the curvature parameter γ increases, λ2 increases, more rapidly at first,

more slowly later. As γ increases, the household values a smooth consumption

path more and more highly. Higher values of γ impart to the equilibrium capital

sequence both a more sluggish feedback response and a feedforward response

that puts relatively more weight on prospective values of the z ’s in the more

distant future.
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Figure 11.10.1: Feedback coefficient λ2 as a function γ ,

evaluated at α = .33, β = .95, δ = .2, g = .2.
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11.10.7. A remark about accuracy: Euler equation errors

It is important to estimate the accuracy of approximations. One simple diag-

nostic tool is to take a candidate solution for a sequence ct, kt+1 , substitute

them into the two Euler equations (11.12.1) and (11.12.2), and call the devia-

tions between the left sides and the right sides the Euler equation errors.26 An

accurate method makes these errors small.27

11.11. Growth

It is straightforward to alter the model to allow for exogenous growth. We

modify the production function to be

Yt = F (Kt, Atnt) (11.11.1)

where Yt is aggregate output, Nt is total employment, At is labor-augmenting

technical change, and F (K,AN) is the same linearly homogeneous production

function as before. We assume that At follows the process

At+1 = µt+1At (11.11.2)

and will usually but not always assume that µt+1 = µ > 1. We exploit the

linear homogeneity of (11.11.1) to express the production function as

yt = f(kt) (11.11.3)

where f(k) = F (k, 1) and now kt = Kt

ntAt
, yt = Yt

ntAt
. We say that kt and

yt are measured per unit of “effective labor” Atnt . We also let ct =
Ct

Atnt
and

gt =
Gt

Atnt
where Ct and Gt are total consumption and total government expen-

ditures, respectively. We consider the special case in which labor is inelastically

supplied. Then feasibility can be summarized by the following modified version

of (11.6.1):

kt+1 = µ−1
t+1[f(kt) + (1 − δ)kt − gt − ct]. (11.11.4)

26 For more about this method, see Den Haan and Marcet (1994) and Judd (1998).
27 Calculating Euler equation errors, but for a different purpose, goes back a long time.

In chapter 2 of The General Theory of Interest, Prices, and Money , John Maynard Keynes

noted that plugging in data (not a candidate simulation) into (11.12.2) gives big residuals.

Keynes therefore assumed that (11.12.2) does not hold (“workers are off their labor supply

curve”).
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Noting that per capita consumption is ctAt , we obtain the following counterpart

to equation (11.6.3):

u′(ctAt) =βu
′(ct+1At+1)

(1 + τct)

(1 + τct+1)

[(1− τkt+1)(f
′(kt+1)− δ) + 1] .

(11.11.5)

We assume the power utility function u′(c) = c−γ , which makes the Euler

equation become

(ctAt)
−γ = β(ct+1At+1)

−γR̄t+1,

where R̄t+1 continues to be defined by (11.6.8e), except that now kt is capital

per effective unit of labor. The preceding equation can be represented as

(
ct+1

ct

)γ
= βµ−γ

t+1R̄t+1. (11.11.6)

In a steady state, ct+1 = ct . Then the steady-state version of the Euler equation

(11.11.5) is

1 = µ−γβ[(1− τk)(f
′(k)− δ) + 1], (11.11.7)

which can be solved for the steady-state capital stock. It is easy to compute

that the steady-state level of capital per unit of effective labor satisfies

f ′(k) = δ +

(
(1 + ρ)µγ − 1

1− τk

)
(11.11.8)

and that

R̄ = (1 + ρ)µγ . (11.11.9)

Equation (11.11.9) immediately shows that ceteris paribus , a jump in the rate

of technical change raises R̄ .

Next we apply the shooting algorithm to compute equilibria. We augment

the vector of forcing variables zt by including µt , so that it becomes zt =

[ gt τkt τct µt ]
′ , where gt is understood to be measured in effective units of

labor, then proceed as before.
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Figure 11.11.1: Response to foreseen once-and-for-all in-

crease in rate of growth of productivity µ at t = 10. From

left to right, top to bottom: k, c, R̄, η, µ , where now k, c are

measured in units of effective unit of labor.

Foreseen jump in productivity growth at t = 10 . Figure 11.11.1 shows

effects of a permanent increase from 1.02 to 1.025 in the productivity gross

growth rate µt at t = 10. This figure and also Figure 11.11.2 now measure

c and k in effective units of labor. The steady-state Euler equation (11.11.7)

guides main features of the outcomes, and implies that a permanent increase in

µ will lead to a decrease in the steady-state value of capital per unit of effective

labor. Because capital is more efficient, even with less of it, consumption per

capita can be raised, and that is what individuals care about. Consumption

jumps immediately because people are wealthier. The increased productivity

of capital spurred by the increase in µ leads to an increase in the gross return

R̄ . Perfect foresight makes the effects of the increase in the growth of capital

precede it.

Immediate (unforeseen) jump in productivity growth at t = 1 . Figure

11.11.2 shows effects of an immediate jump in µ at t = 0. It is instructive

to compare these with the effects of the foreseen increase in Figure 11.11.1. In

Figure 11.11.2, the paths of all variables are entirely dominated by the feedback
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Figure 11.11.2: Response to increase in rate of growth of

productivity µ at t = 0. From left to right, top to bottom:

k, c, R̄, η, µ , where now k, c are measured in units of effective

unit of labor.

part of the solution, while before t = 10 those in Figure 11.11.1 have contribu-

tions from the feedforward part. The absence of feedforward effects makes the

paths of all variables in Figure 11.11.2 smooth. Consumption per effective unit

of labor jumps immediately then declines smoothly toward its steady state as

the economy moves to a lower level of capital per unit of effective labor. The

after-tax gross return R̄ once again comoves with the consumption growth rate

to verify the Euler equation (11.11.7).
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11.12. Elastic labor supply

We now again shut down productivity growth by setting the gross productivity

growth rate µ = 1, but we allow a possibly nonzero labor supply elasticity by

specifying U(c, 1−n) to include a preference for leisure. Again, we let Ui be the

partial derivative of U with respect to its ith argument. We assume an interior

solution for n ∈ (0, 1). Now we have to carry along equilibrium conditions both

for the intertemporal evolution of capital and for the labor-leisure choice. These

are the two difference equations:

1

(1 + τct)
U1

(
F (kt, nt) + (1− δ)kt − gt − kt+1, 1− nt

)

= β(1 + τct+1)
−1U1

(
F (kt+1, nt+1) + (1− δ)kt+1 − gt+1 − kt+2, 1− nt+1

)

× [(1− τkt+1)(Fk(kt+1, nt+1)− δ) + 1]
(11.12.1)

U2

(
F (kt, nt) + (1− δ)kt − gt − kt+1, 1− nt

)

U1

(
F (kt, nt) + (1− δ)kt − gt − kt+1, 1− nt

)

=
(1 − τnt)

(1 + τct)
Fn(kt, nt).

(11.12.2)

The linear approximation method applies equally well to this more general

setting with just one additional step. We obtain a linear approximation to

this dynamical system by proceeding as follows. First, find steady-state values

(k, n) by solving the two steady-state versions of equations (11.12.1), (11.12.2).

(Now (k, n) are steady-state values of capital per person and labor supplied

per person, respectively.) Then take the following linear approximations to

(11.12.1), (11.12.2), respectively, around the steady state:

Hkt(kt − k) +Hkt+1(kt+1 − k) +Hnt+1(nt+1 − n) +Hkt+2(kt+2 − k)

+Hnt
(nt − n) +Hzt(zt − z) +Hzt+1(zt+1 − z) = 0

(11.12.3)

Gk(kt − k) +Gnt
(nt − n) +Gkt+1(kt+1 − k) +Gz(zt − z) = 0 (11.12.4)

Solve (11.12.4) for (nt−n) as functions of the remaining terms, substitute into

(11.12.3) to get a version of equation (11.10.2), and proceed as before with a

difference equation of the form (11.6.4).
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11.12.1. Steady-state calculations

To compute a steady state for this version of the model, assume that government

expenditures and all flat-rate taxes are constant over time. Steady-state versions

of (11.12.1), (11.12.2) are

1 = β[(1 + (1− τk)(Fk(k, n)− δ)] (11.12.5)

U2(c, 1− n)

U1(c, 1− n)
=

(1− τn)

(1 + τc)
Fn(k, n) (11.12.6)

and the steady state version of the feasibility condition (11.2.2) is

c+ g + δk = F (k, n). (11.12.7)

The linear homogeneity of F (k, n) means that equation (11.12.5) by itself de-

termines the steady-state capital-labor ratio k
n . In particular, where k̃ = k

n ,

notice that F (k, n) = nf(k̃) and Fk(k, n) = f ′(k̃). It is helpful to use these

facts to write (11.12.7) as

c+ g

n
= f(k̃)− δk̃. (11.12.8)

Next, letting β = 1
1+ρ , (11.12.5) can be expressed as

δ +
ρ

(1− τk)
= f ′(k̃), (11.12.9)

an equation that determines a steady-state capital-labor ratio k̃ . An increase

in 1
(1−τk)

decreases the capital-labor ratio, but the steady-state capital-labor

ratio is independent of the steady state values of τc, τn . However, given the

steady state value of the capital-labor ratio k̃ , flat rate taxes on consumption

and labor income influence the steady-state levels of consumption and labor via

the steady state equations (11.12.6) and (11.12.7). Formula (11.12.6) reveals

how both τc and τn distort the same labor-leisure margin.

If we define τ̌c =
τn+τc
1+τc

and τ̌k = τk
1−τk

, then it follows that (1−τn)
(1+τc)

= 1− τ̌c
and 1

(1−τk)
= 1 + τ̌k . The wedge 1 − τ̌c distorts the steady-state labor-leisure

decision via (11.12.6) and the wedge 1 + τ̌k distorts the steady-state capital-

labor ratio via (11.12.9).



432 Fiscal Policies in a Growth Model

11.12.2. Some experiments

To make things concrete, we use the following preference specification popular-

ized by Hansen (1985) and Rogerson (1988):

U(c, 1− n) = ln c+B(1 − n) (11.12.10)

where we set B substantially greater than 1 to assure an interior solution n ∈
(0, 1) for labor supply. In particular, we set B = 3 in the experiments below.

In terms of steady states, equation (11.12.6) becomes

Bc =
(1− τn)

(1 + τc)

[
f(k̃)− k̃f ′(k̃)

]
. (11.12.11)

It is useful to collect equations (11.12.9), (11.12.11), and (11.12.8), into the

following system that recursively determines steady-state outcomes for k̃, c, and

n in the experiments to follow:

δ +
ρ

(1− τk)
= f ′(k̃) (11.12.12)

Bc =
(1− τn)

(1 + τc)

[
f(k̃)− k̃f ′(k̃)

]
(11.12.13)

c = n
(
f(k̃)− δk̃

)
− g. (11.12.14)

Unforeseen jump in g . Figure 11.12.1 displays the consequences of an un-

foreseen and permanent jump in g at t = 0, financed entirely by adjustments in

lump sum taxes. Equation (11.12.12) determines k̃ , which is unaltered. Equa-

tion (11.12.13) then implies that c is unaltered. Equation (11.12.14) determines

k and n , their ratio having been determined by (11.12.12). The consequences

of an unforeseen increase in g differ markedly from those analyzed above for

the case in which the labor elasticity is zero. Then, the consequence was im-

mediately and permanently to lower consumption per capita by the amount

of the increase in government purchases per capita. Now the effect is to leave

unaltered both steady state consumption per capita and the steady state capi-

tal/labor ratio. This is accomplished by raising the steady state levels of both

capital and the labor supply. Thus, now the consequence of the increase in g

is to ‘grow the economy’ enough eventually to leave consumption unaffected

despite the increase in g .
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These asymptotic outcomes immediately drop out of our steady state equa-

tions. The increase in g is accompanied by increases in k and n that leave the

steady state capital/labor ratio unaltered, as required by equation (11.12.9).

Equation (11.12.11) then dictates that steady-state consumption per capita

also remain unaltered.

0 20 40
0.8

0.9

1

1.1

1.2

1.3
k

0 20 40
0.2

0.22

0.24

0.26
c

0 20 40
0.5

0.6

0.7

0.8

0.9

1
n

0 20 40
1

1.05

1.1

1.15
R

0 20 40

0.65

0.7

0.75

0.8
w

0 20 40
−0.1

0

0.1

0.2

0.3

0.4

g

Figure 11.12.1: Elastic labor supply: response to unfore-

seen increase in g at t = 0. From left to right, top to bottom:

k, c, n, R̄, w, g . The dashed line is the original steady state.

Unforeseen jump in τn . Figure 11.12.2 shows outcomes from an unforeseen

increase in the marginal tax rate on labor τn , once again accompanied by an

adjustment in the present value of lump sum taxes required to balance the

government’s budget. Here the effect is to shrink the economy. As required

by equation (11.12.9), the steady state capital labor ratio is unaltered. But

equation (11.12.11) then requires that steady state consumption per capita must

fall in response to the increase in τn . Both labor supplied n and capital fall in

the new steady state.

Countervailing forces contributing to Prescott (2002) The preceding

two experiments isolate forces that Prescott (2002) combines to reach his con-

clusion that Europe’s economic activity has been depressed relative to the U.S.
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because its tax rates have been higher. Prescott’s numerical calculations acti-

vate the forces that shrink the economy in our second experiment that increases

τn while shutting down the force to grow the economy implied by a larger g .

In particular, Prescott assumes that cross-country outcomes are generated by

second experiment, with lump sum transfers being used to rebate the revenues

raised from the larger labor tax rate τn that he estimates to prevail in Europe.

If instead one assumes that higher taxes in Europe are used to pay for larger per

capita government purchases, then forces to grow the economy identified in our

first experiment are unleashed, making the adverse consequences for the level

of economic activity of larger g, τn pairs in Europe become much smaller than

Prescott calculated.
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Figure 11.12.2: Elastic labor supply: response to unfore-

seen increase in τn at t = 0. From left to right, top to bottom:

k, c, n, R̄, w, τn . The dashed line is the original steady state.
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Foreseen jump in τn . Figure 11.12.3 describes consequences of a foreseen

increase in τn that occurs at time t = 10. While the ultimate effects are

identical with those described in the preceding experiment, transient outcomes

differ. The immediate effect of the foreseen increase in τn is to spark a boom

in employment and capital accumulation, while leaving consumption unaltered

before time t = 10. People work more in response to the anticipation that

rewards to working will decrease permanently at t = 10. Thus, the foreseen

increase in τn sparks a temporary employment and investment boom.
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Figure 11.12.3: Elastic labor supply: response to foreseen

increase in τn at t = 10. From left to right, top to bottom:

k, c, n, R̄, w, τn . The dashed line is the original steady state.

To interpret what is going on here, we begin by noting that with preference

specification (11.12.10), the following system of difference equations determines

the dynamics of equilibrium allocations:

ct+1 = βR̄t+1ct (11.12.15a)

R̄t+1 =
1 + τct

1 + τct+1

[
1 + (1− τkt+1)(f

′
(
kt+1/nt+1

)
− δ)

]
(11.12.15b)

Bct =
(1 − τnt)

(1 + τct)
Fn(kt, nt) (11.12.15c)

kt+1 = F (kt, nt) + (1− δ)kt − gt − ct (11.12.15d)
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These equations teach us that the foreseen increase in τn sparks a substantial

rearrangement in how the household distributes its work over time. The effect

of the permanent increase in τn at t = 10 is to reduce the after-tax wage from

t = 10 onward, though initially the real wage falls by less than the decrease in

(1− τn) because of the increase in the capital labor ratio induced by the drastic

fall in n at t = 10. Eventually, as the pre-tax real wage w returns to its initial

value, the real wage falls by the entire amount of the decrease in (1− τn). The

decrease in the after-tax wage after t = 10 makes it relatively more attractive

to work before t = 10. As a consequence, nt rises above its initial steady state

value before t = 10. The household uses the extra income to purchase enough

capital to keep the capital-labor ratio and consumption equal to their respective

initial steady state values for the first nine periods. This force increases nt in

the periods before t = 10. The effect of the build up of capital in the periods

before t = 0 is to attenuate the decrease in the after tax wage that occurs at

t = 10 because the equilibrium marginal product of labor has been raised higher

than it would have been if capital had remained at its initial steady state value.

From t = 10 onward, the capital stock is drawn down and the marginal product

of labor falls, making the pre-tax real wage eventually return to its value in

the initial steady state. Mertens and Ravn (2011) use these effects to offer an

interpretation of contractionary contributions that the Reagan tax cuts made

to the U.S. recession of the early 1980s.

11.13. A two-country model

This section describes a two country version of the basic model of this chapter.

The model has a structure similar to ones used in the international real business

cycle literature (e.g., Backus, Kehoe, and Kydland (1992)) and is in the spirit

of an analysis of distorting taxes by Mendoza and Tesar (1998), though our

presentation differs from theirs. We paste two countries together and allow

them freely to trade goods, claims on future goods, but not labor. We shall

have to be careful in how we specify taxation of earnings by non residents.

There are now two countries like the one in previous sections. Objects

for the first country are denoted without asterisks, while those for the second

country bear asterisks. There is international trade in goods, capital, and debt,



A two-country model 437

but not in labor. We assume that leisure generates utility in neither coun-

try. Preferences over consumption streams in the two countries are ordered by∑∞
t=0 β

tu(ct) and
∑∞

t=0 β
tu(c∗t ), respectively, where u(c) =

c1−γ

1−γ with γ > 0.

Feasibility for the world economy is

(ct+c
∗
t )+(gt+g

∗
t )+(kt+1−(1−δ)kt)+(k∗t+1−(1−δ)k∗t ) = f(kt)+f(k

∗
t ) (11.13.1)

where f(k) = Akα with α ∈ (0, 1).

A consumer in country one can hold capital in either country, but pays

taxes on rentals from foreign holdings of capital at the rate set by the foreign

country. At time 0, residents in both countries can purchase consumption at

date t at a common Arrow-Debreu price qt . Let k̃t be capital in country 2 held

by a representative consumer of country 1. Temporarily, in this paragraph only,

let kt denote the amount of domestic capital owned by the domestic consumer.

(In all other paragraphs of our exposition of the two-country model, kt denotes

the amount of capital in country 1.) Let Bft be the amount of time t goods

that the representative domestic consumer raises by issuing a one-period IOU

to the representative foreign consumer; so Bft > 0 indicates that the domestic

consumer is borrowing from abroad at t and Bft < 0 indicates that the domestic

consumer is lending abroad at t . For t ≥ 1 let Rt−1,t be the gross return on

a one-period loan from period t − 1 to period t . Define R−1,0 ≡ 1 and let

the domestic consumer’s initial debt to the foreign consumer be R−1,0B
f
−1 . We

assume that returns on loans are not taxed by either country. The budget

constraint of a country 1 consumer is

∞∑

t=0

qt

(
ct + (kt+1 − (1− δ)kt) + (k̃t+1 − (1− δ)k̃t) +Rt−1,tB

f
t−1

)

≤
∞∑

t=0

qt

(
(ηt − τkt(ηt − δ))kt + (η∗t − τ∗kt(η

∗
t − δ))k̃t + (1 − τnt)wtnt − τht +Bft

)
.

(11.13.2)

A no-arbitrage condition for k0 and k̃0 is

(1− τk0)η0 + δτk0 = (1− τ∗k0)η
∗
0 + δτ∗k0.

No-arbitrage conditions for kt and k̃t for t ≥ 1 imply

qt−1 = [(1− τkt)(ηt − δ) + 1] qt

qt−1 = [(1− τ∗kt)(η
∗
t − δ) + 1] qt, (11.13.3)
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which together imply that after-tax rental rates on capital are equalized across

the two countries:

(1− τ∗kt)(η
∗
t − δ) = (1− τkt)(ηt − δ). (11.13.4)

No arbitrage conditions for Bft for t ≥ 0 are qt = qt+1Rt,t+1 , which implies

that

qt−1 = qtRt−1,t (11.13.5)

for t ≥ 1.

Since domestic capital, foreign capital, and consumption loans bear the

same rates of return by virtue of (11.13.4) and (11.13.5), portfolios are inde-

terminate. We are free to set holdings of foreign capital equal to zero in each

country if we allow Bft to be nonzero. Adopting this way of resolving portfolio

indeterminacy is convenient because it economizes on the number of initial con-

ditions we have to specify. Therefore, we set holdings of foreign capital equal

to zero in both countries but allow international lending. Then given an initial

level Bf−1 of debt from the domestic country to the foreign country ∗ , and where

Rt−1,t =
qt−1

qt
, international debt dynamics satisfy

Bft = Rt−1,tB
f
t−1 + ct + (kt+1 − (1− δ)kt) + gt − f(kt) (11.13.6)

and

c∗t + (k∗t+1 − (1− δ)k∗t ) + g∗t −Rt−1,tB
f
t−1 = f(k∗t )−Bft . (11.13.7)

Firms’ first-order conditions in the two countries are:

ηt = f ′(kt), wt = f(kt)− ktf
′(kt)

η∗t = f ′(k∗t ), w∗
t = f(k∗t )− k∗t f

′(k∗t ). (11.13.8)

International trade in goods establishes

qt
βt

=
u′(ct)

1 + τct
= µ∗ u

′(c∗t )

1 + τ∗ct
, (11.13.9)

where µ∗ is a nonnegative number that is a function of the Lagrange multi-

plier on the budget constraint for a consumer in country ∗ and where we have

normalized the Lagrange multiplier on the budget constraint of the domestic
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country to set the corresponding µ for the domestic country to unity. Equi-

librium requires that the following two national Euler equations be satisfied for

t ≥ 0:

u′(ct) = βu′(ct+1) [(1− τkt+1)(f
′(kt+1)− δ) + 1]

[
1 + τct+1

1 + τct

]
(11.13.10)

u′(c∗t ) = βu′(c∗t+1)
[
(1− τ∗kt+1)(f

′(k∗t+1)− δ) + 1
] [1 + τ∗ct+1

1 + τ∗ct

]
(11.13.11)

Given that equation (11.13.9) holds for all t ≥ 0, either equation (11.13.10) or

equation (11.13.11) is redundant.

11.13.1. Initial conditions

As initial conditions, we take the pre-international-trade allocation of capital

across countries (ǩ0, ǩ
∗
0) and an initial level Bf−1 = 0 of international debt owed

by the unstarred (domestic) country to the starred (foreign) country.

11.13.2. Equilibrium steady state values

The following two equations determine steady values for k and k∗ .

f ′(k) = δ +
ρ

1− τk
(11.13.12)

f ′(k
∗
) = δ +

ρ

1− τ∗k
(11.13.13)

Given the steady state capital-labor ratios k and k
∗
, the following two equations

determine steady state values of domestic and foreign consumption c and c∗ as

functions of a steady state value B
f

of debt from the domestic country to

country ∗ :

(c+ c∗) = f(k) + f(k
∗
)− δ(k + k

∗
)− (g + g∗) (11.13.14)

c = f(k)− δk − g − ρB
f

(11.13.15)

Equation (11.13.14) expresses feasibility at a steady state while (11.13.15) ex-

presses trade balance, including interest payments, at a steady state.
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11.13.3. Initial equilibrium values

Trade in physical capital and time 0 debt takes place before production and

trade in other goods occurs at time 0. We shall always initialize international

debt at zero: Bf−1 = 0, a condition that we use to express that international

trade in capital begins at time 0. Given an initial total world-wide capital stock

ǩ0 + ǩ∗0 , initial values of k0 and k∗0 satisfy

k0 + k∗0 = ǩ0 + ǩ∗0 (11.13.16)

(1− τk0)f
′(k0) + δτk0 = (1− τ∗k0)f

′(k∗0) + δτ∗k0. (11.13.17)

The price of a unit of capital in either country at time 0 is

pk0 = [(1− τk0)f
′(k0) + (1− δ) + δτk0] . (11.13.18)

It follows that

Bk0 = pk0[k0 − ǩ0], (11.13.19)

which says that the domestic country finances imports of physical capital from

abroad by borrowing from the foreign country ∗ .

11.13.4. Shooting algorithm

To apply a shooting algorithm, we would search for pairs c0, µ
∗ that yield a

pair (k0, k
∗
0) and paths {ct, c∗t , kt, k∗t , Bft }Tt=0 that solve equations (11.13.16),

(11.13.17), (11.13.18), (11.13.19), (11.13.6), (11.13.9), and (11.13.18). The

shooting algorithm ‘aims’ for (k, k
∗
) that satisfy the steady-state equations

(11.13.12), (11.13.13).
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Figure 11.13.1: Response to unforeseen opening of trade at

time 1. From left to right, top to bottom: k, c, R̄, η, x, and

Bf . The solid line is the domestic country, the dashed line is

the foreign country and the dashed dotted line is the original

steady state.

11.13.5. Transition exercises

In the one-country exercises earlier in this chapter, announcements of new poli-

cies always occurred at time 0. In the two-country exercises to follow, we assume

that announcements of new paths of tax rates and/or expenditures or trade

regimes all occur at time 1. We do this to show some dramatic jumps in partic-

ular variables that occur at time 1 in response to announcements about changes

that will occur at time 10 and later. Showing variables at times 0 and 1 helps

display some of the outcomes on which we shall focus here. The production func-

tion is f(k) = Akα . Parameter values are β = .95, γ = 2, δ = .2, α = .33, A = 1;

g is initially .2 in both countries and all distorting taxes are initially 0.

We describe outcomes from three exercises that illustrate two economic

forces. The first force is consumers’ desire to smooth consumption over time,

expressed through households’ consumption Euler equations. The second force

is that equilibrium outcomes must offer no opportunities for arbitrage, expressed

through equations that equate rates of returns on bonds and capital.
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In the first two experiments, all taxes are lump sum in both countries. In

the third experiment we activate a tax on capital in the domestic but not the

foreign country. In all experiments, we allow lump sum taxes in both countries

to adjust to satisfy government budget constraints in both countries.

11.13.5.1. Opening International Flows

In our first example, we study the transition dynamics for two countries when in

period one newly produced output and stocks of capital, but not labor, suddenly

become internationally mobile. The two economies are initially identical in all

aspects except for one: we start the domestic economy at its autarkic steady

state, while we start the foreign economy at an initial capital stock below its au-

tarkic steady state. Because there are no distorting taxes on returns to physical

capital, capital stocks in both economies converge to the same level.

In this experiment the domestic country is at its steady state capital stock

while the poorer foreign country has a capital stock that is .5 less. This means

that initially, before trade is opened at t = 1, the marginal product of capital

in the foreign country exceeded the marginal product capital in the domestic

country, that the foreign interest rate R∗
0,1 exceeded the domestic rate R0,1 ,

and that consequently the foreign consumption growth rate exceeded the do-

mestic consumption growth rate. The disparity of interest rates before trade is

opened is a force for physical capital to flow from the domestic country to the

foreign country once when trade is opened at t = 1. Figure 11.13.2 presents

the transitional dynamics. When countries become open to trade in goods and

capital in period one, there occurs an immediate reallocation of capital from the

capital-rich domestic country to the capital-poor foreign country. This transfer

of capital has to take place because if it didn’t, capital in different countries

would yield different returns, providing consumers in both countries with arbi-

trage opportunities. Those cannot occur in equilibrium.

Before international trade had opened, rental rates on capital and interest

rates differed across country because marginal products of capital differed and

consumption growth rates differed. When trade opens at time 1 and capital is

reallocated across countries to equalize returns, the interest rate in the domestic

country jumps at time one. Because γ = 2, this means that consumption c in

the domestic country must fall. The opposite is true for the foreign economy.
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Notice also that figure 11.13.2 shows an investment spike abroad while there is a

large decline in investment in the domestic economy. This occurs because capital

is reallocated from the domestic country to the foreign one. This transfer is

feasible because investment in capital is reversible. The foreign country finances

this import of physical capital by borrowing from the domestic country, so −Bf
increases. Foreign debt −Bf continues to increase as both economies converge

smoothly towards a steady-state with a positive level of −Bf . Ultimately, these

differences account for differences in steady-state consumption by 2ρBf .

Opening trade in goods and capital at time 1 benefits consumers in both

economies. By opening up to capital flows, the foreign country achieves conver-

gence to a steady-state consumption level at an accelerated rate. This steady-

state consumption rate is lower than what it would be had the economy remained

closed, but this reduction in long-run consumption is more than compensated

by the rapid increase in consumption and output in the short-run. In contrast,

domestic consumption falls in the short-run as trade allows domestic consumers

to accumulate foreign assets that support greater steady-state consumption.

This experiment shows the importance of studying transitional dynamics

for welfare analysis. In this example, focusing only on steady-state consumption

would lead to the false conclusion that opening markets are detrimental for

poorer economies.

11.13.5.2. Foreseen Increase in g

Figure 11.13.2 presents transition dynamics after an increase in g in the domes-

tic economy from .2 to .4 that is announced ten periods in advance. We start

both economies from a steady-state with Bf0 = 0. When the new g path is an-

nounced at time 1, consumption smoothing motives induce domestic households

to increase their savings in response to the adverse shock to domestic private

wealth that is caused at time 1 by the foreseen increase in domestic government

purchases g . Domestic households plan to use those savings to dampen the im-

pact on consumption in periods after g will have increased ten periods ahead.

Households save partly by accumulating more domestic capital in the short-run,

their only source of assets in the closed economy version of this experiment. In

an open economy, they have other ways to save, namely, by lending abroad.

The no-arbitrage conditions connect adjustments of both types of saving: the
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Figure 11.13.2: Response to increase in g at time 10 fore-

seen at time 1. From left to right, top to bottom: k, c, R̄, x, g, Bf .

The dashed-dotted line is the original steady state in the do-

mestic country. The dashed line denotes the foreign country.

increase in savings by domestic households will reduce the equilibrium return

on bonds and capital in the foreign economy to prevent arbitrage opportunities.

Confronting the revised interest rate path that now begins with lower interest

rates, foreign households increase their rates of consumption and investment in

physical capital. These increases in foreign absorbtion are funded by increases

in foreign consumers’ external debt. After the announcement of the increase in

g , the paths for consumption (and capital) in both countries follow the same

patterns because no-arbitrage conditions equate the ratios of their marginal util-

ities of consumption. Both countries continue to accumulate capital until the

increase in g occurs. After that, domestic households begin consuming some of

their capital. Again by no-arbitrage conditions, when g actually increases both

countries reduce their investment rates. The domestic economy, in turn, starts

running current-account deficits partially to fund the increase in g . This means

that foreign households begin repaying part of their external debt by reducing

their capital stock. Although not plotted in figure 11.13.2, there is a sharp re-

duction in gross investment x in both countries when the increase in g occurs.

After t = 10, all variable converge smoothly towards a new steady state where
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the domestic economy persists with positive asset holdings −Bf . Ultimately,

this explains why the foreign country ends with lower steady state consumption

than in the initial steady state. In the new steady state, minus the sum of the

decreases of consumption rates across the two countries equals the increase in

steady state government expenditures in the domestic country.28

The experiment teaches valuable economic lessons. First, it shows how the

consequences of the foreseen increase in g will be distributed across time and

households. Second, it tells how this distribution takes place: through time by

accumulating or reducing the capital stock, and across households in different

countries by running current-account deficits and surpluses.
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Figure 11.13.3: Response to once-and-for-all increase in τk

at t = 10 foreseen at time t = 1. From left to right, top

to bottom: k, c, R̄, η, τk and τ∗k , and Bf . Domestic coun-

try (solid line), foreign country (dotted line) and steady-state

values (dot-line).

28 Despite the decrease in its steady state consumption, we have calculated that
∑∞

t=0 β
tu(c∗t )

is higher in the new equilibrium than in the old.
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11.13.5.3. Foreseen increase in τk

We now explore the impact of an increase in capital taxation in the domestic

economy 10 periods after its announcement at t = 1. Figure 11.13.3 shows equi-

librium outcomes. When the increase in τk is announced, domestic households

become aware that the domestic capital stock will eventually decline to increase

gross returns to equalize after-tax returns across countries despite a higher do-

mestic tax rate on returns from capital. Domestic households will reduce their

capital stock by increasing their rate of consumption. The consequent higher

equilibrium world interest rates then also induces foreign households to increase

consumption. Prior to the increase in τk , the domestic country runs a current

account deficit. When τk is eventually increased, capital is rapidly reallocated

across borders to preclude arbitrage opportunities, leading to a lower interest

rate on bonds. The fall in the return on bonds occurs because the capital re-

turns tax τk in the domestic country will reduce the after-tax return on capital,

and because the foreign economy has a higher capital stock. Foreign households

fund this large purchase of capital with a sharp increase in external debt, to be

interpreted as a current account deficit. After τk has increased, the economies

smoothly converge to a new steady state that features lower consumption rates

in both countries and where the differences in the capital stock equate after-

tax returns. It is useful to note that steady-state consumption in the foreign

economy is higher than in the domestic country despite its perpetually having

positive liabilities. This occurs because foreign output is larger because the

capital stock held abroad is also larger.

This example shows how, via the no-arbitrage conditions, both countries

share the impact of the shock and how fluctuations in capital stocks smooth

over time the adjustments in consumption in both countries.
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11.14. Concluding remarks

In chapter 12 we shall describe a stochastic version of the basic growth model

and alternative ways of representing its competitive equilibrium.29 Stochastic

and nonstochastic versions of the growth model are widely used throughout

aggregative economics to study a range of policy questions. Brock and Mirman

(1972), Kydland and Prescott (1982), and many others have used a stochastic

version of the model to approximate features of the business cycle. In much of

the earlier literature on real business cycle models, the phrase “features of the

business cycle” has meant “particular moments of some aggregate time series

that have been filtered in a particular way to remove trends.” Lucas (1990) uses

a nonstochastic model like the one in this chapter to prepare rough quantitative

estimates of the eventual consequences of lowering taxes on capital and raising

those on consumption or labor. Prescott (2002) uses a version of the model in

this chapter with leisure in the utility function together with some illustrative

(high) labor supply elasticities to construct the argument that in the last two

decades, Europe’s economic activity has been depressed relative to that of the

United States because Europe has taxed labor more highly that the United

States. Ingram, Kocherlakota, and Savin (1994) and Hall (1997) use actual data

to construct the errors in the Euler equations associated with stochastic versions

of the basic growth model and interpret them not as computational errors, as

in the procedure recommended in section 11.10.7, but as measures of additional

shocks that have to be added to the basic model to make it fit the data. In

the basic stochastic growth model described in chapter 12, the technology shock

is the only shock, but it cannot by itself account for the discrepancies that

emerge in fitting all of the model’s Euler equations to the data. A message of

Ingram, Kocherlakota, and Savin (1994) and Hall (1997) is that more shocks are

required to account for the data. Wen (1998) and Otrok (2001) build growth

models with more shocks and additional sources of dynamics, fit them to U.S.

time series using likelihood function-based methods, and discuss the additional

shocks and sources of data that are required to match the data. See Christiano,

Eichenbaum, and Evans (2003) and Christiano, Motto, and Rostagno (2003) for

papers that add a number of additional shocks and measure their importance.

29 It will be of particular interest to learn how to achieve a recursive representation of an

equilibrium by finding an appropriate formulation of a state vector in terms of which to cast

an equilibrium. Because there are endogenous state variables in the growth model, we shall

have to extend the method used in chapter 8.
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Greenwood, Hercowitz, and Krusell (1997) introduced what seems to be an

important additional shock in the form of a technology shock that impinges

directly on the relative price of investment goods. Jonas Fisher (2006) develops

econometric evidence attesting to the importance of this shock in accounting for

aggregate fluctuations. Davig, Leeper, and Walker (2012) use stochastic versions

of the types of models discussed in this chapter to study issues of intertemporal

fiscal balance.

Schmitt-Grohe and Uribe (2004b) and Kim and Kim (2003) warn that the

linear and log linear approximations described in this chapter can be treach-

erous when they are used to compare the welfare under alternative policies of

economies, like the ones described in this chapter, in which distortions prevent

equilibrium allocations from being optimal ones. They describe ways of at-

taining locally more accurate welfare comparisons by constructing higher order

approximations to decision rules and welfare functions.

A. Log linear approximations

Following Christiano (1990), a widespread practice is to obtain log linear rather

than linear approximations. Here is how this would be done for the model of

this chapter.

Let log kt = k̃t so that kt = exp k̃t ; similarly, let log gt = g̃t . Represent

zt as zt = [ exp(g̃t) τkt τct ]
′ (note that only gt has been replaced by it’s log

here). Then proceed as follows to get a log linear approximation.

1. Compute the steady state as before. Set the government policy zt = z , a

constant level. Solve H(exp(k̃∞), exp(k̃∞), exp(k̃∞), z, z) = 0 for a steady state

k̃∞ . (Of course, this will give the same steady state for the original unlogged

variables as we got earlier.)

2. Take first-order Taylor series approximation around (k̃∞, z):

Hk̃t
(k̃t − k̃∞) +Hk̃t+1

(k̃t+1 − k̃∞) +Hk̃t+2
(k̃t+2 − k̃∞)

+Hzt(zt − z) +Hzt+1(zt+1 − z) = 0.
(11.A.1)

(But please remember here that the first component of zt is now g̃t .)

3. Write the resulting system as

φ0k̃t+2 + φ1k̃t+1 + φ2k̃t = A0 +A1zt +A2zt+1 (11.A.2)
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or

φ(L)k̃t+2 = A0 +A1zt +A2zt+1 (11.A.3)

where L is the lag operator (also called the backward shift operator). Solve

the linear difference equation (11.A.3) exactly as before, but for the sequence

{k̃t+1} .

4. Compute kt = exp(k̃t), and also remember to exponentiate g̃t , then use

equations (11.6.8) to compute the associated prices and quantities. Compute

the Euler equation errors as before.

Exercises

Exercise 11.1 Tax reform: I

Consider the following economy populated by a government and a representative

household. There is no uncertainty, and the economy and the representative

household and government within it live forever. The government consumes a

constant amount gt = g > 0, t ≥ 0. The government also sets sequences for

two types of taxes, {τct, τht}∞t=0 . Here τct, τht are, respectively, a possibly time-

varying flat-rate tax on consumption and a time-varying lump-sum or “head”

tax. The preferences of the household are ordered by

∞∑

t=0

βtu(ct),

where β ∈ (0, 1) and u(·) is strictly concave, increasing, and twice continuously

differentiable. The representative household is endowed wtih one unit of labor

each period and does not value leisure. The feasibility condition in the economy

is

gt + ct + kt+1 ≤ f(kt) + (1− δ)kt

where kt is the stock of capital owned by the household at the beginning of time

t and δ ∈ (0, 1) is a depreciation rate. At time 0, there are complete markets

for dated commodities. The household faces the budget constraint:

∞∑

t=0

{qt[(1 + τct)ct + kt+1 − (1 − δ)kt]} ≤
∞∑

t=0

qt {ηtkt + wt − τht}
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where we assume that the household inelastically supplies one unit of labor, and

qt is the price of date t consumption goods measured in the numeraire at time

0, ηt is the rental rate of date t capital measured in consumption goods at time

t , and wt is the wage rate of date t labor measured in consumption goods at

time t . Capital is neither taxed nor subsidized.

A production firm rents labor and capital. The production function is

f(k)n , where f ′ > 0, f ′′ < 0. The value of the firm is

∞∑

t=0

qt
[
f(kt)nt − wtnt − ηtktnt

]
,

where kt is the firm’s capital-labor ratio and nt is the amount of labor it hires.

The government sets gt exogenously and must set τct, τht to satisfy the

budget constraint:

(1)
∞∑

t=0

qt(τctct + τht) =
∞∑

t=0

qtgt.

a. Define a competitive equilibrium.

b. Suppose that historically the government had unlimited access to lump-

sum taxes and availed itself of them. Thus, for a long time the economy had

gt = g > 0, τct = 0. Suppose that this situation had been expected to go on

forever. Tell how to find the steady-state capital-labor ratio for this economy.

c. In the economy depicted in b, prove that the timing of lump-sum taxes is

irrelevant.

d. Let k̄0 be the steady value of kt that you found in part b. Let this be

the initial value of capital at time t = 0 and consider the following experiment.

Suddenly and unexpectedly, a court decision rules that lump-sum taxes are ille-

gal and that starting at time t = 0, the government must finance expenditures

using the consumption tax τct . The value of gt remains constant at g . Policy

advisor number 1 proposes the following tax policy: find a constant consumption

tax that satisfies the budget constraint (1), and impose it from time 0 onward.

Please compute the new steady-state value of kt under this policy. Also, get as

far as you can in analyzing the transition path from the old steady state to the

new one.
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e. Policy advisor number 2 proposes the following alternative policy. Instead of

imposing the increase in τct suddenly, he proposes to ease the pain by postponing

the increase for 10 years. Thus, he/she proposes to set τct = 0 for t = 0, . . . , 9,

then to set τct = τ c for t ≥ 10. Please compute the steady-state level of capital

associated with this policy. Can you say anything about the transition path to

the new steady-state kt under this policy?

f. Which policy is better, the one recommended in d or the one in e?

Exercise 11.2 Tax reform: II

Consider the following economy populated by a government and a representative

household. There is no uncertainty, and the economy and the representative

household and government within it last forever. The government consumes

a constant amount gt = g > 0, t ≥ 0. The government also sets sequences

of two types of taxes, {τct, τkt}∞t=0 . Here τct, τkt are, respectively, a possibly

time-varying flat-rate tax on consumption and a time-varying flat-rate tax on

earnings from capital. The preferences of the household are ordered by

∞∑

t=0

βtu(ct),

where β ∈ (0, 1) and u(·) is strictly concave, increasing, and twice continuously

differentiable. The household is endowed with one unit of labor each period and

does not value leisure. The feasibility condition in the economy is

gt + ct + kt+1 ≤ f(kt) + (1− δ)kt

where kt is the stock of capital owned by the household at the beginning of time

t and δ ∈ (0, 1) is a depreciation rate. At time 0, there are complete markets

for commodities at all dates. The household faces the budget constraint:

∞∑

t=0

{qt[(1 + τct)ct + kt+1 − (1− δ)kt]}

≤
∞∑

t=0

qt {ηtkt − τkt(ηt − δ)kt + wt}

where we assume that the household inelastically supplies one unit of labor, and

qt is the price of date t consumption goods in units of the numeraire at time
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0, ηt is the rental rate of date t capital in units of time t goods, and wt is the

wage rate of date t labor in units of time t goods.

A production firm rents labor and capital. The value of the firm is

∞∑

t=0

qt
[
f(kt)nt − wtnt − ηtktnt

]
,

where here kt is the firm’s capital-labor ratio and nt is the amount of labor it

hires.

The government sets {gt} exogenously and must set the sequences {τct, τkt}
to satisfy the budget constraint:

(1)

∞∑

t=0

qt
(
τctct + τkt(ηt − δ)kt

)
=

∞∑

t=0

qtgt.

a. Define a competitive equilibrium.

b. Assume an initial situation in which from time t ≥ 0 onward, the government

finances a constant stream of expenditures gt = g entirely by levying a constant

tax rate τk on capital and a zero consumption tax. Tell how to find steady-state

levels of capital, consumption, and the rate of return on capital.

c. Let k̄0 be the steady value of kt that you found in part b. Let this be the

initial value of capital at time t = 0 and consider the following experiment.

Suddenly and unexpectedly, a new party comes into power that repeals the tax

on capital, sets τk = 0 forever, and finances the same constant level of g with a

flat-rate tax on consumption. Tell what happens to the new steady-state values

of capital, consumption, and the return on capital.

d. Someone recommends comparing the two alternative policies of (1) relying

completely on the taxation of capital as in the initial equilibrium and (2) relying

completely on the consumption tax, as in our second equilibrium, by compar-

ing the discounted utilities of consumption in steady state, i.e., by comparing
1

1−βu(c) in the two equilibria, where c is the steady-state value of consumption.

Is this a good way to measure the costs or gains of one policy vis-a-vis the other?
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Exercise 11.3 Anticipated productivity shift

An infinitely lived representative household has preferences over a stream of

consumption of a single good that are ordered by

∞∑

t=0

βtu(ct), β ∈ (0, 1)

where u is a strictly concave, twice continuously differentiable, one-period utility

function, β is a discount factor, and ct is time t consumption. The technology

is:
ct + xt ≤ f(kt)nt

kt+1 = (1 − δ)kt + ψtxt

where for t ≥ 1

ψt =

{
1 for t < 4

2 for t ≥ 4.

Here f(kt)nt is output, where f > 0, f ′ > 0, f ′′ < 0, kt is capital per unit of

labor input, and nt is labor input. The household supplies one unit of labor

inelastically. The initial capital stock k0 is given and is owned by the represen-

tative household. In particular, assume that k0 is at the optimal steady value

for k presuming that ψt had been equal to 1 forever. There is no uncertainty.

There is no government.

a. Formulate the planning problem for this economy in the space of sequences

and form the pertinent Lagrangian. Find a formula for the optimal steady-state

level of capital. How does a permanent increase in ψ affect the steady values of

k, c , and x?

b. Formulate the planning problem for this economy recursively (i.e., compose

a Bellman equation for the planner). Be careful to give a complete description

of the state vector and its law of motion. (“Finding the state is an art.”)

c. Formulate an (Arrow-Debreu) competitive equilibrium with time 0 trades,

assuming the following decentralization. Let the household own the stocks of

capital and labor and in each period let the household rent them to the firm. Let

the household choose the investment rate each period. Define an appropriate

price system and compute the first-order necessary conditions for the household

and for the firm.
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d. What is the connection between a solution of the planning problem and the

competitive equilibrium in part c? Please link the prices in part c to correspond-

ing objects in the planning problem.

e. Assume that k0 is given by the steady-state value that corresponds to the

assumption that ψt had been equal to 1 forever, and had been expected to

remain equal to 1 forever. Qualitatively describe the evolution of the economy

from time 0 on. Does the jump in ψ at t = 4 have any effects that precede it?

Exercise 11.4 A capital levy

A nonstochastic economy produces one good that can be allocated among con-

sumption, ct , government purchases, gt , and gross investment, xt . The economy-

wide resource constraints are

ct + gt + xt ≤ f(kt)

kt+1 = (1− δ)kt + xt,

where δ ∈ (0, 1) is a depreciation rate, kt is the capital stock, and f(kt) gives

production as a function of capital, where f(k) = Akα with α ∈ (0, 1). A

single representative consumer owns the capital stock and one unit of labor.

The consumer rents capital and labor to a competitive firm each period. The

consumer ranks consumption plans according to

∞∑

t=0

βtu(ct)

where u(c) = c1−γ

1−γ , with γ ≥ 1. The household supplies one unit of labor

inelastically each period.

The government has only one tax at its disposal, a one-time capital levy

through which it confiscates part of the capital stock from the private sector.

When the government imposes a capital levy, we assume that it sends the con-

sumer a tax bill for a fraction φ of the beginning of period capital stock. Below,

you will be asked to compare consequences of levying this tax either at the be-

ginning of time T = 0 or at the beginning of time T = 10. The fraction can

exceed 1 if that is necessary to finance the government budget. The government

is allowed to impose no other taxes. Among other things, this means that it

cannot impose a direct lump sum or ‘head’ tax .
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a. Define a competitive equilibrium with time 0 trading.

b. Suppose that before time 0 the economy had been in a steady state in which

g had always been zero and had been expected always to equal zero. Find a

formula for the initial steady state capital stock in a competitive equilibrium

with time zero trading. Let this value be k0 .

c. At time 0, everyone suddenly wakes up to discover that from time 0 on,

government expenditures will be g > 0, where g + δk0 < f(k0), which implies

that the new level of government expenditures would be feasible in the old steady

state. Suppose that the government finances the new path of expenditures by

a capital levy at time T = 0. The government imposes a capital levy by

sending the household a bill for a fraction of the value of its capital at the time

indicated. Find the new steady state value of the capital stock in a competitive

equilibrium. Describe an algorithm to compute the fraction of the capital stock

that the government must tax away at time 0 to finance its budget. Find the new

steady state value of the capital stock in a competitive equilibrium. Describe

the time paths of capital, consumption, and the interest rate from t = 0 to

t = +∞ in the new equilibrium and compare them with their counterparts in

the initial gt ≡ 0 equilibrium.

d. Assume the same new path of government expenditures indicated in part

c, but now assume that the government imposes the one-time capital levy at

time T = 10, and that this is foreseen at time 0. Find the new steady state

value of the capital stock in a competitive equilibrium that is associated with

this tax policy. Describe an algorithm to compute the fraction of the capital

stock that the government must tax away at time T = 10 to finance its budget.

Describe the time paths of capital, consumption, and the interest rate in this

new equilibrium and compare them with their counterparts in part b and in the

initial gt ≡ 0 equilibrium.

e. Define a competitive equilibrium with sequential trading of one-period Arrow

securities. Describe how to compute such an equilibrium. Describe the time path

of the consumer’s holdings of one-period securities in a competitive equilibrium

with one period Arrow securities under the government tax policy assumed in

part d. Describe the time path of government debt.
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Exercise 11.5

A representative consumer has preferences ordered by

∞∑

t=0

βt log(ct), 0 < β < 1

where β = 1
1+ρ , ρ > 0, and ct is the consumption per worker. The technology

is

yt = f(kt) = zkαt , 0 < α < 1, z > 0

where yt is the output per unit labor and kt is capital per unit labor

yt = ct + xt + gt

kt+1 = (1− δ)kt + xt, 0 < δ < 1

and xt is gross investment per unit of labor and gt is government expendi-

tures per unit of labor. Assume a competitive equilibrium with a price system

{qt, ηt, wt}∞t=0 and a government policy {gt, τht}∞t=0

Assume that the government finances its expenditures by levying lump sum

taxes. There are no distorting taxes. Assume that at time 0, the economy begins

with a capital per unit of labor k0 that equals the steady state value appropriate

for an economy in which gt had been zero forever.

a. Find a formula for the steady state capital stock when gt = 0 ∀t .

b. Compare the steady state capital labor ratio k in the competitive equilibrium

with the capital labor ratio k̃ that maximizes steady state consumption per

capita, i.e , k̃ solves

c̃ = max
k

(
f(k)− δk

)

Is k̃ greater than or less that k? If they differ, please tell why. Is c̃ greater or

less than c = f(k)− δk? Explain why.

c. Now assume that at time 0, gt suddenly jumps to the value g = 1
2c where

c is the value of consumption per capita in the initial steady state in which g

was zero forever. Starting from k0 = k for the old g = 0 steady state, find

the time paths of {ct, kt+1}∞t=0 associated with the new path gt = g > 0 ∀t
for government expenditures per capita. Also show the time path for R̄t+1 ≡
(1− δ) + f ′(kt+1) Explain why the new paths are as they are.
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Exercise 11.6 Trade and growth

Part I

Consider the problem of a planner in a small economy. When the economy is

closed to international trade, the planner chooses {ct, kt+1}∞t=0 to maximize

∞∑

t=0

βtu(ct),

where 0 < β < 1, β = 1
1+ρ , ρ > 0 subject to

ct + kt+1 = f(kt) + (1− δ)kt, δ ∈ (0, 1)

where u(ct) =
c1−γ
t

1−γ , γ > 0, f(kt) = zkαt , and 0 < α < 1.

Let k be the steady state value of kt under the optimal plan.

a. Find a formula for k .

b. Assume that k0 < k . Describe time paths for {ct, kt+1}∞t=0 and R̄t+1 =

(1− δ) + f ′(kt+1).

c. What is the steady state value of R̄t+1 ?

d. Is R̄t+1 less or greater than its steady state value when kt+1 < k?

Part II

Now assume that the economy is open to international trade in capital and

financial assets. Assume that there is a fixed world gross rate of return R =

β−1 at which the planner can borrow or lend, what is often called a ‘small

open economy’ assumption. The planner can use the proceeds of borrowing

to purchase goods on the international market. These goods can be used to

augment capital or to consume.

Let k0 be the level of initial capital (k0 < k) before the country opens up to

trade just before time 0. Let k0 be the same initial capital per capita k0 < k

studied in parts a-d.

At time t = −1, after k0 was set, trade opens up. At time t = −1, the planner

can issue IOU’s or bonds in amount B−1 and use the proceeds to purchase

capital, thereby setting

k0 = k0 +B−1
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where B−1 is denominated in time -1 consumption goods. The bonds are one

period in duration and bear the constant world gross interest rate R = β−1 .

For t ≥ 0, the planner faces the constraints

ct + kt+1 +RBt−1 = f(kt) + (1 − δ)kt +Bt

Here RBt−1 is the sum of interest and principal on the bonds issued at t − 1

and Bt is the amount of one-period bonds issued at t .

The planning problem in the small open economy is now to choose {ct, kt, Bt}∞t=0

and B−1 , subject to k0 given. (Notice that k0 is a choice variable and that

k0 is an initial condition.) Please solve the planning problem in the small open

economy and compare outcomes to those in the closed economy. Is welfare∑∞
t=0 β

tu(ct) higher in the “open” or “closed” economy?

The next several problems assume the following environment. A represen-

tative consumer has preferences ordered by

∞∑

t=0

βtu(ct), 0 < β < 1, β =
1

1 + ρ
, ρ > 0

where ct is the consumption per worker and where

u(c) =

{
c1−γ

1−γ for γ > 0 and γ /= 1

log(c) if γ = 1.

The technology is yt = f(kt) = zkαt , 0 < α < 1, z > 0, where yt is the output

per unit labor and kt is capital per unit labor and

yt = ct + xt + gt

kt+1 = (1 − δ)kt + xt , 0 < δ < 1

where xt is gross investment per unit of labor and gt is government expenditures

per unit of labor. The government finances its expenditures by levying some

combination of a flat rate tax τct on the value of consumption goods purchased

at t , a flat rate tax τnt on the value of labor earnings at t , a flat rate tax τkt

on earnings from capital at t and a lump sum tax of τht in time t consumption

goods per worker at time t .
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Let {qt, ηt, wt}∞t=0 be a price system.

Exercise 11.7

Consider an economy in which gt = ḡ > 0 ∀ t ≥ 0 and in which initially the

government finances all expenditures by lump sum taxes.

a. Find a formula for the steady state capital labor ratio kt for this economy.

Find formulas for the steady state level of ct and R̄t = [(1− δ + f ′(kt+1)]

b. Now suppose that starting from k0 = k̄ , i.e., the steady state that you

computed in part a, the government suddenly increases the tax on earnings from

capital to a constant level τk > 0. The government adjusts lump sum taxes to

keep the government budget balances. Describe competitive equilibrium time

paths for ct, kt+1, R̄t and their relationship to corresponding values in the old

steady state that you described in part a.

c. Describe how the shapes of the paths that you found in part b depend on the

curvature parameter γ in the utility function u(c) = c1−γ

1−γ . Higher values of γ

imply higher curvature and more aversion to consumption path that fluctuate.

Higher values of γ imply that the consumer values smooth consumption paths

even more.

d. Starting from the steady state k̄ that you computed in part a, now consider

a situation in which the government announces at time 0 that starting in period

10 the tax on earnings from capital τk will rise permanently to τk > 0. The

government adjusts its lump sum taxes to balance it’s budget.

i) Find the new steady state values for kt, ct, R̄t .

ii) Describe the shapes of the transition paths from the initial steady states

to the new one for kt, ct, R̄t .

iii)Describe how the shapes of the transition paths depend on the curvature

parameter γ in the utility function u(c).

Hint : When γ is bigger, consumers more strongly prefer smoother con-

sumption paths. Recall the forces behind formula (11.10.16) in section 11.10.6.
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Exercise 11.8 Trade and growth, version II

Part I

Consider the problem of the planner in a small economy. When the economy is

closed to trade, the planner chooses {ct, kt+1}∞t=0 to maximize

∞∑

t=0

βtu(ct), 0 < β < 1, β =
1

1 + ρ
, ρ > 0

subject to

ct + kt + 1 = f(kt) + (1− δ)kt, δ ∈ (0, 1)

where

Let k be the steady state value of kt under the optimal plan.

a. Find a formula for k .

b. Assume that k0 > k . Describe time paths for {ct, kt+1}∞t=0 and R̄t+1 =

(1− δ) + f ′(kt+1).

c. What is the steady state value of R̄t+1 ?

d. Is R̄t+1 less or greater than its steady state value when kt+1 > k?

Part II

e. Now assume that the economy is open to international trade in capital and

financial assets. Assume that there is a fixed world gross rate of return R = β−1

at which the planner can borrow or lend. In particular, the planner is free to

use the following plan. The planner can sell all of its capital k0 and simply

consume the interest payments. Let k0 be the level of initial capital (k0 > k)

just before the country opens up to trade just before time 0. Let k0 be the

initial capital per capita k0 > k studied in parts a- d. At time t = −1, after

k0 was set, trade opens up. At time t = −1, the planner sells k0 in exchange

for IOU’s or bonds from the rest of the world in the amount A−1 = k0 .

The bonds A−1 are one-period in duration and bear the constant world gross

interest rate R = β−1 . After the sale of k0 = A−1 , the planner has zero capital

and so shuts down the technology. Instead, the planner uses the asset market

to smooth consumption. The planner chooses {At+1, ct} to maximize

∞∑

t=0

βtu(ct), 0 < β < 1, β =
1

1 + ρ
, ρ > 0
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subject to ct+βAt+1 = At, A0 = k0. Please find the optimal path for consump-

tion {ct} .

f. Compare the path of (ct, kt+1, R̄t) that you computed in parts a-d with “no

trade” with the part e path “with trade” in which the government “shuts down

the home technology” and lives entirely from the returns on foreign assets. Can

you say which path the representative consumer will prefer?

g. Now return to the economy in part e with k0 > k̄ from part d. Assume

that the planner is free to borrow or lend capital at the fixed gross interest of

β−1 = 1+ρ , as before. But now assume the planner chooses the optimal amount

of k0 to sell off and so does not necessarily sell off the entire k0 and possibly

continues to operate the technology.

i) Find the solution of the planning problem.

ii) Explain why it is optimal not to shut down the technology. Hint:

Starting from having shut the technology down, think of putting a small amount

ǫ of capital into the technology-this earns zǫα and costs ρǫ in terms of foregone

interest. Because 0 < α < 1, ρǫ < zǫα for small ǫ . Thus, the technology is

very productive for small ǫ , so it is efficient to use it.

Exercise 11.9

Consider a consumer who wants to choose {ct}Tt=0 to maximize

T∑

t=0

βtct , 0 < β < 1

subject to the intertemporal budget constraint

T∑

t=0

R−t[ct − yt] = 0 , R > 1

where ct ≥ 0 and yt > 0 for t = 0, · · · , T . Here R > 1 is the gross interest rate

(1 + r), r > 0. Assume R is constant. Here {yt}Tt=0 is an exogenous sequence

of “labor income”.

a. Assume that βR < 1. Find the optimal path {ct}Tt=0 .

b. Assume that βR > 1. Find the optimal path {ct}Tt=0 .

c. Assume that βR = 1. Find the optimal path {ct}Tt=0 .
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Exercise 11.10 Term Structure of Interest Rates

This problem assumes the following environment. A representative consumer

has preferences ordered by

∞∑

t=0

βtu(ct), 0 < β < 1, β =
1

1 + ρ
, ρ > 0

where ct is the consumption per worker and where

u(c) =

{
c1−γ

1−γ if γ > 0 and γ /= 1

log(c) if γ = 1

The technology is

yt = f(kt) = zkαt , 0 < α < 1, z > 0

where yt is the output per unit labor and kt is capital per unit labor

yt = ct + xt + gt

kt+1 = (1 − δ)kt + xt , 0 < δ < 1

where xt is gross investment per unit of labor and gt is government expenditures

per unit of labor. The government finances its expenditures by levying some

combination of a flat rate tax τct on the value of consumption goods purchased

at t , a flat rate tax τnt on the value of labor earnings at t , a flat rate tax τkt

on earnings from capital at t and a lump sum tax of τht in time t consumption

goods per worker at time t . Define R̄t+1 = (1+τct)
(1+τct+1)

[1 + (1 − τkt+1)(f
′(kt+1 − δ)] .

a. Recall that we can represent

q0t = q00m0,1m1,2 · · ·mt−1,t

where mt−1,t =
q0t
q0
t−1

and mt−1,t ≡ exp(−rt−1,t) ≈ 1
1+rt−1,t

. Further, recall

that the t period long yield satisfies q0t = exp(−tr0,t) and r0,t =
1
t [r0,1 + r1,2 +

· · · + rt−1,t] . Now suppose that at t = 0, k0 = k̄ , where k̄ is the steady state

appropriate for an economy with constant gt = ḡ > 0 and all expenditures are

financed by lump sum taxes. Find q0t for this economy.

b. Plot rt−1,t for this economy for t = 1, 2, · · · , 10.
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c. Plot r0,t for this economy for t = 1, 2, · · · , 10 (this is what Bloomberg plots).

d. Now assume that at time 0, starting from k0 = k̄ for the steady state you

computed in part a, the government unexpectedly and permanently raises the

tax rate on income from capital τkt = τk > 0 to a positive rate.

i) Plot rt−1t for this economy for t = 1, 2, · · · , 10. Explain how you got

this outcome.

ii) Plot r0,t for this economy for t = 1, 2, · · · , 10. Explain how you got this

outcome.

Exercise 11.11

This problem assumes the same economic environment as the previous exercise

i.e, the “growth model” with fiscal policy. Suppose that you observe the path

for consumption per capita in figure 11.1. Say what you can about the likely

behavior over time of kt , R̄t = [1 + (1 − τkt)(f
′(kt)− δ)] , gt and τkt .(You are

free to make up any story that is consistent with the model.)

ct

0 t

Figure 11.1: Consumption per capita.

Exercise 11.12

Assume the same economic environment as in the previous two problems. As-

sume that someone has observed the time path for ct in figure 11.2:

a. Describe a consistent set of assumptions about the fiscal policy that explains

this time path for ct . In doing so, please distinguish carefully between changes

in taxes and expenditures that are foreseen versus unforeseen.
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ct

12
t|

b

Figure 11.2: Consumption per capita.

b. Describe what is happening to kt, R̄t and gt over time. Make whatever

assumptions you must to get a complete but consistent story - here “consistent”

means “consistent with the economic environment we have assumed”.

Exercise 11.13

Consider the optimal growth model with a representative consumer with pref-

erences
∞∑

t=0

βtct, 0 < β < 1

with technology

ct + kt+1 = f(kt) + (1 − δ)kt, δ ∈ (0, 1)

ct ≥ 0, k0 > 0 given

f ′ > 0, f ′′ < 0, lim
k→0

f ′(k) = +∞, lim
k→+∞

f ′(k) = 0

Let k̄ be the steady state capital stock for the optimal planning problem.

a. For k0 given, formulate and solve the optimal planning problem.

b. For k0 > k̄ , describe the optimal time path of {ct, kt+1}∞t=0 .

c. For k0 < k̄ , describe the optimal path of {ct, kt+1}∞t=0 .

d. Let the saving rate st be defined as the st that satisfies

kt+1 = stf(kt) + (1− δ)kt.
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Here st in general varies along a {ct, kt+1} sequence. Say what you can about

how st varies as a function of kt .

Exercise 11.14

A representative consumer has preferences over consumption streams ordered

by
∑∞

t=0 β
tu(c), 0 < β < 1, where β ≡ 1

1+ρ , ct is consumption per worker,

γ > 0, and

u(c) =

{
c1−γ

1−γ if γ > 0 and γ /= 1

log(c) if γ = 1.

The consumer supplies one unit of labor inelastically. The technology is

yt = f(kt) = zkαt , 0 < α < 1

where yt is output per worker, kt is capital per worker, xt is gross investment

per worker, gt = government expenditures per worker, and

yt = ct + xt + gt

kt+1 = (1− δ)kt + xt, 0 < δ < 1.

The government finances its expenditure stream {gt} by levying a stream of flat

rate taxes {τct} on the value of the consumption good purchased at t , a stream

of flat rate taxes {τkt} on earnings from capital at t , and a stream of lump sum

taxes {τht} . Let {qt, qtηt, qtwt}∞t=0 be a price system, where qt is the price of

time t consumption and investment goods, qtηt is the price of renting capital

at time t , and qtwt is the price of renting labor at time t . All trades occur at

time 0 and all prices are measured in units of the time 0 consumption good.

The initial capital stock k0 is given.

a. Define a competitive equilibrium with taxes and government purchases.

b. Assume that gt = 0 for all t ≥ 0 and that all taxes are also zero. Find the

value k̄ of the steady state capital per worker. Find a formula for the saving

rate xt

f(kt)
at the steady state value of the capital stock.

c. Suppose that the initial capital stock k0 = .5k̄ , so that the economy starts

below its steady state level. Describe (i.e., draw graphs showing) the time paths

of {ct, kt+1, R̄t+1}∞t=0 where R̄t+1 ≡ [(1 − δ) + f ′(kt+1)] .

d. Starting from the same initial k0 as in part c, assume now that gt = ḡ =

φf(k0) > 0 for all t ≥ 0 where φ ∈ (0, 1 − δ). Assume that the government
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Time t

r 0
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Figure 11.3: Yield to maturity r0,t at time 0 as a function

of term to maturity t .

finances its purchases by imposing lump sum taxes. Describe (i.e., draw graphs)

showing the time paths of {ct, kt+1, R̄t+1}∞t=0 and compare them to the outcomes

that you obtained in part c. What outcomes differ? What outcomes, if any, are

identical across the two economies? Please explain.

e. Starting from the same initial k0 assumed in part c, assume now that gt =

ḡ = φf(k0) > 0 for all t ≥ 0 where φ ∈ (0, 1− δ). Assume that the government

must now finance these purchases by imposing a time-invariant tax rate τ̄k on

capital each period. The government cannot impose lump sum taxes or any other

kind of taxes to balance its budget. Please describe how to find a competitive

equilibrium.

Exercise 11.15

The structure of the economy is identical to that described in the previous

exercise. Let r0,t be the yield to maturity on a t period bond at time 0,

t = 1, 2, . . . , . At time 0, Bloomberg reports the term structure of interest rates

in figure 11.3. Please say what you can about the evolution of {ct, kt+1} in

this economy. Feel free to make any assumptions you need about fiscal policy

{gt, τkt, τct, τht}∞t=0 to make your answer coherent.
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(a)

Time t

k
t

(b)

k
t

Time t

k
0

k
0

Figure 11.4: Capital stock as function of time in two economies

with different values of γ .

Exercise 11.16

The structure of the economy is identical to that described in exercise 11.14. As-

sume that {gt, τct, τkt}∞t=0 are all constant sequences (their values don’t change

over time). In this problem, we ask you to infer differences across two economies

in which all aspects of the economy are identical except the parameter γ in the

utility function.30 In both economies, γ > 0. In one economy, γ > 0 is high

and in the other it is low. Among other identical features, the two economies

have identical government policies and identical initial capital stocks.

a. Please look at figure 11.4. Please tell which outcome for {kt+1}∞t=0 describes

the low γ economy, and which describes the high γ economy. Please explain

your reasoning.

b. Please look at figure 11.5. Please tell which outcome for {f ′(kt)}∞t=0 describes

the low γ economy, and which describes the high γ economy. Please explain

your reasoning.

c. Please plot time paths of consumption for the low γ and the high γ economies.

30 It is possible that lump sum taxes differ across the two economies. Assume that lump

sum taxes are adjusted to balance the government budget.
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(a)

Time t
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(b)

f’
(k

t)

Time t

ρ+ δ ρ+ δ

Figure 11.5: Marginal product of capital as function of time

in two economies with different values of γ .

Exercise 11.17

The structure of the economy is identical to that described in exercise 11.16.

Assume that {τct, τkt}∞t=0 are constant sequences (their values don’t change over

time) but that {gt}∞t=0 follows the path described in panel c of figure 11.6 – it

takes a once and for all jump at time t = 10. Lump sum taxes adjust to

balance the government budget. Panels a and b give consumption paths for

two economies that are identical except in one respect. In one of the economies,

the time 10 jump in g had been anticipated since time 0, while in the other,

the jump in g that occurs at time 10 is completely unanticipated at time 10.

Please tell which panel corresponds to which view of the arrival of news about

the path of gt . Please say as much as you can about how {kt+1}∞t=0 and the

interest rate behave in these two economies.

Exercise 11.18

A planner chooses sequences {ct, kt+1}∞t=0 to maximize

∞∑

t=0

βtu
(
ct − αct−1

)
, α ∈ (−1, 1), β ∈ (0, 1)

subject to

kt+1 + ct = f(kt) + (1 − δ)kt, δ ∈ (0, 1), ct ≥ 0

where
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Figure 11.6: Panels a and b: consumption ct as function

of time in two economies. Panel c: government expenditures

gt as a function of time.

u(x) =

{
x1−γ

1−γ if γ > 0 and γ /= 1

log(x) if γ = 1

and (k0, c−1) are given initial conditions. Here u′ > 0, u′′ < 0, and limc↓0 u
′(c) =

0. If α > 0, it indicates that the consumer has a ‘habit’; if α < 0, it indicates

that the consumption good is somewhat durable.

a. Find a complete set of first-order necessary conditions for the planner’s

problem.

b. Define an optimal steady state.

c. Find optimal steady state values for (k, f ′(k), c).

d. For given initial conditions (k0, c−1), describe as completely as you can an

algorithm for computing a path {ct, kt+1}∞t=0 that solves the planning problem.

Exercise 11.19 The Invisible Hand, I

Please consider once again the “Foreseen jump in g” experiment studied in

section 11.9. This exercise asks you to put yourself in the shoes of the repre-

sentative household and to think through the optimum problem that it faces

within a competitive equilibrium at time 0.

a. Please describe the signals that the market sends to the household after the

new {gt}∞t=0 policy materializes at time 0. Please list all of the objects that
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“the market” (also known as “the invisible hand”) presents as exogenous to the

representative household.

b. Please describe how the “Big K ” part of a “Big K , little k” argument is

used to determine all of those objects exogenous to the household. Hint: This

is accomplished by applying the shooting algorithm in section 11.9.

c. Please explain thoroughly how the representative household chooses to re-

spond to the signals presented to it by the market at time 0.

d. Given the objects that the market presents to the representative household,

please tell how you would could a shooting algorithm to compute the path of

{ct, kt+1}∞t=0 chosen by the household.

e. Please describe how to complete a “Big K , little k” argument using your

answers to parts c and d.

Exercise 11.20 The Invisible Hand, II

Please consider again the “Foreseen jump in τn ” experiment in section 11.12.

Like the previous problem, this one puts you into the shoes of the representative

household and asks you to think through the optimum problem that it faces

within a competitive equilibrium with distorting taxes at time 0.

a. Please describe the signals that the market sends to the household after the

new {τnt}∞t=0 policy materializes at time 0. Please list all objects that “the

market” presents as exogenous to the representative household.

b. Keeping in mind that there is a “Big K , little k” argument in the back-

ground, please provide a complete explanation for why the household chooses

the paths of {ct, nt, kt}∞t=0 displayed in figure 11.12.3.



Chapter 12
Recursive Competitive Equilibrium: II

12.1. Endogenous aggregate state variable

For pure endowment stochastic economies, chapter 8 described two types of com-

petitive equilibria, one in the style of Arrow and Debreu with markets that con-

vene at time 0 and trade a complete set of history-contingent securities, another

with markets that meet each period and trade a complete set of one-period-ahead

state-contingent securities called Arrow securities. Though their price systems

and trading protocols differ, both types of equilibria support identical equilib-

rium allocations. Chapter 8 described how to transform the Arrow-Debreu price

system into one for pricing Arrow securities. The key step in transforming an

equilibrium with time 0 trading into one with sequential trading was to account

for how individuals’ wealth evolve as time passes in a time 0 trading economy.

In a time 0 trading economy, individuals do not make any trades other than

those executed in period 0, but the present value of those portfolios change as

time passes and as uncertainty gets resolved. So in period t after some history

st , we used the Arrow-Debreu prices to compute the value of an individual’s

purchased claims to current and future goods net of his outstanding liabilities.

We could then show that these wealth levels (and the associated consumption

choices) could also be attained in a sequential-trading economy where there are

only markets in one-period Arrow securities that reopen in each period.

In chapter 8 we also demonstrated how to obtain a recursive formulation

of the equilibrium with sequential trading. This required us to assume that

individuals’ endowments were governed by a Markov process. Under that as-

sumption we could identify a state vector in terms of which the Arrow securities

could be cast. This (aggregate) state vector then became a component of the

state vector for each individual’s problem. This transformation of price systems

is easy in the pure exchange economies of chapter 8 because in equilibrium, the

relevant state variable, wealth, is a function solely of the current realization

of the exogenous Markov state variable. The transformation is more subtle in

economies in which part of the aggregate state is endogenous in the sense that it

– 471 –
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emerges from the history of equilibrium interactions of agents’ decisions. In this

chapter, we use the basic stochastic growth model (sometimes also called the

real business cycle model) as a laboratory for moving from an equilibrium with

time 0 trading to a sequential equilibrium with trades of Arrow securities.1

We also formulate a recursive competitive equilibrium with trading in Arrow

securities by using a version of the “Big K , little k” device that is often used

in macroeconomics.

12.2. The stochastic growth model

Here we spell out the basic ingredients of the stochastic growth model: prefer-

ences, endowment, technology, and information. The environment is the same

as in chapter 11 except that we now allow for a stochastic technology level. In

each period t ≥ 0, there is a realization of a stochastic event st ∈ S . Let the

history of events up to time t be denoted st = [st, st−1, . . . , s0] . The uncon-

ditional probability of observing a particular sequence of events st is given by

a probability measure πt(s
t). We write conditional probabilities as πτ (s

τ |st),
which is the probability of observing sτ conditional on the realization of st .

In this chapter, we assume that the state s0 in period 0 is nonstochastic, and

hence π0(s0) = 1 for a particular s0 ∈ S . We use st as a commodity space in

which goods are differentiated by histories.

A representative household has preferences over nonnegative streams of

consumption ct(s
t) and leisure ℓt(s

t) that are ordered by

∞∑

t=0

∑

st

βtu[ct(s
t), ℓt(s

t)]πt(s
t) (12.2.1)

where β ∈ (0, 1) and u is strictly increasing in its two arguments, twice contin-

uously differentiable, strictly concave, and satisfies the Inada conditions

lim
c→0

uc(c, ℓ) = lim
ℓ→0

uℓ(c, ℓ) = ∞.

1 The stochastic growth model was formulated and fully analyzed by Brock and Mirman

(1972). It is a workhorse for studying macroeconomic fluctuations. Kydland and Prescott

(1982) used the framework to study quantitatively the importance of persistent technology

shocks for business cycle fluctuations. Other researchers have used the stochastic growth

model as a point of departure when exploring the implications of injecting various frictions

into that otherwise frictionless environment.
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In each period, the representative household is endowed with one unit of

time that can be devoted to leisure ℓt(s
t) or labor nt(s

t):

1 = ℓt(s
t) + nt(s

t). (12.2.2)

The only other endowment is a capital stock k0 at the beginning of period 0.

The technology is

ct(s
t) + xt(s

t) ≤ At(s
t)F (kt(s

t−1), nt(s
t)), (12.2.3a)

kt+1(s
t) = (1− δ)kt(s

t−1) + xt(s
t), (12.2.3b)

where F is a twice continuously differentiable, constant-returns-to-scale pro-

duction function with inputs capital kt(s
t−1) and labor nt(s

t), and At(s
t)

is a stochastic process of Harrod-neutral technology shocks. Outputs are the

consumption good ct(s
t) and the investment good xt(s

t). In (12.2.3b), the

investment good augments a capital stock that is depreciating at the rate δ .

Negative values of xt(s
t) are permissible, which means that the capital stock

can be reconverted into the consumption good.

We assume that the production function satisfies standard assumptions of

positive but diminishing marginal products,

Fi(k, n) > 0, Fii(k, n) < 0, for i = k, n;

and the Inada conditions,

lim
k→0

Fk(k, n) = lim
n→0

Fn(k, n) = ∞,

lim
k→∞

Fk(k, n) = lim
n→∞

Fn(k, n) = 0.

Since the production function has constant returns to scale, we can define

F (k, n) ≡ nf(k̂) where k̂ ≡ k

n
. (12.2.4)

Another property of a linearly homogeneous function F (k, n) is that its first

derivatives are homogeneous of degree 0, and thus the first derivatives are func-

tions only of the ratio k̂ . In particular, we have

Fk(k, n) =
∂ nf (k/n)

∂ k
= f ′(k̂), (12.2.5a)

Fn(k, n) =
∂ nf (k/n)

∂ n
= f(k̂)− f ′(k̂)k̂. (12.2.5b)
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12.3. Lagrangian formulation of the planning problem

The planner chooses an allocation {ct(st), ℓt(st), xt(st), nt(st), kt+1(s
t)}∞t=0 to

maximize (12.2.1) subject to (12.2.2) and (12.2.3), the initial capital stock k0 ,

and the stochastic process for the technology level At(s
t). To solve this planning

problem, we form the Lagrangian

L =

∞∑

t=0

∑

st

βtπt(s
t){u(ct(st), 1− nt(s

t))

+ µt(s
t)[At(s

t)F (kt(s
t−1), nt(s

t)) + (1 − δ)kt(s
t−1)− ct(s

t)− kt+1(s
t)]}

where µt(s
t) is a process of Lagrange multipliers on the technology constraint.

First-order conditions with respect to ct(s
t) , nt(s

t), and kt+1(s
t), respectively,

are

uc
(
st
)
= µt(s

t), (12.3.1a)

uℓ
(
st
)
= uc

(
st
)
At(s

t)Fn
(
st
)
, (12.3.1b)

uc
(
st
)
πt(s

t) = β
∑

st+1|st

uc
(
st+1

)
πt+1

(
st+1

)

[
At+1

(
st+1

)
Fk
(
st+1

)
+ (1− δ)

]
, (12.3.1c)

where the summation over st+1|st means that we sum over all possible histories

s̃t+1 such that s̃t = st .

12.4. Time 0 trading: Arrow-Debreu securities

In the style of Arrow and Debreu, we can support the allocation that solves

the planning problem by a competitive equilibrium with time 0 trading of a

complete set of date- and history-contingent securities. Trades occur among a

representative household and two types of representative firms.2

We let [q0, w0, r0, pk0] be a price system where pk0 is the price of a unit of

the initial capital stock, and each of q0 , w0 , and r0 is a stochastic process of

2 One can also support the allocation that solves the planning problem with a less de-

centralized setting with only the first of our two types of firms, and in which the decision for

making physical investments is assigned to the household. We assign that decision to a second

type of firm because we want to price more items, in particular, the capital stock.
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prices for output and for renting labor and capital, respectively, and the time

t component of each is indexed by the history st . A representative household

purchases consumption goods from a type I firm and sells labor services to the

type I firm that operates the production technology (12.2.3a). The household

owns the initial capital stock k0 and at date 0 sells it to a type II firm. The

type II firm operates the capital storage technology (12.2.3b), purchases new

investment goods xt from a type I firm, and rents stocks of capital back to the

type I firm.

We now describe the problems of the representative household and the two

types of firms in the economy with time 0 trading.

12.4.1. Household

The household maximizes

∑

t

∑

st

βtu
[
ct(s

t), 1− nt(s
t)
]
πt(s

t) (12.4.1)

subject to

∞∑

t=0

∑

st

q0t (s
t)ct(s

t) ≤
∞∑

t=0

∑

st

w0
t (s

t)nt(s
t) + pk0k0. (12.4.2)

First-order conditions with respect to ct(s
t) and nt(s

t) , respectively, are

βtuc
(
st
)
πt(s

t) = ηq0t (s
t), (12.4.3a)

βtuℓ
(
st
)
πt(s

t) = ηw0
t (s

t), (12.4.3b)

where η > 0 is a multiplier on the budget constraint (12.4.2).
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12.4.2. Firm of type I

The representative firm of type I operates the production technology (12.2.3a)

with capital and labor that it rents at market prices. For each period t and

each realization of history st , the firm enters into state-contingent contracts at

time 0 to rent capital kIt (s
t) and labor services nt(s

t). The type I firm seeks

to maximize

∞∑

t=0

∑

st

{
q0t (s

t)
[
ct(s

t) + xt(s
t)
]
− r0t (s

t)kIt
(
st
)
− w0

t (s
t)nt(s

t)
}

(12.4.4)

subject to

ct(s
t) + xt(s

t) ≤ At(s
t)F

(
kIt
(
st
)
, nt(s

t)
)
. (12.4.5)

After substituting (12.4.5) into (12.4.4) and invoking (12.2.4), the firm’s ob-

jective function can be expressed alternatively as

∞∑

t=0

∑

st

nt(s
t)
{
q0t (s

t)At(s
t)f
(
k̂It
(
st
))

− r0t (s
t)k̂It

(
st
)
− w0

t (s
t)
}

(12.4.6)

and the maximization problem can then be decomposed into two parts. First,

conditional on operating the production technology in period t and history st ,

the firm solves for the profit-maximizing capital-labor ratio, denoted kI⋆t (st).

Second, given that capital-labor ratio kI⋆t (st), the firm determines the profit-

maximizing level of its operation by solving for the optimal employment level,

denoted n⋆t (s
t).

The firm finds the profit-maximizing capital-labor ratio by maximizing the

expression in curly brackets in (12.4.6). The first-order condition with respect

to k̂It (s
t) is

q0t (s
t)At(s

t)f ′
(
k̂It
(
st
))

− r0t (s
t) = 0 . (12.4.7)

At the optimal capital-labor ratio k̂I⋆t (st) that satisfies (12.4.7), the firm eval-

uates the expression in curly brackets in (12.4.6) in order to determine the

optimal level of employment nt(s
t). In particular, nt(s

t) is optimally set equal

to zero or infinity if the expression in curly brackets in (12.4.6) is strictly nega-

tive or strictly positive, respectively. However, if the expression in curly brackets

is zero in some period t and history st , the firm would be indifferent to the level

of nt(s
t), since profits are then equal to zero for all levels of operation in that
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period and state. Here, we summarize the optimal employment decision by us-

ing equation (12.4.7) to eliminate r0t (s
t) in the expression in curly brackets in

(12.4.6);

if
{
q0t (s

t)At(s
t)
[
f
(
k̂I⋆t
(
st
))

− f ′
(
k̂I⋆t

(
st
))

k̂I⋆t
(
st
)]

− w0
t (s

t)
}





< 0, then n⋆t (s
t) = 0;

= 0, then n⋆t (s
t) is indeterminate;

> 0, then n⋆t (s
t) = ∞.

(12.4.8)

In an equilibrium, both kIt (s
t) and nt(s

t) are strictly positive and finite, so

expressions (12.4.7) and (12.4.8) imply the following equilibrium prices:

q0t (s
t)At(s

t)Fk
(
st
)
= r0t (s

t) (12.4.9a)

q0t (s
t)At(s

t)Fn
(
st
)
= w0

t (s
t) (12.4.9b)

where we have invoked (12.2.5).

12.4.3. Firm of type II

The representative firm of type II operates technology (12.2.3b) to transform

output into capital. The type II firm purchases capital at time 0 from the house-

hold sector and thereafter invests in new capital, earning revenues by renting

capital to the type I firm. It maximizes

−pk0kII0 +

∞∑

t=0

∑

st

{
r0t (s

t)kIIt
(
st−1

)
− q0t (s

t)xt(s
t)
}

(12.4.10)

subject to

kIIt+1

(
st
)
= (1− δ) kIIt

(
st−1

)
+ xt

(
st
)
. (12.4.11)

Note that the firm’s capital stock in period 0, kII0 , is bought without any un-

certainty about the rental price in that period while the investment in capital

for a future period t , kIIt (st−1), is conditioned on the realized history st−1 .

Thus, the type II firm manages the risk associated with technology constraint

(12.2.3b) that states that capital must be assembled one period prior to be-

coming an input for production. In contrast, the type I firm of the previous

subsection can choose how much capital kIt (s
t) to rent in period t conditioned

on history st .
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After substituting (12.4.11) into (12.4.10) and rearranging, the type II

firm’s objective function can be written as

kII0
{
−pk0 + r00 (s0) + q00 (s0) (1− δ)

}
+

∞∑

t=0

∑

st

kIIt+1

(
st
)

·
{
−q0t

(
st
)
+
∑

st+1|st

[
r0t+1

(
st+1

)
+ q0t+1

(
st+1

)
(1− δ)

]
}
, (12.4.12)

where the firm’s profit is a linear function of investments in capital. The profit-

maximizing level of the capital stock kIIt+1(s
t) in expression (12.4.12) is equal to

zero or infinity if the associated multiplicative term in curly brackets is strictly

negative or strictly positive, respectively. However, for any expression in curly

brackets in (12.4.12) that is zero, the firm would be indifferent to the level

of kIIt+1(s
t), since profits then equal zero for all levels of investment. In an

equilibrium, kII0 and kIIt+1(s
t) are strictly positive and finite, so each expression

in curly brackets in (12.4.12) must equal zero, and hence equilibrium prices

must satisfy

pk0 = r00 (s0) + q00 (s0) (1− δ) , (12.4.13a)

q0t
(
st
)
=

∑

st+1|st

[
r0t+1

(
st+1

)
+ q0t+1

(
st+1

)
(1− δ)

]
. (12.4.13b)

12.4.4. Equilibrium prices and quantities

According to equilibrium conditions (12.4.9), each input in the production tech-

nology is paid its marginal product, and hence profit maximization of the type I

firm ensures an efficient allocation of labor services and capital. But nothing is

said about the equilibrium quantities of labor and capital. Profit maximization

of the type II firm imposes no-arbitrage restrictions (12.4.13) across prices pk0

and {r0t (st), q0t (st)} . But nothing is said about the specific equilibrium value of

an individual price. To solve for equilibrium prices and quantities, we turn to

the representative household’s first-order conditions (12.4.3).

After substituting (12.4.9b) into the household’s first-order condition (12.4.3b),

we obtain

βtuℓ
(
st
)
πt(s

t) = ηq0t
(
st
)
At
(
st
)
Fn
(
st
)
; (12.4.14a)

and then by substituting (12.4.13b) and (12.4.9a) into (12.4.3a),
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βtuc
(
st
)
πt(s

t) = η
∑

st+1|st

[
r0t+1

(
st+1

)
+ q0t+1

(
st+1

)
(1− δ)

]

= η
∑

st+1|st

q0t+1

(
st+1

) [
At+1

(
st+1

)
Fk
(
st+1

)
+ (1− δ)

]
. (12.4.14b)

Next, we use q0t (s
t) = βtuc(s

t)πt(s
t)/η as given by the household’s first-order

condition (12.4.3a) and the corresponding expression for q0t+1(s
t+1) to substi-

tute into (12.4.14a) and (12.4.14b), respectively. This step produces expres-

sions identical to the planner’s first-order conditions (12.3.1b) and (12.3.1c),

respectively. In this way, we have verified that the allocation in the competitive

equilibrium with time 0 trading is the same as the allocation that solves the

planning problem.

Given the equivalence of allocations, it is standard to compute the com-

petitive equilibrium allocation by solving the planning problem since the latter

problem is a simpler one. We can compute equilibrium prices by substituting

the allocation from the planning problem into the household’s and firms’ first-

order conditions. All relative prices are then determined, and in order to pin

down absolute prices, we would also have to pick a numeraire. Any such nor-

malization of prices is tantamount to setting the multiplier η on the household’s

present value budget constraint equal to an arbitrary positive number. For ex-

ample, if we set η = 1, we are measuring prices in units of marginal utility of

the time 0 consumption good. Alternatively, we can set q00(s0) = 1 by setting

η = uc(s0). We can compute q0t (s
t) from (12.4.3a), w0

t (s
t) from (12.4.3b),

and r0t (s
t) from (12.4.9a). Finally, we can compute pk0 from (12.4.13a) to get

pk0 = r00(s0) + q00(s0)(1 − δ).
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12.4.5. Implied wealth dynamics

Even though trades are only executed at time 0 in the Arrow-Debreu market

structure, we can study how the representative household’s wealth evolves over

time. For that purpose, after a given history st , we convert all prices, wages,

and rental rates that are associated with current and future deliveries so that

they are expressed in terms of time t , history st consumption goods, i.e., we

change the numeraire:

qtτ (s
τ ) ≡ q0τ (s

τ )

q0t (s
t)

= βτ−t
uc (s

τ )

uc (st)
πτ
(
sτ |st

)
, (12.4.15a)

wtτ (s
τ ) ≡ w0

τ (s
τ )

q0t (s
t)
, (12.4.15b)

rtτ (s
τ ) ≡ r0τ (s

τ )

q0t (s
t)
. (12.4.15c)

In chapter 8 we asked the question, what is the implied wealth of a house-

hold at time t after history st when excluding the endowment stream? Here

we ask the same question except that now instead of endowments, we ex-

clude the value of labor. For example, the household’s net claim to deliv-

ery of goods in a future period τ ≥ t , contingent on history sτ , is given by

[qtτ (s
τ )cτ (s

τ )− wtτ (s
τ )nτ (s

τ )] , as expressed in terms of time t , history st con-

sumption goods. Thus, the household’s wealth, or the value of all its current

and future net claims, expressed in terms of the date t , history st consumption

good, is

Υt(s
t) ≡

∞∑

τ=t

∑

sτ |st

{
qtτ (s

τ )cτ (s
τ )− wtτ (s

τ )nτ (s
τ )
}

=

∞∑

τ=t

∑

sτ |st

{
qtτ (s

τ )
[
Aτ (s

τ )F (kτ (s
τ−1), nτ (s

τ ))

+ (1− δ)kτ (s
τ−1)− kτ+1(s

τ )
]
− wtτ (s

τ )nτ (s
τ )
}

=

∞∑

τ=t

∑

sτ |st

{
qtτ (s

τ )
[
Aτ (s

τ )
(
Fk(s

τ )kτ (s
τ−1) + Fn(s

τ )nτ (s
τ )
)

+ (1− δ)kτ (s
τ−1)− kτ+1(s

τ )
]
− wtτ (s

τ )nτ (s
τ )
}

=

∞∑

τ=t

∑

sτ |st

{
rtτ (s

τ )kτ (s
τ−1) + qtτ (s

τ )
[
(1− δ)kτ (s

τ−1)− kτ+1(s
τ )
]}
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= rtt(s
t)kt(s

t−1) + qtt(s
t)(1 − δ)kt(s

t−1)

+

∞∑

τ=t+1

∑

sτ−1|st

{ ∑

sτ |sτ−1

[
rtτ (s

τ ) + qtτ (s
τ )(1− δ)

]
− qtτ−1(s

τ−1)

}
kτ (s

τ−1)

=
[
rtt(s

t) + (1 − δ)
]
kt(s

t−1), (12.4.16)

where the first equality uses the equilibrium outcome that consumption is equal

to the difference between production and investment in each period, the second

equality follows from Euler’s theorem on linearly homogeneous functions,3 the

third equality invokes equilibrium input prices in (12.4.9), the fourth equality is

merely a rearrangement of terms, and the final, fifth equality acknowledges that

qtt(s
t) = 1 and that each term in curly brackets is zero because of equilibrium

price condition (12.4.13b).

12.5. Sequential trading: Arrow securities

As in chapter 8, we now demonstrate that sequential trading in one-period Arrow

securities provides an alternative market structure that preserves the allocation

from the time 0 trading equilibrium. In the production economy with sequential

trading, we will also have to include markets for labor and capital services that

reopen in each period.

We guess that at time t after history st , there exist a wage rate w̃t(s
t),

a rental rate r̃t(s
t), and Arrow security prices Q̃t(st+1|st). The pricing kernel

Q̃t(st+1|st) is to be interpreted as follows: Q̃t(st+1|st) gives the price of one

unit of time t + 1 consumption, contingent on the realization st+1 at t + 1,

when the history at t is st .

3 According to Euler’s theorem on linearly homogeneous functions, our constant-returns-

to-scale production function satisfies

F (k, n) = Fk(k, n) k + Fn(k, n)n.
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12.5.1. Household

At each date t ≥ 0 after history st , the representative household buys con-

sumption goods c̃t(s
t), sells labor services ñt(s

t), and trades claims to date

t+1 consumption, whose payment is contingent on the realization of st+1 . Let

ãt(s
t) denote the claims to time t consumption that the household brings into

time t in history st . Thus, the household faces a sequence of budget constraints

for t ≥ 0, where the time t , history st budget constraint is

c̃t(s
t) +

∑

st+1

ãt+1(st+1, s
t)Q̃t(st+1|st) ≤ w̃t(s

t)ñt(s
t) + ãt(s

t), (12.5.1)

where {ãt+1(st+1, s
t)} is a vector of claims on time t + 1 consumption, one

element of the vector for each value of the time t+ 1 realization of st+1 .

To rule out Ponzi schemes, we must impose borrowing constraints on the

household’s asset position. We could follow the approach of chapter 8 and com-

pute state-contingent natural debt limits, where the counterpart to the earlier

present value of the household’s endowment stream would be the present value

of the household’s time endowment. Alternatively, we just impose that the

household’s indebtedness in any state next period, −ãt+1(st+1, s
t), is bounded

by some arbitrarily large constant. Such an arbitrary debt limit works well for

the following reason. As long as the household is constrained so that it can-

not run a true Ponzi scheme with an unbounded budget constraint, equilibrium

forces will ensure that the representative household willingly holds the market

portfolio. In the present setting, we can for example set that arbitrary debt

limit equal to zero, as will become clear as we go along.

Let ηt(s
t) and νt(s

t; st+1) be the nonnegative Lagrange multipliers on the

budget constraint (12.5.1) and the borrowing constraint with an arbitrary debt

limit of zero, respectively, for time t and history st . The Lagrangian can then

be formed as

L =
∞∑

t=0

∑

st

{
βtu(c̃t(s

t), 1− ñt(s
t))πt(s

t)

+ ηt(s
t)
[
w̃t(s

t)ñt(s
t) + ãt(s

t)− c̃t(s
t)−

∑

st+1

ãt+1(st+1, s
t)Q̃t(st+1|st)

]

+ νt(s
t; st+1)ãt+1(s

t+1)
}
,

for a given initial wealth level ã0 . In an equilibrium, the representative house-

hold will choose interior solutions for {c̃t(st), ñt(st)}∞t=0 because of the assumed
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Inada conditions. The Inada conditions on the utility function ensure that the

household will set neither c̃t(s
t) nor ℓt(s

t) equal to zero, i.e., ñt(s
t) < 1. The

Inada conditions on the production function guarantee that the household will

always find it desirable to supply some labor, ñt(s
t) > 0. Given these interior

solutions, the first-order conditions for maximizing L with respect to c̃t(s
t),

ñt(s
t) and {ãt+1(st+1, s

t)}st+1 are

βtuc(c̃t(s
t), 1 − ñt(s

t))πt(s
t)− ηt(s

t) = 0 , (12.5.2a)

−βtuℓ(c̃t(st), 1− ñt(s
t))πt(s

t) + ηt(s
t)w̃t(s

t) = 0 , (12.5.2b)

−ηt(st)Q̃t(st+1|st) + νt(s
t; st+1) + ηt+1(st+1, s

t) = 0 , (12.5.2c)

for all st+1 , t , s
t . Next, we proceed under the conjecture that the arbitrary debt

limit of zero will not be binding, and hence the Lagrange multipliers νt(s
t; st+1)

are all equal to zero. After setting those multipliers equal to zero in equation

(12.5.2c), the first-order conditions imply the following conditions for the opti-

mal choices of consumption and labor:

w̃t(s
t) =

uℓ(c̃t(s
t), 1− ñt(s

t))

uc(c̃t(st), 1− ñt(st))
, (12.5.3a)

Q̃t(st+1|st) = β
uc(c̃t+1(s

t+1), 1− ñt+1(s
t+1))

uc(c̃t(st), 1− ñt(st))
πt(s

t+1|st), (12.5.3b)

for all t , st , and st+1 .

12.5.2. Firm of type I

At each date t ≥ 0 after history st , a type I firm is a production firm that

chooses a quadruple {c̃t(st), x̃t(st), k̃It (st), ñt(st)} to solve a static optimum

problem:

max
{
c̃t(s

t) + x̃t(s
t)− r̃t(s

t)k̃It (s
t)− w̃t(s

t)ñt(s
t)
}

(12.5.4)

subject to

c̃t(s
t) + x̃t(s

t) ≤ At(s
t)F (k̃It (s

t), ñt(s
t)). (12.5.5)

The zero-profit conditions are

r̃t(s
t) = At(s

t)Fk(s
t), (12.5.6a)

w̃t(s
t) = At(s

t)Fn(s
t). (12.5.6b)
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If conditions (12.5.6) are violated, the type I firm either makes infinite profits by

hiring infinite capital and labor, or else it makes negative profits for any positive

output level, and therefore shuts down. If conditions (12.5.6) are satisfied, the

firm makes zero profits and its size is indeterminate. The firm of type I is

willing to produce any quantities of c̃t(s
t) and x̃t(s

t) that the market demands,

provided that conditions (12.5.6) are satisfied.

12.5.3. Firm of type II

A type II firm transforms output into capital, stores capital, and earns its rev-

enues by renting capital to the type I firm. Because of the technological assump-

tion that capital can be converted back into the consumption good, we can with-

out loss of generality consider a two-period optimization problem where a type

II firm decides how much capital k̃IIt+1(s
t) to store at the end of period t after

history st in order to earn a stochastic rental revenue r̃t+1(s
t+1) k̃IIt+1(s

t) and

liquidation value (1−δ) k̃IIt+1(s
t) in the following period. The firm finances itself

by issuing state-contingent debt to the households, so future income streams can

be expressed in today’s values by using prices Q̃t(st+1|st). Thus, at each date

t ≥ 0 after history st , a type II firm chooses k̃IIt+1(s
t) to solve the optimum

problem

max k̃IIt+1(s
t)
{
−1 +

∑

st+1

Q̃t(st+1|st)
[
r̃t+1(s

t+1) + (1− δ)
]}
. (12.5.7)

The zero-profit condition is

1 =
∑

st+1

Q̃t(st+1|st)
[
r̃t+1(s

t+1) + (1− δ)
]
. (12.5.8)

The size of the type II firm is indeterminate. So long as condition (12.5.8) is

satisfied, the firm breaks even at any level of k̃IIt+1(s
t). If condition (12.5.8) is not

satisfied, either it can earn infinite profits by setting k̃IIt+1(s
t) to be arbitrarily

large (when the right side exceeds the left), or it earns negative profits for any

positive level of capital (when the right side falls short of the left), and so chooses

to shut down.
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12.5.4. Equilibrium prices and quantities

We leave it to the reader to follow the approach taken in chapter 8 to show the

equivalence of allocations attained in the sequential equilibrium and the time

0 equilibrium, {c̃t(st), ℓ̃t(st), x̃t(st), ñt(st), k̃t+1(s
t)}∞t=0 = {ct(st), ℓt(st), xt(st),

nt(s
t), kt+1(s

t)}∞t=0 . The trick is to guess that the prices in the sequential equi-

librium satisfy

Q̃t(st+1|st) = qtt+1(s
t+1), (12.5.9a)

w̃t(s
t) = wtt(s

t), (12.5.9b)

r̃t(s
t) = rtt(s

t). (12.5.9c)

The other set of guesses is that the representative household chooses asset port-

folios given by ãt+1(st+1, s
t) = Υt+1(s

t+1) for all st+1 . When showing that the

household can afford these asset portfolios together with the prescribed quanti-

ties of consumption and leisure, we will find that the required initial wealth is

equal to

ã0 = [r00(s0) + (1− δ)]k0 = pk0k0,

i.e., the household in the sequential equilibrium starts out at the beginning of

period 0 owning the initial capital stock, which is then sold to a type II firm at

the same competitive price as in the time 0 trading equilibrium.

12.5.5. Financing a type II firm

A type II firm finances purchases of k̃IIt+1(s
t) units of capital in period t after

history st by issuing one-period state-contingent claims that promise to pay

[
r̃t+1(s

t+1) + (1− δ)
]
k̃IIt+1(s

t)

consumption goods tomorrow in state st+1 . In units of today’s time t consump-

tion good, these payouts are worth

∑

st+1

Q̃t(st+1|st)
[
r̃t+1(s

t+1) + (1 − δ)
]
k̃IIt+1(s

t)

(by virtue of (12.5.8)). The firm breaks even by issuing these claims. Thus, the

firm of type II is entirely owned by its creditor, the household, and it earns zero

profits.
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Note that the economy’s end-of-period wealth as embodied in k̃IIt+1(s
t) in

period t after history st is willingly held by the representative household. This

follows immediately from fact that the household’s desired beginning-of-period

wealth next period is given by ãt+1(s
t+1) and is equal to Υt+1(s

t+1), as given

by (12.4.16). Thus, the equilibrium prices entice the representative household

to enter each future period with a strictly positive net asset level that is equal

to the value of the type II firm. We have then confirmed the correctness of

our earlier conjecture that the arbitrary debt limit of zero is not binding in the

household’s optimization problem.

12.6. Recursive formulation

Following the approach taken in chapter 8, we have established that the equi-

librium allocations are the same in the Arrow-Debreu economy with complete

markets at time 0 and in a sequential-trading economy with complete one-period

Arrow securities. This finding holds for an arbitrary technology process At(s
t),

defined as a measurable function of the history of events st which in turn are

governed by some arbitrary probability measure πt(s
t). At this level of general-

ity, all prices {Q̃t(st+1|st), w̃t(st), r̃t(st)} and the capital stock kt+1(s
t) in the

sequential-trading economy depend on the history st . That is, these objects are

time-varying functions of all past events {sτ}tτ=0 .

In order to obtain a recursive formulation and solution to both the social

planning problem and the sequential-trading equilibrium, we make the following

specialization of the exogenous forcing process for the technology level.
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12.6.1. Technology is governed by a Markov process

Let the stochastic event st be governed by a Markov process, [s ∈ S, π(s′|s),
π0(s0)] . We keep our earlier assumption that the state s0 in period 0 is non-

stochastic and hence π0(s0) = 1 for a particular s0 ∈ S . The sequences of

probability measures πt(s
t) on histories st are induced by the Markov process

via the recursions

πt(s
t) = π(st|st−1)π(st−1|st−2) . . . π(s1|s0)π0(s0).

Next, we assume that the aggregate technology level At(s
t) in period t is a

time-invariant measurable function of its level in the last period and the current

stochastic event st , i.e., At(s
t) = A

(
At−1(s

t−1), st
)
. For example, here we will

proceed with the multiplicative version

At(s
t) = stAt−1(s

t−1) = s0 s1 · · · stA−1,

given the initial value A−1 .

12.6.2. Aggregate state of the economy

The specialization of the technology process enables us to adapt the recursive

construction of chapter 8 to incorporate additional components of the state of

the economy. Besides information about the current value of the stochastic

event s , we need to know last period’s technology level, denoted A , in order to

determine current technology level, sA , and to forecast future technology levels.

This additional element A in the aggregate state vector does not constitute any

conceptual change from what we did in chapter 8. We are merely including one

more state variable that is a direct mapping from exogenous stochastic events,

and it does not depend on any endogenous outcomes.

But we also need to expand the aggregate state vector with an endogenous

component of the state of the economy, namely, the beginning-of-period capital

stock K . Given the new state vector X ≡ [K A s] , we are ready to explore

recursive formulations of both the planning problem and the sequential-trading

equilibrium. This state vector is a complete summary of the economy’s current

position. It is all that is needed for a planner to compute an optimal alloca-

tion and it is all that is needed for the “invisible hand” to call out prices and

implement the first-best allocation as a competitive equilibrium.
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We proceed as follows. First, we display the Bellman equation associated

with a recursive formulation of the planning problem. Second, we use the same

state vector X for the planner’s problem as a state vector in which to cast

the Arrow securities in a competitive economy with sequential trading. Then

we define a competitive equilibrium and show how the prices for the sequential

equilibrium are embedded in the decision rules and the value function of the

planning problem.

12.7. Recursive formulation of the planning problem

We use capital letters C,N,K to denote objects in the planning problem that

correspond to c, n, k , respectively, in the household’s and firms’ problems. We

shall eventually equate them, but not until we have derived an appropriate

formulation of the household’s and firms’ problems in a recursive competitive

equilibrium. The Bellman equation for the planning problem is

v(K,A, s) = max
C,N,K′

{
u(C, 1 −N) + β

∑

s′

π(s′|s)v(K ′, A′, s′)

}
(12.7.1)

subject to

K ′ + C ≤ AsF (K,N) + (1− δ)K, (12.7.2a)

A′ = As. (12.7.2b)

Using the definition of the state vector X = [K A s] , we denote the optimal

policy functions as

C = ΩC(X), (12.7.3a)

N = ΩN (X), (12.7.3b)

K ′ = ΩK(X). (12.7.3c)

Equations (12.7.2b), (12.7.3c), and the Markov transition density π(s′|s) induce
a transition density Π(X ′|X) on the state X .

For convenience, define the functions

Uc(X) ≡ uc(Ω
C(X), 1− ΩN (X)), (12.7.4a)

Uℓ(X) ≡ uℓ(Ω
C(X), 1− ΩN (X)), (12.7.4b)

Fk(X) ≡ Fk(K,Ω
N (X)), (12.7.4c)

Fn(X) ≡ Fn(K,Ω
N(X)). (12.7.4d)
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The first-order conditions for the planner’s problem can be represented as4

Uℓ(X) = Uc(X)AsFn(X), (12.7.5a)

1 = β
∑

X′

Π(X ′|X)
Uc(X

′)

Uc(X)
[A′s′FK(X ′) + (1− δ)]. (12.7.5b)

12.8. Recursive formulation of sequential trading

We seek a competitive equilibrium with sequential trading of one-period-ahead

state-contingent securities (i.e., Arrow securities). To do this, we must use a

“Big K , little k” trick of the type used in chapter 7.

12.8.1. A “Big K , little k” device

Relative to the setup described in chapter 8, we have augmented the time t

state of the economy by both last period’s technology level At−1 and the current

aggregate value of the endogenous state variable Kt . We assume that decision

makers act as if their decisions do not affect current or future prices. In a

sequential market setting, prices depend on the state, of which Kt is part. Of

course, in the aggregate, decision makers choose the motion of Kt , so that we

require a device that makes them ignore this fact when they solve their decision

problems (we want them to behave as perfectly competitive price takers, not

monopolists). This consideration induces us to carry along both “Big K ” and

“little k” in our computations. Big K is an endogenous state variable5 that

is useful for forecasting prices. Big K is a component of the state that agents

regard as beyond their control when solving their optimum problems. Values of

little k are chosen by firms and consumers. While we distinguish k and K when

4 We are using the envelope condition

vK (K,A, s) = Uc(X)[AsFk(X) + (1− δ)].

5 More generally, Big K can be a vector of endogenous state variables that impinge on

equilibrium prices.
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posing the decision problems of the household and firms, to impose equilibrium

we set K = k after firms and consumers have optimized.

12.8.2. Price system

To decentralize the economy in terms of one-period Arrow securities, we need a

description of the aggregate state in terms of which one-period state-contingent

payoffs are defined. We proceed by guessing that the appropriate description

of the state is the same vector X that constitutes the state for the plan-

ning problem. We temporarily forget about the optimal policy functions for

the planning problem and focus on a decentralized economy with sequential

trading and one-period prices that depend on X . We specify price functions

r(X), w(X), Q(X ′|X), that represent, respectively, the rental price of capital,

the wage rate for labor, and the price of a claim to one unit of consumption next

period when next period’s state is X ′ and this period’s state is X . (Forgive

us for recycling the notation for r and w from the previous sections on the

formulation of history-dependent competitive equilibria with commodity space

st .) The prices are all measured in units of this period’s consumption good. We

also take as given an arbitrary candidate for the law of motion for K :

K ′ = G(X). (12.8.1)

Equation (12.8.1) together with (12.7.2b) and a given subjective transition den-

sity π̂(s′|s) induce a subjective transition density Π̂(X ′|X) for the state X . For

now, G and π̂(s′|s) are arbitrary. We wait until later to impose other equilib-

rium conditions, including rational expectations in the form of some restrictions

on G and π̂ .
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12.8.3. Household problem

The perceived law of motion (12.8.1) for K and the induced transition probabil-

ities Π̂(X ′|X) describe the beliefs of a representative household. The Bellman

equation of the household is

J(a,X) = max
c,n,a(X′)

{
u(c, 1− n) + β

∑

X′

J(a(X ′), X ′)Π̂(X ′|X)

}
(12.8.2)

subject to

c+
∑

X′

Q(X ′|X)a(X ′) ≤ w(X)n+ a. (12.8.3)

Here a represents the wealth of the household denominated in units of current

consumption goods and a(X ′) represents next period’s wealth denominated in

units of next period’s consumption good. Denote the household’s optimal policy

functions as

c = σc(a,X), (12.8.4a)

n = σn(a,X), (12.8.4b)

a(X ′) = σa(a,X ;X ′). (12.8.4c)

Let

uc(a,X) ≡ uc(σ
c(a,X), 1− σn(a,X)), (12.8.5a)

uℓ(a,X) ≡ uℓ(σ
c(a,X), 1− σn(a,X)). (12.8.5b)

Then we can represent the first-order conditions for the household’s problem as

uℓ(a,X) = uc(a,X)w(X), (12.8.6a)

Q(X ′|X) = β
uc(σ

a(a,X ;X ′), X ′)

uc(a,X)
Π̂(X ′|X). (12.8.6b)



492 Recursive Competitive Equilibrium: II

12.8.4. Firm of type I

Recall from subsection 12.5.2 the static optimum problem of a type I firm in

a sequential equilibrium. In the recursive formulation of that equilibrium, the

optimum problem of a type I firm can be written as

max
c,x,k,n

{c+ x− r(X)k − w(X)n} (12.8.7)

subject to

c+ x ≤ AsF (k, n). (12.8.8)

The zero-profit conditions are

r(X) = AsFk(k, n), (12.8.9a)

w(X) = AsFn(k, n). (12.8.9b)

12.8.5. Firm of type II

Recall from subsection 12.5.3 the optimum problem of a type II firm in a sequen-

tial equilibrium. In the recursive formulation of that equilibrium, the optimum

problem of a type II firm can be written as

max
k′

k′

{
−1 +

∑

X′

Q(X ′|X) [r(X ′) + (1− δ)]

}
. (12.8.10)

The zero-profit condition is

1 =
∑

X′

Q(X ′|X) [r(X ′) + (1 − δ)] . (12.8.11)
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12.9. Recursive competitive equilibrium

So far, we have taken the price functions r(X), w(X), Q(X ′|X) and the per-

ceived law of motion (12.8.1) for K ′ and the associated induced state transition

probability Π̂(X ′|X) as given arbitrarily. We now impose equilibrium condi-

tions on these objects and make them outcomes of the analysis.6

When solving their optimum problems, the household and firms take the

endogenous state variable K as given. However, we want K to be determined

by the equilibrium interactions of households and firms. Therefore, we impose

K = k after solving the optimum problems of the household and the two types

of firms. Imposing equality afterward makes the household and the firms be

price takers.

12.9.1. Equilibrium restrictions across decision rules

We shall soon define an equilibrium as a set of pricing functions, a perceived

law of motion for the K ′ , and an associated Π̂(X ′|X) such that when the firms

and the household take these as given, the household’s and firms’ decision rules

imply the law of motion for K (12.8.1) after substituting k = K and other

market clearing conditions. We shall remove the arbitrary nature of both G

and π̂ and therefore also Π̂ and thereby impose rational expectations.

We now proceed to find the restrictions that this notion of equilibrium

imposes across agents’ decision rules, the pricing functions, and the perceived

law of motion (12.8.1). If the state-contingent debt issued by the type II firm

is to match that demanded by the household, we must have

a(X ′) = [r(X ′) + (1− δ)]K ′, (12.9.1a)

and consequently beginning-of-period assets in a household’s budget constraint

(12.8.3) have to satisfy

a = [r(X) + (1− δ)]K. (12.9.1b)

By substituting equations (12.9.1) into a household’s budget constraint

(12.8.3), we get
∑

X′

Q(X ′|X)[r(X ′) + (1 − δ)]K ′

6 An important function of the rational expectations hypothesis is to remove agents’ ex-

pectations in the form of π̂ and Π̂ from the list of free parameters of the model.
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= [r(X) + (1− δ)]K + w(X)n− c. (12.9.2)

Next, by recalling equilibrium condition (12.8.11) and the fact that K ′ is a

predetermined variable when entering next period, it follows that the left side

of (12.9.2) is equal to K ′ . After also substituting equilibrium prices (12.8.9)

into the right side of (12.9.2), we obtain

K ′ = [AsFk(k, n) + (1− δ)]K +AsFn(k, n)n− c

= AsF (K,σn(a,X)) + (1− δ)K − σc(a,X), (12.9.3)

where the second equality invokes Euler’s theorem on linearly homogeneous

functions and equilibrium conditions K = k , N = n = σn(a,X) and C = c =

σc(a,X). To express the right side of equation (12.9.3) solely as a function of

the current aggregate state X = [K A s] , we also impose equilibrium condition

(12.9.1b)

K ′ = AsF (K,σn([r(X) + (1− δ)]K,X))

+ (1− δ)K − σc([r(X) + (1− δ)]K,X). (12.9.4)

Given the arbitrary perceived law of motion (12.8.1) for K ′ that underlies the

household’s optimum problem, the right side of (12.9.4) is the actual law of

motion for K ′ that is implied by the household’s and firms’ optimal decisions.

In equilibrium, we want G in (12.8.1) not to be arbitrary but to be an outcome.

We want to find an equilibrium perceived law of motion (12.8.1). By way of

imposing rational expectations, we require that the perceived and actual laws

of motion be identical. Equating the right sides of (12.9.4) and the perceived

law of motion (12.8.1) gives

G(X) =AsF (K,σn([r(X) + (1− δ)]K,X))

+ (1− δ)K − σc([r(X) + (1− δ)]K,X). (12.9.5)

Please remember that the right side of this equation is itself implicitly a func-

tion of G , so that (12.9.5) is to be regarded as instructing us to find a fixed

point equation of a mapping from a perceived G and a price system to an ac-

tual G . This functional equation requires that the perceived law of motion for

the capital stock G(X) equals the actual law of motion for the capital stock

that is determined jointly by the decisions of the household and the firms in a

competitive equilibrium.
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Definition: A recursive competitive equilibrium with Arrow securities is a price

system r(X), w(X), Q(X ′|X), a perceived law of motion K ′ = G(X) and asso-

ciated induced transition density Π̂(X ′|X), a household value function J(a,X),

and decision rules σc(a,X), σn(a, x), σa(a,X ;X ′) such that:

a. Given r(X), w(X), Q(X ′|X), Π̂(X ′|X), the functions σc(a,X), σn(a,X),

σa(a,X ;X ′) and the value function J(a,X) solve the household’s optimum

problem;

b. For all X , r(X) = AFk

(
K,σn([r(X) + (1 − δ)]K,X)

)
, and

w(X) = AFn

(
K,σn([r(X) + (1 − δ)]K,X)

)
;

c. Q(X ′|X) and r(X) satisfy (12.8.11);

d. The functions G(X), r(X), σc(a,X), σn(a,X) satisfy (12.9.5);

e. π̂ = π .

Item a enforces optimization by the household, given the prices it faces and

its expectations. Item b requires that the type I firm break even at every capital

stock and at the labor supply chosen by the household. Item c requires that the

type II firm break even. Market clearing is implicit when item d requires that

the perceived and actual laws of motion of capital are equal. Item e and the

equality of the perceived and actual G imply that Π̂ = Π. Thus, items d and

e impose rational expectations.

12.9.2. Using the planning problem

Rather than directly attacking the fixed point problem (12.9.5) that is the heart

of the equilibrium definition, we’ll guess a candidate G as well as a price system,

then describe how to verify that they form an equilibrium. As our candidate for

G , we choose the decision rule (12.7.3c) for K ′ from the planning problem. As

sources of candidates for the pricing functions, we again turn to the planning

problem and choose:

r(X) = AFk(X), (12.9.6a)

w(X) = AFn(X), (12.9.6b)

Q(X ′|X) = βΠ(X ′|X)
Uc(X

′)

Uc(X)
[A′s′FK(X ′) + (1− δ)]. (12.9.6c)
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In an equilibrium it will turn out that the household’s decision rules for con-

sumption and labor supply will match those chosen by the planner:7

ΩC(X) = σc([r(X) + (1 − δ)]K,X), (12.9.7a)

ΩN (X) = σn([r(X) + (1− δ)]K,X). (12.9.7b)

The key to verifying these guesses is to show that the first-order conditions

for both types of firms and the household are satisfied at these guesses. We

leave the details to an exercise. Here we are exploiting some consequences

of the welfare theorems, transported this time to a recursive setting with an

endogenous aggregate state variable.

12.10. Concluding remarks

The notion of a recursive competitive equilibrium was introduced by Lucas and

Prescott (1971) and Mehra and Prescott (1979). The application in this chapter

is in the spirit of those papers but differs substantially in details. In particular,

neither of those papers worked with Arrow securities, while the focus of this

chapter has been to manage an endogenous state vector in terms of which it is

appropriate to cast Arrow securities.

7 The two functional equations (12.9.7) state restrictions that a recursive competitive

equilibrium imposes across the household’s decision rules σ and the planner’s decision rules

Ω.
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A. The permanent income model revisited

This appendix is a variation on the theme that ‘many single agent models can

be reinterpreted as general equilibrium models’.

12.A.1. Reinterpreting the single-agent model

In this appendix, we cast the single-agent linear quadratic permanent income

model of section 2.12 of chapter 2 as a competitive equilibrium with time 0

trading of a complete set of history-contingent securities. We begin by reformu-

lating the model in that chapter as a planning problem. The planner has utility

functional

E0

∞∑

t=0

βtu(c̄t) (12.A.1)

where Et is the mathematical expectation conditioned on the consumer’s time

t information, c̄t is time t consumption, u(c) = −.5(γ − c̄t)
2 , and β ∈ (0, 1) is

a discount factor. The planner maximizes (12.A.1) by choosing a consumption,

borrowing plan {c̄t, bt+1}∞t=0 subject to the sequence of budget constraints

c̄t + bt = R−1bt+1 + yt (12.A.2)

where yt is an exogenous stationary endowment process, R is a constant gross

risk-free interest rate, −R−1bt ≡ k̄t is the stock of an asset that bears a risk free

one-period gross return of R , and b0 is a given initial condition. We assume that

R−1 = β and that the endowment process has the state-space representation

zt+1 = A22zt + C2wt+1 (12.A.3a)

yt = Uyzt (12.A.3b)

where wt+1 is an i.i.d. process with mean zero and identity contemporaneous

covariance matrix, A22 is a stable matrix, its eigenvalues being strictly below

unity in modulus, and Uy is a selection vector that identifies y with a particular

linear combination of zt . As shown in chapter 2, the solution of what we now

interpret as a planning problem can be represented as the following versions of

equations (2.12.9) and (2.12.20), respectively:

c̄t = (1− β)
[
Uy(I − βA22)

−1zt −Rk̄t
]

(12.A.4)

k̄t+1 = k̄t +RUy(I − βA22)
−1(A22 − I)zt. (12.A.5)
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We can represent the optimal consumption, capital accumulation path com-

pactly as
[
k̄t+1

zt+1

]
= A

[
k̄t

zt

]
+

[
0

C2

]
wt+1 (12.A.6)

c̄t = Sc

[
k̄t

zt

]
(12.A.7)

where the matrices A,Sc can readily be constructed from the solutions and

specifications just mentioned. In addition, it is useful to have at our disposal the

marginal utility of consumption process p0t ≡ (γ− c̄t), which can be represented

as

p0t (z
t) = Sp

[
k̄t

zt

]
(12.A.8)

and where Sp can be constructed easily from Sc . Solving equation (12.A.5)

recursively shows that kt+1 is a function kt+1(z
t; k0) of history zt . In equation

(12.A.8), k̄t encodes the history dependence of p0t (z
t).

Equations (12.A.6), (12.A.7), (12.A.8) together with the equation r0t = α

to be explained below turn out to be representations of the equilibrium price

system in the competitive equilibrium to which we turn next.

12.A.2. Decentralization and scaled prices

Let q0t (z
t) the time 0 price of a unit of time t consumption at history zt .

Let πt(z
t) the probability density of the history zt induced by the state-space

representation (12.A.3). Define the adjusted Arrow-Debreu price scaled by

discounting and probabilities as

p0t (z
t) =

q0t (z
t)

βtπt(zt)
. (12.A.9)

We find it convenient to express a representative consumer’s problem and a

representative firm’s problem in terms of these scaled Arrow-Debreu prices.

Evidently, the present value of consumption, for example, can be repre-

sented as
∞∑

t=0

∑

zt

q0t (z
t)ct(z

t) =
∞∑

t=0

∑

zt

βtp0t (z
t)ct(z

t)πt(z
t)

= E0

∞∑

t=0

βtpt(z
t)ct(z

t).
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Below, it will be convenient for us to represent present values as conditional

expectations of discounted sums as is done in the second line.

We let r0t (z
t) be the rental rate on capital, again scaled analogously to

(12.A.9). Both the consumer and the firm take these processes as given.

The consumer owns and operates the technology for accumulating capital.

The consumer owns the endowment process {yt}∞t=0 , which it sells to a firm

that operates a production technology. The consumer rents capital to the firm.

The firm uses the endowment and capital to produce output that it sells to the

consumer at a competitive price. The consumer divides his time t purchases

between consumption ct and gross investment xt .

12.A.2.1. The consumer

Let {p0t (zt), r0t (zt)}∞t=0 be a price system, each component of which takes the

form of a ‘scaled Arrow-Debreu price’ (attained by dividing a time-0 Arrow-

Debreu price by a discount factor times a probability, as in the previous subsec-

tion). The representative consumer’s problem is to choose processes {ct, kt+1}∞t=0

to maximize

−.5E0

∞∑

t=0

βt(γ − ct)
2 (12.A.10)

subject to

E0

∞∑

t=0

βtp0t (z
t)ot(z

t) = E0

∞∑

t=0

βt
(
p0t (z

t)yt + r0t (z
t)kt(z

t)
)

(12.A.11)

kt+1 = (1− δ)kt + xt (12.A.12)

ot(z
t) = ct(z

t) + xt(z
t) (12.A.13)

where k0 is a given initial condition. Here xt is gross investment and kt is

physical capital owned by the household and rented to firms. The consumer

purchases output ot = ct + xt from competitive firms. The consumer sells its

endowment yt and rents its capital kt to firms at prices p0t (z
t) and r0t (z

t).

Equation (12.A.12) is the law of motion for physical capital, where δ ∈ (0, 1) is

a depreciation rate.
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12.A.2.2. The firm

A competitive representative firm chooses processes {kt, ct, xt}∞t=0 to maximize

E0

∞∑

t=0

βt
{
p0t (z

t)ot(z
t)− p0t (z

t)yt − r0t (z
t)kt

}
(12.A.14)

subject to the physical technology

ot(z
t) = αkt + yt(zt), (12.A.15)

where α > 0. Since the marginal product of capital is α , a good guess is that

r0t (z
t) = α. (12.A.16)

12.A.3. Matching equilibrium and planning allocations

We impose the condition

α+ (1− δ) = R. (12.A.17)

This makes the gross rates of return in investment identical in the planning and

decentralized economies. In particular, if we substitute equation (12.A.12) into

equation (12.A.15) and remember that bt ≡ Rkt , we obtain (12.A.2).

It is straightforward to verify that the allocation {k̄t+1, c̄t}∞t=0 that solves

the planning problem is a competitive equilibrium allocation.

As in chapter 7, we have distinguished between the planning allocation

{k̄t+1, c̄t}∞t=0 that determines the equilibrium price functions defined in subsec-

tion 12.A.1 and the allocation chosen by the representative firm and the repre-

sentative consumer who face those prices as price takers. This is yet another

example of the ‘big K, little k’ device from chapter 7.
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12.A.4. Interpretation

As we saw in section 2.12 of chapter 2 and also in representation (12.A.4)

(12.A.5) here, what is now equilibrium consumption is a random walk. Why,

despite his preference for a smooth consumption path, does the representative

consumer accept fluctuations in his consumption? In the complete markets

economy of this appendix, the consumer believes that it is possible for him com-

pletely to smooth consumption over time and across histories by purchasing and

selling history contingent claims. But at the equilibrium prices facing him, the

consumer prefers to tolerate fluctuations in consumption over time and across

histories.





Chapter 13
Asset Pricing Theory

13.1. Introduction

Chapter 8 showed how an equilibrium price system for an economy with a com-

plete markets model could be used to determine the price of any redundant

asset. That approach allowed us to price any asset whose payoff could be syn-

thesized as a measurable function of the economy’s state. We could use either

the Arrow-Debreu time 0 prices or the prices of one-period Arrow securities to

price redundant assets.

We shall use this complete markets approach again later in this chapter and

in chapter 14. However, we begin with another frequently used approach, one

that does not require the assumption that there are complete markets. This ap-

proach spells out fewer aspects of the economy and assumes fewer markets, but

nevertheless derives testable intertemporal restrictions on prices and returns of

different assets, and also across those prices and returns and consumption alloca-

tions. This approach uses only the Euler equations for a maximizing consumer,

and supplies stringent restrictions without specifying a complete general equi-

librium model. In fact, the approach imposes only a subset of the restrictions

that would be imposed in a complete markets model. As we shall see in chapter

14, even these restrictions have proved difficult to reconcile with the data, the

equity premium being a widely discussed example.

Asset-pricing ideas have had diverse ramifications in macroeconomics. In

this chapter, we describe some of these ideas, including the important Modigliani-

Miller theorem asserting the irrelevance of firms’ asset structures. We describe

a closely related kind of Ricardian equivalence theorem.1

1 See Duffie (1996) for a comprehensive treatment of discrete- and continuous-time asset-

pricing theories. See Campbell, Lo, and MacKinlay (1997) for a summary of recent work on

empirical implementations.
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13.2. Euler equations

We now describe the optimization problem of a single agent who has the oppor-

tunity to trade two assets. Following Hansen and Singleton (1983), the house-

hold’s optimization by itself imposes ample restrictions on the comovements of

asset prices and the household’s consumption. These restrictions remain true

even if additional assets are made available to the agent, and so do not depend

on specifying the market structure completely. Later we shall study a general

equilibrium model with a large number of identical agents. Completing a gen-

eral equilibrium model may impose additional restrictions, but will leave intact

individual-specific versions of the ones to be derived here.

The agent has wealth At > 0 at time t and wants to use this wealth to

maximize expected lifetime utility,

Et

∞∑

j=0

βju(ct+j), 0 < β < 1, (13.2.1)

where Et denotes the mathematical expectation conditional on information

known at time t , β is a subjective discount factor, and ct+j is the agent’s

consumption in period t + j . The utility function u(·) is concave, strictly in-

creasing, and twice continuously differentiable.

To finance future consumption, the agent can transfer wealth over time

through bond and equity holdings. One-period bonds earn a risk-free real gross

interest rate Rt , measured in units of time t + 1 consumption good per time

t consumption good. Let Lt be gross payout on the agent’s bond holdings

between periods t and t + 1, payable in period t + 1 with a present value of

R−1
t Lt at time t . The variable Lt is negative if the agent issues bonds and

thereby borrows funds. The agent’s holdings of equity shares between periods t

and t+1 are denoted Nt , where a negative number indicates a short position in

shares. We impose the borrowing constraints Lt ≥ −bL and Nt ≥ −bN , where

bL ≥ 0 and bN ≥ 0.2 A share of equity entitles the owner to its stochastic

dividend stream yt . Let pt be the share price in period t net of that period’s

dividend. The budget constraint becomes

ct +R−1
t Lt + ptNt ≤ At, (13.2.2)

2 See chapters 8 and 18 for further discussions of natural and ad hoc borrowing constraints.
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and next period’s wealth is

At+1 = Lt + (pt+1 + yt+1)Nt. (13.2.3)

The stochastic dividend is the only source of exogenous fundamental uncer-

tainty, with properties to be specified as needed later. The agent’s maximization

problem is then a dynamic programming problem with the state at t being At

and current and past y ,3 and the controls being Lt and Nt . At interior solu-

tions, the Euler equations associated with controls Lt and Nt are

u′(ct)R
−1
t = Etβu

′(ct+1), (13.2.4)

u′(ct)pt = Etβ(yt+1 + pt+1)u
′(ct+1). (13.2.5)

These Euler equations give a number of insights into asset prices and consump-

tion. Before turning to these, we first note that an optimal solution to the agent’s

maximization problem must also satisfy the following transversality conditions:4

lim
k→∞

Etβ
ku′(ct+k)R

−1
t+kLt+k = 0, (13.2.6)

lim
k→∞

Etβ
ku′(ct+k)pt+kNt+k = 0. (13.2.7)

Heuristically, if any of the expressions in equations (13.2.6) and (13.2.7)

were strictly positive, the agent would be overaccumulating assets so that a

higher expected lifetime utility could be achieved by, for example, increasing

consumption today. The counterpart to such nonoptimality in a finite horizon

model would be that the agent dies with positive asset holdings. For reasons like

those in a finite horizon model, the agent would be happy if the two conditions

(13.2.6) and (13.2.7) could be violated on the negative side. But the market

would stop the agent from financing consumption by accumulating the debts

that would be associated with such violations of (13.2.6) and (13.2.7). No

other agent would want to make those loans.

3 Current and past y ’s enter as information variables. How many past y ’s appear in the

Bellman equation depends on the stochastic process for y .
4 For a discussion of transversality conditions, see Benveniste and Scheinkman (1982) and

Brock (1982).
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13.3. Martingale theories of consumption and stock
prices

In this section, we briefly recall some early theories of asset prices and consump-

tion, each of which is derived by making special assumptions about either Rt or

u′(c) in equations (13.2.4) and (13.2.5). These assumptions are too strong to be

consistent with much empirical evidence, but they are instructive benchmarks.

First, suppose that the risk-free interest rate is constant over time, Rt =

R > 1, for all t . Then equation (13.2.4) implies that

Etu
′(ct+1) = (βR)−1u′(ct), (13.3.1)

which is Robert Hall’s (1978) result that the marginal utility of consumption

follows a univariate linear first-order Markov process, so that no other variables

in the information set help to predict (to Granger cause) u′(ct+1), once lagged

u′(ct) has been included.5

As an example, with the constant-relative-risk-aversionutility function u(ct) =

(1− γ)−1c1−γt , equation (13.3.1) becomes

(βR)−1 = Et

(
ct+1

ct

)−γ

.

Using aggregate data, Hall tested implication (13.3.1) for the special case of

quadratic utility by testing for the absence of Granger causality from other

variables to ct .

Efficient stock markets are sometimes construed to mean that the price

of a stock ought to follow a martingale. Euler equation (13.2.5) shows that a

number of simplifications must be made to get a martingale property for the

stock price. We can transform the Euler equation

Etβ(yt+1 + pt+1)
u′(ct+1)

u′(ct)
= pt

by noting that for any two random variables x, z , we have the formula Etxz =

EtxEtz + covt(x, z), where covt(x, z) ≡ Et(x − Etx)(z − Etz). This formula

5 See Granger (1969) for his definition of causality. A random process zt is said not to

cause a random process xt if E(xt+1|xt, xt−1, . . . , zt, zt−1, . . .) = E(xt+1|xt, xt−1, . . .) . The

absence of Granger causality can be tested in several ways. A direct way is to compute the two

regressions mentioned in the preceding definition and test for their equality. An alternative

test was described by Sims (1972).
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defines the conditional covariance covt(x, z). Applying this formula in the pre-

ceding equation gives

βEt(yt+1 + pt+1)Et
u′(ct+1)

u′(ct)
+ βcovt

[
(yt+1 + pt+1) ,

u′(ct+1)

u′(ct)

]
= pt. (13.3.2)

To obtain a martingale theory of stock prices, it is necessary to assume, first,

that Etu
′(ct+1)/u

′(ct) is a constant, and second, that

covt

[
(yt+1 + pt+1) ,

u′(ct+1)

u′(ct)

]
= 0.

These conditions are obviously very restrictive and will only hold under very

special circumstances. For example, a sufficient assumption is that agents are

risk neutral, so that u(ct) is linear in ct and u′(ct) becomes independent of ct .

In this case, equation (13.3.2) implies that

Etβ(yt+1 + pt+1) = pt. (13.3.3)

Equation (13.3.3) states that, adjusted for dividends and discounting, the share

price follows a first-order univariate Markov process and that no other variables

Granger cause the share price. These implications have been tested extensively

in the literature on efficient markets.6

We also note that the stochastic difference equation (13.3.3) has the class

of solutions

pt = Et

∞∑

j=1

βjyt+j + ξt

(
1

β

)t
, (13.3.4)

where ξt is any random process that obeys Etξt+1 = ξt (that is, ξt is a “martin-

gale”). Equation (13.3.4) expresses the share price pt as the sum of discounted

expected future dividends and a “bubble term” unrelated to any fundamentals.

In the general equilibrium model that we will describe later, this bubble term

always equals zero.

6 For a survey of this literature, see Fama (1976a). See Samuelson (1965) for the theory

and Roll (1970) for an application to the term structure of interest rates.
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13.4. Equivalent martingale measure

This section describes adjustments for risk and dividends that convert an as-

set price into a martingale. We return to the setting of chapter 8 and assume

that the state st evolves according to a Markov chain with transition proba-

bilities π(st+1|st). Let an asset pay a stream of dividends {d(st)}t≥0 . The

cum-dividend7 time t price of this asset, a(st), can be expressed recursively as

a(st) = d(st) + β
∑

st+1

u′[cit+1(st+1)]

u′[cit(st)]
a(st+1)π(st+1|st), (13.4.1)

where cit is the consumption of agent i at date t in state st . This equation

holds for every agent i . Equation (13.4.1) can be written

a(st) = d(st) +R−1
t

∑

st+1

a(st+1)π̃(st+1|st) (13.4.2)

or

a(st) = d(st) +R−1
t Ẽta(st+1), (13.4.3)

where R−1
t is the reciprocal of the one period gross risk-free interest rate

R−1
t = R−1

t (st) ≡ β
∑

st+1

u′[cit+1(st+1)]

u′[cit(st)]
π(st+1|st) (13.4.4)

and Ẽ in equation (13.4.3) is the mathematical expectation with respect to the

distorted transition density

π̃(st+1|st) = Rtβ
u′[cit+1(st+1)]

u′[cit(st)]
π(st+1|st). (13.4.5a)

It can be verified that
∑

st+1
π̃(st+1|st) = 1 for all st – just note that equa-

tion (13.4.4) confirms that R−1
t is the conditional expectation of β

u′[cit+1(st+1)]

u′[cit(st)]
,

so that Rtβ
u′[cit+1(st+1)]

u′[cit(st)]
is a nonnegative random variable with conditional ex-

pectation equal to unity. Therefore, the term Rtβ
u′[cit+1(st+1)]

u′[cit(st)]
multiplying the

7 Cum-dividend means that the person who owns the asset at the end of time t is entitled

to the time t dividend. Ex-dividend means that the person who owns the asset at the end of

the period does not receive the time t dividend.
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conditional density π(st+1|st) in (13.4.5a) is a likelihood ratio. Multiplication

of π(st+1|st) by this likelihood ratio constructs another conditional density.

The transformed or “twisted” transition density π̃(st+1|st) can be used to

define a twisted joint density

π̃t(s
t) = π̃(st|st−1) . . . π̃(s1|s0)π̃(s0). (13.4.5b)

For example,

π̃(st+2, st+1|st) = Rt(st)Rt+1(st+1)β
2 u

′[cit+2(st+2)]

u′[cit(st)]
π(st+2|st+1)π(st+1|st).

The twisted density π̃t(s
t) is associated with an equivalent martingale measure.

We explain the meaning of the two adjectives. “Equivalent” means that π̃

assigns positive probability to any event that is assigned positive probability by

π , and vice versa. The equivalence of π and π̃ is guaranteed by the assumption

that u′(c) > 0 in (13.4.5a).8

We now turn to the adjective “martingale.”9 To understand why this term

is applied to π̃t(s
t), consider the particular case of an asset with dividend stream

dT = d(sT ) and dt = 0 for t 6= T . Using the arguments in chapter 8 or iterating

on equation (13.4.1), the cum-dividend price of this asset can be expressed as

aT (sT ) = d(sT ), (13.4.6a)

aT−1(sT−1) = R−1
T−1ẼT−1aT (sT ) (13.4.6b)

...
...

at(st) = R−1
t ẼtR

−1
t+1R

−1
t+2 · · ·R−1

T−1aT (st) (13.4.6c)

8 The existence of an equivalent martingale measure implies both the existence of a positive

stochastic discount factor (see the discussion of Hansen and Jagannathan bounds in chapter

14), and the absence of arbitrage opportunities; see Kreps (1979) and Duffie (1996).

9 Another insight is that the likelihood ratio L(st) ≡
π̃t(s

t)
πt(st)

is a martingale with respect

to the measure πt(s
t) . To verify this, notice that L(st) =

π̃(st|st−1)
π(st|st−1)

L(st−1). Therefore,

E[L(st)|st−1] = L(st−1)E

[
π̃(st|st−1)
π(st|st−1)

∣∣st−1

]
. But

E

[
π̃(st|st−1)

π(st|st−1)

∣∣st−1

]
=
∑

st+1∈S

π̃(st|st−1)

π(st|st−1)
π(st|st−1) = 1.

Therefore, E[L(st)|st−1] = L(st−1) , so the likelihood ratio is a martingale.
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where Ẽt denotes the conditional expectation under the π̃ probability measure.

Now fix t < T and define the “deflated” or “interest-adjusted” asset price

process

ãt,t+j =
at+j

RtRt+1 . . . Rt+j−1
, (13.4.7)

for j = 1, . . . , T − t . It follows from equation (13.4.6c) that

Ẽtãt,t+j = at(st) ≡ ãt,t. (13.4.8)

Equation (13.4.8) asserts that relative to the twisted measure π̃ , the interest-

adjusted asset price is a martingale: using the twisted measure, the best predic-

tion of the future interest-adjusted asset price is its current value.

Thus, when the equivalent martingale measure is used to price assets, we

have so-called risk-neutral pricing. Notice that in equation (13.4.2) the adjust-

ment for risk is absorbed into the twisted transition measure. We can write

equation (13.4.8) as

Ẽ[a(st+1)|st] = Rt[a(st)− d(st)], (13.4.9)

where Ẽ is the expectation operator for the twisted transition measure. Equa-

tion (13.4.9) is another way of stating that, after adjusting for risk-free interest

and dividends, the price of the asset is a martingale relative to the equivalent

martingale measure.

Under the equivalent martingale measure, asset pricing reduces to calcu-

lating the conditional expectation of the stream of dividends that defines the

asset. For example, consider a European call option written on the asset de-

scribed earlier that is priced by equations (13.4.6). The owner of the call option

has the right but not the obligation to purchase the “asset” at time T at a price

K . The owner of the call option will exercise this option only if aT ≥ K . The

value at T of the option is therefore YT = max(0, aT −K) ≡ (aT −K)+ . The

price of the option at t < T is then

Yt = Ẽt

[
(aT −K)+

RtRt+1 · · ·Rt+T−1

]
. (13.4.10)

Black and Scholes (1973) used a particular continuous-time specification of π̃

that made it possible to solve equation (13.4.10) analytically for a function Yt .

Their solution is known as the Black-Scholes formula for option pricing.
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13.5. Equilibrium asset pricing

The preceding discussion of the Euler equations (13.2.4) and (13.2.5) leaves

open how the economy generates, for example, the constant gross interest rate

assumed in Hall’s work. We now explore equilibrium asset pricing in a simple

representative agent endowment economy, Lucas’s asset-pricing model.10 We

imagine an economy consisting of a large number of identical agents with prefer-

ences as specified in expression (13.2.1). The only durable good in the economy

is a set of identical “trees,” one for each person in the economy. At the be-

ginning of period t , each tree yields fruit or dividends in the amount yt . The

fruit is not storable, but the tree is perfectly durable. Each agent starts life

at time zero with one tree. The dividend yt is assumed to be governed by a

Markov process and the dividend is the sole state variable st of the economy,

i.e., st = yt . The time-invariant transition probability distribution function is

given by Prob{st+1 ≤ s′|st = s} = F (s′, s).

All agents maximize expression (13.2.1) subject to the budget constraint

(13.2.2)–(13.2.3) and transversality conditions (13.2.6)–(13.2.7). In an equi-

librium, asset prices clear the markets. That is, the bond holdings of all agents

sum to zero, and their total stock positions are equal to the aggregate number

of shares. As a normalization, let there be one share per tree.

Due to the assumption that all agents are identical with respect to both

preferences and endowments, we can work with a representative agent.11 Lu-

cas’s model shares features with a variety of representative agent asset-pricing

models (see Brock, 1982, and Altug, 1989, for example). These use versions of

stochastic optimal growth models to generate allocations and price assets. Such

asset-pricing models can be constructed by the following steps:

1. Describe the preferences, technology, and endowments of a dynamic econ-

omy, then solve for the equilibrium intertemporal consumption allocation.

Sometimes there is a particular planning problem whose solution equals the

competitive allocation.

2. Set up a competitive market in some particular asset that represents a

specific claim on future consumption goods. Permit agents to buy and

10 See Lucas (1978). Also see the important early work by Stephen LeRoy (1971, 1973).

Breeden (1979) was an early work on the consumption-based capital-asset-pricing model.
11 In chapter 8, we showed that some heterogeneity is also consistent with the notion of a

representative agent.
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sell at equilibrium asset prices subject to particular borrowing and short-

sales constraints. Find an agent’s Euler equation, analogous to equations

(13.2.4) and (13.2.5), for this asset.

3. Equate the consumption that appears in the Euler equation derived in step

2 to the equilibrium consumption derived in step 1. This procedure will

give the asset price at t as a function of the state of the economy at t .

In our endowment economy, a planner that treats all agents the same would like

to maximize E0

∑∞
t=0 β

tu(ct) subject to ct ≤ yt . Evidently the solution is to

set ct equal to yt . After substituting this consumption allocation into equations

(13.2.4) and (13.2.5), we arrive at expressions for the risk-free interest rate and

the share price:

u′(yt)R
−1
t = Etβu

′(yt+1), (13.5.1)

u′(yt)pt = Etβ(yt+1 + pt+1)u
′(yt+1). (13.5.2)

13.6. Stock prices without bubbles

Using recursions on equation (13.5.2) and the law of iterated expectations, which

states that EtEt+1(·) = Et(·), we arrive at the following expression for the

equilibrium share price:

u′(yt)pt = Et

∞∑

j=1

βju′(yt+j)yt+j + Et lim
k→∞

βku′(yt+k)pt+k. (13.6.1)

Moreover, equilibrium share prices have to be consistent with market clear-

ing; that is, agents must be willing to hold their endowments of trees for-

ever. It follows immediately that the last term in equation (13.6.1) must be

zero. Suppose to the contrary that the term is strictly positive. That is, the

marginal utility gain of selling shares, u′(yt)pt , exceeds the marginal utility

loss of holding the asset forever and consuming the future stream of dividends,

Et
∑∞

j=1 β
ju′(yt+j)yt+j . Thus, all agents would like to sell some of their shares

and the price would be driven down. Analogously, if the last term in equa-

tion (13.6.1) were strictly negative, we would find that all agents would like
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to purchase more shares and the price would necessarily be driven up. We can

therefore conclude that the equilibrium price must satisfy

pt = Et

∞∑

j=1

βj
u′(yt+j)

u′(yt)
yt+j , (13.6.2)

which is a generalization of equation (13.3.4) in which the share price is an

expected discounted stream of dividends but with time-varying and stochastic

discount rates.

Note that asset bubbles could also have been ruled out by directly referring

to transversality condition (13.2.7) and market clearing. In an equilibrium,

the representative agent holds the per capita outstanding number of shares.

(We have assumed one tree per person and one share per tree.) After divid-

ing transversality condition (13.2.7) by this constant time-invariant number of

shares and replacing ct+k by equilibrium consumption yt+k , we arrive at the

implication that the last term in equation (13.6.1) must vanish.12

Moreover, after invoking our assumption that the endowment follows a

Markov process, it follows that the equilibrium price in equation (13.6.2) can

be expressed as a function of the current state st,

pt = p(st). (13.6.3)

12 Brock (1982) and Tirole (1982) use the transversality condition when proving that asset

bubbles cannot exist in economies with a constant number of infinitely lived agents. However,

Tirole (1985) shows that asset bubbles can exist in equilibria of overlapping generations models

that are dynamically inefficient, that is, when the growth rate of the economy exceeds the equi-

librium rate of return. O’Connell and Zeldes (1988) derive the same result for a dynamically

inefficient economy with a growing number of infinitely lived agents. Abel, Mankiw, Summers,

and Zeckhauser (1989) provide international evidence suggesting that dynamic inefficiency is

not a problem in practice.
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13.7. Computing asset prices

We now turn to three examples in which it is easy to calculate an asset-pricing

function by solving the expectational difference equation (13.5.2).

13.7.1. Example 1: logarithmic preferences

Take the special case of equation (13.6.2) that emerges when u(ct) = ln ct .

Then equation (13.6.2) becomes

pt =
β

1− β
yt. (13.7.1)

Equation (13.7.1) is our asset-pricing function. It maps the state of the economy

at t , yt , into the price of a Lucas tree at t .

13.7.2. Example 2: finite-state version

Mehra and Prescott (1985) consider a discrete-state version of Lucas’s one-kind-

of-tree model. Let dividends assume the n possible distinct values [σ1, σ2, . . . ,

σn] . Let dividends evolve through time according to a Markov chain, with

prob{yt+1 = σl|yt = σk} = Pkl > 0.

The (n × n) matrix P with element Pkl is called a stochastic matrix. The

matrix satisfies
∑n

l=1 Pkl = 1 for each k . Express equation (13.5.2) of Lucas’s

model as

ptu
′(yt) = βEtpt+1u

′(yt+1) + βEtyt+1u
′(yt+1). (13.7.2)

Express the price at t as a function of the state σk at t , pt = p(σk). Define

ptu
′(yt) = p(σk)u

′(σk) ≡ vk , k = 1, . . . , n . Also define αk = βEtyt+1u
′(yt+1) =

β
∑n

l=1 σlu
′(σl)Pkl . Then equation (13.7.2) can be expressed as

p(σk)u
′(σk) = β

n∑

l=1

p(σl)u
′(σl)Pkl + β

n∑

l=1

σlu
′(σl)Pkl

or

vk = αk + β

n∑

l=1

Pklvl,
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or in matrix terms, v = α + βPv , where v and α are column vectors. The

equation can be represented as (I − βP )v = α . This equation has a unique

solution given by13

v = (I − βP )−1α. (13.7.3)

The price of the asset in state σk—call it pk—can then be found from pk =

vk/[u
′(σk)] . Notice that equation (13.7.3) can be represented as

v = (I + βP + β2P 2 + . . .)α

or

p(σk) = pk =
∑

l

(I + βP + β2P 2 + . . .)kl
αl

u′(σk)
,

where (I + βP + β2P 2 + . . .)kl is the (k, l) element of the matrix (I + βP +

β2P 2+ . . .). We ask the reader to interpret this formula in terms of a geometric

sum of expected future variables.

13.7.3. Example 3: growth

Let’s price a Lucas tree in a pure endowment economy with ct = yt and

yt+1 = λt+1yt , where λt is Markov with transition matrix P . Let pt be the ex-

dividend price of the Lucas tree. Assume the CRRA utility u(c) = c1−γ/(1−γ).
Evidently, the price of the Lucas tree satisfies

pt = Et

[
β

(
ct+1

ct

)−γ

(pt+1 + yt+1)

]
.

Dividing both sides by yt and rearranging gives

pt
yt

= Et

[
β(λt+1)

1−γ

(
pt+1

yt+1
+ 1

)]

or

wi = β
∑

j

Pijλ
1−γ
j (wj + 1), (13.7.4)

13 Uniqueness follows from the fact that, because P is a nonnegative matrix with row sums

all equaling unity, the eigenvalue of maximum modulus P has modulus unity. The maximum

eigenvalue of βP then has modulus β . (This point follows from Frobenius’s theorem.) The

implication is that (I − βP )−1 exists and that the expansion I + βP + β2P 2 + . . . converges

and equals (I − βP )−1 .
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where wi represents the price-dividend ratio. Equation (13.7.4) was used by

Mehra and Prescott (1985) to compute equilibrium prices.

13.8. Term structure of interest rates

We will now explore the term structure of interest rates by pricing bonds with

different maturities.14 We continue to assume that the time t state of the

economy is the current dividend on a Lucas tree yt = st , which is Markov with

transition F (s′, s). The risk-free real gross return between periods t and t+ j

is denoted Rjt , measured in units of time (t + j) consumption good per time

t consumption good. Thus, R1t replaces our earlier notation Rt for the one-

period gross interest rate. At the beginning of t , the return Rjt is known with

certainty and is risk free from the viewpoint of the agents. That is, at t , R−1
jt is

the price of a perfectly sure claim to one unit of consumption at time t+ j . For

simplicity, we only consider such zero-coupon bonds, and the extra subscript j

on gross earnings Ljt now indicates the date of maturity. The subscript t still

refers to the agent’s decision to hold the asset between period t and t+ 1.

As an example with one- and two-period safe bonds, the budget constraint

and the law of motion for wealth in (13.2.2) and (13.2.3) are augmented as

follows,

ct +R−1
1t L1t +R−1

2t L2t + ptNt ≤ At, (13.8.1)

At+1 = L1t +R−1
1t+1L2t + (pt+1 + yt+1)Nt. (13.8.2)

Even though safe bonds represent sure claims to future consumption, these assets

are subject to price risk prior to maturity. For example, two-period bonds from

period t , L2t , are traded at the price R−1
1t+1 in period t+1, as shown in wealth

expression (13.8.2). At time t , an agent who buys such assets and plans to sell

them next period would be uncertain about the proceeds, since R−1
1t+1 is not

known at time t . The price R−1
1t+1 follows from a simple arbitrage argument,

since, in period t+1, these assets represent identical sure claims to time (t+2)

consumption goods as newly issued one-period bonds in period t + 1. The

variable Ljt should therefore be understood as the agent’s net holdings between

14 Dynamic asset-pricing theories for the term structure of interest rates have been devel-

oped by Cox, Ingersoll, and Ross (1985a, 1985b) and by LeRoy (1982).
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periods t and t + 1 of bonds that each pay one unit of consumption good at

time t+ j , without identifying when the bonds were initially issued.

Given wealth At and current dividend yt = st , let v(At, st) be the opti-

mal value of maximizing expression (13.2.1) subject to equations (13.8.1) and

(13.8.2), the asset-pricing function for trees pt = p(st), the stochastic process

F (st+1, st), and stochastic processes for R1t and R2t . The Bellman equation

can be written as

v(At, st) = max
L1t,L2t,Nt

{
u
[
At −R−1

1t L1t −R−1
2t L2t − p(st)Nt

]

+βEtv
(
L1t +R−1

1t+1L2t + [p(st+1) + st+1]Nt, st+1

)}
,

where we have substituted for consumption ct and wealth At+1 from formulas

(13.8.1) and (13.8.2), respectively. The first-order necessary conditions with

respect to L1t and L2t are

u′(ct)R
−1
1t = βEtv1 (At+1, st+1) , (13.8.3)

u′(ct)R
−1
2t = βEt

[
v1 (At+1, st+1)R

−1
1t+1

]
. (13.8.4)

After invoking Benveniste and Scheinkman’s result and equilibrium allocation

ct = yt(= st), we arrive at the following equilibrium rates of return

R−1
1t = βEt

[
u′(st+1)

u′(st)

]
≡ R1(st)

−1, (13.8.5)

R−1
2t = βEt

[
u′(st+1)

u′(st)
R−1

1t+1

]
= β2Et

[
u′(st+2)

u′(st)

]
≡ R2(st)

−1, (13.8.6)

where the second equality in (13.8.6) is obtained by using (13.8.5) and the law

of iterated expectations. Because of our Markov assumption, interest rates can

be written as time-invariant functions of the economy’s current state st . The

general expression for the price at time t of a bond that yields one unit of the

consumption good in period t+ j is

R−1
jt = βjEt

[
u′(st+j)

u′(st)

]
. (13.8.7)

The term structure of interest rates is commonly defined as the collection of

yields to maturity for bonds with different dates of maturity. In the case of

zero-coupon bonds, the yield to maturity is simply

R̃jt ≡ R
1/j
jt = β−1

{
u′(st) [Etu

′(st+j)]
−1
}1/j

. (13.8.8)
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As an example, let us assume that dividends are independently and identically

distributed over time. The yields to maturity for a j -period bond and a k -period

bond are then related as follows:

R̃jt = R̃kt

{
u′(st) [Eu

′(s)]
−1
} k−j

kj

.

The term structure of interest rates is therefore upward sloping whenever u′(st)

is less than Eu′(s), that is, when consumption is relatively high today with a

low marginal utility of consumption, and agents would like to save for the future.

In an equilibrium, the short-term interest rate is therefore depressed if there is

a diminishing marginal rate of physical transformation over time or, as in our

model, there is no investment technology at all.

A classical theory of the term structure of interest rates is that long-

term interest rates should be determined by expected future short-term interest

rates. For example, the pure expectations theory hypothesizes that R−1
2t =

R−1
1t EtR

−1
1t+1 . Let us examine if this relationship holds in our general equilib-

rium model. From equation (13.8.6) and by using equation (13.8.5), we obtain

R−1
2t = βEt

[
u′(st+1)

u′(st)

]
EtR

−1
1t+1 + covt

[
β
u′(st+1)

u′(st)
, R−1

1t+1

]

= R−1
1t EtR

−1
1t+1 + covt

[
β
u′(st+1)

u′(st)
, R−1

1t+1

]
, (13.8.9)

which is a generalized version of the pure expectations theory, adjusted for the

risk premium covt[βu
′(st+1)/u

′(st), R
−1
1t+1] . The formula implies that the pure

expectations theory holds only in special cases. One special case occurs when

utility is linear in consumption, so that u′(st+1)/u
′(st) = 1. In this case, R1t ,

given by equation (13.8.5), is a constant, equal to β−1 , and the covariance term

is zero. A second special case occurs when there is no uncertainty, so that the

covariance term is zero for that reason. Recall that the first special case of

risk neutrality is the same condition that suffices to eradicate the risk premium

appearing in equation (13.3.2) and thereby sustain a martingale theory for a

stock price.
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13.9. State-contingent prices

Thus far, this chapter has taken a different approach to asset pricing than we

took in chapter 8. Recall that in chapter 8 we described two alternative com-

plete markets models, one with once-and-for-all trading at time 0 of date- and

history-contingent claims, the other with sequential trading of a complete set of

one-period Arrow securities. After these state-contingent prices had been com-

puted, we were able to price any asset whose payoffs were linear combinations

of the basic state-contingent commodities, just by taking a weighted sum. That

approach would work easily for the Lucas tree economy, which by its simple

structure with a representative agent can readily be cast as an economy with

complete markets. The pricing formulas that we derived in chapter 8 apply to

the Lucas tree economy, adjusting only for the way we have altered the specifi-

cation of the Markov process describing the state of the economy.

Thus, in chapter 8, we gave formulas for a pricing kernel for j -step-ahead

state-contingent claims. In the notation of that chapter, we called Qj(st+j |st)
the price when the time t state is st of one unit of consumption in state st+j .

In this chapter we have chosen to let the state be governed by a continuous-

state Markov process. But we continue to use the notation Qj(sj |s) to denote

the j -step-ahead state-contingent price. We have the following version of the

formula from chapter 8 for a j -period contingent claim

Qj(sj |s) = βj
u′(sj)

u′(s)
f j(sj , s), (13.9.1)

where the j -step-ahead transition function obeys

f j(sj , s) =

∫
f(sj , sj−1)f

j−1(sj−1, s)dsj−1, (13.9.2)

and

prob{st+j ≤ s′|st = s} =

∫ s′

−∞

f j(w, s)dw.

In subsequent sections, we use the state-contingent prices to give exposi-

tions of several important ideas, including the Modigliani-Miller theorem and a

Ricardian theorem.



520 Asset Pricing Theory

13.9.1. Insurance premium

We shall now use the contingent claims prices to construct a model of insurance.

Let qα(s) be the price in current consumption goods of a claim on one unit of

consumption next period, contingent on the event that next period’s dividends

fall below α . We think of the asset being priced as “crop insurance,” a claim

to consumption when next period’s crops fall short of α per tree.

From the preceding section, we have

qα(s) = β

∫ α

0

u′(s′)

u′(s)
f(s′, s)ds′. (13.9.3)

Upon noting that
∫ α

0

u′(s′)f(s′, s)ds′ = prob{st+1 ≤ α|st = s} E{u′(st+1) | st+1 ≤ α, st = s},

we can represent the preceding equation as

qα(s) =
β

u′(s)
prob{st+1 ≤ α|st = s} E{u′(st+1) | st+1 ≤ α, st = s}. (13.9.4)

Notice that, in the special case of risk neutrality [u′(s) is a constant], equation

(13.9.4) collapses to

qα(s) = β prob{st+1 ≤ α|st = s},

which is an intuitively plausible formula for the risk-neutral case. When u′′ < 0

and st ≥ α , equation (13.9.4) implies that qα(s) > βprob{st+1 ≤ α|st = s}
(because then E{u′(st+1)|st+1 ≤ α, st = s} > u′(st) for st ≥ α). In other

words, when the representative consumer is risk averse (u′′ < 0) and when

st ≥ α , the price of crop insurance qα(s) exceeds the “actuarially fair” price of

βprob{st+1 ≤ α|st = s} .
Another way to represent equation (13.9.3) that is perhaps more convenient

for purposes of empirical testing is

1 =
β

u′(st)
E
[
u′(st+1)Rt(α)

∣∣st
]

(13.9.5)

where

Rt(α) =

{
0 if st+1 > α

1/qα(st) if st+1 ≤ α.
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13.9.2. Man-made uncertainty

In addition to pricing assets with returns made risky by nature, we can use the

model to price arbitrary man-made lotteries as demonstrated by Lucas (1982).

Suppose that there is a market for one-period lottery tickets paying a stochas-

tic prize ω in next period, and let h(ω, s′, s) be a probability density for ω ,

conditioned on s′ and s . The price of a lottery ticket in state s is denoted

qL(s). To obtain an equilibrium expression for this price, we follow the steps

in section 13.5, and include purchases of lottery tickets in the agent’s budget

constraint. (Quantities are negative if the agent is selling lottery tickets.) Then

by reasoning similar to that leading to the arbitrage pricing formulas of chapter

8, we arrive at the lottery ticket price formula:

qL(s) = β

∫ ∫
u′(s′)

u′(s)
ωh(ω, s′, s)f(s′, s)dω ds′. (13.9.6)

Notice that if ω and s′ are independent, the integrals of equation (13.9.6) can

be factored and, recalling equation (13.8.5), we obtain

qL(s) = β

∫
u′(s′)

u′(s)
f(s′, s) ds′ ·

∫
ωh(ω, s)dω = R1(s)

−1E{ω|s}. (13.9.7)

Thus, the price of a lottery ticket is the price of a sure claim to one unit of

consumption next period, times the expected payoff on a lottery ticket. There

is no risk premium, since in a competitive market no one is in a position to

impose risk on anyone else, and no premium need be charged for risks not

borne.

13.9.3. The Modigliani-Miller theorem

The Modigliani and Miller theorem15 describes circumstances under which the

total value of a firm is independent of the firm’s financial structure, that is,

the particular evidences of debt and equity that it issues. Following Hirshleifer

(1966) and Stiglitz (1969), the Modigliani-Miller theorem can be proved directly

in a setting with complete state-contingent markets.

Suppose that an agent starts a firm at time t with a tree as its sole asset,

and then immediately sells the firm to the public by issuing N number of shares

15 See Modigliani and Miller (1958).



522 Asset Pricing Theory

and B number of bonds as follows. Each bond promises to pay off r per period,

and r is chosen so that rB is less than all possible realizations of future crops

yt+j(st+j), so that yt+j − rB is positive with probability one. After payments

to bondholders, the owners of equity are entitled to the residual crop. Thus,

the dividend of a share of equity is (yt+j − rB)/N in period t+ j . Let pBt and

pNt be the equilibrium prices of a bond and a share, respectively, which can be

obtained by using the contingent claims prices:

pBt =

∞∑

j=1

∫
rQj(st+j |st)dst+j , (13.9.8)

pNt =

∞∑

j=1

∫
yt+j − rB

N
Qj(st+j |st)dst+j . (13.9.9)

The total value of bonds and shares is then

pBt B + pNt N =

∞∑

j=1

∫
yt+jQj(st+j |st)dst+j , (13.9.10)

which, by equations (13.6.2) and (13.9.1), is equal to the tree’s initial value pt .

Equation (13.9.10) exhibits the Modigliani-Miller proposition that the value of

the firm, that is, the total value of the firm’s bonds and equities, is independent

of the number of bonds B outstanding. The total value of the firm is also

independent of the coupon rate r .

The total value of the firm is independent of the financing scheme because

the equilibrium prices of bonds and shares adjust to reflect the riskiness inherent

in any mix of liabilities. To illustrate these equilibrium effects, let us assume

that u(ct) = ln ct and yt+j is i.i.d. over time so that Et(yt+j) = E(y), and

y−1
t+j is also i.i.d. for all j ≥ 1. With logarithmic preferences, we can define a

stochastic discount factor as mt+1 ≡ β
(

ct
ct+1

)
and express Euler equations like

(13.2.4) and (13.2.5) in the unified form

Emt+1Rj,t+1 = 1 (13.9.11)

where Rj,t+1 is the one-period gross rate of return on asset j between t and

t+1. It follows that with logarithmic preferences, the price of a tree pt is given

by equation (13.7.1), and the other two asset prices are now

pBt =
∞∑

j=1

Et

[
rβj

u′(st+j)

u′(st)

]
=

β

1− β
rE(y−1)yt, (13.9.12)
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pNt =

∞∑

j=1

Et

[
yt+j − rB

N
βj
u′(st+j)

u′(st)

]
=

β

1− β

[
1− rBE(y−1)

] yt
N
, (13.9.13)

where we have used equations (13.9.8), (13.9.9), and (13.9.1) and yt = st . (The

expression [1−rBE(y−1)] is positive because rB is less than the lowest possible

realization of y .) As can be seen, the price of a share depends negatively on the

number of bonds B and the coupon r , and also the number of shares N . We

now turn to the expected rates of return on different assets, which should be

related to their riskiness. First, notice that, with our special assumptions, the

expected capital gains on issued bonds and shares are all equal to that of the

underlying tree asset,

Et

[
pBt+1

pBt

]
= Et

[
pNt+1

pNt

]
= Et

[
pt+1

pt

]
= Et

[
yt+1

yt

]
. (13.9.14)

It follows that any differences in expected total rates of return on assets must

arise from the expected yields due to next period’s dividends and coupons. Use

equations (13.7.1), (13.9.12), and (13.9.13) to get

r

pBt
=
{[
1− Et(yt+1)Et(y

−1
t+1)

]
+ Et(yt+1)Et(y

−1
t+1)

} r

pBt

=
1− E(y)E(y−1)

E(y−1)pt
+
Et(yt+1)

pt
< Et

[
yt+1

pt

]
, (13.9.15)

Et

[
(yt+1 − rB) /N

pNt

]

=
{[
1− rBE(y−1)

]
+ rBE(y−1)

}
Et

[
(yt+1 − rB) /N

pNt

]

=
Et (yt+1 − rB)

pt
+
rBE(y−1)Et (yt+1 − rB)

[1− rBE(y−1)] pt

=
Et(yt+1)

pt
+
rB
[
E(y−1)E(y)− 1

]

[1− rBE(y−1)] pt
> Et

[
yt+1

pt

]
, (13.9.16)

where the two inequalities follow from Jensen’s inequality, which states that

E(y−1) > [E(y)]−1 for a nontrivial random variable y (i.e., one with a positive

variance). Thus, from equations (13.9.14)–(13.9.16), we can conclude that the

firm’s bonds (shares) earn a lower (higher) expected rate of return as compared
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to the underlying asset. Moreover, equation (13.9.16) shows that the expected

rate of return on the shares is positively related to payments to bondholders

rB . In other words, equity owners demand a higher expected return from a

more leveraged firm because of the greater risk borne. Thus, despite the fact

that Euler equation (13.9.11) holds for both the bond and equity, it is true that

the expected return on equity exceeds the expected return on the risk-free bond.

13.10. Government debt

13.10.1. The Ricardian proposition

We now use a version of Lucas’s tree model to describe the Ricardian proposition

that tax financing and bond financing of a given stream of government expen-

ditures are equivalent.16 This proposition may be viewed as an application of

the Modigliani-Miller theorem to government finance and obtains under circum-

stances in which the government is essentially like a firm in the constraints that

it confronts with respect to its financing decisions.

We add to Lucas’s model a government that spends current output ac-

cording to a nonnegative stochastic process {gt} that satisfies gt < yt for all

t . The variable gt denotes per capita government expenditures at t . For an-

alytical convenience we assume that gt is thrown away, giving no utility to

private agents. The state st = (yt, gt) of the economy is now a vector in-

cluding the dividend yt and government expenditures gt . We assume that

yt and gt are jointly described by a Markov process with transition density

f(st+1, st) = f({yt+1, gt+1}, {yt, gt}) where

prob{yt+1 ≤ y′, gt+1 ≤ g′|yt = y, gt = g} =

∫ y′

0

∫ g′

0

f ({z, w}, {y, g})dw dz.

16 An article by Robert Barro (1974) promoted strong interest in the Ricardian proposition.

Barro described the proposition in a context distinct from the present one but closely related

to it. Barro used an overlapping generations model but assumed altruistic agents who cared

about their descendants. Restricting preferences to ensure an operative bequest motive, Barro

described an overlapping generations structure that is equivalent to a model with an infinitely

lived representative agent. See chapter 10 for more on Ricardian equivalence.
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To emphasize that the dividend yt and government expenditures gt are solely

functions of the current state st , we will use the notation yt = y(st) and

gt = g(st).

The government finances its expenditures by issuing one-period debt that

is permitted to be state contingent, and with a stream of lump-sum per capita

taxes {τt} , a stream that we assume is a stochastic process expressible at time

t as a function of st = (yt, gt) and any debt from last period. A general way of

capturing that taxes and new issues of debt depend upon the current state st and

the government’s beginning-of-period debt, is to index both these government

instruments by the history of all past states, st = [s0, s1, . . . , st] . Hence, τt(s
t)

is the lump-sum per capita tax in period t , given history st , and bt(st+1|st)
is the amount of (t+ 1) goods that the government promises at t to deliver,

provided the economy is in state st+1 at (t+ 1), where this issue of debt is also

indexed by the history st . In other words, we are adopting the “commodity

space” st as we also did in chapter 8. For example, we let ct(s
t) denote the

representative agent’s consumption at time t , after history st .

We can here apply the three steps outlined earlier to construct equilib-

rium prices. Since taxation is lump sum without any distortionary effects, the

competitive equilibrium consumption allocation still equals that of a planning

problem where all agents are assigned the same Pareto weight. Thus, the social

planning problem for our purposes is to maximize E0

∑∞
t=0 β

tu(ct) subject to

ct ≤ yt− gt , whose solution is ct = yt− gt which can alternatively be written as

ct(s
t) = y(st)− g(st). Proceeding as we did in earlier sections, the equilibrium

share price, interest rates, and state-contingent claims prices are described by

p(st) = Et

∞∑

j=1

βj
u′(y(st+j)− g(st+j))

u′(y(st)− g(st))
y(st+j), (13.10.1)

Rj(st)
−1 = βjEt

u′(y(st+j)− g(st+j))

u′(y(st)− g(st))
, (13.10.2)

Qj(st+j |st) = βj
u′(y(st+j)− g(st+j))

u′(y(st)− g(st))
f j(st+j , st), (13.10.3)

where f j(st+j , st) is the j -step-ahead transition function that, for j ≥ 2, obeys

equation (13.9.2). It also useful to compute another set of state-contingent

claims prices from chapter 8,

qtt+j(s
t+j) = Q1(st+j |st+j−1)Q1(st+j−1|st+j−2) . . . Q1(st+1|st)
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= βj
u′(y(st+j)− g(st+j))

u′(y(st)− g(st))
f(st+j, st+j−1)

· f(st+j−1, st+j−2) · · · f(st+1, st). (13.10.4)

Here qtt+j(s
t+j) is the price of one unit of consumption delivered at time t+ j ,

history st+j , in terms of date-t , history-st consumption good. Expression

(13.10.4) can be derived from an arbitrage argument or an Euler equation eval-

uated at the equilibrium allocation. Notice that equilibrium prices (13.10.1)–

(13.10.4) are independent of the government’s tax and debt policy. Our next

step in showing Ricardian equivalence is to demonstrate that the private agents’

budget sets are also invariant to government financing decisions.

Turning first to the government’s budget constraint, we have

g(st) = τt(s
t) +

∫
Q1(st+1|st)bt(st+1|st)dst+1 − bt−1(st|st−1), (13.10.5)

where bt(st+1|st) is the amount of (t+ 1) goods that the government promises

at t to deliver, provided the economy is in state st+1 at (t+ 1), where this quan-

tity is indexed by the history st at the time of issue. If the government decides

to issue only one-period risk-free debt, for example, we have bt(st+1|st) = bt(s
t)

for all st+1 , so that

∫
Q1(st+1|st)bt(st)dst+1 = bt(s

t)

∫
Q1(st+1|st)dst+1 = bt(s

t)/R1(st).

Equation (13.10.5) then becomes

g(st) = τt(s
t) + bt(s

t)/R1(st)− bt−1(s
t−1). (13.10.6)

Equation (13.10.6) is a standard form of the government’s budget constraint

under conditions of certainty.

We can write the budget constraint (13.10.5) in the form

bt−1(st|st−1) = τt(s
t)− g(st) +

∫
Q1(st+1|st)bt(st+1|st)dst+1. (13.10.7)

Then we multiply the corresponding budget constraint in period t + 1 by

Q1(st+1|st) and integrate over st+1 ,

∫
Q1(st+1|st)bt(st+1|st)dst+1 =

∫
Q1(st+1|st)

[
τt+1(s

t+1)− g(st+1)
]
dst+1
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+

∫ ∫
Q1(st+1|st)Q1(st+2|st+1)bt+1(st+2|st+1)dst+2dst+1,

=

∫
qtt+1(s

t+1)
[
τt+1(s

t+1)− g(st+1)
]
d(st+1|st)

+

∫
qtt+2(s

t+2)bt+1(st+2|st+1)d(st+2|st), (13.10.8)

where we have introduced the following notation for taking multiple integrals,

∫
x(st+j)d(st+j |st) ≡

∫ ∫
. . .

∫
x(st+j)dst+j dst+j−1 . . . dst+1.

Expression (13.10.8) can be substituted into budget constraint (13.10.7) by

eliminating the bond term
∫
Q1(st+1|st)bt(st+1|st)dst+1 . After repeated sub-

stitutions of consecutive budget constraints, we eventually arrive at the present

value budget constraint17

bt−1(st|st−1) = τt(s
t)− g(st)

+

∞∑

j=1

∫
qtt+j(s

t+j)
[
τt+j(s

t+j)− g(st+j)
]
d(st+j |st)

= τt(s
t)− g(st)−

∞∑

j=1

∫
Qj(st+j |st)g(st+j)dst+j

+

∞∑

j=1

∫
qtt+j(s

t+j)τt+j(s
t+j)d(st+j |st) (13.10.9)

as long as

lim
k→∞

∫
qtt+k+1(s

t+k+1)bt+k(st+k+1|st+k)d(st+k+1|st) = 0. (13.10.10)

A strictly positive limit of equation (13.10.10) can be ruled out by using the

transversality conditions for private agents’ holdings of government bonds that

we here denote bdt (st+1|st). (The superscript d stands for demand and dis-

tinguishes the variable from government’s supply of bonds.) Next, we simply

assume away the case of a strictly negative limit of expression (13.10.10), since

it would correspond to a rather uninteresting situation where the government

17 The second equality follows from the expressions for j -step-ahead contingent- claim-

pricing functions in (13.10.3) and (13.10.4), and exchanging orders of integration.
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accumulates “paper claims” against the private sector by setting taxes higher

than needed for financial purposes. Thus, equation (13.10.9) states that the

value of government debt maturing at time t equals the present value of the

stream of government surpluses.

It is a key implication of the government’s present value budget constraint

(13.10.9) that all government debt has to be backed by future primary surpluses

[τt+j(s
t+j) − g(st+j)] , i.e., government debt is the capitalized value of govern-

ment net-of-interest surpluses. A government that starts out with a positive debt

must run a primary surplus for some state realization in some future period. It

is an implication of the fact that the economy is dynamically efficient.18

We now turn to a private agent’s budget constraint at time t ,

ct(s
t) + τt(s

t) + p(st)Nt(s
t) +

∫
Q1(st+1|st)bdt (st+1|st)dst+1

≤ [p(st) + y(st)]Nt−1(s
t−1) + bdt−1(st|st−1). (13.10.11)

We multiply the corresponding budget constraint in period t+1 by Q1(st+1|st)
and integrate over st+1 . The resulting expression is substituted into equation

(13.10.11) by eliminating the purchases of government bonds in period t . The

two consolidated budget constraints become

ct(s
t) + τt(s

t) +

∫ [
ct+1(s

t+1) + τt+1(s
t+1)

]
Q1(st+1|st)dst+1

+

{
p(st)−

∫
[p(st+1) + y(st+1)]Q1(st+1|st)dst+1

}
Nt(s

t)

+

∫
p(st+1)Nt+1(s

t+1)Q1(st+1|st)dst+1

+

∫ ∫
Q1(st+1|st)Q1(st+2|st+1)b

d
t+1(st+2|st+1)dst+2dst+1

≤ [p(st) + y(st)]Nt−1(s
t−1) + bdt−1(st|st−1), (13.10.12)

where the expression in braces is zero by an arbitrage argument. After consoli-

dating all future budget constraints, we find that

ct(s
t) + τt(s

t) +

∞∑

j=1

∫ [
ct+j(s

t+j) + τt+j(s
t+j)

]
qtt+j(s

t+j)d(st+j |st)

≤ [p(st) + y(st)]Nt−1(s
t−1) + bdt−1(st|st−1), (13.10.13)

18 In contrast, compare to our analysis in chapter 9 where we demonstrated that unbacked

government debt or fiat money can be valued by private agents when the economy is dynam-

ically inefficient. These different findings are related to the question of whether or not there

can exist asset bubbles. See footnote 12.
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where we have imposed limits equal to zero for the two terms involving Nt+k(s
t+k)

and bdt+k(st+k+1|st+k) when k goes to infinity. The two terms vanish because of

transversality conditions and the reasoning in the preceding paragraph. Thus,

equation (13.10.13) states that the present value of the stream of consumption

and taxes cannot exceed the agent’s initial wealth at time t .

Finally, we substitute the government’s present value budget constraint

(13.10.9) into that of the representative agent (13.10.13) by eliminating the

present value of taxes. Thereafter, we invoke equilibrium conditions Nt−1(s
t−1) =

1 and bdt−1(st|st−1) = bt−1(st|st−1) and we use the equilibrium expressions for

prices (13.10.1) and (13.10.3) to express p(st) as the sum of all future dividends

discounted by the j -step-ahead pricing kernel Qj(st+j |st). The result is

ct(s
t) +

∞∑

j=1

∫
ct+j(s

t+j)qtt+j(s
t+j)d(st+j |st)

≤ y(st)− g(st) +

∞∑

j=1

∫
[y(st+j)− g(st+j)]Qj(st+j |st)dst+j . (13.10.14)

Given that equilibrium prices have been shown to be independent of the gov-

ernment’s tax and debt policy, the implication of formula (13.10.14) is that the

representative agent’s budget set is also invariant to government financing deci-

sions. Having no effects on prices and private agents’ budget constraints, taxes

and government debt do not affect private consumption decisions.19

19 We have indexed choice variables by the history st which is the commodity space for this

economy. But it is instructive to verify that private agents will not choose history-dependent

consumption when facing equilibrium prices (13.10.4). At time t after history st , an agent’s

first-order with respect to ct+j(s
t+j) is given by

u′
(
ct(s

t)
)
qtt+j(s

t+j) = βju′
(
ct+j(s

t+j )
)
f(st+j , st+j−1)

· f(st+j−1, st+j−2) . . . f(st+1, st).

After dividing this expression by the corresponding first-order condition with respect to

ct+j(s̃
t+j) where s̃t = st and s̃t+j = st+j , and invoking (13.10.4), we obtain

1 =
u′
(
ct+j(s

t+j)
)

u′
(
ct+j(s̃

t+j)
) =⇒ ct+j(s

t+j) = ct+j(s̃
t+j).

Hence, the agent finds it optimal to choose ct+j(s
t+j ) = ct+j(s̃

t+j) whenever st+j = s̃t+j ,

regardless of the history leading up to that state in period t+ j .
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We can summarize this discussion with the following proposition:

Ricardian Proposition: Equilibrium consumption and prices depend only

on the stochastic process for output yt and government expenditure gt . In

particular, consumption and state-contingent prices are both independent of

the stochastic process τt for taxes.

In this model, the choices of the time pattern of taxes and government

bond issues have no effect on any “relevant” equilibrium price or quantity. The

reason is that, as indicated by equations (13.10.5) and (13.10.9), larger deficits

(gt− τt), accompanied by larger values of government debt bt(st+1), now signal

future government surpluses. The agents in this model accumulate these govern-

ment bond holdings and expect to use their proceeds to pay off the very future

taxes whose prospects support the value of the bonds. Notice also that, given

the stochastic process for (yt, gt), the way in which the government finances its

deficits (or invests its surpluses) is irrelevant. Thus, it does not matter whether

it borrows using short-term, long-term, safe, or risky instruments. This irrele-

vance of financing is an application of the Modigliani-Miller theorem. Equation

(13.10.9) may be interpreted as stating that the present value of the government

is independent of such financing decisions.

The next section elaborates on the significance that future government sur-

pluses in equation (13.10.9) are discounted with contingent claims prices and

not the risk-free interest rate, even though the government may choose to issue

only safe debt. This distinction is made clear by using equations (13.10.4) and

(13.10.2) to rewrite equation (13.10.9) as follows,

bt−1(st) = τt − gt +

∞∑

j=1

Et

[
βj
u′(yt+j − gt+j)

u′(yt − gt)
(τt+j − gt+j)

]

= τt − gt +
∞∑

j=1

{
R−1
jt Et[τt+j − gt+j]

+ covt

[
βj
u′(yt+j − gt+j)

u′(yt − gt)
, τt+j − gt+j

]}
. (13.10.15)
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13.10.2. No Ponzi schemes

Bohn (1995) considers a nonstationary discrete-state-space version of Lucas’s

tree economy to demonstrate the importance of using a proper criterion when

assessing long-run sustainability of fiscal policy, that is, determining whether the

government’s present-value budget constraint and the associated transversality

condition are satisfied as in equations (13.10.9) and (13.10.10) of the earlier

model. The present-value budget constraint says that any debt at time t must

be repaid with future surpluses because the transversality condition rules out

Ponzi schemes—financial trading strategies that involve rolling over an initial

debt with interest forever.

At each date t , there is now a finite set of possible states of nature, and st is

the history of all past realizations, including the current one. Let πt+j(s
t+j |st)

be the probability of a history st+j , conditional on history st having been

realized up until time t . The dividend of a tree in period t is denoted yt(s
t) > 0,

and can depend on the whole history of states of nature. The stochastic process

is such that a private agent’s expected utility remains bounded for any fixed

fraction c ∈ (0, 1] of the stream yt(s
t), implying

lim
j→∞

Etβ
ju′ (ct+j) ct+j = 0 (13.10.16)

for ct = c · yt(st).20
Bohn (1995) examines the following government policy. Government spend-

ing is a fixed fraction (1 − c) = gt/yt of income. The government issues safe

one-period debt so that the ratio of end-of-period debt to income is constant

at some level b = R−1
1t bt/yt , i.e., bt(s

t) = R1t b yt(s
t). Given any initial debt,

taxes can then be computed from budget constraint (13.10.6). It is intuitively

clear that this policy can be sustained forever, but let us formally show that the

government’s transversality condition holds in any period t , given history st ,

lim
j→∞

∑

st+j+1|st

q̃tt+j+1

(
st+j+1

)
bt+j

(
st+j

)
= 0, (13.10.17)

20 Expected lifetime utility is bounded if the sequence of “remainders” converges to zero,

0 = lim
k→∞

Et

∞∑

j=k

βju
(
ct+j

)
≥ lim
k→∞

Et

∞∑

j=k

βj
{
u′
(
ct+j

)
ct+j

}
≥ 0,

where the first inequality is implied by concavity of u(·) . We obtain equation (13.10.16)

because u′(ct+j)ct+j is positive at all dates.
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where the summation over st+j |st means that we sum over all possible histories

s̃t+j such that s̃t = st , and q̃tt+j(s
t+j) is the price at t , given history st , of

a unit of consumption good to be delivered in period t + j , contingent on the

realization of history st+j . In an equilibrium, we have

q̃tt+j
(
st+j

)
= βj

u′
[
c · yt+j

(
st+j

)]

u′ [c · yt (st)]
πt+j

(
st+j |st

)
. (13.10.18)

After substituting equation (13.10.18), the debt policy, and ct = c · yt into the

left-hand side of equation (13.10.17),

lim
j→∞

Et

[
βj+1 u

′ (ct+j+1)

u′ (ct)
R1,t+j b

ct+j
c

]

= lim
j→∞

EtEt+j

[
βj
u′ (ct+j)

u′ (ct)
β
u′ (ct+j+1)

u′ (ct+j)
R1,t+j b

ct+j
c

]

=
b

c u′ (ct)
lim
j→∞

Et
[
βju′ (ct+j) ct+j

]
= 0.

The first of these equalities invokes the law of iterated expectations; the sec-

ond equality uses the equilibrium expression for the one-period interest rate,

which is still given by expression (13.10.2); and the final equality follows from

(13.10.16). Thus, we have shown that the government’s transversality condition

and therefore its present-value budget constraint are satisfied.

Bohn (1995) cautions us that this conclusion of fiscal sustainability might

erroneously be rejected if we instead use the risk-free interest rate to com-

pute present values. To derive expressions for the safe interest rate, we assume

that preferences are given by the constant relative risk-aversion utility function

u(ct) = (c1−γt − 1)/(1− γ), and the dividend yt grows at the rate ỹt = yt/yt−1

which is i.i.d. with mean E(ỹ). Thus, risk-free interest rates given by equation

(13.10.2) become

R−1
jt = Et


βj

(
j∏

i=1

ỹt+i

)−γ

 =

j∏

i=1

E
(
βỹ−γ

)
= R−j

1 ,

where R1 is the time-invariant one-period risk-free interest rate. That is, the

term structure of interest rates obeys the pure expectations theory, since inter-

est rates are nonstochastic. The analogue to expression (13.8.9) for such an

economy would therefore be one in which the covariance term is zero.
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We now compute the expected value of future government debt discounted

at the safe interest rate and take the limit

lim
j→∞

Et

( bt+j
Rj+1,t

)
= lim

j→∞
Et

(R1,t+j byt+j
Rj+1,t

)

= lim
j→∞

Et

(R1 byt
∏j
i=1 ỹt+i

Rj+1
1

)

= byt lim
j→∞

[E(ỹ)

R1

]j
=





0, if R1 > E(ỹ);

byt, if R1 = E(ỹ);

∞, if R1 < E(ỹ).

(13.10.19)

The limit is infinity if the expected growth rate of dividends E(ỹ) exceeds the

risk-free rate R1 . The level of the safe interest rate depends on risk aversion

and on the variance of dividend growth. This dependence is best illustrated

with an example. Suppose there are two possible states of dividend growth

that are equally likely to occur with a mean of 1 percent, E(ỹ) − 1 = .01,

and let the subjective discount factor be β = .98. Figure 13.10.1 depicts the

equilibrium interest rate R1 as a function of the standard deviation of dividend

growth and the coefficient of relative risk aversion γ . For γ = 0, agents are risk

neutral, so the interest rate is given by β−1 ≈ 1.02 regardless of the amount

of uncertainty. When making agents risk averse by increasing γ , there are two

opposing effects on the equilibrium interest rate. On the one hand, higher risk

aversion implies also that agents are less willing to substitute consumption over

time. Therefore, there is an upward pressure on the interest rate to make agents

accept an upward-sloping consumption profile. This fact completely explains the

positive relationship between R1 and γ when the standard deviation of growth

is zero, that is, when deterministic growth is 1 percent. On the other hand,

higher risk aversion in an uncertain environment means that agents attach a

higher value to sure claims to future consumption, which tends to increase the

bond price R−1
1 . As a result, Figure 13.10.1 shows how the risk-free interest

R1 falls below the expected gross growth rate of the economy when agents

are sufficiently risk averse and the standard deviation of dividend growth is

sufficiently large.21

21 A risk-free interest rate less than the growth rate would indicate dynamic inefficiency

in a deterministic steady state but not necessarily in a stochastic economy. Our model here

of an infinitely lived representative agent is dynamically efficient. For discussions of dynamic

inefficiency, see Diamond (1965) and Romer (1996, chap. 2).
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Figure 13.10.1: The risk-free interest rate R1 as a function

of the coefficient of relative risk aversion γ and the standard

deviation of dividend growth. There are two states of divi-

dend growth that are equally likely to occur with a mean of

1 percent, E(ỹ)− 1 = .01, and the subjective discount factor

is β = .98.

If R1 ≤ E(ỹ) so that the expected value of future debt discounted at the

safe interest rate does not converge to zero in equation (13.10.19), it follows

that the expected sum of all future government surpluses discounted at the

safe interest rate in equation (13.10.15) falls short of the initial debt. In fact,

our example is then associated with negative expected surpluses at all future

horizons,

Et (τt+j − gt+j) = Et (bt+j−1 − bt+j/R1,t+j) = Et [(R1 − ỹt+j) byt+j−1]

= [R1 − E (ỹ)] b [E (ỹ)]
j−1

yt





> 0, if R1 > E (ỹ);

= 0, if R1 = E (ỹ);

< 0, if R1 < E (ỹ);

(13.10.20)

where the first equality invokes budget constraint (13.10.6). Thus, for R1 ≤
E(ỹ), the sum of covariance terms in equation (13.10.15) must be positive. The

described debt policy also clearly has this implication where, for example, a low

realization of ỹt+j implies a relatively high marginal utility of consumption and
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at the same time forces taxes up in order to maintain the targeted debt-income

ratio in the face of a relatively low yt+j .

As pointed out by Bohn (1995), this example illustrates the problem with

empirical studies such as Hamilton and Flavin (1986), Wilcox (1989), Hansen,

Roberds and Sargent (1991), Gali (1991), and Roberds (1996) that use safe in-

terest rates as discount factors when assessing the sustainability of fiscal policy.

Such an approach would only be justified if future government surpluses were

uncorrelated with future marginal utilities so that the covariance terms in equa-

tion (13.10.15) would vanish. This condition is trivially true in a nonstochastic

economy or if agents are risk neutral; otherwise, it is difficult, in practice, to

imagine a tax and spending policy that is uncorrelated with the difference be-

tween aggregate income and government spending that determines the marginal

utility of consumption.

A. Harrison-Kreps (1978) heterogeneous beliefs

This appendix sketches a model of Harrison and Kreps (1978) that features

heterogeneous beliefs, incomplete markets, short sales constraints, and possibly

(leverage) limits on an investor’s ability to borrow in order to finance purchases

of a risky asset. The model simplifies by ignoring alterations in the distribution

of wealth among investors having different beliefs about fundamentals driving

asset payouts.22 There is a fixed number A of shares of an asset. Each share

entitles its owner to a stream of dividends {dt} governed by a Markov chain

defined on a state space S ∈ {1, 2} . The dividend obeys

dt =

{
0 if st = 1;

1 if st = 2.

Two types h = a, b of investors are distinguished only by their beliefs about a

Markov transition matrix P with typical element P (i, j) = Prob(st+1 = j|st =
i). Agents of type a believe the transition matrix

Pa =

[ 1
2

1
2

2
3

1
3

]

22 Such wealth distribution effects are center stage in the models of heterogeneous beliefs

described in appendices to chapter 8.
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while agents of type b think the transition matrix is

Pb =

[ 2
3

1
3

1
4

3
4

]
.

Associated with transition matrix Pa is the invariant distribution πa = [ .57 .43 ]

and associated with transition matrix Pb is the invariant distribution πb =

[ .43 .57 ].

An owner of the asset at the end of time t is entitled to the dividend at

time t+ 1 and the right to sell the asset at time t+ 1. Both types of investors

are risk-neutral and both have the same fixed discount factor β ∈ (0, 1). In our

numerical example, we’ll set β = .75, just as Harrison and Kreps did.

We’ll eventually study the consequences of two different assumptions about

the number of shares A relative to the resources that our two types of investors

can invest in the stock. One possibility is to follow Harrison and Kreps and

to assume that both types of investor have access to enough resources (either

wealth or the capacity to borrow) to purchase the entire stock of the asset. The

alternative assumption is that no single type of investor has sufficient resources

to purchase the entire stock of the asset, so both types of investor always hold

some of the asset. Short sales of the asset are prohibited.23

13.A.1. Optimism and Pessimism

The above specification of the perceived transition matrices Pa and Pb , taken

directly from Harrison and Kreps, builds in stochastically alternating temporary

optimism and pessimism. Remember that state 2 is the high dividend state. In

state 1, a type a agent is more optimistic about next period’s dividend than

is a type b agent, while in state 2, a type b agent is more optimistic about

next period’s dividend. However, the invariant distributions πA = [ .57 .43 ]

and πB = [ .43 .57 ] tell us that a type B person is more optimistic about the

dividend process in the long run than is a type A person.

23 With the specified preferences, if there were no constraint on short sales, there would

exist no equilibrium. Pessimistic agents would be willing to sell unbounded amounts of the

asset at the equilibrium prices computed in (13.A.2).
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13.A.2. Equilibrium price function

Agents know a function mapping the state st into the equilibrium price p(st).

When they choose whether to purchase or sell the asset at t , agents know st .

13.A.3. Comparisons of equilibrium price functions

We compute equilibrium price functions under the following sets of alternative

assumptions about beliefs:

1. There is only one type of agent, either a or b .

2. There are two types of agent differentiated only by their beliefs. Each type

of agent has sufficient resources to purchase all of the asset. This is Harrison

and Kreps’s setting.

3. There are two types of agent with different beliefs, but because of limited

wealth and/or limited leverage, both types of agent hold the asset each

period.

13.A.4. Single belief prices

We’ll start by pricing the asset under homogeneous beliefs. Suppose that there

is only one type of investor, either of type a or b , and that this investor always

“prices the asset”. Let ph =

[
ph(1)

ph(2)

]
be the equilibrium price vector when all

investors are of type h . The price today equals the expected discounted value

of tomorrow’s dividend plus tomorrow’s price of the asset:

ph (s) = β (Ph (s, 1) ph (1) + Ph (s, 2) (1 + ph (2))) , s = 1, 2.

These equations imply that the equilibrium price vector is
[
ph (1)

ph (2)

]
= β [I − βPh]

−1 Ph

[
0

1

]
. (13.A.1)

The first two rows of Table 13.A.1 report pa(s) and pb(s).
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13.A.5. Pricing under heterogeneous beliefs

There are several possibilities. The first is when both types of agent have suffi-

cient wealth to purchase all of the asset themselves. In this case the marginal

investor who prices the asset is the more optimistic type, so that the equilibrium

price satisfies Harrison and Kreps’s key equation:

p (s) = βmax
{
Pa (s, 1) p (1) + Pa (s, 2) (1 + p (2)) ,

Pb (s, 1) p (1) + Pb (s, 2) (1 + p (2))
}

(13.A.2)

for s = 1, 2. The marginal investor who prices the asset in state s is of type a

if Pa(s, 1)p(1)+Pa(s, 2)(1+p(2)) > Pb(s, 1)p(1)+Pb(s, 2)(1+p(2)) and of type

b if Pa(s, 1)p(1) + Pa(s, 2)(1 + p(2)) < Pb(s, 1)p(1) + Pb(s, 2)(1 + p(2)). Thus,

the marginal investor is always the (temporarily) more optimistic type.

Equations (13.A.2) form a functional equation that, like a Bellman equa-

tion, can be solved by starting with a guess for the price vector p and iterating

to convergence on the operator that maps a guess pj into a guess pj+1 defined

by the right side of (13.A.2), namely

pj+1 (s) = βmax
{
Pa (s, 1) p

j (1) + Pa (s, 2)
(
1 + pj (2)

)
,

Pb (s, 1) p
j (1) + Pb (s, 2)

(
1 + pj (2)

)}
(13.A.3)

for s = 1, 2.

The third row of Table 13.A.1 reports equilibrium prices that solve the

functional equation (13.A.3) when β = .75. Here the type that is more opti-

mistic about st+1 prices the asset in state st . It is instructive to compare these

prices with the equilibrium prices for the homogeneous belief economies that

solve (13.A.1) under beliefs Pa and Pb . Equilibrium prices p in the hetero-

geneous beliefs economy exceed what every prospective investor regards as the

fundamental value of the asset in each possible state. The reason is that each

purchaser of the asset pays more than he believes its future dividends are worth

because he expects to have the option to sell the asset later to another investor

who will value the asset more highly.

Agents of type a are willing to pay

p̂a (s) =

{
p (1) , if st = 1;

β (Pa (2, 1) p (1) + Pa (2, 2) (1 + p (2))) , if st = 2.
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st 1 2
pa 1.33 1.22
pb 1.45 1.91
p 1.85 2.08
p̂a 1.85 1.69
p̂b 1.69 2.08
p̌ 1 1

Table 13.A.1: Row 1: equilibrium price function pa under

homogeneous beliefs Pa . Row 2: equilibrium price function

pb under homogeneous beliefs Pb . Row 3: equilibrium price

function under heterogeneous beliefs with optimistic marginal

investors. Row 4: type a agents are willing to pay p̂a for

asset. Row 5: type b agents are willing to pay p̂b for the

asset. Row 6: equilibrium price function under heterogeneous

beliefs with pessimistic marginal investors. β = .75.

while agents of type b are willing to pay

p̂b (s) =

{
β (Pb (1, 1) p (1) + Pb (1, 2) (1 + p (2))) , if st = 1;

p (2) , if st = 2.

Evidently, p̂a(2) < p(2) and p̂b(1) < p(1). Agents of type a want to sell the

asset in state 2 while agents of type b want to sell it in state 1. The asset changes

hands whenever the state changes from 1 to 2 or from 2 to 1. The valuations

p̂a(s) and p̂b(s) are displayed in the fourth and fifth rows of Table 13.A.1. Even

the temporarily more pessimistic investors who don’t buy the asset think that

it is worth more than they think future dividends are worth.
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13.A.6. Insufficient funds

Outcomes differ when the more optimistic type of investor has insufficient wealth

– or insufficient ability to borrow enough – to hold the entire stock of the asset.

In this case, the asset price must adjust to attract pessimistic investors. Instead

of equation (13.A.2), the equilibrium price satisfies

p̌ (s) = βmin
{
Pa (s, 1) p̌ (1) + Pa (s, 2) (1 + p̌ (2)) ,

Pb (s, 1) p̌ (1) + Pb (s, 2) (1 + p̌ (2))
}
, (13.A.4)

and the marginal investor who prices the asset is always the type that values it

less highly than does the other type. Now the marginal investor is always the

(temporarily) pessimistic type. Notice from the sixth row of Table 13.A.1 that

the pessimistic price p is lower than the homogeneous belief prices pa and pb

in both states.

When pessimistic investors price the asset according to (13.A.4), optimistic

agents think that the asset is underpriced. If they could, optimistic agents would

willingly borrow at the one-period gross interest rate β−1 to purchase more of

the asset. Constraints on leverage prohibit them from doing so.

When optimistic investors price the asset as in (13.A.3), pessimistic agents

think that the asset is overpriced and would like to sell the asset short. Con-

straints on short sales prevent that.

Scheinkman (2014) interprets the Harrison-Kreps model as a model of a

bubble – a situation in which an asset price exceeds what every investor thinks

is merited by the asset’s underlying dividend stream. Scheinkman stresses these

features of the Harrison-Kreps model:

1. Compared to the homogeneous beliefs setting that leads to the pricing for-

mula (13.A.1), high volume occurs when the Harrison-Kreps pricing for-

mula (13.A.3) prevails. Type a agents sell the entire stock of the asset to

type b agents every time the state switches from st = 1 to st = 2. Type

b agents sell the asset to type a agents every time the state switches from

st = 2 to st = 1. Scheinkman takes this as a strength of the model because

he observed high volume during “famous bubbles”.

2. If the supply of the asset can be increased sufficiently either physically (more

“houses” are built) or artificially (ways are invented to short sell claims on
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houses), bubbles end when the supply of the asset has grown enough to

outstrip optimistic investors’ resources for purchasing the asset.

3. If optimistic investors finance purchases by borrowing, tightening leverage

constraints can extinguish a bubble.

Scheinkman extracts insights about effects of financial regulations on bub-

bles. He emphasizes how limiting short sales and limiting leverage have opposite

effects.

Please notice key differences in the assumptions of the Harrison-Kreps

model presented in this appendix and the Blume and Easley model of appendix

B of chapter 8. The chapter 8 model assumes complete markets and risk averse

consumers; it focuses on the dynamics of continuation wealth in a competitive

equilibrium. There is zero volume in the sense that no trades occur after date

0. By way of contrast, the Harrison-Kreps model of this appendix assumes in-

complete markets, risk-neutral consumers, and restrictions on short sales. By

assuming that both types of agent always have “deep enough pockets” to pur-

chase all of the asset, the model takes wealth dynamics off the table. The

Harrison-Kreps model generates high trading volume when the state changes

either from 1 to 2 or from 2 to 1.

B. Gaussian asset-pricing model

The theory of chapter 8 can readily be adapted to a setting in which the state

of the economy evolves according to a continuous-state Markov process. We use

such a version in chapter 14. Here we give a taste of how such an adaptation can

be made by describing an economy in which the state follows a linear stochastic

difference equation driven by a Gaussian disturbance. If we supplement this

with the specification that preferences are quadratic, we get a setting in which

asset prices can be calculated swiftly.

Suppose that the state evolves according to the stochastic difference equa-

tion

st+1 = Ast + Cwt+1 (13.B.1)

where A is a matrix whose eigenvalues are bounded from above in modulus by

1/
√
β and wt+1 is a Gaussian martingale difference sequence adapted to the
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history of st . Assume that Ewt+1wt+1 = I . The conditional density of st+1 is

Gaussian:

π (st|st−1) ∼ N (Ast−1, CC
′) . (13.B.2)

More precisely,

π (st|st−1) = K exp
{
−.5 (st −Ast−1) (CC

′)
−1

(st −Ast−1)
}
, (13.B.3)

where K = (2π)−
k
2 det(CC′)−

1
2 and st is k × 1. We also assume that π0(s0)

is Gaussian.24

If {cit(st)}∞t=0 is the equilibrium allocation to agent i , and the agent has

preferences represented by (8.2.1), the equilibrium pricing function satisfies

q0t
(
st
)
=
βtu′

[
cit (st)

]
π (st)

u′
[
ci0 (s0)

] . (13.B.4)

Once again, let {dt(st)}∞t=0 be a stream of claims to consumption. The

time 0 price of the asset with this dividend stream is

p0 =

∞∑

t=0

∫

st
q0t
(
st
)
dt (st) d s

t.

Substituting equation (13.B.4) into the preceding equation gives

p0 =
∑

t

∫

st
βt
u′
[
cit (st)

]

u′
[
ci0 (s0)

]dt (st)π
(
st
)
dst

or

p0 = E

∞∑

t=0

βt
u′ [ct (st)]

u′ [c0 (s0)]
dt (st) . (13.B.5)

This formula expresses the time 0 asset price as an inner product of a discounted

marginal utility process and a dividend process.25

This formula becomes especially useful in the case that the one-period util-

ity function u(c) is quadratic, so that marginal utilities become linear, and the

dividend process dt is linear in st . In particular, assume that

u (ct) = −.5 (ct − b)
2

(13.B.6)

dt = Sdst, (13.B.7)

24 If st is stationary, π0(s0) can be specified to be the stationary distribution of the

process.
25 For two scalar stochastic processes x, y , the inner product is defined as < x, y >=

E
∑∞

t=0 β
txtyt .
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where b > 0 is a bliss level of consumption. Furthermore, assume that the

equilibrium allocation to agent i is

cit = Scist, (13.B.8)

where Sci is a vector conformable to st .

The utility function (13.B.6) implies that u′(cit) = b − cit = b − Scist .

Suppose that unity is one element of the state space for st , so that we can

express b = Sbst . Then b − ct = Sfst , where Sf = Sb − Sci , and the asset-

pricing formula becomes

p0 =
E0

∑∞
t=0 β

ts′tS
′
fSdst

Sfs0
. (13.B.9)

Thus, to price the asset, we have to evaluate the expectation of the sum of a

discounted quadratic form in the state variable. This is easy to do by using

results from chapter 2.

In chapter 2, we evaluated the conditional expectation of the geometric sum

of the quadratic form

α0 = E0

∞∑

t=0

βts′tS
′
fSdst.

We found that it could be written in the form

α0 = s′0µs0 + σ, (13.B.10)

where µ is an (n× n) matrix and σ is a scalar that satisfy

µ = S′
fSd + βA′µA

σ = βσ + β trace (µCC ′)
(13.B.11)

The first equation of (13.B.11) is a discrete Lyapunov equation in the square

matrix µ , and can be solved by using one of several algorithms.26 After µ has

been computed, the second equation can be solved for the scalar σ .

26 The Matlab control toolkit has a program called dlyap.m; also see a program called

doublej.m.
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Exercises

Exercise 13.1 A Markov economy

Consider a pure-exchange, representative agent economy. A representative con-

sumer ranks stochastic processes for consumption of a single non-durable good

{Ct}∞t=0 according to

E0

∞∑

t=0

βtU (Ct) ,

where β ∈ (0, 1) and U(C) = C1−γ

1−γ . The representative consumer’s endowment

obeys

Ct+1 = λt+1Ct

where λt+1 is described by a finite state Markov chain with transition matrix

Pij = Prob
(
λt+1 = λ̄j |λt = λ̄i

)

and ∀t ≥ 0, λt ∈ {λ̄1, λ̄2, . . . , λ̄n} .

a. Assume that there are complete markets in one-step-ahead Arrow securities.

Compute equilibrium prices of one-step-ahead Arrow securities.

b. Compute what prices would be for two-step-ahead Arrow securities if these

markets were open too.

c. Describe how to compute an equilbrium pricing function of a “Lucas tree,”

that is, an ex dividend claim to the endowment. In particular, using a “resol-

vent operator,” give a formula for the pricing function cast entirely in terms of

matrices.

d. An infinite horizon call option on the Lucas tree entitles the owner of the

option to purchase the tree (ex this period’s dividend) at any time from now on

at a strike price p̌ . Please write a Bellman equation for the function that prices

an infinite horizon call option on the Lucas tree. Describe an iterative algorithm

that you could use to compute this function, using matrix algebra only.

e. Please tell how the algorithm that you described in your answer to part d uses

a contraction mapping. Verify that the mapping in question is a contraction.
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Exercise 13.2 A Harrison-Kreps asset market

a. Consider the Harrison-Kreps model of a market for an asset set out in

appendix A. Suppose that agents of types a believe the transition matrix

Pa =

[ 1
2

1
2

3
4

1
4

]

while agents of type b think the transition matrix is

Pb =

[ 3
4

1
4

1
2

1
2

]
.

Please assume that β = .75. For these parameter values, please compute a

counterpart to table Table 13.A.1, filling in all rows.

b. Consider the model of the asset market in appendix A. Suppose that agents

of types a believe the transition matrix

Pa =

[ 1
2

1
2

1
2

1
2

]

while agents of type b think the transition matrix is

Pb =

[ 3
4

1
4

2
3

1
3

]
.

Please assume that β = .75. For these parameter values, please compute a

counterpart to table Table 13.A.1, filling in all rows.

c. Let p ∈ IR2 be a price vector whose ith component is a price in state si .

Define an operator T : IR2 → IR2 for which equation (13.A.2) can be written

p = T (p). Prove that T satisfies Blackwell’s sufficient conditions for being a

contraction (please see the appendix on functional analysis at the end of this

book for a statement of these conditions).

Exercise 13.3 Lucas asset pricing model again

Assume that the growth rate of the consumption process {ct}∞t=0 of a represen-

tative consumer is governed by a finite state Markov chain, so that

ct+1 = λt+1ct,
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where λt+1 takes one of the values in Λ = [λ1, . . . , λn] and P is a stochastic

matrix whose elements are transition probabilities for λt . The representative

consumer orders consumption streams according to

E0

∞∑

t=0

βtu (ct) , β ∈ (0, 1)

where E0 denotes a mathematical expectation conditional on time 0 informa-

tion, assumed to include c0 and λ0 , and

u (c) =
c1−γ

1− γ
with γ > 0.

a. Please price a risk-free consol that promises to pay a constant stream of

ζ > 0 units of time t consumption goods. Let pt be the price of an ex-coupon

claim to the consol, one that entitles an owner at the end of period t to ζ in

period t + 1 and the right to sell the claim for pt+1 in period t + 1. Give an

argument to show that the price satisfies

u′ (ct) pt = βEt [u
′ (ct+1) (ζ + pt+1)] ,

being careful to state what you are assuming about what the representative

investor-consumer takes as given, and what she assumes about what she takes

as given.

b. Please guess that pt can be written as a function p(λt) of the Markov state.

Please write a Bellman equation for p(λ). Tell how to solve it and also describe

conditions on Λ, P, β, γ that guarantee that a solution exists.

c. Infinite horizon call option Now we want to price an infinite horizon

option to purchase the consol described in part b at a “strike price” pS . The

option entitles the owner at the beginning of a period either to purchase the bond

at price pS or not to exercise the option now and instead to retain the right to

exercise it later. The option does not expire until its current owner chooses to

exercise it. An important detail is that the current owner of the option is entitled

to purchase the consol at the price pS at the beginning of any period, after the

coupon has been paid to the previous owner of the bond. The fundamentals of

the economy remain the same. Thus, the stochastic discount factor continues

to be mt+1 = β u
′(ct+1)
u′(ct)

and the consumption growth rate continues to be λt+1 ,
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which is governed by a finite state Markov chain. Let w(λt) be the value of the

option when the time t growth state is known to be λt but before the owner has

decided whether or not to exercise the option at time t . Please form a Bellman

equation for w(λ) and describe how to solve it.

d. Infinite horizon put option Please describe how to price an option

to sell the consol described in part b at a “strike price” pS . The option entitles

the owner at the beginning of a period either to sell the bond at price pS or not

to exercise the option now and instead to retain the right to exercise it later.

The option does not expire until its current owner chooses to exercise it. An

important detail is that the current owner of the option is entitled to sell the

consol at the price pS at the beginning of any period, after the coupon has

been paid to the previous owner of the bond. The fundamentals of the economy

remain the same. Let J(λt) be the value of the option when the time t growth

state is known to be λt but before the owner has decided whether or not to

exercise the option at time t . Please form a Bellman equation for J(λ) and

describe how to solve it.

Exercise 13.4 A baby Lucas model

There is no risk. A consumer has preferences over consumption streams {ct}∞t=0

ordered by
∞∑

t=0

βt

(
c1−γt

1− γ

)

where β ∈ (0, 1) and γ ≥ 1. The consumer owns one unit of the time 0

consumption good and nothing more. Each period t ≥ 0, the consumer can

purchase or sell time t + 1 consumption goods at a price of Q(t, t + 1) time t

consumption goods per unit of time t consumption goods. It happens that

Q (t, t+ 1) = δ

(
Xt+1

Xt

)−θ

,

where {Xt}∞t=0 is a known sequence with Xt ≥ 0 for all t ≥ 0, δ ∈ (0, 1), θ ≥ 0.

a. Please compute { ct+1

ct
}∞t=0 in an optimal consumption plan.

b. Now assume that Xt = φtX0 where X0 > 0. Please compute { ct+1

ct
}∞t=0 in

an optimal consumption plan.
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c. Please compute an optimal consumption plan {ct}∞t=0 , giving sufficient con-

ditions on γ, θ, φ, δ, β for key objects to be well defined. Please describe the

consumer’s holdings of risk-free one period bonds at each date t ≥ 0.

Hint: It can useful to work backwards by first finding { ct+1

ct
}∞t=0 in an optimal

consumption plan, then as a last step to use a time 0 budget constraint to

determine an optimal c0 .

d. Now assume that δ = β and γ = θ . Please describe senses in which the

consumer now can and cannot be said to be a “representative consumer”.

Exercise 13.5 Another baby Lucas model

There is risk. A consumer has preferences over consumption streams {ct}∞t=0

ordered by
∞∑

t=0

∑

st

βt

(
ct (s

t)
1−γ

1− γ

)
πt
(
st
)

where β ∈ (0, 1), γ ≥ 1, st = [s0, . . . , s
t] , and st ∈ [s1, . . . , sn] , the state space

for an n-state Markov chain with transition matrix P whose i, j element is

Pij = Prob(st+1 = sj |st = si); the initial state s0 is known at time t ; πt(s
t) is

the implied joint probability density of st . A random variable Xt = xi when

st = si . There is a complete set of Arrow securities at each date. In particular,

when Xt = xi at date t , one unit of consumption at date t+1 when Xt+1 = xj

costs

Qij = β

(
xj
xi

)−γ

Pij

units of time t consumption. The consumer owns one unit of time 0 consump-

tion in known state s0 and nothing else.

a. Compute the consumer’s optimal consumption plan {ct}∞t=0 . At each state

xi , please describe the consumer’s holdings of all one-period Arrow securities

paying off next period at each state xj .

b. Please describe a sense in which the consumer in part a can be said to be a

“representative consumer”.

Hint: It can useful to work backwards by first finding { ct+1

ct
}∞t=0 in an optimal

consumption plan, then as a last step to use a time 0 budget constraint to

determine an optimal c0 .



Chapter 14
Asset Pricing Empirics

14.1. Introduction

In chapter 13, we repeatedly encountered a random variable that in this chapter

we shall call a stochastic discount factor mt+1 , namely

mt+1 = β

(
Ct+1

Ct

)−γ

, (14.1.1)

where β is a discount factor, γ is a coefficient of relative risk aversion, and Ct is

the consumption of a representative consumer. The random process
(
Ct+1

Ct

)−γ

contributes the stochastic part of the stochastic discount factor. The asset pric-

ing theories in chapter 13 assert that for any asset j traded by a representative

consumer, its one period gross return Rj,t+1 must satisfy

Et (mt+1Rj,t+1) = 1. (14.1.2)

Empirically, for the stochastic discount factor (14.1.1), restriction (14.1.2) fails

to work well when applied to data on returns of stocks and risk-free bonds.

Mehra and Prescott (1985) called this failure the ‘equity premium puzzle.’ As

we explain in this chapter, a substantial part of the problem is that with aggre-

gate U.S. data for Ct and ‘reasonable’ values for γ ,
(
Ct+1

Ct

)−γ
is insufficiently

volatile. This chapter first describes what is commonly meant by ‘reasonable’

values for γ . Then we describe the equity premium puzzle, other affiliated asset

pricing puzzles, and some approaches to explaining them. Our major theme is

how to modify the standard CRRA stochastic discount factor (14.1.1) in ways

that can make (14.1.2) fit key features of the returns data better. We shall

study some theories that increase the volatility of the stochastic discount factor

by multiplying β
(
Ct+1

Ct

)−γ
with a volatile random variable that reflects either

aspects of the preferences of a representative consumer or heterogeneity in the

distribution of consumption within a collection of consumers. We conclude this

chapter in section 14.11 by describing a widely used way of explaining expected

– 549 –



550 Asset Pricing Empirics

rate of return discrepancies by cutting a Gordian knot by using a good fitting

and conveniently parameterized stochastic discount factor that is divorced from

consumer preferences.

14.2. Interpretation of risk-aversion parameter

To understand why the large measured equity premium is a puzzle, it is im-

portant to interpret γ in (14.1.1), a parameter that measures attitudes about

gambles over events governed by a known probability distribution. Economists’

prejudice that reasonable values of the coefficient of relative risk aversion must

be below 3 comes from experiments that confront people with gambles drawn

from well understood probability distributions.

The asset-pricing literature often uses the constant relative risk-aversion

utility function

u (C) =
C1−γ

1− γ
.

Note that

γ =
−Cu′′ (C)
u′ (C)

,

which is the individual’s coefficient of relative risk aversion. We want to interpret

the parameter γ in terms of a preference for avoiding risk. Following Pratt

(1964), consider offering two alternatives to a consumer who starts off with risk-

free consumption level C : he can receive C − ∆C with certainty or a lottery

paying C − y with probability .5 and C + y with probability .5. For given y

and C , we seed a ∆C = ∆C(y, C) that leaves the consumer indifferent between

these two choices. That is, we want a function ∆C(y, C) that solves

u [C −∆C (y, C)] = .5u (C + y) + .5u (C − y) . (14.2.1)

For given values of C, y , we can solve the nonlinear equation (14.2.1) for ∆C .

Alternatively, for small values of y , we can appeal to Pratt’s local argument.

A Taylor series expansion of u(C −∆C) around the point C gives1

u (C −∆C) = u (C)−∆Cu
′ (C) +O

(
∆2
C

)
. (14.2.2)

1 Here O(·) means terms of order at most (·) , while o(·) means terms of smaller order

than (·) .
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Taking a Taylor series expansion of u(C + ỹ) around the point C gives

u (C + ỹ) = u (C) + ỹu′ (C) +
1

2
ỹ2u′′ (C) +O

(
ỹ3
)
, (14.2.3)

where ỹ is the random variable that takes value y with probability .5 and −y
with probability .5. Taking expectations on both sides gives

Eu (C + ỹ) = u (C) +
1

2
y2u′′ (C) + o

(
y2
)
. (14.2.4)

Equating formulas (14.2.2) and (14.2.4) and ignoring the higher-order terms

gives

∆C (y, C) ≈ 1

2
y2
[−u′′ (C)
u′ (C)

]
.

For the constant relative risk-aversion utility function, we have

∆C (y, C) ≈ 1

2
y2
γ

C
.

This can be expressed as

∆C/y ≈ 1

2
γ (y/C) . (14.2.5)

The left side is the percentage premium that the consumer is willing to pay to

avoid a fair bet of size y ; the right side is one-half γ times the ratio of the size

of the bet y to his initial consumption level C .

Following Cochrane (1997), think of confronting someone with initial con-

sumption of $50,000 per year with a 50–50 chance of winning or losing y dol-

lars. How much would the person be willing to pay to avoid that risk? For

C = 50, 000, we calculated ∆C from equation (14.2.1) for values of y =

10, 100, 1000, 5000 (see Table 14.2.1). A common reaction to these premia is

that for values of γ even as high as 5, they are too big. This is one important

source of macroeconomists’ prejudice that γ should not be much higher than 2

or 3. Please see the quotation from Robert E. Lucas, Jr., that appears later in

this chapter.
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γ \ y 10 100 1,000 5,000
2 .02 .2 20 500
5 .05 5 50 1,217
10 .1 1 100 2,212

Table 14.2.1: Risk premium ∆C(y, C) for various values of

y and γ when C = 50, 000.

14.3. The equity premium puzzle

Table 14.3.1 depicts empirical first and second moments of yields on relatively

riskless bonds and risky equity in the U.S. data over the 90-year period 1889–

1978. The average real yield on the Standard & Poor’s 500 index was 7 percent,

while the average yield on short-term debt was only 1 percent. The equity

premium puzzle is that with aggregate consumption data, it takes an extraor-

dinarily large value of the coefficient of relative risk aversion to generate such a

large gap between the returns on equities and risk-free securities.2

Mean Variance-Covariance
1 + rst+1 1 + rbt+1 Ct+1/Ct

1 + rst+1 1.070 0.0274 0.00104 0.00219
1 + rbt+1 1.010 0.00308 −0.000193
Ct+1/Ct 1.018 0.00127

Table 14.3.1: Summary statistics for U.S. annual data,

1889–1978. The quantity 1+rst+1 is the real return to stocks,

1 + rbt+1 is the real return to relatively riskless bonds, and

Ct+1/Ct is the growth rate of per capita real consumption of

nondurables and services. Source: Kocherlakota (1996a, Ta-

ble 1), who uses the same data as Mehra and Prescott (1985).

2 For insightful reviews and lists of possible resolutions of the equity premium puzzle, see

Aiyagari (1993), Kocherlakota (1996a), and Cochrane (1997).
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We choose to proceed in the fashion of Hansen and Singleton (1983) and

to illuminate the equity premium puzzle by studying unconditional averages of

Euler equations under the assumptions that returns are log normal. Let the real

rates of return on stocks and bonds between periods t and t + 1 be denoted

1 + rst+1 and 1 + rbt+1 , respectively. In our Lucas tree model, these numbers

would be given by 1+ rst+1 = (yt+1 + pt+1)/pt and 1+ rbt+1 = R1t . Concerning

the real rate of return on bonds, we now use time subscript t + 1 to allow for

uncertainty at time t about its realization. Since the numbers in Table 14.3.1

are computed on the basis of nominal bonds, real bond yields are subject to

inflation uncertainty. To allow that and to switch notation, we rewrite Euler

equations (13.2.4) and (13.2.5) as

1 = βEt

[(
1 + rit+1

) u′ (Ct+1)

u′ (Ct)

]
, for i = s, b. (14.3.1)

We posit these stochastic processes for consumption and rates of return:

Ct+1

Ct
= c̄△exp

{
εc,t+1 − σ2

c/2
}
, (14.3.2)

1 + rit+1 =
(
1 + r̄i

)
exp

{
εi,t+1 − σ2

i /2
}
, for i = s, b, (14.3.3)

where exp is the exponential function and {εc,t+1, εs,t+1, εb,t+1} are jointly nor-

mally distributed with zero means, variances {σ2
c , σ

2
s , σ

2
b} , and possibly nonzero

covariances. Thus, the logarithm of consumption growth and the logarithms

of rates of return are jointly normally distributed. When the logarithm of a

random variable η is normally distributed with some mean µ and variance σ2 ,

the mean of η is exp(µ + σ2/2). Thus, the mean of consumption growth and

the means of real yields on stocks and bonds are here equal to c̄△ , 1 + r̄s , and

1 + r̄b , respectively.

Assume the utility function u(Ct) = (C1−γ
t − 1)/(1 − γ). After substitut-

ing this utility function and the stochastic processes (14.3.2) and (14.3.3) into

equation (14.3.1), we take unconditional expectations of equation (14.3.1). By

the law of iterated expectations, we obtain

1 = βE

[
(
1 + rit+1

)(Ct+1

Ct

)−γ
]
,

= β
(
1 + r̄i

)
c̄−γ△ E

{
exp

[
εi,t+1 − σ2

i /2− γ
(
εc,t+1 − σ2

c/2
)]}

= β
(
1 + r̄i

)
c̄−γ△ exp

[
(1 + γ) γσ2

c/2− γ cov (εi, εc)
]
,

for i = s, b, (14.3.4)
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where the second equality follows from the expression in braces being log nor-

mally distributed. Taking logarithms of equation (14.3.4) yields

log
(
1 + r̄i

)
= −log (β) + γlog (c̄△)− (1 + γ)γσ2

c/2 + γ cov (εi, εc) ,

for i = s, b. (14.3.5)

It is informative to interpret equation (14.3.5) for the risk-free interest rate in

Bohn’s model of section 13.10.2 under the auxiliary assumption of log normally

distributed dividend growth, so that equilibrium consumption growth is given by

equation (14.3.2). Since interest rates are time invariant, we have cov(εb, εc) =

0. In the case of risk neutral agents (γ = 0), equation (14.3.5) has the familiar

implication that the interest rate is equal to the inverse of the subjective discount

factor β , regardless of any uncertainty. In the case of deterministic growth

(σ2
c = 0), the second term of equation (14.3.5) says that the safe interest rate

is positively related to the coefficient of relative risk aversion γ , as we also

found in the example of Figure 13.10.1. Likewise, the downward pressure on the

interest rate due to uncertainty in Figure 13.10.1 shows up as the third term of

equation (14.3.5).3 This downward pressure as σ2
c grows reflects the workings

of a precautionary savings motive of the type to be discussed in chapter 17. At

a given γ , a higher σ2
c induces people to want to save more. The risk-free rate

must decline to prevent them from doing so.

We now turn to the equity premium by taking the difference between the

expressions for the rates of return on stocks and bonds, as given by equation

(14.3.5),

log (1 + r̄s)− log
(
1 + r̄b

)
= γ [cov (εs, εc)− cov (εb, εc)] . (14.3.6)

Using the approximation log(1+r) ≈ r , and noting that the covariance between

consumption growth and real yields on bonds in Table 14.3.1 is virtually zero,

we can write the theory’s interpretation of the historical equity premium as

r̄s − r̄b ≈ γ cov (εs, εc) . (14.3.7)

After approximating cov(εs, εc) with the covariance between consumption growth

and real yields on stocks in Table 14.3.1, equation (14.3.7) states that an eq-

uity premium of 6 percent would require a γ of 27. Kocherlakota (1996a, p. 52)

3 Since the term involves the square of γ , the safe interest rate must eventually be a

decreasing function of the coefficient of relative risk aversion when σ2c > 0, but only at very

high and therefore uninteresting values for the coefficient of relative risk aversion.



Market price of risk 555

summarized the prevailing view that “a vast majority of economists believe that

values [of γ ] above ten (or, for that matter, above five) imply highly implausi-

ble behavior on the part of individuals.”4 This constitutes the equity premium

puzzle. Mehra and Prescott (1985) and Weil (1989) point out that an additional

puzzle relates to the low observed historical mean of the riskless rate of return.

We describe this risk-free rate puzzle in section 14.6.5

Expression (14.3.7) indicates how excess returns compensate for risk. As-

sets that give low returns in bad consumption states (i.e., assets for which

cov(εs, εc) > 0) are not useful for hedging consumption risk. Therefore, such

assets have low prices, meaning that they are associated with high excess re-

turns.

14.4. Market price of risk

Gallant, Hansen, and Tauchen (1990) and Hansen and Jagannathan (1991) in-

terpret the equity premium puzzle in terms of the high “market price of risk”

implied by time series data on asset returns. The market price of risk is defined

in terms of asset prices and their one-period payoffs. Let qt be the time t price

of an asset bearing a one-period payoff pt+1 . A household with time separable

preferences E0

∑∞
t=0 β

tu(Ct) has an Euler equation for holdings of this asset

that can be represented as

qt = Et (mt+1pt+1) (14.4.1)

where mt+1 = βu′(Ct+1)
u′(Ct)

serves as a stochastic discount factor for discounting

the stochastic payoff pt+1 . Using the definition of a conditional covariance,

equation (14.4.1) can be written

qt = Etmt+1Etpt+1 + covt (mt+1, pt+1) .

4 The assertion that high values of γ are unreasonable is is based on calculations along

the lines of Pratt’s described in the preceding section.
5 For β < 0.99, equation (14.3.5) for bonds with data from Table 14.3.1 produces a

coefficient of relative risk aversion of at least 27. If we use the lower variance of the growth

rate of U.S. consumption in post–World War II data, the implied γ exceeds 200, as noted by

Aiyagari (1993).
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Applying the Cauchy-Schwarz inequality6 to the covariance term in the

preceding equation gives

qt
Etmt+1

≥ Etpt+1 −
(
σt (mt+1)

Etmt+1

)
σt (pt+1) , (14.4.2)

where σt denotes a conditional standard deviation. As an example of (14.4.2),

let the payoff pt+1 be a return Rt+1 on an asset, so that qt = 1. In this case,

(14.4.2) implies

EtRt+1 ≤ Rf,t+1 +

(
σt (mt+1)

Etmt+1

)
σt (Rt+1) , (14.4.3)

where R−1
f,t+1 = Etmt+1 is the reciprocal of the risk-free interest rate. Inequality

(14.4.3) says that the return on any security is bounded by the sum of the risk-

free rate Rf,t+1 and the market price of risk times the conditional standard

deviation of the return. The market price of risk is the increase in the expected

rate of return needed to compensate an investor for bearing a unit increase in

the standard deviation of returns along the efficient frontier.7

Gallant, Hansen, and Tauchen (1990) and Hansen and Jagannathan (1991)

used asset prices and returns alone to estimate the market price of risk, without

imposing the link to consumption data implied by a particular specification of a

stochastic discount factor. Their version of the equity premium puzzle is that the

market price of risk implied by the asset market data alone is much higher than

can be reconciled with the aggregate consumption data, say, with a specification

that mt+1 = β
(
Ct+1

Ct

)−γ
. Aggregate consumption is not volatile enough to

make the standard deviation of the object high enough for the reasonable values

of γ that we have discussed.

In the next section, we describe how Hansen and Jagannathan coaxed evi-

dence about the market price of risk
(
σt(mt+1)
Etmt+1

)
from asset prices and one-period

returns.

6 The Cauchy-Schwarz inequality is
|covt(mt+1,pt+1)|
σt(mt+1)σt(pt+1)

≤ 1. To get equation (14.4.2) from

the preceding equation, we use the covt(mt+1, pt+1) ≥ −σt(pt+1)σt(mt+1) branch of the

Cauchy-Schwarz inequality.
7 An asset’s Sharpe ratio is defined as

EtRt+1−Rf ,t+1
σt(Rt+1

, i.e., its excess return relative to

its standard deviation. A Sharpe ratio measures the excess return relative to the standard

deviation. The market price of risk is the maximal Sharpe ratio. Assets (or portfolios of

assets) whose returns attain the bound are said to be on the efficient mean-standard deviation

frontier.
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14.5. Hansen-Jagannathan bounds

The section 14.3 Hansen-Singleton (1983) exposition of the equity premium puz-

zle based on the log normal specification of returns was tied to particular para-

metric specifications of preferences and the distribution of asset returns. Hansen

and Jagannathan (1991) described a less structured way of stating an equity

premium puzzle. Their work can be regarded as extending Robert Shiller’s and

Stephen LeRoy’s earlier work on variance bounds.8 We present one of Hansen

and Jagannathan’s bounds.

Until now, we have worked with theories that price assets by using a par-

ticular “stochastic discount factor” mt+1 = β u
′(Ct+1)
u′(Ct)

. The theories assert that

the price at t of an asset with one-period random payoff pt+1 is Etmt+1pt+1 .

Hansen and Jagannathan were interested in settings in which the stochastic

discount factor can assume other forms.

14.5.1. Law of one price implies that EmR = 1

This section briefly indicates how a very weak theoretical restriction on prices

and returns implies that there exists a stochastic discount factor m that satisfies

EmRj = 1 for the return Rj on any asset j . In fact, when markets are

incomplete there exist many different random variables m that satisfy EmRj =

1. We have to say very little about consumers’ preferences to get this result, a

‘law of one price’ being enough.

Following Hansen and Jagannathan, let xj be a random payoff on a security.

Let there be J primitive securities, so j = 1, . . . , J . Let x be a J × 1 vector of

random payoffs on the primitive securities. Assume that the J×J matrix Exx′

exists and that so does its inverse (Exx′)−1 . Also assume that a J × 1 vector

q of prices of the primitive securities is observed, where the j th component of

q is the price of the j th component of the payoff vector x . Consider forming

portfolios, i.e., linear combinations of the primitive securities. How do prices of

portfolios relate to the prices of the primitive securities from which they have

been formed?

Let c ∈ IRJ be a vector of portfolio weights. The random payoff on a

portfolio with weights c is c · x . Define the space of payoffs attainable from

8 See Hansen’s (1982a) early call for such a generalization.
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portfolios of the primitive securities:

P ≡
{
p : p = c · x for some c ∈ IRJ

}
.

We want to price portfolios, that is, pay outs in P . We seek a price functional

φ mapping P into IR : φ : P → IR .

The observed price of the j th primitive security must satisfy qj = φ(xj),

so the J×1 vector q of observed prices of primitive securities satisfies q = φ(x).

The pricing functional φ values a portfolio with payoff c · x ∈ P at φ(c · x).
We can replicate the payoff of the portfolio p = c · x by purchasing primitive

securities in amounts c1, . . . , cJ and paying c1q1 + · · ·+ cJqJ = c · q . A law of

one price asserts that these two ways of purchasing payoff p ∈ P should have

the same cost:

φ (c · x) = c1φ (x1) + c2φ (x2) + · · ·+ cJφ (xJ ) . (14.5.1)

The left side is the price of a portfolio with portfolio weights c . The right side is

a weighted sum of the prices of the individual primitive securities, with weights

in the sum being given by the vector c . Equation (14.5.1) says that the portfolio

and assets of comprising it should cost the same. Technically, equation (14.5.1)

asserts that φ is a linear functional on P .

An aspect of the law of one price is that φ(c ·x) depends on c ·x , not on c .

If any other portfolio has payoff c ·x , it should also be priced at φ(c ·x). Thus,
two portfolios with the same payoff have the same price:

φ (č · x) = φ (ĉ · x) if č · x = ĉ · x.

If the x ’s are returns, then q = 1 , the unit vector, and

φ (c · x) = c · 1.
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14.5.2. Inner product representation of price functional

Hansen and Jagannathan used a convenient representation of a linear functional.

If y is a scalar random variable, E(yx) is the vector whose j th component

is E(yxj). The cross-moments E(yx) are called the inner product of x and

y . According to the Riesz representation theorem, a linear functional φ can

be represented as the inner product of the random payoff x with some scalar

random variable y that we call a stochastic discount factor.9 Thus, a stochastic

discount factor is a scalar random variable y that verifies:

φ (p) = E (yp) ∀p ∈ P. (14.5.2)

Equality (14.5.2) implies that the vector q of prices of the primitive securities

satisfies

q = E (yx) . (14.5.3)

The law of one price implies that a pricing functional is linear and that there-

fore there exists a stochastic discount factor. When markets are not complete,

there exist many stochastic discount factors. Hansen and Jagannathan sought

to characterize a set of admissible stochastic discount factors, meaning scalar

random variables y that satisfy (14.5.2).

Note

cov (y, p) = E (yp)− E (y)E (p) ,

which implies that the price functional can be represented as

φ (p) = E (y)E (p) + cov (y, p) .

This expresses the price of a portfolio as the expected value of the stochas-

tic discount factor times the expected payoff plus the covariance between the

stochastic discount factor and the payoff. Notice that φ(1) = E(y) so that the

expected value of the stochastic discount factor is simply the price of a sure

scalar payoff of unity.

The linearity of the pricing functional leaves open the possibility that prices

of some portfolios are negative. That would open arbitrage opportunities. David

Kreps (1979) showed that the principle that the price system should offer no

arbitrage opportunities requires that the stochastic discount factor be strictly

9 See appendix A for a statement and proof of the Riesz representation theorem.
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positive. For most of this section, we shall not impose the principle of no

arbitrage, just the law of one price. Thus, at this point we do not require

stochastic discount factors to be positive, though later we will study positive

stochastic discount factors.

14.5.3. Admissible stochastic discount factors

In previous sections we constructed structural models of the stochastic discount

factor. Our theories often implied that

y = mt+1 ≡ βu′ (Ct+1)

u′ (Ct)
, (14.5.4)

the intertemporal marginal rate of substitution of consumption today for con-

sumption tomorrow. For a CRRA utility function U(C) = (1 − γ)C1−γ , this

specification sets the stochastic discount factor to β
(
Ct+1

Ct

)−γ
. Hansen and

Jagannathan wanted to impose less and to approach the data with a class of

stochastic discount factors.10 Given data on prices q and payoffs x , Hansen

and Jagannathan inferred properties of y while imposing no more structure

than linearity of the pricing functional (the law of one price). Imposing only

this, they constructed bounds on the first and second moments of stochastic

discount factors y that are consistent with a given distribution of payoffs on a

set of primitive securities. They used a variance decomposition associated with

a linear regression to construct their bounds.

Hansen and Jagannathan assume that they observe q and Exx′ and know

the theoretical restriction Eyx = q . Though a stochastic discount factor y is

unobservable, we can represent it in terms of the population linear regression11

y = a+ x′b+ e (14.5.5)

10 Hansen and Jagannathan note that one candidate for a stochastic discount factor is

y∗ = x′(Exx′)−1q . This can be verified directly by substituting into equation (14.5.3) and

confirming that q = E(y∗x) . Thus, Exy∗ = E[xx′][Exx′]−1q = q . Besides y∗ , many other

stochastic discount factors work, in the sense of pricing the random payoffs x correctly, that

is, recovering q as their price. It can be verified directly that any other y that satisfies

y = y∗ + e is also a stochastic discount factor, where e is orthogonal to x . Let y1 and y2 be

two stochastic discount factors, so that Ey1x = Ey2x , which implies that E(y1 − y2)x = 0.

Thus, the difference between two stochastic discount factors is orthogonal to x .
11 See chapter 2 for the definition and construction of a population linear regression.
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where e is orthogonal to x and

b = [cov (x, x)]
−1

cov (x, y)

a = Ey − Ex′b.

Here cov(x, x) = E(xx′)− E(x)E(x)′ . We have data that allow us to estimate

the second-moment matrix of x , but no data on y and therefore no data on

cov(x, y). But we do have data on q , the vector of security prices. So Hansen

and Jagannathan proceeded to use the data on q, x to infer something but

not everything about cov(x, y). Notice that q = E(yx) implies cov(x, y) =

q − E(y)E(x). Therefore,

b = [cov (x, x)]−1 [q − E (y)E (x)] . (14.5.6)

Given a guess about E(y), asset payoffs x and prices q can be used to estimate

b . That the residuals in the projection equation (14.5.5) are orthogonal to x

induces the variance decomposition

var (y) = var (x′b) + var (e) .

Therefore

[var (x′b)]
.5 ≤ σ (y) , (14.5.7)

where σ(y) denotes the standard deviation of the random variable y . The

left side of (14.5.7) is a lower bound on the standard deviation of all stochas-

tic discount factors with assumed mean E(y) used to compute b in equation

(14.5.6).12 For various specifications, Hansen and Jagannathan used expres-

sions (14.5.6) and (14.5.7) to compute a lower bound on σ(y) as a function of

E(y), thereby tracing out a frontier of admissible stochastic discount factors in

terms of their means and standard deviations.

We focus on the case in which no risk-free asset is included among the basis

securities underlying x . For this case Hansen and Jagannathan calculate a lower

bound on σ(y) as a function of an unknown value of E(y). They do this for

data on gross returns on a set of assets. For a set of returns, q = 1 so that

equation (14.5.6) becomes

b = [cov (x, x)]−1 [1− E (y)E (x)] . (14.5.8)

12 The stochastic discount factors are not necessarily positive. Hansen and Jagannathan

(1991) derive another bound that imposes positivity.
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The bound is computed by solving equation (14.5.8) and
√
b′cov (x, x) b ≤ σ (y) (14.5.9)

for every E(y) of interest. Thus, we can compute the bound for various values of

E(y) by using equation (14.5.8) to compute b , then using that b in expression

(14.5.9) to compute the lower bound on σ(y). Taking into account how equation

(14.5.8) makes b depend on E(y), the bound on the left side of (14.5.9) is a

parabola as a function of E(y).13

We shall use quarterly data on returns on two basic assets, namely, the

real return on a value-weighted NYSE stock return and the real return on U.S.

Treasury bills over the period 1948-2005 to compute the Hansen-Jagannathan

bound on the left side of inequality (14.5.9). We report the bound in figure

14.6.1, which contains other information about the predicted behavior of the

stochastic discount factor of a consumer with time-separable CRRA preferences,

to be explained in the next section.

14.6. Failure of CRRA to attain HJ bound

For time-separable CRRA preferences with discount factor β , the stochastic

discount factor mt+1 is simply the marginal rate of substitution:

mt+1 = β

(
Ct+1

Ct

)−γ

(14.6.1)

where γ is the coefficient of relative risk aversion and Ct is consumption. Let

ct = logCt and express (14.6.1) as

mt+1 = β exp (−γ (ct+1 − ct)) . (14.6.2)

For aggregate U.S. data on per capita consumption of nondurables and services,

a good approximation to the data is the following model that makes the log of

per capita consumption a random walk with drift:

ct = µ+ ct−1 + σcεt, {εt} i.i.d. ∼ N (0, 1) . (14.6.3)

13 Recall that a (gross) return for an asset with price q and payoff x is defined as z = x/q .

A return is risk free if z is constant. Then note that if there is an asset with risk-free return

zRF ∈ x , it follows that E(yzRF ) = zRFEy = 1, and therefore Ey is a known constant. So

when one of the assets bears a risk-free return, only one point on the frontier is of interest,

the one with the known E(y) .
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With this model for consumption growth, (14.6.2) becomes

mt+1 = β exp (−γµ− γσcεt+1) , (14.6.4)

and the log of the stochastic discount factor is

logmt+1 = logβ − γµ− γσcεt+1, (14.6.5)

which is a normal random variable with mean logβ−γµ and variance γ2σ2
c . To

compute the mean and standard deviation of stochastic discount factor (14.6.4),

we use:

Property: If logX ∼ N (µx, σ
2
x), then E(X) = exp

(
µx +

1
2σ

2
x

)
and std(X) =

E(X)
√
(exp(σ2

x)− 1). Here std denotes a standard deviation.

Applying this property, we find that the mean E(m) and standard deviation

σ(m) are14

Emt+1 = E [m] = β exp

[
−γµ+

σ2
cγ

2

2

]
(14.6.6)

and

std (mt+1) ≡ σ (m) = E (m)
{
exp

[
σ2
cγ

2
]
− 1
} 1

2 (14.6.7)

Notice that for small σ2
cγ

2 ,
{
exp

[
σ2
cγ

2
]
− 1
} 1

2 ≈ σcγ , so that the market price

of risk is std(mt+1)
E(mt+1)

≈ σcγ .

Another convenient way to express the stochastic discount factor mt+1

given by (14.6.4) is first to represent it in terms of a discount rate ρ , namely,

β = exp(−ρ). Then equation (14.6.4) is equivalent with

mt+1 = exp

(
−rt −

1

2
σ2
cγ

2 − γσcεt+1

)
(14.6.8)

rt = ρ+ γµ− 1

2
σ2
cγ

2. (14.6.9)

14 Let log consumption growth be a random variable g with probability density φ(·) having

finite moments ζj =
∫
gjφ(g)dg for all orders j ≥ 1. Then note that Em ≡ βE exp(−γg) and

that E exp(−γg) is amoment generating function with power series 1−γζ1+
γ2

2 ζ2−
γ3

3! ζ3+· · · .

Therefore, the gross risk-free rate E(m) depends on moments of the log consumption growth

process of all orders. Stanley Zin (2002) named this a ‘never a dull moment’ and indicated how

one could adjust higher moments of log consumption growth to fit asset pricing observations

while also fitting lower moments of a log consumption growth process.



564 Asset Pricing Empirics

0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

E(m)

σ(
m

)

Time separable CRRA preferences

Figure 14.6.1: Solid line: Hansen-Jagannathan volatility

bounds for quarterly returns on the value-weighted NYSE

and Treasury Bill, 1948-2005. Crosses: Mean and standard

deviation for intertemporal marginal rate of substitution for

CRRA time separable preferences. The coefficient of relative

risk aversion, γ takes values 1, 5, 10, 15, 20, 25, 30, 35, 40,

45, 50 and the discount factor β=0.995.

Notice that Emt+1 = exp(−rt), so rt is the one-period net rate of return on

a risk-free claim, often appropriately called the short rate. Equation (14.6.9)

shows how discounting in preferences (ρ), consumption growth (µ), taste for

smooth consumption (γ ), and a precautionary savings motive ( 1
2σ

2
cγ

2 ) all affect

the short rate. In a literature on exponential quadratic stochastic discount fac-

tors to be discussed in section 14.11, the loading γσc of the log of the stochastic

discount factor on the innovation εt+1 is called the price of consumption growth

risk. That loading equals the market price of risk computed above.

Figure 14.6.1 plots Hansen-Jagannathan bounds. They form the parabola

in the upper right corner and were constructed using quarterly data on two

returns, the real return on a value-weighted NYSE stock return and the real

return on U.S. Treasury bills over the period 1948-2005 in conjunction with

inequality (14.5.8). The figure also reports the locus of E(m) and σ(m) implied

by equations (14.6.6) and (14.6.7) traced out by different values of γ . The figure

shows that while high values of γ deliver high σ(m), high values of γ also push
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E(m), the reciprocal of the risk-free rate down and away from the Hansen and

Jagannathan bounds. The equity premium puzzle is the observation that it takes

a very high value of γ to make σ(m) high with CRRA preferences. The risk-

free rate puzzle of Weil (1990) is that with the CRRA stochastic discount factor

(14.6.4), setting γ higher pushes E(m) downward and increasingly to the left

of the Hansen-Jagannathan bounds.

The risk free rate puzzle focuses on equations (14.6.6) and (14.6.7). The

time separable CRRA specification causes two conceptually distinct consumer

attitudes to find expression through a single parameter γ .

1. Effects of γ on σ(m)
E(m) Equation (14.6.7) shows that increases in γ unam-

biguously increase the market price of risk σ(m)
E(m) ≈ σcγ . Here γ is playing

its role of expressing the consumer’s distaste for atemporal gambles. Higher

values of γ indicate more hatred of risk and a higher price of risk.

2. Effects of γ on E(m) Countervailing effects of increases in γ on E(m)

are visible in equation (14.6.6). Through the term exp(−γµ), γ expresses

the representative consumer’s distaste for deviations of consumption from

a smooth path across time. The consumption growth rate parameter µ

induces deviations from intertemporal consumption smoothness, while γ

multiplicatively affects an adjustment of the risk-free interest needed to

compensate the consumer for accepting paths that are not smooth intertem-

porally, regardless of how risky they are. Here, γ is expressing views about

intertemporal substitution of consumption today for consumption tomor-

row. The parameter γ also affects E(m) through the term exp
(
σ2
cγ

2

2

)
,

which reflects a precautionary savings motive to be analyzed in chapter 17

that comes from the consumer’s dislike of risky consumption streams, a

dislike that increases with γ and is compensated for by a higher E(m).

Empirically, the estimates of µ and σc in Table 14.6.1 are the same order

of magnitude. Thus, µ is two orders of magnitude larger than σ2
c , which makes

increases in γ drive E(m) down through its precautionary-savings effect on

the term exp(−γµ) much faster than it drives E(m) up through its effect on

exp
(
σ2
cγ

2

2

)
. This is why increases in γ push E(m) downward, at least for all

but extraordinarily large γ ’s.15

15 This observation underlies an insight of Kocherlakota (1990), who pointed out that by

adjusting (β, γ) pairs suitably, it is possible to attain the Hansen-Jagannathan bounds for the
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Table 14.6.1: Estimates from quarterly U.S. data 1948:2-

2005:4.

Parameter Estimate

µ 0.004952

σc 0.005050

In conclusion, the fact that the same parameter γ expresses two attitudes –

atemporal risk aversion and intertemporal substitution aversion – leads to Weil’s

risk-free rate puzzle as captured by our figure 14.6.1. In the next section, we

describe how Tallarini (2000) made progress by assigning to γ only the single job

of describing risk aversion while using a new parameter η to describe attitudes

toward intertemporal substitution. By proceeding this way, Tallarini was able

to find values of the risk aversion parameter γ that push the (E(m), σ(m)) pair

toward the Hansen and Jagannathan bounds.

14.7. Non-expected utility

To separate risk aversion from intertemporal substitution, Tallarini (2000) as-

sumed preferences that can be described by a recursive non-expected utility

value function iteration à la Kreps and Porteus (1978), Epstein and Zin (1989),

and Weil (1990), namely,16

Vt =W (Ct, ξ (Vt+1)) . (14.7.1)

Here W is an aggregator function that maps today’s consumption C and a

function ξ of tomorrow’s random continuation value Vt+1 into a value Vt today;

ξ (·) is a ‘certainty equivalent’ function that maps a random variable Vt+1 that

is measurable with respect to next period’s information into a random variable

that is measurable with respect to this period’s information:

ξ (Vt+1) = f−1 (Etf (Vt+1)) ,

random walk model of log consumption and CRRA time-separable preferences, thus explaining

both the equity premium and the risk-free rate. Doing so requires a very high γ and β > 1.
16 Obstfeld (1994) and Dolmas (1998) used recursive preferences to study costs of consump-

tion fluctuations.
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where f is a concave function that describes attitudes toward atemporal risk,

for example:

f (z) =

{
z1−γ if 0 < γ 6= 1

log z if γ = 1,
(14.7.2)

and γ is the coefficient of relative risk aversion. In recursion (14.7.1), attitudes

toward intertemporal substitution are expressed through the aggregator W ,

while attitudes toward risk are expressed through the concave utility function

f that underlies ξ .

To express intertemporal substitution, Epstein and Zin (1991) used the CES

aggregator

W (C, ξ) =

{[
(1− β)C1−η + βξ1−η

] 1
1−η if 0 < η 6= 1

C1−βξβ if η = 1,
(14.7.3)

where 1
η is the intertemporal elasticity of substitution, that is, the elasticity

of substitution between consumption today and the certainty equivalent ξ of

continuation utility tomorrow. Setting γ = η gives the special case of additive

power utility with discount factor β .

Tallarini (2000) used a special case of this model. He set η = 1 in the ag-

gregator function (14.7.3) and used the power function (14.7.2) for his certainty

equivalent function. These choices led Tallarini to use the following recursion to

define preferences over risky consumption streams {Ct}∞t=0 :

Vt = C1−β
t

[(
Et

(
V 1−γ
t+1

)) 1
1−γ

]β
.

Taking logs gives

logVt = (1− β) ct +
β

1− γ
logEt

(
V 1−γ
t+1

)

or
logVt
(1− β)

= ct +
β

(1− γ) (1− β)
logEt

(
V 1−γ
t+1

)
. (14.7.4)

For our purposes, it is useful to represent (14.7.4) in another way. Define

Ut ≡ logVt/(1− β) and

θ ≡ −1

(1− β) (1− γ)
. (14.7.5)
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Then (14.7.4) is equivalent with

Ut = ct − βθ logEt

[
exp

(−Ut+1

θ

)]
. (14.7.6)

For now, θ is just a particular function of the interpretable parameters β and

γ . But later in subsection 14.8.4, θ will become an interpretable parameter of

independent interest.

Equation (14.7.6) is the risk-sensitive recursion of Hansen and Sargent

(1995).17 In the special case that γ = 1 (or θ = +∞), application of L’Hopital’s

rule verifies that recursion (14.7.6) becomes a discounted expected utility re-

cursion

Ut = ct + βEtUt+1.

To solve recursion (14.7.6), we use a guess and verify method. We continue

to assume that the log consumption process is a random walk with drift (14.6.3)

and seek to solve (14.7.6). Guess a linear value function

Ut = k0 + k1ct, (14.7.7)

where k0, k1 are scalar constants. Then solve the Bellman equation:

k0 + k1c = c− βθ logEt exp

(− (k0 + k1 [µ+ c+ σcεt+1])

θ

)
(14.7.8)

for k0 and k1 . Direct calculations that again use the properties of log normal

random variables show that k0 = β
(1−β)2

[
µ− σ2

c

2θ(1−β)

]
and k1 = 1

1−β , so that

Ut =
β

(1− β)2

[
µ− σ2

c

2θ (1− β)

]
+

1

1− β
ct. (14.7.9)

17 Tallarini defined σ = 2 (1− β) (1− γ) in order to interpret his recursion in terms of the

risk-sensitivity parameter σ of Hansen and Sargent (1995), who regarded negative values of

σ as enhancing risk aversion.



Non-expected utility 569

14.7.1. Another representation of the utility recursion

When log consumption follows the random walk with drift (14.6.3) or more

broadly is a member of a class of models that makes the conditional distribution

of ct+1 be Gaussian, another way to express recursion (14.7.6) is

Ut = ct + βEtUt+1 −
β

2θ
vart (Ut+1) , (14.7.10)

where vart(Ut+1) denotes the conditional variance of continuation utility Ut+1 .

Using (14.7.5) to eliminate θ in favor of γ , we can also express (14.7.10) as

Ut = ct + βEtUt+1 +
β (1− γ) (1− β)

2
vart (Ut+1) . (14.7.11)

When θ < +∞ or γ > 1, representation (14.7.10) generalizes the ordinary

time separable expected utility recursion by making the consumer care not only

about the conditional expectation of continuation utility but also its conditional

variance.

According to (14.7.10), when θ < +∞ the consumer dislikes conditional

variance in continuation utility.18 This means that the consumer cares about

both the timing of the resolution of uncertainty and the persistence of risk.

When θ = +∞ , he cares about neither. Figures 14.7.1 and 14.7.2 show payoffs

(displayed above the nodes) and transition probabilities (the fractions above the

lines connecting nodes) for four plans. When 0 < θ < +∞ the consumer prefers

early resolution of risk (he prefers plan A to plan B in figure 14.7.1), while he

is indifferent to the timing of risk when θ = +∞ .19 When 0 < θ < +∞ ,

the consumer dislikes persistence of risk (he prefers plan C to plan D in figure

14.7.2), while when θ = +∞ he is indifferent to the persistence of risk.20

18 Equation (14.7.10) is a discrete time version of the stochastic differential utility model

of Duffie and Epstein (1992).
19 See Kreps and Porteus (1978).
20 See Duffie and Epstein (1992).
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Figure 14.7.1: Plan A has early resolution of uncertainty.

Plan B has late resolution of uncertainty.
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Figure 14.7.2: Plan C has i.i.d. risk. Plan D has persistent

risk.

14.7.2. Stochastic discount factor

With preferences induced by the risk-sensitive recursion (14.7.6), calculating

the intertemporal rate of substitution shows that the stochastic discount factor

is21

mt+1 =

(
β
Ct
Ct+1

)(
exp

(
−θ−1Ut+1

)

Et [exp (−θ−1Ut+1)]

)
, (14.7.12)

21 Appendix B describes how to compute a stochastic discount factor for risk-sensitive

preferences by appropriately differentiating utility functionals with respect to Ct and Ct+1

in particular states at time t+ 1.
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or

mt+1 =

(
β
Ct
Ct+1

)(
exp ((1− β) (1− γ)Ut+1)

Et [exp ((1− β) (1− γ)Ut+1)]

)
. (14.7.13)

The term g(εt+1) ≡
(

exp((1−β)(1−γ)Ut+1)
Et[exp((1−β)(1−γ)Ut+1)]

)
is a nonnegative random variable

whose conditional expectation is unity by construction. This makes it inter-

pretable as a likelihood ratio, i.e., the ratio of one probability density to another.

Direct calculations using (14.7.13) and (14.7.9) show that the likelihood ratio

g satisfies

g (εt+1) ≡
(

exp ((1− β) (1− γ)Ut+1)

Et [exp ((1− β) (1− γ)Ut+1)]

)
= exp

(
wεt+1 −

1

2
w2

)
(14.7.14)

where

w = − σc
θ (1− β)

. (14.7.15)

Using the definition of θ in (14.7.5), we can also express w as

w = σc (1− γ) . (14.7.16)

Thus, for a log consumption process described by a random walk with drift

(14.6.3), the stochastic discount factor (14.7.12) becomes

mt+1 = β exp (− (ct+1 − ct)) exp

(
wεt+1 −

1

2
w2

)

= β exp

(
−
(
µ+ σcεt+1 − σc (1− γ) εt+1 +

1

2
σ2
c (1− γ)2

)) (14.7.17)

where we have used (14.7.16) in moving from the first line to the second. There-

fore,

logmt+1 = logβ − µ− γσcεt+1 −
1

2
σ2
c (1− γ)

2
, (14.7.18)

so that logmt+1 ∼ N (logβ − µ− 1
2σ

2
c (1 − γ)2, γ2σ2

c ).

Applying standard properties of log normal random variables to formula

(14.7.17) for the stochastic discount factor gives

Emt+1 = β exp

[
−µ+

σ2
c

2
(2γ − 1)

]
(14.7.19)

σ (m)

E [m]
=
{
exp

[
σ2
cγ

2
]
− 1
} 1

2 ≈ σcγ. (14.7.20)
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Figure 14.7.3: Solid line: Hansen-Jagannathan volatility

bounds for quarterly returns on the value-weighted NYSE and

Treasury bill, 1948–2005. Circles: Mean and standard devi-

ation for intertemporal marginal rate of substitution gener-

ated by Epstein-Zin preferences with random walk consump-

tion. Crosses: Mean and standard deviation for intertemporal

marginal rate of substitution for CRRA time separable pref-

erences. The coefficient of relative risk aversion γ takes on

the values 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and the

discount factor β = 0.995.

Please compare these two to the corresponding formulas (14.6.6), (14.6.7) for

the time-separable CRRA specification. The salient difference is that γ no

longer appears in the key component exp(−µ) of E(m) in (14.7.19), while it

does appear in the corresponding term in formula (14.6.6) coming from time

separable CRRA preferences. Tallarini made γ disappear there by locking the

inverse intertemporal rate of substitution parameter η at unity while still al-

lowing what is now a pure risk aversion parameter γ to vary. This arrests the

force causing E(m) in (14.6.6) to fall as γ rises and allows Tallarini to avoid

the risk-free rate puzzle and to approach the Hansen-Jagannathan bounds as

the risk aversion parameter γ increases.

To connect to the exponential quadratic stochastic discount factor models

of section 14.11, we can represent Tallarini’s stochastic discount factor (14.7.17)
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as

mt+1 = exp

(
−rt −

1

2
σ2
cγ

2 − σcγεt+1

)
(14.7.21)

rt = ρ+ µ− 1

2
σ2
c (2γ − 1) , (14.7.22)

where rt is again the risk-free one period net rate of interest and σcγ is again

the market price of risk.22 Notice how variations in γ have a very small ef-

fect on rt , unlike in formula (14.6.9) for the standard case of time separable

CRRA preferences. Increases in γ now increase the market price of risk without

substantially decreasing rt , thus sidestepping the risk-free rate puzzle.

Figure 14.7.3 is a version of Tallarini’s (2000) key figure for our data on

quarterly returns on the value-weighted NYSE and Treasury Bill, 1948-2005. It

uses formulas (14.6.6), (14.6.7) to compute loci of (E(m), σ(m)) pairs for differ-

ent values of the risk-aversion parameter γ . When it is compared to the corre-

sponding figure 14.6.1 for time separable CRRA preferences, this figure registers

a striking success for Tallarini. Notice how increasing γ pushes the volatility of

the stochastic discount factor upward toward the Hansen-Jagannathan bounds

while leaving E(m) unaffected, thus avoiding the risk-free rate puzzle of Weil

(1990). A risk aversion coefficient γ = 50 almost succeeds in attaining the

Hansen-Jagannathan bounds.23

22 By using formula (14.7.16) for w , we can show that an equivalent representation for

mt+1 is

mt+1 = exp

(
−rt −

1

2
σ2cγ

2 − σcεt+1 + wεt+1

)
. (14.7.23)

Talleriini interpreted σc − w = σcγ as the market price of risk. In section 14.8, we shall

instead interpret σc in this expression as the market price of risk and −w as a market price

of uncertainty.
23 By adjusting the calibrated value of β upward, it would be possible to move all the circles

in figure 14.7.3 to the right, thus moving them closer to the Hansen-Jagannathan bound.
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14.7.3. Twisted probability distributions

Under model (14.6.3) for log consumption growth, the distribution of the i.i.d.

innovation εt+1 is

φ (εt+1) =
1√
2π

exp

(
−ε

2
t+1

2

)
∼ N (0, 1) .

If we multiply the density φ by the likelihood ratio g(εt+1) = exp
(
wεt+1 − w2

2

)

that emerged in (14.7.14) above, we obtain the “twisted” probability density

φ̂ = φg or

φ̂ (εt+1) =
1√
2π

exp

(
− (εt+1 − w)2

2

)
∼ N (w, 1) .

It follows that the twisted probability model for ct+1 − ct is

ct+1 − ct = (µ+ σcw) + σcε̂t+1, (14.7.24)

where ε̂t+1 ∼ N (0, 1).

In an environment in which the original model (14.6.3) governs log con-

sumption growth, Tallarini’s stochastic discount factor would emerge from a

representative consumer whose Euler equations for an asset with stochastic gross

return Rt+1 are for some reason

Êtβ

(
Ct
Ct+1

)
Rt+1 = 1, (14.7.25)

where Êt(·) denotes a conditional expectation taken with respect to the twisted

conditional probability distribution for ct+1 , and β
(

Ct

Ct+1

)
is the ordinary

stochastic discount factor associated with time separable logarithmic prefer-

ences. Equation (14.7.25) could emerge from a setting in which a representative

agent orders consumption streams according to the time separable logarithmic

utility recursion Ut = ct+βÊtUt+1 because he has the wrong probability model

(14.7.24) instead of the probability model (14.6.3) from which nature draws

consumption. In the next section, we describe a setting in which a representa-

tive consumer behaves in this way for another reason.
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14.8. Reinterpretation of the utility recursion

Is Tallarini’s explanation convincing? Not to Robert E. Lucas, Jr. To succeed

in approaching the Hansen-Jagannathan bounds required that Tallarini set the

risk-aversion parameter γ to such a high value, namely 50, that it provoked

Robert E. Lucas, Jr., to disregard Tallarini’s evidence for high risk aversion:

No one has found risk aversion parameters of 50 or 100 in the diversification

of individual portfolios, in the level of insurance deductibles, in the wage

premiums associated with occupations with high earnings risk, or in the

revenues raised by state-operated lotteries. It would be good to have the

equity premium resolved, but I think we need to look beyond high estimates

of risk aversion to do it.

— “Macroeconomic Priorities,” 2003

To measure the costs of aggregate fluctuations along lines to be described

in section 14.9, Lucas (1987, 2003) preferred to use a value of γ of 1 or 2 rather

than the γ of 50 that Tallarini required to reconcile his model of preferences

with both the consumption data and the asset returns data as summarized by

the Hansen-Jagannathan bounds.24

14.8.1. Risk aversion versus model misspecification aversion

To respond to Lucas’s reluctance to use Tallarini’s findings as a source of evi-

dence about a representative consumer’s distaste for consumption fluctuations,

we now reinterpret γ as a parameter that expresses not risk aversion but in-

stead distress about model specification doubts. Fearing risk means disliking

randomness described by a known probability distribution. Fearing uncertainty

– also called model misspecification – means disliking not knowing a proba-

bility distribution. We will reinterpret the forward-looking term25 g(εt+1) ≡
exp((1−β)(1−γ)Ut+1)

Et[exp((1−β)(1−γ)Ut+1)]
that multiplies the ordinary logarithmic stochastic dis-

count factor β Ct

Ct+1
in (14.7.13) as an adjustment of the stochastic discount

factor that reflects a consumer’s fears about model misspecification. While a

24 For another perspective on the evidence, see Barseghyan, Molinari, O’Donoghue, and

Teitelbaum (2013). Their findings challenge the notion that purchasers of insurance know

probability distributions.
25 The presence of the continuation value Ut+1 is our reason for saying ‘forward-looking’.
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consumer’s risk aversion is about his reaction to risks described by a known

probability distribution, his attitude about model misspecification is about his

reaction to facing an unknown probability distribution.

14.8.2. Recursive representation of probability distortions

It is convenient to use the following notation similar to some used in chapter 8.

Let st = ct − ct−1 and st = st, . . . , s1 . Denote a joint probability density over

st as Ft(s
t). Where ft+1(st+1|st) is a conditional density, the recursion

Ft+1

(
st+1

)
= ft+1

(
st+1|st

)
Ft
(
st
)
, t ≥ 1 (14.8.1)

governs the evolution of the joint densities Ft(s
t). For example, setting st = ct

in our model of consumption growth (14.6.3), ft+1(st+1|st) ∼ N (µ + st, σ
2
c ).

Let Gt(s
t) be the ratio of another joint density F̃t(s

t) to Ft(s
t), so that

F̃t
(
st
)
= Gt

(
st
)
Ft
(
st
)
. (14.8.2)

We can factor the likelihood ratio Gt+1(s
t+1) in a way analogous to the factor-

ization of Ft+1(s
t+1) in (14.8.1):

Gt+1

(
st+1

)
= gt+1

(
st+1|st

)
Gt
(
st
)
, t ≥ 1. (14.8.3)

Here gt+1(st+1|st) is a likelihood ratio of conditional densities, namely,

gt+1

(
st+1|st

)
=
f̃t+1 (st+1|st)
ft+1 (st+1|st)

.

Because gt+1(st+1|st) is a likelihood ratio, its expectation under ft+1(st+1|st)
is unity: ∫

gt+1

(
st+1|st

)
ft+1

(
st+1|st

)
dst+1 = 1.

This in turn implies that under the {Ft(st)}∞t=0 densities, the likelihood ratio

Gt(s
t) is a martingale with respect to the filtration generated by st :

E
[
Gt+1

(
st+1

)
|st
]
=

[∫
gt+1

(
st+1|st

)
ft+1

(
st+1|st

)
dst+1

]
Gt
(
st
)

= Gt
(
st
)
.
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14.8.3. Entropy

To measure proximity of two conditional densities f̃t+1(st+1|st) and ft+1(st+1|st),
we use the expected log likelihood ratio

ent (gt+1) ≡
∫

log
(
gt+1

(
st+1|st

))
f̃t+1

(
st+1|st

)
dst+1

=

∫
log
(
gt+1

(
st+1|st

))
gt+1

(
st+1|st

)
ft+1

(
st+1|st

)
dst+1,

(14.8.4)

where the mathematical expectation on the right side of the first line is with

respect to the conditional density f̃t+1 and the integration on the right side

of the second line is with respect to the conditional density ft+1 . The object

ent(gt+1) is called the relative entropy of conditional density f̃t+1 with respect

to conditional density ft+1 .

Entropy is an informative measure of the statistical proximity of the two

densities because it determines the limiting behavior of tests for statistically

discriminating between two densities using samples of finite length. Entropy is

nonnegative and equals zero if gt+1 = 1, so that f̃t+1 = ft+1 . If entropy is

small, it takes a large number of observations to distinguish the two densities

with high statistical confidence, while if entropy is large, it requires fewer ob-

servations.26 We elaborate on this connection in section 14.8.7. But first we

reinterpret recursion (14.7.6) as expressing a decision maker’s fears about model

misspecification.

26 Anderson, Hansen, and Sargent (2003) develop the connection between entropy and

statistical model discrimination.
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14.8.4. Expressing ambiguity aversion

Let ε be a random variable with normalized Gaussian density φ(ε) ∼ N (0, 1).

Let φ̃(ε) = g(ε)φ(ε) be some other density for ε . Let Z(ε) be a value function.

Consider the minimization problem:

T (Z) = min
g(ε)≥0

∫
Z (ε) g (ε)φ (ε)dε+ θ ent (g (ε))

= min
g(ε)≥0

∫
[Z (ε) + θ log g (ε)] g (ε)φ (ε) dε

(14.8.5)

where 0 < θ ≤ +∞ and the minimization is subject to
∫
g(ε)φ(ε)dε = 1,

so that g is a likelihood ratio. The minimization problem on the right side

of (14.8.5) has the following interpretation. Ex post, a decision maker values

random outcomes ε according to the value function Z(ε). The decision maker’s

guess about the probability density over ε is φ(ε). But he does not completely

trust φ(ε), meaning that he thinks that outcomes might actually be drawn

from some unknown distribution g(ε)φ(ε). He wants an ex ante valuation that

will work ‘well enough’ for a set of densities in a neighborhood of φ(ε). He

measures proximity by relative entropy. He attains such a ‘robust’ valuation, i.e.,

one suitable for a set of probability distributions, by solving the minimization

problem on the right side of (14.8.5). The problem is to choose a probability

distortion g that minimizes expected utility under the ‘distorted’ density φ̃ = gφ

plus a positive penalty parameter θ times relative entropy. The purpose of the

entropy penalty term (θ ent) is to constrain the probability distortions g to have

small entropy. Smaller values of θ allow bigger probability distortions because

the penalty on entropy is smaller in the minimization problem on the right side

of the equations in (14.8.5). The penalty parameter θ is an inverse index of the

decision maker’s distrust of his baseline probability model φ .

Performing the minimization on the right side of (14.8.5) gives the following

minimizing value of g(ε):27

ĝ (ε) =
exp

(
−θ−1Z (ε)

)

E exp (−θ−1Z (ε))
. (14.8.6)

Substituting the minimizer (14.8.6) into the right side of (14.8.5) gives the

indirect utility function

T (Z) = −θ logE exp
(
−θ−1Z (ε)

)
, (14.8.7)

27 Equation (14.8.5) implies the following useful bound on the expected value of Z(ε)

under distorted distribution φ(ε)g(ε) :
∫
Z(ε)φ(ε)g(ε)dε ≥ T(Z)− θent(g(ε)).
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which we recognize to be the same risk-sensitivity operator that appears on the

right side of recursion (14.7.6). We rely on the fact that (14.8.7) is the indirect

utility function for the minimization problem on the right side of (14.8.5) to

interpret the penalty parameter θ in T(Z) as expressing distrust of the dis-

tribution φ(ε). An application of l’Hopital’s rule shows that when θ = +∞ ,

T(Z) =
∫
Z(ε)φ(ε)dε , which is expected utility under complete trust in the

density φ .

14.8.5. Ambiguity averse preferences

We return to our representative consumer and use the following recursion to

express preferences over consumption streams. But we now endow the consumer

with distrust of the density φ(εt+1) in (14.6.3). He expresses that distrust by

using the following recursion to order consumption streams:

Wt = ct + βTt (Wt+1) ,

where Tt is a conditional version of T . This is equivalent with

Wt = ct − βθ logEt

[
exp

(−Wt+1

θ

)]
, (14.8.8)

which is identical with recursion (14.7.6), namely, the risk-sensitive recursion

of Hansen and Sargent (1995) once again. When interpreted in terms of model

ambiguity, (14.8.8) is said to describe ‘multiplier preferences’ that express model

ambiguity through the penalty parameter or ‘multiplier’ θ .28

The identity of recursions (14.7.6) and (14.8.8) means that so far as choices

among risky consumption plans indexed by (µ, σc) are concerned, the risk-

sensitive representative consumer of Tallarini (2000) is observationally equiva-

lent to a representative consumer who is concerned about model misspecifica-

tion. But the motivations behind their choices differ and that would in principle

allow us to distinguish them if we were able to confront the consumer with

choices between gambles with known distributions and gambles with unknown

distributions.29

28 See Hansen and Sargent (2001) for the origin of the term ‘multiplier preferences’.
29 The classic experiments of Daniel Ellsberg (1961) have often been interpreted as indi-

cating that people are averse to not knowing probability distributions of risks. Hansen and

Sargent (2011) cite various authors whose doubts about model specifications in macroeco-

nomics have convinced them to decline to use expected utility.
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Recall formula (14.7.5) that for risk-sensitive preferences defines θ in terms

of the elementary parameters β and γ :

θ =
−1

(1− β) (1− γ)
.

For Tallarini, γ = 1 + θ−1

1−β is the fundamental parameter. For him, it de-

scribes the consumer’s attitude toward atemporal risky choices under a known

probability distribution. But under the probability ambiguity or ‘robustness’ in-

terpretation, θ is an elementary parameter in its own right, one that measures

the consumer’s doubts about the probability model that describes consumption

growth risk. The evidence cited in the above quote from Lucas (2003) and the

introspective reasoning of Cochrane (1997) and Pratt (1964) that we described

above on page 551 explain why many economists think that only small positive

values of γ are plausible when it is interpreted as a risk-aversion parameter.

Pratt’s experiment confronts a decision maker with choices between gambles

with known probability distributions.

How should we think about plausible values of γ , or rather, θ , when it

is instead interpreted as encoding responses to gambles that involve unknown

probability distributions? Hansen, Sargent, and Wang (2002) and Anderson,

Hansen, and Sargent (2003) answer this question by recognizing the role of

entropy in statistical tests for discriminating one probability distribution from

another based on a sample of size T drawn from one or the other of the two

distributions. They use the probability of making an error in discriminating

between the two models as a way of disciplining the calibration of θ . That leads

them to argue that it is not appropriate to regard θ as a parameter that remains

fixed across alternative hypothetical stochastic processes for consumption. We

take up this issue again in section 14.8.7.
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14.8.6. Market price of model uncertainty

Recall the stochastic discount factor (14.7.12)

mt+1 =

(
β
Ct
Ct+1

)(
exp

(
−θ−1Ut+1

)

Et [exp (−θ−1Ut+1)]

)
,

or

mt+1 = β exp (− (ct+1 − ct)) g (εt+1) , (14.8.9)

where g is the likelihood ratio given by (14.7.14). One way to state the equity

premium puzzle is that the data show that for U.S. data on per capita consump-

tion, the conditional coefficient of variation of exp(−(ct+1 − ct)) is small while

the conditional standard deviation of mt+1 revealed by asset market prices and

returns is large. If the stochastic discount factor (14.8.9) is to explain the large

observed equity premium, most of the job has to be done by volatility in g(εt+1).

Direct calculations show that the conditional standard deviation of the

likelihood ratio g(εt+1) given by formula (14.7.14) is

stdt (g) = [exp (w′w)− 1]
1
2 ≈ |w|, (14.8.10)

where recall that w is given by (14.7.16) and that because g(εt+1) is a likelihood

ratio, Etg = 1. Therefore, the ratio of stdt(g) to Et(g) equals stdt(g). It can be

verified directly that |w| given by formula (14.8.10) comprises the lion’s share of

what Tallarini interpreted as the market price of risk given by formulas (14.6.6)

and (14.6.7). This is because the first difference of the log of consumption has

a small conditional coefficient of variation in our data, the heart of the equity

premium puzzle. Thus, formula (14.8.10) is a good approximation to Tallarini’s

formula (14.7.20).30

As we have seen in equation (14.7.23), Tallarini’s stochastic discount factor

can be expressed as mt+1 = exp(−rt − 1
2σ

2
cγ

2 − σcεt+1 + wεt+1). Hansen,

Sargent, and Tallarini (1999) and Hansen and Sargent (2008) advocate calling

σc the market price of risk and −w the market price of model uncertainty.

They interpret −w as compensation that the representative consumer requires

for bearing uncertainty about the probability distribution that governs ct+1 −
ct . Barillas, Hansen, and Sargent (2009) show that setting θ to capture what

30 In particular, using w = (1 − γ)σc , direct computations show that std(g) = [exp((γ −

1)2σ2c )− 1]
1
2 which for large γ approximates (14.7.20).
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they regard as moderate and plausible amounts of model uncertainty goes a

long way toward pushing what Tallarini would measure as the market price

of uncertainty, but which they instead interpret as the market price of model

uncertainty, toward the Hansen-Jagannathan bounds.

14.8.7. Measuring model uncertainty

Anderson, Hansen, and Sargent (2003) took the following approach to measuring

plausible amounts of model uncertainty. The decision maker’s baseline approx-

imating model is the random walk with drift (14.6.3). However, the decision

maker doubts this model and surrounds it with a cloud of models characterized

by likelihood ratios g(ε). To get a robust valuation, he constructs a worst-

case model, namely, the model associated with the minimizing likelihood ratio

g(ε) in the appropriate version of (14.8.5). When his approximating model is

(14.6.3), this worst-case model for log consumption growth is

ct+1 = ct + (µ+ σcw) + σcεt+1, (14.8.11)

where εt+1 is again distributed according to a Gaussian density with mean

zero and unit variance. Equation (14.8.11) says that the mean of consumption

growth is not µ but µ+σcw , where w is again given by (14.7.15) or (14.7.16).

Evidently, the approximating model is the γ = 1 version of (14.8.11). The

ambiguity averse consumer has a stochastic discount factor with respect to the

approximating model (14.6.3) that looks as if he believes (14.8.11) instead of

(14.6.3). It is as if he evaluates utility according to the ordinary utility recursion

Ut = ct+βẼtUt+1 , where Ẽt is the mathematical expectation taken with respect

to the probability distribution generated by (14.8.11).

When it is interpreted as a measure of model uncertainty, rather than risk

aversion, Anderson, Hansen, and Sargent recommend calibrating γ or θ by

using an object called a ‘detection error probability’. In the present context,

this object answers the following question. Given a sample of size T drawn

from either (14.6.3) (call it model A) or (14.8.11) (call it model B), what is

the probability that a likelihood ratio test would incorrectly testify either that

model A generated the data when in fact model B generated the data, or that

model B generated the data when in fact model A did?31 It is easy to compute

31 Anderson, Hansen, and Sargent (2003) describe the close links between entropy and such

detection error probabilities.
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detection error probabilities by simulating likelihood ratios for samples of size

T and counting the frequency of such model discrimination mistakes.32

Evidently, when γ = 1 (which means θ = +∞), w = 0, so models A

and B are identical, and therefore statistically indistinguishable. In this case,

the detection error probability is .5, signifying that, via rounding error, the

computer essentially flips a coin in deciding which model generated the data. A

detection error probability of .5 thus means that it is impossible to distinguish

the models from sample data. But as we increase γ above 1, i.e., drive the

penalty parameter θ below +∞ , the detection error probability falls. The idea

here is to guide our choice of γ or θ as follows. Set a detection error probability

that reflects an amount of model specification uncertainty about which it seems

plausible for the decision maker to be concerned, then in the context of the

particular approximating model at hand (which for us is (14.6.3)), find the γ

associated with that detection error probability.
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Figure 14.8.1: Reciprocal of risk free rate, market price of

risk pairs for the random walk model for values of detection

error probabilities of 50, 45, 40, 35, 30, 25, 20, 15, 10, 5 and

1 percent.

A plausible value for the detection error probability is a matter of judge-

ment. If the detection error probability is .5, it means that the two models are

32 See Barillas, Hansen, and Sargent (2009).
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statistically identical and can’t be distinguished. A detection error probability

of .25 means that there is a one in four chance of making the wrong decision

about which model is generating the data. From our own experiences fitting

models to data, a person whose specification doubts include perturbed models

with a detection error of .25 or .1 or even .05 could be said to have a plausible

amount of model uncertainty.

Figure 14.8.1 redraws Tallarini’s figure in terms of detection error proba-

bilities for a sample size equal to the number of quarterly observations between

1948 and 2005 used to compute the Hansen and Jagannathan bounds. The fig-

ure again plots (E(m), σ(m)) pairs given by formulas (14.7.19) (14.7.20) for γ ’s

chosen to deliver the indicated detection error probabilities. The figure shows

that moderate detection error probabilities of 10 or 15 percent take us more than

half way to the Hansen and Jagannathan bounds, while 1 percent gets us there.

The sense of these calculations is that moderate amounts of aversion to model

uncertainty can substitute for huge amounts of risk aversion from the point of

view of pushing the (E(m), σ(m)) toward the Hansen-Jagannathan bounds. In

the next section, we revisit the quote from Lucas in light of this finding.

14.9. Costs of aggregate fluctuations

We now take up the important substantive issue that prompted Lucas to dis-

miss Tallarini’s evidence about γ for the particular purpose then at hand for

Lucas (1987, 2003). Lucas wanted to measure the gains to eliminating further

unpredictable fluctuations in aggregate U.S. per capita consumption beyond the

reductions that had already been achieved by post World War II aggregate sta-

bilization policies. His method was to find an upper bound on possible gains

by computing the reduction in initial consumption that a representative con-

sumer with time-separable preferences would be willing to accept in exchange

for eliminating all unpredictable fluctuations that post WWII consumption has

exhibited. In this section, we describe Tallarini’s version of Lucas’s calculation

and spotlight how γ affects conclusions.33

For the random walk with drift model of log consumption described by

equation (14.6.3), the level of consumption Ct = exp(ct) obeys Ct+1 = exp(µ+

33 For another perspective on the topic of this section, see Alvarez and Jermann (2004).
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σcεt+1)Ct . A deterministic34 process with the same expected growth rate as

the process {Ct} is evidently

Cdt+1 = exp

(
µ+

1

2
σ2
c

)
Cdt (14.9.1)

because E exp(µ+ σcεt+1) = exp(µ+ 1
2σ

2
c ). Now using θ−1 = −(1− γ)(1− β)

in our formula (14.7.9) allows us to express a risk-sensitive value function in

terms of γ :

Ut =
β

(1− β)2

[
µ+

σ2
c (1− γ)

2

]
+

1

1− β
ct. (14.9.2)

Equating a time zero risk-sensitive value function for the deterministic process

{Cdt } (on the left side) with a time zero risk-sensitive value function for the

random process {Ct} governed by the geometric random walk with drift (14.6.3)

(on the right side) gives

β

(1− β)
2

[
µ+

σ2
c

2

]
+

1

1− β
cdo =

β

(1− β)
2

[
µ+

σ2
c (1− γ)

2

]
+

1

1− β
c0

where c0 = logC0 and cd0 = logCd0 . Solving for c0 − cd0 gives

c0 − cd0 =

(
β

1− β

)
γσ2

c

2
. (14.9.3)

The left side is the proportionate once-and-for-all reduction in initial consump-

tion that a consumer would accept to trade a random process (14.6.3) for a

perfectly predictable process with the same conditional mean growth rate as

(14.6.3). The formula shows the utility costs of random fluctuations to be pro-

portional to γ . Pertinent sources of evidence about the magnitude of γ and

whether they should be interpreted as measures of attitudes toward risk, or

maybe something else, are the issues under scrutiny in the above quote from

Lucas. Together with the values of γ that allowed him to attain the Hansen-

Jagannathan bounds, Tallarini’s formula (14.9.3) brings a very large increase in

estimates of the costs of aggregate consumption fluctuations relative to the small

ones asserted by Lucas. In dismissing the high value of γ that Tallarini found

is necessary to attain the Hansen-Jagannathan bounds as measuring attitudes

toward risks with known probabilities, Lucas was advocating a lower estimate

of the costs of aggregate risk than Tallarini had inferred.

34 A stochastic process is said to be deterministic if its future is perfectly predictable given

its past and present.



586 Asset Pricing Empirics

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

detection error probability

P
ro

p
o

rt
io

n
 o

f 
c
o

n
s
u

m
p

ti
o

n
 (

%
)

Figure 14.9.1: Proportions c0 − cd0 of initial consumption

that a representative consumer with model-uncertainty averse

(multiplier) preferences would surrender not to confront risk

(dotted line) and model uncertainty (solid line) for random-

walk model of log consumption growth, plotted as a function

of detection error probability.

In section 14.8.6 we argued that most of what Tallarini interpreted as the

market price of risk should instead be interpreted as a market price of model

uncertainty. The section 14.8.6 argument is one possible way of fulfilling Lu-

cas’s hope that “It would be good to have the equity premium resolved, but I

think we need to look beyond high estimates of risk aversion to do it.” And it

is compatible with Lucas’s judgement that Tallarini’s values of γ ’s calibrated

to get into the Hansen-Jagannathan bounds are not suitable for mental exper-

iments about risks with known probabilities of the kind that Lucas performed.

Those high estimates of γ are relevant to other mental experiments about elim-

inating the consumer’s concern about model uncertainty, but not about Lucas’s

experiment.

Figure 14.9.1 shows Barillas, Hansen, and Sargent’s (2009) measures of

the costs of removing random fluctuations in aggregate consumption per capita

(the dotted line) as well as costs of removing model uncertainty (the solid line).

The figure reports these costs as a function of the detection error probability

described in subsection 14.8.7. The costs of consumption risk drawn from a
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known distribution are small, as Lucas asserted, but for moderate values of

detection error probabilities, the costs of model uncertainty are substantial.35

14.10. Reverse engineered consumption heterogeneity

In earlier sections, we explored how risk-sensitive preferences or a fear of model

misspecification would increase the volatility of the stochastic discount factor by

multiplying the ordinary stochastic discount factor mt+1 = β exp(−(ct+1 − ct))

with a random variable g(εt+1) that can be interpreted as a likelihood ratio.

In this section, we describe how Constantinides and Duffie (1996) constructed

such a volatility-increasing multiplicative adjustment in another way, namely, by

introducing incomplete markets and stochastic volatility in the cross-sectional

distribution of consumption growth.

Let Rj,t+1, j = 1, . . . , J be a list of returns on assets and let mt+1 ≥ 0 be

a stochastic discount factor for which

Etmt+1Rj,t+1 = 1 (14.10.1)

for j = 1, . . . , J . As discussed in section 14.5, we know that such a discount

factor exists under the weak assumptions that returns obey the law of one price

and a no-arbitrage outcome. Constantinides and Duffie (1996)36 assumed that

(14.10.1) holds for some mt+1 . They then reverse engineered consumption

processes {Cit} and personal stochastic discount factors mi
t+1 for a collection

of heterogeneous consumers i ∈ I with the properties that

1. For each i , the personal stochastic discount factor mi
t+1 satisfies

Etm
i
t+1Rj,t+1 = 1, j = 1, . . . , J ;

35 See De Santis (2007) for a modification of the baseline around which the costs of aggre-

gate fluctuations are measured. De Santis adopts a specification according to which a typical

consumer’s consumption process consists of an aggregate component and an uninsurable id-

iosyncratic component, modeled in the same fashion Constantinides and Duffie (1996) do in

the model described in the next section. De Santis describes the welfare consequences of

eliminating aggregate fluctuations, while leaving idiosyncratic fluctuations unaltered at their

calibrated value. For a coefficient of relative risk aversion of 3, De Santis finds that the ben-

efits of removing aggregate fluctuations are much larger when idiosyncratic fluctuations are

not removed first. If one were to repeat De Santis’s exercise for a coefficient of risk aversion

of 1, the effect that he finds would disappear.
36 Also see Mankiw (1986) and Attanasio and Weber (1993) for analyses that anticipate

elements of the setup of this section.
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2. Where {Cit}∞t=0 is consumer i ’s consumption process, consumer i ’s personal

stochastic discount factor mi
t+1 is

mi
t+1 = β

(
Cit+1

Cit

)−γ

; (14.10.2)

and

3. There exists a pattern for the evolution of the conditional volatility of the

cross section of relative consumptions across agents for which the γ in

(14.10.2) can be much lower than the γ̂ that would be estimated for a

stochastic discount factor ma
t+1 = β

(
Ct+1

Ct

)−γ̂
based on aggregate con-

sumption data {Ct} .

Here is how Constantinides and Duffie reverse engineered an intertempo-

ral pattern of volatility in the cross-section of consumption to get their three

properties.37 Consider an economy with a large number (strictly speaking, a

continuum) of consumers named i . Let Ct be the average across i of the indi-

vidual consumption levels Cit . For a given return vector {Rj,t+1, j = 1, . . . , J} ,
take as given a ‘successful’ stochastic discount factor {mt+1} (i.e., one that sat-

isfies (14.10.1) for j = 1, . . . , J ).38 Let Cit = δitCt for a continuum of consumers

i ∈ I .39 For a given β ∈ (0, 1) and a given γ ≥ 0, express Emt+1Rj,t+1 = 1 as

Et




mt+1

β
(
Ci

t+1

Ci
t

)−γ


β

(
Cit+1

Cit

)−γ

Rj,t+1 = 1

or

Et




mt+1

β
(
Ct+1

Ct

)−γ ( δi
t+1

δit

)−γ


 β

(
Cit+1

Cit

)−γ

Rj,t+1 = 1. (14.10.3)

37 This section can be viewed as an application of back-solving. See section 11.7 of chapter

11.
38 In section 14.11, we shall describe a widely used and empirically successful stochastic

discount factor.
39 Constantindes and Duffie (1996) assume that the {mt+1,

Ct+1

Ct
} processes satisfy

logmt+1 − logβ + γ log

(
Ct+1

Ct

)
≥ 0.
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Constantinides and Duffie assumed that the consumption share process δit obeys

δit+1 = exp

[
ηit+1yt+1 −

y2t+1

2

]
δit, (14.10.4)

where ηit+1 ∼ N (0, 1) is independently and identically distributed across indi-

viduals i and y2t+1 is the conditional volatility of log δit+1 at time t . Evidently,

E
[
δit+1|δit, yt+1

]
= δit , so that {δit} is a geometric random walk process. A law

of large numbers for a cross section implies that the mean of δit across agents is

1 for all t .40 To complete their construction, Constantinides and Duffie chose

the conditional volatility yt+1 in such a way that equation (14.10.3) verifies

their desired outcome, namely,

Etβ

(
Cit+1

Cit

)−γ

Rj,t+1 = 1 (14.10.5)

for all i and j = 1, . . . , J . To get this, they needed that the term



mt+1

β
(
Ct+1

Ct

)−γ ( δi
t+1

δit

)−γ




have mean 1, where the expectation is with respect to the distribution of(
δit+1

δit

)
. To get this outcome, they imposed that

E

[
exp

(
−γ
(
ηit+1yt+1 −

y2t+1

2

))]
|y2t+1 =

mt+1

β

(
Ct+1

Ct

)γ
, (14.10.6)

where the expectation is over the distribution of ηit+1 . The fact that

E exp

(
−γ
(
ηit+1yt+1 −

y2t+1

2

)) ∣∣y2t+1 = exp

[(
γ (γ + 1)

2

)
y2t+1

]

implies that to compute y2t+1 , the conditional variance of the cross-section dis-

tribution of
Ci

t+1

Ct+1
/
Ci

t

Ct
=

δit+1

δit
, Constantinides and Duffie had to solve

exp

[(
γ (γ + 1)

2

)
y2t+1

]
=
mt+1

β

(
Ct+1

Ct

)γ

40 See Constantinides and Duffie (1993, p. 227) for qualifications. The stochastic share

process {δit}
∞
t=0 converges almost surely to zero, almost everyone eventually becomes very

poor. See chapter 21 for a discussion of a very different setting in which such “immiseration”

for most people is a feature of an optimal contract.
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which implies that

y2t+1 =
2

γ (γ + 1)

[
logmt+1 − logβ + γ log

(
Ct+1

Ct

)]
. (14.10.7)

With this specification, we have succeeded in generating a collection of stochastic

discount factors mi
t+1 satisfying (14.10.2), namely, the ordinary discount fac-

tor for a consumer i with time separable CRRA preferences and consumption

process {Cit} .
To attain (14.10.2) and Cit = δitCt as equilibrium outcomes requires a

setting with the following features:

1. Markets are incomplete. In particular, consumers are allowed to trade

only risk-free zero coupon bonds of various maturities together with our J

securities, with security j have given return processes {Rj,t+1} .41

2. Each individual consumer’s idiosyncratic risk is very persistent, as captured

by the geometric random walk δit for household i ’s consumption share.

3. The conditional volatility of the cross section distribution of consumption

growth rates varies systematically with the growth rate of aggregate con-

sumption, as described by (14.10.7).

These three features characterize an incomplete markets equilibrium with no

trade in which {Cit} is interpreted as an exogenous endowment process assigned

to agent i .42

To illustrate key forces, Constantinides and Duffie consider the following

model for the dependence of cross-section consumption growth volatility on the

growth rate of aggregate consumption:

y2t+1 = a+ b log

(
Ct+1

Ct

)
. (14.10.8)

41 Since Etm
i
t+1 are equal across all i ’s at the assumed allocation {Cit} , it follows that

the risk-free bonds are not traded. We know from chapter 8 that if markets were complete,

(14.10.2) and Cit = δitCt could not prevail in equilibrium.
42 Heathcote, Storesletten, and Violante (2012) and De Santis (2007) put aspects of the

Constantinides and Duffie specification of the consumption process to work in other contexts.

By reinterpreting an individual consumption process in the Constantinides and Duffie as the

outcome of an island in which there are complete insurance markets for heterogeneously en-

dowed consumers, Heathcote, Storesletten, and Violante model partial consumption insurance:

there is complete insurance within islands, but incomplete insurance across islands. De Santis

uses the Constantinides and Duffie consumption process to get a candidate for an alternative

benchmark for measuring the costs of removing aggregate, but for De Santis, not idiosyncratic

consumption fluctuations.
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Then it follows directly from
Ci

t+1

Ci
t

= exp
[
ηit+1yt+1 − y2t+1

2

]
Ct+1

Ct
that

Et

[
Rj,t+1β̂

(
Ct+1

Ct

)−γ̂
]
= 1, (14.10.9)

where

log β̂ = logβ +
γ (γ + 1)

2
a (14.10.10a)

γ̂ = γ − γ (γ + 1)

2
b. (14.10.10b)

Formula (14.10.10b) implies that if b < 0, so that the cross-section dispersion of

consumption growth increases during downturns in
(
Ct+1

Ct

)
, then γ̂ > γ . So in

this case, estimates of γ constructed in usual ways from aggregate consumption

data are distorted upwards.

Storesletten, Telmer, and Yaron (1998, 2004) and Cogley (1999) pursued

some of the ideas of Constantinides and Duffie by using evidence from the panel

study of income dynamics (PSID) to estimate the persistence of endowment

shocks and the volatility of consumption innovations.

14.11. Affine risk prices

This section describes another response to the empirical problems encountered

by the theory E(mt+1Rj,t+1) = 1 under the stochastic discount factor (14.6.8)-

(14.6.9) induced by time separable CRRA preferences, which we repeat here for

convenience:

mt+1 = exp

(
−rt −

1

2
σ2
cγ

2 − γσcεt+1

)

rt = ρ+ γµ− 1

2
σ2
cγ

2.

This model of the stochastic discount factor asserts that exposure to the random

part of consumption growth, σcεt+1 , is the only possible source discrepancies

among assets’ expected rates of returns: εt+1 is the only priced risk.

Another approach maintains E(mt+1Rt+1) = 1 but divorces the stochastic

discount factor mt+1 from consumption risk. Instead, this approach specifies

a stochastic discount factor that (a) is analytically tractable (a test passed by
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(14.6.4) or (14.6.8)-(14.6.9)), and (b) can be calibrated to fit observed as-

set prices without provoking skeptical comments about implausible parameter

values and magnitudes of risk prices (a test critics like Lucas say (14.6.4) or

Tallarini’s (14.7.21)-(14.7.22) fails to pass).

The alternative approach imposes the law of one price via E(mt+1Rt+1) =

1 (and often also the no-arbitrage principle via mt+1 > 0) but abandons a

link between the stochastic discount factor and a consumption growth process.

Instead, it posits a stochastic process for the stochastic discount factor that

is not tightly linked to a theory about consumers’ preferences, and then uses

overidentifying restrictions from E(mt+1Rj,t+1) = 1 for a set of N returns

Rj,t+1, i = 1, . . . , N , to let the data reveal risks and their prices.

The model has two components. The first is a vector autoregression that

describes underlying risks εt+1 and the evolution of the yield rt on a one period

risk free claim:43

zt+1 = µ+ φzt + Cεt+1 (14.11.1)

rt = δ0 + δ′1zt, (14.11.2)

where φ is a stable m ×m matrix, C is an m×m matrix, εt+1 ∼ N (0, I) is

an i.i.d. m × 1 random vector, and zt is an m × 1 state vector. The second

component is a vector of risk prices λt and an associated stochastic discount

factor mt+1 defined via

λt = λ0 + λzzt (14.11.3)

log (mt+1) = −rt −
1

2
λ′tλt − λ′tεt+1. (14.11.4)

Here λ0 is m×1 and λz is m×m . The entries of λt that multiply corresponding

entries of the risks εt+1 are called risk prices, for reasons that we explain in the

next subsection. The stochastic discount factor mt+1 is exponential quadratic

in the state zt as a result of the risk prices λt being affine in zt . Evidently,

Et (mt+1) = exp (− [δ0 + δ′1zt]) = exp (−rt) (14.11.5)

stdt (mt+1) = Et (mt+1) (exp (λ
′
tλt)− 1)

1
2 ≈ |λt|. (14.11.6)

Equation (14.11.5) confirms that rt is the yield on a risk-free one-period bond.

That is why it is often called ‘the short rate’ in the literature on exponential

43 Note that we are recycling notation by redefining εt+1 here.
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quadratic models of the stochastic discount factor. The free parameters of the

vector autoregression for the {zt} process are (µ, φ, C) and the free parameters

(δ0, δ1, λ0, λz) pin down the stochastic discount factor as a function of (zt, εt+1).

14.11.1. An application

We gather insights by using the stochastic discount factor (14.11.4) to restrict

a risky one-period gross return Rj,t+1 . Our standard pricing formula is

Et (mt+1Rj,t+1) = 1. (14.11.7)

Let Rj,t+1 be described by

Rj,t+1 = exp

(
νt (j)−

1

2
αt (j)

′
αt (j) + αt (j)

′
εt+1

)
(14.11.8)

or

logRj,t+1 ∼ N
(
νt (j)−

1

2
αt (j)

′
αt (j) , αt (j)

′
αt (j)

)
,

where νt(j) is a function of zt that makes (14.11.7) become satisfied and

αt (j) = α0 (j) + αz (j) zt, (14.11.9)

where α0(j) is an m× 1 vector and αz(j) is an m×m matrix. In (14.11.8),

the components of the loading vector αt(j) express exposures of logRj,t+1 to

corresponding components of the vector of risks εt+1 . Equation (14.11.8) im-

plies

EtRj,t+1 = exp (νt (j)) .

We want to know how λt and αt(j) affect νt(j).

The formula for the mean of a log normal random variable implies that

(14.11.7) becomes exp
(
νt(j)− rt − αt(j)

′λt
)
= 1 or

νt (j) = rt + αt (j)
′
λt. (14.11.10)

According to (14.11.10), the net expected return νt(j) equals the net risk-free

return rt plus the transposed vector λ′t of risk prices times the vector αt(j) of

the risk exposures of the logarithm of the gross return Rj,t+1 . This outcome

expresses how λt is a vector of risk prices that tell how the expected return on

an asset depends on its exposures to the risks εt+1 .
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14.11.2. Affine term structure of yields

A good example of an exponential quadratic model of a stochastic discount

factors is the model of the term structure of yields on risk-free claims constructed

and estimated by Ang and Piazzesi (2003). Let pt(n) be the price at time t

of a risk-free claim to one unit of the consumption good at time t + n . The

one-period gross return on holding an n+ 1 period pure discount bond from t

to t+ 1 is Rt+1 = pt+1(n)
pt(n+1) . Evidently, Et (mt+1Rt+1) = 1 implies44

pt (n+ 1) = Et (mt+1pt+1 (n)) (14.11.11)

and

pt (1) = Et (mt+1) = exp (−δ0 − δ′1zt) = exp (−rt) . (14.11.12)

From (14.11.11) and (14.11.12), it follows that

pt (n) = exp
(
Ān + B̄nzt

)
, (14.11.13)

where (Ān, B̄n) solve the system of difference equations

Ān+1 = Ān + B̄′
n (µ− Cλ0) +

1

2
B̄′
nCC

′B̄n − δ0 (14.11.14)

B̄′
n+1 = B̄′

n (φ− Cλz)− δ′1, (14.11.15)

subject to the initial conditions Ā1 = −δ0, B̄1 = −δ1 .
The yield to maturity on an n period pure discount bond is defined as

yt (n) = − log (pt (n))

n
, (14.11.16)

which is equivalent with pt(n) = exp (−nyt(n)) . Evidently,

yt (n) = An +B′
nzt, (14.11.17)

where An = −Ān/n,Bn = −B̄n/n . Yields are affine functions functions of zt .

This model for yields fits within a class of linear Gaussian models that

can be estimated by maximum likelihood using methods described in section

44 See exercise 14.14.
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2.8 of chapter 2. See Ang and Piazzesi (2003) and Piazzesi (2005) for applica-

tions where some of the factors are interpreted in terms of a monetary policy

authority’s rule for setting a short rate.45

14.12. Risk-neutral probabilities

We return to the section 14.11 vector autoregression and short-rate equation

(14.11.1)-(14.11.2), which for convenience we repeat here

zt+1 = µ+ φzt + Cεt+1

rt = δ0 + δ′1zt,

where ε ∼ N (0, I). We suppose that this structure describes the data generating

mechanism. Finance economists call this the “physical measure” to distinguish

it from what they call a “risk neutral measure”, an object that we now describe.

Evidently, under the physical measure generated by (14.11.1)-(14.11.2), the

distribution of zt+1 conditional on zt is N (µ+ φzt, CC
′). As in section 14.11,

define the vector of risk prices λt = λ0 + λzzt and then define the following

nonnegative random variable:

ξQt+1

ξQt
= exp

(
−1

2
λ′tλt − λ′tεt+1

)
. (14.12.1)

Evidently,
ξQ
t+1

ξQt
is a log normal random variable with mean unity. Therefore,

ξQ
t+1

ξQt
is a likelihood ratio can be used to twist the distribution of zt+1 conditional

on zt . Multiplying the conditional distribution of zt+1 by this likelihood ratio

transforms it into the so-called “risk neutral” conditional distribution zt+1 ∼
N (µ+ φzt − Cλt, CC

′) or

zt+1 ∼ N (µ− Cλ0 + (φ− Cλz) zt, CC
′) . (14.12.2)

The risk neutral conditional distribution’s twisting of the conditional mean of

the original or “physical” measure from µ+φzt to µ−Cλ0+(φ−Cλz)zt encodes
45 Appendix C of this chapter uses methods of chapter 2 to bring out some of the impli-

cations of a simple affine term structure model of Backus and Zin (1994). Also see Chen and

Scott (1993), Dai and Singleton (2000), and Piazzesi and Schneider (2006).



596 Asset Pricing Empirics

how the formula Etmt+1Rj,t+1 = 1 adjusts expected returns for exposures to

the vector of risks εt+1 .

14.12.1. Asset pricing in a nutshell

Let EP denote an expectation under the physical measure that nature uses to

generate the data. Our key asset pricing equation is EPt mt+1Rj,t+1 = 1 for

all returns Rj,t+1 . Using (14.12.1), it is convenient to express the exponential

quadratic stochastic discount factor (14.11.4) as

mt+1 =
ξQt+1

ξQt
exp (−rt) ,

where remember that rt is the risk-free net short rate. Then the condition

EPt mt+1Rj,t+1 = 1 is equivalent with EPt exp(−rt)
ξQ
t+1

ξQt
Rj,t+1 = 1 or

EQt Rj,t+1 = exp (rt) ,

where EQt is the conditional expectation under the risk neutral measure (14.12.2).

Under the risk neutral measure, expected returns on all assets equal the risk-free

return.

14.13. Distorted beliefs

Piazzesi, Salomao, and Schneider (2015) assemble survey evidence that suggests

that economic experts’ forecasts are systematically biased. Let {zt}Tt=1 be a

record of observations on the state z and let {žt+1}Tt=1 be a record of one-

period ahead expert forecasts. Let µ̌, φ̌ be regression coefficients in the least

squares regression

žt+1 = µ̌+ φ̌zt + et+1, (14.13.1)

where the residual et+1 has mean zero, is orthogonal to zt , and we assume

that Eet+1e
′
t+1 = CC′ . By comparing estimates of the regression coefficients

µ, φ in equation (14.11.1) that nature uses to generate the data with estimates

of µ̌, φ̌ in (14.13.1) that describe the subjective beliefs of the experts, Piazzesi,
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Salomao, and Schneider deduce that experts’ beliefs are systematically distorted.

To organize the evidence about how the experts’ subjective beliefs are sys-

tematically distorted relative to the physical measure, Piazzesi, Salomao, and

Schneider let κt = κ0 + κzzt and then define the likelihood ratio46

ξSt+1

ξSt
= exp

(
−1

2
κ′tκt − κ′tεt+1

)
. (14.13.2)

Multiplying the conditional distribution of zt+1 under the physical measure by

the likelihood ratio
ξSt+1

ξSt
transforms it to the experts’ subjective conditional

distribution zt+1 ∼ N (µ+ φzt − Cκt, CC
′) or

zt+1 ∼ N (µ− Cκ0 + (φ− Cκz) zt, CC
′) .

The discrepancy between the conditional mean of zt+1 under the physical mea-

sure µ + φzt , and the conditional mean µ − Cκ0 + (φ − Cκz)zt under the

subjective measure characterizes how the subjective S measure differs from the

physical P measure that generates the data. In their regression (14.13.1) of

experts’ forecasts žt+1 on zt , Piazzesi, Salomao, and Schneider interpret their

estimate of µ̌ as an estimate of µ − Cκ0 and φ̌ as an estimate of (φ − Cκz).

In particular, they find that the experts’ forecasts are formed as if the level and

slope of the yield curve are more persistent than under the physical measure.

Piazzesi, Salomao, and Schneider explore the hypothesis that a representa-

tive agent with these distorted beliefs prices assets and makes returns satisfy

ESt m
∗
t+1Rj,t+1 = 1, (14.13.3)

where ESt is a conditional expectation with respect to the subjective S measure

rather than the physical measure and m∗
t+1 is the stochastic discount factor of a

representative agent having these subjective beliefs. In particular, Piazzesi, Salo-

mao, and Schneider’s representative agent with distorted beliefs has a stochastic

discount factor

m∗
t+1 = exp (−r∗t ) exp

(
−λ∗′t εt+1 −

λ∗′t λ
∗′
t

2

)
,

46 Because the random variable
ξSt+1

ξSt
is log normal with conditional mean unity, it is a

likelihood ratio.
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where r∗t is now the short rate and λ∗t is the agent’s vector of risk prices.

Consequently Piazzesi, Salomao, and Schneider’s subjective pricing equation

(14.13.3) can be expressed as

EP exp (−r∗t ) exp
(
−λ∗′t εt+1 −

λ∗′t λ
∗
t

2

)
exp

(
−κ′tεt+1 −

κ′tκt
2

)
Rj,t+1 = 1

or

EP exp (−rt) exp
(
− (λ∗t + κt)

′
εt+1 −

(λ∗t + κt)
′
(λ∗t + κt)

2

)
Rj,t+1 = 1

(14.13.4)

where rt = r∗t − λ∗′t κt .
47 If we compare equation (14.13.4) with the rational

expectations econometrician’s

EP exp (−rt) exp
(
−λ′tεt+1 −

λ′tλt
2

)
Rj,t+1 = 1,

we see that what the econometrician interprets as λt is actually λ∗t + κt .

Piazzesi, Salomao, and Schneider used their structure to reinterpret econo-

metric estimates of risk prices λt obtained by imposing rational expectations,

i.e., by mistakenly imputing the physical measure to the agents that determine

asset prices via EPt mt+1Rj,t+1 = 1. When the physical measure differs from

the subjective measure of the investors who price assets, investors charge risk

prices λ∗t rather than the λt that would be estimated by the econometrician

who imposes rational expectations. Because the rational expectations econome-

trician’s estimates of λt equal λ
∗
t +κt , they partly reflect systematic distortions

in subjective beliefs, not the representative agent’s risk prices.48

47 The adjustment to the risk-free short rate rt comes because the product of two correlated

likelihood ratios is not a likelihood ratio. Such an adjustment is responsible for the difference

in formulas (14.6.9) and (14.7.22) for risk-free rates of interest in the time-separable CRRA

model and the Tallarini model, respectively.
48 A closely related analysis appears in section 14.8 where we reinterpret Tallarini’s (2000)

model in terms of an ex post belief distortion that emerges from a representative agent’s con-

cerns about misspecification of the physical measure. Thus, Piazzesi, Salomao, and Schneider’s

analysis can be viewed as following the recommendation of Robert E. Lucas, Jr, to “look be-

yond high estimates of risk aversion” in order to understand high (mismeasured) prices of

risk.
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14.14. Concluding remarks

In this chapter, we have gone beyond chapter 8 in studying how, in the spirit

of Hansen and Singleton (1983), consumer optimization alone puts restrictions

on asset returns and consumption, without requiring complete markets or a

fully articulated general equilibrium model. At various points in this chapter,

especially in section 14.10, we have alluded to incomplete markets models. In

chapters 18 and 21, we describe the ingredients of such models.

A. Riesz representation theorem

The version of the Riesz representation theorem used in this chapter is yet

another ramification of population least squares regression.

Let X be a Hilbert space (i.e., a complete inner product space) of random

variables with inner product < x1, x2 >= E(x1x2). Let φ : X → IR be a

continuous linear functional mapping X into IR , the real line. We say that φ

is linear because (i) for x1 ∈ X, x2 ∈ X , φ(x1 + x2) = φ(x1) + φ(x2), and (ii)

for a ∈ IR, x ∈ X,φ(ax) = aφ(x). We want to prove

Theorem 14.A.1. (Riesz representation) Let φ be a continuous linear func-

tional φ : X → IR . There exists a unique element y ∈ X such that

φ (x) = E (yx) . (14.A.1)

Proof. The null space N ≡ N(φ) is defined as:

N (φ) =
{
x ∈ X : φ (x) = 0

}
.

N(φ) is a closed linear subspace of X . If N = X , then evidently φ(x) = 0 for

all x ∈ X . If X 6= N(φ), then there exists a non-zero vector x1 ∈ N⊥ , where

N⊥ is the orthogonal complement of N , i.e., the set of vectors y ∈ X for which

< x, y >= 0 for every x ∈ N . In fact, N⊥ consists of scalar multiples of one

vector x1 that is a basis for N⊥ . To prove this, assume to the contrary that

there are two linearly independent vector x1 and x2 , both of which are elements

of N⊥ . The linear independence of the vectors x1 and x2 implies that we can

choose two nonzero real scalars a, b such that φ(ax1−bx2) = aφ(x1)−bφ(x2) =
0. But this implies that ax1 − bx2 belongs to both N and to N⊥ . This is
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possible only if ax1 − bx2 = 0, contradicting the premise that x1 and x2 are

linearly independent. Thus, there is a unique linearly independent vector x1

that is a basis for N⊥ .

We propose the following scaled version of the basis vector x1 as our can-

didate for the vector y in representation (14.A.1):

y =
φ (x1)

< x1, x1 >
x1. (14.A.2)

Evidently, y ∈ N⊥ . By computing a population linear least squares regression

of x ∈ X on y ∈ X , we can represent x as the sum of the linear least squares

projection of x1 on y and an orthogonal residual:

x = ay + (x− ay) , (14.A.3)

where a is the scalar regression coefficient

a =
< x, y >

< y, y >
. (14.A.4)

Both ay ∈ N⊥ and (x − ay) ∈ N are unique in representation (14.A.4). In

(14.A.3), ay ∈ N⊥ and (x− ay) ∈ N because the least squares residual x− ay

is orthogonal to the regressor y . Therefore, applying φ to both sides of (14.A.3)

gives

φ (x) = aφ (y)

by the linearity of φ and the fact that φ(x − ay) = 0 because (x − ay) ∈ N .

Direct computations show that a = <x,y><x1,x1>
φ(x1)2

and from definition (14.A.2)

that φ(y) = <x,y>
<x1,x1>

. Therefore, φ(x) = aφ(y) =< x, y > .

Remark: Suppose that x ∈ M where M is a closed linear subspace of X .

Then a corollary of Theorem 14.A.1 asserts that there exist multiple random

variables ỹ ∈ X for which

φ (x) = E (ỹx) .

The random variable ỹ can be constructed as ỹ = y+ ε where y is constructed

as in Theorem 14.A.1 (except that now it is required to be in the linear sub-

space M ) and ε is any random vector in the orthogonal complement of M (i.e.,
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the space of random vectors in X that are orthogonal to the closed linear sub-

space M ). This fact is pertinent for thinking about economies with incomplete

markets.

B. Computing stochastic discount factors

This appendix sketches how to evaluate stochastic discount factors for ordinary

time-separable preferences and for the risk-sensitive preferences described in

section 14.7. Suppose that consumption is a function of a Markov state x . Let

U(x) be a value function that satisfies the recursion

Ut = logCt + βEtUt+1

or

U (xi) = logC (xi) + β

n∑

j=1

PijU (xj) .

Let Ct+1,j = C(xj) be consumption next period in state j . Compute

∂Ut
∂Ct

=
1

Ct

and
∂Ut

∂Ct+1,j
= β

1

Ct+1,j
Pij

Then the marginal rate of substitution of Ct for Ct+1,j is

∂Ut

∂Ct+1,j

∂Ut

∂Ct

= β

(
Ct

Ct+1,j

)
Pij

Dividing by the conditional probability Pij gives the stochastic discount factor

mt+1,j = β
(

Ct

Ct+1,j

)
.

Now take another value function U(x) satisfying the risk-sensitive recursion

U (xi) = logC (xi)− βθ log
n∑

j=1

Pij exp
(
−θ−1U (xj)

)

In this case,

∂Ut
∂Ct+1,j

= β
exp

(
−θ−1U (xj)

)
1

Ct+1,j
Pij∑n

k=1 exp (−θ−1U (xk))Pik
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It follows that

∂Ut

∂Ct+1,j

∂Ut

∂Ct

= β

(
Ct

Ct+1,j

)(
exp

(
−θ−1U (xj)

)
Pij∑n

k=1 exp (−θ−1U (xk))Pik

)
.

Dividing the right side by the conditional probability Pij implies that the

stochastic discount factor is

mt+1,j = β

(
Ct

Ct+1,j

)(
exp

(
−θ−1U (xj)

)
∑n
k=1 exp (−θ−1U (xk))Pik

)

or

mt+1,j = β

(
Ct

Ct+1,j

)(
exp

(
−θ−1U (xj)

)

Et exp (−θ−1U (xt+1))

)
.

C. A log normal bond pricing model

Following Backus and Zin (1994), we study the following log normal bond pricing

model that is a special case of the affine term structure model of section 14.11.

A one-period stochastic discount factor at t is mt+1 and an n-period stochastic

discount factor at t is mt+1mt+2 · · ·mt+n .
49 The logarithm of the one-period

stochastic discount factor follows the stochastic process

logmt+1 = −δ − ezzt+1 (14.C.1a)

zt+1 = Azzt + Czwt+1 (14.C.1b)

where wt+1 is an i.i.d. Gaussian random vector with Ewt+1 = 0, Ewt+1w
′
t+1 =

I , and Az is an m×m matrix all of whose eigenvalues are bounded by unity in

modulus. Soon we shall describe a particular process for the log of the nominal

stochastic discount factor that Backus and Zin (1994) used to emulate the term

structure of nominal interest rates in the United States during the post-World

War II period.

49 Some authors use the notation mt+j,t to denote a j -period stochastic discount factor at

time t . The transformation between that notation and ours is mt+1,t = mt+1, . . . ,mt+j,t =

mt+1 · · ·mt+j .



A log normal bond pricing model 603

This can be viewed as a special case of the section 14.11.2 model with the

following settings mapping the general model into the special model:

(µ, φ, C, λ′0, λz , δ
′
1) = (0, Cz, ezCz , 0, ezAz)

δ0 +
1

2
λ′0λ0 = δ.

Then formulas (14.11.14) and (14.11.15) can be applied to compute the coef-

ficients Ān, B̄n that appear in the price of an n period zero coupon bond of

the form (14.11.13), namely, pt(n) = exp
(
Ān + B̄nzt

)
, so that yields are of the

form

yt (n) = An +B′
nzt

where An = −Ān/n,Bn = −B̄n/n . Here we will proceed to obtain formulas of

this form by working directly with representation (14.C.1a)-(14.C.1b). We do

this partly to give practice in applying some of the formulas from chapter 2.

Applying the properties of the log normal distribution to the conditional

distribution of mt+1 induced by (14.C.1) gives

logEtmt+1 = −δ − ezAzzt +
ezCzCz

′ez
′

2
. (14.C.2)

By iterating on (14.C.1), we can obtain the following expression that is useful

for characterizing the conditional distribution of log(mt+1 · · ·mt+n):

− (log (mt+1) + · · · log (mt+n)) = nδ + ez
(
Az +Az

2 + · · ·Azn
)
zt

+ ezCzwt+n + ez [Cz +AzCz ]wt+n−1

+ · · ·+ ez
[
Cz +AzCz + · · ·+Az

n−1Cz
]
wt+1

(14.C.3)

The distribution of logmt+1+· · ·+logmt+n conditional on zt is thus N (µnt, σ
2
n),

where50

µnt = − [nδ + ez (Az + · · ·Azn) zt] (14.C.4a)

σ2
1 = ezCzCz

′ez
′ (14.C.4b)

σ2
n = σ2

n−1 + ez
[
I + · · ·+Az

n−1
]
CzCz

′
[
I + · · ·+Az

n−1
]′
ez

′ (14.C.4c)

where the recursion (14.C.4c) holds for n ≥ 2. Notice that the conditional

means µnt vary over time but that the conditional covariances σ2
n are constant

50 For the purpose of programming these formulas, it is useful to note that (I +Az + · · ·+

Azn−1) = (I −Az)−1(I −Azn) .



604 Asset Pricing Empirics

over time. Applying (14.11.16) or yt(n) = −n−1 logEt[mt+1 · · ·mt+n] and the

formula for the log of the expectation of a log normally distributed random

variable gives the following formula for bond yields:

yt (n) =

(
δ − σ2

n

2× n

)
+ n−1ez (Az + · · ·+Az

n) zt. (14.C.5)

The vector yt = [ y1t y2t · · · ynt ]
′
is called the term structure of nomi-

nal interest rates at time t . A specification known as the expectations theory of

the term structure resembles but differs from (14.C.5). The expectations theory

asserts that n-period yields are averages of expected future values of one-period

yields, which translates to

yt (n) = δ + n−1ez (Az + · · ·+Az
n) zt (14.C.6)

because evidently the conditional expectation Ety1t+j = δ + ezA
j
zzt . The ex-

pectations theory (14.C.6) can be viewed as an approximation to the log normal

yield model (14.C.5) that neglects the contributions of the variance terms σ2
n

to the constant terms.

Returning to the log normal bond pricing model, we evidently have the

following compact state-space representation for the term structure of interest

rates and its dependence on the law of motion for the stochastic discount factor:

Xt+1 = AoXt + Cwt+1 (14.C.7a)

Yt ≡
[

yt

log (mt)

]
= GXt (14.C.7b)

where

Xt =

[
1

zt

]
Ao =

[
1 0

0 Az

]
C =

[
0

Cz

]

and

G =




δ − σ2
1

2 ezAz

δ − σ2
2

2×2 2−1ez
(
Az +Az

2
)

...
...

δ − σ2
n

2×n n−1ez (Az + · · ·+Az
n)

−δ −ez



.
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14.C.1. Slope of yield curve

From (14.C.7), it follows immediately that the unconditional mean of the term

structure is

Ey′t = [ δ − σ2
1

2 · · · δ − σ2
n

2×n ]
′
,

so that the term structure on average rises with horizon only if σ2
j /j falls as

j increases. By interpreting our formulas for the σ2
j ’s, it is possible to show

that a term structure that on average rises with maturity implies that the log

of the stochastic discount factor is negatively serially correlated. Thus, it can

be verified from (14.C.3) that the term σ2
j in (14.C.4) and (14.C.5) satisfies

σ2
j = vart (logmt+1 + · · ·+ logmt+j)

where vart denotes a variance conditioned on time t information zt . Notice,

for example, that

vart (logmt+1 + logmt+2) = vart (logmt+1) + vart (logmt+2)

+ 2covt (logmt+1, logmt+2)
(14.C.8)

where covt is a conditional covariance. It can then be established that σ2
1 >

σ2
2

2

can occur only if covt(logmt+1, logmt+2) < 0. Thus, a yield curve that is

upward sloping on average reveals that the log of the stochastic discount factor

is negatively serially correlated. (See the spectrum of the log stochastic discount

factor in Figure 14.C.5.)

14.C.2. Backus and Zin’s stochastic discount factor

For a specification of Az , Cz, δ for which the eigenvalues of Az are all less than

unity, we can use the formulas presented above to compute moments of the

stationary distribution EYt , as well as the autocovariance function CovY (τ)

and the impulse response function given in (2.4.14) or (2.4.15). For the term

structure of nominal U.S. interest rates over much of the post-World War II

period, Backus and Zin (1994) provide us with an empirically plausible speci-

fication of Az , Cz, ez . In particular, they specify that logmt+1 is a stationary

autoregressive moving average process

−φ (L) logmt+1 = φ (1) δ + θ (L)σwt+1
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where wt+1 is a scalar Gaussian white noise with Ew2
t+1 = 1 and

φ (L) = 1− φ1L− φ2L
2 (14.C.9a)

θ (L) = 1 + θ1L+ θ2L
2 + θ3L

3. (14.C.9b)

Backus and Zin specified parameter values that imply that all of the zeros of

both φ(L) and θ(L) exceed unity in modulus,51 a condition that ensures that

the eigenvalues of Ao are all less than unity in modulus. Backus and Zin’s

specification can be captured by setting

zt = [ logmt logmt−1 wt wt−1 wt−2 ]

and

Az =




φ1 φ2 θ1σ θ2σ θ3σ

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0




and Cz = [σ 0 1 0 0 ]
′
where σ > 0 is the standard deviation of the

innovation to logmt+1 and ez = [ 1 0 0 0 0 ] .

14.C.3. Reverse engineering a stochastic discount factor

Backus and Zin use time series data on yt together with the restrictions im-

plied by the log normal bond pricing model to deduce implications about the

stochastic discount factor mt+1 . They call this procedure “reverse engineering

the yield curve,” but what they really do is use time series observations on the

yield curve to reverse engineer a stochastic discount factor . They used the gen-

eralized method of moments to estimate (some people say “calibrate”) the fol-

lowing values for monthly United States nominal interest rates on pure discount

bonds: δ = .528, σ = 1.023, θ(L) = 1 − 1.031448L+ .073011L2 + .000322L3 ,

φ(L) = 1−1.031253L+.073191L2 . Why do Backus and Zin carry along so many

digits? To explain why, first notice that with these particular values θ(L)
φ(L) ≈ 1,

so that the log of the stochastic discount factor is well approximated by an i.i.d.

process:

− logmt+1 ≈ δ + σwt+1.

51 A complex variable z0 is said to be a zero of φ(z) if φ(z0) = 0.
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This means that fluctuations in the log stochastic discount factor are difficult

to predict. Backus and Zin argue convincingly that to match observed features

that are summarized by estimated first and second moments of the nominal

term structure yt process and for yields on other risky assets for the United

States after World War II, it is important that θ(L), φ(L) have two properties:

(a) first, θ(L) ≈ φ(L), so that the stochastic discount factor is a volatile vari-

able whose fluctuations are difficult to predict variable; and (b) nevertheless

that θ(L) 6= φ(L), so that the stochastic discount factor has subtle predictable

components. Feature (a) is needed to match observed prices of risky securities,

as we shall discuss in chapter 14. In particular, observations on returns on risky

securities can be used to calculate a so-called market price of risk that in the-

ory should equal σt(mt+1)
Etmt+1

, where σt denotes a conditional standard deviation

and Et a conditional mean, conditioned on time t information. Empirical es-

timates of the stochastic discount factor from the yield curve and other asset

returns suggest a value of the market price of risk that is relatively large, in a

sense that we explore in depth in chapter 14. A high volatility of mt+1 deliv-

ers a high market price of risk. Backus and Zin use feature (b) to match the

shape of the yield curve over time. Backus and Zin’s estimates of φ(L), θ(L)

imply term structure outcomes that display both features (a) and (b). For

their values of θ(L), φ(L), σ , Figures 14.C.1–14.C.5 show various aspects of the

theoretical yield curve. Figure 14.C.1 shows the theoretical value of the mean

term structure of interest rates, which we have calculated by applying our chap-

ter 2 formula for µY = GµX to (14.C.7). The theoretical value of the yield

curve is on average upward sloping, as is true also in the data. For yields of

durations j = 1, 3, 6, 12, 24, 36, 48, 60, 120, 360, where duration is measured in

months , Figure 14.C.2 shows the impulse response of yjt to a shock wt+1 in the

log of the stochastic discount factor. We use formula (2.4.15) to compute this

impulse response function. In Figure 14.C.2, bigger impulse response functions

are associated with shorter horizons. The shape of the impulse response func-

tion for the short rate differs from the others: it is the only one with a humped

shape. Figures 14.C.3 and 14.C.4 show the impulse response function of the

log of the stochastic discount factor. Figure 14.C.3 confirms that logmt+1 is

approximately i.i.d. (the impulse response occurs mostly at zero lag), but Fig-

ure 14.C.4 shows the impulse response coefficients for lags of 1 and greater and

confirms that the stochastic discount factor is not quite i.i.d. Since the initial

response is a large negative number, these small positive responses for positive
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lags impart negative serial correlation to the log stochastic discount factor. As

noted above and as stressed by Backus and Zin (1992), negative serial correla-

tion of the stochastic discount factor is needed to account for a yield curve that

is upward sloping on average.
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Figure 14.C.1: Mean term structure of interest rates with

Backus-Zin stochastic discount factor (months on horizontal

axis).
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in stochastic discount factor. Bigger responses are for shorter

maturity yields.
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Figure 14.C.3: Impulse response of log of stochastic dis-

count factor.
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Figure 14.C.4: Impulse response of log stochastic discount

factor from lag 1 on.

Figure 14.C.5 applies the Matlab program bigshow3 to Backus and Zin’s

specified values of (σ, δ, θ(L), φ(L)). The panel on the upper left is the im-

pulse response again. The panel on the lower left shows the covariogram, which

as expected is very close to that for an i.i.d. process. The spectrum of the

log stochastic discount factor is not completely flat and so reveals that the log

stochastic discount factor is serially correlated. (Remember that the spectrum

for a serially uncorrelated process, a white noise, is perfectly flat.) That the
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Figure 14.C.5: bigshow3 for Backus and Zin’s log stochas-

tic discount factor.

spectrum is generally rising as frequency increases from ω = 0 to ω = π in-

dicates that the log stochastic discount factor is negatively serially correlated.

But the negative serial correlation is subtle, so that the realization plotted in

the panel on the lower right is difficult to distinguish from a white noise.

Exercises

Exercise 14.1 Hansen-Jagannathan bounds

Consider the following annual data for annual gross returns on U.S. stocks and

U.S. Treasury bills from 1890 to 1979. These are the data used by Mehra and

Prescott. The mean returns are µ = [ 1.07 1.02 ] and the covariance matrix of

returns is

[
.0274 .00104

.00104 .00308

]
.

a. Using data on both returns, compute Hansen and Jagannathan’s bound on

the stochastic discount factor y and plot it for E(y) on the interval [.9, 1.02].

b. At <www.tomsargent.com/source code/mitbook.zip> , there is a Matlab file

epdata.m with Kydland and Prescott’s time series. The series epdata(:,4) is the
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annual growth rate of aggregate consumption Ct/Ct−1 . Assume that β = .99

and that mt = βu′(Ct)/u
′(Ct−1), where u(·) is the CRRA utility function. For

the three values of γ = 0, 5, 10, compute the standard deviation and mean of

mt and plot them on the figure you constructed in part a. What do you infer?

Exercise 14.2 The term structure and regime switching, donated by

Rodolfo Manuelli

Consider a pure exchange economy in which the stochastic process for per capita

consumption is given by

Ct+1 = Ct exp [α0 − α1st + εt+1] ,

where

(i) α0 > 0, α1 > 0, and α0 − α1 > 0.

(ii) εt is a sequence of i.i.d. random variables distributed N (µ, τ2). Note: given

this specification, it follows that E[eε] = exp[µ+ τ2/2].

(iii) st is a Markov process independent from εt that can take only two values,

{0, 1} . The transition probability matrix is completely summarized by

Prob [st+1 = 1|st = 1] = π (1) ,

Prob [st+1 = 0|st = 0] = π (0) .

(iv) The information set at time t ,Ωt , contains {Ct−j , st−j , εt−j; j ≥ 0} .

There is a large number of identical individuals, each a representative agent,

with the following utility function

U = E0

∞∑

t=0

βtu (Ct),

where u(C) = C(1−γ)/(1 − γ). Assume that γ > 0 and 0 < β < 1. As usual,

γ = 1 corresponds to the log utility function.

a. Compute the “short-term” (one-period) risk-free interest rate.

b. Compute the “long-term” (two-period) risk-free interest rate measured in the

same time units as the rate you computed in a. (That is, take the appropriate

square root.)
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c. Note that the log of the rate of growth of consumption is given by

log (Ct+1)− log (Ct) = α0 − α1st + εt+1.

Thus, the conditional expectation of this growth rate is just α0 − α1st + µ .

Note that when st = 0, growth is high, and when st = 1, growth is low. Thus,

loosely speaking, we can identify st = 0 with the peak of the cycle (or good

times) and st = 1 with the trough of the cycle (or bad times). Assume µ > 0.

Go as far as you can describing the implications of this model for the cyclical

behavior of the term structure of interest rates.

d. Are short term rates pro- or countercyclical?

e. Are long rates pro- or countercyclical? If you cannot give a definite answer to

this question, find conditions under which they are either pro- or countercyclical,

and interpret your conditions in terms of the “permanence” (you get to define

this) of the cycle.

Exercise 14.3 Growth slowdowns and stock market crashes, donated

by Rodolfo Manuelli52

Consider a simple one-tree pure exchange economy. The only source of con-

sumption is the fruit that grows on the tree. This fruit is called dividends by

the tribe inhabiting this island. The stochastic process for dividend dt is de-

scribed as follows: If dt is not equal to dt−1 , then dt+1 = γdt with probability

π , and dt+1 = dt with probability (1−π). If in any pair of periods j and j+1,

dj = dj+1 , then for all t > j , dt = dj . In words, if not stopped, the process

grows at a gross rate ν in every period. However, once it stops growing for one

period, it remains constant forever after. Let d0 equal 1.

Preferences over stochastic processes for consumption are given by

U = E0

∞∑

t=0

βtu (Ct),

where u(C) = C(1−γ)/(1 − γ). Assume that γ > 0, 0 < β < 1, ν > 1, and

βν(1−γ) < 1.

a. Define a competitive equilibrium in which shares to this tree are traded.

52 See also Joseph Zeira (1999).
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b. Display the equilibrium process for the price of shares in this tree pt as a

function of the history of dividends. Is the price process a Markov process in

the sense that it depends just on the last period’s dividends?

c. Let T be the first time in which dT−1 = dT = γ(T−1) . Is pT−1 > pT ?

Show conditions under which this is true. What is the economic intuition for

this result? What does it say about stock market declines or crashes?

d. If this model is correct, what does it say about the behavior of the aggregate

value of the stock market in economies that switched from high to low growth

(e.g., Japan)?

Exercise 14.4 The term structure and consumption, donated by Rodolfo

Manuelli

Consider an economy populated by a large number of identical households. The

(common) utility function is
∞∑

t=0

βtu (Ct) ,

where 0 < β < 1, and u(x) = x(1−γ)/(1 − γ), for some γ > 0. (If γ = 1,

the utility is logarithmic.) Each household owns one tree. Thus, the number of

households and the number of trees coincide. The amount of consumption that

grows in a tree satisfies

Ct+1 = C∗Cϕt εt+1,

where 0 < ϕ < 1, and εt is a sequence of i.i.d. log normal random variables

with mean 1, and variance σ2 . Assume that, in addition to shares in trees, in

this economy bonds of all maturities are traded.

a. Define a competitive equilibrium.

b. Go as far as you can calculating the term structure of interest rates, R̃jt ,

for j = 1, 2, . . . .

c. Economist A argues that economic theory predicts that the variance of the log

of short-term interest rates (say, one-period) is always lower than the variance

of long-term interest rates, because short rates are “riskier.” Do you agree?

Justify your answer.

d. Economist B claims that short-term interest rates, i.e., j = 1, are “more

responsive” to the state of the economy, i.e., Ct , than are long-term interest

rates, i.e., j large. Do you agree? Justify your answer.
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e. Economist C claims that the Fed should lower interest rates because whenever

interest rates are low, consumption is high. Do you agree? Justify your answer.

f. Economist D claims that in economies in which output (consumption in our

case) is very persistent (ϕ ≈ 1), changes in output (consumption) do not affect

interest rates. Do you agree? Justify your answer and, if possible, provide

economic intuition for your argument.

Exercise 14.5 Ambiguity averse multiplier preferences

Consider the recursion (14.7.6), namely,

Ut = ct − βθ logEt

[
exp

(−Ut+1

θ

)]
, (1)

where ct = logCt, β ∈ (0, 1), and 0 < θ . Let ct follow the stochastic process

ct+1 = ct + µ+ σcεt+1, (2)

where εt+1 ∼ N (0, 1) is an i.i.d. random process.

a. Guess a value function of the form Ut = k0 + k1ct , where k0 and k1 are

scalar constants. In detail, derive formulas for k0, k1 that verify the recursion

(14.7.6) (or (1) above).

b. Using the formulas for k0, k1 that you have derived, verify that when ct

obeys (2), another way to express recursion (1) is

Ut = ct + βEtUt+1 −
β

2θ
vart (Ut+1) . (3)

Use representation (3) to offer an interpretation of why the consumer prefers

plan A to plan B in figure 14.7.1 and also why he prefers Plan C to Plan D in

figure 14.7.2.

c. For recursion (1), verify in detail that

∂Ut
∂Ct

=
k1
Ct

∂Ut
∂Ct+1

= β

(
exp

(
−θ−1Ut+1

)

Et exp (−θ−1Ut+1)

)
k1
Ct+1

.
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d. Explicitly verify that the likelihood ratio defined as g satisfies

g (εt+1) ≡
(

exp ((1− β) (1− γ)Ut+1)

Et [exp ((1− β) (1− γ)Ut+1)]

)
= exp

(
wεt+1 −

1

2
w2

)

where w is given by

w = − σc
θ (1− β)

.

Hint: Once again, you might want to use the formula for the mean of a log

normal random variable.

Exercise 14.6 Exponential affine sdf

Consider an exponential affine model of a stochastic discount factor driven by

the following vector autoregression for zt :

zt+1 = µ+ φzt + Cεt+1

rt = δ0 + δ′1zt,

where φ is a stable n× n matrix, C is an n× n matrix, εt+1 ∼ N (0, I) is an

i.i.d. n × 1 random vector, and zt is an n × 1 state vector. The logarithm of

the stochastic discount factor is affine (i.e., linear plus a constant) in the state

vector zt from the vector autoregresssion:

Λt = Λ0 + Λzzt

log (mt+1) = −rt −
1

2
Λ′
tΛt − Λ′

tεt+1.

Let the gross risky return Rj,t+1 on an asset be

Rj,t+1 = exp

(
νt (j)−

1

2
αt (j)

′
αt (j) + αt (j)

′
εt+1

)
, (1)

where νt(j) is a function of zt that makes Et(mt+1Rj,t+1) = 1 be satisfied and

αt(j) = α0(j) + αz(j)zt, where α0(j) is an n× 1 vector and αz(j) is an n× n

matrix.

a. Show that (1) implies

EtRj,t+1 = exp (νt (j)) .
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b. Prove that Et(mt+1Rj,t+1) = 1 implies that

νt (j) = rt + αt (j)
′ Λt. (2)

c. Interpret formula (2).

d. Specify stochastic dynamics for aggregate consumption Ct that would make

the ‘ordinary’ stochastic discount factor mt+1 = β(Ct+1

Ct
)−γ become (a special

case of) an exponential affine model of a stochastic discount factor.

Exercise 14.7 Value function for CRRA

Consumption Ct follows the stochastic process

Ct+1 = exp (µ+ σcεt+1)Ct

where εt+1 ∼ N (0, 1) is an i.i.d. scalar random process, µ > 0, and C0 is an

initial condition. The consumer ranks consumption streams according to

U0 = E0

∞∑

t=0

βt

(
C

(1−γ)
t

1− γ

)
, (1)

where β ∈ (0, 1), E0 denotes the mathematical expectation conditional on C0 ,

and γ ≥ 0.

a. Find a value function U0 that satisfies (1), giving conditions on µ, σc, γ, β

that ensure that the right side of (1) exists.

b. Describe a recursion

Ut =
C

(1−γ)
t

1− γ
+ βEtUt+1

whose solution at time 0 satisfies (1).

Exercise 14.8 Lucas tree economy

A representative consumer in a Lucas tree economy has preferences over con-

sumption streams ordered by

E0

∞∑

t=0

βt logCt. (1)
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There is one asset, a tree that yields dividends yt at time t , which are governed

by a two-state Markov chain P with states st ∈ {0, 1} and

yt =

{
yL, if st = 0;

yH , if st = 1,

where yH > yL > 0. The tree is the only source of goods in the economy. There

is a single representative consumer, so that Ct = yt . The transition matrix

P =

[
πL 1− πL

1− πH πH

]
, where πL ∈ (0, 1) and πH ∈ (0, 1).

There is a market in trees. (There will be zero volume in equilibrium.) Let

pt be the (ex-dividend) price of a claim to the fruit of the tree from time t+ 1

on. Ownership of the tree at the beginning of t entitles the owner of the tree to

receive dividend yt at t and then to sell the tree if he wants at price pt+1 after

collecting the dividend at time t+ 1.

a. Find a stochastic discount factor for this economy. Please tell how to compute

the rate of return on one-period risk-free bonds in this economy.

b. Find an equilibrium pricing function mapping the state of the economy at t

into the price of the tree pt .

c. Describe the behavior of the one period gross return on the tree.

A zero-net worth outside entrepreneur comes into this economy and purchases all

trees at time t̄ > 0. The outsider has no resources and finances his tree purchases

by issuing (1) infinite duration risk-free bonds promising to pay η ∈ (0, yL) each

period t ≥ t̄+1, and (2) equity that pays share-holders yt−η in period t ≥ t̄+1.

The asset of the entrepreneur is the tree while his/her liabilities are the bonds

and equities.

d. Please compute the equilibrium value of the risk-free bonds as a function of

the promised coupon payment η and the state of the economy.

e. Please compute the equilibrium value of equity as a function of the bond

coupon payment η and the state of the economy.

f. How do your answers in d and e compare with the value of the tree that you

computed in part b?
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Exercise 14.9 Long-run risk, I

Consider the following pure exchange economy with one representative consumer

and an exogenous consumption process. Consumption Ct = exp(ct) follows the

stochastic process
ct+1 = µ+ zt + ct + σcεt+1

zt+1 = ρzt + σzεt+1,

where εt+1 ∼ N (0, 1) is an i.i.d. scalar random process, µ > 0, and c0, z0 are

initial conditions, ρ ∈ (0, 1). By setting ρ close to but less than unity and σz

to be small, zt becomes a slowly moving component of the conditional mean of

Et(ct+1 − ct). The consumer ranks consumption streams according to

U0 = E0

∞∑

t=0

βt

(
C

(1−γ)
t

1− γ

)
, (1)

where β ∈ (0, 1), E0 denotes the mathematical expectation conditional on C0 ,

and γ ≥ 0.

a. Find a formula for the consumer’s stochastic discount factor mt+1 .

b. Compute Et(mt+1) and interpret it.

c. Compute Et(mt+1mt+2) and interpret it.

d. Use your answers to parts b and c to tell how you would expect the term

structure of interest rates to behave over time in this economy.

e. Find a value function U0 that satisfies (1), giving conditions on µ, σc, σz, γ, β

that ensure that the right side of (1) exists.

Exercise 14.10 Long-run risk, II

Consider again the recursion (14.7.6), namely,

Ut = ct − βθ logEt

[
exp

(−Ut+1

θ

)]
, (1)

where ct = logCt, β ∈ (0, 1), and 0 < θ . Consumption Ct = exp(ct) follows

the stochastic process

ct+1 = µ+ zt + ct + σcεt+1

zt+1 = ρzt + σzεt+1,
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where εt+1 ∼ N (0, 1) is an i.i.d. scalar random process, µ > 0, and c0, z0 are

initial conditions, ρ ∈ (0, 1). By setting ρ close to but less than unity and σz

to be small, zt becomes a slowly moving component of the conditional mean of

Et(ct+1 − ct).

a. Guess a value function of the form Ut = k0 + k1ct+ k2zt , where k0 , k1 , and

k2 are scalar constants. In detail, derive formulas for k0, k1, k2 that verify the

recursion (14.7.6) (or (1) above).

b. (Optional extra credit) Derive a formula for the stochastic discount factor

in this economy.

Exercise 14.11 Stochastic volatility

Consider the following pure exchange economy with one representative consumer

and an exogenous consumption process. Consumption Ct = exp(ct) follows the

stochastic process

ct+1 = µ+ ct + σc (st) εt+1,

where εt+1 ∼ N (0, 1) is an i.i.d. scalar random process, µ > 0, and c0, s0 are

initial conditions, and st is the time t realization of a two state Markov chain

on {0, 1} with transition matrix P =

[
π0 1− π0

1− π1 π1

]
, where π0 ∈ (0, 1) and

π1 ∈ (0, 1). It is true that

σc (st) =

{
σL, if st = 0;

σH , if st = 1,

where 0 < σL < σH . At time t , the consumer observes ct, st at time t . The

consumer ranks consumption streams according to

U0 = E0

∞∑

t=0

βt

(
C

(1−γ)
t

1− γ

)
, (1)

where β ∈ (0, 1), E0 denotes the mathematical expectation conditional on

C0, s0 , and γ ≥ 0.

a. Define the consumer’s stochastic discount factor mt+1 .

b. Find a formula for the consumer’s stochastic discount factor mt+1 .

c. Compute Et(mt+1) and interpret it.
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d. Compute Et(mt+1mt+2) and interpret it.

e. Use your answers to parts c and d to tell how you would expect the term

structure of interest rates to behave over time in this economy.

f. Describe how your approach to answering question c would change if, instead

of observing ct, st at time t , the consumer observes only current and past values

ct, ct−1, . . . , c0 while having a prior distribution s0 ∼ π̃0(s0).

Exercise 14.12 Unknown µ

Consider the following pure exchange economy with one representative consumer

and an exogenous consumption process. Consumption Ct = exp(ct) follows the

stochastic process

ct+1 = µ+ zt + ct + σcεt+1,

where εt+1 ∼ N (0, 1) is an i.i.d. scalar random process, µ > 0, and c0 is an

initial condition. The consumer ranks consumption streams according to

U0 = E0

∞∑

t=0

βt log (Ct) , (1)

where β ∈ (0, 1), E0 denotes the mathematical expectation conditional on C0 ,

and γ ≥ 0. The consumer does not know µ but at time 0 believes that µ is

described by a prior probability density µ ∼ N (µ̂0, σ
2
µ), where σµ > 0. At the

beginning of time t+ 1, the consumer has observed the history {cs+1 − cs, s =

1, . . . , t} .

a. Find a formula for the consumer’s stochastic discount factor mt+1 for t ≥ 0.

b. In this economy, how does the gross rate of return on a one-period risk

free bond at time t behave through time? Can you tell whether it increases or

decreases?

Exercise 14.13 Long-run risk, III

Consider the following pure exchange economy with one representative consumer

and an exogenous consumption process. Consumption Ct = exp(ct) follows the

stochastic process
ct+1 = µ+ zt + ct + σcεt+1

zt+1 = ρzt + σzεt+1,



Exercises 621

where εt+1 ∼ N (0, 1) is an i.i.d. scalar random process, µ > 0, and c0, z0 are

initial conditions, ρ ∈ (0, 1). By setting ρ close to but less than unity and σz

to be small, zt becomes a slowly moving component of the conditional mean of

Et(ct+1 − ct). The consumer ranks consumption streams according to

(1) U0 = E0

∞∑

t=0

βt log (Ct) ,

where β ∈ (0, 1), E0 denotes the mathematical expectation conditional on C0 ,

and γ ≥ 0. At time 0 the consumer believes that µ is described by a prior

probability density µ ∼ N (µ̂0, σ
2
µ), where σµ > 0. The consumer never observes

zt and at the start of period 0 believes that z0 is distributed independently of

µ and that z0 ∼ N (ẑ0, σ
2
z0). At the beginning of time t+ 1, the consumer has

observed the history {cs+1 − cs, s = 1, . . . , t} .
a. Find a formula for the consumer’s stochastic discount factor mt+1 for t ≥ 0.

b. Assume the values (.995, .005, 0, .99, .005, .00005) for (β, µ̂0, ẑ0, ρ, σc, σz0).

Please write a Matlab program to compute the gross rate of return on a one-

period risk-free bond for t = 0, . . . , 10, 000. Plot it. In this economy, how does

the gross rate of return on a one-period risk free bond at time t behave through

time?

Exercise 14.14 Affine term structure model

Recall the affine term structure model of section 14.11.2

pt (n) = exp
(
Ān + B̄nzt

)
.

Please verify that (Ān, B̄n) can be computed recursively from

Ān+1 = Ān + B̄′
n (µ− CΛ0) +

1

2
B̄′
nCC

′B̄n − δ0

B̄′
n+1 = B̄′

n (φ− CΛz)− δ′1,

subject to the initial conditions Ā1 = −δ0, B̄1 = −δ1 . Hint: Apply the formula

for the mean of a log normal random variable.

Exercise 14.15 Reverse engineering

An econometrician has discovered that the logarithm of consumption ct is well

described by a stochastic process

(0) ct+1 − ct = µ+ σcεt+1
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where εt+1 ∼ N (0, 1) is an iid scalar stochastic process. The econometrician

has also discovered a stochastic discount factor of the form

(1) logmt+1 = −δ − (ct+1 − ct) + wεt+1 −
1

2
w2,

where δ > 0, w = σc(1 − γ), γ ≥ 1. The stochastic discount factor works well

in the sense that for a set of assets j = 1, . . . , J , GMM estimates of the Euler

equations

(2) Et (Rj,t+1mt+1) = 1

are satisfied to a good approximation. In addition, the econometrician has found

that the gross return Rj,t+1 on asset j is well described by

(3) log (Rj,t+1) = ηjt + αjεt+1 + σjuj,t+1 −
(
1

2

)(
α2
j + σ2

j

)
,

where uj,t+1 ∼ N (0, 1), Euj,t+1εt+1 = 0 for all j , and α1 = 0.

a. Use restriction (2) to get a formula for ηjt as a function of the other param-

eters in equations (0), (1), (2), and (3).

b. Recalling that α1 = 0, state a formula for η1t that is a special case of the

formula that you derived in part a. Please interpret η1t .

c. From your answers to parts a and b, please derive a formula that relates ηjt

to η1t . Please interpret it in terms of risk prices.

d. Reverse engineer an economic model in which mt+1 described by (1) reflects

the preferences of a representative consumer.

e. Describe the representative consumer’s preferences derived in part d in the

special case in which γ = 1.

f. Describe the representative consumer’s preferences derived in part d in the

general case that γ > 1. Please say what aspects of preferences the parameter

γ governs (e.g., risk aversion or intertemporal substitution or yet other things).

Exercise 14.16 Incomplete Markets, I

Consider the following incomplete-markets, pure exchange, two-person economy.

Consumer i , i = 1, 2, orders consumption streams {Cit}∞t=0 by

(1) E0

∞∑

t=0

βtU
(
Cit
)
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where U(C) = C1−γ

1−γ , γ > 0, and β ∈ (0, 1). Consumer i has a stochastic

endowment of the consumption good described by

logY it+1 = logY it + µ+ σǫit+1

where ǫit+1 ∼ N (0, 1) for i = 1, 2, and Y i0 is given for i = 1, 2. The consumers

trade a single asset: a risk-free bond whose gross rate of return between t and

t+ 1 is Rt = exp(rt). Each consumer faces a sequence of budget constraints

(2) Cit +R−1
t bit+1 ≤ Y it + bit, t ≥ 0

where bi0 = 0 for i = 1, 2, and where bit is person i ’s holdings of free bonds

at the beginning of time t . The gross interest rate Rt is known at time t .

Each consumer faces Rt as a price taker and chooses a stochastic process for

{Cit , bit+1} to maximize (1) subject to (2) and the initial conditions Y i0 , b
i
0 .

a. For consumer i , please compute a “personal stochastic discount factor”

evaluated at a no-trade Cit = Y it allocation. For i 6= j , does person i ’s personal

stochastic discount factor equal person j ’s? Please explain why or why not.

b. Where logβ = −ρ , verify that Cit = Y it , b
i
t+1 = 0, rt = ρ + γµ − .5σ2γ2

are competitive equilibrium objects for the incomplete markets economy with

financial trades only in a risk free bond.

c. In what sense does this economy display multiple stochastic discount factors?

Is there anything that is unique about the stochastic discount factors?

Exercise 14.17 Incomplete Markets, II

Consider a version of the economy described in exercise 14.16 but in which the

endowment processes for the two consumers are now described by

logY it+1 = logY it + µ+ xt + σǫit+1

xt+1 = λxt + σxut+1

where |λ| < 1, ǫt+1 ∼ N (0, 1), and ut+1 ∼ N (0, 1). Everything else about the

economy is the same.

a. Show that equilibrium objects are now Cit = Y it , b
i
t+1 = 0 and

rt = ρ+ γ (µ+ xt)− .5σ2γ2.
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b. Explain why the risk-free net interest rate varies over time while it did not

in the problem 16 economy.

Exercise 14.18 Incomplete Markets, III

Consider a version of the economy described in exercise 14.16 in which the

endowment processes for the two consumers are now described by

logY it+1 = logY it + µ+ σtǫ
i
t+1

logσ2
t+1 = logσ2

t + σσut+1

where ut+1 ∼ N (0, 1) and ǫt+1 ∼ N (0, 1).

a. Show that there exists an equilibrium net risk-free interest rate process {rt}
such that Cit = Y it , b

i
t+1 = 0 are equilibrium objects. Compute that rt process.

b. During what sorts of periods are risk-free interest rates low? When are they

high?

Exercise 14.19 Relative entropy

Conditional on xt , under the “physical measure”, an n dimensional state vector

distribution of xt+1 is N (µ + φxt, CC
′) for all t ≥ 0. Furthermore, x0 ∼

N (µ0,Σ0).

a. Verify that {xt}∞t=0 has a vector autoregressive representation

xt+1 = µ+ φxt + Cεt+1,

where εt+1 ∼ N (0, I) for all t ≥ 0.

b. Let λt = λ0 + λ′1xt . Verify that conditional on xt ,

l (εt+1;λt) = exp

(
−λ

′
tλt
2

− λ′tεt+1

)

is a log normal random variable with mean unity.

c. Argue that lt+1 can be regarded as a likelihood ratio, being careful to describe

the probability distributions in the numerator and denominator of the likelihood

ratio.

d. Let φ(x;µ + φxt,Σx) be a multivariate normal density with mean vector

µ+φxt and covariance matrix Σx = CC′ . Verify that multiplying this density by
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the likelihood ratio l(εt+1) produces a probability density for xt+1 conditional

on xt that is normal with mean µx + φxt − Cλt and covariance CC′ .

e. Where l is a likelihood ratio, the entropy of a density lφ relative to a density

φ is defined as El log l , where the expectation is taken under the distribution

φ . But this multiplication by l changes the density to lφ , so relative entropy

also can be represented Ê log(l) where the expectation Ê is taken with respect

to the density φl . When log lt+1 = (−λ′
tλt

2 − λtεt+1) and φt(ǫt+1) ∼ N (0, I),

verify that under the twisted density lt+1φt+1 , εt+1 ∼ N (−λt, I). Use these

findings to verify that relative entropy equals
λ′
tλt

2 .

Note: Relative entropy is a non-negative quantity that indicates the discrepancy

of one distribution from another.

Exercise 14.20 Likelihood ratio process

Let {εt+1}∞t=0 be a sequence of i.i.d. random vectors where εt+1 ∼ N (0, I).

Assume that a likelihood process {ξt}∞t=0 satisfies the recursion

ξt+1

ξt
= exp

(
−λ′εt+1 −

λ′λ

2

)
, t ≥ 0

where ξ0 = 1.

a. Verify that

ξt = exp

(
−λ′ (εt + · · ·+ ε1)− t

λ′λ

2

)
ξ0

so that log ξt ∼ N (−tλ′λ
2 , tλ′λ). Verify that Eξt = 1 for all t ≥ 0 under

the assumption that {εt+1}∞t=0 is a sequence of i.i.d. random vectors where

εt+1 ∼ N (0, I).

b. Verify that {ξt+1}∞t=0 is a martingale under the assumption that {εt+1}∞t=0

is a sequence of i.i.d. random vectors where εt+1 ∼ N (0, I).

c. Verify that ξt is a log normal random variable for t ≥ 1. Please provide for-

mulas for the mean, median, standard deviation, mode, variance, and skewness

of ξt .

d. Extra credit: Write a Python or Julia program to evaluate the cumula-

tive distribution function for a log normal random variable. Suppose that

λ = 1. Evaluate the cumulative distribution function (CDF) of ξt for t =
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1, 5, 100, 1000, 10000. Argue informally that as t → +∞ , ξt converges in dis-

tribution to 0 despite the fact that Eξt = 1 for all t ≥ 1. How can this be?

(Hint: Compute the skewness of the distribution of ξt or plot the cdf of ξt for

various values of the nonnegative integer t .)

Exercise 14.21 Distorted beliefs

A representative agent with “distorted beliefs” prices assets. The “physical

measure” that governs the log of consumption growth is conistent with the law

of motion

(1) ct+1 − ct = µ+ σcεt+1, t ≥ 0

where εt+1 ∼ N (0, 1). However, the representative agent believes that the

disturbance εt+1 in equation (1) actually has distribution N (w, 1) where w is

a constant scalar. Call the probability measure under this distorted belief “the

subjective measure” and denote the mathematical expectations taken under

this measure ES(·). The representative agent uses a stochastic discount factor

described by

m∗
t+1 = exp (−ρ) exp (− (ct+1 − ct)) ,

so he acts as if he has time separable preferences with CRRA preferences and

coefficient of risk aversion equal to 1. Assets are priced so that the return Rj,t+1

on any asset j = 1, . . . , J obeys

(3) ESt m
∗
t+1Rj,t+1 = 1,

where ESt is a conditional expectation with respect to subjective biased beliefs

rather than the physical measure.

a. Please explain the role of the parameters ρ and w in helping specification

(2) attain the Hansen-Jagannathan bounds.

b. A macroeconomist from Minnesota always imposes rational expectations,

and so, instead of fitting equation (2) to the data taking into account the gap

between the subjective and physical measure, fits the model

EPt mt+1Rj,t+1 = 1,

where EPt denotes a conditional expectation under the physical measure and

mt+1 is the stochastic discount factor fit by this rational expectations econo-

metrician. Please reverse engineer a stochastic discount factor mt+1 that this
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econometrician would he uncover if he managed to fit data desribed by equation

(2) perfectly.

c. Please interpret the stochastic discount factor mt+1 discovered in part a in

terms of the preference structure employed by Thomas Tallarini (2000).

Exercise 14.22 Costs of aggregate fluctuations

Nature or “the physical measure” makes the level of consumption Ct = exp(ct)

obey

(1) Ct+1 = exp (µ+ σcεt+1)Ct,

where εt+1 is N (0, 1).

a. Please compute EPt Ct+j and stdPt Ct+j for j = 1, 2, . . . , where the super-

script P denotes the physical measure and stdt denotes a conditional standard

deviation.

b. A consumer of type P evaluates consumption plans according to the utility

recursion

(2) UPt = logCt + βEPt U
P
t+1.

Please find a formula for UPt as a function of time t state variables, which you

are free to define.

c. A consumer of type S believes that consumption growth is governed by

equation (1) where ǫt+1 ∼ N (w, 1), where w is a real valued scalar. Let ES

be a mathematical expectation under the (subjective) S distribution. A type

S consumer evaluates consumption plans according to the utility recursion

(3) USt = logCt + βESt U
S
t+1.

Please find a formula for USt as a function of time t state variables, which you

are free to define.

d. Please find a deterministic consumption process {Cd,Pt }∞t=0 process with

same expected growth rate as the process {Ct}∞t=0 under the P probability

measure, i.e., a nonstochastic process satisfying a recursion

(4) Cd,Pt+1 = exp
(
gP
)
Cd,Pt
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for all t ≥ 0. Tell how gP varies with µ and σc .

e. Please find a deterministic consumption process {Cd,St }∞t=0 process with same

expected growth rate as the process {Ct}∞t=0 under the S probability measure,

i.e., a nonstochastic process satisfying a recursion

(5) Cd,St+1 = exp
(
gS
)
Cd,St

for all t ≥ 0. Tell how gS varies with µ, σc , and w .

f. A consumer of type P is offered a choice between a consumption process (1)

under the P measure starting from a given known and C0 and a deterministic

process (4) starting from a value C̃P0 that gives the same value of U0 satisfying

recursion (2). Please compute C̃P0 as a function of C0 .

g. A consumer of type S is offered a choice between a consumption process

(1) under the S measure for {ǫt+1} starting from a given known and C0 and a

deterministic process (5) starting from a value C̃S0 that gives the same value of

U0 satisfying recursion (2). Please compute C̃S0 as a function of C0 .

h. (Extra credit) By comparing UP0 to US , please tell how much initial con-

sumption C0 a consumer of type S would be willing to pay to become a con-

sumer of type P . Please interpret this strange experiment as one that compares

a situation in which a consumer faces both risk and ambiguity with one in which

he or she faces risk only.

Exercise 14.23 Reverse engineering

Consider a setting with complete markets in one-period ahead Arrow securities.

The state at t is Xt ∈ R+ . Let xt = logXt . Arrow securities are characterized

by the pricing kernel

(1) Q (Xt, Xt+1) =
1

σx
√
2π

exp

(
−ρ− γ (xt+1 − xt) +

(xt+1 − xt − µ)
2

2σ2
x

)
.

Here ρ > 0, µ > 0, σx > 0. In this economy, the price at time t of one unit of

consumption at date t+ 1 contingent on Xt+1 ∈ A is thus

∫

A

Q (Xt, Xt+1) dXt+1.



Exercises 629

a. Please reverse engineer an economy in which formula (1) is indeed the ker-

nel for one-period Arrow securities. Please describe preferences, endowments,

technologies, and probability densities for this economy.

b. Please describe the sense in which this economy does or does not have a

representative agent.

c. Please compute the yield on one-period risk-free claims.

d. For this economy, please describe a (or the) stochastic discount factor and

also a (or the) “physical measure”. Is the stochastic discount factor that you

propose unique?

e. Is this model of a stochastic discount factor capable of attaining Hansen-

Jagannathan bounds with what you regard to be reasonable parameter values?

Please compute a formula for what Hansen and Jagannathan call “the market

price of risk”.

Exercise 14.24 Unpriced risk

Suppose that the following exponential quadratic stochastic discount factor cor-

rectly prices all returns:

λt = λ0 + λzzt (14.10)

log (mt+1) = −rt −
1

2
λ′tλt − λ′tεt+1,

where the risk vector εt+1 ∼ N (0, I) is an i.i.d. vector that appears in the

first-order vector autoregression

zt+1 = µ+ φzt + Cεt+1

rt = δ0 + δ′1zt.

Let ut+1 ∼ N (0, I) be another i.i.d. vector shock that is orthogonal to εs+1 for

all t and all s . Let a gross return process Rj,t+1 be described by

Rj,t+1 = exp

(
νt (j)−

1

2
αt (j)

′
αt (j)−

1

2
ηt (j)

′
ηt (j) + αt (j)

′
εt+1 + ηt (j)

′
ut+j

)

(14.11)

where

αt (j) = α0 (j) + αz (j) zt

ηt (j) = η0 (j) + αz (j) zt.
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Here α0(j) and η0(j) are m × 1 vectors and αz(j) and ηz(j) are m × m

matrices.

a. Please verify that EtRj,t+1 = exp(νt(j)).

b. Please find a formula for νt(j) as a function of zt that verifies E(mt+1Rj,t+1) =

1.

c. Please explain why νt(j) depends on αt(j) the way it does.

d. Please explain why νt(j) depends on ηt(j) the way it does.



Chapter 15

Economic Growth

15.1. Introduction

This chapter describes basic nonstochastic models of sustained economic growth.

We begin by describing a benchmark exogenous growth model in which sustained

growth is driven by exogenous growth in labor productivity. Then we turn our

attention to several endogenous growth models in which sustained growth of

labor productivity is somehow chosen by the households in the economy. We

describe several models that differ in whether the equilibrium market economy

matches what a benevolent planner would choose. Where the market outcome

doesn’t match the planner’s outcome, there can be room for welfare-improving

government interventions. The objective of the chapter is to shed light on the

mechanisms at work in different models. We facilitate comparison by using the

same production function and simply changing the meaning of one argument.

In the spirit of Arrow’s (1962) model of learning by doing, Romer (1986)

presents an endogenous growth model in which the accumulation of capital (or

knowledge) is associated with a positive externality on the available technology.

The aggregate of all agents’ holdings of capital is positively related to the level

of technology, which in turn interacts with individual agents’ savings decisions

and thereby determines the economy’s growth rate. Thus, the households in

this economy are choosing how fast the economy is growing, but they do so in

an unintentional way. The competitive equilibrium growth rate is less than the

socially optimal one.

Another approach assumes that all production factors are reproducible.

Following Uzawa (1965), Lucas (1988) formulates a model with accumulation of

both physical and human capital. The joint accumulation of all inputs ensures

that growth will not come to a halt even though each individual factor in the

final-good production function is subject to diminishing returns. In the absence

of externalities, the growth rate in the competitive equilibrium coincides with

the social optimum.

– 631 –
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Romer (1987) constructs a model in which agents can choose to engage in

research that produces technological improvements. Each invention represents

a technology for producing a new type of intermediate input that can be used in

the production of final goods without affecting the marginal product of existing

intermediate inputs. The introduction of new inputs enables the economy to ex-

perience sustained growth even though each intermediate input taken separately

is subject to diminishing returns. In a decentralized equilibrium, private agents

will expend resources on research only if they are granted property rights over

their inventions. Under the assumption of infinitely lived patents, Romer solves

for a monopolistically competitive equilibrium that exhibits the classic tension

between static and dynamic efficiency. Patents and the associated market power

are necessary for there to be research and new inventions in a decentralized

equilibrium, while the efficient production of existing intermediate inputs would

require marginal-cost pricing, that is, the abolition of granted patents. The

monopolistically competitive equilibrium is characterized by smaller supplies of

intermediate inputs and a lower growth rate than is socially optimal.

Finally, we revisit the question of when nonreproducible factors may not

pose an obstacle to growth. Rebelo (1991) shows that even if there are nonrepro-

ducible factors in fixed supply in a neoclassical growth model, sustained growth

is possible if there is a “core” of capital goods that is produced without direct

or indirect use of the nonreproducible factors. Because of the ever-increasing

relative scarcity of a nonreproducible factor, Rebelo finds that its price increases

over time relative to a reproducible factor. Romer (1990) assumes that research

requires the input of labor and not only goods as in his earlier model (1987).

Now, if labor is in fixed supply and workers’ innate productivity is constant,

it follows immediately that growth must asymptotically come to an halt. To

make sustained growth feasible, we can take a cue from our earlier discussion.

One modeling strategy would be to introduce an externality that enhances re-

searchers’ productivity, and an alternative approach would be to assume that

researchers can accumulate human capital. Romer adopts the first type of as-

sumption, and we find it instructive to focus on its role in overcoming a barrier

to growth that nonreproducible labor would otherwise pose.
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15.2. The economy

The economy has a constant population of a large number of identical agents

who order consumption streams {ct}∞t=0 according to

∞∑

t=0

βtu (ct) , with β ∈ (0, 1) and u (c) =
c1−σ − 1

1− σ
for σ ∈ [0,∞) , (15.2.1)

and σ = 1 is taken to be logarithmic utility.1 Lowercase letters for quanti-

ties, such as ct for consumption, are used to denote individual variables, and

uppercase letters stand for aggregate quantities.

For most part of our discussion of economic growth, the production function

takes the form

F (Kt, Xt) = Xtf
(
K̂t

)
, where K̂t ≡

Kt

Xt
. (15.2.2)

That is, the production function F (K,X) exhibits constant returns to scale in

its two arguments, which via Euler’s theorem on linearly homogeneous functions

implies

F (K,X) = F1 (K,X)K + F2 (K,X)X, (15.2.3)

where Fi(K,X) is the derivative with respect to the ith argument (and Fii(K,X)

will be used to denote the second derivative with respect to the ith argument).

The input Kt is physical capital with a rate of depreciation equal to δ . New

capital can be created by transforming one unit of output into one unit of cap-

ital. Past investments are reversible. It follows that the relative price of capital

in terms of the consumption good must always be equal to 1. The second ar-

gument Xt captures the contribution of labor. Its precise meaning will differ

among the various setups that we will examine.

We assume that the production function satisfies standard assumptions of

positive but diminishing marginal products,

Fi (K,X) > 0, Fii (K,X) < 0, for i = 1, 2;

and the Inada conditions,

lim
K→0

F1 (K,X) = lim
X→0

F2 (K,X) = ∞,

lim
K→∞

F1 (K,X) = lim
X→∞

F2 (K,X) = 0,

1 By virtue of L’Hôpital’s rule, the limit of (c1−σ − 1)/(1 − σ) is log(c) as σ goes to 1.
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which imply

lim
K̂→0

f ′
(
K̂
)
= ∞, lim

K̂→∞
f ′
(
K̂
)
= 0. (15.2.4)

We will also make use of the mathematical fact that a linearly homogeneous

function F (K,X) has first derivatives Fi(K,X) homogeneous of degree 0; thus,

the first derivatives are only functions of the ratio K̂ . In particular, we have

F1 (K,X) =
∂ Xf (K/X)

∂ K
= f ′

(
K̂
)
, (15.2.5a)

F2 (K,X) =
∂ Xf (K/X)

∂ X
= f

(
K̂
)
− f ′

(
K̂
)
K̂. (15.2.5b)

15.2.1. Balanced growth path

We seek additional technological assumptions to generate market outcomes with

steady-state growth of consumption at a constant rate 1 + µ = ct+1/ct . The

literature uses the term “balanced growth path” to denote a situation where

all endogenous variables grow at constant (but possibly different) rates. Along

such a steady-state growth path (and during any transition toward the steady

state), the return to physical capital must be such that households are willing

to hold the economy’s capital stock.

In a competitive equilibrium where firms rent capital from the agents, the

rental payment rt is equal to the marginal product of capital,

rt = F1 (Kt, Xt) = f ′
(
K̂t

)
. (15.2.6)

Households maximize utility given by equation (15.2.1) subject to the sequence

of budget constraints

ct + kt+1 = rtkt + (1− δ) kt + χt, (15.2.7)

where χt stands for labor-related budget terms. The first-order condition with

respect to kt+1 is

u′ (ct) = βu′ (ct+1) (rt+1 + 1− δ) . (15.2.8)

After using equations (15.2.1) and (15.2.6) in equation (15.2.8), we arrive at

the following equilibrium condition:
(
ct+1

ct

)σ
= β

[
f ′
(
K̂t+1

)
+ 1− δ

]
. (15.2.9)
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We see that a constant consumption growth rate on the left side is sustained in

an equilibrium by a constant rate of return on the right side. It was also for

this reason that we chose the class of utility functions in equation (15.2.1) that

exhibits a constant intertemporal elasticity of substitution. These preferences

allow for balanced growth paths.2

Equation (15.2.9) makes clear that capital accumulation alone cannot sus-

tain steady-state consumption growth when the labor input Xt is constant over

time, Xt = L . Given the second Inada condition in equations (15.2.4), the

limit of the right side of equation (15.2.9) is β(1−δ) when K̂ approaches infin-

ity. The steady state with a constant labor input must therefore be a constant

consumption level and a capital-labor ratio K̂⋆ given by

f ′
(
K̂⋆
)
= β−1 − (1− δ) . (15.2.10)

In chapter 5 we derived a closed-form solution for the transition dynamics toward

such a steady state in the case of logarithmic utility, a Cobb-Douglas production

function, and δ = 1.

15.3. Exogenous growth

As in Solow’s (1956) classic article, the simplest way to ensure steady-state

consumption growth is to postulate exogenous labor-augmenting technological

change at the constant rate 1 + µ ≥ 1,

Xt = AtL, with At = (1 + µ)At−1,

where L is a fixed stock of labor. Our conjecture is then that both consumption

and physical capital will grow at that same rate 1+ µ along a balanced growth

path. The same growth rate of Kt and At implies that the ratio K̂ and therefore

the marginal product of capital remain constant in the steady state. A time-

invariant rate of return is in turn consistent with households choosing a constant

growth rate of consumption, given the assumption of isoelastic preferences.

2 To ensure well-defined maximization problems, a maintained assumption throughout the

chapter is that parameters are such that any derived consumption growth rate 1+µ yields finite

lifetime utility; i.e., the implicit restriction on parameter values is that β(1+µ)1−σ < 1. To see

that this condition is needed, substitute the consumption sequence {ct}
∞
t=0 = {(1+µ)tc0}

∞
t=0

into equation (15.2.1).
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Evaluating equation (15.2.9) at a steady state, the optimal ratio K̂⋆ is

given by

(1 + µ)σ = β
[
f ′
(
K̂⋆
)
+ 1− δ

]
. (15.3.1)

While the steady-state consumption growth rate is exogenously given by 1+µ ,

the endogenous steady-state ratio K̂⋆ is such that the implied rate of return on

capital induces the agents to choose a consumption growth rate of 1+µ . As can

be seen, a higher degree of patience (a larger β ), a higher willingness intertem-

porally to substitute (a lower σ ), and a more durable capital stock (a lower

δ ) each yield a higher ratio K̂⋆ , and therefore more output (and consumption)

at a point in time, but the growth rate remains fixed at the rate of exogenous

labor-augmenting technological change. It is straightforward to verify that the

competitive equilibrium outcome is Pareto optimal, since the private return to

capital coincides with the social return.

Physical capital is compensated according to equation (15.2.6), and labor

is also paid its marginal product in a competitive equilibrium,

wt = F2 (Kt, Xt)
dXt

dL
= F2 (Kt, Xt) At. (15.3.2)

So, by equation (15.2.3), we have

rtKt + wtL = F (Kt, AtL) .

Factor payments are equal to total production, which is the standard result of a

competitive equilibrium with constant-returns-to-scale technologies. However,

it is interesting to note that if At were a separate production factor, there could

not exist a competitive equilibrium, since factor payments based on marginal

products would exceed total production. In other words, the dilemma would

then be that the production function F (Kt, AtL) exhibits increasing returns to

scale in the three “inputs” Kt , At , and L , which is not compatible with the

existence of a competitive equilibrium. This problem is to be kept in mind as

we now turn to one way to endogenize economic growth.
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15.4. Externality from spillovers

Inspired by Arrow’s (1962) paper on learning by doing, Romer (1986) suggests

that economic growth can be endogenized by assuming that technology grows

because of aggregate spillovers coming from firms’ production activities. The

problem alluded to in the previous section, that a competitive equilibrium fails

to exist in the presence of increasing returns to scale, is avoided by letting

technological advancement be external to firms.3 As an illustration, we assume

that firms face a fixed labor productivity that is proportional to the current

economy-wide average of physical capital per worker.4 In particular,

Xt = K̄tL, where K̄t =
Kt

L
.

The competitive rental rate of capital is still given by equation (15.2.6), but we

now trivially have K̂t = 1, so equilibrium condition (15.2.9) becomes

(
ct+1

ct

)σ
= β [f ′ (1) + 1− δ] . (15.4.1)

Note first that this economy has no transition dynamics toward a steady state.

Regardless of the initial capital stock, equation (15.4.1) determines a time-

invariant growth rate. To ensure a positive growth rate, we require the param-

eter restriction β[f ′(1) + 1− δ] ≥ 1. A second critical property of the model is

that the economy’s growth rate is now a function of preference and technology

parameters.

The competitive equilibrium is no longer Pareto optimal, since the private

return on capital falls short of the social rate of return, with the latter return

given by

dF
(
Kt,

Kt
L L

)

dKt
= F1 (Kt,Kt) + F2 (Kt,Kt) = f (1) , (15.4.2)

3 Arrow (1962) focuses on learning from experience that he assumes gets embodied in cap-

ital goods, while Romer (1986) postulates spillover effects of firms’ investments in knowledge.

In both analyses, the productivity of a given firm depends on an aggregate state variable,

either the economy’s stock of physical capital or stock of knowledge.
4 This specific formulation of spillovers is analyzed in a rarely cited paper by Frankel

(1962).
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where the last equality follows from equations (15.2.5). This higher social rate

of return enters a planner’s first-order condition, which then also implies a higher

optimal consumption growth rate,

(
ct+1

ct

)σ
= β [f (1) + 1− δ] . (15.4.3)

Let us reconsider the suboptimality of the decentralized competitive equilib-

rium. Since the agents and the planner share the same objective of maximizing

utility, we are left with exploring differences in their constraints. For a given

sequence of the spillover {K̄t}∞t=0 , the production function F (kt, K̄tlt) exhibits

constant returns to scale in kt and lt . So, once again, factor payments in a

competitive equilibrium will be equal to total output, and optimal firm size

is indeterminate. Therefore, we can consider a representative agent with one

unit of labor endowment who runs his own production technology, taking the

spillover effect as given. His resource constraint becomes

ct + kt+1 = F
(
kt, K̄t

)
+ (1− δ) kt = K̄tf

(
kt
K̄t

)
+ (1− δ) kt,

and the private gross rate of return on capital is equal to f ′(kt/K̄t) + 1 − δ .

After invoking the equilibrium condition kt = K̄t , we arrive at the competitive

equilibrium return on capital f ′(1)+1−δ that appears in equation (15.4.1). In

contrast, the planner maximizes utility subject to a resource constraint where

the spillover effect is internalized,

Ct +Kt+1 = F

(
Kt,

Kt

L
L

)
+ (1− δ)Kt = [f (1) + 1− δ]Kt.
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15.5. All factors reproducible

15.5.1. One-sector model

An alternative approach to generating endogenous growth is to assume that all

factors of production are producible. Remaining within a one-sector economy,

we now assume that human capital Xt can be produced in the same way as

physical capital but rates of depreciation might differ. Let δX and δK be the

rates of depreciation of human capital and physical capital, respectively.

The competitive equilibrium wage is equal to the marginal product of hu-

man capital

wt = F2 (Kt, Xt) . (15.5.1)

Households maximize utility subject to budget constraint (15.2.7) where the

term χt is now given by

χt = wtxt + (1− δX)xt − xt+1.

The first-order condition with respect to human capital becomes

u′ (ct) = βu′ (ct+1) (wt+1 + 1− δX) . (15.5.2)

Since both equations (15.2.8) and (15.5.2) must hold, the rates of return on the

two assets have to obey

F1 (Kt+1, Xt+1)− δK = F2 (Kt+1, Xt+1)− δX ,

and after invoking equations (15.2.5),

f
(
K̂t+1

)
−
(
1 + K̂t+1

)
f ′
(
K̂t+1

)
= δX − δK , (15.5.3)

which uniquely determines a time-invariant competitive equilibrium ratio K̂⋆ ,

as a function solely of depreciation rates and parameters of the production

function.5

5 The left side of equation (15.5.3) is strictly increasing, since the derivative with respect

to K̂ is −(1 + K̂)f ′′(K̂) > 0. Thus, there can only be one solution to equation (15.5.3) and
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After solving for f ′(K̂⋆) from equation (15.5.3) and substituting into equa-

tion (15.2.9), we arrive at an expression for the equilibrium growth rate

(
ct+1

ct

)σ
= β



f
(
K̂⋆
)

1 + K̂⋆
+ 1− δX + K̂⋆δK

1 + K̂⋆


 . (15.5.4)

As in the previous model with an externality, the economy here is void of any

transition dynamics toward a steady state. But this implication now critically

hinges on investments being reversible so that the initial stocks of physical cap-

ital and human capital are inconsequential. In contrast to the previous model,

the present competitive equilibrium is Pareto optimal because there is no longer

any discrepancy between private and social rates of return.6

The problem of optimal taxation with commitment (see chapter 16) is stud-

ied for this model of endogenous growth by Jones, Manuelli, and Rossi (1993),

who adopt the assumption of irreversible investments.

existence is guaranteed because the left side ranges from minus infinity to plus infinity. The

limit of the left side when K̂ approaches zero is f(0)−lim
K̂→0

f ′(K̂) , which is equal to minus

infinity by equations (15.2.4) and the fact that f(0) = 0. (Barro and Sala-i-Martin (1995)

show that the Inada conditions and constant returns to scale imply that all production factors

are essential, i.e., f(0) = 0.) To establish that the left side of equation (15.5.3) approaches

plus infinity when K̂ goes to infinity, we can define the function g as F (K,X) = Kg(X̂)

where X̂ ≡ X/K and derive an alternative expression for the left side of equation (15.5.3),

(1 + X̂)g′(X̂)− g(X̂) , for which we take the limit when X̂ goes to zero.
6 It is instructive to compare the present model with two producible factors, F (K,X) , to

the previous setup with one producible factor and an externality, F̃ (K,X) with X = K̄L .

Suppose the present technology is such that K̂⋆ = 1 and δK = δX , and the two different

setups are equally productive; i.e., we assume that F (K,X) = F̃ (2K, 2X) , which implies

f(K̂) = 2f̃(K̂) . We can then verify that the present competitive equilibrium growth rate

in equation (15.5.4) is the same as the planner’s solution for the previous setup in equation

(15.4.3).
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15.5.2. Two-sector model

Following Uzawa (1965), Lucas (1988) explores endogenous growth in a two-

sector model with all factors being producible. The resource constraint in the

goods sector is

Ct +Kt+1 = Kα
t (φtXt)

1−α
+ (1− δ)Kt, (15.5.5a)

and the linear technology for accumulating additional human capital is

Xt+1 −Xt = A (1− φt)Xt, (15.5.5b)

where φt ∈ [0, 1] is the fraction of human capital employed in the goods sector,

and (1 − φt) is devoted to human capital accumulation. (Lucas provides an

alternative interpretation that we will discuss later.)

We seek a balanced growth path where consumption, physical capital, and

human capital grow at constant rates (but not necessarily the same ones) and

the fraction φ stays constant over time. Let 1 + µ be the growth rate of

consumption, and equilibrium condition (15.2.9) becomes

(1 + µ)σ = β
(
αKα−1

t [φXt]
1−α + 1− δ

)
. (15.5.6)

That is, along the balanced growth path, the marginal product of physical capi-

tal must be constant. With the assumed Cobb-Douglas technology, the marginal

product of capital is proportional to the average product, so that by dividing

equation (15.5.5a) through by Kt and applying equation (15.5.6) we obtain

Ct
Kt

+
Kt+1

Kt
=

(1 + µ)σ β−1 − (1− α) (1− δ)

α
. (15.5.7)

By definition of a balanced growth path, Kt+1/Kt is constant, so equation

(15.5.7) implies that Ct/Kt is constant; that is, the capital stock must grow at

the same rate as consumption.

Substituting Kt = (1 + µ)Kt−1 into equation (15.5.6),

(1 + µ)
σ − β (1− δ) = βα [(1 + µ)Kt−1]

α−1
[φXt]

1−α
,

and dividing by the similarly rearranged equation (15.5.6) for period t− 1, we

arrive at

1 = (1 + µ)
α−1

[
Xt

Xt−1

]1−α
,
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which directly implies that human capital must also grow at the rate 1+µ along

a balanced growth path. Moreover, by equation (15.5.5b), the growth rate is

1 + µ = 1 +A (1− φ) , (15.5.8)

so it remains to determine the steady-state value of φ .

The equilibrium value of φ has to be such that a unit of human capital

receives the same factor payment in both sectors; that is, the marginal products

of human capital must be the same,

ptA = (1− α)Kα
t [φXt]

−α
,

where pt is the relative price of human capital in terms of the composite con-

sumption/capital good. Since the ratio Kt/Xt is constant along a balanced

growth path, it follows that the price pt must also be constant over time. Fi-

nally, the remaining equilibrium condition is that the rates of return on human

and physical capital be equal,

pt (1 +A)

pt−1
= αKα−1

t [φXt]
1−α + 1− δ,

and after invoking a constant steady-state price of human capital and equilib-

rium condition (15.5.6), we obtain

1 + µ = [β (1 +A)]
1/σ

. (15.5.9)

Thus, the growth rate is positive as long as β(1+A) ≥ 1, but feasibility requires

also that solution (15.5.9) fall below 1+A , which is the maximum growth rate of

human capital in equation (15.5.5b). This parameter restriction, [β(1+A)]1/σ <

(1 + A), also ensures that the growth rate in equation (15.5.9) yields finite

lifetime utility.

As in the one-sector model, there is no discrepancy between private and

social rates of return, so the competitive equilibrium is Pareto optimal. Lucas

(1988) does allow for an externality (in the spirit of our earlier section) where

the economy-wide average of human capital per worker enters the production

function in the goods sector, but, as he notes, the externality is not needed to

generate endogenous growth.

Lucas provides an alternative interpretation of the technologies in equations

(15.5.5). Each worker is assumed to be endowed with one unit of time. The time
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spent in the goods sector is denoted φt , which is multiplied by the agent’s human

capital xt to arrive at the efficiency units of labor supplied. The remaining time

is spent in the education sector with a constant marginal productivity of Axt

additional units of human capital acquired. Even though Lucas’s interpretation

does introduce a nonreproducible factor in the form of a time endowment, the

multiplicative specification makes the model identical to an economy with only

two factors that are both reproducible. One section ahead we will study a setup

with a nonreproducible factor that has some nontrivial implications.

15.6. Research and monopolistic competition

Building on Dixit and Stiglitz’s (1977) formulation of the demand for differen-

tiated goods and the extension to differentiated inputs in production by Ethier

(1982), Romer (1987) studied an economy with an aggregate resource constraint

of the following type:

Ct +

∫ At+1

0

Zt+1 (i) di+ (At+1 −At)κ = L1−α

∫ At

0

Zt (i)
α
di, (15.6.1)

where one unit of the intermediate input Zt+1(i) can be produced from one unit

of output at time t , and Zt+1(i) is used in production in the following period

t+ 1. The continuous range of inputs at time t , i ∈ [0, At] , can be augmented

for next period’s production function at the constant marginal cost κ .

In the allocations that we are about to study, the quantity of an interme-

diate input will be the same across all existing types, Zt(i) = Zt for i ∈ [0, At] .

The resource constraint (15.6.1) can then be written as

Ct +At+1Zt+1 + (At+1 −At)κ = L1−αAtZ
α
t . (15.6.2)

If At were constant over time, say, let At = 1 for all t , we would just have

a parametric example of an economy yielding a no-growth steady state given

by equation (15.2.10) with δ = 1. Hence, growth can only be sustained by

allocating resources to a continuous expansion of the range of inputs. But this

approach poses a barrier to the existence of a competitive equilibrium, since

the production relationship L1−αAtZ
α
t exhibits increasing returns to scale in

its three “inputs.” Following Judd’s (1985a) treatment of patents in a dynamic
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setting of Dixit and Stiglitz’s (1977) model of monopolistic competition, Romer

(1987) assumes that an inventor of a new intermediate input obtains an infinitely

lived patent on that design. As the sole supplier of an input, the inventor can

recoup the investment cost κ by setting a price of the input above its marginal

cost.

15.6.1. Monopolistic competition outcome

The final-goods sector is still assumed to be characterized by perfect competition

because it exhibits constant returns to scale in the labor input L and the existing

continuous range of intermediate inputs Zt(i). Thus, a competitive outcome

prescribes that each input is paid its marginal product,

wt = (1− α)L−α

∫ At

0

Zt (i)
α
di, (15.6.3)

pt (i) = αL1−α Zt (i)
α−1

, (15.6.4)

where pt(i) is the price of intermediate input i at time t in terms of the final

good.

Let 1 + Rm be the steady-state interest rate along the balanced growth

path that we are seeking. In order to find the equilibrium invention rate of new

inputs, we first compute the profits from producing and selling an existing input

i . The profit at time t is equal to

πt (i) = [pt (i)− (1 +Rm)]Zt (i) , (15.6.5)

where the cost of supplying one unit of the input i is one unit of the final

good acquired in the previous period; that is, the cost is the intertemporal

price 1 + Rm . The first-order condition of maximizing the profit in equation

(15.6.5) is the familiar expression that the monopoly price pt(i) should be set

as a markup above marginal cost, 1 +Rm , and the markup is inversely related

to the absolute value of the demand elasticity of input i , |ǫt(i)| :

pt (i) =
1 +Rm

1 + ǫt (i)
−1 , (15.6.6)

ǫt (i) =

[
∂ pt (i)

∂ Zt (i)

Zt (i)

pt (i)

]−1

< 0.
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The constant marginal cost, 1 +Rm , and the constant-elasticity demand curve

(15.6.4), ǫt(i) = −(1 − α)−1 , yield a time-invariant monopoly price, which,

substituted into demand curve (15.6.4), results in a time-invariant equilibrium

quantity of input i :

pt (i) =
1 +Rm
α

, (15.6.7a)

Zt (i) =

(
α2

1 +Rm

)1/(1−α)

L ≡ Zm. (15.6.7b)

By substituting equation (15.6.7) into equation (15.6.5), we obtain an input

producer’s steady-state profit flow,

πt (i) = (1− α)α1/(1−α)

(
α

1 + Rm

)α/(1−α)
L ≡ Ωm (Rm) . (15.6.8)

In an equilibrium with free entry, the cost κ of inventing a new input must

be equal to the discounted stream of future profits associated with being the

sole supplier of that input,
∞∑

t=1

(1 +Rm)
−t

Ωm (Rm) =
Ωm (Rm)

Rm
; (15.6.9)

that is,

Rmκ = Ωm (Rm) . (15.6.10)

The profit function Ωm(R) is positive, strictly decreasing in R , and convex,

as depicted in Figure 15.6.1. It follows that there exists a unique intersection

between Ω(R) and Rκ that determines Rm . Using the corresponding version

of equilibrium condition (15.2.9), the computed interest rate Rm characterizes

a balanced growth path with(
ct+1

ct

)σ
= β (1 +Rm) , (15.6.11)

as long as 1+Rm ≥ β−1 ; that is, the technology must be sufficiently productive

relative to the agents’ degree of impatience.7 It is straightforward to verify that

the range of inputs must grow at the same rate as consumption in a steady state.

After substituting the constant quantity Zm into resource constraint (15.6.2)

and dividing by At , we see that a constant At+1/At implies that Ct/At stays

constant; that is, the range of inputs must grow at the same rate as consumption.

7 If the computed value 1+Rm falls short of β−1 , the technology does not present suffi-

cient private incentives for new inventions, so the range of intermediate inputs stays constant

over time, and the equilibrium interest rate equals β−1 .
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Figure 15.6.1: Interest rates in a version of Romer’s (1987)

model of research and monopolistic competition. The dot-

ted line is the linear relationship κR , while the solid and

dashed curves depict Ωm(R) and Ωs(R), respectively. The

intersection between κR and Ωm(R) [Ωs(R)] determines the

interest rate along a balanced growth path for the laissez-faire

economy (planner allocation), as long as R ≥ β−1 − 1. The

parameterization is α = 0.9, κ = 0.3, and L = 1.

Note that the solution to equation (15.6.10) exhibits positive scale effects

where a larger labor force L implies a higher interest rate and therefore a higher

growth rate in equation (15.6.11). The reason is that a larger economy enables

input producers to profit from a larger sales volume in equation (15.6.7b), which

spurs more inventions until the discounted stream of profits of an input is driven

down to the invention cost κ by means of the higher equilibrium interest rate.

In other words, it is less costly for a larger economy to expand its range of inputs

because the cost of an additional input is smaller in per capita terms.
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15.6.2. Planner solution

Let 1 + Rs be the social rate of interest along an optimal balanced growth

path. We analyze the planner problem in two steps. First, we establish that the

socially optimal supply of an input i is the same across all existing inputs and

constant over time. Second, we derive 1 + Rs and the implied optimal growth

rate of consumption.

For a given social interest rate 1 + Rs and a range of inputs [0, At] , the

planner would choose the quantities of intermediate inputs that maximize

L1−α

∫ At

0

Zt (i)
α
di− (1 +Rs)

∫ At

0

Zt (i) di,

with the following first-order condition with respect to Zt(i):

Zt (i) =

(
α

1 +Rs

)1/(1−α)

L ≡ Zs. (15.6.12)

Thus, the quantity of an intermediate input is the same across all inputs and

constant over time. Hence, the planner’s problem is simplified to one where

utility function (15.2.1) is maximized subject to resource constraint (15.6.2)

with quantities of intermediate inputs given by equation (15.6.12). The first-

order condition with respect to At+1 is then

(
ct+1

ct

)σ
= β

L1−αZαs + κ

Zs + κ
= β (1 +Rs) , (15.6.13)

where the last equality merely invokes the definition of 1 + Rs as the social

marginal rate of intertemporal substitution, β−1(ct+1/ct)
σ . After substituting

equation (15.6.12) into equation (15.6.13) and rearranging the last equality, we

obtain

Rsκ = (1− α)

(
α

1 +Rs

)α/(1−α)
L ≡ Ωs (Rs) . (15.6.14)

The solution to this equation, 1+Rs , is depicted in Figure 15.6.1, and existence

is guaranteed in the same way as in the case of 1 +Rm .

We conclude that the social rate of return 1+Rs and therefore the optimal

growth rate exceed the laissez-faire outcome, since the function Ωs(R) lies above

the function Ωm(R),

Ωm (R) = α1/(1−α)Ωs (R) . (15.6.15)
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We can also show that the laissez-faire supply of an input falls short of the

socially optimal one:

Zm < Zs ⇐⇒ α
1 +Rs
1 +Rm

< 1. (15.6.16)

To establish condition (15.6.16), divide equation (15.6.7b) by equation (15.6.12).

Thus, the laissez-faire equilibrium is characterized by a smaller supply of each

intermediate input and a lower growth rate than would be socially optimal.

These inefficiencies reflect the fact that suppliers of intermediate inputs do not

internalize the full contribution of their inventions, and so their monopolistic

pricing results in less than socially efficient quantities of inputs.

15.7. Growth in spite of nonreproducible factors

15.7.1. “Core” of capital goods produced without nonreproducible
inputs

It is not necessary that all factors be producible in order to experience sustained

growth through factor accumulation in the neoclassical framework. Instead,

Rebelo (1991) shows that the critical requirement for perpetual growth is the

existence of a “core” of capital goods that is produced with constant returns

technologies and without the direct or indirect use of nonreproducible factors.

Here we will study the simplest version of his model with a single capital good

that is produced without any input of the economy’s constant labor endowment.

Jones and Manuelli (1990) provide a general discussion of convex models of

economic growth and highlight the crucial feature that the rate of return to

accumulated capital must remain bounded above the inverse of the subjective

discount factor in spite of any nonreproducible factors in production.

Rebelo (1991) analyzes the competitive equilibrium for the following tech-

nology:

Ct = L1−α (φtKt)
α , (15.7.1a)

It = A (1− φt)Kt, (15.7.1b)

Kt+1 = (1− δ)Kt + It, (15.7.1c)
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where φt ∈ [0, 1] is the fraction of capital employed in the consumption goods

sector and (1 − φt) is employed in the linear technology producing investment

goods It . In a competitive equilibrium, the rental price of capital rt (in terms

of consumption goods) is equal to the marginal product of capital, which then

has to be the same across the two sectors (as long as they both are operating):

rt = αL1−α (φtKt)
α−1 = ptA, (15.7.2)

where pt is the relative price of capital in terms of consumption goods.

Along a steady-state growth path with a constant φ , we can compute the

growth rate of capital by substituting equation (15.7.1b) into equation (15.7.1c)

and dividing by Kt ,

Kt+1

Kt
= (1− δ) +A (1− φ) ≡ 1 + ρ (φ) . (15.7.3)

Given the growth rate of capital, 1 + ρ(φ), it is straightforward to compute

other rates of change:

pt+1

pt
= [1 + ρ (φ)]α−1 , (15.7.4a)

Ct+1

Ct
=
pt+1It+1

ptIt
=
pt+1Kt+1

ptKt
= [1 + ρ (φ)]α . (15.7.4b)

Since the values of investment goods and the capital stock in terms of consump-

tion goods grow at the same rate as consumption, [1+ρ(φ)]α , this common rate

is also the steady-state growth rate of the economy’s net income, measured as

Ct + ptIt − δptKt .

Agents maximize utility given by condition (15.2.1) subject to budget con-

straint (15.2.7) modified to incorporate the relative price pt ,

ct + ptkt+1 = rtkt + (1− δ) ptkt + χt. (15.7.5)

The first-order condition with respect to capital is
(
ct+1

ct

)σ
= β

(1− δ) pt+1 + rt+1

pt
. (15.7.6)

After substituting rt+1 = pt+1A from equation (15.7.2) and steady-state rates

of change from equation (15.7.4) into equation (15.7.6), we arrive at the fol-

lowing equilibrium condition:

[1 + ρ (φ)]
1−α(1−σ)

= β (1− δ +A) . (15.7.7)
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Thus, the growth rate of capital and therefore the growth rate of consumption

are positive as long as

β (1− δ +A) ≥ 1. (15.7.8a)

Moreover, the maintained assumption of this chapter that parameters are such

that derived growth rates yield finite lifetime utility, β(ct+1/ct)
1−σ < 1, imposes

here the parameter restriction β[β(1 − δ +A)]α(1−σ)/[1−α(1−σ)] < 1, which can

be simplified to read

β (1− δ +A)
α(1−σ)

< 1. (15.7.8b)

Given that conditions (15.7.8) are satisfied, there is a unique equilibrium value

of φ because the left side of equation (15.7.7) is monotonically decreasing in

φ ∈ [0, 1] and it is strictly greater (smaller) than the right side for φ = 0

(φ = 1). The outcome is socially efficient because private and social rates of

return are the same as in the previous models with all factors reproducible.

15.7.2. Research labor enjoying an externality

Romer’s (1987) model includes labor as a fixed nonreproducible factor, but

similar to the last section, an important assumption is that this nonreproducible

factor is not used in the production of inventions that expand the input variety

(which constitutes a kind of reproducible capital in that model). In his sequel,

Romer (1990) assumes that the input variety At is expanded through the effort

of researchers rather than the resource cost κ in terms of final goods. Suppose

that we specify this new invention technology as

At+1 −At = η (1− φt)L,

where (1−φt) is the fraction of the labor force employed in the research sector

(and φt is working in the final-goods sector). After dividing by At , it becomes

clear that this formulation cannot support sustained growth, since new inven-

tions bounded from above by ηL must become a smaller fraction of any growing

range At . Romer solves this problem by assuming that researchers’ productivity

grows with the range of inputs (i.e., an externality as discussed previously):

At+1 −At = ηAt (1− φt)L,
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so the growth rate of At is

At+1

At
= 1 + η (1− φt)L. (15.7.9)

When seeking a balanced growth path with a constant φ , we can use the

earlier derivations, since the optimization problem of monopolistic input pro-

ducers is the same as before. After replacing L in equations (15.6.7b) and

(15.6.8) by φL , the steady-state supply of an input and the profit flow of an

input producer are

Zm =

(
α2

1 +Rm

)1/(1−α)

φL, (15.7.10a)

Ωm (Rm) = (1− α)α1/(1−α)

(
α

1 +Rm

)α/(1−α)
φL. (15.7.10b)

In an equilibrium, agents must be indifferent between earning the wage

in the final-goods sector equal to the marginal product of labor and being a

researcher who expands the range of inputs by ηAt and receives the associated

discounted stream of profits in equation (15.6.9):

(1− α) (φL)
−α

AtZ
α
m = ηAt

Ωm (Rm)

Rm
.

The substitution of equation (15.7.10) into this expression yields

φ =
Rm
αηL

, (15.7.11)

which, used in equation (15.7.9), determines the growth rate of the input range,

At+1

At
= 1 + ηL− Rm

α
. (15.7.12)

Thus, the maximum feasible growth rate in equation (15.7.9), that is, 1 + ηL

with φ = 0, requires an interest rate Rm = 0, while the growth vanishes as Rm

approaches αηL .

As previously, we can show that both consumption and the input range

must grow at the same rate along a balanced growth path. It then remains
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to determine which consumption growth rate given by equation (15.7.12), is

supported by Euler equation (15.6.11):

1 + ηL− Rm
α

= [β (1 +Rm)]1/σ . (15.7.13)

The left side of equation (15.7.13) is monotonically decreasing in Rm , and the

right side is increasing. It is also trivially true that the left side is strictly

greater than the right side for Rm = 0. Thus, a unique solution exists as long

as the technology is sufficiently productive, in the sense that β(1 + αηL) > 1.

This parameter restriction ensures that the left side of equation (15.7.13) is

strictly less than the right side at the interest rate Rm = αηL corresponding to

a situation with zero growth, since no labor is allocated to the research sector,

φ = 1.

Equation (15.7.13) shows that this alternative model of research shares the

scale implications described earlier; that is, a larger economy in terms of L has

a higher equilibrium interest rate and therefore a higher growth rate. It can also

be shown that the laissez-faire outcome continues to produce a smaller quantity

of each input and to yield a lower growth rate than what is socially optimal. An

additional source of underinvestment is now that agents who invent new inputs

do not take into account that their inventions will increase the productivity of

all future researchers.

15.8. Concluding remarks

This chapter has focused on the mechanics of endogenous growth models, with

only limited motivation for assumptions. For example, we have examined how

externalities might enter models to overcome the onset of diminishing returns

from nonreproducible factors without referring too much to the authors’ inter-

pretation of those externalities. The formalism of models is of course silent on

why the assumptions are made, but the conceptual ideas behind the models

contain valuable insights. In the last setup, Paul Romer argues that input de-

signs represent excludable factors in the monopolists’ production of inputs but

the input variety A is also an aggregate stock of knowledge that enters as a

nonexcludable factor in the production of new inventions. That is, the patent

holder of an input type has the sole right to produce and sell that particular in-

put, but she cannot stop inventors from studying the input design and learning
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knowledge that helps to invent new inputs. This multiple use of an input design

hints at the nonrival nature of ideas and technology (i.e., a nonrival object has

the property that its use by one person in no way limits its use by another).

Romer (1990, p. S75) emphasizes this fundamental nature of technology and its

implication; “If a nonrival good has productive value, then output cannot be a

constant-returns-to-scale function of all its inputs taken together. The standard

replication argument used to justify homogeneity of degree one does not apply

because it is not necessary to replicate nonrival inputs.” Thus, an endogenous

growth model that is driven by technological change must be one where the

advancement enters the economy as an externality or the assumption of perfect

competition must be abandoned. Besides technological change, an alternative

approach in the endogenous growth literature is to assume that all production

factors are reproducible, or that a “core” of capital goods is produced without

direct or indirect use of nonreproducible factors.

Much effort in the endogenous growth literature has been expended to spec-

ify an appropriate technology. Even though growth is an endogenous outcome

in these models, its manifestation ultimately hinges on technology assumptions.

In the case of the last setup, as pointed out by Romer (1990, p. S84), “Linearity

in A is what makes unbounded growth possible, and in this sense, unbounded

growth is more like an assumption than a result of the model.” It follows that

various implications of the analyses stand and fall with the assumptions on

technology. For example, the preceding model of research and monopolistic

competition implies that the laissez-faire economy grows at a slower rate than

the social optimum, but Benassy (1998) shows how this result can be over-

turned if the production function for final goods on the right side of equation

(15.6.1) is multiplied by the input range raised to some power ν , Aνt . The

laissez-faire growth rate can exceed the socially optimal rate because of how the

new production function rearranges input producers’ market power, measured

by the parameter α , and the economy’s returns to specialization, measured by

the parameter ν .

Segerstrom, Anant, and Dinopoulos (1990), Grossman and Helpman (1991),

and Aghion and Howitt (1992) provide early attempts to explore endogenous

growth arising from technologies that allow for product improvements and there-

fore product obsolescence. These models open the possibility that the laissez-

faire growth rate is excessive because of a business-stealing effect, where agents
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fail to internalize the fact that their inventions exert a negative effect on incum-

bent producers. As in the models of research by Romer (1987, 1990) covered in

this chapter, these other technologies exhibit scale effects, so that increases in

the resources devoted to research imply faster economic growth. Charles Jones

(1995), Young (1998), and Segerstrom (1998) criticize this feature and propose

assumptions on technology that do not give rise to scale effects.

Exercises

Exercise 15.1 Government spending and investment, donated by Rodolfo

Manuelli

Consider the following economy. There is a representative agent who has pref-

erences given by
∞∑

t=0

βtu (ct) ,

where the function u is differentiable, increasing, and strictly concave. The

technology in this economy is given by

ct + xt + gt ≤ f (kt, gt) ,

kt+1 ≤ (1− δ) kt + xt,

(ct, kt+1, xt) ≥ (0, 0, 0) ,

and the initial condition k0 > 0, given. Here kt and gt are capital per worker

and government spending per worker. The function f is assumed to be strictly

concave, increasing in each argument, twice differentiable, and such that the par-

tial derivative with respect to both arguments converge to zero as the quantity

of them grows without bound.

a. Describe a set of equations that characterize an interior solution to the

planner’s problem when the planner can choose the sequence of government

spending.

b. Describe the steady state for the “general” specification of this economy. If

necessary, make assumptions to guarantee that such a steady state exists.
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c. Go as far as you can describing how the steady-state levels of capital per

worker and government spending per worker change as a function of the discount

factor.

d. Assume that the technology level can vary. More precisely, assume that the

production function is given by f(k, g, z) = zkαgη , where 0 < α < 1, 0 < η < 1,

and α+ η < 1. Go as far as you can describing how the investment/GDP ratio

and the government spending/GDP ratio vary with the technology level z at

the steady state.

Exercise 15.2 Productivity and employment, donated by Rodolfo Manuelli

Consider a basic growth economy with one modification. Instead of assuming

that the labor supply is fixed at 1, we include leisure in the utility function. To

simplify, we consider the total endowment of time to be 1. With this modifica-

tion, preferences and technology are given by

∞∑

t=0

βtu (ct, 1− nt) ,

ct + xt + gt ≤ zf (kt, nt) ,

kt+1 ≤ (1− δ) kt + xt.

In this setting, nt is the number of hours worked by the representative household

at time t . The rest of the time, 1 − nt , is consumed as leisure. The functions

u and f are assumed to be strictly increasing in each argument, concave, and

twice differentiable. In addition, f is such that the marginal product of capital

converges to zero as the capital stock goes to infinity for any given value of

labor, n .

a. Describe the steady state of this economy. If necessary, make additional

assumptions to guarantee that it exists and is unique. If you make additional

assumptions, go as far as you can giving an economic interpretation of them.

b. Assume that f(k, n) = kαn1−α and u(c, 1 − n) = [cµ(1 − n)1−µ]1−σ/(1 −

σ) . What is the effect of changes in the technology (say increases in z ) on

employment and output per capita?

c. Consider next an increase in g . Are there conditions under which an increase

in g will result in an increase in the steady-state k/n ratio? How about an
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increase in the steady-state level of output per capita? Go as far as you can

giving an economic interpretation of these conditions. (Try to do this for general

f(k, n) functions with the appropriate convexity assumptions, but if this proves

too hard, use the Cobb-Douglas specification.)

Exercise 15.3 Vintage capital and cycles, donated by Rodolfo Manuelli

Consider a standard one-sector optimal growth model with only one difference:

If kt+1 new units of capital are built at time t , these units remain fully produc-

tive (i.e., they do not depreciate) until time t+2, at which point they disappear.

Thus, the technology is given by

ct + kt+1 ≤ zf (kt + kt−1) .

a. Formulate the optimal growth problem.

b. Show that, under standard conditions, a steady state exists and is unique.

c. A researcher claims that with the unusual depreciation pattern, it is possible

that the economy displays cycles. By this he means that, instead of a steady

state, the economy will converge to a period two sequence like (co, ce, co, ce, . . .)

and (ko, ke, ko, ke, . . .), where co (ko ) indicates consumption (investment) in

odd periods, and ce (ke ) indicates consumption (investment) in even periods.

Go as far as you can determining whether this can happen. If it is possible, try

to provide an example.

Exercise 15.4 Excess capacity, donated by Rodolfo Manuelli

In the standard growth model, there is no room for varying the rate of utilization

of capital. In this problem, you will explore how the nature of the solution is

changed when variable rates of capital utilization are allowed.

As in the standard model, there is a representative agent with preferences given

by
∞∑

t=0

βtu (ct) , 0 < β < 1.

It is assumed that u is strictly increasing, concave, and twice differentiable.

Output depends on the actual number of machines used at time t , κt . Thus,

the aggregate resource constraint is

ct + xt ≤ zf (κt) ,
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where the function f is strictly increasing, concave, and twice differentiable. In

addition, f is such that the marginal product of capital converges to zero as

the stock goes to infinity. Capital that is not used does not depreciate. Thus,

capital accumulation satisfies

kt+1 ≤ (1− δ)κt + (kt − κt) + xt,

where we require that the number of machines used, κt , is no greater than the

number of machines available, kt , or kt ≥ κt . This specification captures the

idea that if some machines are not used, kt − κt > 0, they do not depreciate.

a. Describe the planner’s problem and analyze, as thoroughly as you can, the

first-order conditions. Discuss your results.

b. Describe the steady state of this economy. If necessary, make additional

assumptions to guarantee that it exists and is unique. If you make additional

assumptions, go as far as you can giving an economic interpretation of them.

c. What is the optimal level of capacity utilization in this economy in the steady

state?

d. Is this model consistent with the view that cross-country differences in output

per capita are associated with differences in capacity utilization?

Exercise 15.5 Heterogeneity and growth, donated by Rodolfo Manuelli

Consider an economy populated by a large number of households indexed by i .

The utility function of household i is

∞∑

t=0

βtui (cit) ,

where 0 < β < 1, and ui is differentiable, increasing and strictly concave.

Note that although we allow the utility function to be “household specific,” all

households share the same discount factor. All households are endowed with

one unit of labor that is supplied inelastically.

Assume that in this economy capital markets are perfect and that house-

holds start with initial capital given by ki0 > 0. Let total capital in the economy

at time t be denoted kt and assume that total labor is normalized to 1.

Assume that there is a large number of firms that produce output using

capital and labor. Each firm has a production function given by F (k, n) which



658 Economic Growth

is increasing, differentiable, concave, and homogeneous of degree 1. Firms max-

imize the present discounted value of profits. Assume that initial ownership of

firms is uniformly distributed across households.

a. Define a competitive equilibrium.

b. Discuss (i) and (ii) and justify your answer. Be as formal as you can.

(i) Economist A argues that the steady state of this economy is unique and

independent of the ui functions, while B says that without knowledge of

the ui functions it is impossible to calculate the steady-state interest rate.

(ii) Economist A says that if k0 is the steady-state aggregate stock of capital,

then the pattern of “consumption inequality” will mirror exactly the pattern

of “initial capital inequality” (i.e., ki0 ), even though capital markets are

perfect. Economist B argues that for all k0 , in the long run, per capita

consumption will be the same for all households.

c. Assume that the economy is at the steady state. Describe the effects of the

following three policies.

(i) At time zero, capital is redistributed across households (i.e., some people

must surrender capital and others get their capital).

(ii) Half of the households are required to pay a lump-sum tax. The proceeds

of the tax are used to finance a transfer program to the other half of the

population.

(iii) Two-thirds of the households are required to pay a lump-sum tax. The

proceeds of the tax are used to finance the purchase of a public good, say

g , which does not enter in either preferences or technology.

Exercise 15.6 Taxes and growth, donated by Rodolfo Manuelli

Consider a simple two-planner economy. The first planner picks “tax rates,” τt ,

and makes transfers to the representative agent, vt . The second planner takes

the tax rates and the transfers as given. That is, even though we know the

connection between tax rates and transfers, the second planner does not, he or

she takes the sequence of tax rates and transfers as given and beyond his or her

control when solving for the optimal allocation. Thus, the problem faced by the
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second planner (the only one we will analyze for now) is

max

∞∑

t=0

βtu (ct)

subject to
ct + xt + gt − vt ≤ (1− τt) f (kt) ,

kt+1 ≤ (1− δ) kt + xt,

(ct, kt+1, xt) ≥ (0, 0, 0) ,

and the initial condition k0 > 0, given. The functions u and f are assumed to

be strictly increasing, concave, and twice differentiable. In addition, f is such

that the marginal product of capital converges to zero as the capital stock goes

to infinity.

a. Assume that 0 < τt = τ < 1, that is, the tax rate is constant. Assume that

vt = τf(kt) (remember that we know this, but the planner takes vt as given at

the time he or she maximizes). Show that there exists a steady state, and that

for any initial condition k0 > 0 the economy converges to the steady state.

b. Assume now that the economy has reached the steady state you analyzed in

a. The first planner decides to change the tax rate to 0 < τ ′ < τ . (Of course,

the first planner and we know that this will result in a change in vt ; however,

the second planner, the one that maximizes, acts as if vt is a given sequence

that is independent of his or her decisions.) Describe the new steady state as

well as the dynamic path followed by the economy to reach this new steady

state. Be as precise as you can about consumption, investment and output.

c. Consider now a competitive economy in which households, but not firms,

pay income tax at rate τt on both labor and capital income. In addition, each

household receives a transfer, vt , that it takes to be given and independent of its

own actions. Let the aggregate per capita capital stock be kt . Then, balanced

budget on the part of the government implies vt = τt(rtkt + wt, nt), where rt

and wt are the rental prices of capital and labor, respectively. Assume that the

production function is F (k, n), with F homogeneous of degree 1, concave, and

“nice.” Go as far as you can describing the impact of the change described in b

on the equilibrium interest rate.





Chapter 16
Optimal Taxation with Commitment

16.1. Introduction

This chapter formulates a dynamic optimal taxation problem called a Ramsey

problem whose solution is called a Ramsey plan. The government’s goal is

to maximize households’ welfare subject to raising prescribed revenues through

distortionary taxation. When designing an optimal policy, the government takes

into account the competitive equilibrium reactions by consumers and firms to the

tax system. We first study a nonstochastic economy, then a stochastic economy.

The model is a competitive equilibrium version of the basic neoclassical

growth model with a government that finances an exogenous stream of govern-

ment purchases. In the simplest version, the production factors are raw labor

and physical capital on which the government levies distorting flat-rate taxes.

The problem is to determine optimal sequences for the two tax rates. In a non-

stochastic economy, Chamley (1986) and Judd (1985b) show in related settings

that if an equilibrium has an asymptotic steady state, then the optimal policy is

eventually to set the tax rate on capital to zero.1 This remarkable result asserts

that capital income taxation serves neither efficiency nor redistributive pur-

poses in the long run. The conclusion follows immediately from time-additively

separable utility, a constant-returns-to-scale production technology, competitive

markets, and a complete set of flat-rate taxes. However, if the tax system is in-

complete, the limiting value of the optimal capital tax can differ from zero. To

illustrate this possibility, we follow Correia (1996) and study a case with an

additional fixed production factor that cannot be taxed by the government.

1 Straub and Werning (2015) offer corrections to Chamley’s (1986) and Judd’s (1985b)

results about an asymptotically zero tax rate on capital for specifications in which preferences

are nonadditive intertemporally, the government budget must be balanced each period, and

an infinite sequence of restrictions is imposed on the sequence of tax rates on capital. Our

treatment here steers clear of these situations by assuming time-additively separable utility, a

government that can freely access debt markets (subject to the usual no-Ponzi constraints),

and a restriction on the capital tax rate only in the initial period.

– 661 –
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In a stochastic version of the model with complete markets, we find in-

determinacy of state-contingent debt and capital taxes. Infinitely many plans

implement the same competitive equilibrium allocation. For example, two such

plans are (1) that the government issues risk-free bonds and lets the capital tax

rate depend on the current state, or (2) that the government fixes the capital

tax rate one period ahead and lets debt be state contingent. While the state-by-

state capital tax rates cannot be pinned down, an optimal plan does determine

the current market value of next period’s tax payments across states of nature.

Dividing by the current market value of capital income gives a measure that

we call the ex ante capital tax rate. If there exists a stationary Ramsey alloca-

tion, Zhu (1992) shows that for some special utility functions, the Ramsey plan

prescribes a zero ex ante capital tax rate that can be implemented by setting

a zero tax on capital income. But except for those preferences, Zhu concludes

that the ex ante capital tax rate should vary around zero, in the sense that there

is a positive measure of states with positive tax rates and a positive measure

of states with negative tax rates. Chari, Christiano, and Kehoe (1994) perform

numerical simulations and conclude that an optimal ex ante capital tax rate is

approximately zero.

To gain further insights, we turn to Lucas and Stokey (1983) who analyze

a complete-markets model without physical capital. Examples of deterministic

and stochastic government expenditure streams bring out the important role of

government debt in smoothing tax distortions over both time and states. State-

contingent government debt is used as an “insurance policy” that allows the

government to smooth taxes across states. In this complete markets model, the

current value of the government’s debt reflects the current and likely future path

of government expenditures rather than anything about its past. This feature

of an optimal debt policy is especially apparent when government expenditures

follow a Markov process because then the beginning-of-period state-contingent

government debt is a function of the current state only and hence there are no

lingering effects of past government expenditures. Aiyagari, Marcet, Sargent,

and Seppälä (2002) alter that outcome by assuming that the government can

issue only risk-free debt. Not having access to state-contingent debt constrains

the government’s ability to smooth taxes over states and allows past values of

government expenditures to have persistent effects on both future tax rates and

debt levels. Reasoning by analogy from the savings problem of chapter 17 to an

optimal taxation problem, Barro (1979) asserted that tax revenues would be a
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martingale that is cointegrated with government debt. Barro thus predicted

persistent effects of government expenditures that are absent from the Ramsey

plan in Lucas and Stokey’s model. Aiyagari et. al.’s suspension of complete

markets goes a long way toward rationalizing outcomes Barro had described.

In a monetary economy in which a government can trade only nominal

debt bearing a risk-free nominal interest rate, Chari, Christiano, and Kehoe

(1996) construct an optimal monetary policy that implements the same Ramsey

allocation that would prevail if the government were also able to issue state-

contingent real debt. An optimal monetary policy accomplishes that by engi-

neering state-contingent inflation that transforms non-state-contingent nominal

debt into state-contingent real debt. Systematic variations in the nominal price

level rearrange real government obligations across states in the following ways.

In bad times that are associated with high government expenditures, it is opti-

mal to raise the price level so that real returns on nominal debt are relatively

small; while for symmetric reasons it is optimal to lower the price level in good

times that are associated with low government expenditures. We also use the

Chari, Christiano, and Kehoe (1996) framework to compare views about the ‘fis-

cal theory of the price level.’ Because it spells out all of the details, the model of

Chari el al. delivers a coherent general equilibrium analysis of the determinants

of the nominal price level and real government indebtedness at each node of an

Arrow-Debreu event tree. We return to the fiscal theory of the price level in

chapter 27.

Jones, Manuelli, and Rossi (1997) augment a nonmonetary, nonstochastic

growth model by allowing human capital accumulation. They make the partic-

ular assumption that the technology for human capital accumulation is linearly

homogeneous in a stock of human capital and a flow of inputs coming from

current output. Under this special constant returns assumption, they show that

a zero limiting tax applies also to labor income; that is, the return to human

capital should not be taxed in the limit. Instead, the government should re-

sort to a consumption tax. But for a particular class of preferences, even this

consumption tax, and therefore all taxes, should be zero in the limit when it is

optimal during a transition period for the government to amass enough claims

on the private economy that interest earnings suffice to finance government

expenditures. While these successive results on optimal taxation require ever

more stringent assumptions, the basic prescription for a zero capital tax in a

nonstochastic steady state is an implication of time-additively separable utility,
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a constant-returns-to-scale production technology, competitive markets, and a

complete set of flat-rate taxes.

Throughout the chapter we maintain the assumption that the government

can commit to future tax rates.

16.2. A nonstochastic economy

An infinitely lived representative household likes consumption, leisure streams

{ct, ℓt}∞t=0 that give higher values of

∞∑

t=0

βtu (ct, ℓt) , β ∈ (0, 1) (16.2.1)

where u is increasing, strictly concave, and three times continuously differen-

tiable in consumption c and leisure ℓ . The household is endowed with one unit

of time that can be used for leisure ℓt and labor nt :

ℓt + nt = 1. (16.2.2)

The single good is produced with labor nt and capital kt . Output can be

consumed by the household, used by the government, or used to augment the

capital stock. The technology is

ct + gt + kt+1 = F (kt, nt) + (1− δ) kt, (16.2.3)

where δ ∈ (0, 1) is the rate at which capital depreciates and {gt}∞t=0 is an

exogenous sequence of government purchases. We assume a standard concave

production function F (k, n) that exhibits constant returns to scale. By Euler’s

theorem on homogeneous functions, linear homogeneity of F implies

F (k, n) = Fkk + Fnn. (16.2.4)

Let uc be the derivative of u(ct, ℓt) with respect to consumption; uℓ is

the derivative with respect to ℓ . We use uc(t) and Fk(t) and so on to denote

the time t values of the indicated objects, evaluated at an allocation to be

understood from the context.
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16.2.1. Government

The government finances its stream of purchases {gt}∞t=0 by levying flat-rate,

time-varying taxes on earnings from capital at rate τkt and earnings from labor

at rate τnt . The government can also trade one-period bonds, sequential trad-

ing of which suffices to accomplish any intertemporal trade in a world without

uncertainty. Let bt be government indebtedness to the private sector, denomi-

nated in time t-goods, maturing at the beginning of period t . The government’s

budget constraint is

gt = τkt rtkt + τnt wtnt +
bt+1

Rt
− bt, (16.2.5)

where rt and wt are the market-determined rental rate of capital and the wage

rate for labor, respectively, denominated in units of time t goods, and Rt is the

gross rate of return on one-period bonds held from t to t+1. Interest earnings

on bonds are assumed to be tax exempt; this assumption is innocuous for bond

exchanges between the government and the private sector.

16.2.2. Household

A representative household chooses {ct, nt, kt+1, bt+1}∞t=0 to maximize expres-

sion (16.2.1) subject to the following sequence of budget constraints:

ct + kt+1 +
bt+1

Rt
= (1− τnt )wtnt +

(
1− τkt

)
rtkt + (1− δ) kt + bt, (16.2.6)

for t ≥ 0. With βtλt as the Lagrange multiplier on the time t budget constraint,

the first-order conditions are

ct: uc (t) = λt, (16.2.7)

nt: uℓ (t) = λt (1− τnt )wt, (16.2.8)

kt+1: λt = βλt+1

[(
1− τkt+1

)
rt+1 + 1− δ

]
, (16.2.9)

bt+1: λt
1

Rt
= βλt+1. (16.2.10)

Substituting equation (16.2.7) into equations (16.2.8) and (16.2.9), we obtain

uℓ (t) = uc (t) (1− τnt )wt, (16.2.11a)

uc (t) = βuc (t+ 1)
[(
1− τkt+1

)
rt+1 + 1− δ

]
. (16.2.11b)
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Moreover, equations (16.2.9) and (16.2.10) imply

Rt =
(
1− τkt+1

)
rt+1 + 1− δ, (16.2.12)

which is a condition not involving any quantities that the household is free to

adjust. Because only one financial asset is needed to accomplish all intertem-

poral trades in a world without uncertainty, condition (16.2.12) constitutes a

no-arbitrage condition for trades in capital and bonds that ensures that these

two assets have the same rate of return. This no-arbitrage condition can be ob-

tained by consolidating two consecutive budget constraints; constraint (16.2.6)

and its counterpart for time t + 1 can be merged by eliminating the common

quantity bt+1 to get

ct +
ct+1

Rt
+
kt+2

Rt
+

bt+2

RtRt+1
= (1− τnt )wtnt

+

(
1− τnt+1

)
wt+1nt+1

Rt
+

[(
1− τkt+1

)
rt+1 + 1− δ

Rt
− 1

]
kt+1

+
(
1− τkt

)
rtkt + (1− δ) kt + bt, (16.2.13)

where the left side is the use of funds and the right side measures the resources at

the household’s disposal. If the term multiplying kt+1 is not zero, the household

can make its budget set unbounded either by buying an arbitrarily large kt+1

when (1−τkt+1)rt+1+1−δ > Rt , or, in the opposite case, by selling capital short

to achieve an arbitrarily large negative kt+1 . In such arbitrage transactions,

the household would finance purchases of capital or invest the proceeds from

short sales in the bond market between periods t and t + 1. Thus, to ensure

the existence of a competitive equilibrium with bounded budget sets, condition

(16.2.12) must hold.

If we continue the process of recursively using successive budget constraints

to eliminate successive bt+j terms, begun in equation (16.2.13), we arrive at

the household’s present-value budget constraint,

∞∑

t=0

(
t−1∏

i=0

R−1
i

)
ct =

∞∑

t=0

(
t−1∏

i=0

R−1
i

)
(1− τnt )wtnt

+
[(
1− τk0

)
r0 + 1− δ

]
k0 + b0, (16.2.14)
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where we have imposed the transversality conditions

lim
T→∞

(
T−1∏

i=0

R−1
i

)
kT+1 = 0, (16.2.15)

lim
T→∞

(
T−1∏

i=0

R−1
i

)
bT+1

RT
= 0. (16.2.16)

As discussed in chapter 13, the household would not like to violate these transver-

sality conditions by choosing kt+1 or bt+1 to be larger, because alternative feasi-

ble allocations with higher consumption in finite time would yield higher lifetime

utility. A consumption/savings plan that made either expression negative would

not be possible because the household would not find anybody willing to be on

the lending side of the implied transactions.

16.2.3. Firms

In each period, the representative firm takes (rt, wt) as given, rents capital and

labor from households, and maximizes profits,

Π = F (kt, nt)− rtkt − wtnt. (16.2.17)

The first-order conditions for this problem are

rt = Fk (t) , (16.2.18a)

wt = Fn (t) . (16.2.18b)

In words, inputs should be employed until the marginal product of the last

unit is equal to its rental price. With constant returns to scale, we get the

standard result that pure profits are zero and the size of an individual firm is

indeterminate.

An alternative way of establishing the equilibrium conditions for the rental

price of capital and the wage rate for labor is to substitute equation (16.2.4)

into equation (16.2.17) to get

Π = [Fk (t)− rt] kt + [Fn (t)− wt]nt.

If the firm’s profits are to be nonnegative and finite, the terms multiplying kt

and nt must be zero; that is, condition (16.2.18) must hold. These conditions

imply that in any equilibrium, Π = 0.
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16.3. The Ramsey problem

We shall use symbols without subscripts to denote the one-sided infinite sequence

for the corresponding variable, e.g., c ≡ {ct}∞t=0 .

Definition: A feasible allocation is a sequence (k, c, ℓ, g) that satisfies equation

(16.2.3).

Definition: A price system is a 3-tuple of nonnegative bounded sequences

(w, r,R).

Definition: A government policy is a 4-tuple of sequences (g, τk, τn, b).

Definition: A competitive equilibrium is a feasible allocation, a price system,

and a government policy such that (a) given the price system and the govern-

ment policy, the allocation solves both the firm’s problem and the household’s

problem; and (b) given the allocation and the price system, the government

policy satisfies the sequence of government budget constraints (16.2.5).

There are many competitive equilibria, indexed by different government

policies. This multiplicity motivates the Ramsey problem.

Definition: Given k0 and b0 , the Ramsey problem is to choose a competitive

equilibrium that maximizes expression (16.2.1).

To make the Ramsey problem interesting, we always impose a restriction on

τk0 , for example, by taking it as given at a small number, say, 0. This approach

rules out taxing the initial capital stock via a so-called capital levy that would

constitute a lump-sum tax, since k0 is in fixed supply.2

2 According to our assumption on the technology in equation (16.2.3), capital is reversible

and can be transformed back into the consumption good. Thus, the capital stock is a fixed

factor for only one period at a time, so τk0 is the only tax that we need to restrict to ensure

an interesting Ramsey problem.
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16.4. Zero capital tax

Following Chamley (1986), we formulate the Ramsey problem as if the govern-

ment chooses the after-tax rental rate of capital r̃t , and the after-tax wage rate

w̃t :

r̃t ≡
(
1− τkt

)
rt,

w̃t ≡ (1− τnt )wt.

Using equations (16.2.18) and (16.2.4), Chamley expresses government tax rev-

enues as

τkt rtkt + τnt wtnt = (rt − r̃t) kt + (wt − w̃t)nt

= Fk (t) kt + Fn (t)nt − r̃tkt − w̃tnt

= F (kt, nt)− r̃tkt − w̃tnt.

Substituting this expression into equation (16.2.5) consolidates the firm’s first-

order conditions with the government’s budget constraint. The government’s

policy choice is also constrained by the aggregate resource constraint (16.2.3)

and the household’s first-order conditions (16.2.11). To solve the Ramsey prob-

lem, form a Lagrangian

L =

∞∑

t=0

βt
{
u (ct, 1− nt)

+ Ψt

[
F (kt, nt)− r̃tkt − w̃tnt +

bt+1

Rt
− bt − gt

]

+ θt [F (kt, nt) + (1− δ) kt − ct − gt − kt+1]

+ µ1t [uℓ (t)− uc (t) w̃t]

+ µ2t [uc (t)− βuc (t+ 1) (r̃t+1 + 1− δ)]
}
, (16.4.1)

where Rt = r̃t+1 + 1− δ , as given by equation (16.2.12). Note that the house-

hold’s budget constraint is not explicitly included because it is redundant when

the government satisfies its budget constraint and the resource constraint holds.

The first-order condition for maximizing the Lagrangian (16.4.1) with re-

spect to kt+1 is

θt = β {Ψt+1 [Fk (t+ 1)− r̃t+1] + θt+1 [Fk (t+ 1) + 1− δ]} . (16.4.2)
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The equation has a straightforward interpretation. A marginal increment of

capital investment in period t increases the quantity of available goods at time

t+1 by the amount [Fk(t+1)+ 1− δ] , which has a social marginal value θt+1 .

In addition, there is an increase in tax revenues equal to [Fk(t+1)− r̃t+1] , which

enables the government to reduce its debt or other taxes by the same amount.

The reduction of the “excess burden” equals Ψt+1[Fk(t + 1) − r̃t+1] . The sum

of these two effects in period t + 1 is discounted by the discount factor β and

set equal to the social marginal value of the initial investment good in period t ,

which is given by θt .

Suppose that government expenditures stay constant after some period T ,

and assume that the solution to the Ramsey problem converges to a steady state;

that is, all endogenous variables remain constant. Using equation (16.2.18a),

the steady-state version of equation (16.4.2) is

θ = β [Ψ (r − r̃) + θ (r + 1− δ)] . (16.4.3)

Now with a constant consumption stream, the steady-state version of the house-

hold’s optimality condition for the choice of capital in equation (16.2.11b) is

1 = β (r̃ + 1− δ) . (16.4.4)

A substitution of equation (16.4.4) into equation (16.4.3) yields

(θ +Ψ) (r − r̃) = 0. (16.4.5)

Since the marginal social value of goods θ is strictly positive and the marginal

social value of reducing government debt or taxes Ψ is nonnegative, it follows

that r must be equal to r̃ , so that τk = 0. This analysis establishes the

following celebrated result, versions of which were attained by Chamley (1986)

and Judd (1985b).

Proposition 1: If there exists a steady-state Ramsey allocation, the associated

limiting tax rate on capital is zero.

It is important to keep in mind that the zero tax on capital result pertains

only to the limiting steady state. Our analysis is silent about how much capital

is taxed in the transition period.
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16.5. Primal approach to the Ramsey problem

In the formulation of the Ramsey problem in expression (16.4.1), Chamley

reduced a pair of taxes (τkt , τ
n
t ) and a pair of prices (rt, wt) to just one pair of

numbers (r̃t, w̃t) by utilizing the firm’s first-order conditions and equilibrium

outcomes in factor markets. In a similar spirit, we will now eliminate all prices

and taxes so that the government can be thought of as directly choosing a feasible

allocation, subject to constraints that ensure the existence of prices and taxes

such that the chosen allocation is consistent with the optimization behavior of

households and firms. This primal approach to the Ramsey problem, as opposed

to the dual approach in which tax rates are viewed as governmental decision

variables, is used in Lucas and Stokey’s (1983) analysis of an economy without

capital. Here we will follow the setup of Jones, Manuelli, and Rossi (1997).

It is useful to compare our primal approach to the Ramsey problem with

the formulation in (16.4.1). Following the derivations in section 16.2.2, the con-

straints associated with Lagrange multipliers Ψt in (16.4.1) can be replaced

with a single present-value budget constraint for either the government or the

representative household. (One of them is redundant, since we are also im-

posing the aggregate resource constraint.) The problem simplifies nicely if we

choose the present-value budget constraint of the household (16.2.14), in which

future capital stocks have been eliminated with the use of no-arbitrage condi-

tions. For convenience, we repeat the household’s present-value budget con-

straint (16.2.14) here in the form:

∞∑

t=0

q0t ct =

∞∑

t=0

q0t (1− τnt )wtnt +
[(
1− τk0

)
r0 + 1− δ

]
k0 + b0 . (16.5.1)

In equation (16.5.1), q0t is the Arrow-Debreu price

q0t =

t−1∏

i=0

R−1
i , ∀t ≥ 1; (16.5.2)

with the numeraire q00 = 1. Second, we use two constraints in expression

(16.4.1) to replace prices q0t and (1 − τnt )wt in equation (16.5.1) with the

household’s marginal rates of substitution.
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A stepwise summary of the primal approach is:

1. Obtain the first-order conditions of the household’s and the firm’s prob-

lems, as well as any arbitrage pricing conditions. Solve these conditions for

{q0t , rt, wt, τkt , τnt }∞t=0 as functions of the allocation {ct, nt, kt+1}∞t=0 .

2. Substitute these expressions for taxes and prices in terms of the allocation

into the household’s present-value budget constraint. This is an intertemporal

constraint involving only the allocation.

3. Solve for the Ramsey allocation by maximizing expression (16.2.1) subject

to equation (16.2.3) and the “implementability condition” derived in step 2.

4. After the Ramsey allocation is solved, use the formulas from step 1 to find

taxes and prices.

16.5.1. Constructing the Ramsey plan

We now carry out the steps outlined in the preceding list of instructions.

Step 1. Let λ be a Lagrange multiplier on the household’s budget constraint

(16.5.1). The first-order conditions for the household’s problem are

ct: βtuc (t)− λq0t = 0,

nt: − βtuℓ (t) + λq0t (1− τnt )wt = 0.

With the numeraire q00 = 1, these conditions imply

q0t = βt
uc (t)

uc (0)
, (16.5.3a)

(1− τnt )wt =
uℓ (t)

uc (t)
. (16.5.3b)

As before, we can derive the arbitrage condition (16.2.12), which now reads

q0t
q0t+1

=
(
1− τkt+1

)
rt+1 + 1− δ. (16.5.4)

Profit maximization and factor market equilibrium imply equations (16.2.18).
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Step 2. Substitute equations (16.5.3) and r0 = Fk(0) into equation (16.5.1), so

that we can write the household’s budget constraint as

∞∑

t=0

βt [uc (t) ct − uℓ (t)nt]−A = 0, (16.5.5)

where A is given by

A = A
(
c0, n0, τ

k
0 , b0

)
= uc (0)

{[(
1− τk0

)
Fk (0) + 1− δ

]
k0 + b0

}
. (16.5.6)

Step 3. The Ramsey problem is to choose an allocation to maximize expression

(16.2.1) subject to equation (16.5.5) and the feasibility constraint (16.2.3). As

before, we proceed by assuming that government expenditures are small enough

that the problem has a convex constraint set and that we can approach it using

Lagrangian methods. In particular, let Φ be a Lagrange multiplier on equation

(16.5.5) and define

V (ct, nt,Φ) = u (ct, 1− nt) + Φ [uc (t) ct − uℓ (t)nt] . (16.5.7)

Then form the Lagrangian

J =

∞∑

t=0

βt {V (ct, nt,Φ) + θt [F (kt, nt) + (1− δ) kt

−ct − gt − kt+1]} − ΦA, (16.5.8)

where {θt}∞t=0 is a sequence of Lagrange multipliers on the sequence of feasibility

conditions (16.2.3). For given k0 and b0 , we fix τ
k
0 and maximize J with respect

to {ct, nt, kt+1}∞t=0 . First-order conditions for this problem are3

ct: Vc (t) = θt, t ≥ 1

nt: Vn (t) = −θtFn (t) , t ≥ 1

kt+1: θt = βθt+1 [Fk (t+ 1) + 1− δ] , t ≥ 0

c0: Vc (0) = θ0 +ΦAc,

n0: Vn (0) = −θ0Fn (0) + ΦAn.

3 Comparing the first-order condition for kt+1 to the earlier one in equation (16.4.2),

obtained under Chamley’s alternative formulation of the Ramsey problem, note that the La-

grange multiplier θt is different across formulations. Specifically, the present specification of

the objective function V subsumes parts of the household’s present-value budget constraint.

To bring out this difference, a more informative notation would be to write Vj(t,Φ) for j = c, n

rather than just Vj(t) .
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These conditions become

Vc (t) = βVc (t+ 1) [Fk (t+ 1) + 1− δ] , t ≥ 1 (16.5.9a)

Vn (t) = −Vc (t)Fn (t) , t ≥ 1 (16.5.9b)

Vc (0)− ΦAc = βVc (1) [Fk (1) + 1− δ] , (16.5.9c)

Vn (0) = [ΦAc − Vc (0)]Fn (0) + ΦAn. (16.5.9d)

To these we add equations (16.2.3) and (16.5.5), which we repeat here for

convenience:

ct + gt + kt+1 = F (kt, nt) + (1− δ) kt, t ≥ 0 (16.5.10a)
∞∑

t=0

βt [uc (t) ct − uℓ (t)nt]−A = 0. (16.5.10b)

We seek an allocation {ct, nt, kt+1}∞t=0 , and a multiplier Φ that satisfies the

system of difference equations formed by equations (16.5.9)–(16.5.10).4

Step 4: After an allocation has been found, obtain q0t from equation (16.5.3a),

rt from equation (16.2.18a), wt from equation (16.2.18b), τnt from equation

(16.5.3b), and finally τkt from equation (16.5.4).

4 This system of nonlinear equations can be solved iteratively. First, fix Φ, and solve

equations (16.5.9) and (16.5.10a) for an allocation. Then check the implementability con-

dition (16.5.10b), and increase or decrease Φ depending on whether the budget is in deficit

or surplus. Note that the multiplier Φ is nonnegative because we are facing the constraint

that the left-hand side of equation (16.5.10b) is greater than or equal to zero. That is, we

are constrained by the equilibrium outcome that households fully exhaust their incomes and,

hence, are not free to choose households’ expenditures strictly less than their incomes.
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16.5.2. Revisiting a zero capital tax

Consider the special case in which there is a T ≥ 0 for which gt = g for all

t ≥ T . Assume that there exists a solution to the Ramsey problem and that it

converges to a time-invariant allocation, so that c, n , and k are constant after

some time. Then because Vc(t) converges to a constant, the stationary version

of equation (16.5.9a) implies

1 = β (Fk + 1− δ) . (16.5.11)

Now because ct is constant in the limit, equation (16.5.3a) implies that
(
q0t /q

0
t+1

)

→ β−1 as t→ ∞ . Then the no-arbitrage condition for capital (16.5.4) becomes

1 = β
[(
1− τk

)
Fk + 1− δ

]
. (16.5.12)

Equalities (16.5.11) and (16.5.12) imply that τk = 0.

16.6. Taxation of initial capital

Thus far, we have set τk0 at zero (or some other small fixed number). Now

suppose that the government is free to choose τk0 . The derivative of J in

equation (16.5.8) with respect to τk0 is

∂J

∂τk0
= Φuc (0)Fk (0) k0, (16.6.1)

which is strictly positive for all τk0 as long as Φ > 0. The nonnegative Lagrange

multiplier Φ measures the utility costs of raising government revenues through

distorting taxes. Without distortionary taxation, a competitive equilibrium

would attain the first-best outcome for the representative household, and Φ

would be equal to zero, so that the household’s (or equivalently, by Walras’

Law, the government’s) present-value budget constraint would not constrain the

Ramsey planner beyond the technology constraints (16.2.3). In contrast, when

the government has to use some of the tax rates {τnt , τkt+1}∞t=0 , the multiplier Φ

is strictly positive and reflects the welfare cost of the distorted margins, implicit

in the present-value budget constraint (16.5.10b), that govern the household’s

optimization behavior.
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By raising τk0 and thereby increasing the revenues from lump-sum taxation

of k0 , the government reduces its need to rely on future distortionary taxation,

and hence the value of Φ falls. In fact, the ultimate implication of condition

(16.6.1) is that the government should set τk0 high enough to drive Φ down

to zero. In other words, the government should raise all revenues through a

time 0 capital levy, then lend the proceeds to the private sector and finance

government expenditures by using the interest from the loan; this would enable

the government to set τnt = 0 for all t ≥ 0 and τkt = 0 for all t ≥ 1.

16.7. Nonzero capital tax due to incomplete taxation

The result that the limiting capital tax should be zero hinges on a complete

set of flat-rate taxes. The consequences of incomplete taxation are illustrated

by Correia (1996), who introduces an additional production factor zt in fixed

supply zt = Z that cannot be taxed, τzt = 0.

The new production function F (kt, nt, zt) exhibits constant returns to scale

in all of its inputs. Profit maximization implies that the rental price of the new

factor equals its marginal product:

pzt = Fz (t) .

The only change to the household’s present-value budget constraint (16.5.1) is

that a stream of revenues is added to the right side:

∞∑

t=0

q0t p
z
tZ.

Following our scheme of constructing the Ramsey plan, step 2 yields the

following implementability condition:

∞∑

t=0

βt {uc (t) [ct − Fz (t)Z]− uℓ (t)nt} −A = 0, (16.7.1)

where A remains defined by equation (16.5.6). In step 3 we formulate

V (ct, nt, kt,Φ) = u (ct, 1− nt)

+ Φ {uc (t) [ct − Fz (t)Z]− uℓ (t)nt} . (16.7.2)
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In contrast to equation (16.5.7), kt enters now as an argument in V because

of the presence of the marginal product of the factor Z (but we have chosen to

suppress the quantity Z itself, since it is in fixed supply).

Except for these changes of the functions F and V , the Lagrangian of the

Ramsey problem is the same as equation (16.5.8). The first-order condition

with respect to kt+1 is

θt = βVk (t+ 1) + βθt+1 [Fk (t+ 1) + 1− δ] . (16.7.3)

Assuming the existence of a steady state, the stationary version of equation

(16.7.3) becomes

1 = β (Fk + 1− δ) + β
Vk
θ
. (16.7.4)

Condition (16.7.4) and the no-arbitrage condition for capital (16.5.12) imply

an optimal value for τk :

τk =
−Vk
θFk

=
ΦucZ

θFk
Fzk.

As discussed earlier, in a second-best solution with distortionary taxation, Φ >

0, so the limiting tax rate on capital is zero only if Fzk = 0. Moreover, the sign

of τk depends on the direction of the effect of capital on the marginal product

of the untaxed factor Z . If k and Z are complements, the limiting capital tax

is positive, and it is negative in the case where the two factors are substitutes.

Other examples of a nonzero limiting capital tax are presented by Stiglitz

(1987) and Jones, Manuelli, and Rossi (1997), who assume that two types of

labor must be taxed at the same tax rate. Once again, the incompleteness of

the tax system makes the optimal capital tax depend on how capital affects the

marginal products of the other factors.
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16.8. A stochastic economy

We now turn to optimal taxation in a stochastic version of our economy. With

the notation of chapter 8, we follow the setups of Zhu (1992) and Chari, Chris-

tiano, and Kehoe (1994). The stochastic state st at time t determines an exoge-

nous shock both to the production function F (·, ·, st) and to government pur-

chases gt(st). We use the history of events st to define history-contingent com-

modities: ct(s
t), ℓt(s

t), and nt(s
t) are the household’s consumption, leisure,

and labor at time t given history st , and kt+1(s
t) denotes the capital stock

carried over to next period t+ 1. Following our earlier convention, uc(s
t) and

Fk(s
t) and so on denote the values of the indicated objects at time t for history

st , evaluated at an allocation to be understood from the context.

The household’s preferences are ordered by

∞∑

t=0

∑

st

βtπt
(
st
)
u
[
ct
(
st
)
, ℓt
(
st
)]
. (16.8.1)

The production function has constant returns to scale in labor and capital.

Feasibility requires that

ct
(
st
)
+ gt (st) + kt+1

(
st
)

= F
[
kt
(
st−1

)
, nt
(
st
)
, st
]
+ (1− δ) kt

(
st−1

)
. (16.8.2)

16.8.1. Government

Given history st at time t , the government finances its exogenous purchase

gt(st) and any debt obligation by levying flat-rate taxes on earnings from capital

at rate τkt (s
t) and from labor at rate τnt (s

t), and by issuing state-contingent

debt. Let bt+1(st+1|st) be government indebtedness to the private sector at the

beginning of period t + 1 if event st+1 is realized. This state-contingent asset

is traded in period t at the price pt(st+1|st), in terms of time t goods. The

government’s budget constraint becomes

gt (st) =τ
k
t

(
st
)
rt
(
st
)
kt
(
st−1

)
+ τnt

(
st
)
wt
(
st
)
nt
(
st
)

+
∑

st+1

pt
(
st+1|st

)
bt+1

(
st+1|st

)
− bt

(
st|st−1

)
, (16.8.3)
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where rt(s
t) and wt(s

t) are the market-determined rental rate of capital and

the wage rate for labor, respectively.

16.8.2. Household

The representative household chooses {ct(st), nt(st), kt+1(s
t), bt+1(st+1|st)}∞t=0

to maximize expression (16.8.1) subject to the following sequence of budget

constraints:

ct
(
st
)
+ kt+1

(
st
)
+
∑

st+1

pt
(
st+1|st

)
bt+1

(
st+1|st

)

=
[
1− τkt

(
st
)]
rt
(
st
)
kt
(
st−1

)
+
[
1− τnt

(
st
)]
wt
(
st
)
nt
(
st
)

+ (1− δ) kt
(
st−1

)
+ bt

(
st|st−1

)
∀t. (16.8.4)

The first-order conditions for this problem imply

uℓ (s
t)

uc (st)
=
[
1− τnt

(
st
)]
wt
(
st
)
, (16.8.5a)

pt
(
st+1|st

)
=β

πt+1

(
st+1

)

πt (st)

uc
(
st+1

)

uc (st)
, (16.8.5b)

uc
(
st
)
=βEt

{
uc
(
st+1

)

·
[(
1− τkt+1

(
st+1

))
rt+1

(
st+1

)
+ 1− δ

]}
, (16.8.5c)

where Et is the mathematical expectation conditional on information available

at time t , i.e., history st :

Etxt+1

(
st+1

)
=
∑

st+1|st

πt+1

(
st+1

)

πt (st)
xt+1

(
st+1

)

=
∑

st+1|st

πt+1

(
st+1|st

)
xt+1

(
st+1

)
,

where the summation over st+1|st means that we sum over all possible histories

s̃t+1 such that s̃t = st .

Corresponding to the no-arbitrage condition (16.2.12) in the nonstochastic

economy, conditions (16.8.5b) and (16.8.5c) imply

1 =
∑

st+1

pt
(
st+1|st

) {[
1− τkt+1

(
st+1

)]
rt+1

(
st+1

)
+ 1− δ

}
. (16.8.6)
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And once again, this no-arbitrage condition can be obtained by consolidating

the budget constraints of two consecutive periods. Multiply the time t + 1

version of equation (16.8.4) by pt(st+1|st) and sum over all realizations st+1 .

The resulting expression can be substituted into equation (16.8.4) by eliminat-

ing
∑

st+1
pt(st+1|st)bt+1(st+1|st). To rule out arbitrage transactions in capital

and state-contingent assets, the term multiplying kt+1(s
t) must be zero; this ap-

proach amounts to imposing condition (16.8.6). Similar no-arbitrage arguments

were made in chapters 8 and 13.

As before, by repeated substitution of one-period budget constraints, we

can obtain the household’s present-value budget constraint:

∞∑

t=0

∑

st

q0t
(
st
)
ct
(
st
)
=

∞∑

t=0

∑

st

q0t
(
st
) [

1− τnt
(
st
)]
wt
(
st
)
nt
(
st
)

+
[(
1− τk0

)
r0 + 1− δ

]
k0 + b0, (16.8.7)

where we denote time 0 variables by the time subscript 0. The price system

q0t (s
t) conforms to the following formula, versions of which were displayed in

chapter 8:

q0t+1

(
st+1

)
= pt

(
st+1|st

)
q0t
(
st
)
= βt+1πt+1

(
st+1

) uc
(
st+1

)

uc (s0)
. (16.8.8)

Alternatively, equilibrium price (16.8.8) can be computed from the first-order

conditions for maximizing expression (16.8.1) subject to equation (16.8.7) (and

choosing the numeraire q00 = 1). Furthermore, the no-arbitrage condition

(16.8.6) can be expressed as

q0t
(
st
)
=
∑

st+1|st

q0t+1

(
st+1

)

·
{[
1− τkt+1

(
st+1

)]
rt+1

(
st+1

)
+ 1− δ

}
. (16.8.9)

In deriving the present-value budget constraint (16.8.7), we imposed two

transversality conditions that specify that for any infinite history s∞ ,

lim
t→+∞

q0t
(
st
)
kt+1

(
st
)
= 0, (16.8.10a)

lim
t→+∞

∑

st+1

q0t+1

(
{st+1, s

t}
)
bt+1

(
st+1|st

)
= 0, (16.8.10b)
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where the limits are taken over sequences of histories st contained in the infinite

history s∞ .

16.8.3. Firms

The static maximization problem of the representative firm remains the same.

Thus, in a competitive equilibrium, production factors are paid their marginal

products:

rt
(
st
)
= Fk

(
st
)
, (16.8.11a)

wt
(
st
)
= Fn

(
st
)
. (16.8.11b)

16.9. Indeterminacy of debt and capital taxes

Consider a feasible government policy {gt(st), τkt (st), τnt (st), bt+1(st+1|st); ∀st ,
st+1}t≥0 with associated competitive allocation {ct(st), nt(st), kt+1(s

t); ∀st}t≥0 .

Note that the labor tax is uniquely determined by equations (16.8.5a) and

(16.8.11b). However, there are infinitely many plans for state-contingent debt

and capital taxes that can implement a particular competitive allocation.

Intuition for the indeterminacy of state-contingent debt and capital taxes

can be gleaned from the household’s first-order condition (16.8.5c), which states

that capital tax rates affect the household’s intertemporal allocation by changing

the current market value of after-tax returns on capital. If a different set of

capital taxes induces the same current market value of after-tax returns on

capital, then they will also be consistent with the same competitive allocation.

It remains only to verify that the change of capital tax receipts in different states

can be offset by restructuring the government’s issue of state-contingent debt.

Zhu (1992) shows how such feasible alternative policies can be constructed.

Let {ǫt(st); ∀st}t≥0 be a random process such that

Etuc
(
st+1

)
ǫt+1

(
st+1

)
rt+1

(
st+1

)
= 0. (16.9.1)

We can then construct an alternative policy for capital taxes and state-contingent

debt, {τ̂kt (st), b̂t+1(st+1|st); ∀st, st+1}t≥0 , as follows:

τ̂k0 = τk0 , (16.9.2a)



682 Optimal Taxation with Commitment

τ̂kt+1

(
st+1

)
= τkt+1

(
st+1

)
+ ǫt+1

(
st+1

)
, (16.9.2b)

b̂t+1

(
st+1|st

)
= bt+1

(
st+1|st

)
+ ǫt+1

(
st+1

)
rt+1

(
st+1

)
kt+1

(
st
)
, (16.9.2c)

for t ≥ 0. Compared to the original fiscal policy, we can verify that this alter-

native policy does not change the following:

1. The household’s intertemporal consumption choice, governed by first-order

condition (16.8.5c).

2. The current market value of all government debt issued at time t , when dis-

counted with the equilibrium expression for pt(st+1|st) in equation (16.8.5b).

3. The government’s revenue from capital taxation net of maturing govern-

ment debt in any state st+1 .

Thus, the alternative policy is feasible and leaves the competitive allocation

unchanged.

Since there are infinitely many ways of constructing sequences of random

variables {ǫt(st)} that satisfy equation (16.9.1), it follows that the competitive

allocation can be implemented by many different plans for capital taxes and

state-contingent debt. It is instructive to consider two special cases where there

is no uncertainty one period ahead about one of the two policy instruments. We

first take the case of risk-free one-period bonds. In period t , the government

issues bonds that promise to pay b̄t+1(s
t) at time t+ 1 with certainty. Let the

amount of bonds be such that their present market value is the same as that for

the original fiscal plan,

∑

st+1

pt
(
st+1|st

)
b̄t+1

(
st
)
=
∑

st+1

pt
(
st+1|st

)
bt+1

(
st+1|st

)
.

After invoking the equilibrium expression for prices (16.8.5b), we can solve for

the constant b̄t+1(s
t)

b̄t+1

(
st
)
=
Etuc

(
st+1

)
bt+1 (st+1|st)

Etuc (st+1)
. (16.9.3)

The change in capital taxes needed to offset this shift to risk-free bonds is then

implied by equation (16.9.2c):

ǫt+1

(
st+1

)
=
b̄t+1 (s

t)− bt+1 (st+1|st)
rt+1 (st+1) kt+1 (st)

. (16.9.4)
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We can check that equations (16.9.3) and (16.9.4) describe a permissible policy

by substituting these expressions into equation (16.9.1) and verifying that the

restriction is indeed satisfied.

Next, we examine a policy where the capital tax is not contingent on the

realization of the current state but is already set in the previous period. Let

τ̄t+1(s
t) be the capital tax rate in period t + 1, conditional on information

at time t . We choose τ̄t+1(s
t) so that the household’s first-order condition

(16.8.5c) is unaffected:

Et
{
uc
(
st+1

) [(
1− τ̄kt+1

(
st
))
rt+1

(
st+1

)
+ 1− δ

]}

= Et
{
uc
(
st+1

) [(
1− τkt+1

(
st+1

))
rt+1

(
st+1

)
+ 1− δ

]}
,

which gives

τ̄kt+1

(
st
)
=
Etuc

(
st+1

)
τkt+1

(
st+1

)
rt+1

(
st+1

)

Etuc (st+1) rt+1 (st+1)
. (16.9.5)

Thus, the alternative policy in equations (16.9.2) with capital taxes known one

period in advance is accomplished by setting

ǫt+1

(
st+1

)
= τ̄kt+1

(
st
)
− τkt+1

(
st+1

)
.

16.10. A Ramsey plan under uncertainty

We now ask what competitive allocation should be chosen by a benevolent gov-

ernment; that is, we solve the Ramsey problem for the stochastic economy.

The computational strategy is in principle the same given in our recipe for a

nonstochastic economy.

Step 1, in which we use private first-order conditions to solve for prices and

taxes in terms of the allocation, has already been accomplished with equations

(16.8.5a), (16.8.8), (16.8.9), and (16.8.11). In step 2, we use these expres-

sions to eliminate prices and taxes from the household’s present-value budget

constraint (16.8.7), which leaves us with

∞∑

t=0

∑

st

βtπt
(
st
) [
uc
(
st
)
ct
(
st
)
− uℓ

(
st
)
nt
(
st
)]

−A = 0, (16.10.1)
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where A is still given by equation (16.5.6). Proceeding to step 3, we define

V
[
ct
(
st
)
, nt
(
st
)
,Φ
]
=u
[
ct
(
st
)
, 1− nt

(
st
)]

+Φ
[
uc
(
st
)
ct
(
st
)
− uℓ

(
st
)
nt
(
st
)]
, (16.10.2)

where Φ is a Lagrange multiplier on equation (16.10.1). Then form the La-

grangian

J =

∞∑

t=0

∑

st

βtπt(s
t)
{
V [ct(s

t), nt(s
t),Φ]

+ θt(s
t)
[
F
(
kt(s

t−1), nt(s
t), st

)
+ (1− δ)kt(s

t−1)

− ct(s
t)− gt(st)− kt+1(s

t)
]}

− ΦA, (16.10.3)

where {θt(st); ∀st}t≥0 is a sequence of Lagrange multipliers. For given k0 and

b0 , we fix τk0 and maximize J with respect to {ct(st), nt(st), kt+1(s
t); ∀st}t≥0 .

The first-order conditions for the Ramsey problem are

ct
(
st
)
: Vc

(
st
)
= θt

(
st
)
, t ≥ 1;

nt
(
st
)
: Vn

(
st
)
= −θt

(
st
)
Fn
(
st
)
, t ≥ 1;

kt+1

(
st
)
: θt

(
st
)
= β

∑

st+1|st

πt+1

(
st+1

)

πt (st)
θt+1

(
st+1

)

·
[
Fk
(
st+1

)
+ 1− δ

]
, t ≥ 0;

where we have left out the conditions for c0 and n0 , which are different because

they include terms related to the initial stocks of capital and bonds. The first-

order conditions for the problem imply, for t ≥ 1,

Vc
(
st
)
= βEtVc

(
st+1

) [
Fk
(
st+1

)
+ 1− δ

]
, (16.10.4a)

Vn
(
st
)
= −Vc

(
st
)
Fn
(
st
)
. (16.10.4b)

These expressions reveal an interesting property of the Ramsey allocation. If the

stochastic process s is Markov, equations (16.10.4) suggest that the allocations

from period 1 onward can be described by time-invariant allocation rules c(s, k),

n(s, k), and k′(s, k).5

5 To emphasize that the second-best allocation depends critically on the extent to which

the government has to resort to distortionary taxation, we might want to include the constant

Φ as an explicit argument in c(s, k) , n(s, k) , and k′(s, k) .
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16.11. Ex ante capital tax varies around zero

In a nonstochastic economy, we proved that if the equilibrium converges to a

steady state, then the optimal limiting capital tax is zero. The counterpart to

a steady state in a stochastic economy is a stationary equilibrium. Therefore,

we now assume that the process on s follows a Markov process with transition

probabilities π(s′|s) ≡ Prob(st+1 = s′|st = s). As noted in the previous section,

this assumption implies that the allocation rules are time-invariant functions of

(s, k). If the economy converges to a stationary equilibrium, the stochastic

process {st, kt} is a stationary, ergodic Markov process on the compact set

S× [0, k̄] where S is a finite set of possible realizations for st and k̄ is an upper

bound on the capital stock.6

Because of the indeterminacy of state-contingent government debt and cap-

ital taxes, it is not possible uniquely to characterize a stationary distribution of

realized capital tax rates, but we can study the ex ante capital tax rate

τ̄kt+1

(
st
)
=

∑
st+1

pt (st+1|st) τkt+1

(
st+1

)
rt+1

(
st+1

)
∑

st+1
pt (st+1|st) rt+1 (st+1)

(16.11.1)

defined as the ratio of current market value of taxes on capital income to the

present market value of capital income. After invoking the equilibrium price of

equation (16.8.5b), we see that this expression is identical to equation (16.9.5).

Recall that equation (16.9.5) resolved the indeterminacy of the Ramsey plan

by pinning down a unique fixed capital tax rate for period t+ 1 conditional on

information at time t . It follows that the alternative interpretation of τ̄kt+1(s
t) in

equation (16.11.1) as the ex ante capital tax rate offers a unique measure across

the multiplicity of capital tax schedules under the Ramsey plan. Moreover, it

is quite intuitive that one way for the government to tax away, in present value

terms, a fraction τ̄kt+1(s
t) of next period’s capital income is to set a constant

tax rate exactly equal to that number.

Let P∞(·) be the probability measure over the outcomes in such a station-

ary equilibrium. We now state the proposition of Zhu (1992) that the ex ante

capital tax rate in a stationary equilibrium either equals zero or varies around

zero.

6 An upper bound on the capital stock can be constructed as follows:

k̄ = max{k̄ (s) : F
[
k̄ (s) , 1, s

]
= δk̄ (s) ; s ∈ S}.
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Proposition 2: If there exists a stationary Ramsey allocation, the ex ante

capital tax rate is such that

(a) either P∞(τ̄kt = 0) = 1, or P∞(τ̄kt > 0) > 0 and P∞(τ̄kt < 0) > 0;

(b) P∞(τ̄kt = 0) = 1 if and only if P∞[Vc(ct, nt,Φ)/uc(ct, ℓt) = Λ] = 1 for some

constant Λ.

A sketch of the proof is provided in the next subsection. Let us just add here

that the two possibilities with respect to the ex ante capital tax rate are not

vacuous. One class of utilities that imply P∞(τ̄kt = 0) = 1 is

u (ct, ℓt) =
c1−σt

1− σ
+ v (ℓt) ,

for which the ratio Vc(ct, nt,Φ)/uc(ct, ℓt) is equal to [1+Φ(1−σ)] , which plays

the role of the constant Λ required by Proposition 2. Chari, Christiano, and

Kehoe (1994) solve numerically for Ramsey plans when the preferences do not

satisfy this condition. In their simulations, the ex ante tax on capital income

remains approximately equal to zero.

To revisit the result on the optimality of a zero capital tax in a nonstochastic

economy, it is trivially true that the ratio Vc(ct, nt,Φ)/uc(ct, ℓt) is constant in a

nonstochastic steady state. In a stationary equilibrium of a stochastic economy,

Proposition 2 extends this result: for some utility functions, the Ramsey plan

prescribes a zero ex ante capital tax rate that can be implemented by setting a

zero tax on capital income. But except for such special classes of preferences,

Proposition 2 states that the ex ante capital tax rate should fluctuate around

zero, in the sense that P∞(τ̄kt > 0) > 0 and P∞(τ̄kt < 0) > 0.



Ex ante capital tax varies around zero 687

16.11.1. Sketch of the proof of Proposition 2

Note from equation (16.11.1) that τ̄kt+1(s
t) ≥ (≤) 0 if and only if

∑

st+1

pt
(
st+1|st

)
τkt+1

(
st+1

)
rt+1

(
st+1

)
≥ (≤) 0,

which, together with equation (16.8.6), implies

1 ≤ (≥)
∑

st+1

pt
(
st+1|st

) [
rt+1

(
st+1

)
+ 1− δ

]
.

Substituting equations (16.8.5b) and (16.8.11a) into this expression yields

uc
(
st
)
≤ (≥)βEtuc

(
st+1

) [
Fk
(
st+1

)
+ 1− δ

]
(16.11.2)

if and only if τ̄kt+1(s
t) ≥ (≤) 0.

Define

H
(
st
)
≡ Vc (s

t)

uc (st)
. (16.11.3)

Using equation (16.10.4a), we have

uc
(
st
)
H
(
st
)
= βEtuc

(
st+1

)
H
(
st+1

) [
Fk
(
st+1

)
+ 1− δ

]
. (16.11.4)

By formulas (16.11.2) and (16.11.4), τ̄kt+1(s
t) ≥ (≤) 0 if and only if

H
(
st
)
≥ (≤)

Etω
(
st+1

)
H
(
st+1

)

Etω (st+1)
, (16.11.5)

where ω(st+1) ≡ uc(s
t+1)[Fk(s

t+1) + 1− δ] .

Since a stationary Ramsey equilibrium has time-invariant allocation rules

c(s, k), n(s, k), and k′(s, k), it follows that τ̄kt+1(s
t), H(st), and ω(st) can

also be expressed as functions of (s, k). The stationary version of expression

(16.11.5) with transition probabilities π(s′|s) becomes

τ̄k (s, k) ≥ (≤) 0 if and only if

H (s, k) ≥ (≤)

∑
s′ π (s

′|s)ω [s′, k′ (s, k)]H [s′, k′ (s, k)]∑
s′ π (s

′|s)ω [s′, k′ (s, k)]

≡ ΓH (s, k) .

(16.11.6)
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Note that the operator Γ is a weighted average of H [s′, k′(s, k)] and that it has

the property that ΓH∗ = H∗ for any constant H∗ .

Under some regularity conditions, H(s, k) attains a minimum H− and a

maximum H+ in the stationary equilibrium. That is, there exist equilibrium

states (s−, k−) and (s+, k+) such that

P∞
[
H (s, k) ≥ H−

]
= 1, (16.11.7a)

P∞
[
H (s, k) ≤ H+

]
= 1, (16.11.7b)

where H− = H(s−, k−) and H+ = H(s+, k+). We will now show that if

P∞ [H (s, k) ≥ ΓH (s, k)] = 1, (16.11.8a)

or

P∞ [H (s, k) ≤ ΓH (s, k)] = 1, (16.11.8b)

then there must exist a constant H∗ such that

P∞ [H (s, k) = H∗] = 1. (16.11.8c)

First, take equation (16.11.8a) and consider the state (s, k) = (s−, k−) that is

associated with a set of possible states in the next period, {s′, k′(s, k); ∀s′ ∈ S} .
By equation (16.11.7a), H(s′, k′) ≥ H− , and since H(s, k) = H− , condition

(16.11.8a) implies that H(s′, k′) = H− . We can repeat the same argument

for each (s′, k′), and thereafter for the equilibrium states that they map into,

and so on. Thus, using the ergodicity of {st, kt} , we obtain equation (16.11.8c)

with H∗ = H− . A similar reasoning can be applied to equation (16.11.8b), but

we now use (s, k) = (s+, k+) and equation (16.11.7b) to show that equation

(16.11.8c) is implied.

By the correspondence in expression (16.11.6) we have established part

(a) of Proposition 2. Part (b) follows after recalling definition (16.11.3); the

constant H∗ in equation (16.11.8c) is the sought-after Λ.
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16.12. A stochastic economy without capital

To gain some insight into optimal tax policies, we consider several examples

of stochastic processes of government expenditures to be financed in a model

without physical capital. The technology is now described by

ct
(
st
)
+ gt (st) = nt

(
st
)
. (16.12.1)

Since one unit of labor yields one unit of output, the competitive equilibrium

wage is wt(s
t) = 1. The model is otherwise identical to the previous framework.

This very model is analyzed by Lucas and Stokey (1983).7

The household’s present-value budget constraint is given by equation (16.8.7)

after we delete the part involving physical capital. After using conditions

(16.8.8) and (16.8.5a) to express prices and taxes as functions of the alloca-

tion, the implementability condition, equation (16.10.1), becomes

∞∑

t=0

∑

st

βtπt
(
st
) [
uc
(
st
)
ct
(
st
)
− uℓ

(
st
)
nt
(
st
)]

− uc
(
s0
)
b0 = 0. (16.12.2)

We then form the Lagrangian in the same way as before. After writing deriva-

tives Vc(s
t) and Vn(s

t), the first-order conditions of this Ramsey problem are

7 The optimal tax policy is in general time inconsistent, as studied in chapter 27 and as

indicated by the preceding discussion about taxation of initial capital. However, Lucas and

Stokey (1983) show that the optimal tax policy in the model without physical capital can be

made time consistent if the government can issue debt at all maturities (and so is not restricted

to issue only one-period debt as in our formulation). There exists a period-by-period strategy

for structuring a term structure of history-contingent claims that preserves the initial Ramsey

allocation {ct(s
t), nt(s

t); ∀st}t≥0 as the Ramsey allocation for the continuation economy. By

induction, the argument extends to subsequent periods. Alvarez, Kehoe and Neumeyer (2004)

apply the argument to the maturity structure of both real and nominal bonds in a monetary

economy. For a class of economies where the Friedman rule of setting nominal interest rates

to zero is optimal under commitment, they show that optimal monetary and fiscal policies

are time consistent. When the Friedman rule is optimal, households are satiated with money

balances – as if money has disappeared – so that the economy is equivalent to a real economy

with one consumption good and labor.
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ct
(
st
)
: (1 + Φ)uc

(
st
)
+Φ

[
ucc
(
st
)
ct
(
st
)
− uℓc

(
st
)
nt
(
st
)]

− θt
(
st
)
= 0, t ≥ 1; (16.12.3a)

nt
(
st
)
: − (1 + Φ)uℓ

(
st
)
− Φ

[
ucℓ
(
st
)
ct
(
st
)
− uℓℓ

(
st
)
nt
(
st
)]

+ θt
(
st
)
= 0, t ≥ 1; (16.12.3b)

c0
(
s0
)
: (1 + Φ)uc

(
s0
)
+Φ

[
ucc
(
s0
)
c0
(
s0
)
− uℓc

(
s0
)
n0

(
s0
)]

− θ0
(
s0
)
− Φucc

(
s0
)
b0 = 0; (16.12.3c)

n0

(
s0
)
: − (1 + Φ)uℓ

(
s0
)
− Φ

[
ucℓ
(
s0
)
c0
(
s0
)
− uℓℓ

(
s0
)
n0

(
s0
)]

+ θ0
(
s0
)
+Φucℓ

(
s0
)
b0 = 0. (16.12.3d)

To uncover an important property of the optimal allocation for t ≥ 1, it is

instructive to use first-order conditions (16.12.3a) and (16.12.3b) to eliminate

the multiplier θt(s
t):

(1 + Φ)uc(c, 1− c− g) + Φ
[
cucc(c, 1− c− g)

− (c+ g)uℓc(c, 1− c− g)
]

= (1 + Φ)uℓ(c, 1− c− g) + Φ
[
cucℓ(c, 1− c− g)

− (c+ g)uℓℓ(c, 1− c− g)
]
, (16.12.4)

where we have also invoked the resource constraints (16.12.1) and ℓt(s
t) +

nt(s
t) = 1. We have suppressed the time subscript and the index st for the

quantities of consumption, leisure, and government purchases in order to high-

light a key property of the Ramsey allocation. In particular, if the quantities of

government purchases are equal after two histories st and s̃j for t, j ≥ 0, i.e.,

if gt(st) = gj(s̃j) = g , then it follows from equation (16.12.4) that the optimal

choices of consumption and leisure, (ct(s
t), ℓt(s

t)) and (cj(s̃
j), ℓj(s̃

j)), must be

identical. Hence, the optimal allocation is a function of the current realized

quantity of government purchases g only and does not depend on the specific

history leading up to that outcome. This outcome is connected to an analogous

history independence of the competitive equilibrium allocation with complete

markets in chapter 8.

Still taking Φ temporarily as given, it remains to compute c0(s
0) and

n0(s
0) from first-order conditions (16.12.3c) and (16.12.3d), respectively. Again,
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the elimination of multiplier θ0(s
0) and invokation of resource constraint yields

an expression analogous to (16.12.4):

(1 + Φ)uc(c0, 1− c0 − g0) + Φ
[
c0ucc(c0, 1− c0 − g0)

− (c0 + g0)uℓc(c0, 1− c0 − g0)
]
− Φucc(c0, 1− c0 − g0)b0

= (1 + Φ)uℓ(c0, 1− c0 − g0) + Φ
[
c0ucℓ(c0, 1− c0 − g0)

− (c0 + g0)uℓℓ(c0, 1− c0 − g0)
]
− Φucℓ(c0, 1− c0 − g0)b0. (16.12.5)

While for t ≥ 1, c and n depend on the time t realization of g only, for t = 0,

c and n also depends on the government’s initial debt b0 . Thus, while b0

influences c0 and n0 , bt does not appear as an independent variable influencing

ct and nt at t ≥ 1. The absence of bt as a determinant of the Ramsey allocation

for t ≥ 1 but not for t = 0 is a tell-tale sign of time inconsistency of a Ramsey

plan, a point to which we shall return below.

Now what about Φ? It has to take a value that assures that the consumer’s

and the government’s budget constraints are both satisfied at a candidate Ram-

sey allocation and price system associated with that Φ. To see how this require-

ment restricts Φ, we reason as follows. First, substitute equations (16.8.5a) and

(16.12.1) into equation (16.12.2) to get

∞∑

t=0

∑

st

βtπt
(
st
)
uc
(
st
) [
τnt
(
st
)
nt
(
st
)
− gt (st)

]
− uc

(
s0
)
b0 = 0. (16.12.6)

Then multiplying equation (16.12.3a) by ct(s
t) and equation (16.12.3b) by

nt(s
t) and summing, we find

(1 + Φ)
[
ct
(
st
)
uc
(
st
)
− nt

(
st
)
uℓ
(
st
)]

+Φ
[
ct
(
st
)2
ucc
(
st
)
− 2nt

(
st
)
ct
(
st
)
uℓc
(
st
)
+ nt

(
st
)2
uℓℓ
(
st
)]

− θt
(
st
) [
ct
(
st
)
− nt

(
st
)]

= 0, t ≥ 1. (16.12.7a)

Similarly, multiplying equation (16.12.3c) by [c0(s
0)−b0] and equations (16.12.3d)

by n0(s
0) and summing, we obtain

(1 + Φ)
{[
c0
(
s0
)
− b0

]
uc
(
s0
)
− n0

(
s0
)
uℓ
(
s0
)}

+Φ
{[
c0
(
s0
)
− b0

]2
ucc
(
s0
)
− 2n0

(
s0
) [
c0
(
s0
)
− b0

]
uℓc
(
s0
)

+ n0

(
s0
)2
uℓℓ
(
s0
)}

− θ0
(
s0
) [
c0
(
s0
)
− b0 − n0

(
s0
)]

= 0. (16.12.7b)
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Note that since the utility function is strictly concave, the quadratic forms mul-

tiplying Φ appearing in equations (16.12.7a) and (16.12.7b) are both negative.8

Finally, multiplying equation (16.12.7a) by βtπt(s
t), summing over t and st ,

and adding equation (16.12.7b), we find that

(1 + Φ)

(
∞∑

t=0

∑

st

βtπt
(
st
) [
ct
(
st
)
uc
(
st
)
− nt

(
st
)
uℓ
(
st
)]

− uc
(
s0
)
b0

)

+ΦQ−
∞∑

t=0

∑

st

βtπt
(
st
)
θt
(
st
) [
ct
(
st
)
− nt

(
st
)]

+ θ0
(
s0
)
b0 = 0,

where Q is the sum of negative (quadratic) terms. Using equations (16.12.2)

and (16.12.1), we arrive at

ΦQ+

∞∑

t=0

∑

st

βtπt
(
st
)
θt
(
st
)
gt (st) + θ0

(
s0
)
b0 = 0. (16.12.8)

We can use equation (16.12.8) to increase our understanding of the La-

grange multiplier Φ on the household’s present value budget constraint and

how it relates to shadow values associated with the economy’s resource con-

straints {θt(st); ∀st}t≥0 . We first examine circumstances in which Φ equals

zero. Setting Φ = 0 in equations (16.12.3) and (16.12.8) yields

uc
(
st
)
= uℓ

(
st
)
= θt

(
st
)
, t ≥ 0; (16.12.9)

8 To see that the quadratic term in equation (16.12.7a) is negative, complete the square by

adding and subtracting the quantity n2u2
ℓc
/ucc (where we have suppressed the time subscript

and the argument st ):

c2ucc − 2ncuℓc + n2uℓℓ + n2
u2
ℓc

ucc
− n2

u2
ℓc

ucc

= ucc

(
c2 − 2nc

uℓc
ucc

+ n2
u2
ℓc

u2cc

)
+

(
uℓℓ −

u2
ℓc

ucc

)
n2

= ucc

(
c−

uℓc
ucc

n

)2
+
uccuℓℓ − u2

ℓc

ucc
n2.

Since the conditions for a strictly concave u are ucc < 0 and uccuℓℓ − u2
ℓc
> 0, it follows

immediately that the quadratic term in equation (16.12.7a) is negative. The same argument

applies to the quadratic term in equation (16.12.7b).
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and, thus,
∞∑

t=0

∑

st

βtπt
(
st
)
uc
(
st
)
gt (st) + uc

(
s0
)
b0 = 0.

Dividing this expression by uc(s
0) and using equation (16.8.8), we find that

∞∑

t=0

∑

st

q0t
(
st
)
gt (st) = −b0,

which asserts that the present value of government expenditures equals the gov-

ernment’s initial claims −b0 against the private sector. That means that the

Lagrange multiplier Φ is zero so that neither the household’s nor the govern-

ment’s present-value budget constraint puts additional constraints on welfare

maximization beyond those inherent in the physical technology. The reason is

that the government does not have to resort to distorting taxes, as can be seen

from conditions (16.8.5a) and (16.12.9), which imply τnt (s
t) = 0. If the gov-

ernment’s initial claims against the private sector were to exceed the present

value of future government expenditures, a trivial implication would be that

the government would like to return this excess financial wealth as lump-sum

transfers to the households, and our argument here with Φ = 0 would remain

applicable. But when the present value of all government expenditures exceeds

the value of any initial claims against the private sector, the Lagrange multiplier

Φ > 0. For example, suppose b0 = 0 and that there is some gt(st) > 0. Since

Q < 0 and θt(s
t) > 0, it follows from equation (16.12.8) that Φ > 0.

16.12.1. Computational strategy

To compute a Ramsey allocation, we can proceed as follows:

1. Guess a value for Φ. Then use the first-order conditions (16.12.3) and the

feasibility conditions (16.12.1) to compute ct(s
t), nt(s

t) for t ≥ 0 and all

st .

2. Use the first-order conditions (16.12.3) to solve for θt(s
t) for t ≥ 0 and all

st , as functions of Φ and the candidate Ramsey allocation at Φ computed

in step 1.

3. Compute the negative term Q as described above and check whether equa-

tion (16.12.8) is satisfied. If it is, we have constructed a Ramsey allocation.

If not, proceed to step 4 and try another Φ.
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4. Find a Φ that satisfies equation (16.12.8) by gradually raising Φ if the left

side of (16.12.8) is positive and lowering Φ if the left side of (16.12.8) is

negative.

After computing a Ramsey allocation, we can recover the flat tax rate on labor

from

1− τnt
(
st
)
=
uℓ (s

t)

uc (st)
(16.12.10a)

and implied one-period Arrow securities prices from

pt
(
st+1|st

)
= βπt+1

(
st+1|st

) uc
(
st+1

)

uc (st)
. (16.12.10b)

16.12.2. More specialized computations

It is useful to specialize the model in the following way. Assume that s is gov-

erned by a finite state Markov chain with states s ∈ [1, . . . , S] and transition

matrix Π, where Π(s′|s) = Prob(st+1 = s′|st = s). Also, assume that govern-

ment purchases g are an exact time-invariant function g(s) of s . We maintain

these assumptions throughout this subsection.

Substituting from (16.12.10), and the feasibility condition (16.12.1) into

a version of the household’s budget constraint (16.8.4) without the physical

capital terms and with an equilibrium wage rate of wt(s
t) = 1 gives

uc
(
st
) [
nt
(
st
)
− gt (st)

]
+ β

∑

st+1

Π(st+1|st) uc
(
st+1

)
bt+1

(
st+1|st

)

− uℓ
(
st
)
nt
(
st
)
= uc

(
st
)
bt
(
st|st−1

)
.
(16.12.11)

Define the product xt(s
t) = uc(s

t)bt(st|st−1). Notice that xt(s
t) appears on the

right side of (16.12.11) while β times the conditional expectation of xt+1(s
t+1)

appears on the left side, so that the equation shares much of the structure of a

simple asset pricing equation with xt being analogous to the price of the asset

at time t .

Above we learned that in a Ramsey allocation, for t ≥ 1 ct(s
t) and nt(s

t)

are each functions only of the current realized quantity of government purchases

gt(st). Under our present specialization in which gt is a time invariant function
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of a Markov state st , that means that we can express the allocation as c(s) and

n(s). Moreover, as we will learn in section 16.14, an additional implication of

this specialization is that government debt bt(st|st−1), and therefore xt(s
t), are

each functions of the realized state only. Therefore, we can express (16.12.11)

as

uc (s) (n (s)− g (s))− uℓ (s)n (s) + β
∑

s′

Π(s′|s)x′ (s′) = x (s) , (16.12.12)

where s′ denotes a next period value of s and x′(s′) denotes a next period value

of x .

Equation (16.12.12) is easy to solve for x(s) for s = 1, . . . , S . If we let

~n,~g, ~x denote S × 1 vectors whose ith elements are the respective n, g , and x

values when s = i , and let Π be the transition matrix for the Markov state s ,

then we can express (16.12.12) as the matrix equation9

~uc (~n− ~g)− ~uℓ~n+ βΠ~x = ~x. (16.12.13)

This is a system of S linear equations in the S × 1 vector x , whose solution

is10

~x = (I − βΠ)
−1

[~uc (~n− ~g)− ~uℓ~n] . (16.12.14)

After solving (16.12.14) for ~x , we can find b(st|st−1) in Markov state st = s

from b(s) = x(s)
uc(s)

or the matrix equation

~b =
~x

~uc
, (16.12.15)

where division here means element-by-element division of the respective compo-

nents of the S × 1 vectors ~x and ~uc .

Here is a computational algorithm:

1. Start with a guess for the value for Φ, then use the first-order conditions

(16.12.3) and the feasibility conditions (16.12.1) to compute c(s), n(s) for

s ∈ [1, . . . , S] and c0(s0) and n0(s0), given Φ. These are 2(S+1) equations

in 2(S + 1) unknowns.

9 In these equations, by ~uc~n , for example, we mean element-by-element multiplication of

the two vectors.
10 Here (I − βΠ)−1 is the resolvent operator of section 2.2.5 of chapter 2.
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2. Solve the S equations (16.12.13) for the S elements of ~x . These depend

on Φ.

3. Find a Φ that satisfies

uc (s0) b0 = uc (s0) (n0 − g0)− uℓ (s0)n0 + β

S∑

s=1

Π(s|s0)x (s) (16.12.16)

by gradually raising Φ if the left side of (16.12.8) exceeds the right side

and lowering Φ if the left side is smaller.

After computing a Ramsey allocation, we can recover the flat tax rate on labor

and implied one-period Arrow securities prices as before.

In summary, when gt is a time invariant function of a Markov state st , a

Ramsey plan can be constructed by solving 3S +3 equations in S components

each of ~c , ~n , and ~x together with n0, c0 , and Φ.

16.12.3. Time consistency

Definition: Let {τnt (st), bt+1(st+1|st); ∀st, st+1}∞t=0 be a time 0, state s0

Ramsey plan. Then {τnj (sj), bj+1(sj+1|sj); ∀sj , sj+1}∞j=t is a time t , history st

continuation of a time 0, state s0 Ramsey plan.

Definition: A time t , history st Ramsey plan is a Ramsey plan that starts

from initial conditions st, bt(st|st−1).

Key outcome: For the Lucas-Stokey model, a time t , history st continuation

of a time 0, state s0 Ramsey planner is not a time t , history st Ramsey plan. A

short hand way to say this is to say that a Ramsey plan is not “time consistent”.

We shall explore the time inconsistency of a time 0, state s0 Ramsey plan in

more depth when we formulate the Ramsey problem recursively in chapter 20.
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16.13. Examples of labor tax smoothing

Following Lucas and Stokey (1983), we now exhibit examples of government

expenditure streams and how they affect optimal tax policies. We assume that

b0 = 0.

16.13.1. Example 1: gt = g for all t ≥ 0

Given constant government purchases gt = g , the first-order condition (16.12.4)

is the same for all t, st , and we conclude that the optimal allocation is constant

over time: (ct, nt) = (ĉ, n̂) for t ≥ 0. It then follows from condition (16.8.5a)

or (16.12.10a) that the tax rate that implements the optimal allocation is also

constant over time: τnt = τ̂n , for t ≥ 0. The government budget is balanced

each period.

Government debt issues in this economy serve to smooth distortions over

time. Because government expenditures are already smooth in this economy,

they are optimally financed from contemporaneous taxes. Nothing is gained by

using debt to change the timing of tax collections.

16.13.2. Example 2: gt = 0 for t 6= T and nonstochastic gT > 0

Setting g = 0 in expression (16.12.4), the optimal allocation (ct, nt) = (ĉ, n̂)

is the same for all t 6= T , and consequently, from condition (16.8.5a), the tax

rate is also constant over these periods, τnt = τ̂n for t 6= T . Using equations

(16.12.7), we can deduce tax revenues. Recall that ct − nt = 0 for t 6= T and

that b0 = 0. Thus, the last terms in equations (16.12.7) drop out. Since Φ > 0,

the second (quadratic) term is negative, so the first term must be positive. Since

(1 + Φ) > 0, this fact implies

0 < ĉ− uℓ
uc
n̂ = ĉ− (1− τ̂n) n̂ = τ̂nn̂,

where the first equality invokes condition (16.8.5a). We conclude that tax rev-

enue is positive for t 6= T . For period T , the last term in equation (16.12.7),

θT gT , is positive. Therefore, the sign of the first term is indeterminate: labor

may be either taxed or subsidized in period T .
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This example is a stark illustration of tax smoothing in which the Ramsey

planner uses government debt to redistribute tax distortions over time. With

the same tax revenues in all periods before and after time T , the optimal debt

policy is as follows: in each period t = 0, 1, . . . , T − 1, the government runs a

surplus, using it to accumulate bonds issued by the representative household.

So bt < bt−1 < 0 for t = 1, . . . , T . In period T , the expenditure gT is met

by selling all of these bonds, possibly levying a tax on current labor income,

and issuing new bonds that are thereafter rolled over forever. Interest payments

on that constant outstanding government debt are equal to the constant tax

revenue for t 6= T , τ̂nn̂ . Thus, the tax distortion is the same in all periods

surrounding period T , regardless of their proximity to date T .

16.13.3. Example 3: gt = 0 for t 6= T , and gT is stochastic

We assume that gT = g > 0 with probability α ∈ (0, 1) and gT = 0 with

probability 1 − α . As in the previous example, there is an optimal constant

allocation (ct, nt) = (ĉ, n̂) for all periods t 6= T (although the optimum values

of ĉ and n̂ will not, in general, be the same as in example 2). In addition,

equation (16.12.4) implies that (cT , nT ) = (ĉ, n̂) if gT = 0. The argument in

example 2 shows that tax revenue is positive. Debt issues are as follows.

At t = 0, 1, . . . , T − 2, the government runs a surplus and uses it to ac-

cumulate risk-free one-period bonds issued by the private sector. A significant

difference from example 2 occurs in period T − 1. In the present case, the gov-

ernment now sells all of the bonds that it has accumulated and uses the proceeds

plus current labor tax revenue to buy one-period Arrow securities that pay off

at T only if gT = g . In addition, the government buys more of these contingent

claims in period T − 1. It finances these additional purchases of Arrow securi-

ties by simultaneously issuing one-period risk-free claims. As in example 2, at

t > T , the government just rolls over its risk-free debt and pays out net pay-

ments equal to τ̂nn̂ , only here the risk-free debt is issued one period earlier. At

time t = T , there are two cases to consider, depending on the realization of gov-

ernment expenditures at date T , a random variable. If gT = 0, the government

clearly satisfies its intertemporal budget constraint. If gT = g , the construction

of our Ramsey equilibrium ensures that the payoff on the government’s holdings

of contingent claims against the private sector equal g plus interest payments of
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τ̂nn̂ on government debt net of any current labor tax/subsidy in period T . In

periods T + 1, T +2, . . . , the situation is as in example 2, regardless of whether

gT = 0 or gT = g .

This is another example of tax smoothing over time in which the tax dis-

tortion is the same in all periods around time T . It also demonstrates the

risk-sharing aspects of fiscal policy under uncertainty. In effect, the government

in period T − 1 buys insurance from the private sector against the event that

gT = g .

16.13.4. Time 0 is special with b0 6= 0

To illustrate how period 0 is special, we revisit example 1 with b0 6= 0. We

assume preferences u(c, ℓ) = log(c) + κℓ with a value of κ > 0 that is large

enough to guarantee an interior solution to labor, n = 1 − ℓ ∈ (0, 1).11 Since

government purchases are deterministic and constant over time in example 1, a

Ramsey plan brings a time-invariant allocation c, n for t ≥ 1, determined by

condition (16.12.4), and possibly different values c0, n0 in period 0, determined

by condition (16.12.5). In section 16.13.1, the initial condition was b0 = 0 and

hence, the two conditions (16.12.4) and (16.12.5) were the same and the Ramsey

plan prescribed a time-invariant allocation ĉ = c0 = c and n̂ = n0 = n .

Given b0 6= 0 and the assumed preference specification, expressions (16.12.4)

and (16.12.5) become:

(1 + Φ)
1

c
− Φc

1

c2
= (1 + Φ)κ =⇒ 1

c
= (1 + Φ) κ (16.13.1a)

1

c0
+Φ

1

c20
b0 = (1 + Φ) κ. (16.13.1b)

Since the multiplier Φ is strictly positive in a Ramsey plan with distortionary

taxation, it follows from expressions (16.13.1) that c0 > c (c0 < c) when

b0 > 0 (b0 < 0). Thus, according to first-order condition (16.12.10a), τn0 < τn

(τn0 > τn ) when b0 > 0 (b0 < 0), where τn is the labor tax rate for t ≥ 1, and

τn0 is the tax rate in period 0 (or a subsidy rate if τn0 < 0).

11 A sufficiently large parameter value κ ensures that n < 1, and because the utility

function satisfies an Inada condition uc → ∞ as c→ 0, consumption will be strictly positive

in an equilibrium and hence, n > 0.
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Consider first the case with initial government debt b0 > 0, why does

the Ramsey plan depart from the policy of perfect tax smoothing in section

16.13.1? If the government so wanted, it could roll over a constant debt level

forever and in each period, finance a constant interest payment, in addition to

the government expenditure g , which would allow for a time-invariant tax rate

τ̂n to be levied in all periods, just as in section 16.13.1. But the Ramsey planner

does not choose that feasible policy. Instead, the Ramsey planner trades off the

welfare cost of a time-varying labor tax wedge, τn0 < τn , against a welfare gain

from manipulating an asset price. Using expression (16.12.10b), the price of an

asset paying one good next period under the Ramsey plan in this nonstochastic

economy is

p0 = β
uc (c, n)

uc (c0, n0)
= β

c0
c
> β = p ,

where p0 is the price in period 0, and p is the price in all future periods t ≥ 1

when the allocation c, n stays constant. Hence, the lower labor tax rate τn0
induces higher consumption c0 in period 0 and therefore increases the asset

price p0 , i.e., lowers the interest rate, which reduces the burden of an initially

indebted government. And the higher the initial debt b0 > 0 is, the more the

Ramsey planner would choose to raise c0 relative to c according to expressions

(16.13.1).12 As one would expect, reductions in the interest rate become more

valuable when applied to an implied larger stock of government debt carried

over between periods 0 and 1, while the welfare loss of too low of a labor tax

wedge τn0 at time 0 applies to a single period. By so manipulating the asset

price p0 , the Ramsey planner de facto reduces government indebtedness at the

beginning of period 1 and hence, lowers future debt burden.

For symmetric reasons, given initial government assets b0 < 0, the Ramsey

planner reduces consumption in period 0, c0 < c , so as to lower the asset price

in period 0, p0 < p , i.e., increase the interest rate, in order to improve the

return on the implied stock of government assets carried over between periods 0

and 1. The welfare loss of too high of a labor tax wedge in period 0, τn0 > τn ,

is outweighed by the increase in the value of government assets at the beginning

of period 1, which implies a lower distortionary tax rate τn relative to what it

would have had to be without the manipulation of the asset price p0 .

12 A higher b0 is associated with a higher multiplier Φ, so the product Φb0 in expression

(16.13.1b) is unequivocally increasing in b0 .
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Now, since there are such welfare gains from manipulating the price p0 ,

why do first-order conditions (16.12.3) of the Ramsey plan not involve yet more

similar manipulations of future asset prices? The simple answer is that the

Ramsey problem solves for an optimal plan under commitment. That is, the

Ramsey planner is not allowed to reoptimize in the future to debase government

debt (or enhance its assets) because that would amount to reneging on rates

of return in the original time-0 Ramsey plan. This reasoning is elucidated in

chapter 20 when the Ramsey problem is formulated recursively. Then, there is

a Ramsey planner at time 0 with state variable b0 , and in each future period

t and history st , there is a “continuation Ramsey planner” with state variable

xt(s
t) = uc(s

t)bt(st|st−1), who is constrained to satisfy an implementability

condition in the form of expression (16.12.11). An implication being that the

continuation Ramsey planners are prevented from manipulating asset prices in

the way that is available to the Ramsey planner in period 0, as exemplified in

this subsection.

16.14. Lessons for optimal debt policy

Lucas and Stokey (1983) draw three lessons from their analysis of the model

in our previous section. The first is built into the model at the outset: budget

balance in a present-value sense must be respected. In a stationary economy,

deficits in some states and dates must necessarily be offset by surpluses at other

dates and states. Thus, in examples with erratic government expenditures, good

times are associated with budget surpluses. Second, in the face of erratic gov-

ernment spending, the role of government debt is to smooth tax distortions over

time, and the government should not seek to balance its budget on a continual

basis. Third, the contingent-claim character of government debt is important

for an optimal policy.13

13 Aiyagari, Marcet, Sargent, and Seppälä (2002) offer a qualification to the importance

of state-contingent government debt in the model of Lucas and Stokey (1983). In numerical

simulations, they explore Ramsey outcomes under the assumption that contingent claims

cannot be traded. (We present their setup in section 16.15.) They find that the incomplete

markets Ramsey allocation is very close to the complete markets Ramsey allocation. This

proximity comes from the Ramsey policy’s use of self-insurance through risk-free borrowing

and lending with households. Compare this outcome to our chapter 18 on heterogeneous

agents and how self-insurance can soften the effects of market incompleteness.
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To highlight the role of an optimal state-contingent government debt policy

further, we study the government’s budget constraint at time t after history st :

bt
(
st|st−1

)
= τnt

(
st
)
nt
(
st
)
− gt (st)

+

∞∑

j=1

∑

st+j |st

qtt+j
(
st+j

) [
τnt+j

(
st+j

)
nt+j

(
st+j

)
− gt+j (st+j)

]

=

∞∑

j=0

∑

st+j |st

βjπt+j
(
st+j |st

) uc
(
st+j

)

uc (st)

{[
1− uℓ

(
st+j

)

uc (st+j)

]

·
[
ct+j

(
st+j

)
+ gt+j (st+j)

]
− gt+j (st+j)

}
, (16.14.1)

where we have invoked the resource constraint (16.12.1) and conditions (16.8.5a)

and (16.8.8) that express taxes and prices in terms of the allocation. Recall

from our discussion of first-order condition (16.12.4) that the optimal allocation

{ct+j(st+j), ℓt+j(st+j)} is history independent and depends only on the present

realization of government purchases in any given period. We now ask, on what

aspects of history does the optimal amount of state-contingent debt that matures

in period t after history st depend? Investigating the right side of expression

(16.14.1), we see that history dependence would arise only through history de-

pendence in the transition probabilities {πt+j(st+j |st)} that govern government

purchases. Hence, if government purchases are governed by a Markov process,

we conclude that there can be no history dependence: the beginning-of-period

state-contingent government debt is a function only of the current state st ,

since everything on the right side of (16.12.1) depends solely on st . This is a

remarkable feature of the optimal tax-debt policy. By purposefully trading in

state-contingent debt markets, the government insulates its net indebtedness to

the private sector from any lingering effects of past shocks to government pur-

chases. Its beginning-of-period indebtedness is completely tailored to its present

circumstances as captured by the realization of the current state st . In contrast,

our stochastic example 3 above is a nonstationary environment where the debt

policy associated with the optimal allocation depends on both calender time

and past events.14

14 An alternative way to express this statement about example 3 is that time t must be

added to the state st to acquire an augmented state that is Markov.
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Finally, we take a look at the value of contingent government debt in our

earlier model with physical capital. Here we cannot expect any sharp result con-

cerning beginning-of-period debt because of our finding about the indeterminacy

of state-contingent debt and capital taxes. However, the derivation of that spe-

cific finding suggests that instead we should look at the value of outstanding

debt at the end of a period. By multiplying equation (16.8.4) by pt−1(st|st−1)

and summing over st , we express the household’s budget constraint for period

t in terms of time t− 1 values,

kt
(
st−1

)
+
∑

st

pt−1

(
st|st−1

)
bt
(
st|st−1

)

=
∑

st

pt−1

(
st|st−1

)
{
ct
(
st
)
−
[
1− τnt

(
st
)]
wt
(
st
)
nt
(
st
)

+ kt+1

(
st
)
+
∑

st+1

pt
(
st+1|st

)
bt+1

(
st+1|st

)
}
, (16.14.2)

where the unit coefficient on kt(s
t−1) is obtained by invoking conditions (16.8.5b)

and (16.8.5c). Expression (16.14.2) states that the household’s ownership of

capital and contingent debt at the end of period t − 1 is equal to the present

value of next period’s contingent purchases of goods and financial assets net of

labor earnings. We can eliminate next period’s purchases of capital and state-

contingent bonds by using next period’s version of equation (16.14.2). After

invoking transversality conditions (16.8.10), continued substitutions yield

∑

st

pt−1

(
st|st−1

)
bt
(
st|st−1

)

=

∞∑

j=t

∑

sj |st−1

βj+1−tπj
(
sj |st−1

) uc
(
sj
)
cj
(
sj
)
− uℓ

(
sj
)
nj
(
sj
)

uc (st−1)

− kt
(
st−1

)
, (16.14.3)

where we have invoked conditions (16.8.5a) and (16.8.5b). Suppose now s fol-

lows a Markov process. Then recall from earlier that the allocations from period

1 onward can be described by time-invariant allocation rules with the current

state s and beginning-of-period capital stock k as arguments. Thus, equation

(16.14.3) implies that the end-of-period government debt is also a function of

the state vector (s, k), since the current state fully determines the end-of-period



704 Optimal Taxation with Commitment

capital stock and is the only information needed to form conditional expecta-

tions of future states. Putting together the lessons of this section with earlier

ones, reliance on state-contingent debt and/or state-contingent capital taxes en-

ables the government to avoid any lingering effects on indebtedness from past

shocks to government expenditures and past productivity shocks that affected

labor tax revenues.

This striking lack of history dependence contradicts the extensive history-

dependence of the stock of government debt that Robert Barro (1979) identified

as one of the salient characteristics of his model of optimal fiscal policy. Ac-

cording to Barro, government debt should be cointegrated with tax revenues,

which in turn should follow a random walk, with innovations that are perfectly

correlated with innovations in the government expenditure process. Important

aspects of such behavior of government debt seem to be observed. For example,

Sargent and Velde (1995) display long series of government debt for eighteenth

century Britain that more closely resembles the outcome from Barro’s model

than from Lucas and Stokey’s. Partly inspired by those observations, Aiyagari,

Marcet, Sargent, and Seppälä (2002) returned to the environment of Lucas and

Stokey’s model and altered the market structure in a way that brought outcomes

closer to Barro’s. We create their model by closing almost all of the markets

that Lucas and Stokey had allowed.15

15 Werning (2007) extends the Lucas-Stokey model in another interesting direction. He

assumes that there are complete markets in consumption, that agents are heterogeneous in the

efficiencies of their labor supplies, and that taxes can be nonlinear functions of labor earnings.

For example, with affine, rather than linear taxes, he explores how distorting taxes on labor

are imposed to redistribute income as well as to raise revenues for financing expenditures.

Without heterogeneity of labor efficiencies, no distorting taxes on labor are imposed.
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16.15. Taxation without state-contingent debt

Returning to Lucas and Stokey’s (1983) model without physical capital, we

follow Aiyagari, Marcet, Sargent, and Seppälä (2002) and study optimal taxation

without state-contingent debt. As in our earlier Lucas and Stokey analysis, we

do this by deleting capital tax revenues and imposing the equilibrium wage rate

wt(s
t) = 1 in government budget constraint (16.8.3). Now we also replace

state-contingent debt with risk-free one-period government bonds. In period t

and history st , let bt+1(s
t) be the amount of government indebtedness carried

over to and maturing in period t+ 1, denominated in time (t+ 1) goods. The

notation bt+1(s
t) is meant to indicate that one-period debt carried into time

t+ 1 must be measurable with respect to time t information, namely, st . This

is a concise way of specifying that the debt is risk-free from the point of view of

time t information. The market value at time t of that government indebtedness

equals bt+1(s
t) divided by the risk-free gross interest rate between periods t and

t+1, denoted Rt(s
t). Thus, the government’s budget constraint in period t at

history st becomes

bt
(
st−1

)
= τnt

(
st
)
nt
(
st
)
− gt (st)− Tt

(
st
)
+
bt+1 (s

t)

Rt (st)
, (16.15.1)

where we have included the possibility of a nonnegative lump-sum transfer

Tt(s
t) ≥ 0 to the representative household. In an allocation that solves the

Ramsey problem and that levies distorting taxes on labor, why would the gov-

ernment ever want to hand revenues back to the representative household? That

would not happen in an economy with state-contingent debt, since any such al-

location could be improved by lowering distortionary taxes rather than handing

out lump-sum transfers. But without state-contingent debt, there are circum-

stances that induce a government to make lump-sum transfers.

We proceed to eliminate taxes and prices so that we can express govern-

ment budget sets solely in terms of allocations and any nonnegative lump-sum

transfers. Note that, given equilibrium wage wt(s
t) = 1, expression (16.8.5a)

for the representative household’s optimal marginal rate of substitution between

consumption and leisure is

uℓ (s
t)

uc (st)
= 1− τnt

(
st
)

(16.15.2)
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and that the consumption Euler equation for the representative household able

to trade risk-free debt with one-period gross interest rate Rt(s
t) is

1

Rt (st)
=

∑

st+1|st

βπt+1

(
st+1|st

) uc
(
st+1

)

uc (st)
. (16.15.3)

We substitute resource constraint (16.12.1) into the the net-of-interest gov-

ernment surplus, τnt (s
t)nt(s

t) − gt(st) − Tt(s
t), and use first-order condition

(16.15.2) to eliminate the labor tax rate and so express the net-of-interest gov-

ernment surplus as
[
1− uℓ (s

t)

uc (st)

] [
ct
(
st
)
+ gt (st)

]
− gt (st)− Tt

(
st
)

≡ z
[
ct
(
st
)
, gt (st), Tt

(
st
)]
.

(16.15.4)

Adopting the same convention as used for the utility function, we let z(st)

denote the value of the net-of-interest government surplus function at time t

history st , evaluated at an allocation (and any lump-sum transfer) to be under-

stood from the context.

Substituting expressions (16.15.3) and (16.15.4) into the government’s bud-

get constraint (16.15.1) yields:

bt
(
st−1

)
= z

(
st
)
+ bt+1

(
st
) ∑

st+1|st

βπt+1

(
st+1|st

) uc
(
st+1

)

uc (st)
. (16.15.5)

In order to solve the government’s budget constraint forward, we move the

multiplicative factor bt+1(s
t) inside of the summation sign in (16.15.5). Next,

for each summation term indexed by st+1 in (16.15.5), we use period t + 1

history st+1 version of (16.15.1) to substitute out for bt+1(s
t):

bt
(
st−1

)
= z

(
st
)
+
∑

st+1|st

βπt+1

(
st+1|st

)uc
(
st+1

)

uc (st)

·
[
z
(
st+1

)
+
bt+2

(
st+1

)

Rt+1 (st+1)

]
.

After similar repeated substitutions for all future occurrences of government

indebtedness, and by invoking versions of the natural debt limits defined in

chapters 8 and 18, we arrive at a final expression:

bt
(
st−1

)
=

∞∑

j=0

∑

st+j |st

βjπt+j
(
st+j |st

) uc
(
st+j

)

uc (st)
z
(
st+j

)
. (16.15.6)
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Equation (16.15.6) at time t = 0 and initial state s0 becomes the im-

plementability condition on a Ramsey allocation that Lucas and Stokey (1983)

imposed:

b0
(
s−1
)
= E0

∞∑

j=0

βj
uc
(
sj
)

uc (s0)
z
(
sj
)
. (16.15.7)

Lucas and Stokey’s implementability condition applies to our model with only

risk-free debt. But while equation (16.15.7) is the only implementability condi-

tion in Lucas and Stokey’s complete markets model, many more implementabil-

ity conditions must be satisfied in the economy with only one-period risk-free

debt. In particular, according to equation (16.15.6), we must now also impose

that

bt
(
st−1

)
= Et

∞∑

j=0

βj
uc
(
st+j

)

uc (st)
z
(
st+j

)
(16.15.8)

hold for all t ≥ 0 and for all st . As Aiyagari et al. (2002) note, these additional

restrictions require that the right sides of (16.15.8) must be measurable with

respect to st−1 for all t, st .

Having deduced the implementability conditions, we can now pose the Ram-

sey problem as

max
{ct(st),bt+1(st)}

E0

∞∑

t=0

βtu
(
ct
(
st
)
, 1− ct

(
st
)
− gt (st)

)

subject to

E0

∞∑

j=0

βj
uc
(
sj
)

uc (s0)
z
(
sj
)
≥ b0

(
s−1
)
; (16.15.9a)

Et

∞∑

j=0

βj
uc
(
st+j

)

uc (st)
z
(
st+j

)
= bt

(
st−1

)
, for all st; (16.15.9b)

given b0
(
s−1
)
.

Here we have substituted the resource constraint (16.12.1) into the utility func-

tion, and to simplify the exposition, we temporarily proceed under the pre-

sumption that non-negative lump-sum transfers are not part of the Ramsey

plan. Subsection 16.15.3 offers an example where lump-sum transfers are needed

along some equilibrium paths.
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To form a Lagrangian for the Ramsey problem, we let γ0(s
0) be a non-

negative Lagrange multiplier on constraint (16.15.9a). As in the economy with

state-contingent debt, this multiplier is strictly positive if the government must

resort to distortionary taxation and is zero otherwise. To represent the as-

sumption that markets in state-contingent securities are closed and that only a

market in a risk-free security is open we attach a stochastic process {γt(st)}∞t=1

of Lagrange multipliers to implementability conditions (16.15.9b). These mul-

tipliers might be positive or negative, depending on the directions in which the

constraints are binding:

γt
(
st
)

≥ (≤) 0 if the constraint is binding in the direction

Et

∞∑

j=0

βj
uc
(
st+j

)

uc (st)
z
(
st+j

)
≥ (≤) bt

(
st−1

)
.

A negative multiplier γt(s
t) < 0 indicates that if we could relax constraint

(16.15.9b), we would like to increase the beginning-of-period indebtedness at

that particular realization of history st , which would presumably enable us to

reduce beginning-of-period indebtedness for some other history. In particular, as

we will soon see from first-order conditions for the Ramsey problem, there would

then exist another realization s̃t with the same history up until the previous

period, i.e., s̃t−1 = st−1 , but where the multiplier on constraint (16.15.9b) takes

on a positive value γt(s̃
t) > 0. All of this is symptomatic of the government’s

inability to use state-contingent debt; with only risk-free debt available, the

government is forced to allocate the same amount of debt to all next period

states st+1 .

We apply two transformations to the Lagrangian. We multiply constraint

(16.15.9a) by uc(s
0) and constraints (16.15.9b) by βtuc(s

t). The Lagrangian

then becomes

J = E0

∞∑

t=0

βt
{
u
(
ct(s

t), 1− ct(s
t)− gt(st)

)

+ γt(s
t)
[
Et

∞∑

j=0

βjuc(s
t+j) z(st+j)− uc(s

t) bt(s
t−1)

]}

= E0

∞∑

t=0

βt
{
u
(
ct(s

t), 1− ct(s
t)− gt(st)

)

+Ψt(s
t)uc(s

t) z(st)− γt(s
t)uc(s

t) bt(s
t−1)

]}
, (16.15.10a)
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where the second equality invokes the law of iterated expectations, Abel’s sum-

mation formula16

Ψt(s
t) = Ψt−1(s

t−1) + γt(s
t), (16.15.10b)

and Ψ−1(s
−1) = 0. First-order conditions with respect to ct(s

t) can be ex-

pressed as

uc(s
t)− uℓ(s

t)

+ Ψt(s
t)
{[
ucc(s

t)− ucℓ(s
t)
]
z(st) + uc(s

t) zc(s
t)
}

− γt(s
t)
[
ucc(s

t)− ucℓ(s
t)
]
bt(s

t−1) = 0 , (16.15.11a)

and with respect to bt+1(s
t) as

Et
[
γt+1(s

t+1)uc(s
t+1)

]
= 0 . (16.15.11b)

If we substitute z(st) from equation (16.15.4) and its derivative zc(s
t) into

first-order condition (16.15.11a), we notice just two differences from condi-

tion (16.12.4) that characterized a Ramsey optimal allocation in Lucas and

Stokey’s economy with state-contingent government debt. First, the term in-

volving bt(s
t−1) in first-order condition (16.15.11a) does not appear in expres-

sion (16.12.4). This term again comes from the constraint that beginning-of-

period government indebtedness must be the same across all realizations of next

period’s state, a constraint that is not present when government debt can be

state contingent. Second, the Lagrange multiplier Ψt(s
t) in first-order condition

(16.15.11a) may change over time in response to realizations of the state, while

the multiplier Φ in expression (16.12.4) is time invariant.

Among other things, we want to learn whether the optimal allocation with-

out state-contingent government debt might eventually be characterized by an

expression similar to (16.12.4), i.e., whether the Lagrange multiplier Ψt(s
t)

might converge to a constant, so that from then on, the absence of state-

contingent debt no longer binds. We shall investigate this question in the next

subsection.

16 See Apostol (1974, p. 194). For another application, see chapter 21, page 894.



710 Optimal Taxation with Commitment

16.15.1. Future values of {gt} become deterministic

Aiyagari et al. (2002) prove that if {gt(st)} has absorbing states in the sense that

gt = gt−1 almost surely for t large enough, then Ψt(s
t) converges when gt(st)

enters an absorbing state. The optimal tail allocation for this economy without

state-contingent government debt coincides with the allocation of an economy

with state-contingent debt that would have occurred under the same shocks,

but for different initial debt. That is, the limiting random variable Ψ∞ would

then play the role of the single multiplier in an economy with state-contingent

debt because, as noted above, the first-order condition (16.15.11a) would then

be the same as expression (16.12.4), where Φ = Ψ∞ . The value of Ψ∞ depends

on the realization of the government expenditure path. If the absorbing state

is reached after many bad shocks (high values of gt(st)), the government would

have accumulated high debt, and convergence would occur to a contingent-debt

economy with high initial debt and therefore a high value of the multiplier Φ.

This particular result about convergence can be stated in more general

terms, i.e., Ψt(s
t) can be shown to converge if the future path of government

expenditures eventually becomes deterministic, for example, if government ex-

penditures eventually become constant. Once uncertainty about future gov-

ernment expenditures ceases, the government can thereafter attain the Ramsey

allocation with one-period risk-free bonds, as described at the beginning of this

chapter. In the present setup, this becomes apparent from examining first-order

condition (16.15.11b) when there is no uncertainty: next period’s nonstochastic

marginal utility of consumption must be multiplied by a nonstochastic mul-

tiplier γt+1 = 0 in order for that first-order condition to be satisfied under

certainty. The zero value of all future multipliers {γt} implies convergence of

Ψt(s
t) = Ψ∞ , and we return to our earlier logic where expression (16.12.4)

with Φt = Ψ∞ characterizes the optimal tail allocation for an economy without

state-contingent government debt when there is no uncertainty.
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16.15.2. Stochastic {gt} but special preferences

To study whether Ψt(s
t) can converge when gt(st) remains stochastic for-

ever, it is helpful to substitute expression (16.15.10b) into first-order condition

(16.15.11b)

Et
{[
Ψt+1

(
st+1

)
−Ψt

(
st
)]
uc
(
st+1

)}
= 0,

which can be rewritten as

Ψt
(
st
)
= Et

[
Ψt+1

(
st+1

) uc
(
st+1

)

Etuc (st+1)

]

= EtΨt+1

(
st+1

)
+

covt
(
Ψt+1

(
st+1

)
, uc

(
st+1

))

Etuc (st+1)
. (16.15.12)

Aiyagari et al. (2002) present a convergence result for a special class of

utility functions that make the covariance term in equation (16.15.12) identically

equal to zero, in particular, utility functions that are linear in consumption and

additively separable from the utility of leisure. (See the preference specification

in subsection 16.15.3.) That makes the marginal utility of consumption be

constant so that expression (16.15.12) reduces to

Ψt
(
st
)
= EtΨt+1

(
st+1

)
.

The stochastic process Ψt(s
t) is evidently a nonnegative martingale. As de-

scribed in equation (16.15.10b), Ψt(s
t) fluctuates over time in response to real-

izations of the multiplier γt(s
t) that can be either positive or negative; γt(s

t)

measures the marginal impact of news about the present value of government

expenditures on the maximum utility attained by the Ramsey planner. The

cumulative multiplier Ψt(s
t) remains strictly positive so long as the govern-

ment must resort to distortionary taxation either in the current period or for a

possible realization of the state in a future period.

By a theorem of Doob (1953, p. 324), a nonnegative martingale like Ψt(s
t)

converges almost surely.17 If the process for government expenditures is suffi-

ciently stochastic, e.g., when gt(st) is stationary with a strictly positive variance,

then Aiyagari et al. (2002) prove that Ψt(s
t) converges almost surely to zero.

17 For a discussion of the martingale convergence theorem, see the appendix to chapter 17.
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When setting Ψ∞ = γ∞ = 0 in first-order condition (16.15.11a), it follows

that a Ramsey tax policy must eventually lead to a first-best allocation with

uc(s
t) = uℓ(s

t), i.e., τn∞ = 0. This implies that government assets converge to

a level always sufficient to support government expenditures from interest earn-

ings alone. Unspent interest earnings on government-owned assets are returned

to the households as positive lump-sum transfers. Such transfers occur when

government expenditures fall below their maximum possible level.

A proof that Ψt(s
t) converges to zero and that government assets eventu-

ally become large enough to finance all future government expenditures can be

constructed along lines used in our chapter 17 analysis of self-insurance with

incomplete markets. Like the analysis there, we can appeal to a martingale

convergence theorem and use an argument based on contradictions to rule out

convergence to any number other than zero. To establish a contradiction in the

present setting, suppose that Ψt(s
t) does not converge to zero but rather to a

strictly positive limit, Ψ∞ > 0. According to our argument above, the Ramsey

tail allocation for this economy without state-contingent government debt will

then coincide with the allocation of an economy that has state-contingent debt

and a particular initial debt level. It follows that these two economies should

have identical labor tax rates supporting that optimal tail allocation. But Aiya-

gari et al. (2002) show that a government that follows such a tax policy and

has access only to risk-free bonds to absorb stochastic surpluses and deficits

will with positive probability either see its debt grow without bound or watch

its assets grow without bound, two outcomes that are inconsistent with an op-

timal allocation. A heuristic explanation is as follows. The government in an

economy with state-contingent debt uses these debt instruments as an “insur-

ance policy” to smooth taxes across realizations of the state. The government’s

lack of access to such “insurance” when only risk-free bonds are available means

that implementing those very same tax rates, unresponsive as they are to re-

alizations of the state, would expose the government to a positive probability

of seeing either its debt level or its asset level drift off to infinity. But that

contradicts a supposition that such a tax policy would be optimal in an econ-

omy without state-contingent debt. First, it is impossible for government debt

to grow without bound, because households would not be willing to lend to a

government that violates its natural borrowing limit. Second, it is not optimal

for the government to accumulate assets without bound, because welfare could

then be increased by cutting tax rates in some periods and thereby reducing the
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deadweight loss of taxation.18 Therefore, we conclude that Ψt(s
t) cannot con-

verge to a nonnegative limit other than zero.

For more general preferences and ample randomness in government expendi-

tures, Aiyagari et al. (2002) cannot characterize the limiting dynamics of Ψt(s
t)

except to rule out convergence to a strictly positive number. So at least two

interesting possibilities remain: Ψ(st) may converge to zero or it may have a

nondegenerate distribution in the limit.

16.15.3. Example 3 revisited: gt = 0 for t 6= T , and gT is stochastic

To illustrate differences in optimal tax policies between economies with and

without state-contingent government debt, we revisit our example 3 in sub-

section 16.13.3 when now the government has access only to risk-free bonds.19

We assume that the household’s utility function is quasi-linear:

u
(
ct
(
st
)
, ℓt
(
st
))

= ct
(
st
)
+H

(
ℓt
(
st
))
,

where Hℓ > 0, Hℓℓ < 0 and Hℓℓℓ > 0. We assume that Hℓ(0) = ∞ and Hℓ(1) <

1 to guarantee that the first-best allocation without distortionary taxation has

an interior solution for leisure. With these preferences, the first-order condition

(16.15.11a) with respect to consumption simplifies to

uc
(
st
)
− uℓ

(
st
)
+Ψt

(
st
)
uc
(
st
)
zc
(
st
)
= 0 ,

which for our quasi-linear preference specification becomes

[
1 + Ψt

(
st
)] {

1−Hℓ

(
1− ct

(
st
)
− gt (st)

)}

= −Ψt
(
st
)
Hℓℓ

(
1− ct

(
st
)
− gt (st)

) [
ct
(
st
)
+ gt (st)

]
. (16.15.13)

18 Aiyagari et al. (2002, lemma 3) suggest that unbounded growth of government-owned

assets constitutes a contradiction because it violates a lower bound on debt, or an “asset

limit.” But we doubt this argument, since a government can trivially avoid violating any asset

limit by making positive lump-sum transfers to the households. A correct proof should instead

be based on the existence of welfare improvements associated with cutting distortionary taxes

instead of making any such lump-sum transfers to households.
19 Our first two examples in subsections 16.13.1 and 16.13.2, respectively, involve no un-

certainty, so the issue of state-contingent debt does not arise. Hence the optimal tax policy is

unaltered in those two examples.



714 Optimal Taxation with Commitment

As in our analysis of this example when there are complete state-contingent

debt markets, we assume that gT = g > 0 with probability α and gT = 0 with

probability 1−α . We also retain our assumption that the government starts with

no assets or debt, b0(s
−1) = 0, so that the multiplier on constraint (16.15.9a)

is strictly positive, γ0(s
0) = Ψ0(s

0) > 0. Since no additional information about

future government expenditures is revealed in periods t < T , it follows that the

multiplier Ψt(s
t) = Ψ0(s

0) ≡ Ψ0 > 0 for t < T . Given the multiplier Ψ0 , the

optimal consumption level for t < T , denoted c0 , satisfies the following version

of first-order condition (16.15.13):

[1 + Ψ0] {1−Hℓ(1− c0)} = −Ψ0Hℓℓ(1− c0) c0 . (16.15.14)

In period T , there are two possible values of gT , and hence the stochastic

multiplier γT (s
T ) can take two possible values, one negative value and one

positive value, according to first-order condition (16.15.11b); γT (s
T ) is negative

if gT = 0 because that represents good news that should cause the multiplier

ΨT (s
T ) to fall. In fact, the multiplier ΨT (s

T ) falls all the way to zero if gT = 0

because the government would then never again have to resort to distortionary

taxation. And any tax revenues raised in earlier periods and carried over as

government-owned assets would then also be handed back to the households as

a lump-sum transfer. If, on the other hand, gT = g > 0, then γT (s
T ) ≡ γT is

strictly positive and the optimal consumption level for t > T , denoted c̃ , would

satisfy the following version of first-order condition (16.15.13)

[1 + Ψ0 + γT ] {1−Hℓ(1− c̃)} = − [Ψ0 + γT ] Hℓℓ(1− c̃) c̃ . (16.15.15)

In response to γT > 0, the multiplicative factors within square brackets have

increased on both sides of equation (16.15.15) but proportionately more on

the right side. Because both equations (16.15.14) and (16.15.15) must hold

with equality at the optimal allocation, it follows that the change from c0

to c̃ has to be such that {1−Hℓ(1− c)} increases proportionately more than

−{Hℓℓ(1− c) c} . Since the former expression is decreasing in c and the latter

expression is increasing in c , we can conclude that c̃ < c0 and hence that the

implied labor tax rate is raised for all periods t > T if government expenditures

turn out to be strictly positive in period T .

It is evident from this example that a government with access to risk-free

bonds only cannot smooth tax rates across different realizations of the state.
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Recall that the optimal tax policy with state-contingent debt prescribed a con-

stant tax rate for all t 6= T regardless of the realization of gT . Note also that, as

promised earlier, the multiplier Ψt(s
t) in the economy without state-contingent

debt does converge when the future path of government expenditures becomes

deterministic in period T . In our example, Ψt(s
t) converges either to zero or

to (Ψ0 + γT ) > 0, depending on the realization of government expenditures.

Starting from period T +1, the tail of the Ramsey allocation coincides with the

allocation of an economy with state-contingent debt that would have occurred

under the same shocks, but for different initial debt, either a strictly negative

debt level associated with Φ = 0, if gT = 0, or a strictly positive debt level that

would correspond to Φ = Ψ0 + γT , if gT = g > 0.

It is instructive to consider two realizations of such a state-contingent-debt

economy in which time-invariant multipliers satisfy Φ = 0 and Φ = Ψ0 + γT ,

respectively. These are two economies whose tail allocations after period T

coincide with those of our economy without state-contingent debt under the

realizations gT = 0 and gT = g > 0, respectively. A state-contingent-debt

economy with multiplier Φ = 0 means that its government has never had to

rely on any distortionary taxation, and hence, the government must initially

have owned enough claims against the private sector to finance the stochastic

government expenditure in period T . Thus, by using the equilibrium prices

of state-contingent claims at a first-best allocation, i.e., when there is never

any distortionary taxation, we can compute the strictly negative initial debt

level that would suffice to finance a government expenditure of g > 0 with

probability α in period T . If the government’s initial claims against the private

sector exceed that critical number, excess government assets would be handed

back lump-sum to the representative household.

Now consider the state-contingent-debt economy with multiplier Φ = Ψ0+

γT . Its initial government debt level must be strictly positive for the following

reasons. Recall that the economy without state-contingent debt starts with

a zero initial debt level, and as we have shown, its Ramsey plan involves an

increase in the tax rate after the unfortunate realization of gT = g > 0. In

contrast, the government in the state-contingent-debt economy levies the same

tax rate for all t 6= T , and for it to have chosen in all those periods the proposed

eventual high tax rate of the economy without state-contingent debt, the initial

government debt level of the state-contingent-debt economy must have been

larger than zero.
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We end with some reflections on welfare and commitment. The representa-

tive household is ex ante better off when the government can use state-contingent

claims because the Pareto problem for that economy has fewer constraints than

it does in an economy in which the government is constrained to use only risk-

free bonds. It is also true that the representative household of the risk-free

bonds only economy is ex post better off under the tail allocation after period

T if the state gT = 0 is realized, after which there would never be any distor-

tionary taxation in the economy without state-contingent debt. A tail allocation

without distortionary taxation would tempt a government facing that tail gov-

ernment expenditure sequence but finding itself indebted after period T . Since

the government will never again need access to financial markets to finance any

government expenditures, if it were offered a choice to do so, the government

would want to renege on any existing government debt in order to make the

representative household better off. Yes, the representative household would

lose from not receiving payments on its holdings of government debt, but that

loss would be outweighed by the gain from never again having to pay any distor-

tionary taxes. This mental experiment is simply not allowed here because the

Ramsey problem has been structured from the beginning so that a government

can never renege on its liabilities, and the household’s behavior relies on that. If

households had anticipated that a government would ever renege on its liabili-

ties, it would not have bought the government debt in the first place. This circle

of concerns will be the topic of chapters 24 and 25 when we study governments

that lack the ability to commit and must therefore rely on ‘credible government

policies.’ A government policy is credible if the government has incentives to

adhere to it in all periods and under all circumstances.
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16.16. Nominal debt as state-contingent real debt

We now turn to a monetary economy of Lucas and Stokey (1983) that, with

special preferences, Chari, Christiano, and Kehoe (1996) used to study the opti-

mality of the Friedman rule and whether equilibrium price level adjustments can

transform nominal non-state-contingent debt into state-contingent real debt. In

particular, Chari, Christiano and Kehoe restricted preferences to satisfy As-

sumption 1 below in order to show optimality of the Friedman rule. They

stated no additional conditions to reach their conclusion that, under an appro-

priate policy, non-state-contingent nominal government debt can be transformed

into state-contingent real debt. However, we find that their statements about

the equivalence of allocations under these two debt structures require stronger

assumptions because of a potential sign-switching problem with optimal debt

across state realizations at a point in time. To obtain Chari, Christiano and

Kehoe’s conclusion, we add our Assumption 2 below.

Our strategy is to follow Chari, Christiano, and Kehoe. First, in subsection

16.16.2, we find a Ramsey plan and an associated Ramsey allocation for a non-

monetary economy with state-contingent government debt. Then, in subsection

16.16.3, we state conditions on fundamentals that allow that same allocation to

be supported by a Ramsey plan for a monetary economy having only nominal

non-state-contingent debt.

A key outcome here is that the Ramsey equilibrium in the monetary econ-

omy makes the price level fluctuate in response to government expenditure

shocks. The price level adjusts to deliver history-contingent returns to holders

of government debt required to support the Ramsey allocation. This structure

includes many, if not most, components of a ‘fiscal theory of the price level’.20

That it does so in a coherent way can help us describe a set of contentious issues

associated with some expositions of fiscal theories of the price level. We take up

this theme in section 16.17, and again in chapter 27.

20 We admit that some writers could legitimately beg to differ here because we have chosen

to express the fiscal theory of the price level within the straightjacket of a rational expectations

competitive equilibrium in an Arrow-Debreu complete markets economy. Some would argue

that the fiscal theory of the price level can dispense with auxiliary assumptions like rational

expectations and complete markets.
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16.16.1. Setup and main ideas

The production technology is as in (16.12.1) except that there are now two

distinct goods being produced; a ‘cash good’ and a ‘credit good’. Let c1t(s
t)

and c2t(s
t) denote the household’s consumption of the cash good and the credit

good, respectively, while government consumption gt(st) is made up of credit

goods only. The feasibility condition becomes

c1t
(
st
)
+ c2t

(
st
)
+ gt (st) = nt

(
st
)
. (16.16.1)

The household’s preferences are ordered by

∞∑

t=0

∑

st

βt πt
(
st
)
u
[
c1t
(
st
)
, c2t

(
st
)
, ℓt
(
st
)]
, β ∈ (0, 1) (16.16.2)

where u is increasing, strictly concave, and twice continuously differentiable in

all of its arguments. Moreover, the utility function satisfies the Inada conditions

lim
c1↓0

u1
(
st
)
= lim
c2↓0

u2
(
st
)
= lim

ℓ↓0
u3
(
st
)
= +∞,

where uj is the derivative of u with respect to its j th argument.

In period t , households trade money, assets, and goods in particular ways.

At the start of period t , after observing the current state st , households trade

money and assets in a centralized securities market. The assets are one-period,

state-noncontingent, nominal discount bonds. Let Mt+1(s
t) and Bt+1(s

t) de-

note the money and the nominal bonds held at the end of the securities market

trading. Let Rt(s
t) denote the gross nominal interest rate, so 1/Rt(s

t) is the

purchase price of bonds. After securities trading, each household splits into a

worker and a shopper. The shopper must use the money to purchase cash goods.

To purchase credit goods, the shopper issues one-period nominal claims that are

to be settled in the securities market in the next period. The worker is paid in

cash at the end of the period. He adds this cash to any cash unexpended during

shopping and carries it into the next period.

The household’s budget constraint in the securities market is

Mt+1

(
st
)
+Bt+1

(
st
)
/Rt

(
st
)
= Bt

(
st−1

)

+Mt

(
st−1

)
− Pt−1

(
st−1

)
c1t−1

(
st−1

)
− Pt−1

(
st−1

)
c2t−1

(
st−1

)

+ Pt−1

(
st−1

) [
1− τnt−1

(
st−1

)]
nt−1

(
st−1

)
, (16.16.3)
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where P is the nominal price of goods. The left side of (16.16.3) is the nominal

value of assets held at the end of securities market trading. The first term on the

right side is the value of nominal debt bought in the preceding period. The next

two terms on the right side are the shopper’s unspent cash. The fourth term

is the payment for credit goods, and the last term is after-tax labor earnings.

Purchases of cash goods must satisfy a cash-in-advance constraint:

Pt
(
st
)
c1t
(
st
)
≤Mt+1

(
st
)
. (16.16.4)

Let λt(s
t) and µt(s

t) be the Lagrange multipliers on constraints (16.16.3)

and (16.16.4), respectively. The first-order conditions for the household’s prob-

lem are

c1t
(
st
)
: βtπt

(
st
)
u1
(
st
)
= Pt

(
st
)

µt

(
st
)
+
∑

st+1|st

λt+1

(
st+1

)

 , (16.16.5a)

c2t
(
st
)
: βtπt

(
st
)
u2
(
st
)
= Pt

(
st
) ∑

st+1|st

λt+1

(
st+1

)
, (16.16.5b)

nt
(
st
)
: βtπt

(
st
)
u3
(
st
)
= Pt

(
st
) [

1− τnt
(
st
)] ∑

st+1|st

λt+1

(
st+1

)
, (16.16.5c)

Mt+1

(
st
)
: λt

(
st
)
= µt

(
st
)
+
∑

st+1|st

λt+1

(
st+1

)
, (16.16.5d)

Bt+1

(
st
)
: λt

(
st
)
/Rt

(
st
)
=

∑

st+1|st

λt+1

(
st+1

)
. (16.16.5e)

After substituting (16.16.5d) into (16.16.5a), (16.16.5e) into (16.16.5b), and

(16.16.5e) into (16.16.5c), respectively, the following conditions emerge

βtπt
(
st
)
u1
(
st
)
= Pt

(
st
)
λt
(
st
)
, (16.16.6a)

βtπt
(
st
)
u2
(
st
)
= Pt

(
st
)
λt
(
st
)
/Rt

(
st
)
, (16.16.6b)

βtπt
(
st
)
u3
(
st
)
= Pt

(
st
) [

1− τnt
(
st
)]
λt
(
st
)
/Rt

(
st
)
. (16.16.6c)

By (16.16.6), marginal rates of substitution between goods and leisure satisfy

u1 (s
t)

Rt (st)u3 (st)
=
u2 (s

t)

u3 (st)
=

1

1− τnt (st)
.

Hence, the marginal rate of substitution between the cash and credit good equals

the nominal interest rate,
u1 (s

t)

u2 (st)
= Rt

(
st
)
.
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Another expression for the nominal interest rate is obtained by solving for

λt(s
t) from (16.16.6a) and a corresponding expression for λt+1(s

t+1), which

are then substituted into (16.16.5e) to get

Rt
(
st
)
=

u1 (s
t) /Pt (s

t)

β
∑
st+1

πt+1 (st+1|st)u1 (st+1) /Pt+1 (st+1)
. (16.16.7)

In an equilibrium, the nominal interest rate must satisfy Rt(s
t) ≥ 1 because

otherwise, households could make infinite profits by buying money and selling

bonds. This inequality captures the much discussed zero lower bound on the

net nominal interest rate Rt(s
t)− 1.

Money is injected into and withdrawn from the economy through govern-

ment open-market operations in the securities market. The constraint on open

market operations is

Mt+1

(
st
)
−Mt

(
st−1

)
+Bt+1

(
st
)
/Rt

(
st
)
= Bt

(
st−1

)

+ Pt−1

(
st−1

)
gt−1 (st−1)− Pt−1

(
st−1

)
τnt−1

(
st−1

)
nt−1

(
st−1

)
. (16.16.8)

The terms on the left side of this equation are the assets sold by the government.

The first term on the right is the payment on debt incurred in the preceding

period, the second term is the payment for government consumption, and the

third term is tax receipts. Recall that government consumption consists solely

of credit goods.

To ensure that the Ramsey problem is nontrivial in this environment, we

follow Chari et al. (1996) and assume that households hold no nominal assets at

the beginning of period 0, M0(s
−1) = B0(s

−1) = 0.21 Hence, the government

constraint (16.16.8) in period 0 becomes

M1

(
s0
)
+B1

(
s0
)
/R0

(
s0
)
= 0. (16.16.9)

Starting with (16.16.8), and then recursively eliminating debt issued in a pre-

ceding period, by using corresponding versions of (16.16.8), continuing all the

21 As in the case of our earlier restriction on the capital tax in period 0, the initial condition

here restricts the government’s access to nondistorting ways of financing its expenditures. In

a monetary economy, if the initial stock of nominal assets held by households is positive, then

welfare is maximized by increasing the initial price level to infinity. If the initial stock is

negative, then welfare is maximized by setting the initial price level so low that those initial

assets are sufficient to finance the government’s entire stream of expenditures without ever

having to levy distorting taxes.
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way back to time 0 when (16.16.9) applies, we arrive at the following expression

for how nominal, state-noncontingent debt evolves over time,

Bt+1

(
st
)
=

t−1∑

j=0




t∏

k=j

Rk
(
sk
)

Pj

(
sj
) [
gj (sj)− τnj

(
sj
)
nj
(
sj
)]

+
t−1∑

j=1




t∏

k=j

Rk
(
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)

[1−Rj−1

(
sj−1

)]
Mj

(
sj−1

)

−Rt
(
st
)
Mt+1

(
st
)
. (16.16.10)

Chari et al. (1996) maintain the following assumption:

Assumption 1: The utility function is of the form u(c1, c2, ℓ) = V (f(c1, c2), ℓ)

where f is homothetic.

Under this assumption, Chari et al. (1996) demonstrate that the Friedman rule

is optimal, i.e., the Ramsey equilibrium has Rt(s
t) = 1 for all st . Despite the

need to use some distorting taxes in the Ramsey equilibrium, it is not optimal to

levy an inflation tax. Moreover, the Ramsey solution in our monetary economy

with nominal, state-noncontingent debt yields an allocation that is identical

to that in a frictionless nonmonetary economy in which the government issues

(real) state-contingent debt. This finding enables us in the next section first

to solve the Ramsey problem for the nonmonetary economy, and then to verify

that the Ramsey allocation for the nonmonetary economy is also the Ramsey

allocation for the monetary economy.

The reason that identical Ramsey allocations can prevail for the two economies

is that the nominal, state-noncontingent debt in the monetary economy can in

effect be transformed into state-contingent real debt by systematically varying

the price level. In bad times associated with high government expenditures, it

is optimal to raise the price level so that real debt payments can be made to be

relatively small. In good times with low government expenditures, it is optimal

to lower the price level to make real debt payments become relatively large.

The above description of an optimal policy potentially identifies a technical

problem that could potentially invalidate the finding of Chari et al. (1996).

Specifically, while monetary policy can be used to vary the size of real indebt-

edness at the beginning of a period, it can never alter the sign of the asset

position inherited from last period. Hence, monetary policy cannot replicate
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a state-contingent debt policy in the nonmonetary economy if there is any pe-

riod when the nonmonetary economy has positive state-contingent indebtedness

under some realizations of the state and negative under others. Therefore, we

must add the following assumption on primitives that will suffice to justify the

finding of Chari et al. (1996).

Assumption 2: The Ramsey equilibrium in the nonmonetary economy with

state-contingent debt has strictly positive indebtedness, bt(s
t) > 0, in all periods

t ≥ 1 after all histories st .

16.16.2. Optimal taxation in a nonmonetary economy

Here we solve the Ramsey problem in a frictionless nonmonetary economy. Then

in the next section, we will show how, under a particular monetary policy, the

same optimal allocation can also be supported as an equilibrium of the monetary

economy.

To have a complete set of tax instruments in the nonmonetary economy,

we introduce a value-added tax on good 1, τc1t (st); it becomes a subsidy when

negative. The government’s budget constraint at time t after history st becomes
∑

st+1

qtt+1

(
st+1, s

t
)
bt+1

(
st+1|st

)
= bt

(
st|st−1

)

+ gt (st)− τnt
(
st
)
nt
(
st
)
− τc1t

(
st
)
c1t
(
st
)
, (16.16.11)

where as earlier, bt+1(st+1|st) is a state-contingent asset traded in period t at

the price qtt+1(st+1, s
t), in terms of time t goods (not including any value-added

tax on good 1).

The representative household maximizes expression (16.16.2) subject to its

present-value budget constraint:

∞∑

t=0

∑

st

q0t
(
st
) {[

1 + τc1t
(
st
)]
c1t
(
st
)
+ c2t

(
st
)}

=

∞∑

t=0

∑

st

q0t
(
st
) [

1− τnt
(
st
)]
nt
(
st
)
. (16.16.12)

The first-order conditions for this problem imply

q0t
(
st
)
=βtπ

(
st
) u2 (st)
u2 (s0)

, (16.16.13a)
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1 + τc1t
(
st
)
=
u1 (s

t)

u2 (st)
, (16.16.13b)

1− τnt
(
st
)
=
u3 (s

t)

u2 (st)
. (16.16.13c)

After using these expressions to eliminate prices and taxes from the household’s

present-value budget constraint (16.16.12), the implementability condition in

the Ramsey problem becomes

∞∑

t=0

∑

st

βtπt
(
st
) [
u1
(
st
)
c1t
(
st
)
+ u2

(
st
)
c2t
(
st
)
− u3

(
st
)
nt
(
st
)]

= 0.

(16.16.14)

The first-order conditions of the Ramsey problem with respect to consumption

goods cit(s
t), i = 1, 2, are

(1 + Φ)ui
(
st
)
+Φ




2∑

j=1

uji
(
st
)
cjt
(
st
)
− u3i

(
st
)
nt
(
st
)

 = θt

(
st
)
, (16.16.15)

where Φ and θt(s
t) are Lagrange multipliers on implementability condition

(16.16.14) and resource constraint (16.16.1), respectively. After dividing by

ui(s
t) and noting that by Assumption 1, u3i(s

t)/ui(s
t) = V12(s

t)/V1(s
t), we

have

(1 + Φ) + Φ




2∑

j=1

uji (s
t) cjt (s

t)

ui (st)
− V12 (s

t)

V1 (st)
nt
(
st
)

 =

θt (s
t)

ui (st)
, (16.16.16)

for i = 1, 2. Next, note that a utility function that satisfies Assumption 1

implies that the value of the summation on the left side of expression (16.16.16)

is the same for i = 1 and i = 2.22 Thus, the value of the entire left side

22 Recall that homotheticity, as in Assumption 1, implies that for any constant κ > 0,

u1
[
κc1t

(
st
)
, κc2t

(
st
)
, nt
(
st
)]

u2
[
κc1t

(
st
)
, κc2t

(
st
)
, nt
(
st
)] =

u1
[
c1t
(
st
)
, c2t

(
st
)
, nt
(
st
)]

u2
[
c1t
(
st
)
, c2t

(
st
)
, nt
(
st
)] .

Differentiating this expression with respect to κ and evaluating at κ = 1 gives

2∑

j=1

uj1
(
st
)
cjt
(
st
)

u1
(
st
) =

2∑

j=1

uj2
(
st
)
cjt
(
st
)

u2
(
st
) .
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of expression (16.16.16) is the same for i = 1 and i = 2 and consequently, so

must the value of the right side be, so that it follows that u1(s
t) = u2(s

t). From

expression (16.16.13b), we then conclude that the two consumption goods are

taxed at the same rates, i.e., τc1t (st) = 0.23

Given τc1t (st) = 0, the government debt satisfies an expression analogous

to expression (16.14.1), namely,

bt
(
st|st−1

)
= τnt

(
st
)
nt
(
st
)
− gt (st)

+

∞∑

j=1

∑

st+j |st

qtt+j
(
st+j

) [
τnt+j

(
st+j

)
nt+j

(
st+j

)
− gt+j (st+j)

]

=
∞∑

j=0

∑

st+j |st

βjπt+j
(
st+j |st

) u2
(
st+j

)

u2 (st)

{[
1− u3

(
st+j

)

u2 (st+j)

]

·
[
c1t+j

(
st+j

)
+ c2t+j

(
st+j

)
+ gt+j (st+j)

]
− gt+j (st+j)

}
. (16.16.17)

16.16.3. Optimal policy in a corresponding monetary economy

We want to verify our conjecture that the optimal allocation of the nonmonetary

economy with state-contingent debt can be attained in the monetary economy

with state-noncontingent nominal debt under a monetary policy that imple-

ments the Friedman rule, i.e., Rt(s
t) = 1 for all st .

At the beginning of any period t > 0 and history st , given outstanding

nominal assets {Mt(s
t−1), Bt(s

t−1)} and last period’s price level Pt−1(s
t−1),

the government targets a current price level equal to

Pt
(
st
)
=
{
Pt−1

(
st−1

) [
gt−1 (st−1)− τnt−1

(
st−1

)
nt−1

(
st−1

)]

+Mt

(
st−1

)
+Bt

(
st−1

)}
/bt
(
st|st−1

)
, (16.16.18)

23 Given that we use tax instruments τc1t (st) and τnt (st) to control the tax wedges between

c1t(s
t) , c2t(s

t) and ℓt(s
t) , equal taxation of the two goods implies τc1t (st) = 0, and hence,

the optimal tax wedge between goods consumption and leisure is attained with the labor tax.

If we instead had formulated the problem with two separate value-added taxes on the two

goods, τc1t (st) and τc2t (st) , but no labor tax, the equal taxation result for goods would have

meant τc1t (st) = τc2t (st) , where the level of that common value-added tax rate would have

served the same role as the present labor tax, i.e., to establish the optimal tax wedge between

goods consumption and leisure.
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which is evidently a function of the beginning-of-period indebtedness of the

corresponding nonmonetary economy, bt(st|st−1) > 0. The government attains

the target by conducting open-market operations to make the money supply

become

Mt+1

(
st
)
= Pt

(
st
)
c1t
(
st
)
, (16.16.19)

and the resulting nominal debt level Bt+1(s
t) is given by (16.16.8), or equiva-

lently, by (16.16.10). Note that, if our conjecture Rt(s
t) = 1 is correct, policy

rule (16.16.18) and government budget constraint (16.16.8) imply

Mt+1 (s
t) +Bt+1 (s

t)

Pt (st)
= bt

(
st|st−1

)
. (16.16.20)

We now proceed as if our conjecture is correct, and verify that the gross

nominal interest rate given by expression (16.16.7) would indeed equal to unity

under the government policy we have described. The key steps in verifying that

the policy attains Rt(s
t) = 1 are:

Rt
(
st
)
=

u2 (s
t) /Pt (s

t)

β
∑

st+1
πt+1 (st+1|st)u2 (st+1) /Pt+1 (st+1)

=
1/Pt (s

t)∑
st+1

qtt+1 (st+1, st) /Pt+1 (st+1)

=
1/Pt

(
st
)

∑

st+1

qtt+1

(
st+1, s

t
) bt+1

(
st+1|st

)

Pt
(
st
) [
gt (st)− τnt

(
st
)]

+Mt+1

(
st
)
+Bt+1

(
st
)

=
gt (st)− τnt (st) + bt

(
st|st−1

)
∑
st+1

qtt+1 (st+1, st) bt+1 (st+1|st)
= 1.

Under our conjecture, the first equality above substitutes u2(s
t) = u1(s

t) into

expression (16.16.7). The second equality uses expression (16.16.13a) for the

price of state-contingent claims in the nonmonetary economy. The third equal-

ity uses policy rule (16.16.18) for the price level Pt+1(s
t+1), while the fourth

equality invokes expression (16.16.20). The last equality follows from govern-

ment budget constraint (16.16.11) in the nonmonetary economy and hence, we

have confirmed that our conjecture Rt(s
t) = 1 is correct.

Next, even though it is redundant, it is instructive to verify that the gov-

ernment budget constraint of the nonmonetary economy implies the budget con-

straint of the monetary economy. Starting with government budget constraint
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(16.16.11) in the nonmonetary economy with τc1t (st) = 0, we use expression

(16.16.13a) for the price of state-contingent claims (where u2(s
t) = u1(s

t)),

and eliminate all state-contingent debt by using policy rule (16.16.18),

∑

st+1

βπt+1

(
st+1|st

) u1
(
st+1

)

u1 (st)

· Pt (s
t)

Pt+1 (st+1)

{[
gt (st)− τnt

(
st
)
nt
(
st
)]

+
Mt+1 (s

t) +Bt+1 (s
t)

Pt (st)

}

=
Pt−1

(
st−1

)

Pt (st)

{
[
gt−1 (st−1)− τnt−1

(
st−1

)
nt−1

(
st−1

)]
+
Mt

(
st−1

)
+Bt

(
st−1

)

Pt−1 (st−1)

}

+ gt (st)− τnt
(
st
)
nt
(
st
)
.

Invoking equilibrium expression (16.16.7) for the nominal interest rate, this

expression can be written

[
Rt
(
st
)]−1

{[
gt (st)− τnt

(
st
)
nt
(
st
)]

+
Mt+1 (s

t) +Bt+1 (s
t)

Pt (st)

}

=
Pt−1

(
st−1

)

Pt (st)

{
[
gt−1 (st−1)− τnt−1

(
st−1

)
nt−1

(
st−1

)]
+
Mt

(
st−1

)
+Bt

(
st−1

)

Pt−1 (st−1)

}

+ gt (st)− τnt
(
st
)
nt
(
st
)
.

Since we have confirmed that Rt(s
t) = 1 under the postulated monetary policy,

this expression can then be simplified to become government budget constraint

(16.16.8) in the monetary economy.
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16.16.4. Sticky prices

Schmitt-Grohe and Uribe (2004a) and Siu (2004) analyze optimal monetary and

fiscal policies in economies in which the government can issue only nominal risk-

free debt. Unanticipated inflation makes risk-free nominal debt state contingent

in real terms and provides a motive for the government to make inflation vary.

Schmitt-Grohe and Uribe and Siu both focus on how price stickiness would

affect the government’s use of fluctuations in inflation as an indirect way of

introducing state-contingent debt. They find that even a very small amount of

price stickiness causes the volatility of the optimal inflation rate to become very

small. Thus, the government abstains from using the indirect inflation channel

for synthesizing state-contingent debt. The authors relate their finding to the

aspect of Aiyagari’s et al.’s (2002) calculations for an economy with no state-

contingent debt, mentioned in footnote 11 of this chapter, that the Ramsey

allocation in their economy without state-contingent debt closely approximates

that for the economy with complete markets.

16.17. Relation to fiscal theories of the price level

In chapter 27, we take up monetary-fiscal theories of inflation, including one that

has been christened a ‘fiscal theory of the price level’. The model of the previous

section includes components that combine to give rise to all of the forces active

in that theory. As emphasized by Niepelt (2004), accounts of that theory are

too often at best incomplete because they leave implicit aspects of an underlying

general equilibrium model. For that reason, we find it enlightening to interpret

statements about the fiscal theory of the price level within the context of a

coherent general equilibrium model like that of Chari, Christiano, and Kehoe

(1996).
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16.17.1. Budget constraint versus asset pricing equation

To take a prominent example, Cochrane (2005) asserts that under a fiat money

system there exists no government budget constraint, only a valuation equation

for nominal government debt. To express Cochrane’s point of view within the

economy of Chari, Christiano, and Kehoe (1996), solve for bt(st|st−1) from

policy rule (16.16.18) and substitute the outcome into (16.16.17) to get

Mt

(
st−1

)
+Bt

(
st−1

)
+ Pt−1

(
st−1

) [
gt−1 (st−1)− τnt−1

(
st−1

)]

Pt (st)

= τnt
(
st
)
nt
(
st
)
− gt (st)

+

∞∑

j=1

∑

st+j |st

qtt+j
(
st+j

) [
τnt+j

(
st+j

)
nt+j

(
st+j

)
− gt+j (st+j)

]
. (16.17.1)

The left side is the stock of nominal liabilities of the government outstanding

at the beginning of period t divided by the equilibrium price level Pt(s
t). The

right side is the real value of future government surpluses. Cochrane notes the

resemblance of this equation to an asset pricing equation and interprets it as

a fiscal theory of the price level by asserting that news about the right side of

(16.17.1) will cause immediate adjustments in the price level that he regards as

‘revaluations’ of the government’s outstanding stock of government debt.

Niepelt (2004) objects to isolating equation (16.17.1) and interpreting it in

this way. Niepelt’s perspective can be expressed neatly within the Chari, Chris-

tiano, and Kehoe model. Here it is the stochastic process for the price level that

is an equilibrium object that adjusts to create a stochastic process of realized

return on nominal government debt that does the same job as state-contingent

real government debt. Within an equilibrium, individuals are never ‘surprised’

or ‘disappointed’ by rate of return realizations on nominal government debt. As

the economy passes from one Arrow-Debreu node to its successor, Cochrane’s

favorite equation (16.17.1) of course prevails (along with other equations such

as the household’s intertemporal optimization conditions that help determine a

continuation equilibrium), but it is potentially misleading to promote equation

by itself (16.17.1) to the status of a complete theory of the price level.
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16.17.2. Disappearance of quantity theory?

Actually, a version of the quantity theory coexists along with equation (16.17.1)

in the Chari, Christiano, and Kehoe model. To see this, note that the govern-

ment can set the initial price level P0(s
0) to any positive number by executing

an appropriate time 0 open market operation.24 Thus, we can regard the time 0

government budget constraint (16.16.9) as a constraint on a time 0 open mar-

ket operation. The government can set the nominal money supply M1(s
0) > 0

to an arbitrary positive number subject to the constraint B1(s
0) = −M1(s

0)

that holds under the Friedman rule. The government issues money to purchase

nominally denominated bonds subject to B1(s
0) = −M1(s

0), as given by gov-

ernment budget constraint (16.16.9) under the Friedman rule. The household

is willing to issue these bonds in exchange for money. Presuming that the cash-

in-advance constraint is satisfied with equality, the price level and money supply

then conform to P0(s
0)c10(s

0) =M1(s
0), which is a version of the quantity the-

ory equation for the price level at time 0.25 This equation provides the basis for

a sharp statement of the quantity theory: with fiscal policy being held constant,

a time 0 open market operation that increases M1(s
0) leads to a proportionate

increase in the price level at all histories and dates while leaving the equilibrium

allocation and real rates of return unaltered.

24 The argument of this subsection treats time 0 in a peculiar way because no endogenous

variables inherited from the past impede independently manipulating time 0 (and all subse-

quent) nominal quantities. This special treatment of time 0 also characterizes many other

presentations of the quantity theory of money as a ‘pure units change’ experiment that multi-

plies nominal quantities at all dates and all histories by the same positive scalar. Commenting

on a paper by Robert Townsend at the Minneapolis Federal Reserve Bank in 1985, Ramon

Marimon asked ‘when is time 0?’, thereby anticipating doubts expressed by Niepelt (2004).
25 Under the Friedman rule with a zero nominal interest rate, the household would be

indifferent between holding excess balances of money above and beyond cash-in-advance con-

straint (16.16.4) or holding of nominal government bonds. Likewise, the government would

be indifferent about whether to issue nominal indebtedness in the form of nominal bonds or

money, because both liabilities carry the same cost to the government, either in the form of

interest payments on bonds or open-market repurchases of money to deliver a deflation that

amounts to the same real return on money as on bonds. However, while the composition of

nominal government liabilities is indeterminate under the Friedman rule, the total amount of

such liabilities and hence, the price level is determinate.
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16.17.3. Price level indeterminacy under interest rate peg

Sargent and Wallace (1975) established that an interest rate peg leads to price

level indeterminacy in an ad hoc macroeconomic model. We demonstrate how

the same result arises in two different forms in the Chari, Christiano, and Kehoe

model. First, using an argument similar to that of the quantity theory in section

16.17.2, we show that a proportionate increase in the price level at all histories

and dates is consistent with a given interest rate peg. Second, we extend the

indeterminacy result to an economy with ongoing sunspot uncertainty.

We simplify our analysis by setting all distortionary taxes, government con-

sumption, and government bond issues equal to zero. We assume that the gov-

ernment can levy a real lump sum tax τht (s
t) on the household at time t after

history st . A negative value of τht (s
t) means a lump sum transfer to the house-

hold. As with other taxes, the lump sum tax is payable in money and paid to

the government in the securities market; when τht (s
t) is negative, the household

receives the lump sum transfer as money in the securities market. The new

version of government budget constraint (16.16.8) becomes

Mt+1

(
st
)
−Mt

(
st−1

)
= −Pt

(
st
)
τht
(
st
)
, (16.17.2)

where now the government uses the revenues from lump sum taxation to alter

the money supply in the securities market. The new version of government

constraint (16.16.9) in period 0 is

M1

(
s0
)
= −P0

(
s0
)
τh0
(
s0
)
. (16.17.3)

Under an interest rate peg, the government stands ready to accommodate

any money demand that arises at the pegged interest rate. What will be the

resulting equilibrium price level? Note from interest rate expression (16.16.7)

that any proportionate increase in the price level at all histories and dates is

consistent with a given interest rate peg. This means that the price level is

indeterminate under an interest rate peg.

We now turn to a form of price level indeterminacy that can be driven by

ongoing sunspot uncertainty. For a given interest rate peg Rt(s
t) and a current

price level Pt(s
t), interest rate expression (16.16.7) implies a unique magnitude

for the denominator of that equation, but not for the individual price levels

Pt+1(s
t+1) after each history st+1 in the next period. There exist equilibria

in which next period’s price level depend on a sunspot, so long as restriction
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(16.16.7) is satisfied with respect to the expected inverse of next period’s price

level, weighted by the marginal utilities in different states next period. Hence,

when the government stands ready to accommodate any such system of expec-

tations, an interest rate peg is associated with price level indeterminacy.

16.17.4. Monetary or fiscal theory of the price level?

Sargent and Wallace (1975) show that the price level becomes determinate under

a money supply rule, and the same holds true in the Chari, Christiano, and

Kehoe model. Specifically, when the equilibrium nominal interest is strictly

positive, it follows that cash-in-advance constraint (16.16.4) holds with equality

and thus, the price level is given by Pt(s
t) = Mt+1(s

t)/c1t(s
t). Price level

determinacy also prevails under the Friedman rule with a zero nominal interest

rate, as discussed in footnote 25. Thus, in this economy the government’s ability

to control the money supply gives it the ability to control the price level.

While the analysis of Sargent and Wallace (1975) is typically viewed as

describing a monetary theory of the price level, proponents of the fiscal theory

of the price level might reply that it is really fiscal policy as summarized by

right side of government budget constraint (16.17.2) that determines the price

level. If we ignore period 0, we can confirm that assertion. The argument

goes as follows. Instead of thinking in terms of the quantity of money needed

to support a price level Pt(s
t), the government proceeds by calculating the

implied real value of households’ money balances carried over from last period,

Mt(s
t−1)/Pt(s

t), and if that quantity is higher (lower) than the quantity of cash

goods that will be transacted in the present period, c1t(s
t), the government sets

a lump sum tax (transfer) equal to the difference,

τht
(
st
)
=
Mt

(
st−1

)

Pt (st)
− c1t

(
st
)
. (16.17.4)

After using cash-in-advance constraint (16.16.4) at equality to eliminate the

last term in expression (16.17.4), this is just government budget constraint

(16.17.2). Hence, for the same reason that a money supply rule achieved price

level determinacy so would the prescribed lump sum tax associated with the

required fiscal policy.

So far, so good for the fiscal theory of the price level. But in the present

economy, the fiscal theory runs into trouble for period 0. Since we have assumed
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that there are no outstanding money balances at the beginning of period 0, the

fiscal policy according to expression (16.17.4) becomes

τh0
(
s0
)
= −c10

(
s0
)
. (16.17.5)

That is, since the government supplies all money balances in period 0, the fiscal

policy prescribes a lump sum transfer (negative tax) equal to the quantity of

cash goods that will be transacted in period 0. But what will the equilibrium

price level be? Because expression (16.17.5) lacks the first term on the right side

of expression (16.17.4) in all subsequent periods, there is effectively no anchor

for the price level in period 0. We conclude that, in contrast to an admissi-

ble exogenous process for the nominal money supply, an admissible exogenous

process for real lump sum taxes and transfers is associated with price level in-

determinacy because any positive number P0(s
0) can serve as the equilibrium

price level in period 0.26

A reader might regard this way of disarming a fiscal theory of the price level

as a knife-edged result because any positive initial money balances, M0(s
−1) >

0, would render the price level determinate. Perhaps, but this special example

motivates us to return to the fiscal theory of the price level in chapter 27, and

section 27.4.3 in particular, where we discuss Bassetto’s (2002) reformulation of

that theory. In criticizing the valuation-equation view of the government budget

constraint in section 16.17.1, Bassetto argues that the fiscal theory of the price

level should be cast as a game where government strategies are specified for ar-

bitrary outcomes, not just equilibrium outcomes. Such a complete specification

of a policy scheme is crucial for determining whether the scheme implements

a unique equilibrium, or whether instead it leaves room for multiple equilibria

indexed by systems of private sector expectations.

26 A monetary model with a cash-in-advance constraint like (16.16.4), is well suited to

deliver a conclusion that control of the money supply can lead to price level determinacy.

Because by assumption, money must be used in exchanges and therefore, cash-in-advance

constraint (16.16.4) takes on the appearance of a quantity-theory-of-money equation. But

this support for a particular currency’s value vanishes if there are substitutes that can provide

the same transaction services, like a foreign country’s currency, or if money is valued because

of dynamic inefficiency in an overlapping generations model, as analyzed in chapter 9. When

revisiting the fiscal theory of the price level in sections 27.3 and 27.4, we will return to these

issues in the context of a two-country (two-currency) overlapping generations model.
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16.18. Zero tax on human capital

Returning to a nonmonetary, nonstochastic growth model, Jones, Manuelli, and

Rossi (1997) show that the optimality of a limiting zero tax also applies to

labor income in a model with human capital, ht , so long as the technology for

accumulating human capital displays constant returns to scale in the stock of

human capital and goods used (not including raw labor).

We postulate the following human capital technology,

ht+1 = (1− δh)ht +H (xht, ht, nht) , (16.18.1)

where δh ∈ (0, 1) is the rate at which human capital depreciates. The function

H describes how new human capital is created with the input of a market good

xht , the stock of human capital ht , and raw labor nht . Human capital is in

turn used to produce “efficiency units” of labor et ,

et =M (xmt, ht, nmt) , (16.18.2)

where xmt and nmt are the market good and raw labor used in the process.

We assume that both H and M are homogeneous of degree one in market

goods (xjt, j = h,m) and human capital (ht ), and twice continuously differen-

tiable with strictly decreasing (but everywhere positive) marginal products of

all factors.

The number of efficiency units of labor et replaces our earlier argument

for labor in the production function, F (kt, et). The household’s preferences are

still described by expression (16.2.1), with leisure ℓt = 1 − nht − nmt . The

economy’s aggregate resource constraint is

ct + gt + kt+1 + xmt + xht

= F [kt,M (xmt, ht, nmt)] + (1− δ) kt. (16.18.3)

The household’s present-value budget constraint is

∞∑

t=0

q0t (1 + τct ) ct =

∞∑

t=0

q0t [(1− τnt )wtet − (1 + τmt )xmt − xht]

+
[(
1− τk0

)
r0 + 1− δ

]
k0 + b0, (16.18.4)

where we have added τct and τmt to the set of tax instruments, to enhance the

government’s ability to control various margins. Substitute equation (16.18.2)
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into equation (16.18.4), and let λ be the Lagrange multiplier on this budget

constraint, while αt denotes the Lagrange multiplier on equation (16.18.1). The

household’s first-order conditions are then

ct: βtuc (t)− λq0t (1 + τct ) = 0, (16.18.5a)

nmt: − βtuℓ (t) + λq0t (1− τnt )wtMn (t) = 0, (16.18.5b)

nht: − βtuℓ (t) + αtHn (t) = 0, (16.18.5c)

xmt: λq0t [(1− τnt )wtMx (t)− (1 + τmt )] = 0, (16.18.5d)

xht: − λq0t + αtHx (t) = 0, (16.18.5e)

ht+1: − αt + λq0t+1

(
1− τnt+1

)
wt+1Mh (t+ 1)

+ αt+1 [1− δh +Hh (t+ 1)] = 0. (16.18.5f)

Substituting equation (16.18.5e) into equation (16.18.5f ) yields

q0t
Hx(t)

= q0t+1

[1− δh +Hh(t+ 1)

Hx(t+ 1)

+ (1− τnt+1)wt+1Mh(t+ 1)
]
. (16.18.6)

We now use the household’s first-order conditions to simplify the sum on the

right side of the present-value constraint (16.18.4). First, note that homogeneity

of H implies that equation (16.18.1) can be written as

ht+1 = (1− δh)ht +Hx (t)xht +Hh (t)ht.

Solve for xht with this expression, use M from equation (16.18.2) for et , and

substitute into the sum on the right side of equation (16.18.4), which then

becomes
∞∑

t=0

q0t

{
(1− τnt )wtMx (t)xmt + (1− τnt )wtMh (t)ht

− (1 + τmt )xmt −
ht+1 − [1− δh +Hh (t)]ht

Hx (t)

}
.

Here we have also invoked the homogeneity of M . First-order condition (16.18.5d)

implies that the term multiplying xmt is zero, [(1−τnt )wtMx(t)−(1+τmt )] = 0.

After rearranging, we are left with
[
1− δh +Hh (0)

Hx (0)
+ (1− τn0 )w0Mh (0)

]
h0 −

∞∑

t=1

ht

{
q0t−1

Hx (t− 1)

− q0t

[
1− δh +Hh (t)

Hx (t)
+ (1− τnt )wtMh (t)

]}
. (16.18.7)
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However, the term in braces is zero by first-order condition (16.18.6), so the

sum on the right side of equation (16.18.4) simplifies to the very first term in

this expression.

Following our standard scheme of constructing the Ramsey plan, a few more

manipulations of the household’s first-order conditions are needed to solve for

prices and taxes in terms of the allocation. We first assume that τc0 = τk0 =

τn0 = τm0 = 0. If the numeraire is q00 = 1, then condition (16.18.5a) implies

q0t = βt
uc (t)

uc (0)

1

1 + τct
. (16.18.8a)

From equations (16.18.5b) and (16.18.8a) and wt = Fe(t), we obtain

(1 + τct )
uℓ (t)

uc (t)
= (1− τnt )Fe (t)Mn (t) , (16.18.8b)

and, by equations (16.18.5c), (16.18.5e), and (16.18.8a),

(1 + τct )
uℓ (t)

uc (t)
=
Hn (t)

Hx (t)
, (16.18.8c)

and equation (16.18.5d) with wt = Fe(t) yields

1 + τmt = (1− τnt )Fe (t)Mx (t) . (16.18.8d)

For a given allocation, expressions (16.18.8) allow us to recover prices and taxes

in a recursive fashion: (16.18.8c) defines τct and (16.18.8a) can be used to

compute q0t , (16.18.8b) sets τ
n
t , and (16.18.8d) pins down τmt .

Only one task remains to complete our strategy of determining prices and

taxes that achieve any allocation. The additional condition (16.18.6) charac-

terizes the household’s intertemporal choice of human capital, which imposes

still another constraint on the price q0t and the tax τnt . Our determination of

τnt in equation (16.18.8b) can be thought of as manipulating the margin that

the household faces in its static choice of supplying effective labor et , but the

tax rate also affects the household’s dynamic choice of human capital ht . Thus,

in the Ramsey problem, we will have to impose the extra constraint that the

allocation is consistent with the same τnt entering both equations (16.18.8b)

and (16.18.6). To find an expression for this extra constraint, solve for (1− τnt )

from equation (16.18.8b) and a lagged version of equation (16.18.6), which are
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then set equal to each other. We eliminate the price q0t by using equations

(16.18.8a) and (16.18.8c), and the final constraint becomes

uℓ (t− 1)Hn (t) =βuℓ (t)Hn (t− 1)

·
[
1− δh +Hh (t) +Hn (t)

Mh (t)

Mn (t)

]
. (16.18.9)

Proceeding to step 2 in constructing the Ramsey plan, we use condition

(16.18.8a) to eliminate q0t (1+τ
c
t ) in the household’s budget constraint (16.18.4).

After also invoking the simplified expression (16.18.7) for the sum on the right

side of (16.18.4), the implementability condition can be written as

∞∑

t=0

βtuc (t) ct − Ã = 0, (16.18.10)

where Ã is given by

Ã = Ã (c0, nm0, nh0, xm0, xh0)

= uc (0)

{[
1− δh +Hh (0)

Hx (0)
+ Fe (0)Mh (0)

]
h0

+ [Fk (0) + 1− δk] k0 + b0

}
.

In step 3, we define

V (ct, nmt, nht,Φ) = u (ct, 1− nmt − nht) + Φuc (t) ct, (16.18.11)

and formulate a Lagrangian,

J =

∞∑

t=0

βt
{
V (ct, nmt, nht,Φ)

+ θt

{
F [kt,M (xmt, ht, nmt)] + (1− δ) kt

− ct − gt − kt+1 − xmt − xht

}

+ νt [(1− δh)ht +H (xht, ht, nht)− ht+1]

}
− ΦÃ. (16.18.12)

This formulation would correspond to the Ramsey problem if it were not for the

missing constraint (16.18.9). Following Jones, Manuelli, and Rossi (1997), we



Zero tax on human capital 737

will solve for the first-order conditions associated with equation (16.18.12), and

when it is evaluated at a steady state, we can verify that constraint (16.18.9)

is satisfied even though it has not been imposed. Thus, if both the problem in

expression (16.18.12) and the proper Ramsey problem with constraint (16.18.9)

converge to a unique steady state, they will converge to the same steady state.

The first-order conditions for equation (16.18.12) evaluated at the steady

state are

c: Vc = θ (16.18.13a)

nm: Vnm
= −θFeMn (16.18.13b)

nh: Vnh
= −νHn (16.18.13c)

xm: 1 = FeMx (16.18.13d)

xh: θ = νHx (16.18.13e)

h: 1 = β

(
1− δh +Hh +

θ

ν
FeMh

)
(16.18.13f)

k: 1 = β (1− δk + Fk) . (16.18.13g)

Note that Vnm
= Vnh

, so by conditions (16.18.13b) and (16.18.13c),

θ

ν
=

Hn

FeMn
, (16.18.14)

which we substitute into equation (16.18.13g ),

1 = β

(
1− δh +Hh +Hn

Mh

Mn

)
. (16.18.15)

Condition (16.18.15) coincides with constraint (16.18.9), evaluated in a steady

state. In other words, we have confirmed that the problem (16.18.12) and the

proper Ramsey problem with constraint (16.18.9) share the same steady state,

under the maintained assumption that both problems converge to a unique

steady state.

What is the optimal τn ? The substitution of equation (16.18.13e) into

equation (16.18.14) yields

Hx =
Hn

FeMn
. (16.18.16)

The household’s first-order conditions (16.18.8b) and (16.18.8c) imply in a

steady state that

(1− τn)Hx =
Hn

FeMn
. (16.18.17)
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It follows immediately from equations (16.18.16) and (16.18.17) that τn = 0.

Given τn = 0, conditions (16.18.8d) and (16.18.13d) imply τm = 0. We

conclude that in the present model neither labor nor capital should be taxed in

the limit.

16.19. Should all taxes be zero?

The optimal steady-state tax policy of the model in the previous section is to

set τk = τn = τm = 0. However, in general, this implies τc 6= 0. To see this

point, use equation (16.18.8b) and τn = 0 to get

1 + τc =
uc
uℓ
FeMn. (16.19.1)

From equations (16.18.13a) and (16.18.13b)

FeMn = −Vnm

Vc
=

uℓ +Φucℓc

uc +Φ(uc + uccc)
. (16.19.2)

Hence,

1 + τc =
ucuℓ +Φucucℓc

ucuℓ +Φ(ucuℓ + uccuℓc)
. (16.19.3)

As discussed earlier, a first-best solution without distortionary taxation has

Φ = 0, so τc should trivially be set equal to zero. In a second-best solution,

Φ > 0 and we get τc = 0 if and only if

ucucℓc = ucuℓ + uccuℓc, (16.19.4)

which is in general not satisfied. However, Jones, Manuelli, and Rossi (1997)

point out one interesting class of utility functions that is consistent with equation

(16.19.4):

u (c, ℓ) =





c1−σ

1− σv (ℓ) if σ > 0, σ 6= 1

ln (c) + v (ℓ) if σ = 1.

If a steady state exists, the optimal solution for these preferences is eventually to

set all taxes equal to zero. It follows that the optimal plan involves collecting tax

revenues in excess of expenditures in the initial periods. When the government

has amassed claims against the private sector so large that the interest earnings
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suffice to finance g , all taxes are set equal to zero. Since the steady-state interest

rate is R = β−1 , we can use the government’s budget constraint (16.2.5) to find

the corresponding value of government indebtedness

b =
β

β − 1
g < 0.

16.20. Concluding remarks

Perhaps the most startling finding of this chapter is that the optimal steady-

state tax on physical capital in a nonstochastic economy is equal to zero. The

conclusion follows immediately from time-additively separable utility, a stan-

dard constant-returns-to-scale production technology, competitive markets, and

a complete set of flat-rate taxes. It is instructive to consider Jones, Manuelli,

and Rossi’s (1997) extension of the no-tax result to labor income, or more pre-

cisely human capital. They ask rhetorically, Is physical capital special? We

are inclined to answer yes to this question for the following reason. The zero

tax on human capital is derived in a model where the production of both hu-

man capital and “efficiency units” of labor show constant returns to scale in

the stock of human capital and the use of final goods but not raw labor which

otherwise enters as an input in the production functions. These assumptions

explain why the stream of future labor income in the household’s present-value

budget constraint in equation (16.18.4) is reduced to the first term in equation

(16.18.7), which is the value of the household’s human capital at time 0. Thus,

the functional forms have made raw labor disappear as an object for taxation

in future periods. Or in the words of Jones, Manuelli, and Rossi (1997, pp.

103 and 99), “Our zero tax results are driven by zero profit conditions. Zero

profits follow from the assumption of linearity in the accumulation technolo-

gies. Since the activity ‘capital income’ and the activity ‘labor income’ display

constant returns to scale in reproducible factors, their ‘profits’ cannot enter the

budget constraint in equilibrium.” But for alternative production functions that

make the endowment of raw labor reappear, the optimal labor tax would not be

zero. It is for this reason that we think physical capital is special: because the

zero-tax result arises with the minimal assumptions of the standard neoclassical
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growth model, while the zero-tax result on labor income requires that raw labor

vanishes from the agent’s present-value budget constraint.27

Our optimal steady-state tax analysis is silent about how long it takes to

reach the zero tax on capital income and how taxes and redistributive transfers

are set during the transition to a steady state. These issues have been studied

numerically by Chari, Christiano, and Kehoe (1994), though their paper in-

volves no redistributional concerns because they assume a representative agent.

Domeij and Heathcote (2000) construct a model with heterogeneous agents and

incomplete insurance markets to study the welfare implications of eliminating

capital income taxation. Using earnings and wealth data from the United States,

they calibrate a stochastic process for labor earnings that implies a wealth dis-

tribution of asset holdings resembling the empirical one. Setting initial tax rates

equal to estimates of present taxes in the United States, they study the effects

of an unexpected policy reform that sets the capital tax permanently equal to

zero and raises the labor tax to maintain long-run budget balance. They find

that a majority of households prefers the status quo to the tax reform because

of the distributional implications.

This example illustrates the importance of a well-designed tax and transfer

policy in the transition to a new steady state. In addition, as shown by Aiyagari

(1995), the optimal capital tax in a heterogeneous-agent model with incomplete

insurance markets is actually positive, even in the long run. A positive capital

tax is used to counter the tendency of such an economy to overaccumulate

capital because of too much precautionary saving. We say more about these

heterogeneous-agent models in chapter 18.

Golosov, Kocherlakota, and Tsyvinski (2003) pursue another way of dis-

rupting the connection between stationary values of the two key Euler equations

that underlie Chamley and Judd’s zero-tax-on-capital outcome. They put the

Ramsey planner in a private information environment in which it cannot observe

the hidden skill levels of different households. That impels the planner to design

the tax system as an optimal dynamic incentive mechanism that trades off cur-

rent and continuation values in an optimal way. We discuss such mechanisms for

27 One special case of Jones, Manuelli, and Rossi’s (1997) framework with its zero-tax

result for labor is Lucas’s (1988) endogenous growth model studied in chapter 15. Recall our

alternative interpretation of that model as one without any nonreproducible raw labor but just

two reproducible factors: physical and human capital. No wonder that raw labor in Lucas’s

model does not affect the optimal labor tax, since the model can equally well be thought of

as an economy without raw labor.
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coping with private information in chapter 21. Because the information problem

alters the planner’s Euler equation for the household’s consumption, Chamley

and Judd’s result does not hold for this environment.

Throughout this chapter we have assumed that a government can commit

to future tax rates at time 0. As noted earlier, taxing the capital stock at time

0 amounts to lump-sum taxation and therefore dispenses with distortionary

taxation. It follows that a government without a commitment technology would

be tempted in future periods to renege on its promises and levy a confiscatory

tax on capital. An interesting question arises: can the incentive to maintain

a good reputation replace a commitment technology? That is, can a promised

policy be sustained in an equilibrium because the government wants to preserve

its reputation? Reputation involves history dependence and incentives and will

be studied in chapter 27.

Exercises

Exercise 16.1 A small open economy (Razin and Sadka, 1995)

Consider the nonstochastic model with capital and labor in this chapter, but

assume that the economy is a small open economy that cannot affect the in-

ternational rental rate on capital, r∗t . Domestic firms can rent any amount of

capital at this price, and the households and the government can choose to go

short or long in the international capital market at this rental price. There is no

labor mobility across countries. We retain the assumption that the government

levies a tax τnt on each household’s labor income, but households no longer have

to pay taxes on their capital income. Instead, the government levies a tax τ̂kt
on domestic firms’ rental payments to capital regardless of the capital’s origin

(domestic or foreign). Thus, a domestic firm faces a total cost of (1 + τ̂kt )r
∗
t on

a unit of capital rented in period t .

a. Solve for the optimal capital tax τ̂kt .

b. Compare the optimal tax policy of this small open economy to that of the

closed economy of this chapter.
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Exercise 16.2 Consumption taxes

Consider the nonstochastic model with capital and labor in this chapter, but

instead of labor and capital taxation assume that the government sets labor

and consumption taxes, {τnt , τct } . Thus, the household’s present-value budget

constraint is now given by

∞∑

t=0

q0t (1 + τct ) ct =

∞∑

t=0

q0t (1− τnt )wtnt + [r0 + 1− δ] k0 + b0.

a. Solve for the Ramsey plan.

b. Suppose that the solution to the Ramsey problem converges to a steady

state. Characterize the optimal limiting sequence of consumption taxes.

c. In the case of capital taxation, we imposed an exogenous upper bound on

τk0 . Explain why a similar exogenous restriction on τc0 is needed to ensure an

interesting Ramsey problem. (Hint: Explore the implications of setting τct = τc

and τnt = −τc for all t ≥ 0, where τc is a large positive number.)

Exercise 16.3 Specific utility function (Chamley, 1986)

Consider the nonstochastic model with capital and labor in this chapter, and

assume that the period utility function in equation (16.2.1) is given by

u (ct, ℓt) =
c1−σt

1− σ
+ v (ℓt) ,

where σ > 0. When σ is equal to 1, the term c1−σt /(1 − σ) is replaced by

log(ct).

a. Show that the optimal tax policy in this economy is to set capital taxes

equal to zero in period 2 and from there on, i.e., τkt = 0 for t ≥ 2. (Hint:

Given the preference specification, evaluate and compare equations (16.5.4)

and (16.5.9a).)

b. Suppose there is uncertainty in the economy, as in the stochastic model with

capital and labor in this chapter. Derive the optimal ex ante capital tax rate for

t ≥ 2.
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Exercise 16.4 Two labor inputs (Jones, Manuelli, and Rossi, 1997)

Consider the nonstochastic model with capital and labor in this chapter, but

assume that there are two labor inputs, n1t and n2t , entering the production

function, F (kt, n1t, n2t). The household’s period utility function is still given

by u(ct, ℓt) where leisure is now equal to

ℓt = 1− n1t − n2t.

Let τnit be the flat-rate tax at time t on wage earnings from labor nit , for

i = 1, 2, and τkt denotes the tax on earnings from capital.

a. Solve for the Ramsey plan. What is the relationship between the optimal

tax rates τn1t and τn2t for t ≥ 1? Explain why your answer is different for period

t = 0. As an example, assume that k and n1 are complements while k and n2

are substitutes.

We now assume that the period utility function is given by u(ct, ℓ1t, ℓ2t)

where

ℓ1t = 1− n1t, and ℓ2t = 1− n2t.

Further, the government is now constrained to set the same tax rate on both

types of labor, i.e., τn1t = τn2t for all t ≥ 0.

b. Solve for the Ramsey plan. (Hint: Using the household’s first-order condi-

tions, we see that the restriction τn1t = τn2t can be incorporated into the Ramsey

problem by adding the constraint uℓ1(t)Fn2 (t) = uℓ2(t)Fn1(t).)

c. Suppose that the solution to the Ramsey problem converges to a steady state

where the constraint that the two labor taxes should be equal is binding. Show

that the limiting capital tax is not zero unless Fn1Fn2k = Fn2Fn1k .

Exercise 16.5 Another specific utility function

Consider the following optimal taxation problem. There is no uncertainty. There

is one good that is produced by labor xt of the representative household, and

that can be divided among private consumption ct and government consumption

gt subject to

ct + gt = 1− xt. (0)

The good is produced by zero-profit competitive firms that pay the worker a

pretax wage of 1 per unit of 1 − xt (i.e., the wage is tied down by the linear
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technology). A representative consumer maximizes

∞∑

t=0

βtu (ct, xt) (1)

subject to the sequence of budget constraints

ct + qtbt+1 ≤ (1− τt) (1− xt) + bt (2)

where ct is consumption, xt is leisure, qt is the price of consumption at t + 1

in units of time t consumption, and bt is a stock of one-period IOUs owned

by the household and falling due at time t . Here τt is a flat-rate tax on the

household’s labor supply 1− xt . Assume that u(c, x) = c− .5(1− x)2 .

a. Argue that in a competitive equilibrium, qt = β and xt = τt .

b. Argue that in a competitive equilibrium with b0 = 0 and limt→∞ βtbt = 0,

the sequence of budget constraints (2) imply the following single intertemporal

constraint:
∞∑

t=0

βt (ct − (1− xt) (1− τt)) = 0.

Given an exogenous sequence of government purchases {gt}∞t=0 , a government

wants to maximize (1) subject both to the budget constraint

∞∑

t=0

βt (gt − τt (1− xt)) = 0 (3)

and to the household’s first-order condition

xt = τt. (4)

c. Consider the following government expenditure process defined for t ≥ 0:

gt =

{
0, if t is even;

.2, if t is odd;

Solve the Ramsey plan. Show that the optimal tax rate is given by

τt = τ ∀t ≥ 0.
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Please compute the value for τ when β = .95.

d. Consider the following government expenditure process defined for t ≥ 0:

gt =

{
.2, if t is even;

0, if t is odd;

Show that τt = τ ∀t ≥ 0. Compute τ and comment on whether it is larger or

smaller than the value you computed in part (c).

e. Interpret your results in parts c and d in terms of “tax-smoothing.”

f. Under what circumstances, if any, would τ = 0?

Exercise 16.6 Yet another specific utility function

Consider an economy with a representative household with preferences over

streams of consumption ct and labor supply nt that are ordered by

∞∑

t=0

βt
(
ct − u1nt − .5u2n

2
t

)
, β ∈ (0, 1) (1)

where u1, u2 > 0. The household operates a linear technology

yt = nt, (2)

where yt is output. There is no uncertainty. There is a government that finances

an exogenous stream of government purchases {gt} by a flat rate tax τt on labor.

The feasibility condition for the economy is

yt = ct + gt. (3)

At time 0 there are complete markets in dated consumption goods. Let qt

be the price of a unit of consumption at date t in terms of date 0 consumption.

The budget constraints for the household and the government, respectively, are

∞∑

t=0

qt [(1− τt)nt − ct] = 0 (4)

∞∑

t=0

qt (τtnt − gt) = 0. (5)
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Part I. Call a tax rate process {τt} budget feasible if it satisfies (5).

a. Define a competitive equilibrium with taxes.

Part II. A Ramsey planner chooses a competitive equilibrium to maximize (1).

b. Formulate the Ramsey problem. Get as far as you can in solving it for

the Ramsey plan, i.e., compute the competitive equilibrium price system and

tax policy under the Ramsey plan. How does the Ramsey plan pertain to “tax

smoothing?”

c. Consider two possible government expenditure sequences: Sequence A:

{gt} = {0, g, 0, g, 0, g, . . .} . Sequence B: {gt} = {βg, 0, βg, 0, βg, 0, . . .} . Please

tell how the Ramsey equilibrium tax rates and interest rates differ across the

two equilibria associated with sequence A and sequence B.

Exercise 16.7 Comparison of tax systems

Consider an economy with a representative household that orders consumption,

leisure streams {ct, ℓt}∞t=0 according to

∞∑

t=0

βtu (ct, ℓt) , β ∈ (0, 1)

where u is increasing, strictly concave, and twice continuously differentiable in

c and ℓ . The household is endowed with one unit of time that can be used for

leisure ℓt and labor nt ; ℓt + nt = 1.

A single good is produced with labor nt and capital kt as inputs. The

output can be consumed by households, used by the government, or used to

augment the capital stock. The technology is described by

ct + gt + kt+1 = F (kt, nt) + (1− δ) kt,

where δ ∈ (0, 1) is the rate at which capital depreciates, and gt ≥ 0 is an ex-

ogenous amount of government purchases in period t . The production function

F (k, n) exhibits constant returns to scale.

The government finances its purchases by levying two flat-rate, time varying

taxes {τnt , τat }∞t=0 . τ
n
t is a tax on labor earnings and the tax revenue from this

source in period t is equal to τnt w
n
t nt , where wt is the wage rate. τ

a
t is a tax on

capital earnings and the asset value of the capital stock net of depreciation. That

is, the tax revenue from this source in period t is equal to τat (rt+1−δ)kt , where



Exercises 747

rt is the rental rate on capital. We assume that the tax rates in period 0 cannot

be chosen by the government but must be set equal to zero, τn0 = τa0 = 0. The

government can trade one-period bonds. We assume that there is no outstanding

government debt at time 0.

a. Formulate the Ramsey problem, and characterize the optimal government

policy using the primal approach to taxation.

b. Show that if there exists a steady state Ramsey allocation, the limiting tax

rate τa∞ is zero.

Consider another economy with identical preferences, endowment, technology

and government expenditures but where labor taxation is forbidden. Instead of

a labor tax this economy must use a consumption tax τ̃ct . (We use a tilde to

distinguish outcomes in this economy as compared to the previous economy.)

Hence, this economy’s tax revenues in period t are equal to τ̃ct c̃t+τ̃
a
t (r̃t+1−δ)k̃t .

We assume that the tax rates in period 0 cannot be chosen by the government

but must be set equal to zero, τ̃c0 = τ̃a0 = 0. And as before, the government can

trade in one-period bonds and there is no outstanding government debt at time

0.

c. Formulate the Ramsey problem, and characterize the optimal government

policy using the primal approach to taxation.

Let the allocation and tax rates that solve the Ramsey problem in question a be

given by Ω ≡ {ct, ℓt, nt, kt+1, τ
n
t , τ

a
t }∞t=0 . And let the allocation and tax rates

that solve the Ramsey problem in question c be given by Ω̃ ≡ {c̃t, ℓ̃t, ñt, k̃t+1, τ̃
c
t ,

τ̃at }∞t=0 .

d. Make a careful argument for how the allocation {ct, ℓt, nt, kt+1}∞t=0 compares

to the allocation {c̃t, ℓ̃t, ñt, k̃t+1}∞t=0 .

e. Find expressions for the tax rates {τ̃ct , τ̃at }∞t=1 solely in terms of {τnt , τat }∞t=1 .

f. Write down the government’s present value budget constraint in the first

economy which holds with equality for the allocation and tax rates as given

by Ω. Can you manipulate this expression so that you arrive at the govern-

ment’s present value budget constraint in the second economy by only using

your characterization of Ω̃ in terms of Ω in questions d and e?
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Exercise 16.8 Taxes on capital, labor, and consumption, I

Consider the nonstochastic version of the model with capital and labor in this

chapter, but now assume that the government sets labor, capital, and consump-

tion taxes, {τnt , τkt , τct } . Thus, the household’s present-value budget constraint

is

∞∑

t=0

q0t (1 + τct ) ct =

∞∑

t=0

q0t (1− τnt )wtnt +
[
r0
(
1− τkt

)
+ 1− δ

]
k0 + b0.

a. Suppose that there are upper bounds on τk0 and τc0 . Solve for the Ramsey

plan. Is the Ramsey tax system unique?

b. Take an arbitrary (non-optimal) tax policy that sets τct = 0, τnt = τ̂n, τkt = τ̂k

for all t ≥ 0. Let the equilibrium allocation under this policy be {ĉt, n̂t, k̂t+1}∞t=0 .

Show that you can support the same (̂·) allocation with a different tax policy,

namely one that sets τkt = 0 for all t and time varying taxes τct , τ
n
t for t ≥ 0.

Find expressions for the time varying taxes τct , τ
n
t as functions of the original

(̂·) tax policy and the (̂·) equilibrium allocation.

c. Interpret the time-varying taxes that you computed in part b in terms of the

intertemporal distortions on the final goods (ct, ℓt) that are in effect induced by

a constant tax on capital. (By ‘final goods’ we refer to the goods that appear

in the representative household’s utility function.)

d. Interpret the outcomes in parts b and c in terms of the following advice

that comes from the asymptotic properties of the Ramsey plan. Lesson 1: don’t

distort intertemporal margins in the limit. Lesson 2: distort intratemporal

margins in the same way each period.

Exercise 16.9 Taxes on capital, labor, and consumption, II

Consider the nonstochastic version of the model with capital and labor in this

chapter, but now assume that the government sets labor, capital, and consump-

tion taxes, {τnt , τkt , τct } . The household’s present-value budget constraint is

∞∑

t=0

q0t (1 + τct ) ct =

∞∑

t=0

q0t (1− τnt )wtnt +
[
r0
(
1− τkt

)
+ 1− δ

]
k0 + b0.

a. Suppose that there are upper bounds on τk0 and τc0 . Solve for the Ramsey

plan. Is the Ramsey tax system unique?
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b. Take an arbitrary (non-optimal) tax policy that involves τct = 0, τnt =

τ̂n, τkt = τ̂k for all t ≥ 0. Let the equilibrium allocation under this policy be

{ĉt, n̂t, k̂t+1}∞t=0 .

c. Freeze the capital tax policy τkt = τ̂k for all t ≥ 0. But now allow {τct , τnt }∞t=0

to vary through time. Can you find a tax policy within this class that solves

the Ramsey problem?

d. Interpret the outcome in part c in terms of the following advice that comes

from the asymptotic properties of the Ramsey plan. Lesson 1: don’t distort

intertemporal margins in the limit. Lesson 2: distort intratemporal margins in

the same way each period.

Exercise 16.10 Lucas and Stokey (1983) model

Consider the following version of Lucas and Stokey’s (1983) model of optimal

taxation with complete markets. A stochastic state st at time t determines

an exogenous shock to government purchases gt(st). The history of events

st indexes history-contingent commodities: ct(s
t), ℓt(s

t), and nt(s
t) are the

household’s consumption, leisure, and labor at time t given history st . There

is no capital.

A representative household’s preferences are ordered by

∞∑

t=0

∑

st

βtπt
(
st
)
u
[
ct
(
st
)
, ℓt
(
st
)]
, (1)

where ℓt ∈ [0, 1]. The household has quasi-linear utility function

u (c, ℓ) = c+H (ℓ) (2)

where H ′ > 0, H ′′ < 0, and H ′′′ is well defined. The production function is

linear in the only input labor, so the feasibility condition at t, st is

ct
(
st
)
+ gt

(
st
)
= 1− ℓt

Given history st at time t , the government finances its exogenous purchase

gt(st) and any debt obligation by levying a flat-rate tax on earnings from labor

at rate τnt (s
t), and by issuing state-contingent debt. Let bt+1(st+1|st) be gov-

ernment indebtedness to the private sector at the beginning of period t + 1 if

event st+1 is realized. This state-contingent asset is traded in period t at the
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price pt(st+1|st), in terms of time t goods. The government’s budget constraint

is
gt (st) =τ

n
t

(
st
)
wt
(
st
)
nt
(
st
)

+
∑

st+1

pt
(
st+1|st

)
bt+1

(
st+1|st

)
− bt

(
st|st−1

)
, (3)

where wt(s
t) is the competitive equilibrium wage rate for labor.

a. Formulate the Ramsey problem using the ‘primal approach’. Get as far as

you can in solving it.

b. Describe how ct, ℓt , and τnt behave as functions of gt .

c. Suppose that government expenditures gt are drawn from the following

stochastic process: gt = 0 for t = 0, . . . , T − 1; for all t ≥ T, gt = .5 with

probability α ∈ (0, 1), and for all t ≥ T, gt = 0 with probability (1 − α). All

uncertainty about gt for t ≥ T is resolved at time T . Describe the government’s

optimal tax-debt strategy as it unfolds as time passes and chance occurs.

Exercise 16.11 Another Lucas-Stokey economy

Consider the following economy without capital. There is an exogenous state st

governed by an S -state Markov chain with initial distribution over states π0

and transition matrix P . Let st = st, st−1, . . . , s0 . There is one good in the

economy produced by the linear technology

yt
(
st
)
= nt

(
st
)
,

where nt = 1− lt is the amount of labor supplied by a representative household

and yt is total output. The consumer is endowed with one unit of leisure each

period and can choose lt ∈ [0, 1]. A government consumes an exogenous stream

of government expenditures gt(s
t), while the representative household consumes

the endogenous stream of consumption ct(s
t). Feasible allocations satisfy

yt
(
st
)
= ct

(
st
)
+ gt

(
st
)

and ct(s
t) ≥ 0. The representative household orders consumption-leisure plans

{ct(st), lt(st)} according to

(1)

∞∑

t=0

∑

st

βtΠt
(
st
) [
ct
(
st
)
+H

(
lt
(
st
))]
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where Πt(s
t) is the joint probability distribution over history st induced by

P, π0 , and H(l) satisfies H ′ > 0, H ′′ < 0, H(0) > 1, H(1) > 0.

We ask you to analyze a competitive equilibrium with distorting taxes. In par-

ticular, the government finances its expenditures by levying a flat rate tax τct (s
t)

on time t , history st consumption, perhaps also issuing history-contingent gov-

ernment debt. There are no other taxes. Let q0t (s
t) be the (Arrow-Debreu)

price of one unit of consumption at t, st . The (Arrow-Debreu version of the)

government’s budget constraint is

(2)

∞∑

t=0

∑

st

q0t
(
st
)
gt
(
st
)
+ q00

(
s0
)
b0 =

∞∑

t=0

∑

st

q0t
(
st
)
τct
(
st
)
ct
(
st
)
,

where b0 is initial government debt at the beginning of time 0 measured in

units of time 0 consumption goods.

Please consider the following special case of the economy. For t 6= 2, government

expenditures are constant at level g = gL = .1. But at t = 2, government

expenditures are gH = .2 with probability .5 and again gL = .1 with probability

.5.

a. (“Finding the state is an art”) Please define a state space and correspond-

ing Markov chain for this economy. Please completely specify the state space

S , the initial distribution π0 , and the transition matrix P . Hint: Try defining

the state as a (t, g) pair. Try getting by with these 5 states:

(0, gL), (1, gL), (2, gL), (2, gH), (t ≥ 3, gL), say, and call them states 1, 2, 3, 4, 5,

respectively. Then take the data supplied and create π0 and P .

b. For the Markov chain that you created in part a, please compute un-

conditional probabilities over histories at dates t ≥ 1, i.e., please compute

Πt(s
t), t ≥ 1.

c. Please define an Arrow-Debreu style competitive equilbrium with distorting

taxes for this environment, with all trades at time 0.

d. Please define an Arrow-securities style competitive equilibrium with distort-

ing taxes, with trades each period of one-period ahead Arrow securities.

e. Temporarily suppose that b0 = 0. Consider a government policy that always

runs a balanced budget budget, i.e., that sets gt(s
t) = τct (s

t)ct(s
t) for all t, st .
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Describe outcomes (Arrow securities prices and the allocation) in a competitive

equilibrium with sequential trading of Arrow securities.

f. Now suppose that b0 > 0. Consider a government policy that always runs

a balanced budget budget, i.e., that sets τct (s
t)ct(s

t) at a level that guarantees

that total government debt owed at time t ≥ 1 equals b0 for all t, st . (Here the

government always runs what the IMF calls a balanced budget ‘net-of-interest’.

In doing this, it always rolls over its one-period debt bt = b0 .) Please find a

formula for the rate of return paid on government debt and describe precisely

the quantities of history-contingent bonds issued by the government at each

t, st . Please describe how the tax rate τct (s
t) depends on b0 .

g. Continuing to assume that b0 > 0, now consider another government fiscal

policy. Here the government sets a constant tax rate τ̄c = τct (s
t) for all t, st .

The tax rate is set to satisfy the time 0 Arrow-Debreu budget constraint (2).

Please tell how to compute τ̄c . Please describe the Arrow securities that the

government issues or purchases at each state. (Please carefully take into account

how you have defined states in part a.)

h. Using the labeling of states described in part a, please describe the payouts

on the government securities for the following two histories for this economy:

(1, 2, 3, 5, 5, 5, 5, . . .)

and

(1, 2, 4, 5, 5, 5, 5, . . .) .

i. Please formulate and solve a Ramsey problem for this economy, assuming

that τct (s
t) is the only tax that the government can impose. Please state the

Ramsey problem carefully and describe in detail an algorithm for computing all

of the objects that comprise a Ramsey plan.

j. Please compare the Ramsey plan that you computed in part i with the

arbitrary policies studied in parts f and g.

k. Define a “continuation of a Ramsey plan.” For this economy, is a continuation

of a Ramsey plan a Ramsey plan? Please explain.

Exercise 16.12 Yet another Lucas-Stokey economy

Consider the following economy without capital. There is an exogenous state

st governed by an S -state Markov chain with initial distribution over states π0
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and transition matrix P . Let st = st, st−1, . . . , s0 . There is one good in the

economy produced by the linear technology

yt
(
st
)
= nt

(
st
)
,

where nt = 1− lt is the amount of labor supplied by a representative household

and yt is total output. The consumer is endowed with one unit of leisure each

period and can choose lt ∈ [0, 1]. A government consumes an exogenous stream

of government expenditures gt(s
t), while the representative household consumes

the endogenous stream of consumption ct(s
t). Feasible allocations satisfy

yt
(
st
)
= ct

(
st
)
+ gt

(
st
)

and ct(s
t) ≥ 0. The representative household orders consumption-leisure plans

{ct(st), lt(st)} according to

(1)

∞∑

t=0

∑

st

βtΠt
(
st
) [
u
(
ct
(
st
))

+ lt
(
st
)]

where Πt(s
t) is the joint probability distribution over history st induced by

P, π0 , and u(c) satisfies u′ > 0, u′′ < 0, u′(0) = +∞ .

We ask you to analyze a competitive equilibrium with distorting taxes. In par-

ticular, the government finances its expenditures by levying a flat rate tax τnt (s
t)

on time t , history st labor, perhaps also issuing history-contingent government

debt. Let q0t (s
t) be the (Arrow-Debreu) price of one unit of consumption at

t, st . There are no other taxes. The(Arrow-Debreu version of the) government’s

budget constraint is

(2)

∞∑

t=0

∑

st

q0t
(
st
)
gt
(
st
)
+ q00

(
s0
)
b0 =

∞∑

t=0

∑

st

q0t
(
st
)
τnt
(
st
)
wt
(
st
)
nt
(
st
)
,

where b0 is initial government debt at the beginning of time 0 and wt(s
t) is a

pre-tax wage rate rate paid to labor.

Please consider the following special case of the economy. For t 6= {2, 3} , gov-
ernment expenditures are constant at level g = gL = .1. But at t = 2 and

t = 3 government expenditures are gH = .2 with probability .5 and gL = .1

with probability .5.
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a. (“Finding the state is an art”) Please define a state space and correspond-

ing Markov chain for this economy. Please completely specify the state space

S , the initial distribution π0 , and the transition matrix P . Hint: Try defining

the state as a (t, g) pair. Try getting by with these 5 states:

(0, gL), (1, gL), (2, gL), (2, gH), t ≥ 3, gL), say, and call them states 1, 2, 3, 4, 5,

respectively. Then take the data supplied and create π0 and P .

b. For the Markov chain that you created in part a, please compute un-

conditional probabilities over histories at dates t ≥ 1, i.e., please compute

Πt(s
t), t ≥ 1.

c. Please define an Arrow-Debreu style competitive equilbrium with distorting

taxes for this environment, with all trades at time 0.

d. Please define an Arrow-securities style competitive equilibrium with distort-

ing taxes, with trades each period of one-period ahead Arrow securities.

e. Temporarily suppose that b0 = 0. Consider a government policy that always

runs a balanced budget budget, i.e., that sets gt(s
t) = τnt (s

t)wt(s
t)nt(s

t) for

all t, st . Describe outcomes (Arrow securities prices and the allocation) in a

competitive equilibrium with sequential trading of Arrow securities.

f. Now suppose that b0 > 0. Consider a government policy that always runs a

balanced budget budget, i.e., that sets τnt (s
t)wt(s

t)nt(s
t) at a level that guar-

antees that total government debt owed at time t ≥ 1 equals b0 for all t, st .

(Here the government always runs what the IMF calls a balanced budget ‘net-of-

interest’. In doing this, it always rolls over its one-period debt bt = b0 .) Please

find a formula for the rate of return paid on government debt and describe pre-

cisely the quantities of history-contingent bonds issued by the government at

each t, st . Please describe how the tax rate τnt (s
t) depends on b0 .

g. Continuing to assume that b0 > 0, now consider another government fiscal

policy. Here the government sets a constant tax rate τ̄n = τnt (s
t) for all t, st .

The tax rate is set to satisfy the time 0 Arrow-Debreu budget constraint (2).

Please tell how to compute τ̄n . Please describe the Arrow securities that the

government issues or purchases at each state. (Please carefully take into account

how you have defined states in part a.)

h. Please describe the payouts on the government securities for all possible

histories for this economy.
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i. Please formulate and solve a Ramsey problem for this economy, assuming

that τnt (s
t) is the only tax that the government can impose. Please state the

Ramsey problem carefully and describe in detail an algorithm for computing all

of the objects that comprise a Ramsey plan.

j. Please compare the Ramsey plan that you computed in part i with the

arbitrary policies studied in parts f and g.

k. Define a “continuation of a Ramsey plan.” For this economy, is a continuation

of a Ramsey plan a Ramsey plan? Please explain.

Exercise 16.13 Positive initial debt

Please describe outcomes in modified versions of examples 1, 2, and 3 of section

16.13 in which b0 > 0 rather than b0 = 0.





Part IV

Savings Problems and Bewley Models





Chapter 17
Self-Insurance

17.1. Introduction

This chapter describes a version of what is sometimes called a savings problem

(e.g., Chamberlain and Wilson, 2000). A consumer wants to maximize the

expected discounted sum of a concave function of one-period consumption rates,

as in chapter 8. However, the consumer is cut off from all insurance markets

and almost all asset markets. The consumer can purchase only nonnegative

amounts of a single risk-free asset. The absence of insurance opportunities

induces the consumer to use variations over time in his asset holdings to acquire

“self-insurance.”

This model is interesting to us partly as a benchmark to compare with

the complete markets model of chapter 8 and some of the recursive contracts

models of chapters 21 and 22, where information and enforcement problems

restrict allocations relative to chapter 8, but nevertheless permit more insurance

than is allowed in this chapter. A version of the single-agent model of this

chapter will also be an important component of the incomplete markets models

of chapter 18. Finally, the chapter provides our first encounter with the powerful

supermartingale convergence theorem.

To highlight the effects of uncertainty and borrowing constraints, we shall

study versions of the savings problem under alternative assumptions about the

stringency of the borrowing constraint and about whether the household’s en-

dowment stream is known or uncertain.

– 759 –
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17.2. The consumer’s environment

An agent orders consumption streams according to

E0

∞∑

t=0

βtu (ct) , (17.2.1)

where β ∈ (0, 1), and u(c) is a strictly increasing, strictly concave, twice con-

tinuously differentiable function of the consumption of a single good c . The

agent is endowed with an infinite random sequence {yt}∞t=0 of the good. Each

period, the endowment takes one of a finite number of values, indexed by s ∈ S .

In particular, the set of possible endowments is y1 < y2 < · · · < yS . Elements

of the sequence of endowments are independently and identically distributed

with Prob(y = ys) = Πs,Πs ≥ 0, and
∑
s∈S

Πs = 1. There are no insurance

markets.

The agent can hold nonnegative amounts of a single risk-free asset that has

a net rate of return r , where (1 + r)β = 1. Let at ≥ 0 be the agent’s assets

at the beginning of period t , including the current realization of the income

process. (Later we shall use an alternative notation by defining bt = −at + yt

as the debt of the consumer at the beginning of period t , excluding the time

t endowment.) We assume that a0 = y0 is drawn from the time-invariant

endowment distribution {Πs} . (This is equivalent to assuming that b0 = 0 in

the alternative notation.) The agent faces the sequence of budget constraints

at+1 = (1 + r) (at − ct) + yt+1 , (17.2.2)

where 0 ≤ ct ≤ at , with a0 given. That ct ≤ at expresses the constraint that

holdings of the asset at the end of the period (which evidently equal at+1−yt+1

1+r )

must be nonnegative. The very important constraint ct ≥ 0 is either imposed

or comes from an Inada condition limc↓0 u
′(c) = +∞ .

The Bellman equation for an agent with a > 0 is

V (a) = max
c

{
u(c) +

S∑

s=1

βΠsV
[
(1 + r)(a − c) + ys

]}
(17.2.3)

subject to 0 ≤ c ≤ a ,

where ys is the income realization in state s ∈ S . The value function V (a)

inherits some properties from u(c); in particular, V (a) is increasing, strictly

concave, and differentiable.
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“Self-insurance” occurs when the agent uses savings to insure himself against

income fluctuations. On the one hand, in response to low income realizations,

an agent can draw down his savings and avoid temporary large drops in con-

sumption. On the other hand, the agent can partly save high income realizations

in anticipation of poor outcomes in the future. We are interested in the long-

run properties of an optimal “self-insurance” scheme. Will the agent’s future

consumption settle down around some level c̄?1 Or will the agent eventually be-

come impoverished?2 Following the analysis of Chamberlain and Wilson (2000)

and Sotomayor (1984), we will show that neither of these outcomes occurs:

consumption diverges to infinity!

We begin by studying the savings problem under the assumption that the

endowment is a nonrandom sequence that does not grow perpetually. In this

case, consumption does converge.

17.3. Nonstochastic endowment

Without uncertainty, the question of insurance is moot. However, it is instruc-

tive to study the optimal consumption decisions of an agent with an uneven

income stream who faces a borrowing constraint. We break our analysis of the

nonstochastic case into two parts, depending on the stringency of the borrow-

ing constraint. We begin with the least stringent possible borrowing constraint,

namely, the natural borrowing constraint on one-period Arrow securities, which

are risk free in the current context. After that, we’ll arbitrarily tighten the bor-

rowing constraint to arrive at the no-borrowing condition at+1 ≥ yt+1 imposed

in the statement of the problem in the previous section. With the natural bor-

rowing constraint, the outcome is that the agent completely smooths consump-

tion, having a constant consumption rate over time. With the more stringent

no-borrowing constraint, in general the outcome will be different. Here con-

sumption will be a monotonic increasing sequence with jumps in consumption

at times when the no-borrowing constraint binds.

1 As will occur in the model of social insurance without commitment, to be analyzed in

chapter 21.
2 As in the case of social insurance with asymmetric information, to be analyzed in chapter

21.
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For convenience, we temporarily use our alternative notation. We let bt be

the amount of one-period debt that the consumer owes at time t ; bt is related

to at by

at = −bt + yt,

with b0 = 0. Here −bt is the consumer’s asset position before the realization of

his time t endowment. In this notation, the time t budget constraint (17.2.2)

becomes

ct + bt ≤ βbt+1 + yt (17.3.1)

where in terms of bt+1 , we would express a no-borrowing constraint (at+1 ≥
yt+1 ) as

bt+1 ≤ 0. (17.3.2)

The no-borrowing constraint (17.3.2) is evidently more stringent than the

natural borrowing constraint on one-period Arrow securities that we imposed

in chapter 8. Under an Inada condition on u(c) at c = 0, or alternatively when

ct ≥ 0 is imposed, the natural borrowing constraint in this nonstochastic case

is found by solving (17.3.1) forward with ct ≡ 0:

bt ≤
∞∑

j=0

βjyt+j ≡ bt. (17.3.3)

The right side is the present value of the endowment, which is the maximal

amount that it is feasible to repay at time t when ct ≥ 0.

Solve (17.3.1) forward and impose the initial condition b0 = 0 and the

terminal condition limT→∞ βT+1bT+1 = 0 to get

∞∑

t=0

βtct ≤
∞∑

t=0

βtyt. (17.3.4)

When ct ≥ 0, under the natural borrowing constraints, this is the only restric-

tion that the budget constraints (17.3.1) impose on the {ct} sequence. The

first-order necessary conditions for maximizing (17.2.1) subject to (17.3.4) are

u′ (ct) ≥ u′ (ct+1) , = if bt+1 < bt+1, t ≥ 0. (17.3.5)

It is possible to satisfy these first-order conditions by setting ct = c for all t ≥ 0,

where c is the constant consumption level chosen to satisfy (17.3.4) at equality:

c

1− β
=

∞∑

t=0

βtyt. (17.3.6)
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At equality, the sequence of budget constraints (17.3.1) implies that debt bt

satisfies the following equation:

∞∑

j=0

βjct+j + bt =

∞∑

j=0

βjyt+j. (17.3.7)

Under the particular consumption-smoothing policy (17.3.6), bt is given by

bt = β−t
t−1∑

j=0

βj (c− yj) = β−t


 c

1− β
− βtc

1− β
−

t−1∑

j=0

βjyj




=

∞∑

j=0

βjyt+j −
c

1− β

where the last equality invokes (17.3.6). This expression for bt is evidently less

than or equal to bt for all t ≥ 0. Thus, under the natural borrowing constraints,

we have constant consumption for t ≥ 0, i.e., perfect consumption smoothing

over time.

The natural debt limits allow bt to be positive, provided that it is not

too large. Next we shall study the more severe ad hoc debt limit that requires

−bt ≥ 0, so that the consumer can lend , but not borrow. This restriction will

limit consumption smoothing for households whose incomes are growing, and

who therefore are naturally borrowers.3

17.3.1. An ad hoc borrowing constraint: nonnegative assets

We continue to assume a known endowment sequence but now impose a no-

borrowing constraint (1 + r)−1bt+1 ≤ 0 ∀t ≥ 0. To facilitate the transition to

our subsequent analysis of the problem under uncertainty, we work in terms of a

definition of assets that include this period’s income, at = −bt+yt .4 Let (c∗t , a
∗
t )

denote an optimal path. First-order necessary conditions for an optimum are

u′ (c∗t ) ≥ u′
(
c∗t+1

)
, = if c∗t < a∗t (17.3.8)

3 See exercise 17.1 for how income growth and shrinkage impinge on consumption in the

presence of an ad hoc borrowing constraint.
4 When {yt} is an i.i.d. process, working with at rather than bt makes it possible to

formulate the consumer’s Bellman equation in terms of the single state variable at , rather

than the pair bt, yt . We’ll exploit this idea again in chapter 18.
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for t ≥ 0. Along an optimal path for t ≥ 1, it must be true that either

(a) c∗t−1 = c∗t ; or

(b) c∗t−1 < c∗t and c∗t−1 = a∗t−1 , and hence a∗t = yt .

Condition (b) states that the no-borrowing constraint binds only when the con-

sumer desires to shift consumption from the future to the present. He will desire

to do that only when his endowment is growing.

According to conditions a and b, ct−1 can never exceed ct . The reason is

that a declining consumption sequence can be improved by cutting a marginal

unit of consumption at time t− 1 with a utility loss of u′(ct−1) and increasing

consumption at time t by the saving plus interest with a discounted utility gain

of β(1+r)u′(ct) = u′(ct) > u′(ct−1), where the inequality follows from the strict

concavity of u(c) and ct−1 > ct . A symmetric argument rules out ct−1 < ct

as long as the nonnegativity constraint on savings is not binding; that is, an

agent would choose to cut his savings to make ct−1 equal to ct as in condition

a. Therefore, consumption increases from one period to another as in condition

b only for a constrained agent with zero savings, a∗t−1 − c∗t−1 = 0. It follows

that next period’s assets are then equal to next period’s income, a∗t = yt .

Solving the budget constraint (17.2.2) at equality forward for at and rear-

ranging gives
∞∑

j=0

βjct+j = at +
∞∑

j=1

βjyt+j . (17.3.9)

At dates t ≥ 1 for which at = yt , so that the no-borrowing constraint was

binding at time t− 1, (17.3.9) becomes

∞∑

j=0

βjct+j =

∞∑

j=0

βjyt+j. (17.3.10)

Equations (17.3.9) and (17.3.10) contain important information about the opti-

mal solution. Equation (17.3.9) holds for all dates t ≥ 1 at which the consumer

arrives with positive net assets at − yt > 0. Equation (17.3.10) holds for those

dates t at which net assets or savings at−yt are zero, i.e., when the no-borrowing

constraint was binding at t− 1. If the no-borrowing constraint is binding only

finitely often, then after the last date t−1 at which it was binding, (17.3.10) and

the Euler equation (17.3.8) imply that consumption will thereafter be constant

at a rate c̃ that satisfies c̃
1−β =

∑∞
j=0 β

jyt+j .
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In more detail, suppose that an agent arrives in period t with zero savings

and knows that the borrowing constraint will never bind again. He would then

find it optimal to choose the highest sustainable constant consumption. This

is given by the annuity return on the present value of the tail of the income

process starting from period t ,

xt ≡ r

1 + r

∞∑

j=t

(1 + r)
t−j

yj . (17.3.11)

In the optimization problem under certainty, the impact of the borrowing con-

straint will not vanish until the date at which the annuity return on the present

value of the tail (or remainder) of the income process is maximized. We state

this in the following proposition.

Proposition 1: Given a borrowing constraint and a nonstochastic endowment

stream, the limit of the nondecreasing optimal consumption path is

c̄ ≡ lim
t→∞

c∗t = sup
t
xt ≡ x̄ . (17.3.12)

Proof: We will first show that c̄ ≤ x̄ . Suppose to the contrary that c̄ > x̄ .

Then conditions a and b imply that there is a t such that a∗t = yt and c∗j > xt

for all j ≥ t . Therefore, there is a τ sufficiently large that

0 <

τ∑

j=t

(1 + r)t−j
(
c∗j − yj

)
= (1 + r)t−τ

(
c∗τ − a∗τ

)
,

where the equality uses a∗t = yt and successive iterations on budget constraint

(17.2.2). The implication that c∗τ > a∗τ constitutes a contradiction because it

violates the constraint that savings are nonnegative in optimization problem

(17.2.3).

To show that c̄ ≥ x̄ , suppose to the contrary that c̄ < x̄ . Then there is an

xt such that c∗j < xt for all j ≥ t , and hence

∞∑

j=t

(1 + r)t−j c∗j <
∞∑

j=t

(1 + r)t−j xt =
∞∑

j=t

(1 + r)t−j yj

≤ a∗t +
∞∑

j=t+1

(1 + r)t−j yj ,
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where the last weak inequality uses a∗t ≥ yt . Therefore, there is an ǫ > 0 and

τ̂ > t such that for all τ > τ̂ ,

τ∑

j=t

(1 + r)
t−j

c∗j < a∗t +

τ∑

j=t+1

(1 + r)
t−j

yj − ǫ ,

and after invoking budget constraint (17.2.2) repeatedly,

(1 + r)
t−τ

c∗τ < (1 + r)
t−τ

a∗τ − ǫ ,

or, equivalently,

c∗τ < a∗τ − (1 + r)
τ−t

ǫ .

We can then construct an alternative feasible consumption sequence {cǫj} such

that cǫj = c∗j for j 6= τ̂ and cǫj = c∗j + ǫ for j = τ̂ . The fact that this alternative

sequence yields higher utility establishes the contradiction.

More generally, we know that at each date t ≥ 1 for which the no-borrowing

constraint is binding at date t−1, consumption will increase to satisfy (17.3.10).

The time series of consumption will thus be a discrete time step function whose

jump dates t coincide with the dates at which xt attains new highs:

t = {t : xt > xs, s < t}.

If there is a finite last date t , optimal consumption is a monotone bounded

sequence that converges to a finite limit.

In summary, we have shown that under certainty, the optimal consumption

sequence converges to a finite limit as long as the discounted value of future

income is bounded across all starting dates t . Surprisingly enough, that result

is overturned when there is uncertainty. But first, consider a simple example of

a nonstochastic endowment process.
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17.3.2. Example: periodic endowment process

Suppose that the endowment oscillates between one unit of the consumption

good in even periods and zero units in odd periods. The annuity return on this

endowment process is equal to

xt

∣∣∣
t even

=
r

1 + r

∞∑

j=0

(1 + r)−2j = (1− β)

∞∑

j=0

β2j =
1

1 + β
, (17.3.13a)

xt

∣∣∣
t odd

=
1

1 + r
xt

∣∣∣
t even

=
β

1 + β
. (17.3.13b)

According to Proposition 1, the limit of the optimal consumption path is then

c̄ = (1+β)−1 . That is, as soon as the agent reaches the first even period in life,

he sets consumption equal to c̄ forevermore. The associated beginning-of-period

assets at fluctuates between (1 + β)−1 and 1.

The exercises at the end of this chapter contain more examples.

17.4. Quadratic preferences

It is useful briefly to consider the linear quadratic permanent income model

as a benchmark for the results to come. Assume as before that β(1 + r) = 1

and that the household’s budget constraint at t is (17.3.1). Rather than the

no-borrowing constraint (17.3.2), we impose that5

E0

(
lim
t→∞

βtb2t

)
= 0. (17.4.1)

This constrains the asymptotic rate at which debt can grow. Subject to this

constraint, solving (17.3.1) forward yields

bt =

∞∑

j=0

βj (yt+j − ct+j) . (17.4.2)

5 The natural borrowing limit assumes that consumption is nonnegative, while the model

with quadratic preferences permits consumption to be negative. When consumption can be

negative, there seems to be no natural lower bound to the amount of debt that could be

repaid, since more payments can always be wrung out of the consumer. Thus, with quadratic

preferences and the associated possibility of negative consumption, we have to rethink the sense

of a borrowing constraint. The restriction (17.4.1) allows negative consumption but limits

the rate at which debt is allowed to grow in a way designed to rule out a Ponzi scheme that

would have the consumer always consume bliss consumption by accumulating debt without

limit.
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We alter the preference specification above to make u(ct) a quadratic func-

tion −.5(ct − γ)2 , where γ > 0 is a bliss consumption level. Marginal utility is

linear in consumption: u′(c) = γ− c . We put no bounds on c ; in particular, we

allow consumption to be negative. We allow {yt} to be an arbitrary stationary

stochastic process.

The weakness of constraint (17.4.1) allows the household’s first-order con-

dition to prevail with equality at all t ≥ 0: u′(ct) = Etu
′(ct+1). The linearity

of marginal utility in turn implies

Etct+1 = ct, (17.4.3)

which states that ct is a martingale. Combining (17.4.3) with (17.4.2) and tak-

ing expectations conditional on time t information gives bt = Et
∑∞

j=0 β
jyt+j−

1
1−β ct or

ct =
r

1 + r


−bt + Et

∞∑

j=0

(
1

1 + r

)j
yt+j


 . (17.4.4)

Equation (17.4.4) is a version of the permanent income hypothesis and tells

the consumer to set his current consumption equal to the annuity return on his

nonhuman (−bt ) and human wealth (Et
∑∞

j=0

(
1

1+r

)j
yt+j ). We can substitute

this consumption rule into (17.3.1) and rearrange to get

bt+1 = bt + rEt

∞∑

j=0

(
1

1 + r

)j
yt+j − (1 + r) yt. (17.4.5)

Equations (17.4.4) and (17.4.5) imply that under the optimal policy, ct, bt both

have unit roots and that they are cointegrated.6 If we define permanent income

at t as ypt ≡ r
1+rEt

∑∞
j=0(1 + r)−jyt+j , then (17.4.5) can be represented as

bt+1 = bt + (1 + r) [ypt − yt] (17.4.6)

which states that the time t increment in the consumer’s debt equals (1 +

r) times the difference between his time t permanent income and his current

income.

Consumption rule (17.4.4) has the remarkable feature of certainty equiv-

alence: consumption ct depends only on the first moment of the discounted

6 See section 2.12, especially page 77.
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value of the endowment sequence. In particular, the conditional variance of the

present value of the endowment does not matter.7 Under rule (17.4.4), con-

sumption is a martingale and the consumer’s assets bt are a unit root process.

Neither consumption nor assets converge, though at each point in time, the

consumer expects his consumption not to drift in its average value.

The next section shows that these outcomes change dramatically when we

alter the specification of the utility function to rule out negative consumption.

17.5. Stochastic endowment process: i.i.d. case

With uncertain endowments, the first-order condition for the optimization prob-

lem (17.2.3) is

u′(c) ≥
S∑

s=1

β(1 + r)ΠsV
′
[
(1 + r)(a − c) + ys

]
, (17.5.1)

with equality if the nonnegativity constraint on savings is not binding. The

Benveniste-Scheinkman formula implies u′(c) = V ′(a), so the first-order condi-

tion can also be written as

V ′ (a) ≥
S∑

s=1

β (1 + r) ΠsV
′ (a′s) , (17.5.2)

where a′s is next period’s assets if today’s income shock is ys . (Recall again that

V (a) is increasing, strictly concave, and differentiable.) Since β−1 = (1 + r),

V ′(a) is a nonnegative supermartingale. By a theorem of Doob (1953, p. 324),8

V ′(a) must then converge almost surely.9 Here is how to think about this

result. Think about generating a realization of the entire endowment sequence

{yt} via a computer simulation. For each such sample realization of {yt} ,
the sequence {V ′(at)} converges to a particular number limt→∞ V ′(at). The

particular number converged to can vary across realizations, possibly tracing

out a nontrivial limiting distribution of V ′(a). But in our case, the distribution

7 This property of the consumption rule reflects the workings of the type of certainty

equivalence that we discussed in chapter 5.
8 See the appendix of this chapter for a statement of the theorem.
9 See footnote 30 on page 73 for an earlier encounter with this force.
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of the limiting value of V ′(a) turns out to be degenerate and concentrated at

a single value. In particular, the limiting value of V ′(a) must be zero because

of the following argument. Suppose to the contrary that V ′(a) converges to a

strictly positive limit. That implies that a converges to a finite positive value.

But this implication is contradicted by budget constraint (17.2.2), which states

that assets are equal to the value of the past period’s savings including interest

plus a stochastic income ys . The random nature of ys contradicts a finite limit

for a . Instead, V ′(a) must converge to zero, implying that assets converge to

infinity. (We return to this result in chapter 18.)

Although assets diverge to infinity, they do not increase monotonically.

Since assets are used for self-insurance, low income realizations are associated

with reductions in assets. To show this outcome, suppose to the contrary that

even the lowest income realization y1 is associated with nondecreasing assets;

that is, (1 + r)(a − c) + y1 ≥ a . Then we have

V ′
[
(1 + r)(a − c) + y1

]
≤ V ′(a)

=

S∑

s=1

ΠsV
′
[
(1 + r)(a − c) + ys

]
, (17.5.3)

where the last equality is first-order condition (17.5.2) when the nonnegativity

constraint on savings is not binding and when β−1 = (1 + r). Since V ′[(1 +

r)(a− c)+ ys] ≤ V ′[(1+ r)(a− c)+ y1] for all s ∈ S , expression (17.5.3) implies

that the derivatives of V evaluated at different asset values are equal to each

other, an implication that is contradicted by the strict concavity of V .

The fact that assets diverge to infinity means that the individual’s con-

sumption also diverges to infinity. After invoking the Benveniste-Scheinkman

formula, first-order condition (17.5.1) can be rewritten as

u′ (c) ≥
S∑

s=1

β (1 + r) Πsu
′ (c′s) =

S∑

s=1

Πsu
′ (c′s) , (17.5.4)

where c′s is next period’s consumption if the income shock is ys , and the last

equality uses (1 + r) = β−1 . It is important to recognize that the individual

will never find it optimal to choose a time-invariant consumption level for the

indefinite future. Suppose to the contrary that the individual at time t were

to choose a constant consumption level for all future periods. The maximum
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constant consumption level that would be sustainable under all conceivable fu-

ture income realizations is the annuity return on his current assets at and a

stream of future incomes all equal to the lowest income realization. But when-

ever there is a future period with a higher income realization, we can use an

argument similar to our section 17.3.1 construction of the sequence {cǫj} in the

case of certainty to show that the initial time-invariant consumption level does

not maximize the agent’s utility. It follows that future consumption will vary

with income realizations and that consumption cannot converge to a finite limit

with an i.i.d. endowment process. Hence, from the martingale convergence the-

orem, the nonnegative supermartingale u′(c) in (17.5.4) must converge to zero,

since any strictly positive limit would imply that consumption converges to a

finite limit, which cannot be.

17.6. Stochastic endowment process: general case

The result that consumption diverges to infinity with an i.i.d. endowment pro-

cess is extended by Chamberlain and Wilson (2000) to an arbitrary stationary

stochastic endowment process that is sufficiently stochastic. Let It denote the

information set at time t . Then the general version of first-order condition

(17.5.4) becomes

u′(ct) ≥ E
[
u′(ct+1)

∣∣∣It
]
, (17.6.1)

where E(·|It) is the expectation operator conditioned upon information set It .

Assuming a bounded utility function, Chamberlain and Wilson prove the fol-

lowing result, where xt is defined in (17.3.11):

Proposition 2: If there is an ǫ > 0 such that for any α ∈ IR+

P
(
α ≤ xt ≤ α+ ǫ

∣∣∣It
)
< 1− ǫ

for all It and t ≥ 0, then P (limt→∞ ct = ∞) = 1.

Without providing a proof here, it is useful to make a connection to the

nonstochastic case in Proposition 1. Under certainty, the limiting value of the

consumption path is given by the highest annuity return on the endowment

process across all starting dates t ; c̄ = supt xt . Under uncertainty, Proposition

2 says that the consumption path will never converge to any finite limit if the
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annuity return on the endowment process is sufficiently stochastic. Instead,

the optimal consumption path will converge to infinity. This stark difference

between the case of certainty and uncertainty is quite remarkable.10

17.7. Intuition

Imagine that you perturb any constant endowment stream by adding the slight-

est i.i.d. component. Our two propositions then say that the optimal consump-

tion path changes from being a constant to becoming a stochastic process that

goes to infinity. Beyond appealing to martingale convergence theorems, Cham-

berlain and Wilson (2000, p. 381) comment on the difficulty of developing eco-

nomic intuition for this startling finding:

Unfortunately, the line of argument used in the proof does not provide

a very convincing economic explanation. Clearly the strict concavity

of the utility function must play a role. (The result does not hold if,

for instance, u is a linear function over a sufficiently large domain and

(xt) is bounded.) But to simply attribute the result to risk aversion on

the grounds that uncertain future returns will cause risk-averse con-

sumers to save more, given any initial asset level, is not a completely

satisfactory explanation either. In fact, it is a bit misleading. First,

that argument only explains why expected accumulated assets would

tend to be larger in the limit. It does not really explain why consump-

tion should grow without bound. Second, over any finite time horizon,

the argument is not even necessarily correct.

Given a finite horizon, Chamberlain and Wilson proceed to discuss how mean-

preserving spreads of future income leave current consumption unaffected when

the agent’s utility function is quadratic over a sufficiently large domain.

We believe that the economic intuition is to be found in the strict concavity

of the utility function and the assumption that the marginal utility of consump-

tion must remain positive for any arbitrarily high consumption level. This rules

out quadratic utility, for example. To advance this explanation, we first focus

10 In exercise 17.3, you will be asked to prove that the divergence of consumption to +∞

also occurs under a stochastic counterpart to the natural borrowing limits. These are less

stringent than the no-borrowing condition.
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on utility functions whose marginal utility of consumption is strictly convex,

i.e., u′′′ > 0 if the function is thrice differentiable. Then, Jensen’s inequality

implies
∑

sΠsu
′(cs) > u′(

∑
sΠscs); first-order condition (17.5.4) then implies

c <

S∑

s=1

Πsc
′
s , (17.7.1)

where the strict inequality follows from our earlier argument that future con-

sumption levels will not be constant but will vary with income realizations. In

other words, when the marginal utility of consumption is strictly convex, a given

absolute decline in consumption is not only more costly in utility than a gain

from an identical absolute increase in consumption, but the former is also asso-

ciated with a larger rise in marginal utility as compared to the drop in marginal

utility of the latter. To set today’s marginal utility of consumption equal to next

period’s expected marginal utility of consumption, the consumer must therefore

balance future states with expected declines in consumption against appropri-

ately higher expected increases in consumption for other states. Of course, when

next period arrives and the consumer chooses optimal consumption (which is

then on average higher than last period’s consumption), the same argument

applies again. That is, the process exhibits a “ratchet effect” by which con-

sumption tends toward ever higher levels. Moreover, this on-average increasing

consumption sequence cannot converge to a finite limit because of our earlier

argument based on an agent’s desire to exhaust all his resources while respecting

his budget constraint.

This argument for the optimality of unbounded consumption growth ap-

plies to utility functions whose marginal utility of consumption is strictly con-

vex. But even utility functions that do not have convex marginal utility globally

must ultimately conform to a similar condition over long enough intervals of the

positive real line, because otherwise those utility functions would eventually vi-

olate the assumptions of a strictly positive, strictly diminishing marginal utility

of consumption, u′ > 0 and u′′ < 0. Chamberlain and Wilson’s reference to a

quadratic utility function illustrates the problem of how otherwise the marginal

utility of consumption will turn negative at large consumption levels. Thus, our

understanding of the remarkable result in Proposition 2 is aided by considering

the inexorable ratchet effect on consumption implied by the first-order condition

for the agent’s optimal intertemporal choice.
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17.8. Endogenous labor supply

Contributions by Marcet, Obiols-Homs, and Weil (2007) and Zhu (2009) studied

how adding an endogenous labor supply decision would affect outcomes in the

presence of a precautionary savings motive. A key insight is that a wealth

effect on labor supply can instruct an infinitely lived household to accumulate

sufficient wealth to retire and thereby isolate itself thereafter from non-financial

income risk. That force can allow both assets and consumption to converge

while work converges to zero. The Marcet, Obiols-Homs, and Weil (2007) and

Zhu (2009) work provides valuable additional intuition about the structure of

the divergence of assets and consumption in the Chamberlain-Wilson model.

At each date t ≥ 0, a household chooses ct ≥ 0 and ht ∈ [0, 1], where ct

is the consumption of a single good and ht is leisure. The household orders a

stochastic process {ct, ht}∞t=0 according to the utility functional

E0

∞∑

t=0

βtu(ct, ht), 0 < β < +∞. (17.8.1)

Following Zhu (2009), we adopt the assumptions that u(c, h) is (A1), twice

continuously differentiable; (A2) strictly increasing and strictly concave in c

and h , limc→0 u1(c, h) = +∞∀h ∈ [0, 1], and limh→0 u2(c, h) = +∞∀c ≥ 0;

and (A3) u(c, h) ∈ [0,M ],M > 0.

The consumer can hold nonnegative amounts of a single asset that bears a

constant net rate of interest r > 0. We assume that βR = 1, where R = (1+r).

The consumer receives labor income (1 − ht)etw at time t , where w is a fixed

wage and et is the time t realization of a productivity shock. The productivity

or labor efficiency shock et follows a discrete state Markov process on the state

space E = [ ē1 . . . ēn ] where [0 < ē1 < · · · < ēn] ; the transition density

π(e′|e) satisfies
∑
e′ π(e

′|e) = 1, π(e′|e) > 0 ∀ (e, e′) ∈ E × E . The consumer’s

time t budget constraint is ct +At+1 = RAt + (1− ht)etw or

ct + htetw = RAt + etw −At+1. (17.8.2)

We regard the left side as the consumer’s total time t expenditures on consump-

tion and leisure.

The household chooses {ct, ht, At+1}∞t=0 to maximize (17.8.1) subject to

A0 ≥ 0 given, (17.8.2) for all t ≥ 0, and the information assumption that At, et

are known at time t . Following Foley and Hellwig (1975) and Zhu (2009), we
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solve the problem in two steps. Step 1 solves an intratemporal problem and step

2 solves an intertemporal problem.

Step 1: Form the indirect utility function J(Y, e) defined as

J(Y, e) = max
c,h

u(c, h) (17.8.3)

subject to

c+ hew = Y, 0 ≤ h ≤ 1, c ≥ 0. (17.8.4)

Here Y = RA+ we−A′ stands for total current expenditures on consumption

an leisure. The first-order necessary condition for the problem on the right side

of (17.8.3) is
u2(c, h)

u1(c, h)
≥ ew, = if h < 1. (17.8.5)

The right side of (17.8.3) is attained by policy functions c = c(Y, e), h = h(Y, e).

Under assumptions A1-A3, Zhu (2009) shows that the indirect utility function

J(Y, e) is bounded; strictly increasing and strictly concave in Y ; and continu-

ously differentiable in Y with

J1(Y, e) = u1(c(Y, e), h(Y, e)) ∀Y ∈ (0,+∞). (17.8.6)

Step 2: Solve the intertemporal maximization problem

V (A0, e0) = max
Yt≥0

E0

∞∑

t=0

βtJ(Yt, et) (17.8.7)

subject to the sequence of constraints

Yt +At+1 = RAt + etw, t ≥ 0 (17.8.8)

and given A0 ≥ 0. The Bellman equation associated with this problem is

V (A, e) = max
A′∈Γ(A,e)

{
J(RA+ ew −A′, e) + βE

[
V (A′, e′)|e

]}
(17.8.9)

where

Γ(A, e) = {A′ : 0 ≤ A′ ≤ RA+ ew}.
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An optimum policy Y = Y (A, e) and the implied A′ = A(A, e) attain

V (A, e) = J(Y (A, e), e) + β
∑

e′

V
(
A(A, e), e′

)
π(e′|e).

Under assumptions A1-A3, Zhu shows that V (A, e) is continuous, strictly in-

creasing, strictly concave in A , continuously differentiable, and that

V1(A, e) = RJ1(Y (A, e), e) ∀A ∈ [0,+∞] (17.8.10)

Zhu shows that A(A, e) is continuous and weakly increasing in A and that

Y (A, e) is strictly increasing in A . Furthermore, the Inada conditions A2 imply

that limY→0 J1(Y, e) = +∞ ∀e ∈ E . Assembling earlier results also tells us that

V1(A, h) = RJ1(A, e) = Ru1(c, h). (17.8.11)

Outcome with endogenous labor supply: The first-order necessary condi-

tion for asset choice is

V1(A, e) ≥ βRE[V1(A
′, e′)|e], = if A′ > 0. (17.8.12)

We assume that βR = 1 as we have done throughout this chapter. When

βR = 1, inequality (17.8.12) asserts that V1(A, h) and therefore u1(c, h) is

a nonnegative supermartingale. Applying Doob’s supermartingale convergence

theorem implies that limt→+∞ V1(At, et) = limt→+∞Ru1(ct, ht) exists and is

almost surely finite. This result leaves open two possibilities: Either

1. V1(At, et) = Ru1(ct, ht) → 0 while ht remains uniformly bounded away

from one infinitely often with the outcomes that limt→∞ At = +∞ and

limt→∞ ct = +∞ ; or

2. ht → 1, At → Ā, ct → rĀ almost surely.

Case 1 is a version of our earlier result with exogenous and perpetually ran-

dom non-financial income. Here a precautionary savings motive causes assets

and consumption both to diverge to +∞ . The possibility of case 2 inspired

Marcet, Obiols-Homs, and Weil (2007) and Zhu (2009) to make the labor sup-

ply decision endogenous. What drives case 2 is a wealth effect that causes the

household eventually to withdraw all labor from the market and thereafter con-

sume leisure 100% of his time. That shuts down his effective exposure to the
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random labor productivity process and extinguishes subsequent randomness in

his income process.

Whether case 1 or 2 prevails depends on the shape of the consumer’s utility

function u(c, h). Zhu (2009) considers the following two assumptions that tilt

things toward case 2. Assumption A4 asserts that u12u1 − u11u2 > 0 and

u12u2 − u22u1 > 0. This assumption makes c and h both be normal goods,

and also implies that u2

u1
is increasing in c and decreasing in h . It also implies

that c(Y, e) and h(Y, e) are both increasing in Y . Zhu also makes the stronger

assumption A4’ that u12 > 0, which makes c and h be complements and implies

A4. Zhu (2009) establishes the following:

Proposition: Under assumptions A1-A4’, (a) c(A, Y ) and h(A, Y ) are both

continuous and increasing in A ; (b) h(A, e) = 1 ∀e when A is sufficiently

large.

Zhu shows how this proposition is the heart of an argument that generates suf-

ficient conditions for case 2 to prevail. In this way, he constructs circumstances

that disarm the divergence outcomes of Chamberlain and Wilson.11

17.9. Concluding remarks

This chapter has maintained the assumption that β(1 + r) = 1, which is a very

important ingredient in delivering the divergence toward infinity of the agent’s

asset and consumption level. Chamberlain and Wilson (1984) study a much

more general version of the model where they relax this condition.

To build some incomplete markets models, chapter 18 will put together

continua of agents facing generalizations of the savings problems. The models

of that chapter will determine the interest rate 1 + r as an equilibrium object.

In these models, to define a stationary equilibrium, we want the sequence of

distributions of each agent’s asset holdings to converge to a well-defined invariant

distribution with finite first and second moments. For there to exist a stationary

11 Zhu also provides examples of preferences that push things toward case 1. An example

is preferences of a type used by Greenwood, Hercowitz, and Huffman (1988): u(c, h) = U(c−

G(1−h)) , where U ′ > 0, U ′′ < 0, G′ > 0, G′′ > 0 with U bounded above. Here the marginal

rate of substitution between c and h depends only on h and labor supplied is independent

of the intertemporal consumption-savings choice.
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equilibrium without aggregate uncertainty, the findings of the present chapter

would lead us to anticipate that the equilibrium interest rate in those models

must fall short of β−1 . In a production economy with physical capital, that

result implies that the marginal product of capital will be less than the one

that would prevail in a complete markets world when the stationary interest

rate would be given by β−1 . In other words, an incomplete markets economy

is characterized by an overaccumulation of capital that drives the interest rate

below β−1 , which serves to choke off the desire to accumulate an infinite amount

of assets that agents would have had if the interest rate had been equal to β−1 .

Chapters 21 and 22 will consider several models in which the condition

β(1 + r) = 1 is maintained. There the assumption will be that a social planner

has access to risk-free loans outside the economy and seeks to maximize agents’

welfare subject to enforcement and/or information problems. The environment

is once again assumed to be stationary without aggregate uncertainty, so in the

absence of enforcement and information problems the social planner would just

redistribute the economy’s resources in each period without any intertemporal

trade with the outside world. But when agents are free to leave the economy

with their endowment streams and forever live in autarky, optimality prescribes

that the planner amass sufficient outside claims so that each agent is granted

a constant consumption stream in the limit, at a level that weakly dominates

autarky for all realizations of an agent’s endowment. In the case of asymmet-

ric information, where the planner can induce agents to tell the truth only by

manipulating promises of future utilities, we obtain a conclusion that is diamet-

rically opposite to the self-insurance outcome of the present chapter. Instead

of consumption approaching infinity in the limit, the optimal solution has all

agents’ consumption approaching its lower bound.
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A. Supermartingale convergence theorem

This appendix states the supermartingale convergence theorem. Let the ele-

ments of the 3-tuple (Ω,F , P ) denote a sample space, a collection of events,

and a probability measure, respectively. Let t ∈ T index time, where T de-

notes the nonnegative integers. Let Ft denote an increasing sequence of σ -fields

of F sets. Suppose that

(i) Zt is measurable with respect to Ft ;
(ii) E|Zt| < +∞ ;

(iii) E(Zt|Fs) = Zs almost surely for all s < t; s, t ∈ T .

Then {Zt, t ∈ T } is said to be amartingale with respect to Ft . If (iii) is replaced
by E(Zt|Fs) ≥ Zs almost surely, then {Zt} is said to be a submartingale. If

(iii) is replaced by E(Zt|Fs) ≤ Zs almost surely, then {Zt} is said to be a

supermartingale.

We have the following important theorem.

Supermartingale Convergence Theorem: Let {Zt,Ft} be a nonnegative

supermartingale. Then there exists a random variable Z such that limZt = Z

almost surely and E|Z| < +∞ , i.e., Zt converges almost surely to a finite limit.

Exercises

Exercise 17.1 A consumer has preferences over sequences of a single con-

sumption good that are ordered by
∑∞

t=0 β
tu(ct), where β ∈ (0, 1) and u(·) is

strictly increasing, twice continuously differentiable, strictly concave, and satis-

fies the Inada condition limc↓0 u
′(c) = +∞ . The one good is not storable. The

consumer has an endowment sequence of the one good yt = λt, t ≥ 0, where

|λβ| < 1. The consumer can borrow or lend at a constant and exogenous risk-

free net interest rate of r that satisfies (1 + r)β = 1. The consumer’s budget

constraint at time t is

bt + ct ≤ yt + (1 + r)−1bt+1

for all t ≥ 0, where bt is the debt (if positive) or assets (if negative) due at t ,

and the consumer has initial debt b0 = 0.
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Part I. In this part, assume that the consumer is subject to the ad hoc borrowing

constraint bt ≤ 0 ∀t ≥ 1. Thus, the consumer can lend but not borrow.

a. Assume that λ < 1. Compute the household’s optimal plan for {ct, bt+1}∞t=0 .

b. Assume that λ > 1. Compute the household’s optimal plan {ct, bt+1}∞t=0 .

Part II. In this part, assume that the consumer is subject to the natural bor-

rowing constraint associated with the given endowment sequence.

c. Compute the natural borrowing limits for all t ≥ 0.

d. Assume that λ < 1. Compute the household’s optimal plan for {ct, bt+1}∞t=0 .

e. Assume that λ > 1. Compute the household’s optimal plan {ct, bt+1}∞t=0 .

Exercise 17.2 The household has preferences over stochastic processes of a

single consumption good that are ordered by E0

∑∞
t=0 β

t ln(ct), where β ∈
(0, 1) and E0 is the mathematical expectation with respect to the distribution

of the consumption sequence of a single nonstorable good, conditional on the

value of the time 0 endowment. The consumer’s endowment is the following

stochastic process: at times t = 0, 1, the household’s endowment is drawn from

the distribution Prob(yt = 2) = π , Prob(yt = 1) = 1 − π , where π ∈ (0, 1).

At all times t ≥ 2, yt = yt−1 . At each date t ≥ 0, the household can lend,

but not borrow, at an exogenous and constant risk-free one-period net interest

rate of r that satisfies (1 + r)β = 1. The consumer’s budget constraint at t is

at+1 = (1+r)(at−ct)+yt+1 , subject to the initial condition a0 = y0 . One-period

assets carried (at − ct) over into period t + 1 from t must be nonnegative, so

that the no-borrowing constraint is at ≥ ct . At time t = 0, after y0 is realized,

the consumer devises an optimal consumption plan.

a. Draw a tree that portrays the possible paths for the endowment sequence

from date 0 onward.

b. Assume that y0 = 2. Compute the consumer’s optimal consumption and

lending plan.

c. Assume that y0 = 1. Compute the consumer’s optimal consumption and

lending plan.

d. Under the two assumptions on the initial condition for y0 in the preceding

two questions, compute the asymptotic distribution of the marginal utility of
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consumption u′(ct) (which in this case is the distribution of u′(ct) = V ′
t (at) for

t ≥ 2), where Vt(a) is the consumer’s value function at date t).

e. Discuss whether your results in part d conform to Chamberlain and Wilson’s

application of the supermartingale convergence theorem.

Exercise 17.3 Consider the stochastic version of the savings problem under

the following natural borrowing constraints . At each date t ≥ 0, the consumer

can issue risk-free one-period debt up to an amount that it is feasible for him to

repay almost surely, given the nonnegativity constraint on consumption ct ≥ 0

for all t ≥ 0.

a. Verify that the natural debt limit is (1 + r)−1bt+1 ≤ y1
r .

b. Show that the natural debt limit can also be expressed as at+1 − yt+1 ≥
− (1+r)y1

r for all t ≥ 0.

c. Assume that yt is an i.i.d. process with nontrivial distribution {Πs} , in the

sense that at least two distinct endowments occur with positive probabilities.

Prove that optimal consumption diverges to +∞ under the natural borrowing

limits.

d. For identical realizations of the endowment sequence, get as far as you can

in comparing what would be the sequences of optimal consumption under the

natural and ad hoc borrowing constraints.

Exercise 17.4 Trade?

A pure endowment economy consists of two households with identical prefer-

ences but different endowments. A household of type i has preferences that are

ordered by

(1) E0

∞∑

t=0

βtu(cit), β ∈ (0, 1)

where cit is time t consumption of a single consumption good, u(cit) = u1cit −
.5u2c

2
it , where u1, u2 > 0, and E0 denotes the mathematical expectation con-

ditioned on time 0 information. The household of type 1 has a stochastic

endowment y1t of the good governed by

(2) y1t+1 = y1t + σǫt+1
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where σ > 0 and ǫt+1 is an i.i.d. process Gaussian process with mean 0 and

variance 1. The household of type 2 has endowment

(3) y2t+1 = y2t − σǫt+1

where ǫt+1 is the same random process as in (2). At time t , yit is realized

before consumption at t is chosen. Assume that at time 0, y10 = y20 and that

y10 is substantially less than the bliss point u1/u2 . To make the computation

easier, please assume that there is no disposal of resources.

Part I. In this part, please assume that there are complete markets in history-

and date-contingent claims.

a. Define a competitive equilibrium, being careful to specify all of the objects

of which a competitive equilibrium is composed.

b. Define a Pareto problem for a fictitious planner who attaches equal weight

to the two households. Find the consumption allocation that solves the Pareto

(or planning) problem.

c. Compute a competitive equilibrium.

Part II. Now assume that markets are incomplete. There is only one traded

asset: a one-period risk-free bond that both households can either purchase or

issue. The gross rate of return on the asset between date t and date t + 1 is

Rt . Household i ’s budget constraint at time t is

(4) cit + R−1
t bit+1 = yit + bit

where bit is the value in terms of time t consumption goods of household’s i

holdings of one-period risk-free bonds. We require that a consumers’s holdings

of bonds are subject to the restriction

(5) lim
t→+∞

βtu′(cit)Ebit+1 = 0.

Assume that b10 = b20 = 0. An incomplete markets competitive equilibrium

is a gross interest rate sequence {Rt} , sequences of bond holdings {bit} for

i = 1, 2, and feasible allocations {cit}, i = 1, 2 such that given {Rt} , household
i = 1, 2 is maximizing (1) subject to the sequence of budget constraints (4) and

the given initial levels of b10, b20 .
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d. A friend of yours recommends the guess-and-verify method and offers the

following guess about the equilibrium. He conjectures that there are no gains to

trade: in equilibrium, each household simply consumes its endowment. Please

verify or falsify this guess. If you verify it, please give formulas for the equilib-

rium {Rt} and the stocks of bonds held by each household at each date.

Exercise 17.5 Trade??

A consumer orders consumption streams according to

(1) E0

∞∑

t=0

βt
c1−γt

1− γ
, β ∈ (0, 1)

where γ > 1 and E0 is the mathematical expectation conditional on time 0

information. The consumer can borrow or lend a one-period risk-free security

that bears a fixed gross rate of return of R = β−1 . The consumer’s budget

constraint at time t is

(2) ct +R−1bt+1 = yt + bt

where bt is the level of the asset that the consumer brings into period t . The

household is subject to a “natural” borrowing limit. The household’s initial

asset level is b0 = 0 and his endowment sequence yt follows the process

(3) yt+1 = yt exp(σyεt+1 + µ)

where εt+1 is an i.i.d. Gaussian process with mean zero and variance 1, µ =

.5γσ2
y , and σy > 0. The consumer chooses a process {ct, bt+1}∞t=0 to maximize

(1) subject to (2), (3), and the natural borrowing limit.

a. Give a closed-form expression for the consumer’s optimal consumption and

asset accumulation plan.

Hint 1: If logx is N (µ, σ2), then Ex = exp(µ+ σ2/2).

Hint 2: You could start by trying to verify the following guess: the optimal

policy has bt+1 = 0 for all t ≥ 0.

b. Discuss the solution that you obtained in part a in terms of Friedman’s

permanent income hypothesis.

c. Does the household engage in precautionary savings?





Chapter 18
Incomplete Markets Models

18.1. Introduction

In the complete markets model of chapter 8, the optimal consumption alloca-

tion is not history dependent; the allocation depends on the current value of the

Markov state variable only. This outcome reflects the comprehensive opportu-

nities to insure risks that markets provide. This chapter and chapters 21 and

22 describe settings with more impediments to exchanging risks. These reduced

opportunities make allocations history dependent. In this chapter, the history

dependence is encoded in the dependence of a household’s consumption on the

household’s current asset holdings. In chapters 21 and 22, history dependence

is encoded in the dependence of the consumption allocation on a continuation

value promised by a planner or principal.

The present chapter describes a particular type of incomplete markets

model. The models have a large number of ex ante identical but ex post het-

erogeneous agents who trade a single security. For most of this chapter, we

study models with no aggregate uncertainty and no variation of an aggregate

state variable over time (so macroeconomic time series variation is absent). But

there is much uncertainty at the individual level. Households’ only option is to

“self-insure” by managing a stock of a single asset to buffer their consumption

against adverse shocks. We study several models that differ mainly with respect

to the particular asset that is the vehicle for self-insurance, for example, fiat

currency or capital.

The tools for constructing these models are discrete-state discounted dy-

namic programming, used to formulate and solve problems of the individuals,

and Markov chains, used to compute a stationary wealth distribution. The

models produce a stationary wealth distribution that is determined simultane-

ously with various aggregates that are defined as means across corresponding

individual-level variables.

– 785 –
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We begin by recalling our discrete-state formulation of a single-agent infinite

horizon savings problem. We then describe several economies in which house-

holds face some version of this infinite horizon savings problem, and where some

of the prices taken parametrically in each household’s problem are determined

by the average behavior of all households.

This class of models was invented by Bewley (1977, 1980, 1983, 1986), partly

to study a set of classic issues in monetary theory. The second half of this chapter

joins that enterprise by using the model to represent inside and outside money, a

free banking regime, a subtle limit to the scope of Friedman’s optimal quantity of

money, a model of international exchange rate indeterminacy, and some related

issues. The chapter closes by describing work of Krusell and Smith (1998)

that extended the domain of such models to include a time-varying stochastic

aggregate state variable. As we shall see, this innovation makes the state of the

household’s problem include the time t cross-section distribution of wealth, an

immense object.

Researchers have used calibrated versions of Bewley models to give quanti-

tative answers to questions including the welfare costs of inflation (İmrohoroğlu,

1992), the risk-sharing benefits of unfunded social security systems (İmrohoroğlu,

İmrohoroğlu, and Joines, 1995), the benefits of insuring unemployed people

(Hansen and İmrohoroğlu, 1992), and the welfare costs of taxing capital (Aiya-

gari, 1995). Also see Heathcote, Storesletten, and Violante (2008), and Krueger,

Perri, Pistaferri, and Violante (2010). See Kaplan and Violante (2010) for a

quantitative study of how much insurance consumers seem to attain beyond

the self-insurance allowed in Bewley models. Heathcote, Storesletten, and Vi-

olante (2012) combine ideas of Bewley with those of Constantinides and Duffie

(1996) to build a model of partial insurance. Heathcote, Perri, and Violante

(2010) present an enlightening account of recent movements in the distributions

of wages, earnings, and consumption across people and across time in the U.S.
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18.2. A savings problem

Recall the discrete-state savings problem described in chapters 4. The house-

hold’s labor income at time t , st , evolves according to an m-state Markov chain

with transition matrix P . Think of initiating the process from the invariant dis-

tribution of P over s̄i ’s. If the realization of the process at t is s̄i , then at time

t the household receives labor income ws̄i . Thus, employment opportunities

determine the labor income process. We shall sometimes assume that m is 2,

and that st takes the value 0 in an unemployed state and 1 in an employed

state.

We constrain holdings of a single asset to a grid A = [0 < ā1 < ā2 < · · · <
ān] . For given values of (w, r ) and given initial values (a0, s0 ), the household

chooses a policy for {ct, at+1}∞t=0 to maximize

E0

∞∑

t=0

βtu(ct), (18.2.1)

subject to

ct + at+1 = (1 + r)at + wst

at+1 ∈ A
(18.2.2)

where β ∈ (0, 1) is a discount factor; u(c) is a strictly increasing, strictly

concave, twice continuously differentiable one-period utility function satisfying

the Inada condition limc↓0 u
′(c) = +∞ ; and β(1 + r) < 1.1

The Bellman equation, for each i ∈ [1, . . . ,m] and each h ∈ [1, . . . , n] , is

v(āh, s̄i) = max
a′∈A

{u[(1 + r)āh + ws̄i − a′] + β
m∑

j=1

P(i, j)v(a′, s̄j)}, (18.2.3)

where a′ is next period’s value of asset holdings. Here v(a, s) is the optimal

value of the objective function, starting from asset-employment state (a, s).

Note that the grid A incorporates upper and lower limits on the quantity that

can be borrowed (i.e., the amount of the asset that can be issued). The upper

bound on A is restrictive. In some of our prior theoretical discussions, especially

in chapter 17, it was important to dispense with that upper bound.

1 The Inada condition makes consumption nonnegative, and this fact plays a role in jus-

tifying the natural debt limit below.
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In chapter 4, we described how to solve equation (18.2.3) for a value func-

tion v(a, s) and an associated policy function a′ = g(a, s) mapping this period’s

(a, s) pair into an optimal choice of assets to carry into next period.

18.2.1. Wealth-employment distributions

Define the unconditional distribution of (at, st) pairs, λt(a, s) = Prob(at =

a, st = s). The exogenous Markov transition matrix P on s and the optimal

policy function a′ = g(a, s) induce a law of motion for the distribution λt ,

namely,

Prob(at+1 = a′, st+1 = s′) =
∑

at

∑

st

Prob(at+1 = a′|at = a, st = s)

· Prob(st+1 = s′|st = s) · Prob(at = a, st = s),

or

λt+1(a
′, s′) =

∑

a

∑

s

λt(a, s)Prob(st+1 = s′|st = s) · I(a′, s, a),

where we define the indicator function I(a′, a, s) = 1 if a′ = g(a, s), and 0

otherwise.2 The indicator function I(a′, a, s) = 1 identifies the time t states

a, s that are sent into a′ at time t+1. The preceding equation can be expressed

λt+1(a
′, s′) =

∑

s

∑

{a:a′=g(a,s)}

λt(a, s)P(s, s′). (18.2.4)

A time-invariant probability distribution λ that solves equation (18.2.4) (i.e.,

one for which λt+1 = λt ) is called a stationary distribution. In chapter 2, we de-

scribed two ways to compute a stationary distribution for a Markov chain. One

way is in effect to iterate to convergence on equation (18.2.4). An alternative is

to create a Markov chain that describes the solution of the optimum problem,

then to compute an invariant distribution from a left eigenvector associated with

a unit eigenvalue of the stochastic matrix (see chapter 2).

To deduce this Markov chain, we map the pair (a, s) of vectors into a

single state vector x as follows. For i = 1, . . . , n , h = 1, . . . ,m , let the j th

2 This construction exploits the fact that the optimal policy is a deterministic function of

the state, which comes from the concavity of the objective function and the convexity of the

constraint set.



A savings problem 789

element of x be the pair (ai, sh ), where j = (i − 1)m + h . Denote x′ =

[(ā1, s̄1), (ā1, s̄2), . . . , (ā1, s̄m), (ā2, s̄1), . . . , (ā2, s̄m), . . . , (ān, s̄1), . . . , (ān, s̄m)] .

The optimal policy function a′ = g(a, s) and the Markov chain P on s induce

a Markov chain for x via the formula

Prob[(at+1 = a′, st+1 = s′)|(at = a, st = s)]

= Prob(at+1 = a′|at = a, st = s) · Prob(st+1 = s′|st = s)

= I(a′, a, s)P(s, s′),

where I(a′, a, s) = 1 is defined as above. This formula defines an N×N matrix

P , where N = n ·m . This is the Markov chain on the household’s state vector

x .3

Suppose that the Markov chain associated with P is asymptotically sta-

tionary and has a unique invariant distribution π∞ . Typically, all states in the

Markov chain will be recurrent, and the individual will occasionally revisit each

state. For long samples, the distribution π∞ tells the fraction of time that the

household spends in each state. We can “unstack” the state vector x and use

π∞ to deduce the stationary probability measure λ(āi, s̄h) over ( āi, s̄h ) pairs,

where

λ(āi, s̄h) = Prob(at = āi, st = s̄h) = π∞(j),

and where π∞(j) is the j th component of the vector π∞ , and j = (i−1)m+h .

18.2.2. Reinterpretation of the distribution λ

The solution of the household’s optimum savings problem induces a stationary

distribution λ(a, s) that tells the fraction of time that an infinitely lived agent

spends in state (a, s). We want to reinterpret λ(a, s). Thus, let (a, s) index the

state of a particular household at a particular time period t , and assume that

there is a cross-section of households distributed over states (a, s). We start the

economy at time t = 0 with a cross-section λ(a, s) of households that we want

to repeat over time. The models in this chapter arrange the initial distribution

and other things so that the cross-section distribution of agents over individual

state variables (a, s) remains constant over time even though the state of the

individual household is a stochastic process.

3 Matlab programs to be described later in this chapter create the Markov chain for the

joint (a, s) state.
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In a model of this type, for a given interest rate r , the population mean

E(a)(r) =
∑

a,s

λ(a, s)g(a, s)

has two interpretations. First, it is the average asset level experienced by a single

household, where here the average is across time. Second, it is the average asset

level held by the economy as a whole, where here the average is across households

indexed by (a, s) pairs. The spirit of what we shall call ‘Bewley models’ is to

make r an equilibrium object that adjusts to set E(a)(r) equal to a particular

value. We shall study several models of this type, where the models differ in

how we formulate the value to which E(a)(r) must be equated through an

appropriate adjustment of r .

18.2.3. Example 1: a pure credit model

Mark Huggett (1993) studied a pure consumption loans economy. Each of a

continuum of households has access to a centralized loan market in which it can

borrow or lend at a constant net risk-free interest rate of r . Each household’s

endowment is governed by the Markov chain (P , s̄). The household can either

borrow or lend at a constant risk-free rate. However, total borrowing cannot

exceed φ > 0, where φ is a parameter set by Huggett. A household’s setting

of next period’s level of assets is restricted to the discrete set A = [ā1, . . . , ām] ,

where the lower bound on assets is ā1 = −φ . Later we’ll discuss alternative

ways to set φ , and how it relates to a natural borrowing limit.4 For now, we

simply note the fact that φ must be set so that it is feasible for the consumer to

honor his loans with probability 1. Otherwise, it is not coherent to posit that

loans are risk-free.

The solution of a typical household’s problem is a policy function a′ =

g(a, s) that induces a stationary distribution λ(a, s) over states. Huggett uses

the following definition:

Definition: Given a borrowing limit φ , a stationary equilibrium is an interest

rate r , a policy function g(a, s), and a stationary distribution λ(a, s) for which

(a) Given r , the policy function g(a, s) solves the household’s optimum problem;

4 For a related discussion of borrowing limits in economies with sequential trading of IOU’s,

see chapter 8.
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(b) The probability distribution λ(a, s) is the invariant distribution of the

Markov chain on (a, s) induced by the Markov chain (P , s̄) and the optimal

policy g(a, s);

(c) When λ(a, s) describes the cross-section of households at each date, the loan

market clears ∑

a,s

λ(a, s)g(a, s) = 0.

18.2.4. Equilibrium computation

Huggett computed equilibria by using an iterative algorithm that adjusted r to

make
∑

a,s λ(a, s)g(a, s) = 0. He fixed an r = rj for j = 0, and for that r

solved the household’s problem for a policy function gj(a, s) and an associated

stationary distribution λj(a, s). Then he checked to see whether the loan market

clears at rj by computing

∑

a,s

λj(a, s)g(a, s) = e∗j .

If e∗j > 0, Huggett lowered rj+1 below rj and recomputed excess demand,

continuing these iterations until he found an r at which excess demand for

loans is zero.

18.2.5. Example 2: a model with capital

The next model was created by Rao Aiyagari (1994). He used a version of the

savings problem in an economy with many agents and interpreted the single

asset as homogeneous physical capital, denoted k . The capital holdings of a

household evolve according to

kt+1 = (1− δ)kt + xt

where δ ∈ (0, 1) is a depreciation rate and xt is gross investment. The house-

hold’s consumption is constrained by

ct + xt = r̃kt + wst,



792 Incomplete Markets Models

where r̃ is the rental rate on capital and w is a competitive wage, to be deter-

mined later. The preceding two equations can be combined to become

ct + kt+1 = (1 + r̃ − δ)kt + wst,

which agrees with equation (18.2.2) if we take at ≡ kt and r ≡ r̃ − δ .

There is a large number of households with identical preferences (18.2.1)

whose distribution across (k, s) pairs is given by λ(k, s), and whose average

behavior determines (w, r) as follows: Households are identical in their pref-

erences, the Markov processes governing their employment opportunities, and

the prices that they face. However, they differ in their histories st0 = {sh}th=0

of employment opportunities, and therefore in the capital that they have ac-

cumulated. Each household has its own history st0 as well as its own initial

capital k0 . The productivity processes are assumed to be independent across

households. The behavior of the collection of these households determines the

wage and interest rate (w, r ).

Assume an initial distribution across households of λ(k, s). The average

level of capital per household K satisfies

K =
∑

k,s

λ(k, s)g(k, s),

where k′ = g(k, s). Assuming that we start from the invariant distribution, the

average level of employment is

N = ξ′∞s̄,

where ξ∞ is the invariant distribution associated with P and s̄ is the exoge-

nously specified vector of individual employment rates. The average employment

rate is exogenous, but the average level of capital is endogenous.

There is an aggregate production function whose arguments are the average

levels of capital and employment. The production function determines the rental

rates on capital and labor from the first-order conditions

w = ∂F (K,N)/∂N

r̃ = ∂F (K,N)/∂K,

where F (K,N) = AKαN1−α and α ∈ (0, 1).
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We now have identified all of the objects in terms of which a stationary

equilibrium is defined.

Definition of Equilibrium: A stationary equilibrium is a policy function

g(k, s), a probability distribution λ(k, s), and positive real numbers (K, r, w )

such that

(a) The prices (w, r ) satisfy

w = ∂F (K,N)/∂N

r = ∂F (K,N)/∂K − δ;
(18.2.5)

(b) The policy function g(k, s) solves the household’s optimum problem;

(c) The probability distribution λ(k, s) is a stationary distribution associated

with [g(k, s),P ] ; that is, it satisfies

λ(k′, s′) =
∑

s

∑

{k:k′=g(k,s)}

λ(k, s)P(s, s′);

(d) The cross-section average value of K is implied by the average of the house-

holds’ decisions

K =
∑

k,s

λ(k, s)g(k, s).

18.2.6. Computation of equilibrium

Aiyagari computed an equilibrium of the model by defining a mapping from

K ∈ IR into IR , with the property that a fixed point of the mapping is an

equilibrium K . Here is an algorithm for finding a fixed point:

1. For fixed value of K = Kj with j = 0, compute (w, r ) from equation

(18.2.5), then solve the household’s optimum problem. Use the optimal policy

gj(k, s) to deduce an associated stationary distribution λj(k, s).

2. Compute the average value of capital associated with λj(k, s), namely,

K∗
j =

∑

k,s

λj(k, s)gj(k, s).
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3. For a fixed “relaxation parameter” ξ ∈ (0, 1), compute a new estimate of K

from method5

Kj+1 = ξKj + (1− ξ)K∗
j .

4. Iterate on this scheme to convergence.

Later, we shall display some computed examples of equilibria of both Huggett’s

model and Aiyagari’s model. But first we shall analyze some features of both

models more formally.

18.3. Unification and further analysis

We can display salient features of several models by using a graphical apparatus

of Aiyagari (1994). We shall show relationships among several models that have

identical household sectors but make different assumptions about the single asset

being traded.

For convenience, recall the basic savings problem. The household’s objec-

tive is to maximize

E0

∞∑

t=0

βtu(ct) (18.3.1a)

ct + at+1 = wst + (1 + r)at (18.3.1b)

subject to the borrowing constraint

at+1 ≥ −φ. (18.3.1c)

We now temporarily suppose that at+1 can take any real value exceeding −φ .
Thus, we now suppose that at ∈ [−φ,+∞). We occasionally find it useful to

express the discount factor β ∈ (0, 1) in terms of a discount rate ρ as β = 1
1+ρ .

In equation (18.3.1b), we sometimes express w as a given function ψ(r) of the

net interest rate r .

5 By setting ξ < 1, the relaxation method often converges to a fixed point in cases in

which direct iteration (i.e., setting ξ = 0) fails to converge.
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18.4. The nonstochastic savings problem when β(1 + r) < 1

It is useful briefly to study the nonstochastic version of the savings problem

when β(1 + r) < 1. For β(1 + r) = 1, we studied this problem in chapter 17.

To get the nonstochastic savings problem, assume that st is permanently fixed

at some positive level s . Associated with the household’s maximum problem is

the Lagrangian

L =

∞∑

t=0

βt {u(ct) + θt [(1 + r)at + ws− ct − at+1]} , (18.4.1)

where {θt}∞t=0 is a sequence of nonnegative Lagrange multipliers on the budget

constraint. The first-order conditions for this problem are

u′(ct) ≥ β(1 + r)u′(ct+1), = if at+1 > −φ. (18.4.2)

When at+1 > −φ , the first-order condition implies

u′(ct+1) =
1

β(1 + r)
u′(ct), (18.4.3)

which because β(1+r) < 1 in turn implies that u′(ct+1) > u′(ct) and ct+1 < ct .

Consumption is declining during periods when the household is not borrow-

ing constrained, so {ct}∞t=0 is a monotone decreasing sequence. If {ct}∞t=0 is

bounded below, either because of an Inada condition limc↓0 u
′(c) = +∞ or a

nonnegativity constraint on ct , then ct will converge as t → +∞ . When it

converges, the household will be “borrowing constrained”.

We can compute the steady level of consumption when the household even-

tually becomes permanently stuck at the borrowing constraint. Set at+1 = at =

−φ . This and (18.3.1b) gives

ct = c̄ = ws− rφ. (18.4.4)

This is the amount of labor income remaining after paying the net interest on

the debt at the borrowing limit. The household would like to shift consumption

from tomorrow to today but can’t.

If we solve the budget constraint (18.3.1b) forward, we obtain the present-

value budget constraint

a0 = (1 + r)−1
∞∑

t=0

(1 + r)−t(ct − ws). (18.4.5)
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Thus, when β(1 + r) < 1, the household’s consumption plan can be found by

solving equations (18.4.5), (18.4.4), and (18.4.3) for an initial c0 and a date T

after which the debt limit is binding and ct is constant.

If consumption is required to be nonnegative,6 equation (18.4.4) implies

that the debt limit must satisfy

φ ≤ ws

r
. (18.4.6)

We call the right side the natural debt limit. If φ < ws
r , we say that we have

imposed an ad hoc debt limit.

We have deduced that when β(1 + r) < 1, if a steady-state level exists,

consumption is given by equation (18.4.4) and assets by at = −φ .
Now turn to the case that β(1+r) = 1. Here equation (18.4.3) implies that

ct+1 = ct and the budget constraint implies ct = ws + ra and at+1 = at = a0 .

So when β(1 + r) = 1, any a0 is a stationary value of a . It is optimal forever

to roll over initial assets.

In summary, in the deterministic case, the steady-state demand for assets

is −φ when (1 + r) < β−1 (i.e., when r < ρ); and it equals a0 when r = ρ .

Letting the steady-state level be ā , we have

ā =

{−φ, if r < ρ;

a0, if r = ρ,

where β = (1 + ρ)−1 . When r = ρ , we say that the steady-state asset level ā

is indeterminate.

6 Consumption must be nonnegative, for example, if we impose the Inada condition dis-

cussed earlier.
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18.5. Borrowing limits: natural and ad hoc

We return to the stochastic case and take up the issue of debt limits. Imposing

ct ≥ 0 implies the emergence of what Aiyagari calls a natural debt limit. Thus,

imposing ct ≥ 0 and solving equation (18.3.1b) forward gives

at ≥ − 1

1 + r

∞∑

j=0

wst+j(1 + r)−j . (18.5.1)

Since the right side is a random variable, not known at t , we have to supplement

equation (18.5.1) to obtain the borrowing constraint. One possible approach is

to replace the right side of equation (18.5.1) with its conditional expectation,

and to require equation (18.5.1) to hold in expected value. But this expected

value formulation is incompatible with the notion that the loan is risk free,

and that the household can repay it for sure. We want to impose a restriction

that will guarantee that it is feasible for the household to repay its debt for all

possible sequences of income realizations. If we insist that equation (18.5.1)

hold almost surely for all t ≥ 0, then we obtain the constraint that emerges by

replacing st with min s ≡ s̄1 , which yields

at ≥ − s̄1w
r
. (18.5.2)

Aiyagari (1994) calls this the natural debt limit. To accommodate possibly more

stringent debt limits, beyond those dictated by the notion that it is feasible to

repay the debt for sure, Aiyagari specifies the debt limit as

at ≥ −φ, (18.5.3)

where

φ = min
[
b,
s̄1w

r

]
, (18.5.4)

and b > 0 is an arbitrary parameter defining an “ad hoc” debt limit.
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18.5.1. A candidate for a single state variable

For the special case in which s is i.i.d., Aiyagari showed how to cast the model in

terms of a single state variable to appear in the household’s value function. To

synthesize a single state variable, note that the “disposable resources” available

to be allocated at t are zt = wst + (1 + r)at + φ . Thus, zt is the sum of

the current endowment, current savings at the beginning of the period, and the

maximal borrowing capacity φ . This can be rewritten as

zt = wst + (1 + r)ât − rφ

where ât ≡ at + φ . In terms of the single state variable zt , the household’s

budget set can be represented recursively as

ct + ât+1 ≤ zt (18.5.5a)

zt+1 = wst+1 + (1 + r)ât+1 − rφ (18.5.5b)

where we must have ât+1 ≥ 0. The Bellman equation is

v(zt, st) = max
ât+1≥0

{u(zt − ât+1) + βEv(zt+1, st+1)} . (18.5.6)

Here st appears in the state vector purely as an information variable for predict-

ing the employment component st+1 of next period’s disposable resources zt+1 ,

conditional on the choice of ât+1 made this period. Therefore, it disappears

from both the value function and the decision rule in the i.i.d. case.

More generally, with a serially correlated state, associated with the solution

of the Bellman equation is a policy function

ât+1 = A(zt, st). (18.5.7)
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18.5.2. Supermartingale convergence again

Let’s revisit a main issue from chapter 17, but now consider the possible case

β(1 + r) < 1. From equation (18.5.5a), optimal consumption satisfies ct =

zt −A(zt, st). The optimal policy obeys the Euler inequality:

u′(ct) ≥ β(1 + r)Etu
′(ct+1), = if ât+1 > 0. (18.5.8)

We can use equation (18.5.8) to deduce significant aspects of the limiting be-

havior of mean assets as a function of r . Following Chamberlain and Wilson

(2000) and others, to deduce the effect of r on the mean of assets, we analyze

the limiting behavior of consumption implied by the Euler inequality (18.5.8).

Define

Mt = βt(1 + r)tu′(ct) ≥ 0.

Then Mt+1 −Mt = βt(1 + r)t[β(1 + r)u′(ct+1)− u′(ct)] . Equation (18.5.8) can

be written

Et(Mt+1 −Mt) ≤ 0, (18.5.9)

which asserts that Mt is a supermartingale. Because Mt is nonnegative, the

supermartingale convergence theorem applies. It asserts that Mt converges

almost surely to a nonnegative random variable M̄ : Mt →a.s. M̄ .

It is interesting to consider three cases: (1) β(1 + r) > 1; (2) β(1 + r) < 1,

and (3) β(1 + r) = 1. In case 1, the fact that Mt converges implies that u′(ct)

converges to zero almost surely. Because u′(ct) > 0 and u′′(ct) < 0, this fact

then implies that ct → +∞ and that the consumer’s asset holdings diverge to

+∞ . Chamberlain and Wilson (2000) show that such results also characterize

the borderline case (3) (see chapter 17). In case 2, convergence of Mt leaves

open the possibility that u′(c) does not converge almost surely. To take a

simple example of nonconvergence in case 2, consider the case of a nonstochastic

endowment. Under the natural borrowing constraint, the consumer chooses to

drive u′(c) → +∞ as time passes and so asymptotically chooses to impoverish

himself. The marginal utility u′(c) diverges.

It is easier to analyze the borderline case β(1 + r) = 1 in the special

case that the employment process is independently and identically distributed,

meaning that the stochastic matrix P has identical rows.7 In this case, st

provides no information about zt+1 , and so st can be dropped as an argument

7 See chapter 17 for a closely related proof.
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of both v(·) and A(·). For the case in which st is i. i. d., Aiyagari (1994) uses

the following argument by contradiction to show that if β(1 + r) = 1, then

zt diverges to +∞ . Assume that there is some upper limit zmax such that

zt+1 ≤ zmax = wsmax + (1 + r)A(zmax) − rφ . Then when β(1 + r) = 1, the

strict concavity of the value function, the Benveniste-Scheinkman formula, and

equation (18.5.8) imply

v′(zmax) ≥ Etv
′
[
wst+1 + (1 + r)A(zmax)− rφ

]

> v′ [wsmax + (1 + r)A(zmax)− rφ] = v′(zmax),

which is a contradiction.

18.6. Average assets as a function of r

In the next several sections, we use versions of a graph of Aiyagari (1994) to

analyze several models. The graph plots the average level of assets as a function

of r . In the model with capital, the graph is constructed to incorporate the

equilibrium dependence of the wage w on r . In models without capital, like

Huggett’s, the wage is fixed. We shall focus on situations where β(1 + r) < 1.

We consider cases where the optimal decision rule A(zt, st) and the Markov

chain for s induce a Markov chain jointly for assets and s that has a unique

invariant distribution. For fixed r , let Ea(r) denote the mean level of assets a

and let Eâ(r) = Ea(r) + φ be the mean level of assets plus borrowing capacity

â = a+ φ , where the mean is taken with respect to the invariant distribution.

Here it is understood that Ea(r) is a function of φ ; when we want to make the

dependence explicit we write Ea(r;φ). Also, as we have said, where the single

asset is capital, it is appropriate to make the wage w a function of r . This

approach incorporates the way different values of r affect average capital, the

marginal product of labor, and therefore the wage.

The preceding analysis applying the supermartingale convergence theorem

implies that as β(1 + r) goes to 1 from below (i.e., r goes to ρ from below),

Ea(r) diverges to +∞ . This feature is reflected in the shape of the Ea(r) curve

in Figure 18.6.1.8

8 As discussed in Aiyagari (1994), Ea(r) need not be a monotonically increasing function

of r, especially because w can be a function of r .
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Figure 18.6.1: Demand for capital and determination of

interest rate. The Ea(r) curve is constructed for a fixed wage

that equals the marginal product of labor at level of capital

K1 . In the nonstochastic version of the model with capital,

the equilibrium interest rate and capital stock are (ρ,K0),

while in the stochastic version they are (r,K1). For a version

of the model without capital in which w is fixed at this same

fixed wage, the equilibrium interest rate in Huggett’s pure

credit economy occurs at the intersection of the Ea(r) curve

with the r -axis.

Figure 18.6.1 assumes that the wage w is fixed in drawing the Ea(r) curve.

Later, we will discuss how to draw a similar curve, making w adjust as the

function of r that is induced by the marginal productivity conditions for positive

values of K . For now, we just assume that w is fixed at the value equal to the

marginal product of labor when K = K1 , the equilibrium level of capital in

the model. The equilibrium interest rate is determined at the intersection of

the Ea(r) curve with the marginal productivity of capital curve. Notice that

the equilibrium interest rate r is lower than ρ , its value in the nonstochastic
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version of the model, and that the equilibrium value of capital K1 exceeds the

equilibrium value K0 (determined by the marginal productivity of capital at

r = ρ in the nonstochastic version of the model.)

For a pure credit version of the model like Huggett’s, but the same Ea(r)

curve, the equilibrium interest rate is determined by the intersection of the

Ea(r) curve with the r -axis.

E a(r,     )φ

φ

φ

r

E a (r,0)

E a(r)
0

Figure 18.6.2: The effect of a shift in φ on the Ea(r) curve.

Both Ea(r) curves are drawn assuming that the wage is fixed.

For the purpose of comparing some of the models that follow, it is useful

to note the following aspect of the dependence of Ea(0) on φ :

Proposition 1: When r = 0, the optimal rule ât+1 = A(zt, st) is independent

of φ . This implies that for φ > 0, Ea(0;φ) = Ea(0; 0)− φ .

Proof: It is sufficient to note that when r = 0, φ disappears from the right

side of equation (18.5.5b) (the consumer’s budget constraint). Therefore, the

optimal rule ât+1 = A(zt, st) does not depend on φ when r = 0. More explicitly,

when r = 0, add φ to both sides of the household’s budget constraint to get

(at+1 + φ) + ct ≤ (at + φ) + wst.

If the household’s problem with φ = 0 is solved by the decision rule at+1 =

g(at, zt), then the household’s problem with φ > 0 is solved with the same

decision rule evaluated at at+1 + φ = g(at + φ, zt).
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Thus, it follows that at r = 0, an increase in φ displaces the Ea(r) curve

to the left by the same amount. See Figure 18.6.2. We shall use this result to

analyze several models.

In the following sections, we use a version of Figure 18.6.1 to compute

equilibria of various models. For models without capital, the figure is drawn

assuming that the wage is fixed. Typically, the Ea(r) curve will have the same

shape as Figure 18.6.1. In Huggett’s model, the equilibrium interest rate is

determined by the intersection of the Ea(r) curve with the r -axis, reflecting

that the asset (pure consumption loans) is available in zero net supply. In some

models with money, the availability of fiat currency as a perfect substitute for

consumption loans creates a positive net supply.
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Figure 18.6.3: Two Ea(r) curves, one with b = 6, the other

with b = 3, with w fixed at w = 1. Notice that at r = 0,

the difference between the two curves is 3, the difference in

the b ’s.
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18.7. Computed examples

We used some Matlab programs that solve discrete-state dynamic programming

problems to compute some examples.9 We discretized the space of assets from

−φ to a parameter amax = 16 with step size .2.

The utility function is u(c) = (1− µ)−1c1−µ , with µ = 3. We set β = .96.

We used two specifications of the Markov process for s . First, we used Tauchen’s

(1986) method to get a discrete-state Markov chain to approximate a first-order

autoregressive process

log st = ρ log st−1 + ut,

where ut is a sequence of i.i.d. Gaussian random variables. We set ρ = .2 and

the standard deviation of ut equal to .4
√
1− ρ2 . We used Tauchen’s method

with N = 7 being the number of points in the grid for s .

For the second specification, we assumed that s is i.i.d. with mean 1.0903.

For this case, we compared two settings for the variance: .22 and .68. Figures

18.6.3 and 18.7.1 plot the Ea(r) curves for these various specifications. Figure

18.7.1 plots Ea(r) for the first case of serially correlated s . The two E[a(r)]

curves correspond to two distinct settings of the ad hoc debt constraint. One is

for b = 3, the other for b = 6. Figure 18.7.2 plots the invariant distribution of

asset holdings for the case in which b = 3 and the interest rate is determined

at the intersection of the Ea(r) curve and the r -axis.

Figure 18.7.1 summarizes a precautionary savings experiment for the i.i.d.

specification of s . Two Ea(r) curves are plotted. For each, we set the ad hoc

debt limit b = 0. The Ea(r) curve further to the right is the one for the higher

variance of the endowment shock s . Thus, a larger variance in the random

shock causes increased savings.

Keep these graphs in mind as we turn to analyze some particular models

in more detail.

9 The Matlab programs used to compute the Ea(r) functions are bewley99.m, bewley99v2.m,

aiyagari2.m, bewleyplot.m, and bewleyplot2.m. The program markovapprox.m implements

Tauchen’s method for approximating a continuous autoregressive process with a Markov chain.

A program markov.m simulates a Markov chain. The programs can be downloaded from

<www.tomsargent.com/source code/mitbook.zip> .



Computed examples 805

0 1 2 3 4 5 6 7 8 9 10
−0.01

0

0.01

0.02

0.03

0.04

0.05

in
te

re
s
t 

ra
te

Figure 18.7.1: Two Ea(r) curves when b = 0 and the

endowment shock s is i.i.d. but with different variances; the

curve with circles belongs to the economy with the higher

variance.
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18.8. Several Bewley models

We consider several models in which a continuum of households faces the same

savings problem. Their behavior generates the asset demand function Ea(r;φ).

The models share the same family of Ea(r;φ) curves as functions of φ , but

differ in their settings of φ and in their interpretations of the supply of the

asset. The models are (1) Aiyagari’s (1994, 1995) model in which the risk-free

asset is either physical capital or private IOUs, with physical capital being the

net supply of the asset; (2) Huggett’s model (1993), where the asset is private

IOUs, available in zero net supply; (3) Bewley’s model of fiat currency; (4)

modifications of Bewley’s model to permit an inflation tax; and (5) modifications

of Bewley’s model to pay interest on currency, either explicitly or implicitly

through deflation.

18.8.1. Optimal stationary allocation

Because there is no aggregate risk and the aggregate endowment is constant,

a stationary optimal allocation would have consumption constant over time

for each household. Each household’s consumption plan would have constant

consumption over time. The implicit risk-free interest rate associated with such

an allocation would be r = ρ , where recall that β = (1 + ρ)−1 . In the version

of the model with capital, the stationary aggregate capital stock solves

FK(K,N)− δ = ρ. (18.8.1)

Equation (18.8.1) restricts the stationary optimal capital stock in the non-

stochastic optimal growth model of Cass (1965) and Koopmans (1965). The

stationary level of capital is K0 in Figure 18.6.1, depicted as the ordinate of

the intersection of the marginal productivity net of depreciation curve with a

horizontal line r = ρ . As we saw before, the horizontal line at r = ρ acts as

a “long-run” demand curve for savings for a nonstochastic version of the sav-

ings problem. The stationary optimal allocation matches the one produced by

a nonstochastic growth model. We shall use the risk-free interest rate r = ρ

as a benchmark against which to compare some alternative incomplete market

allocations. Aiyagari’s (1994) model replaces the horizontal line r = ρ with an

upward-sloping curve Ea(r), causing the stationary equilibrium interest rate to
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fall and the capital stock to rise relative to the savings model with a risk-free

endowment sequence.

18.9. A model with capital and private IOUs

Figure 18.6.1 can be used to depict the equilibrium of Aiyagari’s model described

above. The single asset is capital. There is an aggregate production function

Y = F (K,N), and w = FN (K,N), r + δ = FK(K,N). We can invert the

marginal condition for capital to deduce a downward-sloping curve K = K(r).

This is drawn as the curve labeled FK − δ in Figure 18.6.1. We can use the

marginal productivity conditions to deduce a factor price frontier w = ψ(r).

For fixed r , we use w = ψ(r) as the wage in the savings problem and then

deduce Ea(r). We want the equilibrium r to satisfy

Ea(r) = K(r). (18.9.1)

The equilibrium interest rate occurs at the intersection of Ea(r) with the FK−δ
curve. See Figure 18.6.1.10

It follows from the shape of the curves that the equilibrium capital stock K1

exceeds K0 , the capital stock required at the given level of total labor to make

the interest rate equal ρ . There is capital overaccumulation in the stochastic

version of the model.

10 Recall that Figure 18.6.1 was drawn for a fixed wage w , fixed at the value equal to

the marginal product of labor when K = K1 . Thus, the new version of Figure 18.6.1 that

incorporates w = ψ(r) has a new curve Ea(r) that intersects the FK − δ curve at the same

point (r1, K1) as the old curve Ea(r) with the fixed wage. Further, the new Ea(r) curve

would not be defined for negative values of K .
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18.10. Private IOUs only

It is easy to compute the equilibrium of Mark Huggett’s (1993) model with

Figure 18.6.1. Recall that in Huggett’s model the one asset consists of risk-free

loans issued by other households. There are no “outside” assets. This fits the

basic model, with at being the quantity of loans owed to the individual at the

beginning of t . The equilibrium condition is

Ea(r, φ) = 0, (18.10.1)

which is depicted as the intersection of the Ea(r) curve in Figure 18.6.1 with

the r -axis. There is a family of such curves, one for each value of the “ad hoc”

debt limit. Relaxing the ad hoc debt limit (by driving b → +∞) sends the

equilibrium interest rate upward toward the intersection of the furthest to the

left Ea(r) curve, the one that is associated with the natural debt limit, with

the r -axis.

18.10.1. Limitation of what credit can achieve

The equilibrium condition (18.10.1) and limrրρ Ea(r) = +∞ imply that the

equilibrium value of r is less than ρ , for all values of the debt limit respecting

the natural debt limit. This outcome supports the following conclusion:

Proposition 2: (Suboptimality of equilibrium with credit) The equilibrium

interest rate associated with the natural debt limit is the highest one that

Huggett’s model can support. This interest rate falls short of ρ , the interest

rate that would prevail in a complete markets world.11

11 Huggett used the model to study how tightening the ad hoc debt limit parameter b

would reduce the risk-free rate far enough below ρ to explain the “risk-free rate” puzzle.
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18.10.2. Proximity of r to ρ

Notice how in Figure 18.6.3 the equilibrium interest rate r gets closer to ρ

as the borrowing constraint is relaxed. How close it can get under the natural

borrowing limit depends on several key parameters of the model: (1) the discount

factor β , (2) the curvature of u(·), (3) the persistence of the endowment process,

and (4) the volatility of the innovations to the endowment process. When he

selected a plausible β and u(·) and then calibrated the persistence and volatility

of the endowment process to U.S. panel data on workers’ earnings, Huggett

(1993) found that under the natural borrowing limit, r is quite close to ρ and

that the household can achieve substantial self-insurance.12 We shall encounter

an echo of this finding when we review Krusell and Smith’s (1998) finding that

under their calibration of idiosyncratic risk, a real business cycle model with

complete markets does a good job of approximating the prices and the aggregate

allocation of a model with identical preferences and technology but in which only

a single asset, physical capital, can be traded.

18.10.3. Inside money or free banking interpretation

Huggett’s can be viewed as a model of pure “inside money,” or of circulating

private IOUs. Every person is a “banker” in this setting, being entitled to issue

“notes” or evidences of indebtedness, subject to the debt limit (18.5.3). A

household has issued more IOU notes of its own than it holds of those issued by

others whenever at+1 < 0.

There are several ways to think about the “clearing” of notes imposed by

equation (18.10.1). Here is one: In period t , trading occurs in subperiods as

follows. First, households realize their st . Second, some households choose to

set at+1 < at ≤ 0 by issuing new IOUs in the amount −at+1 + at . Other

households with at < 0 may decide to set at+1 ≥ 0, meaning that they want to

“redeem” their outstanding notes and possibly acquire notes issued by others.

Third, households go to the market and exchange goods for notes. Fourth, notes

are “cleared” or “netted out” in a centralized clearinghouse: positive holdings of

12 This result depends sensitively on how one specifies the left tail of the endowment distri-

bution. Notice that if the minimum endowment s̄1 is set to zero, then the natural borrowing

limit is zero. However, Huggett’s calibration permits positive borrowing under the natural

borrowing limit.
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notes issued by others are used to retire possibly negative initial holdings of one’s

own notes. If a person holds positive amounts of notes issued by others, some of

these are used to retire any of his own notes outstanding. This clearing operation

leaves each person with a particular at+1 to carry into the next period, with no

owner of IOUs also being in the position of having some notes outstanding.

There are other ways to interpret the trading arrangement in terms of

circulating notes that implement multilateral long-term lending among corre-

sponding “banks”: notes issued by individual A and owned by B are “honored”

or redeemed by individual C by being exchanged for goods.13 In a different

setting, Kocherlakota (1996b) and Kocherlakota and Wallace (1998) describe

such trading mechanisms.

Under the natural borrowing limit, we might think of this pure consump-

tion loans or inside money model as a model of free banking. In the model,

households’ ability to issue IOUs is restrained only by the requirement that all

loans be risk-free and of one period in duration. Later, we’ll use the equilibrium

allocation of this free banking model as a benchmark against which to judge the

celebrated Friedman rule in a model with outside money and a severe borrowing

limit.

We now tighten the borrowing limit enough to make room for some “outside

money.”

18.10.4. Bewley’s basic model of fiat money

This version of the model is set up to generate a demand for fiat money, an

inconvertible currency supplied in a fixed nominal amount by an entity outside

the model called the government. Individuals can hold currency, but not issue

it. To map the individual’s problem into problem (18.3.1), we let mt+1/p =

at+1, b = φ = 0, where mt+1 is the individual’s holding of currency from t to

t+ 1, and p is a constant price level. With a constant price level, r = 0. With

b = φ = 0, ât = at . Currency is the only asset that can be held. The fixed

supply of currency is M . The condition for a stationary equilibrium is

Ea(0) =
M

p
. (18.10.2)

13 It is possible to tell versions of this story in which notes issued by one individual or group

of individuals are “extinguished” by another.
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This equation is to be solved for p . The equation states a version of the quantity

theory of money.

Since r = 0, we need some ad hoc borrowing constraint (i.e., b < ∞)

to make this model have a stationary equilibrium. If we relax the borrowing

constraint from b = 0 to permit some borrowing (letting b > 0), Ea(r) shifts

to the left, causing Ea(0) to fall and the stationary price level to rise.

Let m̄ = Ea(0, φ = 0) be the solution of equation (18.10.2) when φ = 0.

Proposition 1 tells how to construct a set of stationary equilibria, indexed by

φ ∈ (0, m̄), which have identical allocations but different price levels. Given an

initial stationary equilibrium with φ = 0 and a price level satisfying equation

(18.10.2), we construct the equilibrium for φ ∈ (0, m̄) by setting ât for the new

equilibrium equal to ât for the old equilibrium for each person for each period.

This set of equilibria highlights how expanding the amount of “inside money,”

by substituting for “outside” money, causes the value of outside money (cur-

rency) to fall. The construction also indicates that if we set φ > m̄ , then there

exists no stationary monetary equilibrium with a finite positive price level. For

φ > m̄ , Ea(0) < 0, indicating a force for the interest rate to rise and for private

IOUs to dominate currency in rate of return and to drive it out of the model.

This outcome leads us to consider proposals to get currency back into the model

by paying interest on it. Before we do, let’s consider some situations more often

observed, where a government raises revenues by an inflation tax.

18.11. A model of seigniorage

The household side of the model is described in the previous section; we continue

to summarize this in a stationary demand function Ea(r). We suppose that

φ = 0, so individuals cannot borrow. But now the government augments the

nominal supply of currency over time to finance a fixed aggregate flow of real

purchases G . The government budget constraint at t ≥ 0 is

Mt+1 =Mt + ptG, (18.11.1)

which for t ≥ 1 can be expressed

Mt+1

pt
=

Mt

pt−1

(
pt−1

pt

)
+G.
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We shall seek a stationary equilibrium with pt−1

pt
= (1 + r) for t ≥ 1 and

Mt+1

pt
= ā for t ≥ 0. These guesses make the previous equation become

ā =
G

−r . (18.11.2)

For G > 0, this is a rectangular hyperbola in the southeast quadrant. A sta-

tionary equilibrium value of r is determined at an intersection of this curve with

Ea(r) (see Figure 18.11.1). Evidently, when G > 0, an equilibrium net interest

rate r < 0; −r can be regarded as an inflation tax. Notice that if there is one

equilibrium net interest rate, there is typically more than one. This is a con-

sequence of the Laffer curve present in this model.14 Typically if a stationary

equilibrium exists, there are at least two stationary inflation rates that finance

the government budget. This conclusion follows from the fact that both curves

in Figure 18.11.1 have positive slopes.

 _

E a (r)

r

E a (r)

1

2

1
r

r

G / r = - a

Figure 18.11.1: Two stationary equilibrium rates of return

on currency that finance the constant government deficit G .

After r is determined, the initial price level can be determined by the time

0 version of the government budget constraint (18.11.1), namely,

ā =M0/p0 +G.

14 A Laffer curve exists when government revenues from a tax are not a monotonic function

of a tax rate.
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This is the version of the quantity theory of money that prevails in this model.

Price levels pt for all t ≥ 0 increase proportionately with M0 .

Since there are generally multiple stationary equilibrium inflation rates,

which one should we select? We recommend choosing the one with the highest

rate of return to currency, that is, the lowest inflation tax. This selection gives

“classical” comparative statics: increasing G causes r to fall. In distinct but

related settings, Marcet and Sargent (1989) and Bruno and Fischer (1990) give

learning procedures that select the same equilibrium we have recommended.

Marimon and Sunder (1993) describe experiments with human subjects that

support this selection rule.

Alterations in the debt limit φ affect the inflation rate. Raising φ causes

the Ea(r) curve to shift to the left, and lowers r . It is even possible for such

an increase in φ to cause all stationary equilibria to vanish. This experiment

indicates why governments intent on raising seigniorage might want to restrict

private borrowing. See Bryant and Wallace (1984) for an extensive theoretical

elaboration of this and related points. See Sargent and Velde (1995) for a

practical example from the French Revolution.

18.12. Exchange rate indeterminacy

We can modify the preceding model to display a version of Kareken and Wal-

lace’s (1980) theory of exchange rate indeterminacy. Consider a model consist-

ing of two countries, each of which is a Bewley economy with stationary money

demand function Eai(r) in country i . The same single consumption good is

available in each country. Residents of both countries are free to hold the cur-

rency of either country. Households of either country are indifferent between

the two currencies as long as their rates of return are equal. Let pi,t be the

price level in country i , and let p1,t = etp2,t define the time t exchange rate et .

The gross return on currency i between t − 1 and t is (1 + r) =
(
pi,t−1

pi,t

)
for

i = 1, 2. Equality of rates of return implies et = et−1 = e for all t and therefore

p1,t = ep2,t for all t .

Country i finances a fixed expenditure level Gi by printing its own cur-

rency. Let āi be the stationary level of real balances in country i ’s currency.
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Stationary versions of the two countries’ budget constraints are

ā1 = ā1(1 + r) +G1 (18.12.1)

ā2 = ā2(1 + r) +G2 (18.12.2)

Sum these to get

ā1 + ā2 =
(G1 +G2)

−r .

Setting this curve against Ea1(r)+Ea2(r) determines a stationary equilibrium

rate of return r . To determine the initial price level and exchange rate, we

use the time 0 budget constraints of the two governments. The time 0 budget

constraint for country i is

Mi,1

pi,0
=
Mi,0

pi,0
+Gi

or

āi =
Mi,0

pi,0
+Gi. (18.12.3)

Add these and use p1,0 = ep2,0 to get

(ā1 + ā2)− (G1 +G2) =
M1,0 + eM2,0

p1,0
.

This is one equation in two variables (e, p1,0). If there is a solution for some

e ∈ (0,+∞), then there is a solution for any other e ∈ (0,+∞). In this sense,

the equilibrium exchange rate is indeterminate.

Equation (18.12.3) is a quantity theory of money stated in terms of the

initial “world money supply” M1,0 + eM2,0 .
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18.13. Interest on currency

Bewley (1980, 1983) studied whether Friedman’s recommendation to pay in-

terest on currency could improve outcomes in a stationary equilibrium, and

possibly even support an optimal allocation. He found that when β < 1, Fried-

man’s rule could improve things but could not implement an optimal allocation,

for reasons we now describe.

As in the earlier fiat money model, there is one asset, fiat currency, issued

by a government. Households cannot borrow (b = 0). The consumer’s budget

constraint is

mt+1 + ptct ≤ (1 + r̃)mt + ptwst − τpt

where mt+1 ≥ 0 is currency carried over from t to t + 1, pt is the price level

at t , r̃ is nominal interest on currency paid by the government, and τ is a real

lump-sum tax. This tax is used to finance the interest payments on currency.

The government’s budget constraint at t is

Mt+1 =Mt + r̃Mt − τpt,

where Mt is the nominal stock of currency per person at the beginning of t .

There are two versions of this model: one where the government pays ex-

plicit interest while keeping the nominal stock of currency fixed, another where

the government pays no explicit interest but varies the stock of currency to pay

interest through deflation.

For each setting, we can show that paying interest on currency, where cur-

rency holdings continue to obey mt ≥ 0, can be viewed as a device for weaken-

ing the impact of this nonnegativity constraint. We establish this point for each

setting by showing that the household’s problem is isomorphic with Aiyagari’s

problem as expressed in (18.3.1), (18.5.3), and (18.5.4).
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18.13.1. Explicit interest

In the first setting, the government leaves the money supply fixed, setting

Mt+1 =Mt ∀t , and undertakes to support a constant price level. These settings

make the government budget constraint imply

τ = r̃M/p.

Substituting this into the household’s budget constraint and rearranging gives

mt+1

p
+ ct ≤

mt

p
(1 + r̃) + wst − r̃

M

p

where the choice of currency is subject to mt+1 ≥ 0. With appropriate trans-

formations of variables, this matches Aiyagari’s setup of expressions (18.3.1),

(18.5.3), and (18.5.4). In particular, take r = r̃ , φ = M
p ,

mt+1

p = ât+1 ≥ 0.

With these choices, the solution of the savings problem of a household living

in an economy with aggregate real balances of M
p and with nominal interest r̃

on currency can be read from the solution of the savings problem with the real

interest rate r̃ and a borrowing constraint parameter φ ≡ M
p . Let the solution

of this problem be given by the policy function at+1 = g(a, s; r, φ). Because

we have set mt+1

p = ât+1 ≡ at+1 + M
p , the condition that the supply of real

balances equals the demand Emt+1

p = M
p is equivalent with Eâ(r) = φ . Note

that because at = ât − φ , the equilibrium can also be expressed as Ea(r) = 0,

where as usual Ea(r) is the average of a computed with respect to the invariant

distribution λ(a, s).

The preceding argument shows that an equilibrium of the money economy

with mt+1 ≥ 0, equilibrium real balances M
p , and explicit interest on currency

r therefore is isomorphic to a pure credit economy with borrowing constraint

φ = M
p . We formalize this conclusion in the following proposition:

Proposition 3: A stationary equilibrium with interest on currency financed by

lump-sum taxation has the same allocation and interest rate as an equilibrium

of Huggett’s free banking model for debt limit φ equaling the equilibrium real

balances from the monetary economy.

To compute an equilibrium with interest on currency, we use a “back-

solving” method.15 Thus, even though the spirit of the model is that the govern-

ment names r̃ = r and commits itself to set the lump-sum tax needed to finance

15 See Sims (1989) and Diaz-Giménez, Prescott, Fitgerald, and Alvarez (1992) for explana-

tions and applications of back-solving.
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interest payments on whatever M
p emerges, we can compute the equilibrium by

naming M
p first , then finding an r that makes things work. In particular, we

use the following steps:

1. Set φ to satisfy 0 ≤ φ ≤ ws1
r . (We will elaborate on the upper bound in the

next section.) Compute real balances and therefore p by solving M
p = φ .

2. Find r from Eâ(r) = M
p or Ea(r) = 0.

3. Compute the equilibrium tax rate from the government budget constraint

τ = rMp .

This construction finds a constant tax that satisfies the government budget

constraint and that supports a level of real balances in the interval 0 ≤ M
p ≤

ws1
r . Evidently, the largest level of real balances that can be supported in

equilibrium is the one associated with the natural debt limit. The levels of

interest rates that are associated with monetary equilibria are in the range

0 ≤ r ≤ rFB , where Ea(rFB) = 0 and rFB is the equilibrium interest rate in

the pure credit economy (i.e., Huggett’s model) under the natural debt limit.

18.13.2. The upper bound on M
p

To interpret the upper bound on attainable M
p , note that the government’s bud-

get constraint and the budget constraint of a household with zero real balances

imply that τ = rMp ≤ ws for all realizations of s . Assume that the stationary

distribution of real balances has a positive fraction of agents with real balances

arbitrarily close to zero. Let the distribution of employment shocks s be such

that a positive fraction of these low-wealth consumers receive income ws1 at

any time. Then, for it to be feasible for the lowest wealth consumers to pay

their lump-sum taxes, we must have τ ≡ rM
p ≤ ws1 or M

p ≤ ws1
r .

In Figure 18.6.1, the equilibrium real interest rate r can be read from the

intersection of the Ea(r) curve and the r -axis. Think of a graph with two

Ea(r) curves, one with the natural debt limit φ = s1w
r , the other one with an

ad hoc debt limit φ = min[b, s1wr ] shifted to the right. The highest interest rate

that can be supported by an interest on currency policy is evidently determined

by the point where the Ea(r) curve for the natural debt limit passes through

the r -axis. This is higher than the equilibrium interest rate associated with any

of the ad hoc debt limits, but must be below ρ . Note that ρ is the interest
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rate associated with the optimal quantity of money. Thus, we have Aiyagari’s

(1994) graphical version of Bewley’s (1983) result that the optimal quantity of

money (Friedman’s rule) cannot be implemented in this setting.

We summarize this discussion with a proposition about free banking and

Friedman’s rule:

Proposition 4: The highest interest rate that can be supported by paying

interest on currency equals that associated with the pure credit (i.e., the pure

inside money) model with the natural debt limit.

If ρ > 0, Friedman’s rule—to pay real interest on currency at the rate ρ—

cannot be implemented in this model. The most that can be achieved by paying

interest on currency is to eradicate the restriction that prevents households from

issuing currency in competition with the government and to implement the free

banking outcome.

18.13.3. A very special case

Levine and Zame (2002) have studied a special limiting case of the preceding

model in which the free banking equilibrium, which we have seen is equivalent

to the best stationary equilibrium with interest on currency, is optimal. They

attain this special case as the limit of a sequence of economies with ρ ↓ 0.

Heuristically, under the natural debt limits, the Ea(r) curves converge to a

horizontal line at r = 0. At the limit ρ = 0, the argument leading to Proposition

4 allows for the optimal r = ρ equilibrium.
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18.13.4. Implicit interest through deflation

There is another arrangement equivalent to paying explicit interest on currency.

Here the government aspires to pay interest through deflation, but abstains from

paying explicit interest. This purpose is accomplished by setting r̃ = 0 and

τpt = −gMt , where it is intended that the outcome will be (1+ r)−1 = (1+ g),

with g < 0. The government budget constraint becomes Mt+1 = Mt(1 + g).

This can be written
Mt+1

pt
=

Mt

pt−1

pt−1

pt
(1 + g).

We seek a steady state with constant real balances and inverse of the gross

inflation rate pt−1

pt
= (1 + r). Such a steady state implies that the preceding

equation gives (1 + r) = (1 + g)−1, as desired. The implied lump-sum tax rate

is τ = − Mt

pt−1
(1 + r)g. Using (1 + r) = (1 + g)−1 , this can be expressed

τ =
Mt

pt−1
r.

The household’s budget constraint with taxes set in this way becomes

ct +
mt+1

pt
≤ mt

pt−1
(1 + r) + wst −

Mt

pt−1
r (18.13.1)

This matches Aiyagari’s setup with Mt

pt−1
= φ.

With these matches the steady-state equilibrium is determined just as

though explicit interest were paid on currency. The intersection of the Ea(r)

curve with the r -axis determines the real interest rate. Given the parameter b

setting the debt limit, the interest rate equals that for the economy with explicit

interest on currency.
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18.14. Precautionary savings

As we have seen in the production economy with idiosyncratic labor income

shocks, the steady-state capital stock is larger when agents have no access to

insurance markets as compared to the capital stock in a complete markets econ-

omy. The “excessive” accumulation of capital can be thought of as the economy’s

aggregate amount of precautionary savings—a point emphasized by Huggett and

Ospina (2000). The precautionary demand for savings is usually described as the

extra savings caused by future income being random rather than determinate.16

In a partial equilibrium savings problem, it has been known since Leland

(1968) and Sandmo (1970) that precautionary savings in response to risk are

associated with convexity of the marginal utility function, or a positive third

derivative of the utility function. In a two-period model, the intuition can be

obtained from the Euler equation, assuming an interior solution with respect to

consumption:

u′[(1 + r)a0 + w0 − a1] = β(1 + r)E0u
′[(1 + r)a1 + w1],

where 1+r is the gross interest rate, wt is labor income (endowment) in period

t = 0, 1, a0 is an initial asset level, and a1 is the optimal amount of savings be-

tween periods 0 and 1. Now compare the optimal choice of a1 in two economies

where next period’s labor income w1 is either determinate and equal to w̄1 , or

random with a mean value of w̄1 . Let a
n
1 and as1 denote the optimal choice of

savings in the nonstochastic and stochastic economy, respectively, that satisfy

the Euler equations:

u′[(1 + r)a0 + w0 − an1 ] = β(1 + r)u′[(1 + r)an1 + w̄1]

u′[(1 + r)a0 + w0 − as1] = β(1 + r)E0u
′[(1 + r)as1 + w1]

> β(1 + r)u′[(1 + r)as1 + w̄1],

16 Neng Wang (2003) describes an analytically tractable Bewley model with exponential

utility. He is able to decompose the savings of an infinitely lived agent into three pieces: (1) a

part reflecting a “rainy day” motive that would also be present with quadratic preferences; (2)

a part coming from a precautionary motive; and (3) a dissaving component due to impatience

that reflects the relative sizes of the interest rate and the consumer’s discount rate. Wang

computes the equilibrium of a Bewley model by hand and shows that, at the equilibrium

interest rate, the second and third components cancel, effectively leaving the consumer to

behave as a permanent-income consumer having a martingale consumption policy.
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where the strict inequality is implied by Jensen’s inequality under the assump-

tion that u′′′ > 0. It follows immediately from these expressions that the

optimal asset level is strictly greater in the stochastic economy as compared to

the nonstochastic economy, as1 > an1 .

Versions of precautionary savings have been analyzed by Miller (1974), Sib-

ley (1975), Zeldes (1989), Caballero (1990), Kimball (1990, 1993), and Carroll

and Kimball (1996), to mention just a few other studies in a vast literature.

Using numerical methods for a finite horizon savings problem and assuming

a constant relative risk aversion utility function, Zeldes (1989) found that in-

troducing labor income uncertainty made the optimal consumption function

concave in assets. That is, the marginal propensity to consume out of assets or

transitory income declines with the level of assets. In contrast, without uncer-

tainty and when β(1 + r) = 1 (as assumed by Zeldes), the marginal propensity

to consume depends only on the number of periods left to live, and is neither

a function of the agent’s asset level nor the present value of lifetime wealth.17

Here we briefly summarize Carroll and Kimball’s (1996) analytical explanation

for the concavity of the consumption function that income uncertainty seemed

to induce.

In a finite horizon model where both the interest rate and endowment are

stochastic processes, Carroll and Kimball cast their argument in terms of the

class of hyperbolic absolute risk aversion (HARA) one-period utility functions.

These are defined by u′′′u′

u′′2 = k for some number k . To induce precautionary

savings, it must be true that k > 0. Most commonly used utility functions are

of the HARA class: quadratic utility has k = 0, constant absolute risk aversion

(CARA) corresponds to k = 1, and constant relative risk aversion (CRRA)

utility functions satisfy k > 1.

Carroll and Kimball show that if k > 0, then consumption is a concave

function of wealth. Moreover, except for some special cases, they show that

the consumption function is strictly concave; that is, the marginal propensity

to consume out of wealth declines with increases in wealth. The exceptions to

17 When β(1 + r) = 1 and there are T periods left to live in a nonstochastic economy,

consumption smoothing prescribes a constant consumption level c given by
∑T−1

t=0
c

(1+r)t
=

Ω, which implies c = r
1+r

[
1− 1

(1+r)T

]−1
Ω ≡ MPCT Ω, where Ω is the agent’s current

assets plus the present value of her future labor income. Hence, the marginal propensity to

consume out of an additional unit of assets or transitory income, MPCT , is only a function

of the time horizon T .
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strict concavity include two well-known cases: CARA utility if all of the risk is

to labor income (no rate-of-return risk), and CRRA utility if all of the risk is

rate-of-return risk (no labor-income risk).

In the course of the proof, Carroll and Kimball generalize the result of Sibley

(1975) that a positive third derivative of the utility function is inherited by the

value function. For there to be precautionary savings, the third derivative of

the value function with respect to assets must be positive; that is, the marginal

utility of assets must be a convex function of assets. The case of the quadratic

one-period utility is an example where there is no precautionary saving. Off

corners, the value function is quadratic, and the third derivative of the value

function is zero.18

Where precautionary saving occurs, and where the marginal utility of con-

sumption is always positive, the consumption function becomes approximately

linear for large asset levels.19 This feature of the consumption function plays a

decisive role in governing the behavior of a model of Krusell and Smith (1998),

to which we now turn.

18.15. Models with fluctuating aggregate variables

That the aggregate equilibrium state variables are constant helps makes the

preceding models tractable. This section describes a way to extend such models

to situations with time-varying stochastic aggregate state variables.20

Krusell and Smith (1998) modified Aiyagari’s (1994) model by adding an

aggregate state variable z , a technology shock that follows a Markov process.

Each household continues to receive an idiosyncratic labor-endowment shock s

18 In linear-quadratic models, decision rules for consumption and asset accumulation are

independent of the variances of innovations to exogenous income processes.
19 Roughly speaking, this follows from applying the Benveniste-Scheinkman formula and

noting that, where v is the value function, v′′ is increasing in savings and v′′ is bounded.
20 See Duffie, Geanakoplos, Mas-Colell, and McLennan (1994) for a general formulation

and equilibrium existence theorem for such models. These authors cast doubt on whether in

general the current distribution of wealth is enough to serve as a complete description of the

history of the aggregate state. They show that in addition to the distribution of wealth, it

can be necessary to add a sunspot to the state. See Miao (2003) for a later treatment and

for an interpretation of the additional state variable in terms of a distribution of continuation

values. See Marcet and Singleton (1999) for a computational strategy for incomplete markets

models with a finite number of heterogeneous agents.
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that averages to the same constant value for each value of the aggregate shock

z . The aggregate shock causes the size of the state of the economy to expand

dramatically, because every household’s wealth will depend on the history of

the aggregate shock z , call it zt , as well as the history of the household-specific

shock st . That makes the joint histories of zt, st correlated across households,

which in turn makes the cross-section distribution of (k, s) vary randomly over

time. Therefore, the interest rate and wage will also vary randomly over time.

One way to specify the state is to include the cross-section distribution

λ(k, s) each period among the state variables. Thus, the state includes a cross-

section probability distribution of (capital, employment) pairs. In addition, a

description of a recursive competitive equilibrium must include a law of motion

mapping today’s distribution λ(k, s) into tomorrow’s distribution.

18.15.1. Aiyagari’s model again

To prepare the way for Krusell and Smith’s way of handling such a model, we

recall the structure of Aiyagari’s model. The household’s Bellman equation in

Aiyagari’s model is

v(k, s) = max
c,k′

{u(c) + βE[v(k′, s′)|s]} (18.15.1)

where the maximization is subject to

c+ k′ = r̃k + ws+ (1− δ)k, (18.15.2)

and the prices r̃ and w are fixed numbers satisfying

r̃ = r̃(K,N) = α

(
K

N

)α−1

(18.15.3a)

w = w(K,N) = (1− α)

(
K

N

)α
. (18.15.3b)

Recall that aggregate capital and labor K,N are the average values of k, s

computed from

K =

∫
kλ(k, s)dkds (18.15.4)

N =

∫
sλ(k, s)dkds. (18.15.5)
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Here we are following Aiyagari by assuming a Cobb-Douglas aggregate produc-

tion function. The definition of a stationary equilibrium requires that λ(k, s) be

the stationary distribution of (k, s) across households induced by the decision

rule that attains the right side of equation (18.15.1).

18.15.2. Krusell and Smith’s extension

Krusell and Smith (1998) modify Aiyagari’s model by adding an aggregate pro-

ductivity shock z to the price equations, emanating from the presence of z in

the production function. The shock z is governed by an exogenous Markov

process. Now the state must include λ and z too, so the household’s Bellman

equation becomes

v(k, s;λ, z) = max
c,k′

{u(c) + βE[v(k′, s′;λ′, z′)|(s, z, λ)]} (18.15.6)

where the maximization is subject to

c+ k′ = r̃(K,N, z)k + w(K,N, z)s+ (1− δ)k (18.15.7a)

r̃ = r̃(K,N, z) = zα

(
K

N

)α−1

(18.15.7b)

w = w(K,N, z) = z(1− α)

(
K

N

)α
(18.15.7c)

λ′ = H(λ, z) (18.15.7d)

where (K,N) is a stochastic processes determined from21

Kt =

∫
kλt(k, s)dkds (18.15.8)

Nt =

∫
sλt(k, s)dkds. (18.15.9)

Here λt(k, s) is the distribution of k, s across households at time t . The distri-

bution is itself a random function disturbed by the aggregate shock zt .

21 In our simplified formulation, N is actually constant over time. But in Krusell and

Smith’s model, N too can be a stochastic process, because leisure is in the one-period utility

function.
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Krusell and Smith make the plausible guess that λt(k, s) is enough to com-

plete the description of the state.22 , 23 The Bellman equation and the pricing

functions induce the household to want to forecast the average capital stock

K , in order to forecast future prices. That desire makes the household want to

forecast the cross-section distribution of holdings of capital. To do so it consults

the law of motion (18.15.7d).

Definition: A recursive competitive equilibrium is a pair of price functions

r̃, w , a value function, a decision rule k′ = f(k, s;λ, z), and a law of motion H

for λ(k, s) such that

(a) given the price functions and H , the value function solves the Bellman

equation (18.15.6) and the optimal decision rule is f ;

(b) the decision rule f and the Markov processes for s and z imply that today’s

distribution λ(k, s) is mapped into tomorrow’s λ′(k, s) by H .

The curse of dimensionality makes an equilibrium difficult to compute.

Krusell and Smith propose a way to approximate an equilibrium using simu-

lations.24 First, they characterize the distribution λ(k, s) by a finite set of

moments of capital m = (m1, . . . ,mI). They assume a parametric functional

form for H mapping today’s m into next period’s value m′ . They assume

a form that can be conveniently estimated using least squares. They assume

initial values for the parameters of H . Given H , they use numerical dynamic

programming to solve the Bellman equation

v(k, s;m, z) = max
c,k′

{u(c) + βE[v(k′, s′;m′, z′)|(s, z,m)]}

subject to the assumed law of motion H for m . They take the solution of this

problem and draw a single long realization from the Markov process for {zt} ,

22 However, in general settings, this guess remains to be verified. Duffie, Geanakoplos, Mas-

Colell, and McLennan (1994) give an example of an incomplete markets economy in which it

is necessary to keep track of a longer history of the distribution of wealth.
23 Loosely speaking, that the individual moves through the distribution of wealth as time

passes indicates that his implicit Pareto weight is fluctuating.
24 These simulations can be justified formally using lessons learned from the literature on

convergence of least squares learning to rational expectations in self-referential environments.

See footnote 5 of chapter 7, the paper by Marcet and Sargent (1989), and the book with

extensions and many applications by Evans and Honkapohja (2001).
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say, of length T . For that particular realization of z , they then simulate paths of

{kt, st} of length T for a large number M of households. They assemble these

M simulations into a history of T empirical cross-section distributions λt(k, s).

They use the cross section at t to compute the cross-section moments m(t),

thereby assembling a time series of length T of the cross-section moments m(t).

They use this sample and nonlinear least squares to estimate the transition

function H mapping m(t) into m(t+ 1). They return to the beginning of the

procedure, use this new guess at H , and continue, iterating to convergence of

the function H .

Krusell and Smith compare the aggregate time series Kt, Nt, r̃t, wt from this

model with a corresponding representative agent (or complete markets) model.

They find that the statistics for the aggregate quantities and prices for the two

types of models are very close. Krusell and Smith interpret this result in terms of

an “approximate aggregation theorem” that follows from two properties of their

parameterized model. First, consumption as a function of wealth is concave but

close to linear for moderate to high wealth levels. Second, most of the saving is

done by the high-wealth people. These two properties mean that fluctuations

in the distribution of wealth have only a small effect on the aggregate amount

saved and invested. Thus, distribution effects are small. Also, for these high-

wealth people, self-insurance works quite well, so aggregate consumption is not

much lower than it would be for the complete markets economy.

Krusell and Smith compare the distributions of wealth from their model to

the U.S. data. Relative to the data, the model with a constant discount factor

generates too few very poor people and too many rich people. Krusell and

Smith modify the model by making the discount factor an exogenous stochastic

process. The discount factor switches occasionally between two values. Krusell

and Smith find that a modest difference between two discount factors can bring

the model’s wealth distribution much closer to the data. Patient people become

wealthier; impatient people eventually become poorer.
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18.16. Concluding remarks

The models in this chapter pursue some of the adjustments that households

make when their preferences and endowments give a motive to insure but mar-

kets offer limited opportunities to do so. We have studied settings where house-

holds’ saving occurs through a single risk-free asset. Households use the asset

to “self-insure,” by making intertemporal adjustments of the asset holdings to

smooth their consumption. Their consumption rates at a given date become a

function of their asset holdings, which in turn depend on the histories of their

endowments. In pure exchange versions of the model, the equilibrium allocation

becomes individual history specific, in contrast to the history-independence of

the corresponding complete markets model.

The models of this chapter arbitrarily shut down or allow markets without

explanation. The market structure is imposed, its consequences then analyzed.

In chapters 21 and 22, we study a class of models for similar environments

that, like the models of this chapter, make consumption allocations history

dependent. But the spirit of the models in chapters 21 and 22 differs from those

in this chapter in requiring that the trading structure be more firmly motivated

by the environment. In particular, the models in chapters 21 and 22 posit a

particular reason that complete markets do not exist, coming from enforcement

or information problems, and then study how risk sharing among people can

best be arranged.

Exercises

Exercise 18.1 Random discount factor (Bewley-Krusell-Smith)

A household has preferences over consumption of a single good ordered by a value

function defined recursively by v(βt, at, st) = u(ct) + βtEtv(βt+1, at+1, st+1),

where βt ∈ (0, 1) is the time t value of a discount factor, and at is time t holding

of a single asset. Here v is the discounted utility for a consumer with asset

holding at , discount factor βt , and employment state st . The discount factor

evolves according to a three-state Markov chain with transition probabilities

Pi,j = Prob(βt+1 = β̄j|βt = β̄i). The discount factor and employment state at

t are both known. The household faces the sequence of budget constraints

at+1 + ct ≤ (1 + r)at + wst
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where st evolves according to an n-state Markov chain with transition matrix

P . The household faces the borrowing constraint at+1 ≥ −φ for all t .

Formulate Bellman equations for the household’s problem. Describe an algo-

rithm for solving the Bellman equations. (Hint: Form three coupled Bellman

equations.)

Exercise 18.2 Mobility costs (Bertola)

A worker seeks to maximize E
∑∞
t=0 β

tu(ct), where β ∈ (0, 1) and u(c) = c1−σ

(1−σ) ,

and E is the expectation operator. Each period, the worker supplies one unit of

labor inelastically (there is no unemployment) and either wg or wb , where wg >

wb . A new “job” starts off paying wg the first period. Thereafter, a job earns

a wage governed by the two-state Markov process governing transition between

good and bad wages on all jobs; the transition matrix is

[
p (1− p)

(1 − p) p

]
.

A new (well-paying) job is always available, but the worker must pay mobility

cost m > 0 to change jobs. That cost is paid at the beginning of the period

that a worker decides to move. A worker’s period t budget constraint is

At+1 + ct +mIt ≤ RAt + wt,

where R is a gross interest rate on assets, ct is consumption at t , m > 0 is

moving costs, It is an indicator equaling 1 if the worker moves in period t ,

zero otherwise, and wt is the wage. Assume that A0 > 0 is given and that the

worker faces the no-borrowing constraint, At ≥ 0 for all t .

a. Formulate the Bellman equation for the worker.

b. Write a Matlab program to solve the worker’s Bellman equation. Show the

optimal decision rules computed for the following parameter values: m = .9, p =

.8, R = 1.02, β = .95, wg = 1.4, wb = 1, σ = 4. Use a range of assets levels of

[0, 3]. Describe how the decision to move depends on wealth.

c. Compute the Markov chain governing the transition of the individual’s state

(A,w). If it exists, compute the invariant distribution.

d. In the fashion of Bewley, use the invariant distribution computed in part c

to describe the distribution of wealth across a large number of workers all facing

this same optimum problem.
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Exercise 18.3 Unemployment

There is a continuum of workers with identical probabilities λ of being fired

each period when they are employed. With probability µ ∈ (0, 1), each un-

employed worker receives one offer to work at wage w drawn from the cumu-

lative distribution function F (w). If he accepts the offer, the worker receives

the offered wage each period until he is fired. With probability 1 − µ , an

unemployed worker receives no offer this period. The probability µ is deter-

mined by the function µ = f(U), where U is the unemployment rate, and

f ′(U) < 0, f(0) = 1, f(1) = 0. A worker’s utility is given by E
∑∞

t=0 β
tyt ,

where β ∈ (0, 1) and yt is income in period t , which equals the wage if em-

ployed and zero otherwise. There is no unemployment compensation. Each

worker regards U as fixed and constant over time in making his decisions.

a. For fixed U , write the Bellman equation for the worker. Argue that his

optimal policy has the reservation wage property.

b. Given the typical worker’s policy (i.e., his reservation wage), display a differ-

ence equation for the unemployment rate. Show that a stationary unemployment

rate must satisfy

λ(1 − U) = f(U)
[
1− F (w̄)

]
U,

where w̄ is the reservation wage.

c. Define a stationary equilibrium.

d. Describe how to compute a stationary equilibrium. You don’t actually have

to compute it.

Exercise 18.4 Asset insurance

Consider the following setup. There is a continuum of households that maximize

E

∞∑

t=0

βtu(ct),

subject to

ct + kt+1 + τ ≤ y +max(xt, g)k
α
t , ct ≥ 0, kt+1 ≥ 0, t ≥ 0,

where y > 0 is a constant level of income not derived from capital, α ∈ (0, 1), τ

is a fixed lump-sum tax, kt is the capital held at the beginning of t , g ≤ 1 is an
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“investment insurance” parameter set by the government, and xt is a stochastic

household-specific gross rate of return on capital. We assume that xt is governed

by a two-state Markov process with stochastic matrix P , which takes on the two

values x̄1 > 1 and x̄2 < 1. When the bad investment return occurs, (xt = x̄2 ),

the government supplements the household’s return by max(0, g − x̄2).

The household-specific randomness is distributed identically and indepen-

dently across households. Except for paying taxes and possibly receiving insur-

ance payments from the government, households have no interactions with one

another; there are no markets.

Given the government policy parameters τ, g , the household’s Bellman

equation is

v(k, x) = max
k′

{u
[
max(x, g)kα − k′ − τ

]
+ β

∑

x′

v(k′, x′)P(x, x′)}.

The solution of this problem is attained by a decision rule

k′ = G(k, x),

that induces a stationary distribution λ(k, x) of agents across states (k, x).

The average (or per capita) physical output of the economy is

Y =
∑

k

∑

x

(x× kα)λ(k, x).

The average return on capital to households, including investment insurance, is

ν =
∑

k

x̄1k
αλ(k, x1) + max(g, x̄2)

∑

k

kαλ(k, x2),

which states that the government pays out insurance to all households for which

g > x̄2 .

Define a stationary equilibrium.

Exercise 18.5 Matching and job quality

Consider the following Bewley model, a version of which Daron Acemoglu and

Robert Shimer (2000) calibrate to deduce quantitative statements about the ef-

fects of government-supplied unemployment insurance on the equilibrium level

of unemployment, output, and workers’ welfare. Time is discrete. Each of a

continuum of ex ante identical workers can accumulate nonnegative amounts of
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a single risk-free asset bearing gross one-period rate of return R ; R is exogenous

and satisfies βR < 1. There are good jobs with wage wg and bad jobs with

wage wb < wg . Both wages are exogenous. Unemployed workers must decide

whether to search for good jobs or bad jobs. (They cannot search for both.) If

an unemployment worker devotes h units of time to search for a good job, a

good job arrives with probability mgh ; h units of time devoted to searching for

bad jobs makes a bad job arrive with probability mbh . Assume that mg < mb .

Good jobs terminate exogenously each period with probability δg , bad jobs

with probability δb . Exogenous terminations entitle an unemployed worker to

unemployment compensation of b , which is independent of the worker’s lagged

earnings. However, each period, an unemployed worker’s entitlement to unem-

ployment insurance is exposed to an i.i.d. probability of φ of expiring. Workers

who quit are not entitled to unemployment insurance.

Workers choose {ct, ht}∞t=0 to maximize

E0

∞∑

t=0

βt(1− θ)−1(ct(h̄− ht)
η)1−θ,

where β ∈ (0, 1), and θ is a coefficient of relative risk aversion, subject to the

asset accumulation equation

at+1 = R(at + yt − ct)

and the no-borrowing condition at+1 ≥ 0; η governs the substitutability be-

tween consumption and leisure. Unemployed workers eligible for unemployment

insurance receive income yt = b , while those not eligible receive 0. Employed

workers with good jobs receive after-tax income of yt = wgh(1− τ), and those

with bad jobs receive yt = wbh(1 − τ). In equilibrium, the flat-rate tax is set

so that the government budget for unemployment insurance balances. Workers

with bad jobs have the option of quitting to search for good jobs.

Define a worker’s composite state as his asset level, together with one of four

possible employment states: (1) employed in a good job, (2) employed in a bad

job, (3) unemployed and eligible for unemployment insurance; (4) unemployed

and ineligible for unemployment insurance.

a. Formulate value functions for the four types of employment states, and

describe Bellman equations that link them.
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b. In the fashion of Bewley, define a stationary stochastic equilibrium, being

careful to define all of the objects composing an equilibrium.

c. Adjust the Bellman equations to accommodate the following modification.

Assume that every period that a worker finds himself in a bad job, there is a

probability δupgrade that the following period, the bad job is upgraded to a good

job, conditional on not having been fired.

d. Acemoglu and Shimer calibrate their model to U.S. high school graduates,

then perform a local analysis of the consequences of increasing the unemploy-

ment compensation rate b . For their calibration, they find that there are sub-

stantial benefits to raising the unemployment compensation rate and that this

conclusion prevails despite the presence of a “moral hazard problem” associated

with providing unemployment insurance benefits in their model. The reason is

that too many workers choose to search for bad rather than good jobs. They

calibrate β so that workers are sufficiently impatient that most workers with

low assets search for bad jobs. If workers were more fully insured, more workers

would search for better jobs. That would put a larger fraction of workers in

good jobs and raise average productivity. In equilibrium, unemployed workers

with high asset levels do search for good jobs, because their assets provide them

with the “self-insurance” needed to support their investment in search for good

jobs. Do you think that the modification suggested in part c would affect the

outcomes of increasing unemployment compensation b?

Exercise 18.6 Gluing stationary equilibria

At time −1, there is a continuum of ex ante identical consumer named i ∈ (0, 1).

Just before time 0, net assets ã(i; 0) drawn from a cumulative distribution

function F are distributed to agents. Net assets may be positive or negative.

Agent i ’s net assets at the beginning of time 0 are then a0 = ã(i, 0). (To

conserve notation, we’ll usually supress the i .) A typical consumer’s labor

income at time t is wst where where w is a fixed positive number and st

evolves according to an m-state Markov chain with transition matrix P . Think

of initiating the process from the invariant distribution of P over s̄i ’s. If the

realization of the process at t is s̄i , then at time t the household receives labor

income ws̄i . Let at be the household’s net assets at the beginning of period

t . For given initial values (a0, s0 ) and a given net risk-free interest rate r , a
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household chooses a policy for {ct, at+1}∞t=0 to maximize

(1) E0

∞∑

t=0

βtu(ct),

subject to

(2)
ct + at+1 = (1 + r)at + wst

at+1 ∈ A(r)

where β ∈ (0, 1) is a discount factor; u(c) is a strictly increasing, strictly

concave, twice continuously differentiable one-period utility function satisfying

the Inada condition limc↓0 u
′(c) = +∞ ; and β(1+ r) < 1; whether the set A(r)

might depend on r depends on whether or not we construct it from a natural

borrowing limit or some tighter ad hoc limit.

a. Describe an equilibrium of an incomplete markets model in the style of Mark

Huggett in which the only asset traded is a risk-free private IOU. Please define

all objects of which an equilibrium consists and the restrictions that equilibrium

imposes on those objects.

b. Let Λ(a, s) be the joint probability distribution over a, s in the equilib-

rium that you described in part a. How does Λ(a, s) relate to the cumulative

distribution function F in the set up of the problem?

c. Suppose that parameters are such that the equilibrium net interest rate r is

negative in your Hugget model. Call this interest rate rH < 0. Please draw a

graph with the net interest rate on the coordinate axis and average net assets

across agents on the ordinate axis and show rH as well as average savings across

agents as a funtion of r .

d. Now add a government to the model, starting from initial conditions con-

sistent with the equilibrium Λ(a, s) distribution associated with the Huggett

equilibrium that you described in parts b and c. The government acts only at

time 0, when it has budget constraint

T−1 =
M0

p
, T−1 =

∫
T̃−1(i)di,

where p > 0 is the price level, T−1 is the value of aggregate transfers of unbacked

fiat currency from the government to consumers before the beginning of time
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0, and T̃−1(i) is the real value of transfers awarded to consumer i . A typical

household’s budget constraint becomes

(3) c0 + a1 ≤ ws0 + (1 + rH)a0 + T̃−1(i)

at time 0 and remains inequality (2) for t ≥ 1.

e. First, please define a stationary equilbrium of an incomplete markets model

with valued unbacked fiat currency in the style of Bewley. Let G be the cumu-

lative distribution function of net assets a in this equilbrium.

f. Extra credit: Recalling that F is the cross section CDF of net assets in the

equliibrium of the Huggett model of part c and that G is the cross section CDF

of net assets in the equilibrium of the Bewley model of part e please describe

a scheme for awarding the transfers of fiat money before the beginning of time

0 that (i) preserves the ranks of all assets in the wealth distribution, and (ii)

moves the initial asset distribution from F to G , where a consumer’s initial net

assets in the Bewley model are aB(i) = (1 + r0)aH(i) + T̃−1(i), where aH(i)

were his initial assets in the Huggett model.

Hint: Recall that individuals i are distributed according to a uniform distribu-

tion on [0, 1]. Measured in units of time 0 consumption goods, let T̃−1(i) be

the transfer to agent i . Guess that the transfer is T̃−1(i) = G−1(i) − F−1(i).

Let aG(i) = aF (i) + T̃−1(i) be agent i ’s initial assets after the transfer. Verify

that the CDF of aG(i) is G as desired.25

g. Extra credit: Given the above transfer scheme for moving immediately from

a stationary equilibrium of a Huggett model to a stationary equilibrium of a

Bewley model with valued fiat money, taking as given their rankings in the

initial wealth distribution, do all agents prefer one stationary equilibrium to the

other? If so, which equilibrium do they prefer? If not all agents prefer one

to the other, please describe computations that would allow you to sort agents

into those who prefer to stay in the Huggett equilibrium and those who prefer

to move to the Bewley equilibrium.

Exercise 18.7 Real bills

Consider the Bewley model with a constant stock M0 of valued fiat money de-

scribed in exercise 18.6. Consider a monetary authority that issues additional

25 In effect, the guess recommends applying what is known as an “inverse probability inte-

gral transform” or “Smirnov transform”.
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currency and that uses it to purchase one-period risk-free IOUs issued by con-

sumers. The monetary authority’s budget constraint is

(1) At+1 = At +
Mt+1 −Mt

p
, t ≥ 0

subject to At+1 ≥ 0 for t ≥ 0 and A0 = 0, where At+1 is the stock of one-

period IOU’s that the monetary authority purchases at time t . Here we guess

that r = 0 and that sp is the constant equilibrium price level in the Bewley

economy with valued fiat currency from exercise 18.6. The equilibrium condition

in the market for risk-free securities is now

(2) At+1 + Ea(0) =
Mt+1

p
.

a. Solve the difference equation (1) backwards to verify that

(3) At+1 =
Mt+1 −M0

p
.

b. Verify that if a constant price level p satisfies Ea(0) = M0

p , as in the original

Bewley economy, then equilibrium condition (2) is satisfied at the same price

level p for any nonnegative sequence {At+1}∞t=0 and associated money supply

sequence {Mt+1}∞t=0 that satisfy constraint (1).

c. Argue that an increase in M0 , engineered as described in exercise 18.6, leads

to an increase in the equilibrium p ; but that increases in Mt for t ≥ 1 leave

the price level unaffected.

d. Remark: Sometimes M0 is called outside money and Mt+1 −M0 is called

inside money. It is called inside money because it is backed 100% by safe private

IOUs. The real bills doctrine asserts that increases in inside money are not

inflationary.
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Chapter 19
Dynamic Stackelberg Problems

19.1. History dependence

Except for chapter 16, previous chapters described decision problems that are

recursive in what we can call “natural” state variables, meaning state vari-

ables that describe stocks of capital, wealth, and information that helps forecast

future values of prices and quantities that impinge on utilities or profits. In

problems that are recursive in the natural state variables, optimal decision rules

are functions of the natural state variables.

Kydland and Prescott (1977) and Calvo (1978) gave macroeconomic exam-

ples of decision problems that are not recursive in natural state variables. At

time 0, a government chooses actions for all t ≥ 0, knowing that it confronts a

competitive market composed of many small private agents whose decisions are

influenced by their forecasts of the government’s future actions. In particular,

what private agents choose to do at date t depends partly on what they expect

the government to do at dates t+ j, ∀t ≥ 0. In a rational expectations equilib-

rium in a nonstochastic setting, the government’s actions at time t ≥ 1 equal

private agents’ earlier forecasts of those actions. Knowing that, the government

uses its time t ≥ 1 actions to influence earlier actions by private agents. The

rational expectations equilibrium concept requires that the government confirm

private sector forecasts. That prevents the government’s decision problem from

being recursive in natural state variables and makes the government’s decision

rule at t depend on the history of the natural state variables from time 0 to

time t .

It took time for economists to learn how to formulate policy problems of

this type recursively. Prescott (1977) asserted that recursive optimal control

theory (i.e., dynamic programming) did not apply to problems with this struc-

ture. This chapter and chapters 20, 21, and 24 describe how Prescott’s initial

pessimism about the inapplicability of optimal control theory was overturned.1

1 The important contribution by Kydland and Prescott (1980) dissipated Prescott’s initial

pessimism.

– 839 –
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An important finding is that if the natural state variables are augmented with

appropriate ‘forward looking’ state variables, this class of problems can be made

recursive. This affords computational advantages and yields substantial insights.

This chapter displays these within the tractable framework of linear-quadratic

problems.

19.2. The Stackelberg problem

To exhibit the essential structure of the decision problems that concerned Kyd-

land and Prescott (1977) and Calvo (1979), this chapter uses the optimal linear

regulator problem of chapter 5 to solve a linear-quadratic version of what is

known as a dynamic Stackelberg problem.2 In some examples, the Stackel-

berg leader is a government or Pareto planner and the Stackelberg follower as a

representative agent or private sector. In section 19.5, we’ll give industrial or-

ganization application with another interpretation of these two types of agent.

Let zt be an nz × 1 vector of natural state variables, xt an nx × 1 vector

of endogenous forward-looking variables, and ut a vector of variables chosen

by the Stackelberg leader. Included in xt are prices and quantities that adjust

instantaneously to clear markets at time t . The zt vector is inherited from

the past. The vector xt is determined purely by future values of z and u .

Nevertheless, at t ≥ 1, xt is inherited from the past because values of z and u

for all t ≥ 0 are set by a Stackelberg plan devised at time 0.

Remark: For t ≥ 1, xt will turn out to be both a forward-looking and a

backward- looking variable. It is forward looking because it depends on forecasts

of future actions of the Stackelberg leader. It is backward looking because it

is a promise about time t outcomes that was chosen earlier by the Stackelberg

leader.

2 In some settings it is called a Ramsey problem. See chapters 16 and 20.
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Let yt =

[
zt

xt

]
. Let ut be a vector of variables chosen by the Stackelberg

leader at t . Define the leader’s one-period loss function3

r(y, u) = y′Ry + u′Qu. (19.2.1)

Subject to an initial condition for z0 , but not for x0 , a Stackelberg leader at

time 0 wants to maximize

−
∞∑

t=0

βtr(yt, ut) (19.2.2)

in light of the model

[
I 0

G21 G22

] [
zt+1

xt+1

]
=

[
Â11 Â12

Â21 Â22

] [
zt

xt

]
+ B̂ut. (19.2.3)

We shall explain the meaning of the second block of equations in system (19.2.3)

soon. We assume that the matrix on the left is invertible, so that we can multiply

both sides of the above equation by its inverse to obtain

[
zt+1

xt+1

]
=

[
A11 A12

A21 A22

] [
zt

xt

]
+But (19.2.4)

or

yt+1 = Ayt +But. (19.2.5)

At time 0, the leader maximizes (19.2.2) by choosing {ut, xt, zt+1}∞t=0 subject

to (19.2.4) and an initial condition for z0 .
4

The optimal decision rule is history dependent, meaning that ut depends

not only on zt but also on lags of z . History dependence has two sources: (a)

the leader’s commitment at time 0 to a sequence of rules,5 and (b) the forward-

looking behavior of the Stackelberg followers embedded in the second block of

equations (19.2.4).

3 The problem assumes that there are no cross products between states and controls in the

return function. There is a simple transformation that converts a problem whose return func-

tion has cross products into an equivalent problem that has no cross products. For example,

see Hansen and Sargent (2008, chapter 4, pp. 72-73).
4 Miller and Salmon (1982, 1985), Hansen, Epple, and Roberds (1985), Pearlman, Currie,

and Levine (1986), Sargent (1987a, chapter XIII), Pearlman (1992), and others have studied

versions of this problem.
5 The leader would make different choices were it to choose sequentially, that is, were it

to select its time t action at time t .
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The second block of equations of (19.2.3) or (19.2.4) typically includes

first-order conditions for Stackelberg followers’ optimization problems (i.e., their

Euler equations). These summarize the forward-looking aspect of followers’

behavior. We shall provide an example in section 19.5 in which the last nx

equations of (19.2.4) or (19.2.5) constitute implementability constraints that

are formed by the Euler equations of a competitive fringe or private sector.

When combined with a stability condition to be imposed below, these Euler

equations summarize the followers’ best responses to the sequence of actions by

the Stackelberg leader. The leader uses its understanding of these responses to

manipulate the followers’ actions.

To indicate features of the problem that make xt a vector of forward-looking

variables, write the second block of system (19.2.3) as

xt = φ1zt + φ2zt+1 + φ3ut + φ0xt+1, (19.2.6)

where φ0 = Â−1
22 G22 . The models we study in this chapter typically satisfy

Condition A: The eigenvalues of φ0 are bounded in modulus by 1.6

Condition A makes equation explosive if “solved backward” but stable if “solved

forward”.7 So we solve equation (19.2.6) forward to get

xt =

∞∑

j=0

φj0 [φ1zt+j + φ2zt+j+1 + φ3ut+j ] . (19.2.7)

In choosing ut for t ≥ 1 at time 0, the leader takes into account how future

z ’s and u ’s affect earlier x ’s through equation (19.2.7).

Remark: We can regard xt in equation (19.2.6) or (19.2.7) as indexing the

optimal behavior of the followers in response to a Stackelberg plan {ut}∞t=0 . In

chapters 20 and 25, we use counterparts to xt to index competitive equilibria

with distorting taxes. In equation (19.2.6), the effects of {ut+j}∞j=1 on xt are

all intermediated through xt+1 .

Remark: The certainty equivalence principle stated in chapter 5 allows us to

work with a nonstochastic model. We would attain the same decision rule for

the Stackelberg leader if we were to replace xt+1 with the forecast Etxt+1 and

6 It will suffice if the eigenvalues of φ0 are bounded in modulus by β−.5 .
7 See appendix A of chapter 2 and chapter 5. Also, see Sargent (1987a, chapter IX).
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to add a shock process Cǫt+1 to the right side of (19.2.4), where ǫt+1 is an

i.i.d. random vector with mean zero and identity covariance matrix.

19.3. Timing protocol

For any vector at , define ~at = [at, at+1, . . .] .

Definition: Given z0 , the Stackelberg problem is to choose ~u0, ~x0, ~z1 that

maximize criterion (19.2.2) subject to (19.2.4) for t ≥ 0. A Stackelberg plan

(~u0, ~x0, ~z1) solves the Stackelberg problem starting from a given z0 .

The timing protocol underlying a Stackelberg plan is:

i. Nature chooses z0 .

ii. The Stackelberg leader chooses ~u0 .

iii. The Stackelberg follower chooses ~x0 and an outcome path ~z1 emerges.

The Stackelberg leader understands how the objects in item (iii) depend on its

choice of ~u0 .

This description of a Stackelberg plan views it from a static point of view

in terms of sequences chosen at time 0. In the following section, we describe a

way to decentralize decisions of the Stackelberg leader over time.

19.4. Recursive formulation

To assemble a Stackelberg problem recursively, we formulate two Bellman equa-

tions in two sets of state variables.
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19.4.1. Two Bellman equations

Define a feasible set of (~y1, ~u0) sequences

Ω(y0) = {(~y1, ~u0) : yt+1 = Ayt +But, ∀t ≥ 0}

In the definition of Ω(y0), y0 is taken as given. We express the Stackelberg

problem in terms of two subproblems:

subproblem 1

v(y0) = max
(~y1,~u0)∈Ω(y0)

−
∞∑

t=0

βtr(yt, ut) (19.4.1)

subproblem 2

w(z0) = max
x0

v(y0) (19.4.2)

19.4.2. Subproblem 1

The value function v(y) in subproblem 1 satisfies the Bellman equation

v(y) = max
u,y∗

{−r(y, u) + βv(y∗)} (19.4.3)

where maximization is subject to

y∗ = Ay +Bu, (19.4.4)

and y∗ denotes next period’s value of y . The problem takes the form of the lin-

ear quadratic dynamic programming problem studied in chapter 5. Substituting

the (correct) guess v(y) = −y′Py into Bellman equation (19.4.3) gives

−y′Py = maxu,y∗ {−y′Ry − u′Qu− βy∗′Py∗} ,

which as in chapter 5 gives rise to the algebraic matrix Riccati equation

P = R+ βA′PA− β2A′PB(Q+ βB′PB)−1B′PA (19.4.5)
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and the optimal decision rule

ut = −Fyt, (19.4.6)

where

F = β(Q+ βB′PB)−1B′PA. (19.4.7)

19.4.3. Subproblem 2

The value function v(y0) satisfies v(y) = −y′0Py0 or

v(y0) = −z′0P11z0 − 2x′0P21z0 − x′0P22x0 (19.4.8)

where

P =

[
P11 P12

P21 P22

]
.

Choose x0 by equating to zero the gradient of v(y0) with respect to x0 :

−2P21z0 − 2P22x0 = 0,

which implies that

x0 = −P−1
22 P21z0. (19.4.9)

We have solved subproblem 2.

Remark: From chapter 5, recall the formula µt = Pyt for the vector of shadow

prices µt =

[
µzt

µxt

]
on the transition equations. The shadow price µxt evidently

equals

µxt = P21zt + P22xt. (19.4.10)

So (19.4.9) is equivalent with

µx0 = 0. (19.4.11)

The Lagrange multiplier µxt measures the cost to the leader at t ≥ 0 of con-

firming expectations about its time t action that the followers held at dates

s < t . Setting µx0 = 0 reflects the situation that at time 0 there are no prior

expectations to confirm. But when µxt 6= 0 for t ≥ 1, it indicates that it is

costly to firm the followers’ expectations about time t ≥ 1 actions. The leader

takes these costs into account when it weighs the costs and benefits of using its

choice of ut, t ≥ 1 to influence {xs}t−1
s=0 .
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19.4.4. Timing protocol

Equations (19.4.6) and (19.4.9) form a recursive representation of a Stackelberg

plan that features the following timing protocol:

1. At times t ≥ 0, a continuation Stackelberg leader takes (zt, xt) as given

and chooses (ut, zt+1, xt+1).

2. At time 0, a Stackelberg leader takes z0 as given and chooses (x0, u0, z1, x1).

Notice how we have distinguished between a continuation Stackelberg leader who

chooses at time t ≥ 0 and a Stackelberg leader who chooses at time t = 0. In

this timing protocol, the entirely forward looking vector xt that obeys (19.2.6)

is part of the state vector confronting a continuation Stackelberg leader at times

t ≥ 0 but not part of the state confronting a Stackelberg leader at time t = 0.

It is presented to the continuation leader at time t ≥ 0 as a promise to be kept.

The time t continuation leader delivers xt by choosing ut, zt+1, xt+1 .
8

19.4.5. Time inconsistency

The two subproblems in section 19.4 express the time inconsistency of the op-

timal decisions of the Stackelberg leader. In the recursive representation of the

Stackelberg program, different state variables confront a Stackelberg leader at

t = 0, on the one hand, and continuation Stackelberg leaders at dates t ≥ 0,

on the other. At t = 0, the leader faces z0 as a state vector and chooses the

forward looking vector x0 as well as the forward looking vector x1 that will

confront the continuation leader at time 1. At dates t ≥ 0, a continuation

leader confronts the state vector xt as values promised at time t− 1 that must

be confirmed at t .9

Define ~a1 as the continuation of the sequence ~a0 . A Stackelberg plan is a

(~u0, ~x0, ~z1) that solves the Stackelberg problem starting from a given z0 .

Time inconsistency: A concise way to say that a Stackelberg plan is time

inconsistent is to note that a continuation of a Stackelberg plan is not a Stack-

elberg plan.10

8 See exercise 19.2 for a timing protocol that builds in time consistency.
9 Another manifestation of time-inconsistency is that µxt is zero at t = 0 and different

from zero at t ≥ 1.
10 Why? Because x1 does not solve subproblem 2 at z1 .
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19.5. Large firm facing a competitive fringe

As an example, this section studies the equilibrium of an industry with a large

firm that acts as a Stackelberg leader with respect to a competitive fringe.11The

industry produces a single nonstorable homogeneous good. One large firm pro-

duces Qt and a representative firm in a competitive fringe produces qt . The

representative firm in the competitive fringe acts as a price taker and chooses

sequentially. The large firm commits to a policy at time 0, taking into account

its ability to manipulate the price sequence, both directly through the effects

of its quantity choices on prices, and indirectly through the responses of the

competitive fringe to its forecasts of prices.12

The costs of production are Ct = eQt + .5gQ2
t + .5c(Qt+1 − Qt)

2 for the

large firm and σt = dqt+ .5hq2t + .5c(qt+1− qt)
2 for the competitive firm, where

d > 0, e > 0, c > 0, g > 0, h > 0 are cost parameters. There is a linear inverse

demand curve

pt = A0 −A1(Qt + qt) + vt, (19.5.1)

where A0, A1 are both positive and vt is a disturbance to demand governed by

vt+1 = ρvt + Cǫǫ̌t+1 (19.5.2)

and where |ρ| < 1 and ǫ̌t+1 is an i.i.d. sequence of random variables with mean

zero and variance 1. In (19.5.1), qt is equilibrium output of the representative

competitive firm. In equilibrium, qt = qt , but we must distinguish between qt

and qt in posing the optimum problem of a competitive firm.

11 Sometimes the large firm is called ‘the monopolist’ even though there are actually many

firms in the industry.
12 Hansen and Sargent (2012) use this model as a laboratory to illustrate an equilibrium

concept featuring robustness in which at least one of the agents has doubts about the stochastic

specification of the demand shock process.
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19.5.1. The competitive fringe

The representative competitive firm regards {pt}∞t=0 as an exogenous stochastic

process and chooses an output plan to maximize

E0

∞∑

t=0

βt {ptqt − σt} , β ∈ (0, 1) (19.5.3)

subject to q0 given, where Et is the mathematical expectation based on time

t information. Let it = qt+1 − qt. We regard it as the representative firm’s

control at t . The first-order conditions for maximizing (19.5.3) are

it = Etβit+1 − c−1βhqt+1 + c−1βEt(pt+1 − d) (19.5.4)

for t ≥ 0. We appeal to the certainty equivalence principle stated on page 133

to justify working with a non-stochastic version of (19.5.4) formed by dropping

the expectation operator and the random term ǫ̌t+1 from (19.5.2). We use an

insight of Sargent (1979) and Townsend (1983).13 Shift (19.5.1) forward one

period, replace conditional expectations with realized values, use (19.5.1) to

substitute for pt+1 in (19.5.4), and set qt = qt and it = it for all t ≥ 0 to get

it = βit+1−c−1βhqt+1+c
−1β(A0−d)−c−1βA1qt+1−c−1βA1Qt+1+c

−1βvt+1.

(19.5.5)

Given sufficiently stable sequences {Qt, vt} , we can solve (19.5.5) and it =

qt+1 − qt to get a second-order difference equation in q̄t , then use the method

for constructing a stable solution of a second order linear difference equation

described in appendix A of chapter 2 to express the competitive fringe’s output

sequence as a function of the (tail of the) large firm’s output sequence:

q̄t+1 = λq̄t + k0 + k1

∞∑

j=0

(βλ)jQt+j+1 + k2

∞∑

j=0

(βλ)jvt+j+1,

where λ ∈ (0, 1) and the ki s are constants that are functions of demand and

cost parameters. The dependence of q̄t+1 on future Qt+j+1 ’s opens an avenue

13 They used this method to compute a rational expectations competitive equilibrium. The

key step was to eliminate price and output by substituting from the inverse demand curve

and the production function into the firm’s first-order conditions to get a difference equation

in capital.
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for the large firm to influence q̄t+1 by its choice of future Qt+j+1 ’s. It is this

feature that makes the large firm’s problem fail to be recursive in the natural

state variables q,Q . In effect, the large firm arrives at time t + j not in the

position of being able to take past values of q̄t as given because these have

already been influenced by the large firm’s choice of Qt+j . Instead, the large

firm arrives at period t > 0 facing the constraint that it must confirm the

expectations about its time t decision upon which the competitive fringe based

its decisions at dates before t .

19.5.2. The large firm’s problem

The large firm views the competitive firm’s sequence of Euler equations as con-

straints on its own opportunities. They are implementability constraints on the

large firm’s choices. Including the implementability constraints (19.5.5), we can

represent the constraints in terms of the transition law facing the large firm:




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

A0 − d 1 −A1 −A1 − h c







1

vt+1

Qt+1

qt+1

it+1



=




1 0 0 0 0

0 ρ 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 c
β







1

vt

Qt

qt
it




+




0

0

1

0

0



ut,

(19.5.6)

where ut = Qt+1 − Qt is the control of the large firm. The last row portrays

the implementability constraints (19.5.5). Represent (19.5.6) as

yt+1 = Ayt +But. (19.5.7)

Although we have included the competitive fringe’s choice variable it as

a component of the “state” yt in the large firm’s transition law (19.5.7), it is

actually a “jump” variable. Nevertheless, the analysis in earlier sections of this

chapter implies that the solution of the large firm’s problem is encoded in the

Riccati equation associated with (19.5.7) as the transition law. Let’s decode it.
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To match our general setup, we partition yt as y′t = [ z′t x′t ] where z
′
t =

[ 1 vt Qt qt ] and xt = it . The large firm’s problem is

max
{ut,pt+1,Qt+1,qt+1,it}

∞∑

t=0

βt {ptQt − Ct}

subject to the given initial condition for z0 , equations (19.5.1) and (19.5.5)

and it = qt+1 − qt , as well as the laws of motion of the natural state variables

z . Notice that the large firm in effect chooses the price sequence, as well as the

quantity sequence of the competitive fringe, albeit subject to the restrictions

imposed by the behavior of consumers, as summarized by the demand curve

(19.5.1) and the implementability constraint (19.5.5) that describes the best

responses of the competitive fringe.

By substituting (19.5.1) into the above objective function, the large firm’s

problem can be expressed as

max
{ut}

∞∑

t=0

βt
{
(A0 −A1(qt +Qt) + vt)Qt − eQt − .5gQ2

t − .5cu2t
}

(19.5.8)

subject to (19.5.7). This can be written

max
{ut}

−
∞∑

t=0

βt {y′tRyt + u′tQut} (19.5.9)

subject to (19.5.7) where

R = −




0 0 A0−e
2 0 0

0 0 1
2 0 0

A0−e
2

1
2 −A1 − .5g −A1

2 0

0 0 −A1

2 0 0

0 0 0 0 0




and Q = c
2 .
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19.5.3. Numerical example

We computed the optimal Stackelberg plan for parameter settings A0, A1, ρ, Cǫ,

c, d, e, g, h, β = 100, 1, .8, .2, 1, 20, 20, .2, .2, .95.14For these parameter values, a

recursive representation of the Stackelberg plan is

ut = (Qt+1 −Qt) = [−83.98 −0.78 0.95 1.31 2.07 ]

[
zt

xt

]

for t ≥ 0 and

x0 = [ 31.08 0.29 −0.15 −0.56 ] z0.

19.6. Concluding remarks

We shall confront other problems in which optimal decision rules are history

dependent in chapters 20, 21, 22, and 24 and shall see in various contexts how

history dependence can be represented recursively by appropriately augmenting

the natural state variables with forward-looking variables chosen by Stackelberg

followers.15 In chapters 21, 22, and 24, we make dynamic incentive and enforce-

ment problems recursive by augmenting the state with continuation values of

other decision makers.16

14 These calculations were performed by the Matlab program oligopoly5.m or the Python

program oligopoly.py.
15 For another application of the techniques in this chapter and how they related to the

method recommended by Kydland and Prescott (1980), see Evans and Sargent (2013).
16 In chapter 21, we describe Marcet and Marimon’s (1992, 1999) method of constructing

recursive contracts, which is closely related to the method that we have presented in this

chapter.
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Exercises

Exercise 19.1 There is no uncertainty. For t ≥ 0, a monetary authority sets

the growth of the (log) of money according to

(1) mt+1 = mt + ut

subject to the initial condition m0 > 0 given. The demand for money is

(2) mt − pt = −α(pt+1 − pt), α > 0,

where pt is the log of the price level. Equation (2) can be interpreted as an

Euler equation of holders of money.

a. Briefly interpret how equation (2) makes the demand for real balances vary

inversely with the expected rate of inflation. Temporarily (only for this part

of the exercise) drop equation (1) and assume instead that {mt} is a given

sequence satisfying
∑∞
t=0m

2
t < +∞ . Please verify that equation (2) implies

that pt = (1 − λ)mt + λpt+1 , where λ = α
1+α ∈ (0, 1). Please solve this

difference equation “forward” to express pt as a function of current and future

values of ms . Hint: If necessary, please review appendix A of chapter 2.

At time 0, a monetary authority chooses a possibly history-dependent strat-

egy for setting {ut}∞t=0 . (The monetary authority somehow commits to this

strategy once and for all at time 0.) The monetary authority orders sequences

{mt, pt}∞t=0 according to

(3) −
∞∑

t=0

.95t
[
p2t + u2t + .00001m2

t

]
.

b. Please briefly interpret this problem as one where the monetary authority

wants to stabilize the price level, subject to costs of adjusting the money sup-

ply rapidly and a set of implementability constraints. (We include the term

.00001m2
t for purely technical reasons that you need not discuss.)

c. Please formulate a ‘dynamic programming squared’ problem to find the opti-

mal sequence {ut}∞t=0 . Please tell why it can be called a ‘dynamic programming

squared’ problem.

d. Define a plan and a continuation of a plan.
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e. Describe a recursive representation of the optimal plan.

f. Tell whether you agree or disagree with the following statement. “A contin-

uation of an optimal plan is an optimal plan.” Please describe the logic that

causes you to agree or to disagree.

g. Please describe formulas to compute all elements of an optimal plan. (You

don’t have to write a Matlab or Python program to implement those formulas,

but a Matlab or Python programmer should be able to write a program based

on your formulas.)

Exercise 19.2 Markov perfect policy makers

Now let’s redo the optimal policy problem in exercise 19.1 with timing protocols

like those in the Markov perfect equilibrium concept introduced in chapter 7.

There is a sequence of monetary policy authorities, each in office for only one

period. Let

L(pt,mt, ut) =
[
p2t + u2t + .00001m2

t

]
.

The policy authority in office at time t chooses ut to maximize

(1) −
∞∑

j=0

.95jL(pt+j,mt+j , ut+j)

subject to

mt+1 = mt + ut,

taking as given mt . To make the time t decision maker’s problem well posed,

we must attribute views about {pt+j ,mt+j}∞j=1 to the time t decision maker.

In the Markov perfect spirit, we assume that the time t policy maker takes as

given a policy rule ut+j = gmt+j that it assumes will be chosen by all successor

monetary policy authorities j ≥ 1. We also assume that the date t policy

authority believes that pt+j = hmt+j for all j ≥ 1. What about the public? If

it were to believe that the law of motion of the money supply is

mt+1 = (1 + g)mt

for all t ≥ 0, then to satisfy the difference equation pt = (1 − λ)mt + λpt+1 , it

would act to set the price level according to

(2) pt = hmt, where h =
(1− λ)

1− λ(1 + g)
,
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and where we computed λ ∈ (0, 1) in the previous problem.

a. Please verify that equation (2) solves pt = (1− λ)mt + λpt+1 .

b. Consider the value function

w(mt) = −
∞∑

j=0

βjL(pt+j,mt+j , ut+j)

where
pt+j = hmt+j

ut+j = gmt+j

mt+j+1 = mt+j + ut+j .

Please interpret this value function in terms of the behavior that it assumes

about (i) the sequence of monetary policy makers who choose {ut+j}∞j=0 , and

(ii) the money holders who choose {pt+j}∞j=0 .

c. Now please consider the following functional equation:

(3) v(m0) = max
u0

{−L(p0,m0, u0) + βw(m1)}

where the maximization is subject to

m1 = m0 + u0

p0 = λh[m0 + u0] + (1− λ)m0.

Please interpret the equation p0 = λh[m0 + u0] + (1−λ)m0 in terms of what it

assumes about the beliefs of the money holders who set the price level at time

0. Please interpret the functional equation (3) in terms of the beliefs of the

time 0 monetary authority who chooses u0 , in particular, its beliefs about the

decisions of successor monetary authorities.

d. Let the optimizer of the right side of equation (3) be u0 = gm0 . Please

define a Markov perfect equilibrium. Tell who chooses what when. Also tell

what each decision maker assumes about other pertinent decision makers.

e. Please describe a computer algorithm for computing a Markov perfect equi-

librium, being careful first to describe all of the objects comprising a Markov

perfect equilibrium.
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f. Is a continuation of a Markov perfect equilibrium a Markov perfect equilib-

rium?

Exercise 19.3 Duopoly

An industry with two firms produces a single nonstorable homogeneous good.

Firm i = 1, 2 produces Qit . Costs of production for firm i are Cit = eQit +

.5gQ2
it+ .5c(Qi,t+1−Qit)2, where e > 0, g > 0, c > 0 are cost parameters. There

is a linear inverse demand curve

pt = A0 −A1(Q1t +Q2t) + vt, (19.1)

where A0, A1 are both positive and vt is a disturbance to demand governed by

vt+1 = ρvt

and where |ρ| < 1. Assume that firm 1 is a Stackelberg leader and that firm 2

is a Stackelberg follower.

a. Please formulate the decision problem of firm 2 and derive Euler equations

that relate its current decisions to current and future decisions of firm 1.

b. Please formulate the decision problem of firm 1 as Stackelberg leader. Please

tell how to solve it.

c. Describe calculations that answer the following question. Starting from an

initial state Q1,0, Q2,0 and situation in which firm 1 acts as Stackelberg leader

and firm 2 acts as follower, how much would firm 2 be willing to pay to buy

firm 1 and thereby acquire the ability to ac a monopolist?





Chapter 20
Two Ramsey Problems Revisited

20.1. Introduction

This chapter formulates Ramsey problems recursively for the Lucas and Stokey

(1983) economy with complete markets studied in section 16.12 of chapter 16

and the Aiyagari, Marcet, Sargent, and Seppälä (2002) (AMSS) economy with

only a risk-free bond being traded studied in section 16.15. As in chapter 19,

to apply dynamic programming we define state vectors artfully. A key state

variable will be a forward-looking variable that summarizes optimal responses

of private agents to a Ramsey plan.

Recursive formulations can deepen understandings. We describe a sense

in which the dimension of the state is lower in the Lucas Stokey model than

in the AMSS model. Accompanying that difference in dimension are different

dynamics of government debt.

20.2. The Lucas-Stokey economy

We begin with the Lucas-Stokey (1983) economy. Throughout this chapter

we assume that s is governed by a finite state Markov chain with states s ∈
{1, . . . , S} = S , initial distribution π0(s0), and transition matrix Π, where

Π(s′|s) = Prob(st+1 = s′|st = s). Government purchases g(s) are an exact

time-invariant function of s . The representative household’s preferences are

ordered by
∞∑

t=0

∑

st

βtπt(s
t)u[ct(s

t), ℓt(s
t)], (20.2.1)

where πt(s
t) is a joint density over st induced by π0,Π. Feasibility requires

nt(s
t) + ℓt(s

t) = 1 and

ct(s
t) + gt(st) = nt(s

t). (20.2.2)

– 857 –
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The government faces a sequence of budget constraints whose time t ≥ 0 com-

ponent is

gt(st) = τnt (s
t)nt(s

t) +
∑

st+1

pt+1(st+1|st)bt+1(st+1|st)− bt(st|st−1), (20.2.3)

where the technology pins down the pre-tax wage rate to unity, pt+1(st+1|st) is

the competitive equilibrium price of one-period Arrow state-contingent securi-

ties, and bt(st|st−1) is government debt falling due at time t , history st . The

representative household confronts a sequence of budget constraints whose time

t ≥ 0 component is

ct(s
t) +

∑

st+1

pt+1(st+1|st)bt+1(st+1|st) =
[
1− τnt (s

t)
]
nt(s

t) + bt(st|st−1).

(20.2.4)

First-order conditions for the household’s problem imply

1− τnt (s
t) =

uℓ(s
t)

uc(st)
(20.2.5)

pt+1(st+1|st) = βΠ(st+1|st)
uc(s

t+1)

uc(st)
. (20.2.6)

The single implementability condition constraining the Ramsey planner’s choice

of an allocation, equation (16.12.2), is

∞∑

t=0

∑

st

βtπt(s
t)[uc(s

t)ct(s
t)− uℓ(s

t)nt(s
t)]− uc(s

0)b0 = 0. (20.2.7)
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20.2.1. Finding the state is an art

Define the level of government debt scaled by the marginal utility of consumption

today as

xt(s
t) ≡ uc(s

t)bt(st|st−1).

Substituting from (20.2.5), (20.2.6), and the feasibility condition (20.2.2) into

(20.2.4) gives

xt(s
t) = uc(s

t)[nt(s
t)− gt(st)]− uℓ(s

t)nt(s
t) + β

∑

st+1∈S

Π(st+1|st)xt+1(s
t+1).

(20.2.8)

As noted in chapter 16, equation (20.2.8) shares the structure of a simple asset

pricing equation with xt being analogous to the price of an asset at time t that

appears to be a purely “forward-looking” variable. But using a logic encountered

in chapter 19, we shall use xt as a state variable that at dates t ≥ 1 confronts

what we shall call a continuation Ramsey planner.

We can think of xt as indexing a competitive equilibrium with distorting

taxes. Equation (20.2.8) shows implicitly how xt depends on future government

policy, via marginal utilities uc and uℓ linked to government policies through

the household’s first-order necessary conditions (20.2.5) and (20.2.6). Roberto

Chang (1998) extensively used a counterpart of xt to index competitive equi-

libria in this way in a model that we discuss in chapter 25.

20.2.2. Intertemporal delegation

To express a Ramsey plan recursively, we imagine that a time 0 Ramsey planner

is followed by a sequence of continuation Ramsey planners at times t = 1, 2, . . . .

A “continuation Ramsey planner” has a different objective function and faces

different constraints than a Ramsey planner. A key step in representing a Ram-

sey plan recursively is to regard the marginal utility scaled government debts

xt(s
t) = uc(s

t)bt(st|st−1) as predetermined quantities that continuation Ramsey

planners at times t ≥ 1 are obligated to attain. A time t ≥ 1 continuation Ram-

sey planner delivers xt by choosing a suitable nt and a list of st+1 -contingent

continuation quantities xt+1 to impose on a time t + 1 continuation Ramsey

planner. A time t ≥ 1 continuation Ramsey planner faces xt, st as state vari-

ables. A time 0 Ramsey planner faces b0 , not x0 , as a state variable. The time
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0 Ramsey planner hands x1 as a function of s1 to a time 1 continuation Ram-

sey planner. These assignments of authorities and responsibilities across time

express continuation Ramsey planners’ obligations to implement their parts of

a Ramsey plan that in chapter 16 we designed once-and-for-all at time 0.

20.2.3. Bellman equations

Thus, as in chapter 19, we can frame the Ramsey problem posed by Lucas and

Stokey in terms of two triples, each of which consists of a Bellman equation,

a set of state variables, and a set of choice variables. One triple characterizes

the decisions of the Ramsey planner at t = 0, while the other describes the

decisions faced by each of a sequence of continuation Ramsey planners at dates

t ≥ 1. Thus, as in chapter 19, we characterize the Ramsey problem recursively

in terms of two subproblems.

20.2.4. Subproblem 1: Continuation Ramsey problem

After st has been realized at time t ≥ 1, the state variables confronting the

time t continuation Ramsey planner are (xt, st). Let V (x, s) be the value of a

continuation Ramsey plan at xt = x, st = s for t ≥ 1. The Bellman equation

for a time t ≥ 1 continuation Ramsey planner is

V (x, s) = max
n,{x′(s′)}

{
u(n− g(s), 1− n) + β

∑

s′∈S

Π(s′|s)V (x′(s′), s′)

}
(20.2.9)

where maximization over n and the S elements of x′(s′) is subject to the single

implementability condition

x = uc [n− g(s)]− uℓn+ β
∑

s′∈S

Π(s′|s)x′(s′) (20.2.10)

coming from constraint (16.12.11). Here uc and uℓ are today’s marginal utili-

ties.1 For each given value of x, s , the continuation Ramsey planner chooses n

1 Equation (20.2.10) expresses a competitive equilibrium x today in terms of a current

period allocation (c, n) and a continuation competitive equilibrium x′(s′) for each state s′

tomorrow. See Chang (1998) and chapter 25 for another application of this idea.
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and one x′(s′) for each s′ ∈ S . Associated with a value function V (x, s) that

solves Bellman equation (20.2.9) are S + 1 time-invariant policy functions

nt = f(xt, st), t ≥ 1

xt+1(st+1) = h(st+1;xt, st), st+1 ∈ S, t ≥ 1.
(20.2.11)

20.2.5. Subproblem 2: Ramsey problem

Let W (b, s) be the value of a Ramsey plan at time 0 at b0 = b and s0 = s . Let

x′(s1) be the value of x next period when next period’s value of s is s1 . The

Bellman equation for the time 0 Ramsey planner is

W (b0, s0) = max
n0,{x′(s1)}

u(n0−g0, 1−n0)+β
∑

s1∈S

Π(s1|s0)V (x′(s1), s1) (20.2.12)

where maximization over n0 and the S elements of x′(s1) is subject to the time

0 implementability condition

ucb0 = uc [n0 − g0]− uℓn0 + β
∑

s1∈S

Π(s1|s0)x′(s1) (20.2.13)

coming from constraint (16.12.11) at time 0. Associated with a value func-

tion W (b0, s0) that solves Bellman equation (20.2.12) are S + 1 time 0 policy

functions
n0 = f0(b0, s0)

x1(s1) = h0(s1; b0, s0).
(20.2.14)

Notice the appearance of state variables (b0, s0) in the time 0 policy functions

(20.2.14) for a Ramsey planner versus (xt, st) in the policy functions (20.2.11)

for time t ≥ 1 continuation Ramsey planners. As we shall discuss below, the

presence of these distinct state variables is the device that allows us to represent

and compute a Ramsey plan recursively despite its time inconsistency.2

2 Please recall our discussion of Edward C. Prescott’s 1977 paper entitled “Should Control

Theory Be Used for Economic Stabilization?” in chapter 1 and how Prescott’s pessimism

about the applicability of recursive approaches to optimal policy design problems did not

survive for long. Kydland and Prescott (1980) corrected Prescott (1977) by constructing a

Bellman equation for continuation Ramsey planners at times t ≥ 1.
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Remark: The value function V (xt, st) of the time t continuation Ramsey

planner equals Et
∑∞

τ=t β
τ−tu(ct, ℓt), where consumption and leisure processes

are evaluated along the original time 0 Ramsey plan.

20.2.6. First-order conditions

Attach a Lagrange multiplier Φ1 to constraint (20.2.10) and a Lagrange multi-

plier Φ0 to constraint (20.2.13). Working backwards, the first-order conditions

for the time t ≥ 1 constrained maximization problem on the right side of the

continuation Ramsey planner’s Bellman equation (20.2.9) are

βΠ(s′|s)Vx(x′(s′), s′)− βΠ(s′|s)Φ1 = 0 (20.2.15)

for x′(s′), s′ ∈ S , and

(1 + Φ1)(uc − uℓ) + Φ1 [n(uℓℓ − uℓc) + (n− g(s))(ucc − ucℓ)] = 0 (20.2.16)

for n . Given Φ1 , equation (20.2.16) is one equation to be solved for n as a

function of s (or of g(s)). Equation (20.2.15) implies Vx(x
′(s′), s′) = Φ1 , while

an envelope condition is Vx(x, s) = Φ1 , so it follows that

Vx(x
′(s′), s′) = Vx(x, s) = Φ1. (20.2.17)

For the time 0 problem on the right side of the Ramsey planner’s Bellman

equation (20.2.12), the first-order conditions are

Vx(x
′(s1), s1) = Φ0 (20.2.18)

for x′(s1), s1 ∈ S , and

(1 + Φ0)(uc − uℓ) + Φ0

[
n0(uℓℓ − uℓc) + (n0 − g(s0))(ucc − ucℓ)

]

− Φ0(ucc − ucℓ)b0 = 0. (20.2.19)

Compare first-order conditions (20.2.16) for t ≥ 1 and (20.2.19) for t = 0.

An additional term is present in (20.2.19) except in the three special cases in

which (a) b0 = 0, or (b) ucc = ucℓ = 0, i.e., preferences are quasi-linear in

consumption, or (c) initial government assets are sufficiently large to finance all

government purchases with interest earned from those assets, so that Φ0 = 0.
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Except in these special cases, the allocation and the labor tax rate as functions

of st differ between dates t = 0 and subsequent dates t ≥ 1. The presence

of the extra term Φ0[ucc(s0) − ucℓ(s0)] b0 in the first-order condition at time

0 expresses the incentive for the Ramsey planner to manipulate Arrow-Debreu

prices in order to affect uc(s0)b0 = x0 .

Thankfully, the first order conditions here agree with first-order conditions

(16.12.3) derived when we formulated a Ramsey plan in the space of sequences

in section 16.12 of chapter 16.

20.2.7. State variable degeneracy

Equations (20.2.17) and (20.2.18) imply that

Φ0 = Φ1

and that

Vx (xt, st) = Φ0 (20.2.20)

for all t ≥ 1. When V is concave in x , equation (20.2.20) implies “state-

variable degeneracy” along a Ramsey plan in the sense that for t ≥ 1, xt will

be a time-invariant function of st . Given Φ0 , this function mapping st into xt

can be expressed as a vector ~x that solves equation (16.12.14) for n and c as

functions of g that are associated with Φ = Φ0 .

20.2.8. Symptom and source of time inconsistency

While the marginal utility adjusted level of government debt xt(s
t) is a key

state variable for the continuation Ramsey planners at t ≥ 1, it is not a state

variable at time 0. The time 0 Ramsey planner faces b0 , not x0 = uc(s0) b0 , as

a state variable. The discrepancy in state variables faced by the time 0 Ramsey

planner and the time t ≥ 1 continuation Ramsey planners captures the differing

obligations and incentives faced by the time 0 Ramsey planner and the time

t ≥ 1 continuation Ramsey planners. While the time 0 Ramsey planner is

obligated to honor government debt b0 measured in time 0 consumption goods,

its choice of a policy can alter the marginal utility of time 0 consumption goods.

Thus, the time 0 Ramsey planner can manipulate the value of government debt
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as measured by uc(s0) b0 . In contrast, time t ≥ 1 continuation Ramsey planners

are obligated not to alter values of debt, as measured by uc(s
t) bt(st|st−1), that

they inherit from an earlier Ramsey planner or continuation Ramsey planner.

When government expenditures gt are a time invariant function of a Markov

state st , a Ramsey plan and associated Ramsey allocation feature marginal

utilities of consumption uc(s
t) that, given Φ, for t ≥ 1 depend only on st ,

but that for t = 0 depend on b0 as well. This means that uc(s
t) will be a

time invariant function of st for t ≥ 1, but except when b0 = 0, a different

function for t = 0. This in turn means that prices of one-period Arrow securities

pt+1(st+1|st) = p(st+1|st) will be the same time invariant functions of (st+1, st)

for t ≥ 1, but a different function p0(s1|s0) for t = 0, except when b0 = 0. The

differences between these time 0 and time t ≥ 1 objects reflect the workings

of the Ramsey planner’s incentive to manipulate Arrow security prices and,

through them, the burden of initial government debt b0 . (For an illustration,

see section 16.13.4 of chapter 16.)

20.3. Recursive formulation of AMSS model

We now describe a recursive version of the Aiyagari, Marcet, Sargent, and

Seppälä (2002) economy that we studied in section 16.15. The AMSS econ-

omy is identical with the Lucas-Stokey (1983) economy except that instead of

trading history-contingent securities or Arrow securities, the government and

household are allowed to trade only a one-period risk-free bond. As we saw

in section 16.15, from the point of view of the Ramsey planner, the restriction

to one-period risk-free securities leaves intact the single implementability con-

straint on allocations in the Lucas-Stokey economy, while adding measurability

constraints on functions of tails of allocations at each time and history, functions

that represent the present values of government surpluses. In this section, we

explore how these measurability constraints alter the Bellman equations for a

time 0 Ramsey planner and for time t ≥ 1, history st continuation Ramsey

planners.
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20.3.1. Recasting state variables

In the AMSS setting, the government faces a sequence of budget constraints

τnt
(
st
)
nt
(
st
)
− Tt

(
st
)
+ bt+1

(
st
)
/Rt

(
st
)
= gt (st) + bt

(
st−1

)
,

where Rt(s
t) is the gross risk-free rate of interest between t and t+1 at history

st and Tt(s
t) are nonnegative transfers. In most of this chapter, we shall set

transfers to zero. When Tt(s
t) ≡ 0, the household faces a sequence of budget

constraints

bt
(
st−1

)
+
(
1− τnt

(
st
))
nt
(
st
)
= ct

(
st
)
+ bt+1

(
st
)
/Rt

(
st
)
. (20.3.1)

As we saw in section 16.15, the household’s first-order conditions are uc(s
t) =

βRt(s
t)Etuc(s

t+1) and (1 − τnt (s
t))uc(s

t) = uℓ(s
t). Using these to eliminate

Rt(s
t) and τnt (s

t) from (20.3.1) gives

bt
(
st−1

)
+
uℓ (s

t)

uc (st)
nt
(
st
)
= ct

(
st
)
+
β
[
Etuc

(
st+1

)]
bt+1 (s

t)

uc (st)
(20.3.2)

or

uc
(
st
)
bt
(
st−1

)
+ uℓ

(
st
)
nt
(
st
)
= uc

(
st
)
ct
(
st
)
+ β

[
Etuc

(
st+1

)]
bt+1

(
st
)
.

(20.3.3)

For the purpose of posing a recursive version of the Ramsey problem, define

xt
(
st
)
≡ βbt+1

(
st
)
Etuc

(
st+1

)
= uc

(
st
) bt+1 (s

t)

Rt (st)
(20.3.4)

and represent household budget constraint (20.3.3) at time t , history st as

uc (s
t)xt−1

(
st−1

)

βEt−1uc (st)
= uc

(
st
)
ct
(
st
)
− uℓ

(
st
)
nt
(
st
)
+ xt

(
st
)

(20.3.5)

for t ≥ 1.
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20.3.2. Measurability constraints

Write equation (20.3.2) as

bt
(
st−1

)
= ct

(
st
)
− uℓ (s

t)

uc (st)
nt
(
st
)
+
β
[
Etuc

(
st+1

)]
bt+1 (s

t)

uc (st)
. (20.3.6)

The right side of equation (20.3.6) expresses the time t value of government

debt in terms of a linear combination of terms whose individual components are

measurable with respect to st but whose sum has to equal bt(s
t−1) and so be

measurable with respect to st−1 . These are the measurability constraints, de-

scribed in section 16.15, that the AMSS model adds to the single implementation

condition (20.2.7) imposed by the Lucas and Stokey model.3

20.3.3. Bellman equations

Let V (x−, s−) be the continuation value of a continuation Ramsey plan at

xt−1 = x−, st−1 = s− for t ≥ 1. Let W (b, s) be the value of the Ramsey plan

at time 0 at b0 = b and s0 = s .

For t ≥ 1, the value function for a continuation Ramsey planner satisfies

the Bellman equation

V (x−, s−) = max
{n(s),x(s)}

∑

s

Π(s|s−) [u (n (s)− g (s) , 1− n (s)) + βV (x (s) , s)]

(20.3.7)

subject to the following collection of implementability constraints, one for each

s ∈ S :

uc (s)x−
β
∑

s̃Π(s̃|s−)uc (s̃)
= uc (s) (n (s)− g (s))− uℓ (s)n (s) + x (s) . (20.3.8)

We attach a distinct Lagrange multiplier µ(s) to implementability constraint

(20.3.8) for each s . A continuation Ramsey planner solves an ex ante problem.

A continuation Ramsey planner at t ≥ 1 takes (xt−1, st−1) = (x−, s−) as given

and chooses (n(st), x(st)) = (n(s), x(s)) for s ∈ S before st is realized. The

3 These measurability constraints put the equilibrium allocation in a “marketable sub-

space” in the sense of Duffie and Shafer (1985).
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Ramsey planner takes (b0, s0) as given and chooses (n0, x0). The Bellman

equation for the time t = 0 Ramsey planner is

W (b0, s0) = max
n0,x0

u (n0 − g0, 1− n0) + βV (x0, s0) (20.3.9)

subject to

uc (s0) b0 = uc (s0) (n0 − g0)− uℓ (s0)n0 + x0. (20.3.10)

20.3.4. Martingale replaces state-variable degeneracy

Let µ(s)Π(s|s−) be a Lagrange multiplier on constraint (20.3.8) for state s .

The continuation Ramsey planner’s first-order condition with respect to x(s) is

βVx (x (s) , s) = −µ (s) . (20.3.11)

Applying the envelope theorem to Bellman equation (20.3.7) gives

Vx (x−, s−) = −
∑

s

Π(s|s−)µ (s)
uc (s)

β
∑

s̃Π(s̃|s−) uc (s̃)
. (20.3.12)

Equations (20.3.11) and (20.3.12) imply that

Vx (x−, s−) =
∑

s

(
Π(s|s−)

uc (s)∑
s̃Π(s̃|s−)uc (s̃)

)
Vx (x (s) , s) , (20.3.13)

which states that Vx(x, s) is a ‘risk-adjusted martingale’, meaning that it is a

martingale with respect to the probability distribution over st sequences gen-

erated by the twisted transition probability matrix:4

Π̌ (s|s−) ≡ Π(s|s−)
uc (s)∑

s̃Π(s̃|s−)uc (s̃)
.

Remark: Suppose that instead of imposing Tt = 0, we impose a nonnegativity

constraint Tt ≥ 0 on transfers and consider the special case of quasi-linear

4 It is easy to verify that Π̌(s|s−) is a legitimate Markov transition matrix, in particular,

that the transition probabilities are nonnegative and sum to 1 for each s− .
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preferences, u(c, ℓ) = c + H(ℓ). In this case, Vx(x, s) ≤ 0 is a non-positive

martingale. By the martingale convergence theorem, Vx(x, s) converges almost

surely.5 When the Markov chain Π(s|s−) and the function g(s) are such that gt

is perpetually random, Vx(x, s) almost surely converges to zero. For quasi-linear

preferences, the first-order condition with respect to n(s) becomes

(1 + µ (s)) (1− uℓ (s)) + µ (s)n (s)uℓℓ (s) = 0.

Since µ(s) = −βVx(x(s), x) converges to zero, in the limit uℓ(s) = 1 = uc(s),

so that the tax rate on labor converges to zero. In the limit, the government

accumulates sufficient assets to finance all expenditures from earnings on those

assets, returning any excess revenues to the household as nonnegative lump sum

transfers.

Remark: Along a Ramsey plan, the state variable xt = xt(s
t) becomes a

function of the history st and also the initial government debt b0 .

Remark: In our recursive formulation of the Lucas-Stokey model in section

20.2, we found that the counterpart to Vx(x, s) is time invariant and equal to

the Lagrange multiplier on the single time 0 implementability condition present

in the original version of that model cast in terms of choice of sequences. We

saw that the time invariance of Vx(x, s) in the Lucas-Stokey model is the source

of the state variable degeneracy (i.e., xt is an exact function of st ), a key

feature of the Lucas-Stokey model. That Vx(x, s) varies over time according

to a twisted martingale means that there is no state-variable degeneracy in the

AMSS model. Both x and s are needed to describe the state. This property

of the AMSS model is what transmits a twisted martingale-like component to

consumption, employment, and the tax rate.

5 For a discussion of the martingale convergence theorem see the appendix to chapter 17.
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20.4. Concluding remarks

The next several chapters construct Bellman equations for diverse applications

in which implementability conditions inherited from various frictions require us

to choose state variables artfully.





Chapter 21

Incentives and Insurance

21.1. Insurance with recursive contracts

This chapter studies a planner who designs an efficient contract to supply in-

surance in the presence of incentive constraints. We pursue two themes, one

substantive, the other technical. The substantive theme is a tension between

offering insurance and providing incentives. A planner offers “stick and carrot”

incentives that adjust an agent’s future consumption in ways that provide in-

centives to adhere to an arrangement at the cost of providing less than ideal

insurance. Balancing incentives against insurance shapes the evolution of dis-

tributions of wealth and consumption.

The technical theme is how memory can be encoded recursively and how

incentive problems can be managed with contracts that remember and promise.

Contracts issue rewards that depend on the history either of publicly observ-

able outcomes or of an agent’s announcements about his privately observed

outcomes. Histories are large-dimensional objects. But Spear and Srivastava

(1987), Thomas and Worrall (1988), Abreu, Pearce, and Stacchetti (1990), and

Phelan and Townsend (1991) discovered that the dimension can be contained

by using an accounting system cast solely in terms of a “promised value,” a

one-dimensional object that summarizes enough aspects of an agent’s history.

Working with promised values permits us to formulate contract design problems

recursively.

Three basic models are set within a single physical environment but assume

different structures of information, enforcement, and storage possibilities. The

first adapts a model of Thomas and Worrall (1988) and Kocherlakota (1996b)

that has all information being public and focuses on commitment or enforcement

problems . The second is a model of Thomas and Worrall (1990) that has

an incentive problem coming from private information but that assumes away

commitment and enforcement problems. Common to both of these models is

that the insurance contract is assumed to be the only vehicle for households

to transfer wealth across states of the world and over time. The third model,

– 871 –
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created by Allen (1985) and Cole and Kocherlakota (2001), extends Thomas and

Worrall’s (1990) model by introducing private storage that cannot be observed

publicly. Because it lets households self-insure as in chapters 17 and 18, the

possibility of private storage reduces ex ante welfare by limiting the amount of

social insurance that can be attained when incentive constraints are present.

We shall see that a model with private storage has an interesting connection to

one of the Bewley models discussed in chapter 18.

21.2. Basic environment

Imagine a village with a large number of ex ante identical households. Each

household has preferences over consumption streams that are ordered by

E−1

∞∑

t=0

βtu(ct), (21.2.1)

where u(c) is an increasing, strictly concave, and twice continuously differen-

tiable function, β ∈ (0, 1) is a discount factor, and E−1 is the mathematical

expectation not conditioning on any information available at time 0 or later.

Each household receives a stochastic endowment stream {yt}∞t=0 , where for each

t ≥ 0, yt is independently and identically distributed according to the discrete

probability distribution Prob(yt = ys) = Πs, where s ∈ {1, 2, . . . , S} ≡ S and

ys+1 > ys . The consumption good is not storable. At time t ≥ 1, the household

has received a history of endowments ht = (yt, yt−1, . . . , y0). Endowment pro-

cesses are distributed independently and identically both across time and across

households.

In this setting, if there were a competitive equilibrium with complete mar-

kets as described in chapter 8, at date 0 households would trade history- and

date-contingent claims. Since households are ex ante identical, each household

would consume the per capita endowment in every period, and its lifetime utility

would be

vpool =
∞∑

t=0

βt u

(
S∑

s=1

Πsys

)
=

1

1− β
u

(
S∑

s=1

Πsys

)
. (21.2.2)

Households would thus insure away all risks from their individual endowment

processes. But the incentive constraints that we are about to specify make



Basic environment 873

this allocation unattainable. For each specification of incentive constraints, we

solve a planning problem. Following a tradition started by Green (1987), we

assume that a “moneylender” or “planner” is the only person in the village who

has access to a risk-free loan market outside the village. The moneylender can

borrow or lend at a constant one-period risk-free gross interest rate R = β−1 .

Households cannot borrow or lend with each other, and can trade only with the

moneylender. The moneylender is committed to honor his promises. We will

study three alternative types of incentive constraints.

(a) Both the money lender and the household observe the household’s history

of endowments at each time t . Although the moneylender can commit to

honor a contract, households cannot commit and at any time are free to

walk away from an arrangement with the moneylender and live in perpetual

autarky thereafter. They must be induced not to do so by the structure

of the contract. This is a model of “one-sided commitment” in which the

contract must be “self-enforcing”. That is, it must be structured to induce

the household to prefer to conform to it.

(b) Households can make commitments and enter into enduring and binding

contracts with the moneylender, but they have private information about

their own incomes. The moneylender can see neither their income nor their

consumption. Instead, exchanges between the moneylender and a household

must be based on the household’s own reports about income realizations.

An incentive-compatible contract induces a household to report its income

truthfully.

(c) The environment is the same as b except that now households have access to

a storage technology that cannot be observed by the moneylender. House-

holds can store nonnegative amounts of goods at a risk-free gross return

of R equal to the interest rate that the moneylender faces in the outside

credit market. Since the moneylender can both borrow and lend at the

interest rate R outside of the village, the private storage technology does

not change the economy’s aggregate resource constraint, but it does affect

the set of incentive-compatible contracts between the moneylender and the

households.

When we compute efficient allocations for each of these three environments,

we find that the dynamics of the implied consumption allocations differ dramati-

cally. As an indication of the different outcomes that emerge, Figures 21.2.1 and
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Figure 21.2.1: Left panel: typical consumption path in en-

vironment a. Right panel: typical consumption path in envi-

ronment b.

0 50 100 150 200 250 300 350 400 450 500

Time

5

6

7

8

9

10

11

12

13

C
o

n
s
u

m
p

ti
o

n

Figure 21.2.2: Typical consumption path in environment c.

21.2.2 depict consumption streams that are associated with the same realization

of a random endowment stream for households living in environments a, b, and

c, respectively.1 For all three of these economies, we set u(c) = −γ−1 exp(−γc)
with γ = .7, β = .8, [y1, . . . , y10] = [6, 7, . . . , 10], and Πs = 1−λ

1−λ10 λ
s−1 with

1 The dotted lines in these figures indicate the consumption allocation under a hypothetical

‘complete markets’ arrangement that would give each of a continuum of ex ante identical

villagers consumption always equal to mean income. We thank Sebastian Graves for writing

Python code that computes optimal value functions and the policy functions that attain them

for these three environments.
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λ = .4. In all three environments, before date 0, the households have entered

into efficient contracts with the moneylender. We have initiated values for a

villager that allow the money lender just to break even. of consumption out-

comes evidently differ substantially across the three environments, increasing

monotonically and then flattening out in environment a, stochastically heading

“south” in environment b, and stochastically heading “north” in environment

c. These sample path properties reflect how the contract copes with the three

different frictions that we have put into the environment relative to the friction-

less chapter 7 setting. This chapter explains why sample paths of consumption

differ so much across these three settings.

21.3. One-sided no commitment

Our first incentive problem is a lack of commitment. A moneylender is com-

mitted to honor his promises, but villagers are free to walk away from their

contract with the moneylender at any time. The moneylender designs a con-

tract that the villager wants to honor at every moment and contingency. Such

a contract is said to be self-enforcing. In chapter 22, we shall study another

economy in which there is no moneylender, only another villager, and when no

one is able to keep prior commitments. Such a contract design problem with

participation constraints on both sides of an exchange represents a problem with

two-sided lack of commitment, in contrast to the problem with one-sided lack

of commitment treated here.2

2 For an earlier two-period model of a one-sided commitment problem, see Holmström

(1983).
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21.3.1. Self-enforcing contract

A moneylender can borrow or lend resources from outside the village but the

villagers cannot. A contract is a sequence of functions ct = ft(ht) for t ≥ 0,

where ht = (yt, . . . , y0). The sequence of functions {ft} assigns a history-

dependent consumption stream ct = ft(ht) to the household. The contract

specifies that each period, the villager contributes his time t endowment yt to

the moneylender who then returns ct to the villager. From this arrangement,

the moneylender earns an ex ante expected present value

P−1 = E−1

∞∑

t=0

βt(yt − ft(ht)). (21.3.1)

By plugging the associated consumption process into expression (21.2.1), we

find that the contract assigns the villager an expected present value of v =

E−1

∑∞
t=0 β

tu (ft(ht)) .

The contract must be self-enforcing. At any point in time, the household

is free to walk away from the contract and thereafter consume its endowment

stream. Thus, if the household walks away from the contract, it must live in

autarky evermore. The ex ante value associated with consuming the endowment

stream, to be called the autarky value, is

vaut = E−1

∞∑

t=0

βtu(yt) =
1

1− β

S∑

s=1

Πsu(ys). (21.3.2)

At time t , after having observed its current-period endowment, the household

can guarantee itself a present value of utility of u(yt) + βvaut by consuming its

own endowment. The moneylender’s contract must offer the household at least

this utility at every possible history and every date. Thus, the contract must

satisfy

u[ft(ht)] + βEt

∞∑

j=1

βj−1u[ft+j(ht+j)] ≥ u(yt) + βvaut, (21.3.3)

for all t ≥ 0 and for all histories ht . Equation (21.3.3) is called the participation

constraint for the villager. A contract that satisfies equation (21.3.3) is said to

be sustainable.
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21.3.2. Recursive formulation and solution

A difficulty with constraints like equation (21.3.3) is that there are so many

of them: the dimension of the argument ht grows exponentially with t . For-

tunately, there is a recursive way to describe an interesting subset of history-

dependent contracts. In particular, consider the following way of representing a

contract {ft} recursively in terms of a state variable xt :

ct = g(xt, yt),

xt+1 = ℓ(xt, yt).

Here g and ℓ are time-invariant functions. Notice that by iterating the ℓ(·)
function t times starting from (x0, y0), one obtains

xt = mt(x0; yt−1, . . . , y0), t ≥ 1.

Thus, xt summarizes histories of endowments ht−1 . In this sense, xt is a

“backward-looking” variable.

A remarkable fact is that the appropriate state variable xt is a promised

expected discounted future value vt = Et−1

∑∞
j=0 β

ju(ct+j). This “forward-

looking” variable summarizes a stream of future utilities. We shall formulate

the contract recursively by having the moneylender arrive at t , before yt is

realized, with a previously made promised value vt . He delivers vt by letting

ct and the continuation value vt+1 both respond to yt . In terms of vt(ht−1),

the participation constraint (21.3.3) becomes

vt(ht−1) = u(ft(ht)) + βvt+1(ht) ≥ u(yt) + βvaut.

We shall treat the promised value v as a state variable, then formulate

a functional equation for a moneylender. The moneylender gives a prescribed

value v by delivering a state-dependent current consumption c and a promised

value starting tomorrow, say v′ , where c and v′ each depend on the current

endowment y and the preexisting promise v . The moneylender chooses c and

v′ to provide the promised value v in a way that maximizes his profits (21.3.1).

Each period, the household must be induced to surrender the time t endow-

ment yt to the moneylender, who possibly gives some of it to other households

and invests the rest outside the village at a constant risk-free one-period gross

interest rate of β−1 . In exchange, the moneylender delivers a state-contingent
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consumption stream to the household that keeps it participating in the arrange-

ment every period and after every history. The moneylender wants to do this

in the most efficient way, that is, the profit-maximizing way. Let v be the ex-

pected discounted future utility previously promised to a villager. Let P (v) be

the expected present value of the “profit stream” {yt − ct} for a moneylender

who delivers promised value v in the optimal way. The optimum value P (v)

obeys the functional equation

P (v) = max
{cs,ws}

S∑

s=1

Πs[(ys − cs) + βP (ws)] (21.3.4)

where the maximization is subject to the constraints

S∑

s=1

Πs[u(cs) + βws] ≥ v, (21.3.5)

u(cs) + βws ≥ u(ys) + βvaut, s = 1, . . . , S; (21.3.6)

cs ∈ [cmin,cmax], (21.3.7)

ws ∈ [vaut,v̄]. (21.3.8)

Here ws is the promised value with which the consumer will enter next period,

given that y = ys this period; [cmin, cmax] is a bounded set to which we restrict

the choice of ct each period. We restrict the continuation value ws to be in the

set [vaut, v̄] , where v̄ is a very large number. Soon we’ll compute the highest

value that the moneylender would ever want to set ws . All we require now is

that v̄ exceed this value. Constraint (21.3.5) is the promise-keeping constraint.

It requires that the contract deliver at least promised value v . Constraints

(21.3.6), one for each state s , are the participation constraints. Evidently, P

must be a decreasing function of v because the higher the consumption stream

of the villager, the lower must be the profits of the moneylender.

The constraint set is convex. The one-period return function in equation

(21.3.4) is concave. That the value function P (v) that solves equation (21.3.4)
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is strictly concave as will become evident from our characterization of the opti-

mal contract. Form the Lagrangian

L =
S∑

s=1

Πs[(ys − cs) + βP (ws)]

+ µ

{
S∑

s=1

Πs[u(cs) + βws]− v

}

+

S∑

s=1

λs

{
u(cs) + βws − [u(ys) + βvaut]

}
.

(21.3.9)

For each v and for s = 1, . . . , S , the first-order conditions for maximizing L

with respect to cs, ws , respectively, are
3

(λs + µΠs)u
′(cs) = Πs, (21.3.10)

λs + µΠs = −ΠsP
′(ws). (21.3.11)

By the envelope theorem, if P is differentiable, then P ′(v) = −µ . We will

proceed under the assumption that P is differentiable but it will become evident

that P is indeed differentiable when we understand the optimal contract.

Equations (21.3.10) and (21.3.11) imply the following relationship between

cs and ws :

u′(cs) = −P ′(ws)
−1. (21.3.12)

This condition states that the household’s marginal rate of substitution between

cs and ws , given by u′(cs)/β , should equal the moneylender’s marginal rate of

transformation as given by −[βP ′(ws)]
−1 . The concavity of P and u means

that equation (21.3.12) traces out a positively sloped curve in the c, w plane,

as depicted in Figure 21.3.1. We can interpret this condition as making cs a

function of ws . To complete the optimal contract, it will be enough to find how

ws depends on the promised value v and the income state ys .

Condition (21.3.11) can be written

P ′(ws) = P ′(v)− λs/Πs. (21.3.13)

3 Please note that the λs ’s depend on the promised value v . In particular, which λs ’s

are positive and which are zero will depend on v , with more of them being zero when the

promised value v is higher. See figure 21.3.1.
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How ws varies with v depends on which of two mutually exclusive and exhaus-

tive sets of states (s, v) falls into after the realization of ys : those in which the

participation constraint (21.3.6) binds (i.e., states in which λs > 0) or those in

which it does not (i.e., states in which λs = 0).

c   =g   (y   )

u’(c) P’(w) = - 1

u(c) +     w = u(y   ) +    v β τ β aut

u(c) +   w = u( y(v)) +    v β
_

β aut

τ 1 τw   =     (y   )l

sc   =g   (v)

u(c) +    w = u(y  ) +   v    β β auts

1

s

c

w

2

w   = v

ττ

Figure 21.3.1: Determination of consumption and promised

utility (c, w ). Higher realizations of ys are associated with

higher indifference curves u(c) + βw = u(ys) + βvaut . For

a given v , there is a threshold level ȳ(v) above which the

participation constraint is binding and below which the mon-

eylender awards a constant level of consumption, as a func-

tion of v , and maintains the same promised value w = v .

The cutoff level ȳ(v) is determined by the indifference curve

going through the intersection of a horizontal line at level v

with the “expansion path” u′(c)P ′(w) = −1.

States where λs > 0

When λs > 0, the participation constraint (21.3.6) holds with equality. When

λs > 0, (21.3.13) implies that P ′(ws) < P ′(v), which in turn implies, by the

concavity of P , that ws > v . Further, the participation constraint at equality

implies that cs < ys (because ws > v ≥ vaut ). Together, these results say that
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when the participation constraint (21.3.6) binds, the moneylender induces the

household to consume less than its endowment today by raising its continuation

value.

When λs > 0, cs and ws solve the two equations

u(cs) + βws = u(ys) + βvaut, (21.3.14)

u′(cs) = −P ′(ws)
−1. (21.3.15)

The participation constraint holds with equality. Notice that these equations

are independent of v . This property is a key to understanding the form of the

optimal contract. It imparts to the contract what Kocherlakota (1996b) calls

amnesia: when incomes yt are realized that cause the participation constraint

to bind, the contract disposes of all history dependence and makes both con-

sumption and the continuation value depend only on the current income state

yt . We portray amnesia by denoting the solutions of equations (21.3.14) and

(21.3.15) by

cs = g1(ys), (21.3.16a)

ws = ℓ1(ys). (21.3.16b)

Later, we’ll exploit the amnesia property to produce a computational algorithm.

States where λs = 0

When the participation constraint does not bind, λs = 0 and first-order condi-

tion (21.3.11) imply that P ′(v) = P ′(ws), which implies that ws = v . There-

fore, from (21.3.12), we can write u′(cs) = −P ′(v)−1 , so that consumption in

state s depends on promised utility v but not on the endowment in state s .

Thus, when the participation constraint does not bind, the moneylender awards

cs = g2(v), (21.3.17a)

ws = v, (21.3.17b)

where g2(v) solves u′[g2(v)] = −P ′(v)−1 .
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Figure 21.3.2: The shape of consumption as a function of

realized endowment, when the promised initial value is v .

The optimal contract

Combining the branches of the policy functions for the cases where the partici-

pation constraint does and does not bind, we obtain

c = max{g1(y), g2(v)}, (21.3.18)

w = max{ℓ1(y), v}. (21.3.19)

The optimal policy is displayed graphically in Figures 21.3.1 and 21.3.2. To

interpret the graphs, it is useful to study equations (21.3.6) and (21.3.12) for

the case in which ws = v . By setting ws = v , we can solve these equations for

a “cutoff value,” call it ȳ(v), such that the participation constraint binds only

when ys ≥ ȳ(v). To find ȳ(v), we first solve equation (21.3.12) for the value cs

associated with v for those states in which the participation constraint is not

binding:

u′[g2(v)] = −P ′(v)−1,

and then substitute this value into (21.3.6) at equality to solve for ȳ(v):

u[ȳ(v)] = u[g2(v)] + β(v − vaut). (21.3.20)

By the concavity of P , the cutoff value ȳ(v) is increasing in v .
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Associated with a given level of vt ∈ (vaut, v̄), there are two numbers g2(vt),

ȳ(vt) such that if yt ≤ ȳ(vt) the moneylender offers the household ct = g2(vt)

and leaves the promised utility unaltered, vt+1 = vt . The moneylender is thus

insuring the villager against the states ys ≤ ȳ(vt) at time t . If yt > ȳ(vt),

the participation constraint binds, prompting the moneylender to induce the

household to surrender some of its current-period endowment in exchange for a

raised promised utility vt+1 > vt . Promised values never decrease. They stay

constant for low-y states ys < ȳ(vt) and increase in high-endowment states that

threaten to violate the participation constraint. Consumption stays constant

during periods when the participation constraint fails to bind and increases

during periods when it threatens to bind. Whenever the participation binds,

the household makes a net transfer to the money lender in return for a higher

promised continuation utility. A household that has ever realized the highest

endowment yS is permanently awarded the highest consumption level with an

associated promised value v̄ that satisfies

u[g2(v̄)] + βv̄ = u(yS) + βvaut.

21.3.3. Recursive computation of contract

As we will now show, a money lender that takes on a villager whose only alter-

native is to live in autarky will design a profit maximizing contract that delivers

an initial promised value v0 equal to vaut . Later, we will examine how the

optimal contract would be modified if the initial promised value v0 were to be

greater than vaut .

We can compute the optimal contract recursively by using the fact that the

villager will ultimately receive a constant welfare level equal to u(yS) + βvaut

after ever having experienced the maximum endowment yS . We can characterize

the optimal policy in terms of numbers {cs, ws}Ss=1 ≡ {g1(ys), ℓ1(ys)}Ss=1 where

g1(ys) and ℓ1(s) are given by (21.3.16). These numbers can be computed

recursively by working backward as follows. Start with s = S and compute

(cS , wS) from the nonlinear equations:

u(cS) + βwS = u(yS) + βvaut, (21.3.21a)

wS =
u(cS)

1− β
. (21.3.21b)
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Working backward for j = S− 1, . . . , 1, compute cj , wj from the two nonlinear

equations

u(cj) + βwj = u(yj) + βvaut, (21.3.22a)

wj = [u(cj) + βwj ]

j∑

k=1

Πk +

S∑

k=j+1

Πk[u(ck) + βwk]. (21.3.22b)

These successive iterations yield the optimal contract characterized by {cs, ws}Ss=1 .

Ex ante, before the time 0 endowment has been realized, the contract offers the

household

v0 =

S∑

k=1

Πk[u(ck) + βwk] =

S∑

k=1

Πk[u(yk) + βvaut] = vaut, (21.3.23)

where we have used (21.3.22a) to verify that the contract indeed delivers v0 =

vaut .

Some additional manipulations will enable us to express {cj}Sj=1 solely in

terms of the utility function and the endowment process. First, solve for wj

from (21.3.22b),

wj =
u(cj)

∑j
k=1 Πk +

∑S
k=j+1 Πk[u(yk) + βvaut]

1− β
∑j

k=1 Πk
, (21.3.24)

where we have invoked (21.3.22a) when replacing [u(ck) + βwk] by [u(yk) +

βvaut] . Next, substitute (21.3.24) into (21.3.22a) and solve for u(cj),

u(cj) =

[
1− β

j∑

k=1

Πk

]
[
u(yj) + βvaut

]
− β

S∑

k=j+1

Πk [u(yk) + βvaut]

= u(yj) + βvaut − βu(yj)

j∑

k=1

Πk − β2vaut − β
S∑

k=j+1

Πku(yk)

= u(yj) + βvaut − βu(yj)

j∑

k=1

Πk − β2vaut − β

[
(1 − β)vaut −

j∑

k=1

Πku(yk)

]

= u(yj)− β

j∑

k=1

Πk
[
u(yj)− u(yk)

]
. (21.3.25)

According to (21.3.25), u(c1) = u(y1) and u(cj) < u(yj) for j ≥ 2. That is, a

household that realizes a record high endowment of yj must surrender some of
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that endowment to the moneylender unless the endowment is the lowest possible

value y1 . Households are willing to surrender parts of their endowments in

exchange for promises of insurance (i.e., future state-contingent transfers) that

are encoded in the associated continuation values, {wj}Sj=1 . For those unlucky

households that have so far realized only endowments equal to y1 , the profit-

maximizing contract prescribes that the households retain their endowment,

c1 = y1 and by (21.3.22a), the associated continuation value is w1 = vaut .

That is, to induce those low-endowment households to adhere to the contract,

the moneylender has only to offer a contract that assures them an autarky

continuation value in the next period.

Contracts when v0 > w1 = vaut

We have shown how to compute the optimal contract when v0 = w1 = vaut by

computing quantities (cs, ws) for s = 1, . . . , S . Now suppose that we want to

construct a contract that assigns initial value v0 ∈ [wk−1, wk) for 1 < k ≤ S .

Given v0 , we can deduce k , then solve for c̃ satisfying

v0 =



k−1∑

j=1

Πj


 [u(c̃) + βv0] +

S∑

j=k

Πj [u(cj) + βwj ] . (21.3.26)

The optimal contract promises (c̃, v0) so long as the maximum yt to date is less

than or equal to yk−1 . When the maximum yt experienced to date equals yj
for j ≥ k , the contract offers (cj , wj).

It is plausible that a higher initial expected promised value v0 > vaut can

be delivered in the most cost-effective way by choosing a higher consumption

level c̃ for households that experience low endowment realizations, c̃ > cj for

j = 1, . . . , k−1. The reason is that those unlucky households have high marginal

utilities of consumption. Therefore, transferring resources to them minimizes the

resources that are needed to increase the ex ante promised expected utility. As

for those lucky households that have received relatively high endowment real-

izations, the optimal contract prescribes an unchanged allocation characterized

by {cj , wj}Sj=k .
If we want to construct a contract that assigns initial value v0 ≥ wS , the

efficient solution is simply to find the constant consumption level c̃ that delivers

lifetime utility v0 :

v0 =
S∑

j=1

Πj [u(c̃) + βv0] =⇒ v0 =
u(c̃)

1− β
.
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This contract trivially satisfies all participation constraints, and a constant con-

sumption level maximizes the expected profit of delivering v0 .

Summary of optimal contract

Define

s(t) = {j : yj = max{y0, y1, . . . , yt}}.

That is, ys(t) is the maximum endowment that the household has experienced

up until period t .

The optimal contract has the following features. To deliver promised value

v0 ∈ [vaut, wS ] to the household, the contract offers stochastic consumption and

continuation values, {ct, vt+1}∞t=0 , that satisfy

ct = max{c̃, cs(t)}, (21.3.27a)

vt+1 = max{v0, ws(t)}, (21.3.27b)

where c̃ is given by (21.3.26).

21.3.4. Profits

We can use (21.3.4) to compute expected profits from offering continuation

value wj , j = 1, . . . , S . Starting with P (wS), we work backward to compute

P (wk), k = S − 1, S − 2, . . . , 1:

P (wS) =

S∑

j=1

Πj

(
yj − cS

1− β

)
, (21.3.28a)

P (wk) =

k∑

j=1

Πj(yj − ck) +

S∑

j=k+1

Πj(yj − cj)

+ β




k∑

j=1

ΠjP (wk) +

S∑

j=k+1

ΠjP (wj)


 . (21.3.28b)

Strictly positive profits for v0 = vaut

We will now demonstrate that a contract that offers an initial promised value of

vaut is associated with strictly positive expected profits. In order to show that
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P (vaut) > 0, let us first examine the expected profit implications of the following

limited obligation. Suppose that a household has just experienced yj for the first

time and that the limited obligation amounts to delivering cj to the household in

that period and in all future periods until the household realizes an endowment

higher than yj . At the time of such a higher endowment realization in the

future, the limited obligation ceases without any further transfers. Would such

a limited obligation be associated with positive or negative expected profits?

In the case of yj = y1 , this would entail a deterministic profit equal to zero,

since we have shown above that c1 = y1 . But what is true for other endowment

realizations?

To study the expected profit implications of such a limited obligation for

any given yj , we first compute an upper bound for the obligation’s consumption

level cj by using (21.3.25):

u(cj) =

[
1− β

j∑

k=1

Πk

]
u(yj) + β

j∑

k=1

Πku(yk)

≤ u

([
1− β

j∑

k=1

Πk

]
yj + β

j∑

k=1

Πkyk

)
,

where the weak inequality is implied by the strict concavity of the utility func-

tion, and evidently the expression holds with strict inequality for j > 1. There-

fore, an upper bound for cj is

cj ≤
[
1− β

j∑

k=1

Πk

]
yj + β

j∑

k=1

Πkyk. (21.3.29)

We can sort out the financial consequences of the limited obligation by

looking separately at the first period and then at all future periods. In the first

period, the moneylender obtains a nonnegative profit,

yj − cj ≥ yj −
([

1− β

j∑

k=1

Πk

]
yj + β

j∑

k=1

Πkyk

)

= β

j∑

k=1

Πk
[
yj − yk

]
, (21.3.30)

where we have invoked the upper bound on cj in (21.3.29). After that first pe-

riod, the moneylender must continue to deliver cj for as long as the household
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does not realize an endowment greater than yj . So the probability that the

household remains within the limited obligation for another t number of peri-

ods is (
∑j

i=1 Πi)
t . Conditional on remaining within the limited obligation, the

household’s average endowment realization is (
∑j

k=1 Πkyk)/(
∑j

k=1 Πk). Conse-

quently, the expected discounted profit stream associated with all future periods

of the limited obligation, expressed in first-period values, is

∞∑

t=1

βt

[
j∑

i=1

Πi

]t [∑j
k=1 Πkyk∑j
k=1 Πk

− cj

]
=

[
β
∑j

i=1 Πi

]

1− β
∑j

i=1 Πi

[∑j
k=1 Πkyk∑j
k=1 Πk

− cj

]

≥ −β
j∑

k=1

Πk
[
yj − yk

]
, (21.3.31)

where the inequality is obtained after invoking the upper bound on cj in (21.3.29).

Since the sum of (21.3.30) and (21.3.31) is nonnegative, we conclude that the

limited obligation at least breaks even in expectation. In fact, for yj > y1 we

have that (21.3.30) and (21.3.31) hold with strict inequalities, and thus, each

such limited obligation is associated with strictly positive profits.

Since the optimal contract with an initial promised value of vaut can be

viewed as a particular constellation of all of the described limited obligations,

it follows immediately that P (vaut) > 0.

Contracts with P (v0) = 0

In exercise 21.2 , you will be asked to compute v0 such that P (v0) = 0. Here

is a good way to do this. After computing the optimal contract for v0 = vaut ,

suppose that we can find some k satisfying 1 < k ≤ S such that for j ≥
k, P (wj) ≤ 0 and for j < k , P (wk) > 0. Use a zero-profit condition to find an

initial c̃ level:

0 =

k−1∑

j=1

Πj(yj − c̃) +

S∑

j=k

Πj
[
yj − cj + βP (wj)

]
.

Given c̃ , we can solve (21.3.26) for v0 .

However, such a k will fail to exist if P (wS) > 0. In that case, the efficient

allocation associated with P (v0) = 0 is a trivial one. The moneylender would

simply set consumption equal to the average endowment value. This contract

breaks even on average, and the household’s utility is equal to the first-best

unconstrained outcome, v0 = vpool , as given in (21.2.2).
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21.3.5. P (v) is strictly concave and continuously differentiable

Consider a promised value v0 ∈ [wk−1, wk) for 1 < k ≤ S . We can then use

equation (21.3.26) to compute the amount of consumption c̃(v0) awarded to a

household with promised value v0 , as long as the household is not experiencing

an endowment greater than yk−1 :

u[c̃(v0)] =

[
1− β

∑k−1
j=1 Πj

]
v0 −

∑S
j=k Πj [u(cj) + βwj ]

∑k−1
j=1 Πj

≡ Φk(v0), (21.3.32)

that is,

c̃(v0) = u−1 [Φk(v0)] . (21.3.33)

Since the utility function is strictly concave, it follows that c̃(v0) is strictly

convex in the promised value v0 :

c̃′(v0) =

[
1− β

∑k−1
j=1 Πj

]

∑k−1
j=1 Πj

u−1′ [Φk(v0)] > 0, (21.3.34a)

c̃′′(v0) =

[
1− β

∑k−1
j=1 Πj

]2

[∑k−1
j=1 Πj

]2 u−1′′ [Φk(v0)] > 0. (21.3.34b)

Next, we evaluate the expression for expected profits in (21.3.4) at the optimal

contract,

P (v0) =

k−1∑

j=1

Πj
[
yj − c̃(v0) + βP (v0)

]
+

S∑

j=k

Πj
[
yj − cj + βP (wj)

]
,

which can be rewritten as

P (v0) =

∑k−1
j=1 Πj

[
yj − c̃(v0)

]
+
∑S

j=k Πj
[
yj − cj + βP (wj)

]

1− β
∑k−1

j=1 Πj
.

We can now verify that P (v0) is strictly concave for v0 ∈ [wk−1, wk),

P ′(v0) = −
∑k−1
j=1 Πj

1− β
∑k−1
j=1 Πj

c̃′(v0) = −u−1′ [Φk(v0)] < 0, (21.3.35a)
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P ′′(v0) = −
∑k−1
j=1 Πj

1− β
∑k−1
j=1 Πj

c̃′′(v0)

= −

[
1− β

∑k−1
j=1 Πj

]

∑k−1
j=1 Πj

u−1′′ [Φk(v0)] < 0, (21.3.35b)

where we have invoked expressions (21.3.34).

To shed light on the properties of the value function P (v0) around the

promised value wk , we can establish that

lim
v0↑wk

Φk(v0) = Φk(wk) = Φk+1(wk), (21.3.36)

where the first equality is a trivial limit of expression (21.3.32) while the second

equality can be shown to hold because a rearrangement of that equality becomes

merely a restatement of a version of expression (21.3.22b). On the basis of

(21.3.36) and (21.3.33), we can conclude that the consumption level c̃(v0) is

continuous in the promised value which in turn implies continuity of the value

function P (v0). Moreover, expressions (21.3.36) and (21.3.35a) ensure that the

value function P (v0) is continuously differentiable in the promised value.

21.3.6. Many households

Consider a large village in which a moneylender faces a continuum of such

households. At the beginning of time t = 0, before the realization of y0 , the

moneylender offers each household vaut (or maybe just a small amount more).

As time unfolds, the moneylender executes the contract for each household.

A society of such households would experience a “fanning out” of the distri-

butions of consumption and continuation values across households for a while,

to be followed by an eventual “fanning in” as the cross-sectional distribution

of consumption asymptotically becomes concentrated at the single point g2(v̄)

computed earlier (i.e., the minimum c such that the participation constraint

will never again be binding). Notice that early on the moneylender would on

average, across villagers, be collecting money from the villagers, depositing it

in the bank, and receiving the gross interest rate β−1 on the bank balance.

Later he could be using the interest on his account outside the village to finance

payments to the villagers. Eventually, the villagers are completely insured, i.e.,

they experience no fluctuations in their consumptions.
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For a contract that offers initial promised value v0 ∈ [vaut, wS ] , constructed

as above, we can compute the dynamics of the cross-section distribution of

consumption by appealing to a law of large numbers of the kind used in chapter

18. At time 0, after the time 0 endowments have been realized, the cross-section

distribution of consumption is evidently

Prob{c0 = c̃} =

(
k−1∑

s=1

Πs

)
(21.3.37a)

Prob{c0 ≤ cj} =

(
j∑

s=1

Πs

)
, j ≥ k. (21.3.37b)

After t periods,

Prob{ct = c̃} =

(
k−1∑

s=1

Πs

)t+1

(21.3.38a)

Prob{ct ≤ cj} =

(
j∑

s=1

Πs

)t+1

, j ≥ k. (21.3.38b)

From the cumulative distribution functions (21.3.37) and (21.3.38), it is

easy to compute the corresponding densities

fj,t = Prob(ct = cj) (21.3.39)

where here we set cj = c̃ for all j < k . These densities allow us to compute

the evolution over time of the moneylender’s bank balance. Starting with initial

balance β−1B−1 = 0 at time 0, the moneylender’s balance at the bank evolves

according to

Bt = β−1Bt−1 +




S∑

j=1

Πjyj −
S∑

j=1

fj,tcj


 (21.3.40)

for t ≥ 0, where Bt denotes the end-of-period balance in period t . Let β−1 =

1 + r . After the cross-section distribution of consumption has converged to a

distribution concentrated on cS , the moneylender’s bank balance will obey the

difference equation

Bt = (1 + r)Bt−1 + E(y)− cS , (21.3.41)

where E(y) is the mean of y .
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A convenient formula links P (v0) to the tail behavior of Bt , in particular,

to the behavior of Bt after the consumption distribution has converged to cS .

Here we are once again appealing to a law of large numbers so that the expected

profits P (v0) becomes a nonstochastic present value of profits associated with

making a promise v0 to a large number of households. Since the moneylender

lets all surpluses and deficits accumulate in the bank account, it follows that

P (v0) is equal to the present value of the sum of any future balances Bt and the

continuation value of the remaining profit stream. After all households’ promised

values have converged to wS , the continuation value of the remaining profit

stream is evidently equal to βP (wS). Thus, for t such that the distribution of

c has converged to cs , we deduce that

P (v0) =
Bt + βP (wS)

(1 + r)t
. (21.3.42)

Since the term βP (wS)/(1 + r)t in expression (21.3.42) will vanish in the

limit, the expression implies that the bank balances Bt will eventually change at

the gross rate of interest. If the initial v0 is set so that P (v0) > 0 (P (v0) < 0),

then the balances will eventually go to plus infinity (minus infinity) at an expo-

nential rate. The asymptotic balances would be constant only if the initial v0 is

set so that P (v0) = 0. This has the following implications. First, recall from our

calculations above that there can exist an initial promised value v0 ∈ [vaut, wS ]

such that P (v0) = 0 only if it is true that P (wS) ≤ 0, which by (21.3.28a)

implies that E(y) ≤ cS . After imposing P (v0) = 0 and using the expression for

P (wS) in (21.3.28a), equation (21.3.42) becomes Bt = −βE(y)−cS
1−β , or

Bt =
cS − E(y)

r
≥ 0,

where we have used the definition β−1 = 1+r . Thus, if the initial promised value

v0 is such that P (v0) = 0, then the balances will converge when all households’

promised values converge to wS . The interest earnings on those stationary

balances will equal the one-period deficit associated with delivering cS to every

household while collecting endowments per capita equal to E(y) ≤ cS .

After enough time has passed, all of the villagers will be perfectly insured

because according to (21.3.38), limt→+∞ Prob(ct = cS) = 1. How much time

it takes to converge depends on the distribution Π. Eventually, everyone will

have received the highest endowment realization sometime in the past, after
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which his continuation value remains fixed. Thus, this is a model of temporary

imperfect insurance, as indicated by the eventual “fanning in” of the distribution

of continuation values.

21.3.7. An example

Figures 21.3.3 and 21.3.4 summarize aspects of the optimal contract for a version

of our economy in which each household has an i.i.d. endowment process that

is distributed as

Prob(yt = ys) =
1− λ

1− λS
λs−1

where λ ∈ (0, 1) and ys = s + 5 is the sth possible endowment value, s =

1, . . . , S . The typical household’s one-period utility function is u(c) = (1 −
γ)−1c1−γ , where γ is the household’s coefficient of relative risk aversion. We

have assumed the parameter values (β, S, γ, λ) = (.5, 20, 2, .95). The initial

promised value v0 is set so that P (v0) = 0.

The moneylender’s bank balance in Figure 21.3.3, panel d, starts at zero.

The moneylender makes money at first, which he deposits in the bank. But as

time passes, the moneylender’s bank balance converges to the point that he is

earning just enough interest on his balance to finance the extra payments he

must make to pay cS to each household each period. These interest earnings

make up for the deficiency of his per capita period income E(y), which is less

than his per period per capita expenditures cS .

21.4. A Lagrangian method

Marcet and Marimon (1992, 1999) have proposed an approach that applies

to most of the contract design problems of this chapter. They form a La-

grangian and use the Lagrange multipliers on incentive constraints to keep track

of promises. Their approach extends the work of Kydland and Prescott (1980)

and is related to Hansen, Epple, and Roberds’ (1985) formulation for linear

quadratic environments.4 We can illustrate the method in the context of the

preceding model.

4 Marcet and Marimon’s method is a variant of the method used to compute Stackelberg

or Ramsey plans in chapter 19. See chapter 19 for a more extensive review of the history of
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Figure 21.3.3: Optimal contract when P (v0) = 0. Panel

a: cs as function of maximum ys experienced to date. Panel

b: ws as function of maximum ys experienced. Panel c:

P (ws) as function of maximum ys experienced. Panel d:

The moneylender’s bank balance.

Marcet and Marimon’s approach would be to formulate the problem directly

in the space of stochastic processes (i.e., random sequences) and to form a

Lagrangian for the moneylender. The contract specifies a stochastic process for

consumption obeying the following constraints:

u(ct) + Et

∞∑

j=1

βju(ct+j) ≥ u(yt) + βvaut , ∀t ≥ 0, (21.4.1a)

E−1

∞∑

t=0

βtu(ct) ≥ v, (21.4.1b)

the ideas underlying Marcet and Marimon’s approach, in particular, some work from Great

Britain in the 1980s by Miller, Salmon, Pearlman, Currie, and Levine.
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Figure 21.3.4: Cumulative distribution functions Ft(ct) for

consumption for t = 0, 2, 5, 10, 25, 100 when P (v0) = 0 (later

dates have c.d.f.s shifted to right).

where E−1(·) denotes the conditional expectation before y0 has been realized.

Here v is the initial promised value to be delivered to the villager starting in

period 0. Equation (21.4.1a) gives the participation constraints.

The moneylender’s Lagrangian is

J = E−1

∞∑

t=0

βt
{
(yt − ct) + αt

[
Et

∞∑

j=0

βju(ct+j)− [u(yt) + βvaut]
]}

+ φ
[
E−1

∞∑

t=0

βtu(ct)− v
]
,

(21.4.2)

where {αt}∞t=0 is a stochastic process of nonnegative Lagrange multipliers on the

participation constraint of the villager and φ is the strictly positive multiplier

on the initial promise-keeping constraint that states that the moneylender must

deliver v . It is useful to transform the Lagrangian by making use of the following

equality, which is a version of the “partial summation formula of Abel” (see

Apostol, 1975, p. 194):

∞∑

t=0

βtαt

∞∑

j=0

βju(ct+j) =
∞∑

t=0

βtµtu(ct), (21.4.3)
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where

µt = µt−1 + αt, with µ−1 = 0. (21.4.4)

Formula (21.4.3) can be verified directly. If we substitute formula (21.4.3) into

formula (21.4.2) and use the law of iterated expectations to justify E−1Et(·) =
E−1(·), we obtain

J = E−1

∞∑

t=0

βt {(yt − ct) + (µt + φ)u(ct)

−(µt − µt−1) [u(yt) + βvaut]} − φv. (21.4.5)

For a given value v , we seek a saddle point: a maximum with respect to {ct} ,
a minimum with respect to {µt} and φ . The first-order condition with respect

to ct is

u′(ct) =
1

µt + φ
, (21.4.6a)

which is a version of equation (21.3.12). Thus, −(µt+φ) equals P
′(w) from the

previous section, so that the multipliers encode the information contained in the

derivative of the moneylender’s value function. We also have the complementary

slackness conditions

u(ct) + Et

∞∑

j=1

βju(ct+j)− [u(yt) + βvaut] ≥ 0, = 0 if αt > 0; (21.4.6b)

E−1

∞∑

t=0

βtu(ct)− v = 0. (21.4.6c)

Equation (21.4.6) together with the transition law (21.4.4) characterizes the

solution of the moneylender’s maximization problem.

To explore the time profile of the optimal consumption process, we now

consider some period t ≥ 0 when (yt, µt−1, φ) are known. First, we tentatively

try the solution αt = 0 (i.e., the participation constraint is not binding). Equa-

tion (21.4.4) instructs us then to set µt = µt−1 , which by first-order condition

(21.4.6a) implies that ct = ct−1 . If this outcome satisfies participation con-

straint (21.4.6b), we have our solution for period t . If not, it signifies that the

participation constraint binds. In other words, the solution has αt > 0 and

ct > ct−1 . Thus, equations (21.4.4) and (21.4.6a) immediately show us that ct
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is a nondecreasing random sequence, that ct stays constant when the participa-

tion constraint is not binding, and that it rises when the participation constraint

binds.

The numerical computation of a solution to equation (21.4.5) is compli-

cated by the fact that slackness conditions (21.4.6b) and (21.4.6c) involve condi-

tional expectations of future endogenous variables {ct+j} . Marcet and Marimon

(1992) handle this complication by resorting to the parameterized expectation

approach; that is, they replace the conditional expectation by a parameterized

function of the state variables.5 Marcet and Marimon (1992, 1999) describe a

variety of other examples using the Lagrangian method. See Kehoe and Perri

(2002) for an application to an international trade model.

21.5. Insurance with asymmetric information

The moneylender-villager environment of section 21.3 poses a commitment prob-

lem because agents are free to choose autarky each period; but there is no infor-

mation problem. We now study a contract design problem where the incentive

problem comes not from a commitment problem, but instead from asymmetric

information. As before, the moneylender or planner can borrow or lend outside

the village at the constant risk-free gross interest rate of β−1 , and each house-

hold’s income yt is independently and identically distributed across time and

across households. However, now we assume that the planner and household

can enter into an enduring and binding contract. At the beginning of time,

let vo be the expected lifetime utility that the planner promises to deliver to

a household. The initial promise vo could presumably not be less than vaut ,

since a household would not accept a contract that gives a lower utility than

he could attain at time 0 by choosing autarky. We defer discussing how vo

is determined until the end of the section. The other new assumption here is

that households have private information about their own income, and that the

planner can see neither their income nor their consumption. It follows that any

transfers between the planner and a household must be based on the household’s

5 For details on the implementation of the parameterized expectations approach in a simple

growth model, see den Haan and Marcet (1990). The parameterized expectations method was

applied by Krusell and Smith (1998) to compute an approximate equilibrium of an incomplete

markets model with a fluctuating aggregate state variable. See chapter 18.
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own reports about income realizations. An incentive-compatible contract makes

households choose to report their incomes truthfully.

Our analysis follows the work by Thomas and Worrall (1990), who make

a few additional assumptions about the preferences in expression (21.2.1): u :

(a,∞) → IR is twice continuously differentiable with supu(c) < ∞ , inf u(c) =

−∞ , limc→a u
′(c) = ∞ . Thomas and Worrall also use the following special

assumption:

Condition A: −u′′/u′ is nonincreasing.

This is a sufficient condition to make the value function concave, as we will

discuss. The roles of the other restrictions on preferences will also be revealed.

An efficient insurance contract solves a dynamic programming problem.6

A planner maximizes expected discounted profits, P (v), where v is the house-

hold’s promised utility from last period. The planner’s current payment to the

household, denoted b (repayments from the household register as negative num-

bers), is a function of the state variable v and the household’s reported current

income y . Let bs and ws be the payment and continuation utility awarded to

the household if it reports income ys . The optimum value function P (v) obeys

the functional equation

P (v) = max
{bs,ws}

S∑

s=1

Πs[−bs + βP (ws)] (21.5.1)

where the maximization is subject to the constraints

S∑

s=1

Πs [u(ys + bs) + βws] = v (21.5.2)

Cs,k ≡ u(ys + bs) + βws −
[
u(ys + bk) + βwk

]
≥ 0, s, k ∈ S× S (21.5.3)

bs ∈ [a− ys, ∞] , s ∈ S (21.5.4)

ws ∈ [−∞, vmax] , s ∈ S (21.5.5)

where vmax = supu(c)/(1 − β). Equation (21.5.2) is the “promise-keeping”

constraint guaranteeing that the promised utility v is delivered. Note that

6 It is important that the endowment is independently distributed over time. See Fernandes

and Phelan (2000) for a related analysis that shows complications that arise when the iid

assumption is relaxed
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our earlier weak inequality in (21.3.5) is replaced by an equality. The planner

cannot award a higher utility than v because that could violate an incentive-

compatibility constraint for telling the truth in earlier periods. The set of con-

straints (21.5.3) ensures that the households have no incentive to lie about their

endowment realization in each state s ∈ S . Here s indexes the actual income

state, and k indexes the reported income state. We express the incentive com-

patibility constraints when the endowment is in state s as Cs,k ≥ 0 for k ∈ S .

Note also that there are no “participation constraints” like expression (21.3.6)

from our earlier model, an absence that reflects the assumption that both parties

are committed to the contract.

It is instructive to establish bounds on the value function P (v). Consider

first a contract that pays a constant amount b̄ = b̄(v) in all periods, where

b̄(v) satisfies
∑S

s=1 Πsu(ys + b̄)/(1− β) = v . It is trivially incentive compatible

and delivers the promised utility v . Therefore, the discounted profits from this

contract, −b̄/(1−β), provide a lower bound on P (v). In addition, P (v) cannot

exceed the value of the unconstrained first-best contract that pays c̄− ys in all

periods, where c̄ satisfies
∑S

s=1 Πsu(c̄)/(1 − β) = v . Thus, the value function

is bounded by

−b̄(v)/(1− β) ≤ P (v) ≤
S∑

s=1

Πs[ys − c̄(v)]/(1 − β) . (21.5.6)

The bounds are depicted in Figure 21.5.1, which also illustrates a few other prop-

erties of P (v). Since limc→a u
′(c) = ∞ , it becomes very cheap for the planner

to increase the promised utility when the current promise is very low, that is,

limv→−∞ P ′(v) = 0. The situation is different when the household’s promised

utility is close to the upper bound vmax where the household has a low marginal

utility of additional consumption, which implies that both limv→vmax P
′(v) =

−∞ and limv→vmax P (v) = −∞ .
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v

P(v)

P(v)

0 v
max

Figure 21.5.1: Value function P (v) and the two dashed

curves depict the bounds on the value function. The vertical

solid line indicates vmax = supu(c)/(1− β).

21.5.1. Efficiency implies bs−1 ≥ bs, ws−1 ≤ ws

An incentive-compatible contract must satisfy bs−1 ≥ bs (insurance) and ws−1 ≤
ws (partial insurance). This can be established by adding the “downward con-

straint” Cs,s−1 ≥ 0 and the “upward constraint” Cs−1,s ≥ 0 to get

u(ys + bs) − u(ys−1 + bs) ≥ u(ys + bs−1) − u(ys−1 + bs−1) ,

where the concavity of u(c) implies bs ≤ bs−1 . It then follows directly from

Cs,s−1 ≥ 0 that ws ≥ ws−1 . Thus, for any v , a household reporting a lower

income receives a higher transfer from the planner in exchange for a lower future

utility.
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21.5.2. Local upward and downward constraints are enough

Constraint set (21.5.3) can be simplified. We can show that if the local down-

ward constraints Cs,s−1 ≥ 0 and upward constraints Cs,s+1 ≥ 0 hold for each

s ∈ S , then the global constraints Cs,k ≥ 0 hold for each s, k ∈ S . The argu-

ment goes as follows: Suppose we know that the downward constraint Cs,k ≥ 0

holds for some s > k ,

u(ys + bs) + βws ≥ u(ys + bk) + βwk . (21.5.7)

From above we know that bs ≤ bk , so the concavity of u(c) implies

u(ys+1 + bs) − u(ys + bs) ≥ u(ys+1 + bk) − u(ys + bk) . (21.5.8)

By adding expressions (21.5.7) and (21.5.8) and using the local downward con-

straint Cs+1,s ≥ 0, we arrive at

u(ys+1 + bs+1) + βws+1 ≥ u(ys+1 + bk) + βwk,

that is, we have shown that the downward constraint Cs+1,k ≥ 0 holds. In this

recursive fashion we can verify that all global downward constraints are satisfied

when the local downward constraints hold. A symmetric reasoning applies to

the upward constraints. Starting from any upward constraint Ck,s ≥ 0 with

k < s , we can show that the local upward constraint Ck−1,k ≥ 0 implies that

the upward constraint Ck−1,s ≥ 0 must also hold, and so forth.

21.5.3. Concavity of P

Thus far, we have not appealed to the concavity of the value function, but

henceforth we shall have to. Thomas and Worrall showed that under condition

A, P is concave.

Proposition: The value function P (v) is concave.

We recommend just skimming the following proof on first reading:

Proof: Let T (P ) be the operator associated with the right side of equation

(21.5.1). We could compute the optimum value function by iterating to con-

vergence on T . We want to show that T maps strictly concave P to strictly

concave function T (P ). Thomas and Worrall use the following argument:
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Let Pk−1(v) be the k − 1 iterate on T . Assume that Pk−1(v) is strictly

concave. We want to show that Pk(v) is strictly concave. Consider any vo and

v′ with associated contracts (bos, w
o
s)s∈S , (b

′
s, w

′
s)s∈S . Let w

∗
s = δwos +(1− δ)w′

s

and define b∗s by u(b∗s + ys) = δu(bos + ys) + (1− δ)u(b′s + ys) where δ ∈ (0, 1).

Therefore, (b∗s, w
∗
s )s∈S gives the borrower a utility that is the weighted aver-

age of the two utilities, and gives the lender no less than the average utility

δPk(v
o) + (1 − δ)Pk(v

′). Then C∗
s,s−1 = δCos,s−1 + (1 − δ)C′

s,s−1 + [δu(bos−1 +

ys) + (1 − δ)u(b′s−1 + ys) − u(b∗s−1 + ys)] . Because the downward constraints

Cos,s−1 and C′
s,s−1 are satisfied, and because the third term is nonnegative

under condition A, the downward incentive constraints C∗
s,s−1 ≥ 0 are satis-

fied. However, (b∗s, w
∗
s )s∈S may violate the upward incentive constraints. But

Thomas and Worrall use the following argument to construct a new contract

from (b∗s, w
∗
s )s∈S that is incentive compatible and that offers both the lender

and the borrower no less utility. Thus, keep w1 fixed and reduce w2 until

C2,1 = 0 or w2 = w1 . Then reduce w3 in the same way, and so on. Add

the constant necessary to leave
∑

sΠsws constant. This step will not make

the lender worse off, by the concavity of Pk−1(v). Now if w2 = w1 , which

implies b∗2 > b∗1 , reduce b2 until C2,1 = 0, and proceed in the same way for

b3 , and so on. Since bs + ys > bs−1 + ys−1 , adding a constant to each bs to

leave
∑
sΠsbs constant cannot make the borrowers worse off. So in this new

contract, Cs,s−1 = 0 and bs−1 ≥ bs . Thus, the upward constraints also hold.

Strict concavity of Pk(v) then follows because it is not possible to have both

bos = b′s and wos = w′
s for all s ∈ S and vo 6= v′ , so the contract (b∗s, w

∗
s ) yields

the lender strictly more than δPk(v
o) + (1 − δ)Pk(v

′). To complete the induc-

tion argument, note that starting from P0(v) = 0, P1(v) is strictly concave.

Therefore, limk=∞ Pk(v) is concave.

We now turn to some properties of the optimal allocation that require strict

concavity of the value function. Thomas and Worrall derive these results for the

finite horizon problem with value function Pk(v), which is strictly concave by

the preceding proposition. In order for us to stay with the infinite horizon value

function P (v), we make the following assumption about limk=∞ Pk(v):
7

Assumption: The value function P (v) is strictly concave.

7 To get the main result reported below that all households become impoverished in the

limit, Thomas and Worrall provide a proof that requires only concavity of P (v) as established

in the preceding proposition.
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21.5.4. Local downward constraints always bind

At the optimal solution, the local downward incentive constraints always bind,

while the local upward constraints never do. That is, a household is always

indifferent between reporting the truth and reporting that its income is actually

a little lower than it is; but it never wants to report that its income is higher.

To see that the downward constraints must bind, suppose to the contrary that

Ck,k−1 > 0 for some k ∈ S . Since bk ≤ bk−1 , it must then be the case that

wk > wk−1 . Consider changing {bs, ws; s ∈ S} as follows. Keep w1 fixed, and

if necessary reduce w2 until C2,1 = 0. Next reduce w3 until C3,2 = 0, and

so on, until Cs,s−1 = 0 for all s ∈ S . (Note that any reductions cumulate

when moving up the sequence of constraints.) Thereafter, add the necessary

constant to each ws to leave the expected value of all future promises unchanged,∑S
s=1 Πsws . The new contract offers the household the same utility and is

incentive compatible because bs ≤ bs−1 and Cs,s−1 = 0 together imply that the

local upward constraint Cs−1,s ≥ 0 does not bind. At the same time, since the

mean of promised values is unchanged and the differences (ws−ws−1) have either

been left the same or reduced, the strict concavity of the value function P (v)

implies that the planner’s profits have increased. That is, we have engineered a

mean-preserving decrease in the spread in the continuation values w . Because

P (v) is strictly concave,
∑

s∈S ΠsP (ws) rises and therefore P (v) rises. Thus,

the original contract with a nonbinding local downward constraint could not

have been an optimal solution.

21.5.5. Coinsurance

The optimal contract is characterized by coinsurance, meaning that the house-

hold’s utility and the planner’s profits both increase with a higher income real-

ization:

u(ys + bs) + βws > u(ys−1 + bs−1) + βws−1 (21.5.9)

−bs + βP (ws) ≥ −bs−1 + βP (ws−1) . (21.5.10)

The higher utility of the household in expression (21.5.9) follows trivially from

the downward incentive-compatibility constraint Cs,s−1 = 0. Concerning the

planner’s profits in expression (21.5.10), suppose to the contrary that −bs +
βP (ws) < −bs−1 + βP (ws−1). Then replacing (bs, ws) in the contract by
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(bs−1, ws−1) raises the planner’s profits but leaves the household’s utility un-

changed because Cs,s−1 = 0, and the change is also incentive compatible. Thus,

an optimal contract must be such that the planner’s profits weakly increase in

the household’s income realization.

21.5.6. P ′(v) is a martingale

If we let λ and µs , s = 2, . . . , S , be Lagrange multipliers associated with the

constraints (21.5.2) and Cs,s−1 ≥ 0, s = 2, . . . , S , respectively, the first-order

necessary conditions with respect to bs and ws , s ∈ S , are

Πs

[
1− λu′(ys + bs)

]
= µs u

′(ys + bs) − µs+1 u
′(ys+1 + bs), (21.5.11)

Πs

[
P ′(ws) + λ

]
= µs+1 − µs , (21.5.12)

for s ∈ S , where µ1 = µS+1 = 0. (There are no constraints corresponding to

µ1 and µS+1 .) From the envelope condition,

P ′(v) = −λ . (21.5.13)

Summing equation (21.5.12) over s ∈ S and using
∑S

s=1(µs+1 − µs) = µS+1 −
µ1 = 0 and equation (21.5.13) yields

S∑

s=1

Πs P
′(ws) = P ′(v) . (21.5.14)

This equation states that P ′ is a martingale.
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21.5.7. Comparison to model with commitment problem

In the model with a commitment problem studied in section 21.3, the efficient al-

location had to satisfy equation (21.3.12), i.e., u′(ys+ bs) = −P ′(ws)
−1 . As we

explained then, this condition sets the household’s marginal rate of substitution

equal to the planner’s marginal rate of transformation with respect to transfers

in the current period and continuation values in the next period. This condition

fails to hold in the present framework with incentive-compatibility constraints

associated with telling the truth. The efficient trade-off between current con-

sumption and a continuation value for a household with income realization ys
can not be determined without taking into account the incentives that other

households have to report ys untruthfully in order to obtain the corresponding

bundle of current and future transfers from the planner. It is instructive to note

that equation (21.3.12) would continue to hold in the present framework if the

incentive-compatibility constraints for truth telling were not binding. That is,

set the multipliers µs , s = 2, . . . , S , equal to zero and substitute first-order

condition (21.5.12) into (21.5.11) to obtain u′(ys + bs) = −P ′(ws)
−1 .

21.5.8. Spreading continuation values

An efficient contract requires that the promised future utility falls (rises) when

the household reports the lowest (highest) income realization, that is, that

w1 < v < wS . To show that wS > v , suppose to the contrary that wS ≤ v .

That this assumption leads to a contradiction is established by the following

line of argument. Since wS ≥ ws for all s ∈ S and P (v) is strictly concave,

equation (21.5.14) implies that ws = v for all s ∈ S . Substitution of equation

(21.5.13) into equation (21.5.12) then yields a zero on the left side of equation

(21.5.12). Moreover, the right side of equation (21.5.12) is equal to µ2 when

s = 1 and −µS when s = S , so we can successively unravel from the constraint

set (21.5.12) that µs = 0 for all s ∈ S . Turning to equation (21.5.11), it

follows that the marginal utility of consumption is equalized across income real-

izations, u′(ys+ bs) = λ−1 for all s ∈ S . Such consumption smoothing requires

bs−1 > bs , but from incentive compatibility, ws−1 = ws implies bs−1 = bs , a

contradiction. We conclude that an efficient contract must have wS > v . A

symmetric argument establishes w1 < v .
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The planner must spread out promises to future utility because otherwise it

would be impossible to provide any insurance in the form of contingent payments

today. Equation (21.5.14) describes how the planner balances the delivery of

utility today versus tomorrow. To understand this expression, consider having

the planner increase the household’s promised utility v by one unit. One way

of doing so is to increase every ws by an increment 1/β while keeping every

bs constant. Such a change preserves incentive compatibility at an expected

discounted cost to the planner of
∑S

s=1 ΠsP
′(ws). By the envelope theorem,

locally this is as good a way to increase v as any other, and its cost is therefore

equal to P ′(v); that is, we obtain expression (21.5.14). In other words, given

a planner’s obligation to deliver utility v to the agent, it is cost-efficient to

balance today’s contingent deliveries of goods, {bs} , and the bundle of future

utilities, {ws} , so that the expected marginal cost of next period’s promises,∑S
s=1 ΠsP

′(ws), becomes equal to the marginal cost of the current obligation,

P ′(v). No intertemporal price affects this trade-off, since any interest earnings

on postponed payments are just sufficient to compensate the agent for his own

subjective rate of discounting, (1 + r) = β−1 .

21.5.9. Martingale convergence and poverty

The martingale property (21.5.14) for P ′(v) has an intriguing implication for

the long-run tendency of a household’s promised future utility. Recall that

limv→−∞ P ′(v) = 0 and limv→vmax P
′(v) = −∞ , so P ′(v) in expression (21.5.14)

is a nonpositive martingale. By a theorem of Doob (1953, p. 324), P ′(v) then

converges almost surely. We can show that P ′(v) must converge to 0, so that v

converges to −∞ . Suppose to the contrary that P ′(v) converges to a nonzero

limit, which implies that v converges to a finite limit. However, this assumption

contradicts our earlier result that future ws always spread out to provide in-

centives. The contradiction is avoided only for v converging to −∞ ; therefore,

the limit of P ′(v) must be zero.

The result that all households become impoverished in the limit can be

understood in terms of the concavity of P (v). First, if there were no asymmet-

ric information, the least expensive way of delivering lifetime utility v would

be to assign the household a constant consumption stream, given by the up-

per bound on the value function in expression (21.5.6). The concavity of P (v)
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and standard intertemporal considerations favor a time-invariant consumption

stream. But the presence of asymmetric information makes it necessary for the

planner to vary promises of future utility to induce truth telling, which is costly

due to the concavity of P (v). For example, Thomas and Worrall pointed out

that if S = 2, the cost of spreading w1 and w2 an equally small amount ǫ on

either side of their average value w̄ is approximately −0.5ǫ2P ′′(w̄).8 In gen-

eral, we cannot say how this cost differs for any two values of w̄ , but it follows

from the properties of P (v) at its endpoints that limv→−∞ P ′′(v) = 0, and

limv→vmax P
′′(v) = −∞ . Thus, the cost of spreading promised values goes to

zero at one endpoint and to infinity at the other endpoint. Therefore, the con-

cavity of P (v) and incentive compatibility considerations impart a downward

drift to future utilities and, consequently, consumption. That is, with private

information the ideal time-invariant consumption level without private informa-

tion is abandoned in favor of random consumption paths that are expected to

be tilted toward the present.

One possibility is that the initial utility level vo is determined in competi-

tion between insurance providers. If there are no costs associated with admin-

istering contracts, vo would then be implicitly determined by the zero-profit

condition, P (vo) = 0. Such a contract must be enforceable because, as we have

seen, the household will almost surely eventually wish that it could revert to

autarky. However, since the contract is the solution to a dynamic program-

ming problem where the continuation of the contract is always efficient at every

date, the insurer and the household will never mutually agree to renegotiate the

contract.

8 The expected discounted profits of providing promised values w1 = w̄ − ǫ and w2 =

w̄+ ǫ with equal probabilities can be approximated with a Taylor series expansion around w̄∑2
s=1

1
2P (ws) ≈

∑2
s=1

1
2

[
P (w̄) + (ws − w̄)P ′(w̄) +

(ws−w̄)2

2 P ′′(w̄)

]
= P (w̄) + ǫ2

2 P
′′(w̄).
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21.5.10. Extension to general equilibrium

Atkeson and Lucas (1992) provide examples of closed economies where the con-

strained efficient allocation also has each household’s expected utility converg-

ing to the minimum level with probability 1. Here the planner chooses the

incentive-compatible allocation for all agents subject to a constraint that the

total consumption handed out in each period to the population of households

cannot exceed some constant endowment level. Households are assumed to ex-

perience unobserved idiosyncratic taste shocks ǫ that are i.i.d. over time and

households. The taste shock enters multiplicatively into preferences that take

either the logarithmic form u(c, ǫ) = ǫ log(c), the constant relative risk aversion

(CRRA) form u(c, ǫ) = ǫcγ/γ , γ < 1, γ 6= 0, or the constant absolute risk

aversion (CARA) form u(c, ǫ) = −ǫ exp(−γc), γ > 0. The assumption that

the utility function belongs to one of these families greatly simplifies the ana-

lytics of the evolution of the wealth distribution. Atkeson and Lucas show that

an equilibrium of this model yields an efficient allocation that assigns an ever-

increasing fraction of resources to an ever-diminishing fraction of the economy’s

population.

21.5.11. Comparison with self-insurance

We have just seen how in the Thomas and Worrall model, the planner re-

sponds to the incentive problem created by the consumer’s private information

by putting a downward tilt into temporal consumption profiles. It is useful to

recall how in the savings problem of chapters 17 and 18, the martingale con-

vergence theorem was used to show that the consumption profile acquired an

upward tilt coming from the motive of the consumer to self-insure.
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21.6. Insurance with unobservable storage

In the spirit of an analysis of Franklin Allen (1985), we now augment the model

of the previous section by assuming that households have access to a technology

that enables them to store nonnegative amounts of goods at a risk-free gross

return of R > 0. The planner cannot observe private storage. The planner

can borrow and lend outside the village at a risk-free gross interest rate that

also equals R , so that private and public storage yield identical rates of return.

The planner retains an advantage over households of being the only one able to

borrow outside of the village.

The outcome of our analysis will be to show that allowing households to

store amounts that are not observable to the planner so impedes the planner’s

ability to manipulate the household’s continuation valuations that no social

insurance can be supplied. Instead, the planner helps households overcome

the nonnegativity constraint on households’ storage by in effect allowing them

to engage also in private borrowing at the risk-free rate R , subject to natural

borrowing limits. Thus, outcomes share many features of the allocations studied

in chapters 17 and 18.

Our analysis partly follows Cole and Kocherlakota (2001), who assume that

a household’s utility function u(·) is strictly concave and twice continuously

differentiable over (0,∞) with limc→0 u
′(c) = ∞ . The domain of u is the

entire real line with u(c) = −∞ for c < 0.9 They also assume that u satisfies

condition A above. This preference specification allows Cole and Kocherlakota

to characterize an efficient allocation in a finite horizon model. Their extension

to an infinite horizon involves a few other assumptions, including upper and

lower bounds on the utility function.

We retain our earlier assumption that the planner has access to a risk-free

loan market outside of the village. Cole and Kocherlakota (2001) postulate a

closed economy where the planner is constrained to choose nonnegative amounts

of storage. Hence, our concept of feasibility differs from theirs.

9 Allowing for negative consumption while setting utility equal to −∞ is a convenient

device for avoiding having to deal with transfers that exceed the household’s resources.
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21.6.1. Feasibility

Anticipating that our characterization of efficient outcomes will be in terms of

sequences of quantities, we let the history of a household’s reported income

enter as an argument in the function specifying the planner’s transfer scheme.

In period t , a household with an earlier history ht−1 and a currently reported

income of yt receives a transfer bt({ht−1, yt}) that can be either positive or

negative. If all households report their incomes truthfully, the planner’s time t

budget constraint is

Kt +
∑

ht

π(ht)bt(ht) ≤ RKt−1, (21.6.1)

where Kt is the planner’s end-of-period savings (or, if negative, borrowing) and

π(ht) is the unconditional probability that a household experiences history ht ,

which in the planner’s budget constraint equals the fraction of households that

experience history ht . Given a finite horizon with a final period T , solvency of

the planner requires that KT ≥ 0.

We use a household’s history ht to index consumption and private storage

at time t ; ct(ht) ≥ 0 and kt(ht) ≥ 0. The household’s resource constraint at

history ht at time t is

ct(ht) + kt(ht) ≤ yt(ht) +Rkt−1(ht−1) + bt(ht), (21.6.2)

where the function for current income yt(ht) returns the tth element of the

household’s history ht . We assume that the household has always reported its

income truthfully, so that the transfer in period t is given by bt(ht).

Given initial conditions K0 = k0 = 0, an allocation (c, k, b,K) ≡ {ct(ht),
kt(ht), bt(ht), Kt} is physically feasible if inequalities (21.6.1), (21.6.2) and

kt(ht) ≥ 0 are satisfied for all periods t and all histories ht , and KT ≥ 0.
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21.6.2. Incentive compatibility

Since income realizations and private storage are both unobservable, households

are free to deviate from an allocation (c, k, b,K) in two ways. First, households

can lie about their income and thereby receive the transfer payments associated

with the reported but untrue income history. Second, households can choose

different levels of storage. Let ΩT be the set of reporting and storage strategies

(ŷ, k̂) ≡ {ŷt(ht), k̂t(ht); for all t, ht} , where ht denotes the household’s true

history.

Let ĥt denote the history of reported incomes, ĥt(ht) = {ŷ1(h1), ŷ2(h2),
. . . , ŷt(ht)} . With some abuse of notation, we let y denote the truth-telling

strategy for which ŷt({ht−1, yt}) = yt for all (t, ht−1), and hence for which

ĥt(ht) = ht .

Given a transfer scheme b , the expected utility of following reporting and

storage strategy (ŷ, k̂) is

Γ(ŷ, k̂; b) ≡
T∑

t=1

βt−1
∑

ht

π(ht)

· u
(
yt(ht) +Rk̂t−1(ht−1) + bt(ĥt(ht))− k̂t(ht)

)
, (21.6.3)

given k0 = 0. An allocation is incentive compatible if

Γ(y, k; b) = max
(ŷ,k̂)∈ΩT

Γ(ŷ, k̂; b). (21.6.4)

An allocation that is both incentive compatible and feasible is called an incentive

feasible allocation. The following proposition asserts that any incentive feasible

allocation with private storage can be attained with an alternative incentive

feasible allocation without private storage.

Proposition 1: Given any incentive feasible allocation (c, k, b,K), there exists

another incentive feasible allocation (c, 0, bo,Ko).

Proof: We claim that (c, 0, bo,Ko) is incentive feasible where

bot (ht) ≡ bt(ht)− kt(ht) +Rkt−1(ht−1), (21.6.5)

Ko
t ≡

∑

ht

π(ht)kt(ht) +Kt. (21.6.6)

Feasibility follows from the assumed feasibility of (c, k, b,K). Note also that

Γ(y, 0; bo) = Γ(y, k; b). The proof of incentive compatibility is by contradiction.
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Suppose that (c, 0, bo,Ko) is not incentive compatible, i.e., that there exists a

reporting and storage strategy (ŷ, k̂) ∈ ΩT such that

Γ(ŷ, k̂; bo) > Γ(y, 0; bo) = Γ(y, k; b). (21.6.7)

After invoking expression (21.6.5) for transfer payment bot (ĥt(ht)), the left side

of inequality (21.6.7) becomes

Γ(ŷ, k̂; bo) =

T∑

t=1

βt−1
∑

ht

π(ht)u
(
yt(ht) +Rk̂t−1(ht−1)− k̂t(ht)

+
[
bt(ĥt(ht))− kt(ĥt(ht)) +Rkt−1(ĥt−1(ht−1))

])

= Γ(ŷ, k∗; b),

where we have defined k∗t (ht) ≡ k̂t(ht) + kt(ĥt(ht)). Thus, inequality (21.6.7)

implies that

Γ(ŷ, k∗; b) > Γ(y, k; b),

which contradicts the assumed incentive compatibility of (c, k, b,K).

21.6.3. Efficient allocation

An incentive feasible allocation that maximizes ex ante utility is called an effi-

cient allocation. It solves the following problem:

(P1) max
{c,k,b,K}

T∑

t=1

βt−1
∑

ht

π(ht)u(ct(ht))

subject to

Γ(y, k; b) = max
(ŷ,k̂)∈ΩT

Γ(ŷ, k̂; b)

ct(ht) + kt(ht) = yt(ht) +Rkt−1(ht−1) + bt(ht), ∀t, ht
Kt +

∑

ht

π(ht)bt(ht) ≤ RKt−1, ∀t

kt(ht) ≥ 0, ∀t, ht
KT ≥ 0,

K0 = k0 = 0.
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The incentive compatibility constraint with unobservable private storage

makes problem (P1) exceedingly difficult to solve. To find the efficient allocation

we will adopt a guess-and-verify approach. We will guess that the consumption

allocation that solves (P1) coincides with the optimal consumption allocation in

another economic environment. For example, we might guess that the consump-

tion allocation that solves (P1) is the same as in a complete markets economy

with complete enforcement. A better guess might be the autarkic consumption

allocation where each household stores goods only for its own use, behaving

according to a version of the chapter 17 model with a no-borrowing constraint.

Our analysis of the model without private storage in the previous section makes

the first guess doubtful. In fact, both guesses are wrong. What turns out to be

true is the following.

Proposition 2: An incentive feasible allocation (c, k, b,K) is efficient if and

only if c = c∗ , where c∗ is the consumption allocation that solves

(P2) max
{c}

T∑

t=1

βt−1
∑

ht

π(ht)u(ct(ht))

subject to
T∑

t=1

R1−t [yt(hT )− ct(ht(hT ))] ≥ 0, ∀hT .

The proposition says that the consumption allocation that solves (P1) is the

same as that in an economy where each household can borrow or lend outside the

village at the risk-free gross interest rate R subject to a solvency requirement.10

Below we will provide a proof for the case of two periods (T = 2). We refer

readers to Cole and Kocherlakota (2001) for a general proof.

Central to the proof are the first-order conditions of problem (P2), namely,

u′(ct(ht)) = βR

S∑

s=1

Πsu
′ (ct+1({ht, ys})) , ∀t, ht (21.6.8)

T∑

t=1

R1−t [yt(hT )− ct(ht(hT ))] = 0, ∀hT . (21.6.9)

10 The solvency requirement is equivalent to the natural debt limit discussed in chapters 17

and 18.
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Given the continuous, strictly concave objective function and the compact, con-

vex constraint set in problem (P2), the solution c∗ is unique and the first-order

conditions are both necessary and sufficient.

In the efficient allocation, the planner chooses transfers that in effect re-

lax the nonnegativity constraint on a household’s storage is not binding, i.e.,

consumption smoothing condition (21.6.8) is satisfied. However, the optimal

transfer scheme offers no insurance across households because the present value

of transfers is zero for any history hT , i.e., the net-present value condition

(21.6.9) is satisfied.

21.6.4. The two-period case

In a finite horizon model, an immediate implication of the incentive constraints is

that transfers in the final period T must be independent of households’ reported

values of yT . In the case of two periods, we can therefore encode permissible

transfer schemes as

b1(ys) = bs, ∀s ∈ S,

b2({ys, yj}) = es, ∀s, j ∈ S,

where bs and es denote the transfer in the first and second period, respectively,

when the household reports income ys in the first period and income yj in the

second period.

Following Cole and Kocherlakota (2001), we will first characterize the so-

lution to the modified planner’s problem (P3) stated below. It has the same

objective function as (P1) but a larger constraint set. In particular, we enlarge

the constraint set by considering a smaller set of reporting strategies for the

households, Ω2
R . A household strategy (ŷ, k̂) is an element of Ω2

R if

ŷ1(ys) ∈ {ys−1, ys}, for s = 2, 3, . . . , S

ŷ1(y1) = y1.

That is, a household can either tell the truth or lie downward by one notch

in the grid of possible income realizations. There is no restriction on possible

storage strategies.
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Given T = 2, we state problem (P3) as follows. Choose {bs, es}Ss=1 to

maximize

(P3)

S∑

s=1

Πs


u(ys + bs) + β

S∑

j=1

Πju(yj + es)




subject to

Γ(y, 0; b) = max
(ŷ,k̂)∈Ω2

R

Γ(ŷ, k̂; b)

ct(ht) = yt(ht) + bt(ht), ∀t, ht
kt(ht) = 0, ∀t, ht
Kt +

∑

ht

π(ht)bt(ht) ≤ RKt−1, ∀t

K2 ≥ 0,

given K0 = k0 = 0.

Beyond the restricted strategy space Ω2
R , problem (P3) differs from (P1) in con-

sidering only allocations that have zero private storage. But by Proposition 1,

we know that this is an innocuous restriction that does not affect the maximized

value of the objective.

Here it is useful to explain why we are first studying the contrived problem

(P3) rather than turning immediately to the real problem (P1). Certainly prob-

lem (P3) is easier to solve because we are exogenously restricting the households’

reporting strategies to either telling the truth or making one specific lie. But

how can knowledge of the solution to problem (P3) help us understand problem

(P1)? Well, suppose it happens that problem (P3) has a unique solution equal

to the optimal consumption allocation c∗ from Proposition 2 (which will in fact

turn out to be true). In that case, it follows that c∗ is also the solution to

problem (P1) because of the following argument. First, it is straightforward to

verify that c∗ is incentive compatible with respect to the unrestricted set Ω2

of reporting strategies. Second, given that no better allocation than c∗ can be

supported with the restricted set Ω2
R of reporting strategies (telling the truth

or making one specific lie), it is impossible that we can attain better outcomes

by merely introducing additional ways of lying.
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Let us therefore first study problem (P3). In particular, using a proof by

contradiction, we now show that any allocation (c, 0, b,K) that solves problem

(P3) must satisfy three conditions:11

(i) The aggregate resource constraint (21.6.1) holds with equality in both peri-

ods and K2 = 0;

(ii) u′(c1(ys)) = βR
∑S
j=1 Πju

′
(
c2({ys, yj})

)
, ∀s;

(iii) bs +R−1es = 0, ∀s.

Condition (i) is easy to establish given the restricted strategy space Ω2
R . Suppose

that condition (i) is violated and hence, some aggregate resources have not been

transferred to the households. In that case, the planner should store all unused

resources until period 2 and give them to any household who reported the highest

income in period 1. Given strategy space Ω2
R , households are only allowed to

lie downward so the proposed allocation cannot violate the incentive constraints

for truthful reporting. Also, transferring more consumption in the last period

will not lead to any private storage. We conclude that condition (i) must hold

for any solution to problem (P3).

Next, suppose that condition (ii) is violated, i.e., for some i ∈ S ,

u′(c1(yi)) > βR

S∑

s=1

Πsu
′ (c2({yi, ys})) . (21.6.10)

(The reverse inequality is obviously inconsistent with the incentive constraints

since households are free to store goods between periods.) We can then construct

an alternative incentive feasible allocation that yields higher ex ante utility. Set

Ko
1 = K1 − ǫΠi , b

o
i = bi + ǫ , eoi = ei − δ , and choose (ǫ, δ) such that

u(yi+bi + ǫ) + β
S∑

s=1

Πsu (ys + ei − δ)

= u(yi + bi) + β

S∑

s=1

Πsu (ys + ei) , (21.6.11)

11 The proof by contradiction goes as follows. Suppose that an allocation (c, 0, b,K) solves

problem (P3) but violates one of our conditions. Then we can show either that (c, 0, b,K)

cannot be incentive feasible with respect to (P3) or that there exists another incentive feasible

allocation (co, 0, bo,Ko) that yields an even higher ex ante utility than (c, 0, b,K) .
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u′(yi + bi + ǫ) ≥ βR

S∑

s=1

Πsu
′ (ys + ei − δ) . (21.6.12)

By the envelope condition, (21.6.10) implies that δ > Rǫ , so this alternative

allocation frees up resources that can be used to improve ex ante utility. But

we have to check that the incentive constraints are respected. For households

experiencing yi , the proposed allocation is clearly incentive compatible, since

their payoffs from reporting truthfully or lying are unchanged, and condition

(21.6.12) ensures that they are not deviating from zero private storage. The

following lemma verifies that a household with the next higher income shock yi+1

would not want to lie downward because a household with a higher income yi+1

would not want the proposed loan against the future at the implied interest rate,

δ/ǫ > R , at which the lower-income household is indifferent to the transaction.

Lemma: Let ǫ , δ > 0 satisfy δ > Rǫ , and define

Z(m) ≡ max
k≥0

[
u(m− k) + βEyu(y +Rk)

]

W (m) ≡ max
k≥0

[
u(m− k + ǫ) + βEyu(y +Rk − δ)

]
,

where u is a strictly concave function and the expectation Ey is taken with

respect to a random second-period income y . If Z(ma) = W (ma) and mb >

ma , then Z(mb) > W (mb).

Proof: Let the unique, weakly increasing sequence of maximizers of the savings

problems Z and W be denoted kZ(m) and kW (m), respectively, which are

guaranteed to exist by the strict concavity of u . The proof of the lemma proceeds

by contradiction. Suppose that Z(mb) ≤ W (mb). Then by the mean value

theorem, there exists mc ∈ (ma,mb) such that Z ′(mc) ≤W ′(mc). This implies

that

u′(mc − kZ(mc)) ≤ u′(mc − kW (mc) + ǫ).

The concavity of u implies that 0 ≤ kZ(mc) ≤ kW (mc) − ǫ. The weak mono-

tonicity of kW implies that kW (mb) ≥ kW (mc), so we know that 0 ≤ kW (mb)−ǫ
and we can write

Z(mb) ≥ u(mb − kW (mb) + ǫ) + βEyu(y +Rkw(mb)−Rǫ)

> u(mb − kW (mb) + ǫ) + βEyu(y +Rkw(mb)− δ) =W (mb),

which is a contradiction.
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Finally, suppose that condition (iii) is violated, i.e., for some i ∈ S ,

Ψs ≡ bs +R−1es 6= bs−1 +R−1es−1 ≡ Ψs−1.

First, we can rule out Ψs < Ψs−1 because it would compel households with

income shock ys in the first period to lie downward. This is so because our

condition (ii) implies that the nonnegative storage constraint binds for neither

these households nor the households with the lower income shock ys−1 . Hence,

households with income shock ys will only report truthfully if Z(ys + Ψs) ≥
Z(ys + Ψs−1), where Z(·) is the value of the first savings problem defined in

the lemma above. Thus, we conclude that Ψs ≥ Ψs−1 .

Second, we can rule out Ψs > Ψs−1 by constructing an alternative incentive

feasible allocation that attains a higher ex ante utility. Compute the certainty

equivalent Ψ̃ such that

ΠsZ(ys + Ψ̃) + Πs−1Z(ys−1 + Ψ̃) = ΠsZ(ys +Ψs) + Πs−1Z(ys−1 +Ψs−1).

Then change the transfer scheme so that households reporting ys or ys−1 get

the same present value of transfers equal to Ψ̃. Because of the strict concavity

of the utility function, the new scheme frees up resources that can be used to

improve ex ante utility. Also, the new scheme does not violate any incentive

constraints. Households with income shock ys−1 are now better off when re-

porting truthfully, households with income shock ys are indifferent to telling the

truth, and households with income shock ys+1 will not lie because the present

value of the transfers associated with lying has gone down. Since the planner

satisfies the aggregate resource constraint at equality in our condition (i), all

households receive the same present value of transfers equal to zero.

By establishing conditions (i)–(iii), we have in effect shown that any solution

to (P3) must satisfy equations (21.6.8) and (21.6.9). Thus, problem (P3) has

a unique solution (c∗, 0, b∗,K∗), where c∗ is given by Proposition 2 and

b∗t (ht) = c∗t (ht)− yt(ht),

K∗
t = −

∑

ht

π(ht)
t∑

j=1

Rt−1b∗j (hj(ht)).

Moreover, (c∗, 0, b∗,K∗) is incentive compatible with respect to the unrestricted

strategy set Ω2 . If a household tells the truth, its consumption is optimally

smoothed. Hence, households weakly prefer to tell the truth and not store.



Insurance with unobservable storage 919

The proof of Proposition 2 for T = 2 is completed by noting that by

construction, if some allocation (c∗, 0, b∗,K∗) solves (P3), and (c∗, 0, b∗,K∗) is

incentive compatible with respect to Ω2 , then (c∗, 0, b∗,K∗) solves (P1). Also,

since equations (21.6.8) and (21.6.9) fully characterize the consumption allo-

cation c∗ , we have uniqueness with respect to c∗ (but there exists a multitude

of storage and transfer schemes that the planner can use to implement c∗ in

problem (P1)).

21.6.5. Role of the planner

Proposition 2 states that any allocation (c, k, b,K) that solves the planner’s

problem (P1) has the same consumption outcome c = c∗ as the solution to

(P2), i.e., the market outcome when each household can lend or borrow at the

risk-free interest rate R . This result has both positive and negative messages

about the role of the planner. Because households have access only to a stor-

age technology, the planner implements the efficient allocation by designing an

elaborate transfer scheme that effectively undoes each household’s nonnegativity

constraint on storage while respecting solvency requirements. In this sense, the

planner has an important role to play. However, the optimal transfer scheme of-

fers no insurance across households and implements only a self-insurance scheme

tantamount to a borrowing-and-lending outcome for each household. Thus, the

planner’s accomplishments as an insurance provider are very limited.

If we had assumed that households themselves have direct access to the

credit market outside of the village, it would follow immediately that the plan-

ner would be irrelevant, since the households could then implement the efficient

allocation themselves. Allen (1985) first made this observation. Given any

transfer scheme, he showed that all households would choose to report the in-

come that yields the highest present value of transfers regardless of what the

actual income is. In our setting where the planner has no resources of his own,

we get the zero net present value condition for the stream of transfers to any

individual household.
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21.6.6. Decentralization in a closed economy

Suppose that consumption allocation c∗ in Proposition 2 satisfies

∑

ht

π(ht)

t∑

j=1

Rt−j
[
yj(ht)− c∗j (hj(ht))

]
≥ 0, ∀t. (21.6.13)

That is, aggregate storage is nonnegative at all dates. It follows that the ef-

ficient allocation in Proposition 2 would then also be the solution to a closed

system where the planner has no access to outside borrowing. Moreover, c∗

can then be decentralized as the equilibrium outcome in an incomplete markets

economy where households competitively trade consumption and risk-free one-

period bonds that are available in zero net supply in each period. Here we are

assuming complete enforcement so that households must pay off their debts in

every state of the world, and they cannot end their lives in debt.

In the decentralized equilibrium, let at(ht) and kdt (ht) denote bond hold-

ings and storage, respectively, of a household indexed by its history ht . The

gross interest rate on bonds between periods t and t + 1 is denoted 1 + rt .

We claim that the efficient allocation (c∗, 0, b∗,K∗) can be decentralized by

recursively defining

rt ≡ R− 1, (21.6.14)

kdt (ht) ≡ K∗
t , (21.6.15)

at(ht) ≡ yt(ht)− c∗t (ht)−K∗
t +RK∗

t−1 +Rat−1(ht−1), (21.6.16)

with a0 = 0. First, we verify that households are behaving optimally. Note

that we have chosen the interest rate so that households are indifferent between

lending and storing. Because we also know that the household’s consumption

is smoothed at c∗ , we need only to check that households’ budget constraints

hold with equality. By substituting (21.6.15) into (21.6.16), we obtain the

household’s one-period budget constraint. The consolidation of all one-period

budget constraints yields

aT (hT ) =− kdT (hT ) +

T∑

t=1

RT−t [yt(hT )− c∗t (ht(hT ))]

+RT−1(kd0 + a0) = 0
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where the last equality is implied by K∗
T = K0 = a0 = 0 and (21.6.9). Second,

we verify that the bond market clears by summing all households’ one-period

budget constraints,

∑

ht

π(ht)at(ht) =
∑

ht

π(ht)
[
yt(ht)− c∗t (ht)− kdt (ht)

+Rkdt−1(ht−1(ht)) +Rat−1(ht−1(ht))
]
.

After invoking (21.6.15) and the fact that b∗t (ht) = c∗t (ht) − yt(ht), we can

rewrite this expression as

∑

ht

π(ht)at(ht) =−K∗
t +RK∗

t−1

−
∑

ht

π(ht)
[
b∗t (ht)−Rat−1(ht−1(ht))

]

=R
∑

ht−1

π(ht−1)at−1(ht−1) = 0 ,

where the second equality is implied by (21.6.1) holding with equality at the

allocation (c∗, 0, b∗,K∗), and the last equality follows from successive substitu-

tions leading back to the initial condition a0 = 0.

It is straightforward to make the reverse argument and show that if 1 +

rt = R for all t in our incomplete markets equilibrium, then the equilibrium

consumption allocation is efficient and equal to c∗ , as given in Proposition 2.

Cole and Kocherlakota note that seemingly ad hoc restrictions on the secu-

rities available for trade are consistent with the implementation of the efficient

allocation in this setting, and they argue that their framework provides an ex-

plicit micro foundation for incomplete markets models such as Aiyagari’s (1994)

model that we studied in chapter 18.
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21.7. Concluding remarks

The idea of using promised values as a state variable has made it possible to

use dynamic programming to study problems with history dependence. In this

chapter we have studied how using a promised value as a state variable helps

to study optimal risk-sharing arrangements when there are incentive problems

coming from limited enforcement or limited information. The next several chap-

ters apply and extend this idea in other contexts. Chapter 22 discusses how to

build a closed-economy, or general equilibrium, version of our model with im-

perfect enforcement. Chapter 23 discusses ways of designing unemployment

insurance that optimally compromise between supplying insurance and provid-

ing incentives for unemployed workers to search diligently. Chapter 24 uses

a continuation value as a state variable to encode a government’s reputation.

Chapter 26 discusses some models of contracts and government policies that

have been applied to some enforcement problems in international trade.

A. Historical development

21.A.1. Spear and Srivastava

Spear and Srivastava (1987) introduced the following recursive formulation of

an infinitely repeated, discounted repeated principal-agent problem: A principal

owns a technology that produces output qt at time t , where qt is determined

by a family of c.d.f.’s F (qt|at), and at is an action taken at the beginning of

t by an agent who operates the technology. The principal has access to an

outside loan market with constant risk-free gross interest rate β−1 . The agent

has preferences over consumption streams ordered by E0

∑∞
t=0 β

tu(ct, at). The

principal is risk neutral and offers a contract to the agent designed to maximize

E0

∑∞
t=0 β

t{qt − ct} where ct is the principal’s payment to the agent at t .
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21.A.2. Timing

Let w denote the discounted utility promised to the agent at the beginning of

the period. Given w , the principal selects three functions a(w), c(w, q), and

w̃(w, q) determining the current action at = a(wt), the current consumption

c = c(wt, qt), and a promised utility wt+1 = w̃(wt, qt). The choice of the

three functions a(w), c(w, q), and w̃(w, q) must satisfy the following two sets

of constraints:

w =

∫
{u[c(w, q), a(w)] + βw̃(w, q)} dF [q|a(w)] (21.A.1)

and
∫
{u[c(w, q), a(w)] + βw̃(w, q)} dF [q|a(w)]

≥
∫
{u[c(w, q), â] + βw̃(w, q)}dF (q|â) , ∀ â ∈ A. (21.A.2)

Equation (21.A.1) requires the contract to deliver the promised level of dis-

counted utility. Equation (21.A.2) is the incentive compatibility constraint re-

quiring the agent to want to deliver the amount of effort called for in the contract.

Let v(w) be the value to the principal associated with promising discounted util-

ity w to the agent. The principal’s Bellman equation is

v(w) = max
a,c,w̃

{q − c(w, q) + β v[w̃(w, q)]} dF [q|a(w)] (21.A.3)

where the maximization is over functions a(w), c(w, q), and w̃(w, q) and is

subject to the constraints (21.A.1) and (21.A.2). This value function v(w) and

the associated optimum policy functions are to be solved by iterating on the

Bellman equation (21.A.3).
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21.A.3. Use of lotteries

In various implementations of this approach, a difficulty can be that the con-

straint set fails to be convex as a consequence of the structure of the incen-

tive constraints. This problem has been overcome by Phelan and Townsend

(1991) by convexifying the constraint set through randomization. Thus, Phe-

lan and Townsend simplify the problem by extending the principal’s choice to

the space of lotteries over actions a and outcomes c, w′ . To introduce Phelan

and Townsend’s formulation, let P (q|a) be a family of discrete probability dis-

tributions over discrete spaces of outputs and actions Q,A , and imagine that

consumption and values are also constrained to lie in discrete spaces C,W , re-

spectively. Phelan and Townsend instruct the principal to choose a probability

distribution Π(a, q, c, w′) subject first to the constraint that for all fixed (ā, q̄)

∑

C×W

Π(ā, q̄, c, w′) = P (q̄|ā)
∑

Q×C×W

Π(ā, q, c, w′) (21.A.4a)

Π(a, q, c, w′) ≥ 0 (21.A.4b)
∑

A×Q×C×W

Π(a, q, c, w′) = 1. (21.A.4c)

Equation (21.A.4a) simply states that Prob(ā, q̄) = Prob(q̄|ā)Prob(ā). The

remaining pieces of (21.A.4) just require that “probabilities are probabilities.”

The counterpart of Spear-Srivastava’s equation (21.A.1) is

w =
∑

A×Q×C×W

{u(c, a) + βw′} Π(a, q, c, w′). (21.A.5)

The counterpart to Spear-Srivastava’s equation (21.A.2) for each a, â is

∑

Q×C×W

{u(c, a) + βw′} Π(c, w′|q, a)P (q|a)

≥
∑

Q×C×W

{u(c, â) + βw′} Π(c, w′|q, a)P (q|â).

Here Π(c, w′|q, a)P (q|â) is the probability of (c, w′, q) if the agent claims to be

working a but is actually working â . Express

Π(c, w′|q, a)P (q|â) =

Π(c, w′|q, a)P (q|a) P (q|â)
P (q|a) = Π(c, w′, q|a) · P (q|â)

P (q|a) .
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To write the incentive constraint as

∑

Q×C×W

{u(c, a) + βw′}Π(c, w′, q|a)

≥
∑

Q×C×W

{u(c, â) + βw′} Π(c, w′, q|â) · P (q|â)
P (q|a) .

Multiplying both sides by the unconditional probability P (a) gives expression

(21.A.6).

∑

Q×C×W

{u(c, a) + βw′} Π(a, q, c, w′)

≥
∑

Q×C×W

{u(c, â) + βw′} P (q|â)
P (q|a) Π(a, q, c, w′) (21.A.6)

The Bellman equation for the principal’s problem is

v(w) = max
Π

{(q − c) + βv(w′)}Π(a, q, c, w′), (21.A.7)

where the maximization is over the probabilities Π(a, q, c, w′) subject to equa-

tions (21.A.4), (21.A.5), and (21.A.6). The problem on the right side of equa-

tion (21.A.7) is a linear programming problem. Think of each of (a, q, c, w′)

being constrained to a discrete grid of points. Then, for example, the term

(q − c) + βv(w′) on the right side of equation (21.A.7) can be represented as a

fixed vector that multiplies a vectorized version of the probabilities Π(a, q, c, w′).

Similarly, each of the constraints (21.A.4), (21.A.5), and (21.A.6) can be repre-

sented as a linear inequality in the choice variables, the probabilities Π. Phelan

and Townsend compute solutions of these linear programs to iterate on the Bell-

man equation (21.A.7). Note that at each step of the iteration on the Bellman

equation, there is one linear program to be solved for each point w in the space

of grid values for W .

In practice, Phelan and Townsend have found that lotteries are often re-

dundant in the sense that most of the Π(a, q, c, w′)’s are zero, and few 1.
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Exercises

Exercise 21.1 Thomas and Worrall meet Markov

A household orders sequences {ct}∞t=0 by

E

∞∑

t=0

βtu(ct), β ∈ (0, 1)

where u is strictly increasing, twice continuously differentiable, and strictly

concave with u′(0) = +∞ . The good is nondurable. The household receives an

endowment of the consumption good of yt that obeys a discrete-state Markov

chain with Pij = Prob(yt+1 = yj |yt = yi), where the endowment yt can take

one of the I values [y1, . . . , yI ] .

a. Conditional on having observed the time t value of the household’s endow-

ment, a social insurer wants to deliver expected discounted utility v to the

household in the least costly way. The insurer observes yt at the beginning of

every period, and contingent on the observed history of those endowments, can

make a transfer τt to the household. The transfer can be positive or negative

and can be enforced without cost. Let C(v, i) be the minimum expected dis-

counted cost to the insurance agency of delivering promised discounted utility v

when the household has just received endowment yi . (Let the insurer discount

with factor β .) Write a Bellman equation for C(v, i).

b. Characterize the consumption plan and the transfer plan that attains C(v, i);

find an associated law of motion for promised discounted value.

c. Now assume that the household is isolated and has no access to insurance.

Let va(i) be the expected discounted value of utility for a household in au-

tarky, conditional on current income being yi . Formulate Bellman equations

for va(i), i = 1, . . . , I .

d. Now return to the problem of the insurer mentioned in part b, but assume

that the insurer cannot enforce transfers because each period the consumer is

free to walk away from the insurer and live in autarky thereafter. The insurer

must structure a history-dependent transfer scheme that prevents the household

from ever exercising the option to revert to autarky. Again, let C(v, i) be the

minimum cost for an insurer that wants to deliver promised discounted utility

v to a household with current endowment i . Formulate Bellman equations
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for C(v, i), i = 1, . . . , I . Briefly discuss the form of the law of motion for v

associated with the minimum cost insurance scheme.

Exercise 21.2 Wealth dynamics in moneylender model

Consider the model in the text of the village with a moneylender. The village

consists of a large number (e.g., a continuum) of households, each of which has

an i.i.d. endowment process that is distributed as

Prob(yt = ys) =
1− λ

1− λS
λs−1

where λ ∈ (0, 1) and ys = s + 5 is the sth possible endowment value, s =

1, . . . , S . Let β ∈ (0, 1) be the discount factor and β−1 the gross rate of return

at which the moneylender can borrow or lend. The typical household’s one-

period utility function is u(c) = (1 − γ)−1c1−γ , where γ is the household’s

coefficient of relative risk aversion. Assume the parameter values (β, S, γ, λ) =

(.5, 20, 2, .95).

Hint: The formulas given in the section 21.3.3 will be helpful in answering the

following questions.

a. Using Matlab, compute the optimal contract that the moneylender offers

a villager, assuming that the contract leaves the villager indifferent between

refusing and accepting the contract.

b. Compute the expected profits that the moneylender earns by offering this

contract for an initial discounted utility that equals the one that the household

would receive in autarky.

c. Let the cross-section distribution of consumption at time t ≥ 0 be given by

the c.d.f. Prob(ct ≤ C) = Ft(C). Compute Ft . Plot it for t = 0, t = 5, t = 10,

t = 500.

d. Compute the moneylender’s savings for t ≥ 0 and plot it for t = 0, . . . , 100.

e. Now adapt your program to find the initial level of promised utility v > vaut

that would set P (v) = 0.

Exercise 21.3 Thomas and Worrall (1988)

There is a competitive spot market for labor always available to each of a con-

tinuum of workers. Each worker is endowed with one unit of labor each period
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that he supplies inelastically to work either permanently for “the company” or

each period in a new one-period job in the spot labor market. The worker’s

productivity in either the spot labor market or with the company is an i.i.d.

endowment process that is distributed as

Prob(wt = ws) =
1− λ

1− λS
λs−1

where λ ∈ (0, 1) and ws = s+5 is the sth possible marginal product realization,

s = 1, . . . , S . In the spot market, the worker is paid wt . In the company,

the worker is offered a history-dependent payment ωt = ft(ht) where ht =

wt, . . . , w0 . Let β ∈ (0, 1) be the discount factor and β−1 the gross rate of

return at which the company can borrow or lend. The worker cannot borrow or

lend. The worker’s one-period utility function is u(ω) = (1 − γ)−1w1−γ where

ω is the period wage from the company, which equals consumption, and γ is

the worker’s coefficient of relative risk aversion. Assume the parameter values

(β, S, γ, λ) = (.5, 20, 2, .95).

The company’s discounted expected profits are

E

∞∑

t=0

βt (wt − ωt) .

The worker is free to walk away from the company at the start of any period,

but must then stay in the spot labor market forever. In the spot labor market,

the worker receives continuation value

vspot =
Eu(w)

1− β
.

The company designs a history-dependent compensation contract that must be

sustainable (i.e., self-enforcing) in the face of the worker’s freedom to enter the

spot labor market at the beginning of period t after he has observed wt but

before he receives the t period wage.

Hint: Do these questions ring a bell? See exercise 21.2 .

a. Using Matlab, compute the optimal contract that the company offers the

worker, assuming that the contract leaves the worker indifferent between refusing

and accepting the contract.
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b. Compute the expected profits that the firm earns by offering this contract for

an initial discounted utility that equals the one that the worker would receive

by remaining forever in the spot market.

c. Let the distribution of wages that the firm offers to its workers at time t ≥ 0

be given by the c.d.f. Prob(ωt ≤ w) = Ft(w). Compute Ft . Plot it for t = 0,

t = 5, t = 10, t = 500.

d. Plot an expected wage-tenure profile for a new worker.

e. Now assume that there is competition among companies and free entry. New

companies enter by competing for workers by raising initial promised utility with

the company. Adapt your program to find the initial level of promised utility

v > vspot that would set expected profits from the average worker P (v) = 0.

Exercise 21.4 Thomas-Worrall meet Phelan-Townsend

Consider the Thomas Worrall environment and denote Π(y) the density of the

i.i.d. endowment process, where y belongs to the discrete set of endowment levels

Y = [y1, . . . , yS ] . The one-period utility function is u(c) = (1− γ)−1(c− a)1−γ

where γ > 1 and yS > a > 0.

Discretize the set of transfers B and the set of continuation values W . We

assume that the discrete set B ⊂ (a − yS , b] . Notice that with the one-period

utility function above, the planner could never extract more than a − yS from

the agent. Denote Πv(b, w|y) the joint density over (b, w) that the planner

offers the agent who reports y and to whom he has offered beginning-of-period

promised value v . For each y ∈ Y and each v ∈ W , the planner chooses a set

of conditional probabilities Πv(b, w|y) to satisfy the Bellman equation

P (v) = max
Πv(b,w,y)

∑

B×W×Y

[−b+ βP (w)] Πv(b, w, y) (1)

subject to the following constraints:

v =
∑

B×W×Y

[u(y + b) + βw] Πv(b, w, y) (2)

∑

B×W

[u(y + b) + βw] Πv(b, w|y) ≥
∑

B×W

[u(y + b) + βw] Πv(b, w|ỹ)

∀(y, ỹ) ∈ Y × Y (3)

Πv(b, w, y) = Π(y)Πv(b, w|y) ∀(b, w, y) ∈ B ×W × Y (4)
∑

B×W×Y

Πv(b, w, y) = 1. (5)
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Here (2) is the promise-keeping constraint, (3) are the truth-telling constraints,

and (4), (5) are restrictions imposed by the laws of probability.

a. Verify that given P (w), one step on the Bellman equation is a linear pro-

gramming problem.

b. Set β = .94, a = 5, γ = 3. Let S,NB, NW be the number of points in

the grids for Y,B,W , respectively. Set S = 10, NB = NW = 25. Set Y =

[ 6 7 . . . 15 ], Prob(yt = ys) = S−1 . Set W = [wmin, . . . , wmax] and B =

[bmin, . . . , bmax] , where the intermediate points in W and B , respectively, are

equally spaced. Please set wmin = 1
1−β

1
1−γ (ymin − a)

1−γ
and wmax = wmin/20

(these are negative numbers, so wmin < wmax ). Also set bmin = (1− ymax+ .33)

and bmax = ymax − ymin .

For these parameter values, compute the optimal contract by formulating

a linear program for one step on the Bellman equation, then iterating to con-

vergence on it.

c. Notice the following probability laws:

Prob(bt, wt+1, yt|wt) ≡ Πwt(bt, wt+1, yt)

Prob(wt+1|wt) =
∑

b∈B,y∈Y

Πwt(b, wt+1, y)

Prob(bt, yt|wt) =
∑

wt+1∈W

Πwt(bt, wt+1, yt).

Please use these and other probability laws to compute Prob(wt+1|wt). Show

how to compute Prob(ct), assuming a given initial promised value w0 .

d. Assume that w0 ≈ −2. Compute and plot Ft(c) = Prob(ct ≤ c) for

t = 1, 5, 10, 100. Qualitatively, how do these distributions compare with those

for the simple village and moneylender model with no information problem and

one-sided lack of commitment?

Exercise 21.5 The IMF

Consider the problem of a government of a small country that has to finance

an exogenous stream of expenditures {gt} . For time t ≥ 0, gt is i.i.d. with

Prob(gt = gs) = πs where πs > 0,
∑S
s=1 πs = 1 and 0 < g1 < · · · < gS . Raising

revenues by taxation is distorting. In fact, the government confronts a dead-

weight loss function W (Tt) that measures the distortion at time t . Assume that
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W is an increasing, twice continuously differentiable, strictly convex function

that satisfies W (0) = 0,W ′(0) = 0,W ′(T ) > 0 for T > 0 and W ′′(T ) > 0 for

T ≥ 0. The government’s intertemporal loss function for taxes is such that it

wants to minimize

E−1

∞∑

t=0

βtW (Tt), β ∈ (0, 1)

where E−1 is the mathematical expectation before g0 is realized. If it cannot

borrow or lend, the government’s budget constraint is gt = Tt . In fact, the gov-

ernment is unable to borrow and lend except through an international coalition

of lenders called the IMF. If it does not have an arrangement with the IMF, the

country is in autarky and the government’s loss is the value

vaut = E
∞∑

t=0

βtW (gt).

The IMF itself is able to borrow and lend at a constant risk-free gross rate

of interest of R = β−1 . The IMF offers the country a contract that gives the

country a net transfer of gt − Tt . A contract is a sequence of functions for

t ≥ 0, the time t component of which maps the history gt into a net transfer

g−Tt . The IMF has the ability to commit to the contract. However, the country

cannot commit to honor the contract. Instead, at the beginning of each period,

after gt has been realized but before the net transfer gt−Tt has been received,

the government can default on the contract, in which case it receives loss W (gt)

this period and the autarky value ever after. A contract is said to be sustainable

if it is immune to the threat of repudiation, i.e., if it provides the country with

the incentive not to leave the arrangement with the IMF. The present value of

the contract to the IMF is

E

∞∑

t=0

βt(Tt − gt).

a. Write a Bellman equation that can be used to find an optimal sustainable

contract.

b. Characterize an optimal sustainable contract that delivers initial promised

value vaut to the country (i.e., a contract that renders the country indifferent

between accepting and not accepting the IMF contract starting from autarky).
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c. Can you say anything about a typical pattern of government tax collections Tt

and distortions W (Tt) over time for a country in an optimal sustainable contract

with the IMF? What about the average pattern of government surpluses Tt− gt
across a panel of countries with identical gt processes and W functions? Would

there be a “cohort” effect in such a panel (i.e., would the calendar date when

the country signed up with the IMF matter)?

d. If the optimal sustainable contract gives the country value vaut , can the IMF

expect to earn anything from the contract?



Chapter 22
Equilibrium without Commitment

22.1. Two-sided lack of commitment

In section 21.3 of the previous chapter, we studied insurance without commit-

ment. That was a “small open economy” analysis since the moneylender could

borrow or lend resources outside of the village at a given interest rate. Recall

also the asymmetry in the environment where villagers could not make any com-

mitments while the moneylender was assumed to be able to commit. We will

now study a closed system without access to an outside credit market. Any

household’s consumption in excess of its own endowment must then come from

the endowments of other households in the economy. We will also adopt the

symmetric assumption that no one is able to make commitments. That is, any

contract prescribing an exchange of goods today in anticipation of future ex-

changes of goods represents a sustainable allocation only if current and future

exchanges satisfy participation constraints for all households involved in the con-

tractual arrangement. Households are free to walk away from the arrangement

at any point in time and thereafter to live in autarky. Such a contract design

problem with participation constraints on both sides of an exchange represents

a problem with two-sided lack of commitment, as compared to the problem with

one-sided lack of commitment in section 21.3.

This chapter draws on the work of Thomas and Worrall (1988, 1994) and

Kocherlakota (1996b). At the end of the chapter, we also discuss market arrange-

ments for decentralizing the constrained Pareto optimal allocation, as studied

by Kehoe and Levine (1993) and Alvarez and Jermann (2000).

– 933 –
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22.2. A closed system

Thomas and Worrall’s (1988) model of self-enforcing wage contracts is an an-

tecedent to our villager-moneylender environment. The counterpart to our mon-

eylender in their model is a risk-neutral firm that forms a long-term relationship

with a risk-averse worker. In their model, there is also a competitive spot mar-

ket for labor where a worker is paid yt at time t . The worker is always free

to walk away from the firm and work in that spot market. But if he does, he

can never again enter into a long-term relationship with another firm. The firm

seeks to maximize the discounted stream of expected future profits by designing

a long-term wage contract that is self-enforcing in the sense that it never gives

the worker an incentive to quit. In a contract that stipulates a wage ct at time

t , the firm earns time t profits of yt − ct (as compared to hiring a worker in

the spot market for labor). If Thomas and Worrall had assumed a commitment

problem only on the part of the worker, their model would be formally identical

to our villager-moneylender environment. However, Thomas and Worrall also

assume that the firm itself can renege on a wage contract and buy labor at the

random spot market wage. Hence, they require that in a self-enforcing wage

contract neither party ever wants to renege.

Kocherlakota (1996b) studies a model similar to Thomas and Worrall’s.1

Kocherlakota’s counterpart to Thomas and Worrall’s firm is a risk-averse second

household. In Kocherlakota’s model, two households receive stochastic endow-

ments. The contract design problem is to find an insurance/transfer arrange-

ment that reduces consumption risk while respecting participation constraints:

both households must be induced each period not to walk away from the ar-

rangement. Kocherlakota uses his model in an interesting way to help interpret

empirically estimated conditional consumption-income covariances that seem to

violate the hypothesis of complete risk sharing. Kocherlakota investigates the

extent to which those failures reflect impediments to enforcement represented

by his participation constraints.

To create a stationary stochastic environment, Kocherlakota assumes two-

sided lack of commitment. In our model of villagers facing a moneylender in

section 21.3, imperfect risk sharing is temporary and so would not prevail in a

1 The working paper of Thomas and Worrall (1994) also analyzed a multiple agent closed

model like Kocherlakota’s. Thomas and Worrall’s (1994) analysis evolved into an article by

Ligon, Thomas, and Worrall (2002) that we discuss in section 22.13.
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stochastic steady state. In Kocherlakota’s model, imperfect risk sharing can be

perpetual. There are equal numbers of two types of households in the village.

Each of the households has the preferences, endowments, and autarkic utility

possibilities described in chapter 21. Here we assume that the endowments

of the two types of households are perfectly negatively correlated. Whenever a

household of type 1 receives ys , a household of type 2 receives 1−ys . We assume

that yt is independently and identically distributed according to the discrete

probability distribution Prob(yt = ys) = Πs , where we assume that ys ∈ [0, 1].

We also assume that the Πs ’s are such that the distribution of yt is identical to

that of 1−yt . Also, now the planner has access to neither borrowing nor lending

opportunities, and is confined to reallocating consumption goods between the

two types of households. This limitation leads to two participation constraints.

At time t , the type 1 household receives endowment yt and consumption ct ,

while the type 2 household receives 1− yt and 1− ct .

In this setting, an allocation is said to be sustainable 2 if for all t ≥ 0 and

for all histories ht

u(ct)− u(yt)+βEt

∞∑

j=1

βj−1 [u(ct+j)− u(yt+j)] ≥ 0, (22.2.1a)

u(1− ct)− u(1− yt)+βEt

∞∑

j=1

βj−1 [u(1− ct+j)− u(1− yt+j)] ≥ 0. (22.2.1b)

Let Γ denote the set of sustainable allocations. We seek the following

function:

Q(△) =max
{ct}

E−1

∞∑

t=0

βt [u(1− ct)− u(1− yt)] (22.2.2a)

subject to

{ct} ∈ Γ, (22.2.2b)

E−1

∞∑

t=0

βt [u(ct)− u(yt)] ≥ △. (22.2.2c)

The function Q(△) depicts a (constrained) Pareto frontier by portraying the

maximized value of the expected lifetime utility of the type 2 household sub-

ject to the type 1 household receiving an expected lifetime utility that exceeds

2 Kocherlakota says subgame perfect rather than sustainable.
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its autarkic welfare level by at least △ utils. To find this Pareto frontier, we

first solve for the consumption dynamics that characterize all efficient contracts.

From these optimal consumption dynamics, it will be straightforward to com-

pute the ex ante division of gains from an efficient contract.

22.3. Recursive formulation

We choose to study Kocherlakota’s model using the approach proposed by

Thomas and Worrall.3 Thomas and Worrall (1988) formulate the contract de-

sign problem as a dynamic program, where the state of the system prior to the

current period’s endowment realization is given by a vector [x1 x2 . . . xs . . . xS ] .

Here xs is the value of the expression on the left side of (22.2.1a) that is

promised to a type 1 agent conditional on the current period’s endowment real-

ization being ys . Let Qs(xs) then denote the corresponding value of expression

(22.2.1b) that is promised to a type 2 agent.4 When the endowment realization

ys is associated with a promise to a type 1 agent equal to xs = x , we can write

the Bellman equation as

Qs(x) = max
c, {χj}S

j=1

{
u(1− c)− u(1− ys) + β

S∑

j=1

ΠjQj(χj)
}

(22.3.1a)

subject to

u(c)− u(ys) + β

S∑

j=1

Πjχj ≥ x, (22.3.1b)

χj ≥ 0, j = 1, . . . , S; (22.3.1c)

Qj(χj) ≥ 0, j = 1, . . . , S; (22.3.1d)

c ∈ [0, 1], (22.3.1e)

3 Kocherlakota instead extended the approach that we used in the villager-moneylender

model of section 21.3 to an environment with two-sided lack of commitment. We followed

Kocherlakota in chapter 15 of the first edition of this book. However, when applied to problems

with two-sided lack of commitment, this approach encounters a technical difficulty associated

with possible kinks in the Pareto frontier. (We first encountered this difficulty when we

assigned a version of exercise 22.3 to our students.) Thomas and Worrall’s approach avoids

this nondifferentiability problem by using conditional Pareto frontiers, one for each realization

of the endowment.
4 Qs(·) is a Pareto frontier conditional on the endowment realization ys , while Q(·) in

(22.2.2a) is an ex ante Pareto frontier before observing any endowment realization.
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where expression (22.3.1b) is the promise-keeping constraint, expression (22.3.1c)

is the participation constraint for the type 1 agent, and expression (22.3.1d) is

the participation constraint for the type 2 agent. The set of feasible c is given

by expression (22.3.1e).

Thomas and Worrall prove the existence of a compact interval that contains

all permissible continuation values χj :

χj ∈ [0, xj ] for j = 1, 2, . . . , S. (22.3.1f)

Thomas and Worrall also show that the Pareto-frontier Qj(·) is decreasing,

strictly concave, and continuously differentiable on [0, xj ] . The bounds on χj

are motivated as follows. The contract cannot award the type 1 agent a value of

χj less than zero because that would correspond to an expected future lifetime

utility below the agent’s autarky level. There exists an upper bound xj above

which the planner would never find it optimal to award the type 1 agent a

continuation value conditional on next period’s endowment realization being yj .

It would simply be impossible to deliver a higher continuation value because of

the participation constraints. In particular, the upper bound xj is such that

Qj(xj) = 0. (22.3.2)

Here a type 2 agent receives an expected lifetime utility equal to his autarky

level if the next period’s endowment realization is yj and a type 1 agent is

promised the upper bound xj . Our two- and three-state examples in sections

22.10 and 22.11 illustrate what determines xj .

Attach Lagrangemultipliers µ , βΠjλj , and βΠjθj to expressions (22.3.1b),

(22.3.1c), and (22.3.1d), then get the following first-order conditions for c and

χj :
5

c : − u′(1− c) + µu′(c) = 0, (22.3.3a)

χj : βΠjQ
′
j(χj) + µβΠj + βΠjλj + βΠjθjQ

′
j(χj) = 0. (22.3.3b)

By the envelope theorem,

Q′
s(x) = −µ. (22.3.4)

5 Here we are proceeding under the conjecture that the nonnegativity constraints on con-

sumption in (22.3.1e ), c ≥ 0 and 1 − c ≥ 0, are not binding. This conjecture is confirmed

below when it is shown that optimal consumption levels satisfy c ∈ [y1, yS ] .
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After substituting (22.3.4) into (22.3.3a) and (22.3.3b), respectively, the opti-

mal choices of c and χj satisfy

Q′
s(x) = −u

′(1− c)

u′(c)
, (22.3.5a)

Q′
s(x) = (1 + θj)Q

′
j(χj) + λj . (22.3.5b)

22.4. Equilibrium consumption

22.4.1. Consumption dynamics

From equation (22.3.5a), the consumption c of a type 1 agent is an increasing

function of the promised value x . The properties of the Pareto frontier Qs(x)

imply that c is a differentiable function of x on [0, xs] . Since x ∈ [0, xs] , c is

contained in the nonempty compact interval [cs, cs] , where

Q′
s(0) = −u

′(1− cs)

u′(cs)
and Q′

s(xs) = −u
′(1 − cs)

u′(cs)
.

Thus, if c = cs , x = 0, so that a type 1 agent gets no gain from the contract

from then on. If c = cs , Qs(x) = Qs(x̄s) = 0, so that a type 2 agent gets no

gain.

Equation (22.3.5a) can be expressed as

c = g(Q′
s(x)) , (22.4.1)

where g is a continuously and strictly decreasing function. By substituting the

inverse of that function into equation (22.3.5b), we obtain the expression

g−1(c) = (1 + θj) g
−1(cj) + λj , (22.4.2)

where c is again the current consumption of a type 1 agent and cj is his next

period’s consumption when next period’s endowment realization is yj . The

optimal consumption dynamics implied by an efficient contract are evidently

governed by whether or not agents’ participation constraints are binding. For

any given endowment realization yj next period, only one of the participation
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constraints in (22.3.1c) and (22.3.1d) can bind. Hence, there are three regions

of interest for any given realization yj :

1. Neither participation constraint binds. When λj = θj = 0, the consumption

dynamics in (22.4.2) satisfy

g−1(c) = g−1(cj) =⇒ c = cj,

where c = cj follows from the fact that g−1(·) is a strictly decreasing function.

Hence, consumption is independent of the endowment and the agents are offered

full insurance against endowment realizations so long as there are no binding

participation constraints. The constant consumption allocation is determined

by the “temporary relative Pareto weight” µ in equation (22.3.3a).

2. The participation constraint of a type 1 person binds (λj > 0), but θj = 0.

Thus, condition (22.4.2) becomes

g−1(c) = g−1(cj) + λj =⇒ g−1(c) > g−1(cj) =⇒ c < cj .

The planner raises the consumption of the type 1 agent in order to satisfy his

participation constraint. The strictly positive Lagrange multiplier, λj > 0, im-

plies that (22.3.1c) holds with equality, χj = 0. That is, the planner raises the

welfare of a type 1 agent just enough to make her indifferent between choosing

autarky and staying with the optimal insurance contract. In effect, the planner

minimizes the change in last period’s relative welfare distribution that is needed

to induce the type 1 agent not to abandon the contract. The welfare of the type

1 agent is raised both through the mentioned higher consumption cj > c and

through the expected higher future consumption. Recall our earlier finding that

implies that the new higher consumption level will remain unchanged so long as

there are no binding participation constraints. It follows that the contract for

agent 1 displays amnesia when agent 1’s participation constraint is binding, be-

cause the previously promised value x becomes irrelevant for the consumption

allocated to agent 1 from now on.

3. The participation constraint of a type 2 person binds (θj > 0), but λj = 0.

Thus, condition (22.4.2) becomes

g−1(c) = (1 + θj) g
−1(cj) =⇒ g−1(c) < g−1(cj) =⇒ c > cj ,
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where we have used the fact that g−1(·) is a negative number. This situation is

the mirror image of the previous case. When the participation constraint of the

type 2 agent binds, the planner induces the agent to remain with the optimal

contract by increasing her consumption (1 − cj) > (1 − c) but only by enough

that she remains indifferent to the alternative of choosing autarky, Qj(χj) = 0.

And once again, the change in the welfare distribution persists in the sense that

the new consumption level will remain unchanged so long as there are no binding

participation constraints. The amnesia property prevails again.

We can assemble these results to characterize the contract by arguing that

when c < cj , the participation constraint of the type 1 agent binds, while if

c > cj , the participation constraint of a type 2 agent binds. Thus, assume that

c < cj . Then since it must be that cj ≥ cj , it follows that c ≤ cj , so we must be

in the region where the participation constraint of the type 1 agent binds, which

in turn implies that cj = cj . A symmetric argument that applies when the

participation constraint of a type 2 argument applies, allowing us to summarize

the consumption dynamics of an efficient contract as follows. Given the current

consumption c of the type 1 agent, next period’s consumption conditional on

next period’s endowment realization yj satisfies

cj =





cj if c < cj (p.c. of type 1 binds),

c if c ∈ [cj , cj ] (p.c. of neither type binds),

cj if c > cj (p.c. of type 2 binds).

(22.4.3)

22.4.2. Consumption intervals cannot contain each other

We will show that

yk > yq =⇒ ck > cq and ck > cq. (22.4.4)

Hence, no consumption interval can contain another. Depending on parameter

values, the consumption intervals can be either overlapping or disjoint.

As an intermediate step, it is useful to first verify that the following assertion

is correct for any k, q = 1, 2, . . . , S , and for any x ∈ [0, xq] :

Qk
(
x+ u(yq)− u(yk)

)
= Qq(x) + u(1− yq)− u(1− yk). (22.4.5)
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After invoking functional equation (22.3.1), the left side of (22.4.5) is equal to

Qk
(
x+ u(yq)− u(yk)

)
= max
c, {χj}S

j=1

{
u(1− c)− u(1− yk) + β

S∑

j=1

ΠjQj(χj)
}

subject to

u(c)− u(yk) + β

S∑

j=1

Πjχj ≥ x+ u(yq)− u(yk)

and (22.3.1c) – (22.3.1e); and the right side of (22.4.5) is equal to

Qq(x) + u(1− yq)− u(1− yk)

= max
c, {χj}S

j=1

{
u(1− c)− u(1− yq) + β

S∑

j=1

ΠjQj(χj)
}
+ u(1− yq)− u(1− yk)

subject to

u(c)− u(yq) + β

S∑

j=1

Πjχj ≥ x

and (22.3.1c) – (22.3.1e). We can then verify (22.4.5).6 And after differenti-

ating that expression with respect to x ,

Q′
k

(
x+ u(yq)− u(yk)

)
= Q′

q(x). (22.4.6)

To show that yk > yq implies ck > cq , set x = xq in expression (22.4.5),

Qk
(
xq + u(yq)− u(yk)

)
= u(1− yq)− u(1− yk) > 0, (22.4.7)

where we have used Qq(xq) = 0. After also invoking Qk(xk) = 0 and the fact

that Qk(·) is decreasing, it follows from Qk
(
xq + u(yq)− u(yk)

)
> 0 that

xk > xq + u(yq)− u(yk).

6 The two optimization problems on the left and the right sides of expression (22.4.5) share

the common objective of maximizing the expected utility of the type 2 agent, minus an identical

constant. The optimization is subject to the same constraints, u(c)−u(yq)+β
∑S
j=1 Πjχj ≥

x and (22.3.1c ) – (22.3.1e ). Hence, they are identical well-defined optimization problems.

The observant reader should not be concerned with the fact that Qk(·) on the left side of

(22.4.5) might be evaluated at a promised value outside of the range [0, x̄k] . This causes no

problem because the optimization problem imposes no participation constraint in the current

period, in contrast to the restrictions on future continuation values in (22.3.1c ) and (22.3.1d).
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So by the strict concavity of Qk(·), we have

Q′
k(xk) < Q′

k

(
xq + u(yq)− u(yk)

)
= Q′

q(xq), (22.4.8)

where the equality is given by (22.4.6). Finally, by using function (22.4.1) and

the present finding that Q′
k(xk) < Q′

q(xq), we can verify our assertion that

ck = g(Q′
k(xk)) > g

(
Q′
q(xq)

)
= cq.

We leave it to the reader as an exercise to construct a symmetric argument

to show that yk > yq implies ck > cq .

22.4.3. Endowments are contained in the consumption intervals

We will show that

ys ∈ [cs, cs], ∀s; and y1 = c1 and yS = cS . (22.4.9)

First, we show that ys ≤ cs for all s ; and yS = cS . Let x = xs in the functional

equation (22.3.1), then c = cs and

u(1− cs)− u(1− ys) + β

S∑

j=1

ΠjQj(χj) = 0 (22.4.10)

with {χj}Sj=1 being optimally chosen. Since Qj(χj) ≥ 0, it follows immediately

that

u(1− cs)− u(1− ys) ≤ 0 =⇒ ys ≤ cs.

To establish strict equality for s = S , we note that

Q′
j(χj) ≥ Q′

j(xj) ≥ Q′
S(xS),

where the first weak inequality follows from the fact that all permissible χj ≤
xj and Qj(·) is strictly concave, and the second weak inequality is given by

(22.4.8). In fact, we showed above that the second inequality holds strictly for

j < S and therefore, by the condition for optimality in (22.3.5b),

Q′
S(xS) = (1 + θj)Q

′
j(χj) with θj > 0, for j < S; and θS = 0,
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which imply χj = xj for all j . After also invoking the corresponding expression

(22.4.10) for s = S , we can complete the argument:

β

S∑

j=1

ΠjQj(xj) = 0 =⇒ u(1− cS)− u(1− yS) = 0 =⇒ yS = cS .

We leave it as an exercise for the reader to construct a symmetric argument

showing that ys ≥ cs for all s ; and y1 = c1 .

22.4.4. All consumption intervals are nondegenerate (unless
autarky is the only sustainable allocation)

Suppose that the consumption interval associated with endowment realization

yk is degenerate, i.e., ck = ck = yk . (The last inequality follows from section

22.4.3, where we established that the endowment is contained in the consump-

tion interval.) Since the consumption interval is degenerate, it follows that the

range of permissible continuation values associated with endowment realization

yk is also degenerate, i.e., χk ∈ [0, xk] = {0} . Recall that χk is the number of

utils awarded to the type 1 household over and above its autarkic welfare level,

given endowment realization yk :

0 = χk = u(yk)− u(yk) + β

S∑

j=1

Πj χj ,

where we have invoked the degenerate consumption interval, c = yk , and where

χj are optimally chosen subject to the constraints χj ≥ 0 for all j ∈ S . It

follows immediately that χj = 0 for all j ∈ S , given the current endowment

realization yk .

Due to the degenerate range of continuation values associated with endow-

ment realization yk , i.e., χk ∈ {0} , it must be the case that the type 2 household

also receives its autarkic welfare level, given endowment realization yk :
7

0 = Qk(χk) = u(1− yk)− u(1− yk) + β
S∑

j=1

Πj Qj(χj)

7 Obviously, there would be a contradiction if the type 2 household were to receive Qk(χk) >

0. The reason is that then it would be possible to transfer current consumption from the type

2 household to the type 1 household without violating the type 2 household’s participation

constraint, and hence the consumption interval associated with endowment realization yk
could not be degenerate.
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where we have invoked the degenerate consumption interval, and where contin-

uation values Qj(χj) are subject to the constraints Qj(χj) ≥ 0 for all j ∈ S . It

follows immediately that Qj(χj) = 0 for all j ∈ S , given the current endowment

realization yk . Hence, given endowment realization yk , we have continuation

values of the type 2 household satisfying Qj(χj) = 0, so it must be the case that

the optimally chosen χj are set at their maximum permissible values, χj = xj .

Moreover, we know from above that the optimal values also satisfy χj = 0, and

therefore we can conclude that xj = 0 for all j ∈ S .

We have shown that if one consumption interval is degenerate, then all

consumption intervals must be degenerate, i.e., cs = cs = ys for all s ∈ S . This

finding seems rather intuitive. A degenerate consumption interval associated

with any endowment realization yk implies that, given the realization of yk ,

none of the households has anything to gain from the optimal contract, neither

from current transfers nor from future risk sharing. That can only happen if

autarky is the only sustainable allocation.

22.5. Pareto frontier and ex ante division of the gains

We have characterized the optimal consumption dynamics of any efficient con-

tract. The consumption intervals {[cj , cj ]}Sj=1 and the updating rules in (22.4.3)

are identical for all efficient contracts. The ex ante division of gains from an effi-

cient contract can be viewed as being determined by an implicit past consump-

tion level, c△ ∈ [c1, cS ] : by (22.4.9), this can also be written as c△ ∈ [y1, yS ]).

A contract with an implicit past consumption level c△ = c1 gives all of the sur-

plus to the type 2 agent and none to the type 1 agent. This follows immediately

from the updating rules in (22.4.3) that prescribe a first-period consumption

level equal to cj if the endowment realization is yj . The corresponding promised

value to the type 1 agent, conditional on endowment realization yj , is χj = 0.

Thus, the ex ante gain to the type 1 agent in expression (22.2.2c) becomes

△
∣∣∣
c△=c1

=

S∑

j=1

Πjχj

∣∣∣
c△=c1

= 0.

Similarly, we can show that a contract with an implicit consumption level c△ =

cS gives all of the surplus to the type 1 agent and none to the type 2 agent. The
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updating rules in (22.4.3) will then prescribe a first-period consumption level

equal to cj if the endowment realization is yj with a corresponding promised

value of χj = xj . We can compute the ex ante gain to the type 1 agent as

△
∣∣∣
c△=cS

=

S∑

j=1

Πjxj ≡ △max.

For these two endpoints of the interval c△ ∈ [c1, cS ] , the ex ante gains

attained by the type 2 agent in expression (22.2.2a) become

Q(△)
∣∣∣
c△=c

1

= Q(0) =
S∑

j=1

ΠjQj(0) = △max,

Q(△)
∣∣∣
c△=cS

= Q(△max) =

S∑

j=1

ΠjQj(xj) = 0,

where the equality Q(0) = △max follows from the symmetry of the environ-

ment with respect to the type 1 and type 2 agents’ preferences and endowment

processes.

22.6. Consumption distribution

22.6.1. Asymptotic distribution

The asymptotic consumption distribution depends sensitively on whether there

exists a first-best sustainable allocation. We say that a sustainable allocation

is first best if the participation constraint of neither agent ever binds. As we

have seen, nonbinding participation constraints imply that consumption remains

constant over time. Thus, a first-best sustainable allocation can exist only if the

intersection of all the consumption intervals {[cj , cj ]}Sj=1 is nonempty. Define

the following two critical numbers

cmin ≡ min{cj}Sj=1 = c1, (22.6.1a)

cmax ≡ max{cj}Sj=1 = cS , (22.6.1b)

where the two equalities are implied by (22.4.4). A necessary and sufficient

condition for the existence of a first-best sustainable allocation is that cmin ≥
cmax . Within a first-best sustainable allocation, there is complete risk sharing.
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For high enough values of β , sufficient endowment risk, and enough cur-

vature of u(·), there will exist a set of first-best sustainable allocations, i.e.,

cmin ≥ cmax . If the ex ante division of the gains is then given by an implicit

initial consumption level c△ ∈ [cmax, cmin] , it follows by the updating rules in

(22.4.3) that consumption remains unchanged forever, and therefore the asymp-

totic consumption distribution is degenerate.

But what happens if the ex ante division of gains is associated with an im-

plicit initial consumption level outside of this range, or if there does not exist any

first-best sustainable allocation (cmin < cmax )? To understand the convergence

of consumption to an asymptotic distribution in general, we make the following

observations. According to the updating rules in (22.4.3), any increase in the

consumption of a type 1 person between two consecutive periods has consump-

tion attaining the lower bound of some consumption interval. It follows that

in periods of increasing consumption, the consumption level is bounded above

by cmax (= cS ) and hence increases can occur only if the initial consumption

level is less than cmax . Similarly, any decrease in consumption between two

consecutive periods has consumption attain the upper bound of some consump-

tion interval. It follows that in periods of decreasing consumption, consumption

is bounded below by cmin (= c1 ) and hence decreases can only occur if initial

consumption is higher than cmin . Given a current consumption level c , we can

then summarize the permissible range for next-period consumption c′ as follows:

if c ≤ cmax then c′ ∈ [min{c, cmin}, cmax] , (22.6.2a)

if c ≥ cmin then c′ ∈ [cmin, max{c, cmax}] . (22.6.2b)
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22.6.2. Temporary imperfect risk sharing

We now return to the case that there exist first-best sustainable allocations,

cmin ≥ cmax , but we let the ex ante division of gains be given by an implicit

initial consumption level c△ 6∈ [cmax, cmin] . The permissible range for next-

period consumption, as given in (22.6.2), and the support of the asymptotic

consumption becomes

if c ≤ cmax then c′ ∈ [c, cmax] and lim
t→∞

ct = cmax = cS , (22.6.3a)

if c ≥ cmin then c′ ∈ [cmin, c] and lim
t→∞

ct = cmin = c1. (22.6.3b)

We have monotone convergence in (22.6.3a) for two reasons. First, consumption

is bounded from above by cmax . Second, consumption cannot decrease when

c ≤ cmin and by assumption cmin ≥ cmax , so consumption cannot decrease

when c ≤ cmax . It follows immediately that cmax is an absorbing point that

is attained as soon as the endowment yS is realized with its consumption level

cS = cmax . Similarly, the explanation for monotone convergence in (22.6.3b)

goes as follows. First, consumption is bounded from below by cmin . Second,

consumption cannot increase when c ≥ cmax and by assumption cmin ≥ cmax , so

consumption cannot increase when c ≥ cmin . It follows immediately that cmin

is an absorbing point that is attained as soon as the endowment y1 is realized

with its consumption level c1 = cmin .

These convergence results assert that imperfect risk sharing is at most tem-

porary if the set of first-best sustainable allocations is nonempty. Notice that

when an economy begins with an implicit initial consumption outside of the

interval of sustainable constant consumption levels, the subsequent monotone

convergence to the closest endpoint of that interval is reminiscent of our earlier

analysis of the moneylender and the villagers with one-sided lack of commitment

in section 21.3. In the current setting, the agent who is relatively disadvantaged

under the initial welfare assignment will see her consumption weakly increase

over time until she has experienced the endowment realization that is most fa-

vorable to her. From there on, the consumption level remains constant forever,

and the participation constraints will never bind again.
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22.6.3. Permanent imperfect risk sharing

If the set of first-best sustainable allocations is empty (cmin < cmax ), it breaks

the monotone convergence to a constant consumption level. The updating rules

in (22.4.3) imply that the permissible range for next-period consumption in

(22.6.2) will ultimately shrink to [cmin, cmax] , regardless of the initial welfare

assignment. If the implicit initial consumption lies outside of that set, consump-

tion is bound to converge to it, again because of the monotonicity of consumption

when c ≤ cmin or c ≥ cmax . And as soon as there is a binding participation

constraint with an associated consumption level that falls inside of the interval

[cmin, cmax] , the updating rules in (22.4.3) will never take us outside of this

interval again. Thereafter, the only observed consumption levels belong to the

ergodic set {
[cmin, cmax]

⋂
{cj , cj}Sj=1

}
, (22.6.4)

with a unique asymptotic distribution. Within this invariant set, the partici-

pation constraints of both agents occasionally bind, reflecting imperfections in

risk sharing.

If autarky is the only sustainable allocation, then each consumption interval

is degenerate with cj = cj = yj for all j ∈ S , as discussed in section 22.4.4.

Hence, the ergodic consumption set in (22.6.4) is then trivially equal to the set

of endowment levels, {yj}Sj=1 .

22.7. Alternative recursive formulation

Kocherlakota (1996b) used an alternative recursive formulation of the contract

design problem, one that more closely resembles our treatment of the mon-

eylender villager economy of section 21.3. After replacing the argument in the

function of (22.2.2a) by the expected utility of the type 1 agent, Kocherlakota

writes the Bellman equation as

P (v) = max
{cs,ws}S

s=1

S∑

s=1

Πs
{
u(1− cs) + βP (ws)

}
(22.7.1a)

subject to

S∑

s=1

Πs[u(cs) + βws] ≥ v, (22.7.1b)
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u(cs) + βws ≥ u(ys) + βvaut, s = 1, . . . , S; (22.7.1c)

u(1− cs) + βP (ws) ≥ u(1− ys) + βvaut, s = 1, . . . , S; (22.7.1d)

cs ∈ [0, 1], (22.7.1e)

ws ∈ [vaut, vmax]. (22.7.1f)

Here the planner comes into a period with a state variable v that is a promised

expected utility to the type 1 agent. Before observing the current endowment

realization, the planner chooses a consumption level cs and a continuation value

ws for each possible realization of the current endowment. This state-contingent

portfolio {cs, ws}Ss=1 must deliver at least the promised value v to the type

1 agent, as stated in (22.7.1b), and must also be consistent with the agents’

participation constraints in (22.7.1c) and (22.7.1d).

Notice the difference in timing with our presentation, which we have based

on Thomas and Worrall’s (1988) analysis. Kocherlakota’s planner leaves the

current period with only one continuation value ws and postpones the question

of how to deliver that promised value across future states until the beginning

of next period but before observing next period’s endowment. In contrast, in

our setting, in the current period the planner chooses a state-contingent set of

continuation values for the next period, {χj}Sj=1 , where χj is the number of

utils that the type 1 agent’s expected utility should exceed her autarky level

in the next period if that period’s endowment is yj . We can evidently express

Kocherlakota’s one state variable in terms of our state vector,

ws =

S∑

j=1

Πj
[
χj + u(yj) + βvaut

]
= vaut +

S∑

j=1

Πjχj,

where vaut is the ex ante welfare level in autarky as given by (21.3.2). Similarly,

Kocherlakota’s upper bound on permissible values of next period’s continuation

value in (22.7.1f ) is related to our upper bounds {xj}Sj=1 ,

vmax = vaut +
S∑

j=1

Πjxj = vaut +△max.
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22.8. Pareto frontier revisited

Given our earlier characterization of the optimal solution, we can map Kocher-

lakota’s promised value v into an implicit promised consumption level c△ ∈
[c1, cS ] = [y1, yS ] . Let that mapping be encoded in the function v(c△). Hence,

given a promised a value v(c△), the optimal consumption dynamics in section

22.4.1 instruct us to set Kocherlakota’s choice variables, {cs, ws}Ss=1 , as follows:

cs = c△ +max{0, cs − c△} −max{0, c△ − cs}, (22.8.1a)

ws = v(cs). (22.8.1b)

For a given value of c△ , we define the following three sets that partition

the set S of endowment realizations:

So(c△) ≡
{
j ∈ S : c△ ∈ (cj , cj)

}
, (22.8.2a)

S−(c△) ≡
{
j ∈ S : c△ ≥ cj

}
, (22.8.2b)

S+(c△) ≡
{
j ∈ S : c△ ≤ cj

}
. (22.8.2c)

According to our characterization of consumption intervals in (22.4.4), these

three sets are mutually exclusive and their union is equal to S . So(c△) is the

set of states, i.e., endowment realizations, for which the optimal consumption

level is cs = c△ . But if the endowment realization falls outside of So(c△),

the optimal consumption cs is determined by either the upper or lower bound

of the consumption interval associated with that endowment realization. In

particular, for s ∈ S−(c△), consumption should drop to the upper bound of

the consumption interval, cs = cs ; and for s ∈ S+(c△), consumption should

increase to the lower bound of the consumption interval, cs = cs .

The continuation value v(c△) can then be expressed as

v(c△) =
∑

s∈So(c△)

Πs

[
u(c△) + βv(c△)

]
+

∑

s∈S−(c△)

Πs

[
u(cs) + βv(cs)

]

+
∑

s∈S+(c△)

Πs

[
u(cs) + βv(cs)

]
(22.8.3)

which can be rewritten as
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v(c△) =


1− β

∑

s∈So(c△)

Πs




−1
u(c△)

∑

s∈So(c△)

Πs +
∑

s∈S−(c△)

Πs

[
u(cs) + βv(cs)

]

+
∑

s∈S+(c△)

Πs

[
u(cs) + βv(cs)

]


 . (22.8.4)

Similarly, the promised value to the type 2 household can be expressed as

P (v(c△)) =


1− β

∑

s∈So(c△)

Πs




−1
u(1− c△)

∑

s∈So(c△)

Πs

+
∑

s∈S−(c△)

Πs

[
u(1− cs) + βP (v(cs))

]

+
∑

s∈S+(c△)

Πs

[
u(1− cs) + βP (v(cs))

]


 . (22.8.5)

22.8.1. Values are continuous in implicit consumption

Both v(c△) and P (v(c△)) are continuous in the implicit consumption level c△ .

From (22.8.4) and (22.8.5) this is trivially true when variations in c△ do not

change the partition of states given by the sets So(·), S−(·) and S+(·). It

can also be shown to be true when variations in c△ do involve changes in the

partition of states. As an illustration, let us compute the limiting values of

v(c△) when c△ approaches ck from below and from above, respectively, where

we recall that ck is the upper bound of the consumption interval associated with

endowment yk .

We can choose a sufficiently small ǫ > 0 such that

{cs, cs}Ss=1

⋂
[ck − ǫ, ck + ǫ] = ck.

In particular, the findings in (22.4.4) ensure that we can choose a sufficiently

small ǫ so that this intersection contains no upper bounds on consumption
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intervals other than ck . Similarly, ǫ can be chosen sufficiently small that the

intersection does not contain any lower bound on consumption intervals unless

there exists a consumption interval with a lower bound that is exactly equal to

ck , i.e., if for some j ≥ 1, ck+j = ck . We will have to keep this possibility in

mind as we proceed in our characterization of the sets So(·), S−(·) and S+(·).
All three sets are constant for an implicit consumption c△ ∈ [ck − ǫ, ck)

with max{S−(c△)} = k− 1. For an implicit consumption c△ ∈ [ck, ck+ ǫ] , the

set S−(c△) is constant with max{S−(c△)} = k , while the configuration of the

other two sets depends on which one of the following two possible cases applies.

Case a: ck 6= cs for all s ∈ S . Here it follows that the set S+(c△) is constant for

any implicit consumption c△ ∈ [ck−ǫ, ck+ǫ] . Using (22.8.3), the limiting values

of v(c△) when c△ approaches ck from below and from above, respectively, are

then equal to

lim
c△↑ck

v(c△) =
∑

s∈So(ck−ǫ)

Πs

[
u(ck) + βv(ck)

]
+

k−1∑

s=1

Πs

[
u(cs) + βv(cs)

]

+
∑

s∈S+(ck−ǫ)

Πs

[
u(cs) + βv(cs)

]

=
∑

s∈So(ck+ǫ)

Πs

[
u(ck) + βv(ck)

]
+

k∑

s=1

Πs

[
u(cs) + βv(cs)

]

+
∑

s∈S+(ck+ǫ)

Πs

[
u(cs) + βv(cs)

]
= lim

c△↓ck
v(c△). (22.8.6)

Case b: ck = ck+j for some j ≥ 1. Here it follows that the set S+(c△)

is constant with min{S+(c△)} = k + j for any implicit consumption c△ ∈
[ck − ǫ, ck] ; and S+(c△) is constant with min{S+(c△)} = k + j + 1 for any

implicit consumption c△ ∈ (ck, ck + ǫ] . Using (22.8.3) and invoking the fact

that ck+j = ck , the limiting values of v(c△) when c△ approaches ck from below

and from above, respectively, are then equal to

lim
c△↑ck

v(c△) =

k+j−1∑

s=k

Πs

[
u(ck) + βv(ck)

]
+

k−1∑

s=1

Πs

[
u(cs) + βv(cs)

]

+
S∑

s=k+j

Πs

[
u(cs) + βv(cs)

]
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=

k+j∑

s=k+1

Πs

[
u(ck) + βv(ck)

]
+

k∑

s=1

Πs

[
u(cs) + βv(cs)

]

+

S∑

s=k+j+1

Πs

[
u(cs) + βv(cs)

]
= lim

c△↓ck
v(c△). (22.8.7)

We have shown that v(c△) is continuous at the upper bound of any con-

sumption interval even though the partition of states changes at such a point.

Similarly, we can show that v(c△) is continuous at the lower bound of any con-

sumption interval. And in the same manner, we can also establish that P (v(c△))

is continuous in the implicit consumption c△ .

22.8.2. Differentiability of the Pareto frontier

Consider an implicit consumption level c△ ∈ [y1, yS ] that falls strictly inside

at least one consumption interval. We can then use expressions (22.8.4) and

(22.8.5) to compute the derivative of the Pareto frontier at v(c△) by differen-

tiating with respect to c△ :

P ′(v(c△)) =

dP (v(c△))

dc△
dv(c△)

dc△

= −u
′(1− c△)

u′(c△)
. (22.8.8)

It can be verified that (22.8.8) is the derivative of the Pareto frontier so long as

the set So(c△) remains nonempty. That is, changes in the set So(c△) induced

by varying c△ do not affect the expression for the derivative in (22.8.8). This

follows from the fact that the derivatives are the same to the left and to the

right of an implicit consumption level where the set So(c△) changes, and the

fact that v(c△) and P (v(c△)) are continuous in the implicit consumption level,

as shown in section 22.8.1. It can also be verified that the derivative in (22.8.8)

exists in the knife-edged case that occurs when So(c△) becomes empty at a

single point because two adjacent consumption intervals share only one point,

i.e., when ck = ck+1 , which implies that So(ck) = So(ck+1) = ∅ .
The Pareto frontier becomes nondifferentiable when two adjacent consump-

tion intervals are disjoint. Consider such a situation where an implicit consump-

tion level c△ ∈ [y1, yS ] does not fall inside any consumption interval, which
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implies that the set So(c△) is empty. Let yk and yk+1 be the endowment re-

alizations associated with the consumption interval to the left and to the right

of c△ , respectively. That is,

ck < c△ < ck+1.

According to (22.8.3), the continuation value for any implicit consumption level

c ∈ [ck, ck+1] is then constant and equal to

v̂ =
∑

s∈S−(c△)

Πs

[
u(cs) + βv(cs)

]
+

∑

s∈S+(c△)

Πs

[
u(cs) + βv(cs)

]
. (22.8.9)

By using expression (22.8.8), we can compute the derivative of the Pareto fron-

tier on the left side and the right side of v̂ ,

lim
v↑v̂

P ′(v) = lim
c↑ck

dP (v(c))

dc
dv(c)

dc

= −u
′(1− ck)

u′(ck)
,

lim
v↓v̂

P ′(v) = lim
c↓c

k+1

dP (v(c))

dc
dv(c)

dc

= −u
′(1− ck+1)

u′(ck+1)
.

Since ck < ck+1 , it follows that

lim
v↑v̂

P ′(v) > lim
v↓v̂

P ′(v)

and hence, the Pareto frontier is not differentiable at v̂ .8

8 Kocherlakota (1996b) prematurely assumed that Thomas and Worrall’s (1988) demon-

stration of the differentiability of the Pareto frontier Qs(·) would imply that his conceptually

different frontier P (·) would be differentiable. Koeppl (2003) uses the approach of Benveniste

and Scheinkman (1979) to establish a sufficient condition for differentiability of the Pareto

frontier P (v) . For a given value of v , the sufficient condition is that there exists at least one

realization of the endowment such that the participation constraints are not binding for any

household in that state, i.e., our set S
o(c△) should be nonempty for the implicit consump-

tion level c△ associated with that particular value of v . That condition is sufficient but not

necessary, since we have seen above that P (v) is also differentiable at a knife-edged case with

c△ = ck = ck+1 , even though the set S
o(c△) would then be empty.
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22.9. Continuation values à la Kocherlakota

22.9.1. Asymptotic distribution is nondegenerate for imperfect risk
sharing (except when S = 2)

Here we assume that there exist sustainable allocations other than autarky but

that first-best outcomes are not attainable, i.e., there exist sustainable alloca-

tions with imperfect risk sharing. Kocherlakota (1996b, Proposition 4.2) states

that the continuation values will then converge to a unique nondegenerate dis-

tribution. Here we will verify that the claim of a nondegenerate asymptotic

distribution is correct except for when there are only two states (S = 2).

The assumption that the distribution of yt is identical to that of 1 − yt

means that

Πj = ΠS+1−j , (22.9.1a)

yj = 1− yS+1−j , (22.9.1b)

for all j ∈ S . The symmetric environment bestows symmetry on the consump-

tion intervals of section 22.4

cj = 1− cS+1−j , (22.9.1c)

for all j ∈ S , and symmetry on the continuation values of the type 1 and type

2 household

v(c△) = P (v(1− c△)) . (22.9.1d)

As discussed in section 22.6.1, the condition for the nonexistence of first-

best sustainable allocations is that cmin < cmax , which by (22.6.1) is the same

as

c1 < cS =⇒ cS > 0.5 (22.9.2)

where the implication follows from using c1 = 1− cS as given by (22.9.1c). It is

quite intuitive that the consumption interval [cS , cS ] associated with the highest

endowment realization yS cannot contain the average value of the stochastic

endowment,
∑S

i=1 Πiyi = 0.5. Otherwise, there would certainly exist first-best

sustainable allocations, a contradiction.

To prove the existence of a nondegenerate asymptotic distribution of con-

tinuation values, it is sufficient to show that the continuation value of an agent
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experiencing the highest endowment, say, the type 1 household, exceeds the

continuation value of the other agent who is then experiencing the lowest en-

dowment, say, the type 2 household. Given her current realization of the highest

endowment yS , the type 1 household is awarded the highest consumption level

cS (= cmax ) in the ergodic consumption set of (22.6.4). Conditional on next

period’s endowment realization yi , the type 1 household’s consumption ĉi in

the next period is determined by (22.8.1a), where c△ = cS . From (22.4.4) we

know that cS ≥ ci for all i ∈ S , so next period’s consumption of the type 1

household as determined by (22.8.1a) can be written as

ĉi = min{ci, cS}. (22.9.3)

Given the vector {ĉi}Si=1 for next period’s consumption, we can use (22.8.3)

to compute the type 1 household’s outgoing continuation value in the current

period,

v(cS) =

S∑

i=1

Πi

[
u(ĉi) + βv(ĉi)

]
.

Next, we are interested in computing the difference between the continuation

values of the type 1 and the type 2 households,

v(cS)−P (v(cS))) =
S∑

i=1

Πi

[
u(ĉi) + βv(ĉi)− u(1− ĉi)− βP (v(ĉi))

]

=

S∑

i=1

Πi

[
u(ĉi) + βv(ĉi)− u(1− ĉS+1−i)− βP (v(ĉS+1−i))

]

=

S∑

i=1

Πi

[
u(ĉi) + βv(ĉi)− u(1− ĉS+1−i)− βv(1− ĉS+1−i)

]
, (22.9.4)

where the second equality emerges from the symmetric probabilities in (22.9.1a),

and the third equality follows from (22.9.1d). To establish that the difference

in (22.9.4) is strictly positive, it is sufficient to show that

ĉi ≥ 1− ĉS+1−i,

or, by using (22.9.3),

min{ci, cS} ≥ 1−min{cS+1−i, cS} (22.9.5)
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for all i ∈ S , and at least one of them holds with strict inequality. The proof

proceeds by considering four possible cases for each i ∈ S .

Case a: ci ≤ cS and cS+1−i ≤ cS . According to (22.9.1c) cS+1−i = 1 − ci , so

inequality (22.9.5) can then be written as

ci ≥ 1− cS+1−i = ci which is true since ci > ci for all i ∈ S,

as established in section 22.4.4.

Case b: ci ≤ cS and cS+1−i > cS . According to (22.9.1c) ci = 1 − cS+1−i , so

inequality (22.9.5) can then be written as

ci = 1− cS+1−i ≥ 1− cS which is true since cS+1−i < cS for all i 6= 1,

as established in section 22.4.2.

Case c: ci > cS and cS+1−i ≤ cS . According to (22.9.1c) cS+1−i = 1 − ci , so

inequality (22.9.5) can then be written as

cS ≥ 1− cS+1−i = ci which is true since cS > ci for all i 6= S,

as established in section 22.4.2.

Case d: ci > cS and cS+1−i > cS . The inequality (22.9.5) can then be written

as

cS ≥ 1− cS which is true since cS > 0.5

as established in (22.9.2).

We can conclude that the inequality (22.9.5) holds with strict inequality

with only two exceptions: (1) when i = 1 and case b applies; and (2) when i = S

and case c applies. It follows that the difference in (22.9.4) is definitely strictly

positive if there are more than two states, and hence the asymptotic distribution

of continuation values is nondegenerate. But what about when there are only

two states (S = 2)? Since c1 < cS by (22.9.2) and cS > cS , it follows that

case b applies when i = 1 and case c applies when i = 2 = S . Therefore,

the difference in (22.9.4) is zero, and thus the continuation value of an agent
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experiencing the highest endowment is equal to that of the other agent who is

then experiencing the lowest endowment. Since there are no other continuation

values in an economy with only two possible endowment realizations, it follows

that the asymptotic distribution of continuation values is degenerate when there

are only two states (S = 2).

A two-state example in section 22.10 illustrates our findings. The intuition

for the degenerate asymptotic distribution of continuation values is straightfor-

ward. On the one hand, the planner would like to vary continuation values

and thereby avoid large changes in current consumption that would otherwise

be needed to satisfy binding participation constraints. But, on the other hand,

different continuation values presuppose that there exist “intermediate” states

in which a higher continuation value can be awarded. In our two-state example,

the participation constraint of either one or the other type of agent always binds,

and the asymptotic distribution is degenerate with only one continuation value.

22.9.2. Continuation values do not always respond to binding
participation constraints

Evidently, continuation values will eventually not respond to binding partici-

pation constraints in a two-state economy, since we have just shown that the

asymptotic distribution is degenerate with only one continuation value. But the

outcome that continuation values might not respond to binding participation

constraints occurs even with more states when endowments are i.i.d. In fact,

it is present whenever the consumption intervals of two adjacent endowment

realizations, yk and yk+1 , do not overlap, i.e., when ck < ck+1 . Here is how

the argument goes.

Since ck < ck+1 it follows from (22.6.4) that both ck and ck+1 belong

to the ergodic set of consumption. Moreover, (22.4.4) implies that So(ck) =

So(ck+1) = ∅ , where So(·) is defined in (22.8.2a). Using expression (22.8.3),

we can compute a common continuation value v(ck) = v(ck+1) = v̂ , where v̂

is given by (22.8.9) when that expression is evaluated for any c△ ∈ [ck, ck+1] .

Given this identical continuation value, it follows that there are situations where

households’ continuation values will not respond to binding participation con-

straints.
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As an example, let the current consumption and continuation value of the

type 1 household be ck and v(ck) = v̂ , and suppose that the household next

period realizes the endowment yk+1 . It follows that the participation constraint

of the type 1 household is binding and that the optimal solution in (22.8.1) is to

award the household a consumption level ck+1 and continuation value v(ck+1).

That is, the household is induced not to defect into autarky by increasing its con-

sumption, ck+1 > ck , but its continuation value is kept unchanged, v(ck+1) = v̂ .

Suppose next that the type 1 household experiences yk in the following period.

This time it will be the participation constraint of the type 2 households that

binds and the optimal solution in (22.8.1) prescribes that the type 1 house-

hold is awarded consumption ck and continuation value v(ck) = v̂ . Hence,

only consumption levels but not continuation values are adjusted in these two

realizations with alternating binding participation constraints.

We use a three-state example in section 22.11 to elaborate on the point that

even though an incoming continuation value lies in the interior of the range of

permissible continuation values in (22.7.1f ), a binding participation constraint

still might not trigger a change in the outgoing continuation value because there

may not exist any efficient way to deliver a changed continuation value. Con-

tinuation values that do not respond to binding participation constraints are

a manifestation of the possibility that the Pareto frontier P (·) need not be

differentiable everywhere on the interval [vaut, vmax] , as shown in section 22.8.2.

22.10. A two-state example: amnesia overwhelms
memory

In this example and the three-state example of the following section, we use the

term “continuation value” to denote the state variable of Kocherlakota (1996b)

as described in the preceding section.9 That is, at the end of a period, the

continuation value v is the promised expected utility to the type 1 agent that

will be delivered at the start of the next period.

Assume that there are only two possible endowment realizations, S = 2,

with {y1, y2} = {1 − y, y} , where y ∈ (.5, 1). Each endowment realization is

equally likely to occur, {Π1,Π2} = {0.5, 0.5} . Hence, the two types of agents

9 See Krueger and Perri (2003b) for another analysis of a two-state example.
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face the same ex ante welfare level in autarky,

vaut =
.5

1− β
[u(y) + u(1− y)] .

We will focus on parameterizations for which there exist no first-best sustainable

allocations (i.e., cmin < cmax , which here amounts to c1 < c2 ). An efficient al-

location will then asymptotically enter the ergodic consumption set in (22.6.4)

that here is given by two points, {c1, c2} . Because of the symmetry in prefer-

ences and endowments, it must be true that c2 = 1 − c1 ≡ c , where we let c

denote the consumption allocated to an agent whose participation constraint is

binding and 1− c be the consumption allocated to the other agent.

Before determining the optimal values {1−c, c} , we will first verify that any

such stationary allocation delivers the same continuation value to both types of

agent. Let v+ be the continuation value for the consumer who last received a

high endowment and let v− be the continuation value for the consumer who

last received a low endowment. The promise-keeping constraint for v+ is

v+ = .5[u(c) + βv+] + .5[u(1− c) + βv−]

and the promise-keeping constraint for v− is

v− = .5[u(c) + βv+] + .5[u(1− c) + βv−].

Notice that the promise-keeping constraints make v+ and v− identical. There-

fore, there is a unique stationary continuation value v ≡ v+ = v− that is

independent of the current period endowment, as established in section 22.9.1

for S = 2. Setting v+ = v− = v in one of the two equations above and solving

gives the stationary continuation value:

v =
.5

1− β
[u(c) + u(1− c)] . (22.10.1)

To determine the optimal c in this two-state example, we use the following

two facts. First, c is the lower bound of the consumption interval [c2, c2] ; c

is the consumption level that should be awarded to the type 1 agent when she

experiences the highest endowment y2 = y and we want to maximize the welfare

of the type 2 agent subject to the type 1 agent’s participation constraint. Sec-

ond, c belongs also to the ergodic set {c1, c2} that characterizes the stationary
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Figure 22.10.1: Welfare of the agent with low endowment

as a function of c .

efficient allocation, and we know that the associated efficient continuation values

are then the same for all agents and given by v in (22.10.1). The maximization

problem above can therefore be written as

max
c

u(1− c) + βv (22.10.2a)

subject to u(c) + βv − [u(y) + βvaut] ≥ 0, (22.10.2b)

where v is given by (22.10.1). We graphically illustrate how c is chosen in order

to maximize (22.10.2a) subject to (22.10.2b) in Figures 22.10.1 and 22.10.2 for

utility function (1− γ)−1c1−γ and parameter values (β, γ, y) = (.85, 1.1, .6). It

can be verified numerically that c = .536. Figure 22.10.1 shows (22.10.2a) as

a decreasing function of c in the interval [.5, .6]. Figure 22.10.2 plots the left

side of (22.10.2b) as a function of c . Values of c for which the expression is

negative are not sustainable (i.e., values less than .536). Values of c for which

the expression is nonnegative are sustainable. Since the welfare of the agent

with a low endowment realization in (22.10.2a) is decreasing as a function of

c in the interval [.5, .6], the best sustainable value of c is the lowest value for

which the expression in (22.10.2b) is nonnegative. This value for c gives the

most risk sharing that is compatible with the participation constraints.
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Figure 22.10.2: The participation constraint is satisfied for

values of c for which the difference u(c)+βv− [u(y) + βvaut]

plotted here is positive.

22.10.1. Pareto frontier

It is instructive to find the entire set of sustainable values V . In addition to the

value v above associated with a stationary sustainable allocation, other values

can be sustained, for example, by promising a value v̂ > v to a type 1 agent who

has yet to receive a low endowment realization. Thus, let v̂ be a promised value

to such a consumer and let c+ be the consumption assigned to that consumer in

the event that his endowment is high. Then promise keeping for the two types

of agents requires

v̂ = .5[u(c+) + βv̂] + .5[u(1− c) + βv], (22.10.3a)

P (v̂) = .5[u(1− c+) + βP (v̂)] + .5[u(c) + βv]. (22.10.3b)

If the type 1 consumer receives the high endowment, sustainability of the allo-

cation requires

u(c+) + βv̂ ≥ u(y) + βvaut, (22.10.4a)

u(1− c+) + βP (v̂) ≥ u(1− y) + βvaut. (22.10.4b)
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If the type 2 consumer receives the high endowment, awarding him c, v au-

tomatically satisfies the sustainability requirements because these are already

built into the construction of the stationary sustainable value v .

Let’s solve for the highest sustainable initial value of v̂ , namely, vmax . To do

so, we must solve the three equations formed by the promise-keeping constraints

(22.10.3a) and (22.10.3b) and the participation constraint (22.10.4b) of a type

2 agent when it receives 1− y at equality:

u(1− c+) + βP (v̂) = u(1− y) + βvaut. (22.10.5)

Equation (22.10.3b) and (22.10.5) are two equations in (c+, P (vmax)). After

solving them, we can solve (22.10.3a) for vmax . Substituting (22.10.5) into

(22.10.3b) gives

P (vmax) = .5[u(1− y) + βvaut] + .5[u(c) + βv]. (22.10.6)

But from the participation constraint of a high endowment household in a sta-

tionary allocation, recall that u(c) + βv = u(y) + βvaut . Substituting this into

(22.10.6) and rearranging gives

P (vmax) = vaut

and therefore by (22.10.5), c+ = y .10 Solving (22.10.3a) for vmax we find

vmax =
1

2− β
[u(y) + u(1− c) + βv]. (22.10.7)

Now let us study what happens when we set v ∈ (v, vmax) and drive v

toward v from above. Totally differentiating (22.10.3a) and (22.10.3b), we find

dP (v̂)

dv̂
= −u

′(1− c+)

u′(c+)
.

Evidently

lim
v↓v

dP (v)

dv
= −u

′(1− c)

u′(c)
< −1.

10 According to our general characterization of the ex ante division of the gains of an efficient

contract in section 22.5, it can be viewed as determined by an implicit initial consumption

level c△ ∈ [y1, yS ] . Notice that the present calculations have correctly computed the upper

bound of that interval for our two-state example, yS = y2 ≡ y .
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By symmetry,

lim
v↑v

dP (v)

dv
= − u′(c)

u′(1− c)
> −1.

Thus, there is a kink in the value function P (v) at v = v . At v , the value

function is not differentiable as established in section 22.8.2 when two adjacent

consumption intervals are disjoint. At v , P ′(v) exists only in the sense of a

subgradient in the interval [−u′(1− c)/u′(c), −u′(c)/u′(1− c)] . Figure 22.10.3

depicts the kink in P (v).

v

v̄

v̄

P (v)

vmax

vmax = P (vaut)

vaut

vaut

Figure 22.10.3: The kink in P (v) at the stationary value

of v for the two-state symmetric example.
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22.10.2. Interpretation

Recall our characterization of the optimal consumption dynamics in (22.4.3).

Consumption remains unchanged between periods when neither participation

constraint binds, and hence the efficient contract displays memory or history

dependence. When either of the participation constraints binds, history depen-

dence is limited to selecting either the lower or the upper bound of a consumption

range [cj , cj ] , where the range and its bounds are functions of the current en-

dowment realization yj . After someone’s participation constraint has once been

binding, history becomes irrelevant, because past consumption has no additional

impact on the level of current consumption.

In our two-state example, there are only two consumption ranges, [c1, c1]

and [c2, c2] . And as a consequence, the asymptotic consumption distribution

has only two points, c1 and c2 (or in our notation, 1 − c and c). It follows

that history becomes irrelevant because consumption is then determined by the

endowment realization. Thus, it can be said that “amnesia overwhelms memory”

in this example, and the asymptotic distribution of continuation values becomes

degenerate with a single point v .11

22.11. A three-state example

As the two-state example stresses, any variation of continuation values in an

efficient allocation requires that the environment be such that when a house-

hold’s participation constraint is binding, the planner has room to increase both

the current consumption and the continuation value of that household. In the

stationary allocation in the two-state example, there is no room to adjust the

continuation value because of the restrictions that promise keeping imposes.

We now analyze the stationary allocation of a three-state (S = 3) example in

which the environment still limits the planner’s ability to manipulate continua-

tion values, but nevertheless sometimes allows adjustments in the continuation

value.

11 If we adopt the recursive formulation of Thomas and Worrall in (22.3.1), amnesia mani-

fests itself as a time-invariant state vector [x1, x2] where x1 = u(1−c)−u(1−y)+β[v−vaut]

and x2 = u(c) − u(y) + β[v − vaut] .
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Thus, consider an environment in which S = 3. We assume that the

distributions of yt and 1− yt are identical. In particular, we let {y1, y2, y3} =

{1 − y, 0.5, y} and {Π1,Π2,Π3} = {Π/2, 1 − Π,Π/2} where y ∈ (.5, 1] and

Π ∈ [0, 1]. Given parameter values such that there is no first-best sustainable

allocation (i.e., c1 < c3 ), we will study the efficient allocation that is attained

asymptotically. According to (22.6.4), this ergodic consumption set is given by

{
[c1, c3]

⋂
{c1, c2, c2, c3}

}
, (22.11.1)

which contains at least two points (c1 , c3 ) and maybe two additional points

(c2 , c2 ).

When there are no first-best sustainable allocations, the efficient stationary

allocation must be such that the participation constraints of a type 1 person and

a type 2 person bind in state 3 and state 1, respectively. Let c ∈ [0.5, 1] and

w̄+ be the consumption and continuation value allocated to the agent whose

participation constraint is binding because his endowment is equal to y :

u(c) + βw̄+ = u(y) + βvaut. (22.11.2)

In such a state, the agent whose participation constraint is not binding consumes

1−c and is assigned continuation value w̄− . Because of the assumed symmetries

with respect to preferences and endowments, we have c = c3 = 1− c1 .

The consumption allocation in state 2 depends on the different promised

continuation values with which agents enter a period. The symmetry in our

environment and the existence of only three states imply that there is a single

consumption level ĉ that is granted to the type of person that last realized

the highest endowment y . Let ŵ+ be the continuation value that in state 2 is

allocated to the type of person that last received endowment y . According to

our earlier characterization of an efficient allocation, the agents who realize the

highest endowment y are induced not to defect into autarky by granting them

both higher current consumption and a higher continuation value. Hence, state

2 is “payback time” for the agents who were promised a higher continuation

value and it must be true that ĉ ∈ [0.5, 1]. In state 2, the type of person that

did not last receive y is allocated consumption 1 − ĉ and continuation value

ŵ− . The participation constraint of this type of person might conceivably be

binding in state 2,

u(1− ĉ) + βŵ− ≥ u(0.5) + βvaut. (22.11.3)
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According to the optimal consumption dynamics in (22.4.3), we know that

ĉ = min{c, c2} . That is, a person who had the highest endowment realization

y with associated consumption level c will retain that consumption level when

moving into state 2 ( ĉ = c) unless the participation constraint of the other

agent becomes binding in state 2. In the latter case, the person who had the

highest endowment realization is awarded consumption ĉ = c2 in state 2 and the

participation constraint for the other person in (22.11.3) will hold with strict

equality.

While there can exist four different consumption levels in the efficient sta-

tionary allocation, {1− c, 1− ĉ, ĉ, c} , it is possible to have at most two distinct

continuation values:

w̄+ = ŵ+ =(Π/2)
[
u(c) + βw̄+

]
+ (1−Π)

[
u(ĉ) + βŵ+

]

+ (Π/2)
[
u(1− c) + βw̄−

]
, (22.11.4a)

w̄− = ŵ− =(Π/2)
[
u(c) + βw̄+

]
+ (1−Π)

[
u(1− ĉ) + βŵ−

]

+ (Π/2)
[
u(1− c) + βw̄−

]
. (22.11.4b)

As can be seen on the right side of (22.11.4a), the expressions for w̄+ and ŵ+

are the same, and so w̄+ = ŵ+ ≡ w+ . The same holds true for w̄− and ŵ− in

(22.11.4b), and hence w̄− = ŵ− ≡ w− . By manipulating equations (22.11.4),

we can express the two continuation values in terms of (c, ĉ):

w+ =
{
(Π/2) [1 + βκΠ/2] [u(c) + u(1− c)]

+ (1−Π) [u(ĉ) + βκΠu(1− ĉ)/2]
}

·
{
[1− β(1 −Π)] (1− β)κ

}−1

(22.11.5a)

w− = w+ − 1−Π

1− β(1−Π)
[u(ĉ)− u(1− ĉ)] , (22.11.5b)

where κ = [1− (1−Π/2)β]−1 .

To determine the optimal {c, ĉ} in this three-state example, it is helpful

to focus on a state in which the agents realize different endowments, say, state

3 in which the type 1 agent realizes the highest endowment y and is awarded

consumption level c . We can then exploit the following two facts. First, c is the

lower bound of the consumption interval [c3, c3] , so c is the consumption level

that should be awarded to the type 1 agent when she experiences the highest
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Figure 22.11.1: Left panel: Pairs of (c, ĉ) that satisfy u(c)+

βw+ ≥ u(y) + βvaut . Right panel: Pairs of (c, ĉ) that satisfy

u(1− ĉ) + βw− ≥ u(0.5) + βvaut .

endowment y3 = y and we want to maximize the welfare of the type 2 agent

subject to the type 1 agent’s participation constraint. Second, c belongs also to

the ergodic set in (22.11.1) that characterizes the stationary efficient allocation,

and we know that the associated efficient continuation values are w+ for the

agents with high endowment and w− for the other agents. By invoking functions

(22.11.5) that express these continuation values in terms of {c, ĉ} and by using

participation constraint (22.11.2) that determines permissible values of ĉ , the

optimization problem above becomes:

max
c, ĉ

u(1− c) + βw− (22.11.6a)

subject to u(c) + βw+ − [u(y) + βvaut] ≥ 0 (22.11.6b)

u(1− ĉ) + βw− − [u(0.5) + βvaut] ≥ 0, (22.11.6c)

where w− and w+ are given by (22.11.5).

To illustrate graphically how an efficient stationary allocation {c, ĉ} can be

computed from optimization problem (22.11.6), we assume a utility function

c1−γ/(1 − γ) and parameter values (β, γ,Π, y) = (0.7, 1.1, 0.6, 0.7). It should

now be evident that we can restrict attention to consumption levels c ∈ [0.5, y]

and ĉ ∈ [0.5, c] . Figure shows the sets (c, ĉ) ∈ [0.5, y]× [0.5, c] that satisfy par-

ticipation constraint (22.11.6b) and (22.11.6c), respectively. The intersection

of these sets is depicted in Figure 22.11.2 where the circle indicates the efficient

stationary allocation that maximizes (22.11.6a).
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Figure 22.11.2: Pairs of (c, ĉ) that satisfy u(c) + βw+ ≥
u(y) + βvaut and u(1 − ĉ) + βw− ≥ u(0.5) + βvaut . The

efficient stationary allocation within this set is marked with

a circle.

22.11.1. Perturbation of parameter values

We also compute efficient stationary allocations for different values of Π ∈ [0, 1]

while retaining all other parameter values. As a function of Π, the two panels of

Figure 22.11.3 depict consumption levels and continuation values, respectively.

For low values of Π, we see that there cannot be any risk sharing among the

agents, so that autarky is the only sustainable allocation. The explanation for

this is as follows. Given a low value of Π, an agent who has realized the high

endowment y is heavily discounting the insurance value of any transfer in a

future state when her endowment might drop to 1 − y because such a state

occurs only with a small probability equal to Π/2. Hence, in order for that

agent to surrender some of her endowment in the current period, she must be

promised a significant combined payoff in that unlikely event of a low endowment

in the future and a positive transfer in the most common state 2. But such

promises are difficult to make compatible with participation constraints, because

all agents will be discounting the value of any insurance arrangement as soon

as the common state 2 is realized since then there is once again only a small

probability of experiencing anything else.
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When the probability of experiencing extreme values of the endowment

realization is set sufficiently high, there exist efficient allocations that deliver

risk sharing. When Π exceeds 0.4 in the left panel of Figure 22.11.3, the lucky

agent is persuaded to surrender some of her endowment, and her consumption

becomes c < y . The lucky agent is compensated for her sacrifice not only

through the insurance value of being entitled to an equivalent transfer in the

future when she herself might realize the low endowment 1−y but also through

a higher consumption level in state 2, ĉ > 0.5.12 In fact, if the consumption

smoothing motive could operate unhindered in this situation, the lucky agent’s

consumption would indeed by equalized across states. But what hinders such an

outcome is the participation constraint of the unlucky agent when entering state

2. It must be incentive compatible for that earlier unlucky agent to give up parts

of her endowment in state 2 when both agents now have the same endowment

and the value of the insurance arrangement lies in the future. Notice that

this participation constraint of the earlier unlucky agent is no longer binding

in our example when Π is greater than 0.94, because the efficient allocation

prescribes ĉ = c . In terms of Thomas and Worrall’s characterization of the

optimal consumption dynamics, the parameterization is then such that c2 > c3
and the ergodic set in (22.11.1) is given by {c1, c3} or, in our notation, by

{1− c, c} .
The fact that the efficient allocation raises the consumption of the lucky

agent in future realizations of state 2 is reflected in the spread of continuation

values in the right panel of Figure 22.11.3. The spread vanishes only in the

limit when Π = 1 because then the three-state example turns into our two-state

example of the preceding section where there is only a single continuation value.

But while the planner is able to vary continuation values in the three-state ex-

ample, there remains an important limitation to when those continuation values

can be varied. Consider a parameterization with Π ∈ (0.4, 0.94) for which we

know that ĉ < c in Figure 22.11.3. The agent who last experienced the highest

endowment y is consuming ĉ in state 2 in the efficient stationary allocation,

and is awarded continuation value w+ . Suppose now that agent once again real-

izes the highest endowment y and his participation constraint becomes binding.

12 Recall that we established in section 22.4.4 that all consumption intervals are nonde-

generate if there is risk sharing. We can use this fact to prove that as soon as the parame-

ter value for Π exceeds the critical value where risk sharing becomes viable, it follows that

ĉ = c2 > y2 = 0.5.
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Figure 22.11.3: Left panel: Consumption levels as a func-

tion of Π. The solid line depicts c , i.e., consumption in states

1 and 3 of a person who realizes the highest endowment y .

The dashed line depicts ĉ , i.e., consumption in state 2 of the

type of person that was the last one to have received y . Right

panel: Continuation values as a function of Π. The solid line

depicts w+ , i.e., continuation value of the type of person that

was the last one to have received y . The dashed line is the

continuation value of the other type of person, i.e., w− .

To prevent him from defecting to autarky, the planner responds by raising his

consumption to c (> ĉ) but keeps his continuation value unchanged at w+ .

In other words, the optimal consumption dynamics in the efficient stationary

allocation leaves no room for increasing the continuation value further. The

unchanging continuation value is a reflection of the nondifferentiability of the

Pareto frontier at v = w+ .
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22.11.2. Pareto frontier

As described in section 22.8, the ex ante division of the gains from an effi-

cient contract can be viewed as determined by an implicit initial consump-

tion level, c△ ∈ [y1, yS ] . In our symmetric environment, it is sufficient to

focus on half of this range because the other half will just be the mirror im-

age of those computations. Let us therefore compute the Pareto frontier for

c△ ∈ [0.5, y3] ≡ [0.5, y] . We assume a parameterization such that the consump-

tion intervals, {[cj , cj ]}3j=1 , are disjoint, i.e., the parameterization is such that

ĉ < c , which corresponds to a parameterization with Π ∈ (0.4, 0.94) in the left

panel of Figure 22.11.3.

First, we study the formulas for computing v and P (v) in the range c△ ∈
[0.5, ĉ] :

v =
Π

2

{
u(1− c) + βw−

}
+ (1− Π)

{
u(c△) + βv

}
+

Π

2

{
u(c) + βw+

}
,

P (v) =
Π

2

{
u(c) + βw+

}
+ (1 −Π)

{
u(1− c△) + βP (v)

}

+
Π

2

{
u(1− c) + βw−

}
.

When the type 1 agent is assigned an implicit initial consumption level c△ ∈
[0.5, ĉ] , her consumption is indeed equal to c△ for any initial uninterrupted

string of realizations of state 2 with some continuation value v , and the corre-

sponding consumption of the type 2 agent is 1− c△ with an associated continu-

ation value P (v). But as soon as either state 1 or state 3 is realized for the first

time, the updating rules in (22.4.3) imply that the economy enters the ergodic

set of the efficient stationary allocation. In particular, if state 1 is realized and

the participation constraint of the type 2 agent becomes binding, the type 1

agent is awarded consumption c1 ≡ 1− c and continuation value w− while the

type 2 agent consumes 1− c1 ≡ c with continuation value P (w−) = w+ . But if

state 3 is realized and the participation constraint of the type 1 agent becomes

binding, the type 1 agent is awarded consumption c3 ≡ c and continuation value

w+ while the type 2 agent consumes 1 − c3 ≡ 1 − c with continuation value

P (w+) = w− . Given implicit initial consumption level c△ , we can solve for the

initial welfare assignment {v, P (v)} .
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Figure 22.11.4: Pareto frontier P (v) for the three-state

symmetric example. Kinks occur at coordinates (v, P (v)) =

(w−, w+) and (v, P (v)) = (w+, w−).

We can use updating rules (22.4.3) to get formulas for computing v and

P (v) in the range c△ ∈ [c, y] :

v =
Π

2

{
u(1− c) + βw−

}
+ (1−Π)

{
u(ĉ) + βw+

}
+

Π

2

{
u(c△) + βv

}
,

P (v) =
Π

2

{
u(c) + βw+

}
+ (1−Π)

{
u(1− c̄) + βw−

}

+
Π

2

{
u(1− c△) + βP (v)

}
.

Concerning the remaining range of implicit initial consumption levels c△ ∈
(ĉ, c), we can immediately verify that either pair of equations above can be used

when setting c△ = ĉ in the first pair of equations or c△ = c in the second

pair of equations. Hence, the initial welfare assignment is the same for implicit

initial consumption c△ ∈ [ĉ, c] , and it is given by {w+, P (w+)} . At this point

in Figure 22.11.4 the Pareto frontier becomes nondifferentiable.
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22.12. Empirical motivation

Kocherlakota was interested in the case of perpetual imperfect risk sharing be-

cause he wanted to use his model to think about the empirical findings from

panel studies by Mace (1991), Cochrane (1991), and Townsend (1994). Those

studies found that, after conditioning on aggregate income, individual consump-

tion and earnings are positively correlated, belying the risk-sharing implications

of the complete markets models with recursive utility of the type we studied in

chapter 8. So long as no first-best allocation is sustainable, the action of the

occasionally binding participation constraints lets the model with two-sided lack

of commitment reproduce that positive conditional covariation. In recent work,

Albarran and Attanasio (2003) and Kehoe and Perri (2003a, 2003b) pursue more

implications of models like Kocherlakota’s.

22.13. Generalization

Our formal analysis has followed the approach taken by Thomas and Worrall

(1988). We have converted the risk-neutral firm into a risk-averse household,

as suggested by Kocherlakota (1996b). Another difference is that our analysis

is cast in a general equilibrium setting while Thomas and Worrall formulate

a partial equilibrium model where the firm implicitly has access to an outside

credit market with a given gross interest rate of β−1 when maximizing the ex-

pected present value of profits. However, this difference is not material, since an

efficient contract is such that wages never exceed output.13 Hence, Thomas and

Worrall’s (1988) analysis can equally well be thought of as a general equilibrium

analysis.

Ligon, Thomas, and Worrall (2002) further generalize the environment by

assuming that the endowment follows a Markov process. This allows for the pos-

sibility of both aggregate and idiosyncratic risk and serial correlation. The effi-

cient contract is characterized by an updating rule for the ratio of the marginal

utilities of the two households that resembles our updating rule for consump-

tion in (22.4.3). Each state of nature is associated with a particular interval

13 The outcome that efficient wages do not exceed output in Thomas and Worrall’s (1988)

analysis is related to our ability to solve optimization problem (22.3.1) without imposing

nonnegativity constraints on consumption. See footnote 5.
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of permissible ratios of marginal utilities. Given the current state and the pre-

vious period’s ratio of marginal utilities, the new ratio lies within the interval

associated with the current state, such that the change is minimized. That is,

if last period’s ratio falls outside of the current interval, then the ratio must

change to an endpoint of the current interval, and one of the households will

be constrained. But whenever possible, the ratio is kept constant over time.

This is consistent with our analysis in chapter 8 of competitive equilibria with

complete markets (and full commitment). Expression (8.5.5) states that these

unconstrained first-best allocations are such that ratios of marginal utilities be-

tween pairs of agents are constant across all histories and dates.

22.14. Decentralization

By imposing constraints on each household’s budget sets above and beyond

those imposed by the standard household’s budget constraint, Kehoe and Levine

(1993) describe how to decentralize the optimal allocation in an economy like

Kocherlakota’s with complete competitive markets at time 0. Thus, let q0t (ht)

be the Arrow-Debreu time 0 price of a unit of time t consumption after history

ht . The two households’ budget constraints are
∞∑

t=0

∑

ht

q0t (ht)ct(ht) ≤
∞∑

t=0

∑

ht

q0t (ht)yt (22.14.1a)

∞∑

t=0

∑

ht

q0t (ht)(1− ct(ht)) ≤
∞∑

t=0

∑

ht

q0t (ht)(1 − yt). (22.14.1b)

Kehoe and Levine augment these standard budget constraints with what were

the planner’s “participation constraints” (22.2.1a), (22.2.1b), but which now

have to be interpreted as exogenous restrictions on the households’ budget sets,

one restriction for each consumer for each t ≥ 0 for each history ht .

Adding those restrictions leaves the household’s budget sets convex. That

allows all of the assumptions of the second welfare theorem to be fulfilled. That

then implies that a competitive equilibrium (defined in the standard way to

include optimization and market clearing, but with household budget sets being

further restricted by (22.2.1)) will implement the planner’s optimal allocation.

Although mechanically this decentralization works like a charm, it can be

argued that it conflicts with the spirit of a competitive equilibrium in which
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agents take prices as given and budget constraints are the only restrictions

on agents’ consumption sets. Instead, participation constraints (22.2.1a) and

(22.2.1b) are now modelled as direct restrictions on agents’ consumption pos-

sibility sets. Partly because of this controversial feature of the Kehoe-Levine

decentralization, Alvarez and Jermann use another decentralization, one that

imposes portfolio/solvency constraints and is cast in terms of sequential trad-

ing of Arrow securities. The endogenously determined solvency constraints are

agent and state specific and ensure that the participation constraints are satis-

fied. We turn to the Alvarez-Jermann decentralization in the next section.

One can argue that the alternative decentralization simply converts one set

of participation constraints into another. For both specifications, we have a

substantial departure from a decentralized equilibrium under full commitment.

When we remove the assumption of commitment, we assign a very demanding

task to the “invisible hand” who now must not find market-clearing prices but

must also check participation/solvency constraints for all agents and all states

of the world.

22.15. Endogenous borrowing constraints

Alvarez and Jermann (2000) alter Kehoe and Levine’s decentralization to attain

a model with sequentially complete markets in which households face what can

be interpreted as endogenous borrowing constraints. Essentially, they accom-

plish this by showing how the standard quantity constraints on Arrow securities

(see chapter 8) can be appropriately tightened to implement the optimal al-

location as constrained by the participation constraints. Their idea is to find

borrowing constraints tight enough to make the highest endowment agents ad-

here to the allocation, while letting prices alone prompt lower endowment agents

to go along with it.

For expositional simplicity, we let yi(y) denote the endowment of a house-

hold of type i when a representative household of type 1 receives y . Recall

the earlier assumption that [y1(y), y2(y)] = (y, 1 − y). The state of the econ-

omy is the current endowment realization y and the beginning-of-period asset

holdings A = (A1, A2), where Ai is the asset holding of a household of type

i and A1 + A2 = 0. Because asset holdings add to zero, it is sufficient to use

A1 to characterize the wealth distribution. Define the state of the economy as
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X = [ y A1 ]
′
. There is a complete set of markets in one-period Arrow secu-

rities. In particular, let Q(X ′|X) be the price of one unit of consumption in

state X ′ tomorrow given state X today. A household of type i with beginning-

of-period assets a can purchase and sell these securities subject to the budget

constraint

c+
∑

X′

Q(X ′|X)a(X ′) ≤ yi(y) + a, (22.15.1)

where a(X ′) is the quantity purchased (if positive) or sold (if negative) of Arrow

securities that pay one unit of consumption tomorrow if X ′ is realized, and also

subject to the borrowing constraints

a(X ′) ≥ Bi(X ′). (22.15.2)

Notice that there is one constraint for each next period state X ′ and that the

borrowing constraints reflect history dependence through the presence of A′ .

The Bellman equation for the household in the decentralized economy is

V i(a,X) = max
c,{a(X′)}X′∈X

{
u(c) + β

∑

X′

V i[a(X ′), X ′]Π(X ′|X)
}

subject to the budget constraint (22.15.1) and borrowing constraints (22.15.2).

The equilibrium law of motion for the asset distribution, A1 is embedded in the

conditional distribution Π(X ′|X).

Alvarez and Jermann define a competitive equilibrium with borrowing con-

straints in a standard way, with the qualification that among the equilibrium

objects are the borrowing constraints Bi(X ′), functions that the households take

as given. Alvarez and Jermann show how to choose the borrowing constraints

to make the allocation that solves the planning problem be an equilibrium allo-

cation. They do so by construction, identifying the elements of the borrowing

constraints that are binding from having identified the states in the planning

problem where one or another agent’s participation constraint is binding.

It is easy for Alvarez and Jermann to compute the equilibrium pricing

kernel from the allocation that solves the planning problem. The pricing kernel

satisfies

q(X ′|X) = max
i=1,2

β
u′[ci(a′, X ′)]

u′[ci(a,X)]
Π(X ′|X), (22.15.3)
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where ci(a,X) is the consumption decision rule of a household of type i with

beginning-of-period assets a .14 People with the highest valuation of an asset

buy it. Buyers of state-contingent securities are unconstrained, so they equate

their marginal rate of substitution to the price of the asset. At equilibrium

prices, sellers of state-contingent securities will occasionally like to issue more,

but are constrained from doing so by state-by-state restrictions on the amounts

that they can sell. Thus, the intertemporal marginal rate of substitution of an

agent whose participation constraint (or borrowing constraint) is not binding

determines the pricing kernel. A binding participation constraint translates

into a binding borrowing constraint in the previous period. A participation

constraint for some state at t restricts the amount of state-contingent debts that

can be issued for that state at t − 1. In effect, constrained and unconstrained

agents have their own “personal interest rates” at which they are just indifferent

between borrowing or lending a infinitesimally more. A constrained agent wants

to consumemore today at equilibrium prices (i.e., at the shadow prices (22.15.3)

evaluated at the solution of the planning problem), and thus has a high personal

interest rate. He would like to sell more of the state-contingent security than

he is allowed to at the equilibrium state-date prices. An agent would like to

sell state-contingent claims on consumption tomorrow in those states in which

he will be well endowed tomorrow. But those high endowment states are also

the ones in which he will have an incentive to default. He must be restrained

from doing so by limiting the volume of debt that he is able to carry into those

high endowment states. This limits his ability to smooth consumption across

high and low endowment states. Thus, his consumption and continuation value

increases when he enters one of those high endowment states precisely because

he has been prevented from selling enough claims to smooth his consumption

over time and across states.

From a general equilibrium perspective, when sellers of a state-contingent

security are constrained with respect to the quantities that they can issue, it

follows that the price is bid up when unconstrained buyers are competing for a

smaller volume of that security. This tendency of lowering the yield on individual

Arrow securities explains Alvarez and Jermann’s result that interest rates are

14 For the two-state example with β = .85, γ = 1.1, y = .6, described in Figure 22.10.1, we

computed that c = .536, which implies that the risk-free interest rate is 1.0146. Note that

with complete markets the risk-free claim would be β−1 = 1.1765.
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lower, when compared to a corresponding complete markets economy, a property

shared with the Bewley economies studied in chapter 18.15

Alvarez and Jermann study how the state-contingent prices (22.15.3) be-

have as they vary the discount factor and the stochastic process for y . They use

the additional fluctuation in the stochastic discount factor injected by the par-

ticipation constraints to explain some asset pricing puzzles. See Zhang (1997)

and Lustig (2000, 2003) for further work along these lines.

22.16. Concluding remarks

The model in this chapter assumes that the economy reverts to an autarkic

allocation in the event that a household chooses to deviate from the allocation

assigned in the contract. Of course, assigning autarky continuation values to

everyone puts us inside the Pareto frontier and so is inefficient. In terms of

sustaining an allocation, the important feature of the autarky allocation is just

the continuation value that it assigns to an agent who is tempted to default,

i.e., an agent whose participation constraint binds. Kletzer and Wright (2000)

recognize that it can be possible to promise an agent who is tempted to default

an autarky continuation value while giving those agents whose participation

constraints aren’t binding enough to stay on the Pareto frontier. Continuation

values that lie on the Pareto frontier are said to be renegotiation proof.

Further research about how to model the consequences of default in these

settings is likely to be fruitful. By permitting coalitions of consumers to break

away and thereafter share risks among themselves, Genicot and Ray (2003)

refine a notion of sustainability in a multi-consumer economy.

15 In exercise 22.4, we ask the reader to compute the allocation and interest rate in such

an economy.
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Exercises

Exercise 22.1 Lagrangian method with two-sided no commitment

Consider the model of Kocherlakota with two-sided lack of commitment. Two

consumers each have preferences E0

∑∞
t=0 β

tu[ci(t)] , where u is increasing, twice

differentiable, and strictly concave, and where ci(t) is the consumption of con-

sumer i . The good is not storable, and the consumption allocation must sat-

isfy c1(t) + c2(t) ≤ 1. In period t , consumer 1 receives an endowment of

yt ∈ [0, 1], and consumer 2 receives an endowment of 1 − yt . Assume that

yt is i.i.d. over time and is distributed according to the discrete distribution

Prob(yt = ys) = Πs . At the start of each period, after the realization of ys but

before consumption has occurred, each consumer is free to walk away from the

loan contract.

a. Find expressions for the expected value of autarky, before the state ys is

revealed, for consumers of each type. (Note: These need not be equal.)

b. Using the Lagrangian method, formulate the contract design problem of

finding an optimal allocation that for each history respects feasibility and the

participation constraints of the two types of consumers.

c. Use the Lagrangian method to characterize the optimal contract as com-

pletely as you can.

Exercise 22.2 A model of Dixit, Grossman, and Gul (2000)

For each date t ≥ 0, two political parties divide a “pie” of fixed size 1.

Party 1 receives a sequence of shares y = {yt}t≥0 and has utility function

E
∑∞

t=0 β
tU(yt), where β ∈ (0, 1), E is the mathematical expectation opera-

tor, and U(·) is an increasing, strictly concave, twice differentiable period utility

function. Party 2 receives share 1−yt and has utility function E
∑∞
t=0 β

tU(1−
yt). A state variable Xt is governed by a Markov process; X resides in one of

K states. There is a partition S1, S2 of the state space. If Xt ∈ S1 , party 1

chooses the division yt, 1 − yt , where yt is the share of party 1. If Xt ∈ S2 ,

party 2 chooses the division. At each point in time, each party has the option

of choosing “autarky,” in which case its share is 1 when it is in power and zero

when it is not in power.

Formulate the optimal history-dependent sharing rule as a recursive con-

tract. Formulate the Bellman equation. (Hint: Let V [u0(x), x] be the optimal

value for party 1 in state x when party 2 is promised value u0(x).)
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Exercise 22.3 Two-state numerical example of social insurance

Consider an endowment economy populated by a large number of individuals

with identical preferences,

E

∞∑

t=0

βtu(ct) = E

∞∑

t=0

βt
(
4ct −

c2t
2

)
, with β = 0.8.

With respect to endowments, the individuals are divided into two types of equal

size. All individuals of a particular type receive zero goods with probability 0.5

and two goods with probability 0.5 in any given period. The endowments of

the two types of individuals are perfectly negatively correlated so that the per

capita endowment is always one good in every period.

The planner attaches the same welfare weight to all individuals. Without

access to outside funds or borrowing and lending opportunities, the planner

seeks to provide insurance by simply reallocating goods between the two types

of individuals. The design of the social insurance contract is constrained by a

lack of commitment on behalf of the individuals. The individuals are free to

walk away from any social arrangement, but they must then live in autarky

evermore.

a. Compute the optimal insurance contract when the planner lacks memory;

that is, transfers in any given period can be a function only of the current

endowment realization.

b. Can the insurance contract in part a be improved if we allow for history-

dependent transfers?

c. Explain how the optimal contract changes when the parameter β goes to 1.

Explain how the optimal contract changes when the parameter β goes to zero.

Exercise 22.4 Kehoe-Levine without risk

Consider an economy in which each of two types of households has preferences

over streams of a single good that are ordered by v =
∑∞

t=0 β
tu(ct), where

u(c) = (1− γ)−1(c+ b)1−γ for γ ≥ 1 and β ∈ (0, 1), and b > 0. For ǫ > 0 and

t ≥ 0, households of type 1 are endowed with an endowment stream y1,t = 1+ ǫ

in even-numbered periods and y1,t = 1−ǫ in odd-numbered periods. Households

of type 2 own an endowment stream of y2,t that equals 1−ǫ in even periods and

1 + ǫ in odd periods. There are equal numbers of the two types of household.

For convenience, you can assume that there is one of each type of household.
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Assume that β = .8, b = 5, γ = 2, and ǫ = .5.

a. Compute autarky levels of discounted utility v for the two types of house-

holds. Call them vaut,h and vaut,ℓ .

b. Compute the competitive equilibrium allocation and prices. Here assume

that there are no enforcement problems.

c. Compute the discounted utility to each household for the competitive equi-

librium allocation. Denote them vCEi for i = 1, 2.

d. Verify that the competitive equilibrium allocation is not self-enforcing in

the sense that at each t > 0, some households would prefer autarky to the

competitive equilibrium allocation.

e. Now assume that there are enforcement problems because at the beginning

of each period, each household can renege on contracts and other social arrange-

ments with the consequence that it receives the autarkic allocation from that

period on. Let vi be the discounted utility at time 0 of consumer i . Formulate

the consumption smoothing problem of a planner who wants to maximize v1

subject to v2 ≥ ṽ2 , and constraints that make the allocation self-enforcing.

f. Find an efficient self-enforcing allocation of the periodic form c1,t = č, 2 −
č, č, . . . and c2,t = 2− č, č, 2− č, . . . , where continuation utilities of the two agents

oscillate between two values vh and vℓ . Compute č . Compute discounted

utilities vh for the agent who receives 1 + ǫ in the period and vℓ for the agent

who receives 1− ǫ in the period.

Plot consumption paths for the two agents for (i) autarky, (ii) complete markets

without enforcement problems, and (iii) complete markets with the enforcement

constraint. Plot continuation utilities for the two agents for the same three

allocations. Comment on them.

g. Compute one-period gross interest rates in the complete markets economies

with and without enforcement constraints. Plot them over time. In which

economy is the interest rate higher? Explain.

h. Keep all parameters the same, but gradually increase the discount factor.

As you raise β toward 1, compute interest rates as in part g. At what value of

β do interest rates in the two economies become equal? At that value of β is

either participation constraint ever binding?



Exercises 983

Exercise 22.5 The kink

A pure endowment economy consists of two ex ante identical consumers each

of whom values streams of a single nondurable consumption good according to

the utility functional

v = E

∞∑

t=0

βtu(ct), β ∈ (0, 1)

where E is the mathematical expectation operator and u(·) is a strictly con-

cave, increasing, and twice continuously differentiable function. The endow-

ment sequence of consumer 1 is an i.i.d. process with Prob(yt = y) = .5 and

Prob(yt = 1− y) = .5 where y ∈ [.5, 1). The endowment sequence of consumer

2 is identically distributed with that of consumer 1, but perfectly negatively

correlated with it: whenever consumer 1 receives y , consumer 2 receives 1− y .

Part I. (Complete markets)

In this part, please assume that there are no enforcement (or commitment)

problems.

a. Solve the Pareto problem for this economy, attaching equal weights to the

two types of consumer.

b. Show how to decentralize the allocation that solves the Pareto problem with

a competitive equilibrium with ex ante (i.e., before time 0) trading of a complete

set of history-contingent commodities. Please calculate the price of a one-period

risk-free security.

Part II. (Enforcement problems)

In this part, assume that there are enforcement problems. In particular, assume

that there is two-sided lack of commitment.

c. Pose an ex ante Pareto problem in which, after having observed its current

endowment but before receiving his allocation from the Pareto planner, each

consumer is free at any time to defect from the social contract and live thereafter

in autarky. Show how to compute the value of autarky for each type of consumer.

d. Call an allocation sustainable if neither household would ever choose to defect

to autarky. Formulate the enforcement-constrained Pareto problem recursively.
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That is, please write a programming problem that can be used to compute an

optimal sustainable allocation.

e. Under what circumstance will the allocation that you found in part I solve

the enforcement-constrained Pareto problem in part d? I.e., state conditions on

u, β, y that are sufficient to make the enforcement constraints never bind.

Some useful background: For the remainder of this problem, please assume

that u, β, y, are such that the allocation computed in part I is not sustainable.

Recall that the amnesia property implies that the consumption allocated to an

agent whose participation constraint is binding is independent of the ex ante

promised value with which he enters the period. With the present i.i.d., two-

state, symmetric endowment pattern, ex ante, each period each of our two agents

has an equal chance that it is his participation constraint that is binding. In

a symmetric sustainable allocation, let each agent enter the period with the

same ex ante promised value v , and let c be the consumption allocated to the

high endowment agent whose participation constraint is binding and let 1 − c

be the consumption allocated to the low endowment agent whose participation

constraint is not binding. By the above argument, c is independent of the

promised value v that an agent enters the period with, which means that the

current allocation to both types of agent does not depend on the promised value

with which they entered the period. And in a symmetric stationary sustainable

allocation, both consumers enter each period with the same promised value v .

f. Please give a formula for the promised value v within a symmetric stationary

sustainable allocation.

g. Use a graphical argument to show how to determine the v, c that are asso-

ciated with an optimal stationary symmetric allocation.

h. In the optimal stationary sustainable allocation that you computed in part

g, why doesn’t the planner adjust the continuation value of the consumer whose

participation constraint is binding?

i. Alvarez and Jermann showed that, provided that the usual constraints on

issuing Arrow securities are tightened enough, the optimal sustainable allocation

can be decentralized by trading in a complete set of Arrow securities with price

q(y′|y) = max
i=1,2

β
u′(cit+1(y

′))

u′(cit(y))
.5,
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where q(y′|y) is the price of one unit of consumption tomorrow, contingent on

tomorrow’s endowment of the type 1 person being y′ when it is y today. This

formula has each Arrow security being priced by the agent whose participation

constraint is not binding. Heuristically, the agent who wants to buy the state-

contingent security determines its price because the agent who wants to sell it is

constrained from selling more by a limitation on the quantity of Arrow securities

that he can promise to deliver in that future state. Evidently the gross rate of

interest on a one-period risk-free security is

R(y) =
1∑

y′ q(y
′|y) ,

for y = y and y = 1− y .

For the case in which the parameters are such that the allocation computed

in part I is not sustainable (so that the participation constraints bind), please

compute the risk-free rate of interest. Is it higher or lower than that for the

complete markets economy without enforcement problems that you analyzed in

part I?





Chapter 23
Optimal Unemployment Insurance

23.1. History-dependent unemployment insurance

This chapter applies the recursive contract machinery studied in chapters 21,

22, and 24 in contexts that are simple enough that we can go a long way toward

computing optimal contracts by hand. The contracts encode history dependence

by mapping an initial promised value and a random time t observation into

a time t consumption allocation and a continuation value to bring into next

period. We use recursive contracts to study good ways of providing consumption

insurance when incentive problems come from the insurance authority’s inability

to observe the effort that an unemployed person exerts searching for a job.

We begin by studying a setup of Shavell and Weiss (1979) and Hopenhayn

and Nicolini (1997) that focuses on a single isolated spell of unemployment

followed by permanent employment. Later we take up settings of Wang and

Williamson (1996) and Zhao (2001) with alternating spells of employment and

unemployment in which the planner has limited information about a worker’s

effort while he is on the job, in addition to not observing his search effort while he

is unemployed. Here history dependence manifests itself in an optimal contract

with intertemporal tie-ins across these spells. Zhao uses her model to rationalize

unemployment compensation that replaces a fraction of a worker’s earnings on

his or her previous job.

– 987 –
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23.2. A one-spell model

This section describes a model of optimal unemployment compensation along

the lines of Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997). We

shall use the techniques of Hopenhayn and Nicolini to analyze a model closer

to Shavell and Weiss’s. An unemployed worker orders stochastic processes of

consumption and search effort {ct, at}∞t=0 according to

E

∞∑

t=0

βt [u(ct)− at] (23.2.1)

where β ∈ (0, 1) and u(c) is strictly increasing, twice differentiable, and strictly

concave. We assume that u(0) is well defined. We require that ct ≥ 0 and

at ≥ 0. All jobs are alike and pay wage w > 0 units of the consumption good

each period forever. An unemployed worker searches with effort a and with

probability p(a) receives a permanent job at the beginning of the next period.

Once a worker has found a job, he is beyond the grasp of the unemployment

insurance agency.1 Furthermore, a = 0 when the worker is employed. The

probability of finding a job is p(a) where p is an increasing and strictly concave

and twice differentiable function of a , satisfying p(a) ∈ [0, 1] for a ≥ 0, p(0) =

0. The consumption good is nonstorable. The unemployed worker has no savings

and cannot borrow or lend. The insurance agency is the unemployed worker’s

only source of consumption smoothing over time and across states.

1 This is Shavell and Weiss’s assumption, but not Hopenhayn and Nicolini’s. Hopenhayn

and Nicolini allow the unemployment insurance agency to impose history-dependent taxes

on previously unemployed workers. Since there is no incentive problem after the worker has

found a job, it is optimal for the agency to provide an employed worker with a constant level

of consumption, and hence, the agency imposes a permanent per-period history-dependent

tax on a previously unemployed worker. See exercise 23.2.
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23.2.1. The autarky problem

As a benchmark, we first study the fate of the unemployed worker who has no

access to unemployment insurance. Because employment is an absorbing state

for the worker, we work backward from that state. Let V e be the expected

sum of discounted one-period utilities of an employed worker. Once the worker

is employed, a = 0, making his period utility be u(c) − a = u(w) forever.

Therefore,

V e =
u(w)

(1− β)
. (23.2.2)

Now let V u be the expected present value of utility for an unemployed worker

who chooses the current period pair (c, a) optimally. The Bellman equation for

V u is

V u = max
a≥0

{
u(0)− a+ β [p(a)V e + (1− p(a))V u]

}
. (23.2.3)

The first-order condition for this problem is

βp′(a) [V e − V u] ≤ 1 , (23.2.4)

with equality if a > 0. Since there is no state variable in this infinite horizon

problem, there is a time-invariant optimal search intensity a and an associated

value of being unemployed V u . Let Vaut = V u denote the solution of Bellman

equation (23.2.3).

Equations (23.2.3) and (23.2.4) form the basis for an iterative algorithm

for computing V u = Vaut . Let V
u
j be the estimate of Vaut at the j th iteration.

Use this value in equation (23.2.4) and solve for an estimate of effort aj . Use

this value in a version of equation (23.2.3) with V uj on the right side to compute

V uj+1 . Iterate to convergence.
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23.2.2. Unemployment insurance with full information

As another benchmark, we study the provision of insurance with full informa-

tion. An insurance agency can observe and control the unemployed person’s

consumption and search effort. The agency wants to design an unemployment

insurance contract to give the unemployed worker expected discounted utility

V > Vaut . The planner wants to deliver value V in the most efficient way, mean-

ing the way that minimizes expected discounted cost, using β as the discount

factor. We formulate the optimal insurance problem recursively. Let C(V ) be

the expected discounted cost of giving the worker expected discounted utility V .

The cost function is strictly convex because a higher V implies a lower marginal

utility of the worker; that is, additional expected “utils” can be awarded to the

worker only at an increasing marginal cost in terms of the consumption good.

Given V , the planner assigns first-period pair (c, a) and promised continuation

value V u , should the worker be unlucky and not find a job; (c, a, V u) will all

be chosen to be functions of V and to satisfy the Bellman equation

C(V ) = min
c,a,V u

{
c+ β[1 − p(a)]C(V u)

}
, (23.2.5)

where the minimization is subject to the promise-keeping constraint

V ≤ u(c)− a+ β {p(a)V e + [1− p(a)]V u} . (23.2.6)

Here V e is given by equation (23.2.2), which reflects the assumption that once

the worker is employed, he is beyond the reach of the unemployment insurance

agency. The right side of Bellman equation (23.2.5) is attained by policy func-

tions c = c(V ), a = a(V ), and V u = V u(V ). The promise-keeping constraint,

equation (23.2.6), asserts that the 3-tuple (c, a, V u) attains at least V . Let θ

be the Lagrange multiplier on constraint (23.2.6). At an interior solution, the

first-order conditions with respect to c, a , and V u , respectively, are

θ =
1

u′(c)
, (23.2.7a)

C(V u) = θ

[
1

βp′(a)
− (V e − V u)

]
, (23.2.7b)

C′(V u) = θ . (23.2.7c)

The envelope condition C′(V ) = θ and equation (23.2.7c) imply that

C′(V u) = C′(V ). Strict convexity of C then implies that V u = V . Applied
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repeatedly over time, V u = V makes the continuation value remain constant

during the entire spell of unemployment. Equation (23.2.7a) determines c , and

equation (23.2.7b) determines a , both as functions of the promised V . That

V u = V then implies that c and a are held constant during the unemploy-

ment spell. Thus, the unemployed worker’s consumption c and search effort a

are both “fully smoothed” during the unemployment spell. But the worker’s

consumption is not smoothed across states of employment and unemployment

unless V = V e .

23.2.3. The incentive problem

The preceding efficient insurance scheme requires that the insurance agency con-

trol both c and a . It will not do for the insurance agency simply to announce

c and then allow the worker to choose a . Here is why. The agency delivers a

value V u higher than the autarky value Vaut by doing two things. It increases

the unemployed worker’s consumption c and decreases his search effort a . But

the prescribed search effort is higher than what the worker would choose if he

were to be guaranteed consumption level c while he remains unemployed. This

follows from equations (23.2.7a) and (23.2.7b) and the fact that the insurance

scheme is costly, C(V u) > 0, which imply [βp′(a)]−1 > (V e − V u). But look

at the worker’s first-order condition (23.2.4) under autarky. It implies that if

search effort a > 0, then [βp′(a)]−1 = [V e−V u] , which is inconsistent with the

preceding inequality [βp′(a)]−1 > (V e − V u) that prevails when a > 0 under

the social insurance arrangement. If he were free to choose a , the worker would

therefore want to fulfill (23.2.4), either at equality so long as a > 0, or by

setting a = 0 otherwise. Starting from the a associated with the social insur-

ance scheme, he would establish the desired equality in (23.2.4) by lowering a ,

thereby decreasing the term [βp′(a)]−1 (which also lowers (V e − V u) when the

value of being unemployed V u increases]). If an equality can be established be-

fore a reaches zero, this would be the worker’s preferred search effort; otherwise

the worker would find it optimal to accept the insurance payment, set a = 0,

and never work again. Thus, since the worker does not take the cost of the in-

surance scheme into account, he would choose a search effort below the socially

optimal one. The efficient contract exploits the agency’s ability to control both

the unemployed worker’s consumption and his search effort.
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23.2.4. Unemployment insurance with asymmetric information

Following Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997), now

assume that the unemployment insurance agency cannot observe or enforce a ,

though it can observe and control c . The worker is free to choose a , which puts

expression (23.2.4), the worker’s first-order condition under autarky, back in the

picture.2 Given any contract, the individual will choose search effort according

to the first-order condition (23.2.4). This fact leads the insurance agency to de-

sign the unemployment insurance contract to respect this restriction. Thus, the

recursive contract design problem is now to minimize the right side of equation

(23.2.5) subject to expression (23.2.6) and the incentive constraint (23.2.4).

Since the restrictions (23.2.4) and (23.2.6) are not linear and generally

do not define a convex set, it becomes difficult to provide conditions under

which the solution to the dynamic programming problem results in a convex

function C(V ). As discussed in Appendix A of chapter 21, this complication

can be handled by convexifying the constraint set through the introduction

of lotteries. However, a common finding is that optimal plans do not involve

lotteries, because convexity of the constraint set is a sufficient but not necessary

condition for convexity of the cost function. Following Hopenhayn and Nicolini

(1997), we therefore proceed under the assumption that C(V ) is strictly convex

in order to characterize the optimal solution.

Let η be the multiplier on constraint (23.2.4), while θ continues to denote

the multiplier on constraint (23.2.6). But now we replace the weak inequality

in (23.2.6) by an equality. The unemployment insurance agency cannot award

a higher utility than V because that might violate an incentive-compatibility

constraint for exerting the proper search effort in earlier periods. At an interior

solution, the first-order conditions with respect to c, a , and V u , respectively,

are3

θ =
1

u′(c)
, (23.2.8a)

C(V u) = θ

[
1

βp′(a)
− (V e − V u)

]
− η

p′′(a)

p′(a)
(V e − V u)

2 We are assuming that the worker’s best response to the unemployment insurance ar-

rangement is completely characterized by the first-order condition (23.2.4), an instance of the

so-called “first-order” approach to incentive problems.
3 Hopenhayn and Nicolini let the insurance agency also choose V e , the continuation value

from V, if the worker finds a job. This approach reflects their assumption that the agency

can tax a previously unemployed worker after he becomes employed. See exercise 23.2.
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= −η p
′′(a)

p′(a)
(V e − V u) , (23.2.8b)

C′(V u) = θ − η
p′(a)

1− p(a)
, (23.2.8c)

where the second equality in equation (23.2.8b) follows from strict equality of

the incentive constraint (23.2.4) when a > 0. As long as the insurance scheme is

associated with costs, so that C(V u) > 0, first-order condition (23.2.8b) implies

that the multiplier η is strictly positive. The first-order condition (23.2.8c) and

the envelope condition C′(V ) = θ together allow us to conclude that C′(V u) <

C′(V ). Convexity of C then implies that V u < V . After we have also used

equation (23.2.8a), it follows that in order to provide the proper incentives,

the consumption of the unemployed worker must decrease as the duration of

the unemployment spell lengthens. It also follows from (23.2.4) at equality that

search effort a rises as V u falls, i.e., it rises with the duration of unemployment.

The duration dependence of benefits is designed to provide incentives to

search. To see this, from (23.2.8c), notice how the conclusion that consumption

falls with the duration of unemployment depends on the assumption that more

search effort raises the prospect of finding a job, i.e., that p′(a) > 0. If p′(a) = 0,

then (23.2.8c) and the strict convexity of C imply that V u = V . Thus, when

p′(a) = 0, there is no reason for the planner to make consumption fall with the

duration of unemployment.

23.2.5. Computed example

For parameters chosen by Hopenhayn and Nicolini, Figure 23.2.1 displays the

replacement ratio c/w as a function of the duration of the unemployment spell.4

This schedule was computed by finding the optimal policy functions

V ut+1 = f(V ut )

ct = g(V ut ).

and iterating on them, starting from some initial V u0 > Vaut , where Vaut is

the autarky level for an unemployed worker. Notice how the replacement ratio

4 This figure was computed using the Matlab programs hugo.m, hugo1a.m, hugofoc1.m,

valhugo.m. These are available in the subdirectory hugo, which contains a readme file. These

programs were composed by various members of Economics 233 at Stanford in 1998, especially

Eva Nagypal, Laura Veldkamp, and Chao Wei.
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Figure 23.2.1: Top panel: replacement ratio c/w as a func-

tion of duration of unemployment in the Shavell-Weiss model.

Bottom panel: effort a as a function of duration.

declines with duration. Figure 23.2.1 sets V u0 at 16,942, a number that has to

be interpreted in the context of Hopenhayn and Nicolini’s parameter settings.

We computed these numbers using the parametric version studied by Hopen-

hayn and Nicolini.5 Hopenhayn and Nicolini chose parameterizations and pa-

rameters as follows: They interpreted one period as one week, which led them

to set β = .999. They took u(c) = c(1−σ)

1−σ and set σ = .5. They set the wage

w = 100 and specified the hazard function to be p(a) = 1 − exp(−ra), with r

chosen to give a hazard rate p(a∗) = .1, where a∗ is the optimal search effort

under autarky. To compute the numbers in Figure 23.2.1 we used these same

settings.

5 In section 4.7.3, we described a computational strategy of iterating to convergence on

the Bellman equation (23.2.5), subject to expressions (23.2.6) at equality, and (23.2.4).
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23.2.6. Computational details

Exercise 23.1 asks the reader to solve the Bellman equation numerically.In doing

so, it is useful to note that there are natural lower and upper bounds to the set

of continuation values V u . The lower bound is the expected lifetime utility in

autarky, Vaut . To compute the upper bound, represent condition (23.2.4) as

V u ≥ V e − [βp′(a)]−1,

with equality if a > 0. If there is zero search effort, then V u ≥ V e− [βp′(0)]−1 .

Therefore, to rule out zero search effort we require

V u < V e − [βp′(0)]−1.

(Remember that p′′(a) < 0.) This step gives our upper bound for V u .

To formulate the Bellman equation numerically, we suggest using the con-

straints to eliminate c and a as choice variables, thereby reducing the Bellman

equation to a minimization over the one choice variable V u . First express the

promise-keeping constraint (23.2.6) as u(c) = V +a−β{p(a)V e+[1−p(a)]V u} .
That is, consumption is equal to

c = u−1 (V + a− β[p(a)V e + (1− p(a))V u]) . (23.2.9)

Similarly, solving the inequality (23.2.4) for a and using the assumed functional

form for p(a) leads to

a = max

{
0,

log[rβ(V e − V u)]

r

}
. (23.2.10)

Formulas (23.2.9) and (23.2.10) express (c, a) as functions of V and the contin-

uation value V u . Using these functions allows us to write the Bellman equation

in C(V ) as

C(V ) = min
V u

{c+ β[1 − p(a)]C(V u)} (23.2.11)

where c and a are given by equations (23.2.9) and (23.2.10).
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23.2.7. Interpretations

The substantial downward slope in the replacement ratio in Figure 23.2.1 comes

entirely from the incentive constraints facing the planner. We saw earlier that

without private information, the planner would smooth consumption over the

unemployment spell by keeping the replacement ratio constant. In the situation

depicted in Figure 23.2.1, the planner can’t observe the worker’s search effort and

therefore makes the replacement ratio fall and search effort rise as the duration

of unemployment increases, especially early in an unemployment spell. There is

a “carrot-and-stick” aspect to the replacement rate and search effort schedules:

the “carrot” occurs in the forms of high compensation and low search effort

early in an unemployment spell. The “stick” occurs in the low compensation

and high effort later in the spell. We shall see this carrot-and-stick feature in

some of the credible government policies analyzed in chapters 24, 25, and 26.

The planner offers declining benefits and asks for increased search effort

as the duration of an unemployment spell rises in order to provide unemployed

workers with proper incentives, not to punish an unlucky worker who has been

unemployed for a long time. The planner believes that a worker who has been

unemployed a long time is unlucky, not that he has done anything wrong (i.e.,

not lived up to the contract). Indeed, the contract is designed to induce the

unemployed workers to search in the way the planner expects. The falling con-

sumption and rising search effort of the unlucky ones with long unemployment

spells are simply the prices that have to be paid for the common good of pro-

viding proper incentives.

23.2.8. Extension: an on-the-job tax

Hopenhayn and Nicolini allow the planner to tax the worker after he becomes

employed, and they let the tax depend on the duration of unemployment. Giving

the planner this additional instrument substantially decreases the rate at which

the replacement ratio falls during a spell of unemployment. Instead, the planner

makes use of a more powerful tool: a permanent bonus or tax after the worker

becomes employed. Because it endures, this tax or bonus is especially potent

when the discount factor is high. In exercise 23.2 , we ask the reader to set up

the functional equation for Hopenhayn and Nicolini’s model.
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23.2.9. Extension: intermittent unemployment spells

In Hopenhayn and Nicolini’s model, employment is an absorbing state and there

are no incentive problems after a job is found. There are not multiple spells of

unemployment. Wang and Williamson (1996) built a model in which there

can be multiple unemployment spells, and in which there is also an incentive

problem on the job. As in Hopenhayn and Nicolini’s model, search effort affects

the probability of finding a job. In addition, while on a job, effort affects the

probability that the job ends and that the worker becomes unemployed again.

Each job pays the same wage. In Wang and Williamson’s setup, the promised

value keeps track of the duration and number of spells of employment as well as

of the number and duration of spells of unemployment. One contract transcends

employment and unemployment.

23.3. A multiple-spell model with lifetime contracts

Rui Zhao (2001) modifies and extends features of Wang and Williamson’s model.

In her model, effort on the job affects output as well as the probability that

the job will end. In Zhao’s model, jobs randomly end, recurrently returning a

worker to the state of unemployment. The probability that a job ends depends

directly or indirectly on the effort that workers expend on the job. A planner

observes the worker’s output and employment status, but never his effort, and

wants to insure the worker. Using recursive methods, Zhao designs a history-

dependent assignment of unemployment benefits, if unemployed, and wages, if

employed, that balance a planner’s desire to insure the worker with the need

to provide incentives to supply effort in work and search. The planner uses

history dependence to tie compensation while unemployed (or employed) to

earlier outcomes that partially inform the planner about the workers’ efforts

while employed (or unemployed). These intertemporal tie-ins give rise to what

Zhao interprets broadly as a “replacement rate” feature that we seem to observe

in unemployment compensation systems.
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23.3.1. The setup

In a special case of Zhao’s model, there are two effort levels. Where a ∈ {aL, aH}
is a worker’s effort and yi > yi−1 , an employed worker produces yt ∈ [y1, · · · , yn]
with probability

Prob(yt = yi) = p(yi; a).

Zhao assumes:

Assumption 1: p(yi; a) satisfies themonotone likelihood ratio property: p(yi;aH)
p(yi;aL)

increases as yi increases.

At the end of each period, jobs end with probability πeu . Zhao embraces

one of two alternative assumptions about the job separation rate πeu , allowing

it to depend on either current output y or current work effort a . She assumes:

Assumption 2: Either πeu(y) decreases with y or πeu(a) decreases with a .

Unemployed workers produce nothing and search for a job subject to the

following assumption about the job finding rate πue(a):

Assumption 3: πue(a) increases with a .

The worker’s one-period utility function is U(c, a) = u(c) − φ(a) where

u(·) is continuously differentiable, strictly increasing and strictly concave, and

φ(a) is continuous, strictly increasing, and strictly convex. The worker orders

random {ct, at}∞t=0 sequences according to

E

∞∑

t=0

βtU(ct, at), β ∈ (0, 1). (23.3.1)

We shall regard a planner as being a coalition of firms united with an

unemployment insurance agency. The planner is risk neutral and can borrow

and lend at a constant risk-free gross one-period interest rate of R = β−1 .

Let the worker’s employment state be st ∈ S = {e, u} where e denotes

employed, u unemployed. The worker’s output at t is

zt =

{
0 if st = u,

yt if st = e.

For t ≥ 1, the time t component of the publicly observed information is

xt = (zt−1, st),
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and x0 = s0 . At time t , the planner observes the history xt and the worker

observes (xt, at).

The transition probability for xt+1 ≡ (zt, st+1) can be factored as follows:

π(xt+1|st, at) = πz(zt; st, at)πs(st+1; zt, st, at) (23.3.2)

where πz is the distribution of output conditioned on the state and the action,

and πs encodes the transition probabilities of employment status conditional

on output, current employment status, and effort. In particular, Zhao assumes

that
πs(u; 0, u, a) = 1− πue(a)

πs(e; 0, u, a) = πue(a)

πs(u; y, e, a) = πeu(y, a)

πs(e; y, e, a) = 1− πeu(y, a).

(23.3.3)

23.3.2. A recursive lifetime contract

Consider a worker with beginning-of-period employment status s and promised

value v . For given (v, s), let w(z, s′) be the continuation value of promised

utility (23.3.1) for next period when today’s output is z and tomorrow’s em-

ployment state is s′ . At the beginning of next period, (z, s′) will be the labor

market outcome most recently observed by the planner. Let W = {Ws}s∈{u,e}

be two compact sets of continuation values, one set for s = u and another for

s = e . For each (v, s), a recursive contract specifies a recommended effort level

a today, an output-contingent consumption level c(z) today, and continuation

values w(z, s′) to be used to reset v tomorrow.

For each (v, s), the contract (a, c(z), w(z, s′)) must satisfy:

∑

z

πz(z; s, a)

(
u(c(z)) + β

∑

s′

πs(s
′; z, s, a)w(z, s′)

)
− φ(a) = v (23.3.4)

and

∑

z

πz(z; s, a)

(
u(c(z)) + β

∑

s′

πs(s
′; z, s, a)w(z, s′)

)
− φ(a) ≥

∑

z

πz(z; s, ã)

(
u(c(z)) + β

∑

s′

πs(s
′; z, s, ã)w(z, s′)

)
− φ(ã) ∀ã.

(23.3.5)
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Constraint (23.3.4) entails promise keeping, while (23.3.5) are the incentive-

compatibility or “effort-inducing” constraints. In addition, a contract has to

satisfy c ≤ c(z) ≤ c for all z and w(z, s′) ∈Ws′ for all (z, s
′). A contract is said

to be incentive compatible if it satisfies the incentive compatibility constraints

(23.3.5).6

Definition: A recursive contract (a, c(z), w(z, s′)) is said to be feasible with

respect to W for a given (v, s) pair if it is incentive compatible in state s ,

delivers promised value v , and w(z, s′) ∈Ws′ for all (z, s′).

Let C(v, s) be the minimum cost to the planner of delivering promised

value v to a worker in employment state s . We can represent the Bellman

equation for C(v, s) in terms of the following two-part optimization:

Ψ(v, s, a) = min
c(z),w(z,s′)

{
∑

z

πz(z; s, a)
(
−z + c(z)

+ β
∑

s′

πs(s
′; z, s, a)C(w(z, s′), s′)

)}
(23.3.6a)

subject to constraints (23.3.4) and (23.3.5), and

C(v, s) = min
a∈[aL,aH ]

Ψ(v, s, a). (23.3.6b)

The function Ψ(v, s, a) assumes that the worker exerts effort level a . Later, we

shall typically assume that parameters are such that C(v, s) = Ψ(v, s, aH), so

that the planner finds it optimal always to induce high effort. Put a Lagrange

multiplier λ(v, s, a) on the promise-keeping constraint (23.3.4) and another mul-

tiplier ν(v, s, a) on the effort-inducing constraint (23.3.5) given a , and form the

6 We assume two-sided commitment to the contract and therefore ignore the participation

constraints that Zhao imposes on the contract. She requires that continuation values w(z, s′)

be at least as great as the autarky values Vs′,aut for each (z, s′) .
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Lagrangian:

L =
∑

z

πz(z; s, a)

{
−z + c(z) + β

∑

s′

πs(s
′; z, s, a)C(w(z, s′), s′)

− λ(v, s, a)

[
u(c(z)) + β

∑

s′

πs(s
′; z, s, a)w(z, s′))− φ(a)− v

]

− ν(v, s, a)

[
u(c(z)) + β

∑

s′

πs(s
′; z, s, a)w(z, s′)− φ(a)

− πz(z; s, ã)

πz(z; s, a)

(
u(c(z)) + β

∑

s′

πs(s
′; z, s, ã)w(z, s′)− φ(ã)

)]}
,

where ã ∈ {aL, aH} and ã 6= a . First-order conditions for c(z) and w(z, s′),

respectively, are

1

u′(c(z))
=λ(v, s, a) + ν(v, s, a)

(
1− πz(z; s, ã)

πz(z; s, a)

)
(23.3.7a)

Cv(w(z, s
′), s′) =λ(v, s, a)

+ ν(v, s, a)

[
1− πz(z; s, ã)

πz(z; s, a)

πs(s
′; s, z, ã)

πs(s′; z, s, a)

]
. (23.3.7b)

The envelope conditions are

Ψv(v, s, a) = λ(v, s, a) (23.3.8a)

Cv(v, s) = Ψv(v, s, a
∗) (23.3.8b)

where a∗ is the planner’s optimal choice of a .

To deduce the dynamics of compensation, Zhao’s strategy is to study the

first-order conditions (23.3.7) and envelope conditions (23.3.8) under two cases,

s = u and s = e .
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23.3.3. Compensation dynamics when unemployed

In the unemployed state (s = u), the first-order conditions become

1

u′(c)
= λ(v, u, a) (23.3.9a)

Cv(w(0, u), u) = λ(v, u, a) + ν(v, u, a)

[
1− 1− πue(ã)

1− πue(a)

]
(23.3.9b)

Cv(w(0, e), e) = λ(v, u, a) + ν(v, u, a)

[
1− πue(ã)

πue(a)

]
. (23.3.9c)

The effort-inducing constraint (23.3.5) can be rearranged to become

β(πue(a)− πue(ã))(w(0, e)− w(0, u)) ≥ φ(a) − φ(ã).

Like Hopenhayn and Nicolini, Zhao describes how compensation and effort de-

pend on the duration of unemployment:

Proposition: To induce high search effort, unemployment benefits must fall

over an unemployment spell.

Proof: When search effort is high, the effort-inducing constraint binds. By

assumption 3,
1− πue(aL)

1− πue(aH)
> 1 >

πue(aL)

πue(aH)
.

These inequalities and the first-order condition (23.3.9) then imply

Cv(w(0, e), e) > Ψv(v, u, aH) > Cv(w(0, u), u). (23.3.10)

Let cu(t), vu(t), respectively, be consumption and the continuation value for an

unemployed worker. Equations (23.3.9) and the envelope conditions imply

1

u′(cu(t))
= Ψv(vu(t), u, aH) > Cv(vu(t+ 1), u) =

1

u′(cu(t+ 1))
. (23.3.11)

Concavity of u then implies that cu(t) > cu(t+ 1). In addition, notice that

Cv(w(0, u), u)− Cv(v, u) = ν(v, u, aH)

(
1− 1− πue(aL)

1− πue(aH)

)
, (23.3.12)

which follows from the first-order conditions (23.3.9) and the envelope condi-

tions. Equation (23.3.12) implies that continuation values fall with the duration

of unemployment.
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23.3.4. Compensation dynamics while employed

When the worker is employed, for each promised value v , the contract specifies

output-contingent consumption and continuation values a c(y), w(y, s′). When

s = e , the first-order conditions (23.3.7) become

1

u′(c(y))
= λ(v, e, a) + ν(v, e, a)

(
1− p(y; ã)

p(y; a)

)
(23.3.13a)

Cv(w(y, u), u) = λ(v, e, a) + ν(v, e, a)

(
1− p(y; ã)

p(y; a)

πeu(y, ã)

πeu(y, a)

)
(23.3.13b)

Cv(w(y, e), e) = λ(v, e, a) + ν(v, e, a)

(
1− p(y; ã)

p(y; a)

1− πeu(y, ã)

1− πeu(y, a)

)
. (23.3.13b)

Zhao uses these first-order conditions to characterize how compensation depends

on output:

Proposition: To induce high work effort, wages and continuation values in-

crease with current output.

Proof: For any y > ỹ , let d = p(ỹ;aL)
p(ỹ;aH) −

p(y;aL)
p(y;aH) . Assumption 1 about p(y; a)

implies that d > 0. The first-order conditions (23.3.13) imply that

1

u′(c(y))
− 1

u′(c(ỹ))
= ν(v, e, a)d > 0, (23.3.14a)

Cv(w(y, u), u)− Cv(w(ỹ, u), u) ∝ ν(v, e, a)d > 0, (23.3.14b)

Cv(w(y, e), e)− Cv(w(ỹ, e), e) ∝ ν(v, e, a)d > 0. (23.3.14c)

Concavity of u and convexity of C give the result.

In the following proposition, Zhao shows how continuation values at the

start of unemployment spells should depend on the history of the worker’s out-

comes during previous employment and unemployment spells.

Proposition: If the job separation rate depends on current output, then the

replacement rate immediately after a worker loses a job is 100%. If the job

separation rate depends on work effort, then the replacement rate is less than

100%.

Proof: If the job separation rate depends on output , the first-order conditions

(23.3.13) imply

1

u′(c(y))
= Cv(w(y, u), u) = Cv(w(y, e), e)). (23.3.15)
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This is because πeu(y, ã) = πeu(y, a) when the job separation rate depends on

output. Let ce(t), cu(t) be consumption of employed and unemployed workers,

and let ve(t), vu(t) be the assigned promised values at t . Then

1

u′(ce(t))
= Cv(vu,t+1, u) =

1

cu(t+ 1)

where the first equality follows from (23.3.15) and the second from the envelope

condition. If the job separation rate depends on work effort , then the first-order

conditions (23.3.13) imply

1

u′(c(y))
− Cv(w(y, u), u) = ν(v, e, a)

p(y; aL)

p(y; aH)

(
πeu(aL)

πeu(aH)
− 1

)
. (23.3.16)

Assumption 2 implies that the right side of (23.3.16) is positive, which implies

that 1
u′(ce(t))

> Cv(vu(t+ 1), u) = 1
u′(cu(t+1)) .

23.3.5. Summary

A worker in Zhao’s model enters a lifetime contract that makes compensation

respond to the history of outputs on the current and past jobs, as well as on the

durations of all previous spells of unemployment.7 Her model has the outcome

that compensation at the beginning of an unemployment spell varies directly

with the compensation attained on the previous job. This aspect of her model

offers a possible explanation for why unemployment insurance systems often

feature a “replacement rate” that gives more unemployment insurance payments

to workers who had higher wages in their prior jobs.

7 We have analyzed a version of Zhao’s model in which the worker is committed to obey

the contract. Zhao incorporates an enforcement problem in her model by allowing the worker

to accept an outside option each period.
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23.4. Concluding remarks

The models that we have studied in this chapter isolate the worker from capital

markets so that the worker cannot transfer consumption across time or states

except by adhering to the contract offered by the planner. If the worker in the

models of this chapter were allowed to save or issue a risk-free asset bearing a

gross one-period rate of return approaching β−1 , it would interfere substantially

with the planner’s ability to provide incentives by manipulating the worker’s

continuation value in response to observed current outcomes. In particular,

forces identical to those analyzed in the Cole and Kocherlakota setup that we

analyzed at length in chapter 21 would circumscribe the planner’s ability to

supply insurance. In the context of unemployment insurance models like that

of this chapter, this point has been studied in detail in papers by Ivan Werning

(2002) and Kocherlakota (2004).

Pavoni and Violante (2007) substantially extended models like those in this

chapter to perform positive and normative analysis of a sequence of govern-

ment programs that try efficiently to provide insurance, training, and proper

incentives for unemployed and undertrained workers to reenter employment.

Exercises

Exercise 23.1 Optimal unemployment compensation

a. Write a program to compute the autarky solution, and use it to reproduce

Hopenhayn and Nicolini’s calibration of r , as described in text.

b. Use your calibration from part a. Write a program to compute the optimum

value function C(V ) for the insurance design problem with incomplete infor-

mation. Use the program to form versions of Hopenhayn and Nicolini’s table 1,

column 4 for three different initial values of V , chosen by you to belong to the

set (Vaut, V
e).

Exercise 23.2 Taxation after employment

Show how the functional equation (23.2.5), (23.2.6) would be modified if the

planner were permitted to tax workers after they became employed.
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Exercise 23.3 Optimal unemployment compensation with unobserv-

able wage offers

Consider an unemployed person with preferences given by

E

∞∑

t=0

βtu(ct) ,

where β ∈ (0, 1) is a subjective discount factor, ct ≥ 0 is consumption at time

t , and the utility function u(c) is strictly increasing, twice differentiable, and

strictly concave. Each period the worker draws one offer w from a uniform

wage distribution on the domain [wL, wH ] with 0 ≤ wL < wH < ∞ . Let the

cumulative density function be denoted F (x) = Prob{w ≤ x} , and denote its

density by f , which is constant on the domain [wL, wH ] . After the worker

has accepted a wage offer w , he receives the wage w per period forever. He

is then beyond the grasp of the unemployment insurance agency. During the

unemployment spell, any consumption smoothing has to be done through the

unemployment insurance agency because the worker holds no assets and cannot

borrow or lend.

a. Characterize the worker’s optimal reservation wage when he is entitled to a

time-invariant unemployment compensation b of indefinite duration.

b. Characterize the optimal unemployment compensation scheme under full

information. That is, we assume that the insurance agency can observe and

control the unemployed worker’s consumption and reservation wage.

c. Characterize the optimal unemployment compensation scheme under asym-

metric information where the insurance agency cannot observe wage offers,

though it can observe and control the unemployed worker’s consumption. Dis-

cuss the optimal time profile of the unemployed worker’s consumption level.

Exercise 23.4 Full unemployment insurance

An unemployed worker orders stochastic processes of consumption, search effort

{ct, at}∞t=0 according to

E

∞∑

t=0

βt [u(ct)− at]

where β ∈ (0, 1) and u(c) is strictly increasing, twice differentiable, and strictly

concave. It is required that ct ≥ 0 and at ≥ 0. All jobs are alike and pay wage
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w > 0 units of the consumption good each period forever. After a worker has

found a job, the unemployment insurance agency can tax the employed worker

at a rate τ consumption goods per period. The unemployment agency can make

τ depend on the worker’s unemployment history. The probability of finding a

job is p(a), where p is an increasing and strictly concave and twice differentiable

function of a , satisfying p(a) ∈ [0, 1] for a ≥ 0, p(0) = 0. The consumption

good is nonstorable. The unemployed person cannot borrow or lend and holds

no assets. If the unemployed worker is to do any consumption smoothing, it

has to be through the unemployment insurance agency. The insurance agency

can observe the worker’s search effort and can control his consumption. An

employed worker’s consumption is w − τ per period.

a. Let Vaut be the value of an unemployed worker’s expected discounted utility

when he has no access to unemployment insurance. An unemployment insurance

agency wants to insure unemployed workers and to deliver expected discounted

utility V > Vaut at minimum expected discounted cost C(V ). The insurance

agency also uses the discount factor β . The insurance agency controls c, a, τ ,

where c is consumption of an unemployed worker. The worker pays the tax τ

only after he becomes employed. Formulate the Bellman equation for C(V ).

Exercise 23.5 Two effort levels

An unemployment insurance agency wants to insure unemployed workers in the

most efficient way. An unemployed worker receives no income and chooses a

sequence of search intensities at ∈ {0, a} to maximize the utility functional

(1) E0

∞∑

t=0

βt {u(ct)− at} , β ∈ (0, 1)

where u(c) is an increasing, strictly concave, and twice continuously differen-

tiable function of consumption of a single good. There are two values of the

search intensity, 0 and a . The probability of finding a job at the beginning of

period t+ 1 is

(2) π(at) =

{
π(a), if at = a;

π(0) < π(a), if at = 0,

where we assume that a > 0. Note that the worker exerts search effort in

period t and possibly receives a job at the beginning of period t + 1. Once
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the worker finds a job, he receives a fixed wage w forever, sets a = 0, and

has continuation utility Ve =
u(w)
1−β . The consumption good is not storable and

workers can neither borrow nor lend. The unemployment agency can borrow

and lend at a constant one-period risk-free gross interest rate of R = β−1 . The

unemployment agency cannot observe the worker’s effort level.

Subproblem A

a. Let V be the value of (1) that the unemployment agency has promised an

unemployed worker at the start of a period (before he has made his search deci-

sion). Let C(V ) be the minimum cost to the unemployment insurance agency of

delivering promised value V . Assume that the unemployment insurance agency

wants the unemployed worker to set at = a for as long as he is unemployed

(i.e., it wants to promote high search effort). Formulate a Bellman equation for

C(V ), being careful to specify any promise-keeping and incentive constraints.

(Assume that there are no participation constraints: the unemployed worker

must participate in the program.)

b. Show that if the incentive constraint binds, then the unemployment agency

offers the worker benefits that decline as the duration of unemployment grows.

c. Now alter assumption (2) so that π(a) = π(0). Do benefits still decline with

increases in the duration of unemployment? Explain.

Subproblem B

d. Now assume that the unemployment insurance agency can tax the worker

after he has found a job, so that his continuation utility upon entering a state

of employment is u(w−τ)
1−β , where τ is a tax that is permitted to depend on

the duration of the unemployment spell. Defining V as above, formulate the

Bellman equation for C(V ).

e. Show how the tax τ responds to the duration of unemployment.

Exercise 23.6 Partially observed search effort

Consider the following modification of a model of Hopenhayn and Nicolini. An

insurance agency wants to insure an infinitely lived unemployed worker against

the risk that he will not find a job. With probability p(a), an unemployed

worker who searches with effort a this period will find a job that earns wage w

in consumption units per period. That job will start next period, last forever,
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and the worker will never quit it. With probability 1− p(a) he will find himself

unemployed again at the beginning of next period. We assume that p(a) is an

increasing and strictly concave and twice differentiable function of a with p(a) ∈
[0, 1] for a ≥ 0 and p(0) = 0. The insurance agency is the worker’s only source

of consumption (there is no storage or saving available to the worker). The

worker values consumption according to a twice continuously differentiable and

strictly concave utility function u(c) where u(0) is finite. While unemployed,

the worker’s utility is u(c)−a ; when he is employed it is u(w) (no effort a need

be applied when he is working).

With exogenous probability d ∈ (0, 1) the insurance agency observes the

search effort of a worker who searched last period but did not find a job. With

probability 1− d , the insurance agency does not observe the last-period search

intensity of an unemployed worker who was not successful in finding a job period.

Let V be the expected discounted utility of an unemployed worker who is

searching for work this period. Let C(V ) be the minimum cost to the unem-

ployment insurance agency of delivering V to the unemployed worker.

a. Formulate a Bellman equation for C(V ).

b. Get as far as you can in analyzing how the unemployment compensation

contract offered to the worker depends on the duration of unemployment and

the history of observed search efforts that are detected by the UI agency.

Hint: you might want to allow the continuation value when unemployed to

depend on last period’s search effort when it is observed.





Chapter 24
Credible Government Policies: I

24.1. Introduction

Kydland and Prescott (1977) opened the modern discussion of time consistency

in macroeconomics with some examples that show how outcomes differ in other-

wise identical economies when the assumptions about the timing of government

policy choices are altered.1 In particular, they compared a timing protocol in

which a government chooses its (possibly history-contingent) policies once and

for all at the beginning of time with one in which the government chooses sequen-

tially. Because outcomes are worse when the government chooses sequentially,

Kydland and Prescott’s examples illustrate the superiority of the once-and-for-

all choice timing protocol for the government.

Subsequent work on time consistency focused on how a reputation can im-

prove outcomes when a government chooses sequentially.2 The issue is whether

constraints confronting the government and private sector expectations can be

arranged so that a government adheres to an expected pattern of behavior be-

cause it would worsen its reputation if it did not.

A “folk theorem” from game theory states that if there is no discounting of

future payoffs, then many first-period payoffs can be sustained as equilibria of

a repeated version of a game. A main purpose of this chapter is to study how

discounting of future payoffs affects the set of outcomes that are attainable with

a reputational mechanism.

Modern formulations of reputational models of government policy use and

extend ideas from dynamic programming. Each period, a government faces

choices whose consequences include a first-period return and a reputation to

pass on to next period. Under rational expectations, any reputation that the

1 Consider two extensive-form versions of the “battle of the sexes” game described by Kreps

(1990), one in which the man chooses first, the other in which the woman chooses first.

Backward induction recovers different outcomes in these two different games. Though they

share the same choice sets and payoffs, these are different games.
2 Barro and Gordon (1983a, 1983b) are early contributors to this literature. See Kenneth

Rogoff (1989) for a survey.

– 1011 –
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government carries into next period must be one that it will want to confirm.

We shall study the set of possible values that the government can attain with

reputations that it could conceivably want to confirm.

This chapter and chapter 25 apply an apparatus of Abreu, Pearce, and Stac-

chetti (1986, 1990) (APS) to reputational equilibria in a class of macroeconomic

models. APS use ideas from dynamic programming.3 Their work exploits the

insight that it is more convenient to work with the set of continuation values

associated with equilibrium strategies than it is to work directly with the set of

equilibrium strategies. We use an economic model like those of Chari, Kehoe,

and Prescott (1989) and Stokey (1989, 1991) to exhibit what Chari and Ke-

hoe (1990) call sustainable government policies and what Stokey calls credible

public policies. The literature on sustainable or credible government policies

in macroeconomics adapts ideas from the literature on repeated games so that

they can be applied in contexts in which a single agent (a government) behaves

strategically, and in which all other agents’ behavior can be summarized in terms

of a system of expectations about government actions together with competitive

equilibrium outcomes that respond to the government’s actions.4

24.1.1. Diverse sources of history dependence

The theory of credible government policy uses particular kinds of history depen-

dence to render credible a sequence of actions chosen by a sequence of policy

makers. Here credible means an action that the public rationally expects the

government to take because it thinks it is in the government’s interest to do

so. Hence, a credible action is one that the government wants to implement.

By way of contrast, in chapter 19, we encountered a distinct source of history

dependence in the policy of a Ramsey planner or Stackelberg leader. There

history dependence came from the requirement that it is necessary to account

3 This chapter closely follows Stacchetti (1991), who applies Abreu, Pearce, and Stacchetti

(1986, 1990) to a more general class of models than that treated here. Stacchetti also stud-

ies a class of setups in which the private sector observes only a noise-ridden signal of the

government’s actions.
4 For descriptions of theories of credible government policy, see Chari and Kehoe (1990),

Stokey (1989, 1991), Rogoff (1989), and Chari, Kehoe, and Prescott (1989). For applications of

the framework of Abreu, Pearce, and Stacchetti, see Chang (1998) and Phelan and Stacchetti

(1999).
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for constraints that dynamic aspects of private sector behavior put on the time

t action of a Ramsey planner or Stackelberg leader who at time 0 makes once-

and-for-all choices of intertemporal sequences. History dependence came from

the requirement that the Ramsey planner’s time t action must confirm private

sector expectations that the Ramsey planner had chosen at time 0 partly to

influence private sector outcomes in periods 0, . . . , t− 1.

In settings in which private agents face genuinely dynamic decision problems

having their own endogenous state variables like various forms of physical and

human capital, both sources of history dependence influence a credible policy.

It can be subtle to disentangle the economic forces contributing to history de-

pendence in government policies in such settings. However, for special examples

that deprive private agents’ decision problems of any ‘natural’ state variables,

we can isolate the source of history dependence coming from the requirement

that a government policy must be credible. We consider only such examples

in this chapter for the avowed purpose of isolating the source of history de-

pendence coming from credibility considerations and distinguishing it from the

chapter 19 source that instead comes from the need to respect substantial dy-

namics coming from equilibrium private sector behavior. Having isolated one

source of history dependence in chapter 19 and another in the present chapter,

we proceed in chapter 25 to activate both sources of history dependence and

then to seek a recursive representation for a credible government policy in that

more comprehensive setting.

24.2. One-period economy

There is a continuum of households, each of which chooses an action ξ ∈ X . A

government chooses an action y ∈ Y . The sets X and Y are compact. The

average level of ξ across households is denoted x ∈ X . The utility of a particular

household is u(ξ, x, y) when it chooses ξ , when the average household’s choice

is x , and when the government chooses y . The payoff function u(ξ, x, y) is

strictly concave and continuously differentiable in ξ and y .5

5 The discrete-choice examples given later violate some of these assumptions in non essential

ways.
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24.2.1. Competitive equilibrium

For given levels of y and x , the representative household faces the problem

maxξ∈X u(ξ, x, y). Let the maximizer be a function ξ = f(x, y). When a

household believes that the government’s choice is y and that the average level

of other households’ choices is x , it acts to set ξ = f(x, y). Because all house-

holds are alike, this fact implies that the actual level of x is f(x, y). For the

representative household’s expectations about the average to be consistent with

the average outcome, we require that ξ = x , or x = f(x, y). This makes the

representative agent representative. We use the following:6

Definition 1: A competitive equilibrium or a rational expectations equilibrium

is an x ∈ X that satisfies x = f(x, y).

A competitive equilibrium satisfies u(x, x, y) = maxξ∈X u(ξ, x, y).

For each y ∈ Y , let x = h(y) denote the corresponding competitive equilib-

rium. We adopt:

Definition 2: The set of competitive equilibria is C = {(x, y) | u(x, x, y) =

maxξ∈X u(ξ, x, y)} , or equivalently C = {(x, y) | x = h(y)} .

24.2.2. Ramsey problem

The following timing of actions underlies a Ramsey plan. First, the government

selects a y ∈ Y . Then, knowing the government’s choice of y , the aggregate of

households responds with a competitive equilibrium. The government evaluates

policies y ∈ Y with the payoff function u(x, x, y); that is, the government is

benevolent.

In choosing y , the government has to forecast how the economy will respond.

We assume that the government correctly forecasts that the economy will re-

spond to y with a competitive equilibrium, x = h(y). We use these definitions:

Definition 3: The Ramsey problem is maxy∈Y u[h(y), h(y), y] , or equivalently

max(x,y)∈C u(x, x, y).

Definition 4: The policy that attains the maximum for the Ramsey problem

is denoted yR . Let xR = h(yR). Then (yR, xR) is called the Ramsey outcome

or Ramsey plan.

6 See the definition of a rational expectations equilibrium in chapter 7.
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Two remarks about the Ramsey problem are in order. First, the Ramsey

outcome is typically inferior to the “dictatorial outcome” that solves the unre-

stricted problem maxx∈X,y∈Y u(x, x, y), because the restriction (x, y) ∈ C is in

general binding. Second, the timing of actions is important. The Ramsey prob-

lem assumes that the government chooses first and must stick with its choice

regardless of how private agents subsequently choose x ∈ X .

If the government were granted the opportunity to reconsider its plan after

households had chosen x = xR , the government would in general want to de-

viate from yR because often there exists an α 6= yR for which u(xR, xR, α) >

u(xR, xR, yR). The “time consistency problem” is the incentive the government

would have to deviate from the Ramsey plan if it were allowed to react after

households had set x = xR . In this one-period setting, to support the Ramsey

plan requires a timing protocol that forces the government to choose first.

24.2.3. Nash equilibrium

Consider an alternative timing protocol that confronts households with a fore-

casting problem because the government chooses after or simultaneously with

the households. Assume that households forecast that, given x , the government

will set y to solve maxy∈Y u(x, x, y). We use:

Definition 5: A Nash equilibrium (xN , yN ) satisfies

(1) (xN , yN) ∈ C ;

(2) Given xN , u(xN , xN , yN ) = maxη∈Y u(xN , xN , η).

Condition (1) asserts that xN = h(yN ), or that the economy responds to yN

with a competitive equilibrium. Thus, condition (1) says that given (xN , yN),

each individual household wants to set ξ = xN ; that is, the representative

household has no incentive to deviate from xN . Condition (2) asserts that

given xN , the government chooses a policy yN from which it has no incentive

to deviate.7

7 Much of the language of this chapter is borrowed from game theory, but the object under

study is not a game, because we do not specify all of the objects that formally define a game.

In particular, we do not specify the payoffs to all agents for all feasible choices. We only

specify the payoffs u(ξ, x, y) where each private agent chooses the same value of ξ .
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We can use the solution of the problem in condition (2) to define the govern-

ment’s best response function y = H(x). The definition of a Nash equilibrium

can be phrased as a pair (x, y) ∈ C such that y = H(x).

There are two timings of choices for which a Nash equilibrium is a natural

equilibrium concept. One is where households choose first, forecasting that the

government will respond to the aggregate outcome x by setting y = H(x). An-

other is where the government and households choose simultaneously, in which

case a Nash equilibrium (xN , yN ) depicts a situation in which everyone has ra-

tional expectations: given that each household expects the aggregate variables

to be (xN , yN), each household responds in a way to make x = xN , and given

that the government expects that x = xN , it responds by setting y = yN .

We let the values attained by the government under the Nash and Ramsey

outcomes, respectively, be denoted vN = u(xN , xN , yN) and vR = u(xR, xR, yR).

Because of the additional constraint embedded in the Nash equilibrium, out-

comes are ordered according to

vN = max
{(x,y)∈C: y=H(x)}

u(x, x, y) ≤ max
(x,y)∈C

u(x, x, y) = vR .

24.3. Nash and Ramsey outcomes

To illustrate these concepts, we consider two examples: taxation within a fully

specified economy, and a black-box model with discrete choice sets.

24.3.1. Taxation example

Each of a continuum of households has preferences over leisure ℓ , private con-

sumption c , and per capita government expenditures g . The one-period utility

function is

U(ℓ, c, g) = ℓ+ log(α+ c) + log(α + g), α ∈ (0, 1/2).

Each household is endowed with one unit of time that can be devoted to leisure or

labor. The production technology is linear in labor, and the economy’s resource

constraint is

c+ g = 1− ℓ,
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where c and ℓ are the average levels of private consumption and leisure, respec-

tively.

A benevolent government wants to maximize the utility of the representative

household. A benevolent government that is subject only to the constraint

imposed by the technology and would choose ℓ = 0 and c = g = 1/2 . This

“dictatorial outcome” yields welfare W d = 2 log(α+ 1/2).

Competitive equilibrium in general imposes more restrictions on the alloca-

tions attainable by a benevolent government. Here we will focus on competitive

equilibria where the government finances its expenditures by levying a flat-

rate tax τ on labor income. The household’s budget constraint at equality is

c = (1− τ)(1− ℓ). Given a government policy (τ, g), an individual household’s

optimal decision rule for leisure is

ℓ(τ) =

{ α
1− τ if τ ∈ [0, 1− α];

1 if τ > 1− α.

Due to the linear technology and the fact that government expenditures enter

additively in the utility function, the household’s decision rule ℓ(τ) is also the

equilibrium value of individual leisure at a given tax rate τ . Imposing govern-

ment budget balance, g = τ(1 − ℓ), the representative household’s welfare in a

competitive equilibrium can be expressed as a function of τ and is equal to

W c(τ) = ℓ(τ) + log
{
α+ (1 − τ)[1 − ℓ(τ)]

}
+ log

{
α+ τ [1 − ℓ(τ)]

}
.

The Ramsey tax rate and allocation are determined by the solution to maxτ W
c(τ).

It can be verified that because α ∈ (0, .5), the Ramsey plan sets τ < .5, which

produces an allocation in which c, g , and 1− ℓ are all positive.

By way of contrast, the government’s problem in a Nash equilibrium is

maxτ
{
ℓ+ log[α+ (1− τ)(1− ℓ)] + log[α+ τ(1− ℓ)]

}
. If ℓ < 1, the optimizer is

τ = .5. There is a continuum of Nash equilibria indexed by τ ∈ [1−α, 1] where
agents choose not to work, and consequently c = g = 0. The only Nash equi-

librium with production is τ = 1/2 with welfare level W c(1/2). This conclusion

follows directly from the fact that the government’s best response is τ = 1/2 for

any ℓ < 1. These outcomes are illustrated numerically in Figure 24.3.1. Here

the time inconsistency problem surfaces in the government’s incentive, if offered

the choice, to reset the tax rate τ , after the household has set its labor supply.
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Figure 24.3.1: Welfare outcomes in the taxation example. The

solid curve depicts the welfare associated with the set of competi-

tive equilibria, W c(τ). The set of Nash equilibria is the horizontal

portion of the solid curve and the equilibrium at τ = 1/2 . The

Ramsey outcome is marked with an asterisk. The “time inconsis-

tency problem” is indicated with the triangle showing the outcome

if the government were able to reset τ after households had chosen

the Ramsey labor supply. The dashed line describes the welfare

level at the unconstrained optimum, W d . The graph sets α = 0.3.

The objects of the general setup in the preceding section can be mapped

into the present taxation example as follows: ξ = ℓ , x = ℓ , X = [0, 1], y = τ ,

Y = [0, 1], u(ξ, x, y) = ξ+log[α+(1−y)(1−ξ)]+log[α+y(1−x)] , f(x, y) = ℓ(y),

h(y) = ℓ(y), and H(x) = 1/2 if x < 1; and H(x) ∈ [0, 1] if x = 1.
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24.3.2. Black-box example with discrete choice sets

Consider a black box example with X = {xL, xH} and Y = {yL, yH} , in

which u(x, x, y) assume the values given in Table 24.3.1. Assume that values

of u(ξ, x, y) for ξ 6= x are such that the values with asterisks for ξ = x are

competitive equilibria. In particular, we might assume that

u(ξ, xi, yj) = 0 when ξ 6= xi and i = j,

u(ξ, xi, yj) = 20 when ξ 6= xi and i 6= j.

These payoffs imply that u(xL, xL, yL) > u(xH , xL, yL) (i.e., 3 > 0), and

u(xH , xH , yH) > u(xL, xH , yH) (i.e., 10 > 0). Therefore, (xL, xL, yL) and

(xH , xH , yH) are competitive equilibria. Also, u(xH , xH , yL) < u(xL, xH , yL)

(i.e., 12 < 20), so the dictatorial outcome cannot be supported as a competitive

equilibrium.

xL xH
yL 3* 12
yH 1 10*

Table 24.3.1: One-period payoffs u(xi, xi, yj);
∗ denotes (x, y) ∈

C ; the Ramsey outcome is (xH , yH) and the Nash equilibrium

outcome is (xL, yL).

Figure 24.3.2 depicts a timing of choices that supports the Ramsey outcome

for this example. The government chooses first, then walks away. The Ramsey

outcome (xH , yH) is the competitive equilibrium yielding the highest value of

u(x, x, y).

Figure 24.3.3 diagrams a timing of choices that supports the Nash equilib-

rium. Recall that by definition, every Nash equilibrium outcome has to be

a competitive equilibrium outcome. We denote competitive equilibrium pairs

(x, y) with asterisks. The government sector chooses after knowing that the pri-

vate sector has set x , and chooses y to maximize u(x, x, y). With this timing,

if the private sector chooses x = xH , the government has an incentive to set

y = yL , a setting of y that does not support xH as a Nash equilibrium. The
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x  = h( y  )  
L L

x  = h( y  )  
HH

y
H

y
L

G

P

P

10

3

Figure 24.3.2: Timing of choices that supports Ramsey outcome.

Here P and G denote nodes at which the public and the gov-

ernment, respectively, choose. The government has a commitment

technology that binds it to “choose first.” The government chooses

the y ∈ Y that maximizes u[h(y), h(y), y] , where x = h(y) is the

function mapping government actions into equilibrium values of x .

unique Nash equilibrium is (xL, yL), which gives a lower utility u(x, x, y) than

does the competitive equilibrium (xH , yH).

24.4. Reputational mechanisms: general idea

In a finitely repeated economy, the government will certainly behave opportunis-

tically the last period, implying that nothing better than a Nash outcome can be

supported the last period. In a finite horizon economy with a unique Nash equi-

librium, we won’t be able to sustain anything better than a Nash equilibrium

outcome in any earlier period.8

8 If there are multiple Nash equilibria, it is sometimes possible to sustain a better-than-Nash

equilibrium outcome for a while in a finite horizon economy. See exercise 24.1 , which uses an

idea of Benoit and Krishna (1985).
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y
H

y
H
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L

y
L

L
x

H
x

10

12

1

3

*

*

P

G

G

Figure 24.3.3: Timing of actions in a Nash equilibrium in which

the private sector acts first. Here G denotes a node at which the

government chooses and P denotes a node at which the public

chooses. The private sector sets x ∈ X before knowing the govern-

ment’s setting of y ∈ Y . Competitive equilibrium pairs (x, y) are

denoted with an asterisk. The unique Nash equilibrium is (xL, yL).

We want to study situations in which a government might sustain a Ram-

sey outcome. Therefore, we shall study economies repeated an infinite number

of times. Here a system of history-dependent expectations interpretable as a

government reputation might be arranged to sustain something better than rep-

etition of a Nash outcome. We strive to set things up so that the government

so dearly wants to confirm a good reputation that it will not submit to the

temptation to behave opportunistically. A reputation is said to be sustainable

if it is always in the government’s interests to confirm it.

A state variable that encodes a “reputation” is both “backward looking” and

“forward looking.” It is backward looking because it remembers salient features

of past behavior. It is forward-looking behavior because it measures something

about what private agents expect the government to do in the future. We are

about to study the ingenious machinery of Abreu, Pearce, and Stacchetti that
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astutely exploits these aspects of a reputational variable by recognizing that the

ideal reputational state variable is a “promised value.”

24.4.1. Dynamic programming squared

A sustainable reputation for the government is one that (a) the public, having

rational expectations, wants to believe, and (b) the government wants to con-

firm. Rather than finding all possible sustainable reputations, Abreu, Pearce,

and Stacchetti (henceforth APS) (1986, 1990) used dynamic programming to

characterize all values for the government that are attainable with sustainable

reputations. This section briefly describes their main ideas, while later sections

fill in many details.

First we need some language. A strategy profile is a pair of plans, one each

for the private sector and the government. The time t components of the pair of

plans maps the observed history of the economy into current-period outcomes

(x, y). A subgame perfect equilibrium (SPE) strategy profile has a current-

period outcome being a competitive equilibrium (xt, yt) whose yt component

the government would want to confirm at each t ≥ 1 and for every possible

history of the economy.

To characterize SPEs, or at least a very interesting subset of them, the

method of APS is to formulate a Bellman equation that describes the value to the

government of a strategy profile and that portrays the idea that the government

wants to confirm the private sector’s beliefs about y . For each t ≥ 1, the

government’s strategy describes its first-period action y ∈ Y , which, because

the public had expected it, determines an associated first-period competitive

equilibrium (x, y) ∈ C . Furthermore, the strategy implies two continuation

values for the government at the beginning of next period, a continuation value

v1 if it carries out the first-period choice y , and another continuation value v2

if for any reason the government deviates from the expected first-period choice

y . Associated with the government’s strategy is a current value v that obeys

the Bellman equation

v = (1− δ)u(x, x, y) + δv1, (24.4.1a)

where δ ∈ (0, 1) is a discount factor, (x, y) ∈ C , v1 is a continuation value

awarded for confirming the private sector’s expectation that the government
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will choose action y in the current period, and (y, v1) are constrained to satisfy

the incentive constraint

v ≥ (1 − δ)u(x, x, η) + δv2, ∀η ∈ Y, (24.4.1b)

or equivalently

v ≥ (1− δ)u
[
x, x,H(x)

]
+ δv2,

where H(x) = argmaxy u(x, x, y) is the government’s opportunistic one period

best policy in response to x . Here v2 is the continuation value awarded to the

government if it fails to confirm the private sector’s expectation that η = y this

period. Because it receives the same continuation value v2 for any deviation

from y , if it does deviate, the government will choose the most rewarding action,

which is to set η = H(x).

Inequalities (24.4.1) define a Bellman equation that maps a pair of continua-

tion values (v1, v2) into a value v and first-period outcomes (x, y). Figure 24.4.1

illustrates this mapping for the infinitely repeated version of the taxation exam-

ple. Given a pair (v1, v2), the solid curve depicts v in equation (24.4.1a), and

the dashed curve describes the right side of the incentive constraint (24.4.1b).

The region in which the solid curve is above the dashed curve identifies tax rates

and competitive equilibria that satisfy (24.4.1b) at the prescribed continuation

values (v1, v2). As can be seen, when δ = .8, tax rates below 18 percent cannot

be sustained for the particular (v1, v2) pair we have chosen.

APS calculate the set of equilibrium values by iterating on the mapping

defined by the Bellman equation (24.4.1). Let W be a set of candidate con-

tinuation values. As we vary (v1, v2) ∈ W ×W , the Bellman equation traces

out a set of values, say, v ∈ B(W ). Thus, the Bellman equation maps sets

of continuation values W (from which we can draw a pair of continuation val-

ues (v1, v2) ∈ W ×W ) into sets of current values v ∈ B(W ). To qualify as

SPE values, we require that W ⊂ B(W ), i.e., the continuation values drawn

from W must themselves be values that are in turn supported by continuation

values drawn from the same set W. APS assert that the largest set for which

W = B(W ) is the set of all SPE values. APS show how iterations on the

Bellman equation can determine the set of equilibrium values, provided that

one starts with a big enough but bounded initial set of candidate continuation

values. Furthermore, after that set of values has been found, APS show how

to find a strategy that attains any equilibrium value in the set. The remainder
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Figure 24.4.1: Mapping of continuation values (v1, v2) into val-

ues v in the infinitely repeated version of the taxation exam-

ple. The solid curve depicts v = (1 − δ)u[ℓ(τ), ℓ(τ), τ ] + δv1 .

The dashed curve is the right side of the incentive constraint,

v ≥ (1 − δ)u{ℓ(τ), ℓ(τ), H [ℓ(τ)]} + δv2 , where H is the govern-

ment’s best response function. The part of the solid curve that is

above the dashed curve shows competitive equilibrium values that

are sustainable for continuation values (v1, v2). The parameteri-

zation is α = 0.3 and δ = 0.8, and the continuation values are set

as (v1, v2) = (−0.6, −0.63).

of the chapter describes details of APS’s formulation as applied in our setting.

We shall see why APS want to get their hands on the entire set of equilibrium

values.



Reputational mechanisms: general idea 1025

24.4.2. Etymology of ‘dynamic programming squared’

Why do we call it ‘dynamic programming squared’? There are two reasons.

1. The construction works by mapping two continuation values into one, in

contrast to ordinary dynamic programming, which maps one continuation

value tomorrow into one value function today.

2. A continuation value plays a double role, one as a promised value that sum-

marizes expectations of the rewards associated with future outcomes, an-

other as a state variable that summarizes the history of past outcomes. In

the present setting, a subgame perfect equilibrium strategy profile can be

represented recursively in terms of an initial value v1 ∈ IR and the following

3-tuple of functions:

xt = zh(vt)

yt = zg(vt)

vt+1 = V(vt, xt, ηt), ∀ηt ∈ Y,

the first two of which map a promised value into a private sector decision

and a government action, while the third maps a promised value and an

action pair into a promised value to carry into tomorrow. By iterating these

functions, we can deduce that the triple of functions zh, zg,V induces a

strategy profile that maps histories of outcomes into sequences of outcomes.

The capacity to represent a subgame perfect equilibrium recursively affords

immense simplifications in terms of the number of functions we must carry.
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24.5. The infinitely repeated economy

Consider repeating our one-period economy forever. At each t ≥ 1, each house-

hold chooses ξt ∈ X , with the result that the average xt ∈ X ; the government

chooses yt ∈ Y . We use the notation (~x, ~y) = {(xt, yt)}∞t=1,
~ξ = {ξt}∞t=1 . To

denote a history of (xt, yt) up to t , we use the notation xt = {xs}ts=1, y
t =

{ys}ts=1 . These histories live in the spaces Xt and Y t , respectively, where

Xt = X × · · · ×X , the Cartesian product of X taken t times, and Y t is the

Cartesian product of Y taken t times.9

For the repeated economy, the government evaluates paths (~x, ~y) according

to

Vg(~x, ~y) =
(1− δ)

δ

∞∑

t=1

δt r(xt, yt), (24.5.1)

where r(xt, yt) ≡ u(xt, xt, yt) and 0 < δ < 1.10 A pure strategy is defined as

a sequence of functions, the tth element of which maps the history (xt−1, yt−1)

observed at the beginning of t into an action at t . In particular, for the aggre-

gate of households, a strategy is a sequence σh = {σht }∞t=1 such that

σh1 ∈ X

σht : Xt−1 × Y t−1 → X for each t ≥ 2 .

Similarly, for the government, a strategy σg = {σgt }∞t=1 is a sequence such that

σg1 ∈ Y

σgt : Xt−1 × Y t−1 → Y for each t ≥ 2.

We call σ = (σh, σg) a strategy profile. We let σt = (σht , σ
g
t ) be the tth

component of the strategy profile.

9 Marco Bassetto’s work (2002, 2005) shows that this specification, which is common in the

literature, excludes some interesting applications. In particular, it rules out contexts in which

the set of time t actions available to the government is influenced by past actions taken by

households. Such excluded examples prevail, for example, in the fiscal theory of the price level.

To construct sustainable plans in those interesting environments, Bassetto (2002, 2005) refines

the notion of sustainability to include a more complete theory of the government’s behavior

off an equilibrium path.
10 Note that we have not defined the government’s payoff when ξt 6= xt . See footnote 7.
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24.5.1. A strategy profile implies a history and a value

APS begin with the insight that a strategy profile σ = (σg, σh) evidently recur-

sively generates a trajectory of outcomes {[x(σ)t, y(σ)t]}∞t=1 :

[
x(σ)1, y(σ)1

]
= (σh1 , σ

g
1)[

x(σ)t, y(σ)t
]
= σt

[
x(σ)t−1, y(σ)t−1

]
.

Therefore, a strategy profile also generates a pair of values for the government

and the representative private agent. In particular, the value for the government

of a strategy profile σ = (σh, σg) is the value of the trajectory that it generates

Vg(σ) = Vg
[
~x(σ), ~y(σ)

]
.

24.5.2. Recursive formulation

A key step toward APS’s recursive formulation comes from defining continu-

ation stategies and their associated continuation values . Since the value of a

path (~x, ~y) in equation (24.5.1) is additively separable in its one-period returns,

we can express the value recursively in terms of a one-period economy and a

continuation economy. In particular, the value to the government of an outcome

sequence (~x, ~y) can be represented

Vg(~x, ~y) = (1− δ) r(x1, y1) + δVg
(
{xt}∞t=2 , {yt}∞t=2

)
(24.5.2)

and the value for a household can also be represented recursively. Notice how

a strategy profile σ induces a strategy profile for the continuation economy, as

follows. Let σ|(xt,yt) denote the strategy profile for a continuation economy

whose first period is t + 1 and that is initiated after history (xt, yt) has been

observed; here (σ|(xt,yt))s is the sth component of (σ|(xt,yt)), which for s ≥ 2

is a function that maps Xs−1 × Y s−1 into X × Y , and for s = 1 is a point in

X × Y . Thus, after a first-period outcome pair (x1, y1), strategy σ induces the

continuation strategy

(σ|(x1,y1))s+1 (ν
s, ηs) = σs+2 (x1, ν1, . . . , νs, y1, η1, . . . , ηs)

for all (νs, ηs) ∈ Xs × Y s , ∀s ≥ 0.
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It might be helpful to write out a few terms for s = 0, 1, . . . :

(σ|(x1,y1))1 = σ2(x1, y1) = (ν1, η1)

(σ|(x1,y1))2(ν1, η1) = σ3(x1, ν1, y1, η1) = (ν2, η2)

(σ|(x1,y1))3(ν1, ν2, η1, η2) = σ4(x1, ν1, ν2, y1, η1, η2) = (ν3, η3).

More generally, define the continuation strategy

(σ|(xt,yt))1 =σt+1(x
t, yt)

(σ|(xt,yt))s+1(ν
s, ηs) =σt+s+1 (x1, . . . , xt, ν1, . . . , νs; y1, . . . , yt, η1, . . . , ηs)

for all s ≥ 1 and all (νs, ηs) ∈ Xs × Y s .

Here (σ|(xt,yt))s+1 (νs, ηs) is the induced strategy pair to apply in the (s +

1)th period of the continuation economy. We attain this strategy by shifting

the original strategy forward t periods and evaluating it at history (x1, . . . , xt,

ν1, . . . , νs; y1, . . . , yt, η1, . . . , ηs) for the original economy.

In terms of the continuation strategy σ|(x1,y1) , from equation (24.5.2) we

know that Vg(σ) can be represented as

Vg(σ) = (1− δ)r(x1, y1) + δVg(σ|(x1,y1)). (24.5.3)

Representation (24.5.3) decomposes the value to the government of strategy

profile σ into a one-period return and the continuation value Vg(σ|(x1,y1)) as-

sociated with the continuation strategy σ|(x1,y1) .

Any sequence (~x, ~y) in equation (24.5.2) or any strategy profile σ in equation

(24.5.3) can be assigned a value. We want a notion of an equilibrium strategy

profile.
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24.6. Subgame perfect equilibrium (SPE)

Definition 6: A strategy profile σ = (σh, σg) is a subgame perfect equilibrium

(SPE) of the infinitely repeated economy if for each t ≥ 1 and each history

(xt−1, yt−1) ∈ Xt−1 × Y t−1

(a) The private sector outcome xt = σht (x
t−1, yt−1) is consistent with compet-

itive equilibrium when yt = σgt (x
t−1, yt−1);

(b) For each possible government action η ∈ Y

(1− δ)r(xt, yt) + δVg(σ|(xt,yt)) ≥ (1− δ) r(xt, η) + δVg(σ|(xt;yt−1,η)).

Requirement (a) says two things. It attributes a theory of forecasting govern-

ment behavior to members of the public, in particular, that they use the time

t component σgt of the government’s strategy and information available at the

end of period t − 1 to forecast the government’s decision at t . Condition (a)

also asserts that a competitive equilibrium appropriate to the public’s forecast

value for yt is the outcome at time t . Requirement (b) says that at each point

in time and following each history, the government has no incentive to deviate

from the first-period action called for by its strategy σg ; that is, the government

always wants to choose as the public expects. Notice how in condition (b), the

government contemplates setting its time t choice ηt at something other than

the value forecast by the public, but confronts consequences that deter it from

choosing an ηt that fails to confirm the public’s expectations of it.

In section 24.15 we’ll discuss the following question: who chooses σg , the

government or the public? This question arises naturally because σg is both

the government’s sequence of policy functions and the private sector’s rule for

forecasting government behavior. Condition b of definition 6 says that the gov-

ernment chooses to confirm the public’s forecasts.

Definition 6 implies that for each t ≥ 2 and each (xt−1, yt−1) ∈ Xt−1×Y t−1 ,

the continuation strategy σ|(xt−1,yt−1) is itself an SPE. We state this formally

for t = 2.

Proposition 1: Assume that σ is an SPE. Then for all (ν, η) ∈ X×Y , σ|(ν,η)
is an SPE.

Proof: Write out requirements a and b that Definition 6 asserts that the

continuation strategy σ|(ν,η) must satisfy to qualify as an SPE. In particular,
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for all s ≥ 1 and for all (xs−1, ys−1) ∈ Xs−1 × Y s−1 , we require

(xs, ys) ∈ C, (24.6.1)

where xs = σh|(ν,η)(xs−1, ys−1), ys = σg|(ν,η)(xs−1, ys−1). We also require that

for all η̃ ∈ Y ,

(1− δ)r(xs, ys) + δVg(σ|(η,xs;ν,ys)) ≥ (1− δ)r(xs, η̃) + δVg(σ|(ν,xs;η,ys−1,η̃))

(24.6.2)

Notice that requirements a and b of Definition 6 for t = 2, 3, . . . imply expres-

sions (24.6.1) and (24.6.2) for s = 1, 2, . . . .

The statement that σ|(ν,η) is an SPE for all (ν, η) ∈ X × Y ensures that σ

is almost an SPE. If we know that σ|(ν,η) is an SPE for all (ν, η) ∈ (X × Y ),

we must only add two requirements to ensure that σ is an SPE: first, that the

t = 1 outcome pair (x1, y1) is a competitive equilibrium, and second, that the

government’s choice of y1 satisfies the time 1 version of the incentive constraint

b in Definition 6.

This reasoning leads to the following lemma that is at the heart of the APS

analysis:

Lemma: Consider a strategy profile σ , and let the associated first-period out-

come be given by x = σh1 , y = σg1 . The profile σ is an SPE if and only if

(1) for each (ν, η) ∈ X × Y, σ|(ν,η) is an SPE;

(2) (x, y) is a competitive equilibrium;

(3) ∀ η ∈ Y , (1− δ) r(x, y) + δ Vg(σ|(x,y)) ≥ (1− δ) r(x, η) + δVg(σ|(x,η)).

Proof: First, prove the “if” part. Property a of the lemma and properties

(24.6.1) and (24.6.2) of Proposition 1 show that requirements a and b of Defi-

nition 6 are satisfied for t ≥ 2. Properties (2) and (3) of the lemma imply that

requirements a and b of Definition 6 hold for t = 1.

Second, prove the “only if” part. Part (1) of the lemma follows from Propo-

sition 1. Parts (2) and (3) of the lemma follow from requirements a and b of

Definition 6 for t = 1.

The lemma is very important because it characterizes SPEs in terms of a

first-period competitive equilibrium outcome pair (x, y), and a pair of continu-

ation values: a value Vg(σ|(x,y)) to be awarded to the government next period
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if it adheres to the y component of the first-period pair (x, y), and a value

Vg(σ|(x,η)), η 6= y , to be awarded to the government if it deviates from the ex-

pected y component. Each of these values has to be selected from a set of values

Vg(σ) that are associated with some SPE σ .

24.7. Examples of SPE

24.7.1. Infinite repetition of one-period Nash equilibrium

It is easy to verify that the following strategy profile σN = (σh, σg) forms an

SPE: σh1 = xN , σg1 = yN and for t ≥ 2

σht = xN ∀ t , ∀ (xt−1, yt−1);

σgt = yN ∀ t , ∀ (xt−1, yt−1).

These strategies instruct the households and the government to choose the static

Nash equilibrium outcomes for all periods for all histories. Evidently, for these

strategies, Vg(σ
N ) = vN = r(xN , yN ). Furthermore, for these strategies the

continuation value Vg(σ|(xt;yt−1,η)) = vN for all outcomes η ∈ Y . These

strategies satisfy requirement a of Definition 6 because (xN , yN) is a compet-

itive equilibrium. The strategies satisfy requirement b because r(xN , yN ) =

maxy∈Y r(x
N , y) and because the continuation value Vg(σ) = vN is indepen-

dent of the action chosen by the government in the first period. In this SPE,

σNt = {σht , σgt } = (xN , yN ) for all t and for all (xt−1, yt−1), and value Vg(σ
N )

and continuation values Vg(σ
N |(xt,yt)) for each history (xt, yt) equal vN .

It is useful to think about this SPE in terms of the lemma. To verify that

σN is a SPE, we work with the first-period outcome pair (xN , yN) and the pair

of values Vg(σ|(xN ,yN )) = vN , Vg(σ|(x,η)) = vN , where vN = r(xN , yN ). With

these settings, we can verify that (xN , yN ) and vN satisfy requirements (1),

(2), and (3) of the lemma.
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24.7.2. Supporting better outcomes with trigger strategies

The public can have a system of expectations about the government’s behavior

that induces the government to choose a better-than-Nash outcome (x̃, ỹ) ∈ C .

Thus, suppose that the public expects that so long as the government chooses

ỹ , it will continue to do so in the future, but if ever the government deviates

from this choice, thereafter the public expects that the government will choose

yN , prompting the public (or what we can call “the market”) to react with

xN = h(yN). This system of expectations confronts the government with the

prospect of being “punished by the market’s expectations” if it chooses to deviate

from ỹ .

To formalize this idea, we shall use the SPE σN as a continuation strategy

and the value vN as a continuation value on the right side of part (b) of Defi-

nition 6 of an SPE (for η 6= yt ); then by working backward one step, we shall

try to construct another SPE σ̃ with first-period outcome (x̃, ỹ) 6= (xN , yN).

In particular, for our new SPE σ̃ we propose to set

σ̃1 = (x̃, ỹ)

σ̃|(x,y) =
{
σ̃ if (x, y) = (x̃, ỹ)

σN if (x, y) 6= (x̃, ỹ)

(24.7.1)

where (x̃, ỹ) ∈ C is a competitive equilibrium that satisfies the following par-

ticular case of part b of Definition 6:

ṽ = (1− δ) r(x̃, ỹ) + δṽ ≥ (1− δ) r(x̃, η) + δvN , (24.7.2)

for all η ∈ Y . Inequality (24.7.2) is equivalent with

max
η∈Y

r(x̃, η)− r(x̃, ỹ) ≤ δ

1− δ
(ṽ − vN ). (24.7.3)

For any (x̃, ỹ) ∈ C that satisfies expression (24.7.3) with ṽ = r(x̃, ỹ), strategy

(24.7.1) is an SPE with value ṽ .

If (x̃, ỹ) = (xR, yR) satisfies inequality (24.7.3) with ṽ = r(xR, yR), then

repetition of the Ramsey outcome (xR, yR) is supportable by a subgame perfect

equilibrium of the form (24.7.1).
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This construction uses the following objects:11

1. A proposed first-period competitive equilibrium (x̃, ỹ) ∈ C .

2. An SPE σ2 with value Vg(σ
2) that is used as the continuation strategy

in the event that the first-period outcome does not equal (x̃, ỹ), so that

σ̃|(x,y) = σ2 , if (x, y) 6= (x̃, ỹ). In the example, σ2 = σN and Vg(σ
2) = vN .

3. An SPE σ1 , with value Vg(σ
1), used to define the continuation value to be

assigned after first-period outcome (x̃, ỹ); and an associated continuation

strategy σ̃|(x̃,ỹ) = σ1 . In the example, σ1 = σ̃ , which is defined recursively

(and self-referentially) via equation (24.7.1).

4. A candidate for a new SPE σ̃ and a corresponding value Vg(σ̃). In the

example, Vg(σ̃) = r(x̃, ỹ).

Note how we have used the lemma in verifying that σ̃ is an SPE. We start

with the SPE σN with associated value vN . We guess a first-period outcome

pair (x̃, ỹ) and a value ṽ for a new SPE, where ṽ = r(x̃, ỹ). Then we verify

requirements (2) and (3) of the lemma with (ṽ, vN ) as continuation values and

(x̃, ỹ) as first-period outcomes.

24.7.3. When reversion to Nash is not bad enough

For discount factors δ sufficiently close to one, it is typically possible to support

repetition of the Ramsey outcome (xR, yR) with a section 24.7.2 trigger strategy

of form (24.7.1). This finding conforms with a version of the folk theorem

about repeated games. However, there exist discount factors δ so small that

the continuation value associated with infinite repetition of the one-period Nash

outcome is not low enough to support repetition of Ramsey. Anticipating that it

will revert to repetition of Nash after a deviation then can at best support a lower

value for the government that than that associated with repetition of Ramsey

outcome, although perhaps its is better than repeating the Nash outcome.

In this circumstance is there a better SPE than can be supported by an-

ticipating version to repetition of the one-period Nash outcome? To support

something better evidently requires finding an SPE that has a value worse than

that associated with repetition of the one-period Nash outcome. Following APS,

we shall soon see that the best and worst equilibrium values are linked.

11 In the example, objects 3 and 4 are equated.
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24.8. Values of all SPEs

The role played by the lemma in analyzing our two examples hints at the central

role that it plays in methods that APS developed for describing and computing

values for all the subgame perfect equilibria. APS build on the way that the

lemma characterizes SPE values in terms of a first-period competitive equilib-

rium outcome, along with a pair of continuation values, each element of which

is itself a value associated with some SPE. The lemma directs APS’s attention

away from a set of strategy profiles σ and toward a set of values Vg(σ) as-

sociated with those profiles. They define the set V of values associated with

subgame perfect equilibria:

V = {Vg (σ) | σ is an SPE}.

Evidently, V ⊂ IR . From the lemma, for a given competitive equilibrium

(x, y) ∈ C , there exists an SPE σ for which x = σh1 , y = σg1 if and only if

there exist two values (v1, v2) ∈ V × V such that

(1− δ) r(x, y) + δv1 ≥ (1− δ) r(x, η) + δv2 ∀ η ∈ Y. (24.8.1)

Let σ1 and σ2 be subgame perfect equilibria for which v1 = Vg(σ
1), v2 =

Vg(σ
2). The SPE σ that supports (x, y) = (σh1 , σ

g
1) is completed by specifying

the continuation strategies σ|(x,y) = σ1 and σ|(ν,η) = σ2 if (ν, η) 6= (x, y).

This construction uses two continuation values (v1, v2) ∈ V ×V to create an

SPE σ with value v ∈ V given by

v = (1− δ) r(x, y) + δv1 .

Thus, the construction maps pairs of continuation values (v1, v2) into a strategy

profile σ with first-period competitive equilibrium outcome (x, y) and a value

v = Vg(σ).

APS characterize subgame perfect equilibria by studying a mapping from

pairs of continuation values (v1, v2) ∈ V × V into values v ∈ V . They use the

following definitions:

Definition 7: Let W ⊂ IR . A 4-tuple (x, y, w1, w2) is said to be admissible

with respect to W if (x, y) ∈ C, (w1, w2) ∈W ×W , and

(1− δ) r(x, y) + δw1 ≥ (1− δ) r(x, η) + δw2 , ∀ η ∈ Y. (24.8.2)
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Notice that when W ⊂ V , the admissible 4-tuple (x, y, w1, w2) determines

an SPE with strategy profile

σ1 = (x, y), σ|(x,y) = σ1, σ|(ν,η) = σ2 for (ν, η) 6= (x, y)

where σ1 is a continuation strategy that yields value w1 = Vg(σ
1) and σ2 is a

strategy that yields continuation value w2 = Vg(σ
2). The value of the SPE is

Vg(σ) = w = (1− δ) r(x, y) + δw1 .

We want to find the set V .

24.8.1. Basic idea of dynamic programming squared

In Definition 7, W serves as a set of candidate continuation values. The idea

is to pick an (x, y) ∈ C , then to check whether we can find (w1, w2) ∈ W ×W

that would make the government want to adhere to the y component if w1

and w2 could be used as continuation values for adhering to and deviating from

y , respectively. If the answer is yes, we say that the 4-tuple (x, y, w1, w2) is

“admissible with respect to W ”. Because we have verified that the incentive

constraints are satisfied, a yes answer allows us to calculate the value (i.e., the

left side of (24.8.2)) that can be supported with w1, w2 as continuation values.

Thus, the idea is to use (24.8.2) to define a mapping from values tomorrow

to values today, like that used in dynamic programming. In the next section,

we’ll define B(W ) as the set of possible values attained with admissible pairs

of continuation values drawn from W ×W . Then we’ll view B as an operator

mapping sets of continuation values W into sets of values B(W ). This op-

erator is the counterpart to the T operator associated with ordinary dynamic

programming.

To pursue this analogy, recall the Bellman equation associated with the Mc-

Call model of chapter 6:

Q =

∫
max

{
w

1− β
, c+ βQ

}
dF (w).

Here Q ∈ IR is the expected discounted value of an unemployed worker’s income

before he has drawn a wage offer. The right side defines an operator T (Q), so

that the Bellman equation is

Q = T (Q). (24.8.3)
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Just as the right side of (24.8.3) takes a candidate continuation value Q for

tomorrow and maps it into a value T (Q) for today, APS define a mapping B(W )

that, by considering only admissible 4-tuples, maps a set of values W tomorrow

into a new set B(W ) of values today. Thus, APS use admissible 4-tuples to

map candidate continuation values tomorrow into new candidate values today.

In the next section, we’ll iterate to convergence on B(W ), but as we’ll see, it

won’t work to start from just any initial set W . We have to start from a big

enough set.

24.9. APS machinery

Definition 8: For each set W ⊂ IR , let B(W ) be the set of possible values

w = (1 − δ) r(x, y) + δw1 associated with admissible tuples (x, y, w1, w2).

Think of W as a set of potential continuation values and B(W ) as the set

of values that they support. From the definition of admissibility it immediately

follows that the operator B is monotone.

Property (monotonicity of B ): If W ⊆W ′ ⊆ R , then B(W ) ⊆ B(W ′).

Proof: It can be verified directly from the definition of admissible 4-tuples that

if w ∈ B(W ), then w ∈ B(W ′): simply use the (w1, w2) pair that supports

w ∈ B(W ) to support w ∈ B(W ′).

It can also be verified that B(·) maps compact sets W into compact sets

B(W ).

The self-supporting character of subgame perfect equilibria is referred to in

the following definition:

Definition 9: The set W is said to be self-generating if W ⊆ B(W ).

Thus, a set of continuation values W is said to be self-generating if it is

contained in the set of values B(W ) that are generated by pairs of continuation

values selected from W . This description makes us suspect that if a set of values

is self-generating, it must be a set of SPE values. Indeed, notice that by virtue

of the lemma, the set V of SPE values Vg(σ) is self-generating. Thus, we can
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write V ⊆ B(V ). APS show that V is the largest self-generating set. The key

to showing this point is the following theorem:12

Theorem 1 (A self-generating set is a subset of V ): If W ⊂ IR is bounded

and self-generating, then B(W ) ⊆ V .

The proof is based on “forward induction” and proceeds by taking a point

w ∈ B(W ) and constructing an SPE with value w .

Proof: Assume W ⊆ B(W ). Choose an element w ∈ B(W ) and transform it

as follows into a subgame perfect equilibrium:

Step 1. Because w ∈ B(W ), we know that there exist outcomes (x, y) and

values w1 and w2 that satisfy

w = (1− δ) r(x, y) + δw1 ≥ (1− δ) r(x, η) + δw2 ∀η ∈ Y

(x, y) ∈ C

w1, w2 ∈ W ×W.

Set σ1 = (x, y).

Step 2. Since w1 ∈ W ⊆ B(W ), there exist outcomes (x̃, ỹ) and values

(w̃1, w̃2) ∈W that satisfy

w1 = (1− δ) r(x̃, ỹ) + δw̃1 ≥ (1− δ) r(x̃, η) + δw̃2, ∀ η ∈ Y

(x̃, ỹ) ∈ C.

Set the first-period outcome in period 2 (the outcome to occur given that y was

chosen in period 1) equal to (x̃, ỹ); that is, set (σ|(x,y))1 = (x̃, ỹ).

Continuing in this way, for each w ∈ B(W ), we can create a sequence of

continuation values w1, w̃1, ˜̃w1, . . . and a corresponding sequence of first-period

outcomes (x, y), (x̃, ỹ), (˜̃x, ˜̃y).

At each stage in this construction, policies are unimprovable, which means

that given the continuation values, one-period deviations from the prescribed

policies are not optimal. It follows that the strategy profile is optimal. By

construction Vg(σ) = w .

12 The unbounded set IR (the extended real line) is self-generating but not meaningful. It

is self-generating because any value v ∈ IR can be supported if there are no limits on the

continuation values. It is not meaningful because most points in IR are values that cannot be

attained with any strategy profile.
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Collecting results, we know that

1. V ⊆ B(V ) (by the lemma).

2. If W ⊆ B(W ), then B(W ) ⊆ V (by theorem 1).

3. B is monotone and maps compact sets into compact sets.

Facts 1 and 2 imply that V = B(V ), so that the set of equilibrium values is a

“fixed point” of B , in particular, the largest bounded fixed point. Monotonicity

of B and the fact that it maps compact sets into compact sets provides an

algorithm for computing the set V, namely, to start with a set W0 for which

V ⊆ B(W0) ⊆ W0 , and to iterate on B . In more detail, we use the following

steps:

1. Start with a set W0 = [w0, w0] that we know is bigger than V , and for

which B(W0) ⊆ W0 . It will always work to set w0 = max(x,y)∈C r(x, y),

w0 = min(x,y)∈C r(x, y).

2. Compute the boundaries of the set B(W0) = [w1, w1] . The value w1 solves

the problem

w1 = max
(x,y)∈C

(1 − δ) r(x, y) + δw0

subject to

(1− δ) r(x, y) + δw0 ≥ (1− δ) r(x, η) + δw0 for all η ∈ Y.

The value w1 solves the problem

w1 = min
(x,y)∈C; (w1,w2)∈[w

0
,w0]2

(1− δ) r(x, y) + δw1

subject to

(1 − δ) r(x, y) + δw1 ≥ (1− δ) r(x, η) + δw2 ∀ η ∈ Y.

With (w0, w0) chosen as before, it will be true that B(W0) ⊆W0 .

3. Having constructed W1 = B(W0) ⊆ W0 , continue to iterate, producing a

decreasing sequence of compact sets Wj+1 = B(Wj) ⊆Wj . Iterate until the

sets converge.

In section 24.13, we will present a direct way to compute the best and worst

SPE values, one that evades having to iterate on the B operator.
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24.10. Self-enforcing SPE

A subgame perfect equilibrium with a worst value v ∈ V has the remarkable

property that it is “self-enforcing.” We use the following definition:

Definition 10: A subgame perfect equilibrium σ with first-period outcome

(x̃, ỹ) ∈ C is said to be self-enforcing if

σ|(x,y) = σ if (x, y) 6= (x̃, ỹ). (24.10.1)

A strategy profile satisfying equation (24.10.1) is called self-enforcing because

after a one-shot deviation the consequence is simply to restart the equilibrium.

Recall our earlier characterization of a competitive equilibrium as a pair

(h(y), y), where x = h(y) is the mapping from the government’s action y to the

private sector’s equilibrium response. The value v associated with the worst

subgame perfect equilibrium σ satisfies

v = min
y,v

{
(1− δ) r(h(y), y) + δv

}
= (1− δ)r(h(ỹ), ỹ) + δṽ, (24.10.2)

where the minimization is subject to y ∈ Y , v ∈ V , and the incentive constraint

(1− δ) r(h(y), y) + δv ≥ (1− δ) r(h(y), η) + δv for all η ∈ Y. (24.10.3)

Let ṽ be a continuation value that attains the right side of equation (24.10.2),

and let σṽ be a subgame perfect equilibrium that supports continuation value

ṽ . Let (x̃, ỹ) be the first-period outcome that attains the right side of equation

(24.10.2). Thus, v = (1 − δ)r(x̃, ỹ) + δṽ . Since v is both the continuation

value when first-period outcome (x, y) 6= (x̃, ỹ) and the value associated with

subgame perfect equilibrium σ , it follows that

σ1 = (x̃, ỹ)

σ|(x,y) =
{
σṽ if (x, y) = (x̃, ỹ)

σ if (x, y) 6= (x̃, ỹ).

(24.10.4)

Because of the double role played by v , i.e., v is both the value of equilibrium σ

and the “punishment” continuation value of the right side of the incentive con-

straint (24.10.3), an equilibrium strategy σ that supports v is self-enforcing.13

13 As we show below, the structure of the programming problem, with the double role played

by v , makes it possible to compute the worst value directly.
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The preceding argument thus establishes

Proposition 2: A subgame perfect equilibrium σ associated with v = min{v :

v ∈ V } is self-enforcing.

24.10.1. The quest for something worse than repetition of Nash
outcome

Notice that the first subgame perfect equilibrium that we computed, whose

outcome was infinite repetition of the one-period Nash equilibrium, is a self-

enforcing equilibrium. However, in general, the infinite repetition of the one-

period Nash equilibrium is not the worst subgame perfect equilibrium. This

fact opens the possibility that even when reversion to Nash after a deviation

is not able to support repetition of Ramsey as an SPE, we might still support

repetition of the Ramsey outcome by reverting to a SPE with a value worse than

that associated with repetition of the Nash outcome whenever the government

deviates from an expected one-period choice.

24.11. Recursive strategies

This section emphasizes similarities between credible government policies and

the recursive contracts appearing in chapter 21. We will study situations where

the household’s and the government’s strategies have recursive representations.

This approach substantially restricts the space of strategies because most history-

dependent strategies cannot be represented recursively. Nevertheless, this class

of strategies excludes no equilibrium payoffs v ∈ V . We use the following defi-

nitions:

Definition 11: Households and the government follow recursive strategies if

there is a 3-tuple of functions φ = (zh, zg,V) and an initial condition v1 with

the following structure:
v1 ∈ IR is given

xt = zh(vt)

yt = zg(vt)

vt+1 = V(vt, xt, yt),

(24.11.1)
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where vt is a state variable designed to summarize the history of outcomes

before t .

This recursive form of strategies operates much like an autoregression to let

time t actions (xt, yt) depend on the history {ys, xs}t−1
s=1 , as mediated through

the state variable vt . Representation (24.11.1) induces history-dependent gov-

ernment policies, and thereby allows for reputation. We shall soon see that

beyond its role in keeping track of histories, vt also summarizes the future.14

A strategy (φ, v) recursively generates an outcome path expressed as (~x, ~y) =

(~x, ~y)(φ, v). By substituting the outcome path into equation (24.5.3), we find

that (φ, v) induces a value for the government, which we write as

V g
[
(~x, ~y)(φ, v)

]
=(1− δ) r

[
zh(v), zg(v)

]

+ δ V g
(
(~x, ~y)

{
φ,V [v, zh(v), zg(v)]

})
. (24.11.2)

So far, we have not interpreted the state variable v , except as a particular

measure of the history of outcomes. The theory of credible policy ties past and

future together by making the state variable v a promised value, an outcome to

be expressed

v = V g
[
(~x, ~y)(φ, v)

]
. (24.11.3)

Equations (24.11.1), (24.11.2), and (24.11.3) assert a dual role for v . In

equation (24.11.1), v accounts for past outcomes. In equations (24.11.2) and

(24.11.3), v looks forward. The state vt is a discounted future value with which

the government enters time t based on past outcomes. Depending on the out-

come (x, y) and the entering promised value v , V updates the promised value

with which the government leaves the period. In section 24.15, we shall struggle

with which of two valid interpretations of the government’s strategy should be

emphasized: something chosen by the government, or a description of a system

of public expectations to which the government conforms.

14 By iterating equations (24.11.1), we can construct a pair of sequences of functions indexed

by t ≥ 1 {Zht (It), Z
g
t (It)} , mapping histories that are augmented by initial conditions It =

({xs, ys}
t−1
s=1, v1) into time t actions (xt, yt) ∈ X × Y . Strategies for the repeated economy

are a pair of sequences of such functions without the restriction that they have a recursive

representation.
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Evidently, we have the following:

Definition 12: Let V be the set of SPE values. A recursive strategy (φ, v) in

equation (24.11.1) is a subgame perfect equilibrium (SPE) if and only if v ∈ V

and

(1) The outcome x = zh(v) is a competitive equilibrium, given that y =

zg(v).

(2) For each η ∈ Y , V(v, zh(v), η) ∈ V .

(3) For each η ∈ Y ,

v = (1− δ)r
[
zh(v), zg(v)

]
+ δV

[
v, zh(v), zg(v)

]

≥ (1− δ)r
[
zh(v), η

]
+ δV

[
v, zh(v), η

]
.

(24.11.4)

Condition (1) asserts that the first-period outcome pair (x, y) is a competi-

tive equilibrium. Each member of the private sector forms an expectation about

the government’s action according to yt = zg(vt), and the “market” responds

with a competitive equilibrium xt ,

xt = h(yt) = h
[
zg(vt)

]
≡ zh(vt). (24.11.5)

This construction builds in rational expectations, because the private sector

knows both the state variable vt and the government’s decision rule zg .

Besides the first-period outcome (x, y), conditions (2) and (3) associate with

a subgame perfect equilibrium three additional objects: a promised value v , a

continuation value v′ = V [v, zh(v), zg(v)] if the required first-period outcome is

observed, and another continuation value ṽ(η) = V [v, zh(v), η] if the required

first-period outcome is not observed but rather some pair (x, η). All of the

continuation values must themselves be attained as subgame perfect equilibria.

In terms of these objects, condition (3) is an incentive constraint inspiring the

government to adhere to the equilibrium

v = (1− δ)r(x, y) + δv′

≥ (1− δ)r(x, η) + δṽ(η), ∀η ∈ Y.

This formula states that the government receives more if it adheres to an action

called for by its strategy than if it departs. To ensure that these values constitute

“credible expectations,” part (2) of Definition 12 requires that the continuation

values be values for subgame perfect equilibria. The definition is circular because
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members of the same class of objects, namely, equilibrium values v , occur on

each side of expression (24.11.4). Circularity comes with recursivity.

One implication of the work of APS (1986, 1990) is that recursive equilib-

ria of form (24.11.1) can attain all subgame perfect equilibrium values. As we

have seen, APS’s innovation was to shift the focus away from the set of equilib-

rium strategies and toward the set of values V attainable with subgame perfect

equilibrium strategies.

24.12. Examples of SPE with recursive strategies

Our two earlier examples of subgame perfect equilibria were already of a recur-

sive nature. But to highlight this property, we recast those SPE in the present

notation for recursive strategies. Equilibria are constructed by using a guess-

and-verify technique. First, guess (v1, z
h, zg,V) in equations (24.11.1), then

verify parts (1), (2), and (3) of Definition 12.

The examples parallel the historical development of the theory. (1) The first

example is infinite repetition of a one-period Nash outcome, which was Kydland

and Prescott’s (1977) time-consistent equilibrium. (2) Barro and Gordon (1983a,

1983b) and Stokey (1989) used the value from infinite repetition of the Nash

outcome as a continuation value to deter deviation from the Ramsey outcome.

For sufficiently high discount factors, the continuation value associated with

repetition of the Nash outcome can deter the government from deviating from

infinite repetition of the Ramsey outcome. This is not possible for low discount

factors. (3) Abreu (1988) and Stokey (1991) showed that Abreu’s “stick-and-

carrot” strategy induces more severe consequences than repetition of the Nash

outcome.
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24.12.1. Infinite repetition of Nash outcome

It is easy to construct an equilibrium whose outcome path forever repeats the

one-period Nash outcome. Let vN = r(xN , yN). The proposed equilibrium is

v1 = vN ,

zh(v) = xN ∀ v,
zg(v) = yN ∀ v, and

V(v, x, y) = vN , ∀ (v, x, y).

Here vN plays the roles of all three values in condition (3) of Definition 12.

Conditions (1) and (2) are satisfied by construction, and condition (3) collapses

to

r(xN , yN ) ≥ r
[
xN , H(xN )

]
,

which is satisfied at equality by the definition of a best response function.

24.12.2. Infinite repetition of a better-than-Nash outcome

Let vb be a value associated with outcome (xb, yb) such that vb = r(xb, yb) >

vN , and assume that (xb, yb) constitutes a competitive equilibrium. Suppose

further that

r
[
xb, H(xb)

]
− r(xb, yb) ≤ δ

1− δ
(vb − vN ). (24.12.1)

The left side is the one-period return to the government from deviating from

yb ; it is the gain from deviating. The right side is the difference in present

values associated with conforming to the plan versus reverting forever to the

Nash equilibrium; it is the cost of deviating. When the inequality is satisfied,

the equilibrium presents the government with an incentive not to deviate from

yb . Then an SPE is

v1 = vb

zh(v) =

{
xb if v = vb;

xN otherwise;

zg(v) =

{
yb if v = vb;

yN otherwise;

V(v, x, y) =
{
vb if (v, x, y) = (vb, xb, yb);

vN otherwise.
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This strategy specifies outcome (xb, yb) and continuation value vb as long as

vb is the value promised at the beginning of the period. Any deviation from yb

generates continuation value vN . Inequality (24.12.1) validates condition (3)

of Definition 12.

Barro and Gordon (1983a) considered a version of this equilibrium in which

inequality (24.12.1) is satisfied with (vb, xb, yb) = (vR, xR, yR). In this case,

anticipated reversion to Nash supports the Ramsey outcome forever. When

inequality (24.12.1) is not satisfied for (vb, xb, yb) = (vR, xR, yR), we can solve

for the best SPE value vb , with associated actions (xb, yb), supportable by

infinite reversion to Nash from

vb = r(xb, yb) = (1− δ)r
[
xb, H(xb)

]
+ δvN > vN . (24.12.2)

The payoff from following the strategy equals that from deviating and reverting

to Nash. Any value lower than this can be supported, but none higher.

When vb < vR , Abreu (1988) searched for a way to support something better

than vb . First, one must construct an equilibrium that yields a value worse than

permanent repetition of the Nash outcome. The expectation of reverting to this

equilibrium supports something better than vb in equation (24.12.2).

Somehow the government must be induced temporarily to take an action y#

that yields a worse period-by-period return than the Nash outcome, meaning

that the government in general would be tempted to deviate. An equilibrium

system of expectations has to be constructed that makes the government expect

to do better in the future only by conforming to expectations that it temporarily

adheres to the bad policy y# .

24.12.3. Something worse: a stick-and-carrot strategy

To get something worse than repetition of the one-period Nash outcome, Abreu

(1988) proposed a “stick-and-carrot punishment.” The “stick” part is an out-

come (x#, y#) ∈ C , which relative to (xN , yN ) is a bad competitive equilibrium

from the government’s viewpoint. The “carrot” part is the Ramsey outcome

(xR, yR), which the government attains forever after it has accepted the stick

in the first period of its punishment.
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We want a continuation value v∗ for deviating to support the first-period

outcome (x#, y#) ∈ C and attain the value15

ṽ = (1− δ)r(x#, y#) + δ vR ≥ (1 − δ)r
[
x#, H(x#)

]
+ δ v∗. (24.12.3)

Abreu proposed to set v∗ = ṽ so that the continuation value from deviating

from the first-period action equals the original value. If the stick part is severe

enough, the associated strategy attains a value worse than infinite repetition

of Nash. The strategy induces the government to accept the temporarily bad

outcome by promising a high continuation value.

An SPE featuring stick-and-carrot punishments that attains ṽ is

v1 = ṽ

zh(v) =

{
xR if v = vR;

x# otherwise;

zg(v) =

{
yR if v = vR;

y# otherwise;

V(v, x, y) =
{
vR if (x, y) = [zh(v), zg(v)] ;

ṽ otherwise.

(24.12.4)

When the government deviates from the bad prescribed first-period action y# ,

the consequence is to restart the equilibrium. This means that the equilibrium

is self-enforcing.

15 This is a “one-period stick.” The worst SPE can require more than one period of a

worse-than-one-period Nash outcome.
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24.13. Best and worst SPE values

The value associated with Abreu’s stick-and-carrot strategy might still not be

bad enough to deter the government from deviating from repetition of the Ram-

sey outcome. We are therefore interested in finding the worst SPE value. We

now display a pair of simple programming problems to find the best and worst

SPE values. APS (1990) showed how to find the entire set of equilibrium values

V . In the current setting, their ideas imply the following:

1. The set of equilibrium values V attainable by the government is a compact

subset [v, v] of [min(x,y)∈C r(x, y), r(x
R, yR)] .

2. The worst equilibrium value v can be computed from a simple programming

problem.

3. Given the worst equilibrium value v , the best equilibrium value v can be

computed from a programming problem.

4. Given a v ∈ [v, v] , it is easy to construct an equilibrium that attains it.

Recall from Proposition 2 that the worst equilibrium is self-enforcing, and

here we repeat versions of equations (24.10.2) and (24.10.3),

v = min
y∈Y, v1∈V

{
(1− δ) r

[
h(y), y

]
+ δv1

}
(24.13.1)

where the minimization is subject to the incentive constraint

(1− δ) r[h(y), y] + δv1 ≥ (1 − δ) r
{
h(y), H [h(y)]

}
+ δv. (24.13.2)

In expression (24.13.2), we use the worst SPE as the continuation value in the

event of a deviation. The minimum will be attained when the constraint is

binding, which implies that v = r{h(y), H [h(y)]} for some government action

y .16 Thus, the problem of finding the worst SPE reduces to solving

v = min
y∈Y

r
{
h(y), H [h(y)]

}
,

then computing v1 from (1− δ)r[h(y), y] + δv1 = v , where y = argmin r{h(y),
H [h(y)]} , and finally checking that v1 is itself a value associated with an SPE.

To check this condition, we need to know v .

16 An equivalent way to express v is v = miny∈Y maxη∈Y r(h(y), η) .
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The computation of v utilizes the fact that the best SPE is self-rewarding;

that is, the best SPE has continuation value v when the government follows the

prescribed equilibrium strategy. Thus, after we have computed a candidate for

the worst SPE value v , we can compute a candidate for the best value v by

solving the programming problem

v = max
y∈Y

r
[
h(y), y

]

subject to r
[
h(y), y

]
≥ (1 − δ)r

{
h(y), H [h(y)]

}
+ δv.

Here we are using the fact that v is the maximum continuation value available

to reward adherence to the policy, so that v = (1− δ)r[h(y), y] + δv . Let yb be

the maximizing value of y . Once we have computed v , we can check that the

continuation value v1 for supporting the worst value is within our candidate set

[v, v] . If it is, we have succeeded in constructing V .

24.13.1. When v1 is outside the candidate set

If our candidate v1 is not within our candidate set [v, v] , we have to seek a

smaller set. We could find this set by pursuing the following line of reasoning.

We know that

v = r
{
h(y), H [h(y)]

}
(24.13.3)

for some y , and that for y the continuation value v1 satisfies

(1− δ)r[h(y), y] + δv1 = (1− δ)r
{
h(y), H [h(y)]

}
+ δv.

Solving this equation for v1 gives

v1 =
1− δ

δ

(
r
{
h(y), H [h(y)]

}
− r[h(y), y]

)
+ r

{
h(y), H [h(y)]

}
(24.13.4)

The term in large parentheses on the right measures the one-period temp-

tation to deviate from y . It is multiplied by 1−δ
δ , which approaches +∞ as

δ ց 0. Therefore, as δ ց 0, it is necessary that the term in braces approach

0, which means that the required y must approach yN .

For discount factors that are so small that v1 is outside the region of values

proposed in the previous subsection because the implied v1 exceeds the can-

didate v , we can proceed in the spirit of Abreu’s stick-and-carrot policy, but
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instead of using vR as the continuation value to reward adherence (because

that is too much to hope for here), we can simply reward adherence to the worst

with v , which we must solve for. Using v = v1 as the continuation value for

adherence to the worst leads to the following four equations to be solved for

v, v, y, y :

v =r
{
h(y), H [h(y)]

}
(24.13.5)

v =
1− δ

δ

(
r
{
h(y), H [h(y)]

}
− r[h(y), y]

)

+ r
{
h(y), H [h(y)]

}
(24.13.6)

v =r[h(y), y] (24.13.7)

v =(1− δ)r {h(y), H [h(y)]}+ δv. (24.13.8)

In exercise 24.3 , we ask the reader to solve these equations for a particular

example.

24.14. Examples: alternative ways to achieve the worst

We return to the situation envisioned before the last subsection, so that the

candidate v1 belongs to the required candidate set [v, v] . We describe examples

of some equilibria that attain value v .

24.14.1. Attaining the worst, method 1

We have seen that to evaluate the best sustainable value v , we want to find the

worst value v . Many SPEs attain the worst value v . To compute one such SPE

strategy, we can use the following recursive procedure:

1. Set the first-period promised value v0 = v = r{h(y#), H [h(y#)]} , where

y# = argmin r{h(y), H [h(y)]} . The competitive equilibrium with the worst

one-period value gives value r[h(y#), y#] . Given expectations x# = h(y#),

the government is tempted toward H(x#), which yields one-period utility to

the government of r{h(y#), H [h(y#)]} . Then use v as continuation value in

the event of a deviation, and construct an increasing sequence of continuation

values to reward adherence, as follows:
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2. Solve v = (1 − δ)r[h(y#), y#] + δv2 for continuation value v1 .

3. For j = 1, 2, · · · , continue solving vj = (1 − δ)r[h(y#), y#] + δvj+1 for the

continuation values vj+1 as long as vj+1 ≤ v . If vj+1 threatens to violate this

constraint at step j = j , then go to step 4.

4. Use v as the continuation value, and solve vj = (1− δ)r[h(ỹ), ỹ] + δv for the

prescription ỹ to be followed if promised value vj is encountered.

5. Set vj+s = v for s ≥ 1.

24.14.2. Attaining the worst, method 2

To construct another equilibrium supporting the worst SPE value, follow steps

1 and 2, and follow step 3 also, except that we continue solving vj = (1 −
δ)r[h(y#), y#] + δvj+1 for the continuation values vj+1 only so long as vj+1 <

vN . As soon as vj+1 = v∗∗ > vN , we use v∗∗ as both the promised value

and the continuation value thereafter. In terms of our recursive strategy no-

tation, whenever v∗∗ = r[h(y∗∗), y∗∗] is the promised value, zh(v∗∗) = h(y∗∗),

zg(v∗∗) = y∗∗ , and v′[v∗∗, zh(v∗∗), zg(v∗∗)] = v∗∗ .

24.14.3. Attaining the worst, method 3

Here is another subgame perfect equilibrium that supports v . Proceed as in step

1 to find the initial continuation value v1 . Now set all subsequent values and

continuation values to v1 , with associated first-period outcome ỹ that solves

v1 = r[h(ỹ), ỹ] . It can be checked that the incentive constraint is satisfied with

v the continuation value in the event of a deviation.
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24.14.4. Numerical example

We now illustrate the concepts and arguments using the infinitely repeated

version of the taxation example. To make the problem of finding v nontrivial,

we impose an upper bound on admissible tax rates given by τ = 1 − α − ǫ ,

where ǫ ∈ (0, 0.5 − α). Given τ ∈ Y ≡ [0, τ ] , the model exhibits a unique

Nash equilibrium with τ = 0.5. For a sufficiently small ǫ , the worst one-period

competitive equilibrium is [ℓ(τ ), τ ] .

Set [α δ τ ] = [ 0.3 0.8 0.6 ]. Compute

[ τR τN ] = [ 0.3013 0.5000 ] ,

[ vR vN v vabreu ] = [−0.6801 −0.7863 −0.9613 −0.7370 ] .

In this numerical example, Abreu’s “stick-and-carrot” strategy fails to attain

a value lower than the repeated Nash outcome. The reason is that the upper

bound on tax rates makes the least favorable one-period return (the “stick”) not

so bad.
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Figure 24.14.1: Continuation values (on coordinate axis) of two

SPE that attain v .

Figure 24.14.1 describes two SPEs that attain the worst SPE value v with

the depicted sequences of time t (promised value, tax rate) pairs. The circles

represent the worst SPE attained with method 1, and the x-marks correspond
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to method 2. By construction, the continuation values of method 2 are less

than or equal to the continuation values of method 1. Since both SPEs attain

the same promised value v , it follows that method 2 must be associated with

higher one-period returns in some periods. Figure 24.14.2 indicates that method

2 delivers those higher one-period returns around period 20 when the prescribed

tax rates are closer to the Ramsey outcome τR = 0.3013.

When varying the discount factor, we find that the cutoff value of δ below

which reversion to Nash fails to support Ramsey forever is 0.2194.
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Figure 24.14.2: Tax rates associated with the continuation values

of Figure 24.14.1.



Interpretations 1053

24.15. Interpretations

The notion of credibility or sustainability emerges from a ruthless and complete

application of two principles: rational expectations and self-interest. At each

moment and for each possible history, individuals and the government act in

their own best interests while expecting everyone else always to act in their best

interests. A credible government policy is one that it is in the interest of the

government to implement on every occasion.

The structures that we have studied have multiple equilibria that are indexed

by different systems of rational expectations. Multiple equilibria are essential

because what sustains a good equilibrium is a system of expectations that raises

the prospect of reverting to a bad equilibrium if the government chooses to

deviate from the good equilibrium. For reversion to the bad equilibrium to

be credible – meaning that it is something that the private agents can expect

because the government will want to act accordingly – the bad equilibrium

must itself be an equilibrium. It must always be in the self-interest of all agents

to behave as they are expected to. Supporting a Ramsey outcome hinges on

finding an equilibrium with outcomes bad enough to deter the government from

surrendering to a temporary temptation to deviate.17

Is the multiplicity of equilibria a strength or a weakness of such theories?

Here descriptions of preferences and technologies, supplemented by the restric-

tion of rational expectations, don’t pin down outcomes. There is an indepen-

dent role for expectations not based solely on fundamentals. The theory is silent

about which equilibrium will prevail; the theory contains no sense in which the

government chooses among equilibria.

Depending on the purpose, the multiplicity of equilibria can be regarded

either as a strength or as a weakness of these theories. In inferior equilibria,

the government is caught in an “expectations trap,”18 an aspect of the theory

that highlights how the government can be regarded as simply resigning itself to

affirm the public’s expectations about it. Within the theory, the government’s

17 This statement means that an equilibrium is supported by beliefs about behavior at

prospective histories of the economy that might never be attained or observed. Part of the

literature on learning in games and dynamic economies studies situations in which it is not

reasonable to expect “adaptive” agents to learn so much. See Fudenberg and Kreps (1993),

Kreps (1990), and Fudenberg and Levine (1998). See Sargent (1999, 2008) for macroeconomic

counterparts.
18 See Chari, Christiano, and Eichenbaum (1998).
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strategy plays a dual role, as it does in any rational expectations model: one

summarizing the government’s choices, the other describing the public’s rule for

forecasting the government’s behavior. In inferior equilibria, the government

wishes that it could use a different strategy but nevertheless affirms the public’s

expectation that it will adhere to an inferior rule.

24.16. Extensions

In chapter 25, we shall describe how Chang (1998) and Phelan and Stacchetti

(2001) extended the machinery of this chapter to settings in which private

agents’ problems have natural state variables like stocks of real balances or

physical capital so that their best responses to government policies satisfy Eu-

ler equations (or costate equations). This will activate an additional source of

history dependence. The approach of chapter 25 merges aspects of the method

described in chapter 19 and 20 with those of this chapter.

Exercises

Exercise 24.1 Consider the following one-period economy. Let (ξ, x, y) be the

choice variables available to a representative agent, the market as a whole, and

a benevolent government, respectively. In a rational expectations equilibrium or

competitive equilibrium, ξ = x = h(y), where h(·) is the “equilibrium response”

correspondence that gives competitive equilibrium values of x as a function of

y ; that is, [h(y), y] is a competitive equilibrium. Let C be the set of competitive

equilibria.

Let X = {xM , xH}, Y = {yM , yH} . For the one-period economy, when

ξi = xi , the payoffs to the government and household are given by the values of

u(xi, xi, yj) entered in the following table:
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One-period payoffs u(xi, xi, yj)

xM xH
yM 10* 20
yH 4 15*
∗Denotes (x, y) ∈ C .

The values of u(ξk, xi, yj) not reported in the table are such that the competitive

equilibria are the outcome pairs denoted by an asterisk (*).

a. Find the Nash equilibrium (in pure strategies) and Ramsey outcome for the

one-period economy.

b. Suppose that this economy is repeated twice. Is it possible to support the

Ramsey outcome in the first period by reverting to the Nash outcome in the

second period in case of a deviation?

c. Suppose that this economy is repeated three times. Is it possible to support

the Ramsey outcome in the first period? In the second period?

Consider the following expanded version of the preceding economy. Y =

{yL, yM , yH} , X = {xL, xM , xH} . When ξi = xi , the payoffs are given by

u(xi, xi, yj) entered here:

One-period payoffs u(xi, xi, yj)

xL xM xH
yL 3* 7 9
yM 1 10* 20
yH 0 4 15*
∗Denotes (x, y) ∈ C .

d. What are Nash equilibria in this one-period economy?

e. Suppose that this economy is repeated twice. Find a subgame perfect equi-

librium that supports the Ramsey outcome in the first period. For what values

of δ will this equilibrium work?

f. Suppose that this economy is repeated three times. Find an SPE that sup-

ports the Ramsey outcome in the first two periods (assume δ = 0.8). Is it

unique?

Exercise 24.2 Consider a version of the setting studied by Stokey (1989). Let

(ξ, x, y) be the choice variables available to a representative agent, the market as
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a whole, and a benevolent government, respectively. In a rational expectations or

competitive equilibrium, ξ = x = h(y), where h(·) is the “equilibrium response”

correspondence that gives competitive equilibrium values of x as a function of

y ; that is, [h(y), y] is a competitive equilibrium. Let C be the set of competitive

equilibria.

Consider the following special case. Let X = {xL, xH} and Y = {yL, yH} .
For the one-period economy, when ξi = xi , the payoffs to the government are

given by the values of u(xi, xi, yj) entered in the following table:

One-period payoffs u(xi, xi, yj)

xL xH
yL 0* 20
yH 1 10*
∗ Denotes (x, y) ∈ C .

The values of u(ξk, xi, yj) not reported in the table are such that the competitive

equilibria are the outcome pairs denoted by an asterisk (*).

a. Define a Ramsey plan and a Ramsey outcome for the one-period economy.

Find the Ramsey outcome.

b. Define a Nash equilibrium (in pure strategies) for the one-period economy.

c. Show that there exists no Nash equilibrium (in pure strategies) for the one-

period economy.

d. Consider the infinitely repeated version of this economy, starting with t = 1

and continuing forever. Define a subgame perfect equilibrium.

e. Find the value to the government associated with the worst subgame perfect

equilibrium.

f. Assume that the discount factor is δ = .8913 = (1/10)1/20 = .1.05 . Determine

whether infinite repetition of the Ramsey outcome is sustainable as an SPE. If

it is, display the associated subgame perfect equilibrium.

g. Find the value to the government associated with the best SPE.

h. Find the outcome path associated with the worst SPE.

i. Find the one-period continuation value v1 and the outcome path associated

with the one-period continuation strategy σ1 that induces adherence to the

worst subgame perfect equilibrium.
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j. Find the one-period continuation value v2 and the outcome path associated

with the one-period continuation strategy σ2 that induces adherence to the

first-period outcome of the σ1 that you found in part i.

k. Proceeding recursively, define vj and σj , respectively, as the one-period

continuation value and the continuation strategy that induces adherence to the

first-period outcome of σj−1 , where (v1, σ
1) were defined in part i. Find vj for

j = 1, 2, . . . , and find the associated outcome paths.

l. Find the lowest value for the discount factor for which repetition of the

Ramsey outcome is an SPE.

Exercise 24.3 Finding worst and best SPEs

Consider the following model of Kydland and Prescott (1977). A government

chooses the inflation rate y from a closed interval [0, 10]. There is a family of

Phillips curves indexed by the public’s expectation of inflation x :

(1) U = U∗ − θ(y − x)

where U is the unemployment rate, y is the inflation rate set by the government,

and U∗ > 0 is the natural rate of unemployment and θ > 0 is the slope of the

Phillips curve, and where x is the average of private agents’ setting of a forecast

of y , called ξ . Private agents’ only decision in this model is to forecast inflation.

They choose their forecast ξ to maximize

(2) −.5(y − ξ)2.

Thus, if they know y , private agents set ξ = y . All agents choose the same

ξ , so that x = ξ in a rational expectations equilibrium. The government has

one-period return function

(3) r(x, y) = −.5(U2 + y2) = −.5[(U∗ − θ(y − x))2 + y2].

Define a competitive equilibrium as a 3-tuple U, x, y such that given y , private

agents solve their forecasting problem and (1) is satisfied.



a. Verify that in a competitive equilibrium, x = y and U = U∗ .

b. Define the government best response function in the one-period economy.

Compute it.

c. Define a Nash equilibrium (in the spirit of Stokey (1989) or the text of this

chapter). Compute one.

d. Define the Ramsey problem for the one-period economy. Define the Ramsey

outcome. Compute it.

e. Verify that the Ramsey outcome is better than the Nash outcome.

Now consider the repeated economy where the government cares about

(4) (1− δ)

∞∑

t=1

δt−1r(xt, yt),

where δ ∈ (0, 1).

f. Define a subgame perfect equilibrium.

g. Define a recursive subgame perfect equilibrium.

h. Find a recursive subgame perfect equilibrium that sustains infinite repetition

of the one-period Nash equilibrium outcome.

i. For δ = .95, U∗ = 5, θ = 1, find the value of (4) associated with the worst

subgame perfect equilibrium. Carefully and completely show your method for

computing the worst subgame perfect equilibrium value. Also, compute the

values associated with the repeated Ramsey outcome, the Nash equilibrium,

and Abreu’s simple stick-and-carrot strategy.

j. Compute a recursive subgame perfect equilibrium that attains the worst

subgame perfect equilibrium value (4) for the parameter values in part i.

k. For U∗ = 5, θ = 1, find the cutoff value δc of the discount factor δ below

which the Ramsey value vR cannot be sustained by reverting to repetition of

vN as a consequence of deviation from the Ramsey y .

l. For the same parameter values as in part k, find another cut off value δ̃c for

δ below which Ramsey cannot be sustained by reverting after a deviation to an

equilibrium attaining the worst subgame perfect equilibrium value. Compute

the worst subgame perfect equilibrium value for δ̃c .

m. For δ = .08, compute values associated with the best and worst subgame

perfect equilibrium strategies.
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Chapter 25
Credible Government Policies: II

25.1. History-dependent government policies

Chapter 24 began with a static setting in which a pair of (private sector, gov-

ernment) actions (x, y) belongs to a set C ∈ IR2 of competitive equilibria.

We formed a dynamic economy by infinitely repeating the static economy for

t = 0, 1, . . . , so that a competitive equilibrium for the repeated economy was

simply a sequence {xt, yt}∞t=0 with (xt, yt) ∈ C of competitive equilibria for the

static economy. We studied dynamics that come from a benevolent continuation

government’s incentives to confirm private forecasts of its time t actions yt on

the basis of histories of outcomes observed through time t− 1.

In more general settings, a competitive equilibrium of an infinite horizon

economy is itself a sequence having dynamics coming from private agents’ de-

cision making. In this chapter, we describe how Chang (1998) and Phelan and

Stacchetti (2001) studied credible public policies in such economies, first, by

characterizing a competitive equilibrium recursively as we did in chapters 19

and 20 when we posed Stackelberg problems and Ramsey problems, and, sec-

ond, by adapting arguments of Abreu, Pearce, and Stachetti (APS) that we

learned in chapter 24.

In the model of this chapter, there are two sources of history dependence,

each encoded with its own “forward looking” state variable. One state vari-

able indexes a continuation competitive equilibrium. The other state variable

is a discounted present value that an earlier government decision maker had

promised that subsequent government decision makers would deliver. These

state variables bring distinct sources of history dependence. In this chapter, we

describe how recursive methods can be used to analyze both. A key message is

that to represent credible government plans recursively, it is necessary to expand

the dimension of the state beyond those used in either chapters 19 and 20 or in

chapter 24. Roberto Chang’s (1998) model is our laboratory.

– 1059 –
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25.2. The setting

Chang adapts a model of Calvo (1978) in which government actions at time t

affect components of a forward-looking household’s utilities at times before t .

A Ramsey planner recognizes these effects when at time 0 it designs once-and-

for-all a joint tax-collection, money-expansion plan for times t ≥ 0.

For a sequence of scalars ~z ≡ {zt}∞t=0 , let ~z
t = (z0, . . . , zt), ~zt = (zt, zt+1, . . .).

An infinitely lived representative agent and an infinitely lived government exist

at dates t = 0, 1, . . . . Objects in play are an initial condition M−1 of nominal

money supplies or demands, a sequence of inverse money growth rates ~h and

an implied sequence of nominal money holdings ~M , a sequence of inverse price

levels also called values of money ~q , a sequence of real money holdings ~m , a

sequence of total tax collections ~x , a sequence of per capita rates of consump-

tion ~c , and a sequence of per capita incomes ~y . A representative household

chooses sequences (~c, ~m) of consumption and real balances. A benevolent gov-

ernment chooses sequences ( ~M,~h, ~x) subject to a sequence of budget constraints

and constraints imposed by the requirement that a competitive equilibrium pre-

vails. In equilibrium, the price of money sequence ~q reconciles decisions of the

government and the representative household.

25.2.1. Household problem

A representative household brings nominal cash balances M−1 into period 0.

The household faces a nonnegative value of money sequence ~q and sequences

~y, ~x of income and total tax collections, respectively. The household chooses

nonnegative sequences ~c, ~M of consumption and nominal balances, respectively,

to maximize
∞∑

t=0

βt [u(ct) + v(qtMt)] (25.2.1)

subject to

qtMt ≤ yt + qtMt−1 − ct − xt (25.2.2)

qtMt ≤ m̄. (25.2.3)

Here qt is the reciprocal of the price level at t , also known as the value of money.
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Chang assumes that u : IR+ → IR is twice continuously differentiable,

strictly concave, and strictly increasing; that v : IR+ → IR is twice continu-

ously differentiable and strictly concave; that u′(c)c→0 = limm→0 v
′(m) = +∞ ;

and that there is a finite level m = mf such that v′(mf ) = 0.

The household takes real balances mt = qtMt out of period t . Inequality

(25.2.2) is the household’s time t budget constraint. It tells how real balances

qtMt carried out of period t depend on income, consumption, taxes, and real

balances qtMt−1 carried into the period. Equation (25.2.3) imposes an exoge-

nous upper bound m̄ on the choice of real balances, where m̄ ≥ mf .

25.2.2. Government

At each t ≥ 0, the government chooses a sequence of inverse money growth rates

with time t component ht ≡ Mt−1

Mt
∈ Π ≡ [π, π] , where 0 < π < 1 < 1

β ≤ π .

The government faces a sequence of budget constraints with time t component

−xt = qt(Mt −Mt−1),

which by using the definitions of mt and ht can also be expressed as

−xt = mt(1− ht). (25.2.4)

The restrictions mt ∈ [0, m̄] and ht ∈ Π evidently imply that xt ∈ X ≡
[(π − 1)m̄, (π − 1)m̄] . We define the set E ≡ [0, m̄] × Π ×X and require that

(m,h, x) ∈ E .

To represent the idea that taxes are distorting, Chang assumes that per

capita output satisfies

yt = f(xt), (25.2.5)

where f : IR → IR satisfies f(x) > 0, is twice continuously differentiable,

f ′′(x) < 0, and f(x) = f(−x) for all x ∈ IR , so that subsidies and taxes are

equally distorting. This approach summarizes the consequences of distorting

taxes via the function f(x) and abstains from modeling the distortions more

deeply. A key part of the specification is that tax distortions are increasing in

the absolute value of tax revenues.

The government is benevolent and chooses a competitive equilibrium that

maximizes (25.2.1). Within-period timing of decisions is as follows: first, the
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government chooses ht and xt ; then given ~q and its expectations of future

values of x and y ’s, the household chooses mt ; then output yt = f(xt) is

realized; and finally ct = yt . This within-period timing opens opportunities

for the private sector to confront the government with choices framed by how

the private sector responds whenever the government takes a time t action that

differs from what the private sector had expected. This consideration will shape

credible government policies in section 25.7.

The model is designed to focus on intertemporal trade-offs between welfare

benefits of deflation and welfare costs associated with the high tax collections

required to retire money at rates that cause deflation. To promote welfare en-

hancing high real balances, a benevolent government wants a gradual deflation.

A time 0 government can promote utility generating increases in real balances

only by imposing distorting tax collections.

25.2.3. Analysis of household’s problem

Given nominal money balances M−1 brought into period 0 and given the inverse

price level sequence {qt}∞t=0 , the household’s problem is

L = max
~c, ~M

min
~λ,~µ

∞∑

t=0

βt
{
u(ct) + v(Mtqt) + λt[yt − ct − xt + qtMt−1 − qtMt]

+ µt[m̄− qtMt]
}
,

where {λt}∞t=0, {µt}∞t=0 are sequences of nonnegative Lagrangemultipliers. First-

order conditions with respect to ct and Mt , respectively, are
1

u′(ct) = λt

qt[u
′(ct)− v′(Mtqt)] ≤ βu′(ct+1)qt+1, = if Mtqt < m̄.

At this point, we substitute equilibrium restrictions ht =
Mt−1

Mt
, qt =

mt

Mt
, and

ct = f(xt) into these first-order conditions to get

mt[u
′(f(xt))− v′(mt)] ≤ βu′(f(xt+1))mt+1ht+1, = if mt < m̄. (25.2.6)

1 The special conditions imposed by Chang assure that these first-order conditions are

both necessary and sufficient within a competitive equilibrium. Discounting and a bounded

marginal utility of consumption assure satisfaction of a transversality condition.
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Define what Chang calls the ‘marginal utility of real balances’

θt+1 ≡ u′(f(xt+1))mt+1ht+1, (25.2.7)

so that we can write inequalities (25.2.6) as

mt[u
′(f(xt))− v′(mt)] ≤ βθt+1, = if mt < m̄. (25.2.8)

25.2.4. θt+1 as intermediating variable

Inequalities (25.2.6) show that future paths (~xt+1, ~mt+1) influence mt entirely

through their effects on the scalar θt+1 . The observation that the one dimen-

sional promised marginal utility of real balances θt+1 functions in this way is

an important step in constructing a class of competitive equilibria that have a

recursive representation. Because there is a set of government policies, there is

a set of competitive equilibrium and therefore a set Ω of implied θ ’s defined by

(25.2.7). How to find and characterize the set Ω are important parts of Chang’s

analysis.

25.3. Recursive approach to Ramsey problem

In this section, we temporarily postpone the question of how it is determined

and pretend that we know the set Ω; then we formulate the Ramsey problem for

the Calvo-Chang model recursively using a method also employed in chapters

19 and 20. Using the implication of equation (25.2.4) that mtht = mt + xt

allows us to express θt as

θt = u′(f(xt))(mt + xt), (25.3.1)

which allows us to express inequalities (25.2.8) as

θt ≤ u′(f(xt))xt + v′(mt)mt + βθt+1, = if mt < m̄, t ≥ 0. (25.3.2)

The Ramsey problem is to choose {xt,mt, ht, θt}∞t=0 with (mt, ht, xt) ∈ E and

θt ∈ Ω to maximize
∞∑

t=0

βt {u(ct) + v(mt)}
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subject to equation (25.3.1) and the budget constraints (25.2.4) and Euler in-

equalities (25.3.2) for t ≥ 0. As in chapters 19 and 20, we break this problem

into two subproblems. Subproblem 1 confronts a sequence of continuation Ram-

sey planners, one for each t ≥ 1. Subproblem 1 takes as given a state variable

θ that for t ≥ 2 was chosen by the preceding continuation Ramsey planner,

and for t = 1, by the Ramsey planner.2 Subproblem 2 confronts the Ramsey

planner, whose job is to choose m0, x0, h0 as well as a θ ∈ Ω to turn over to a

time 1 continuation Ramsey planner.

25.3.1. Subproblem 1: Continuation Ramsey problem

This problem confronts a continuation Ramsey planner at each t ≥ 1. The

problem takes θ as given. Let J(θ) be the optimal value function for a con-

tinuation Ramsey planner facing θ as a state variable that he is obligated to

deliver by choosing (m,x) that satisfy equation (25.3.4b). The value function

J(θ) satisfies the Bellman equation

J(θ) = max
x,m,h,θ′

{u(f(x)) + v(m) + βJ(θ′)} (25.3.3)

where maximization is subject to

θ ≤ u′(f(x))x + v′(m)m+ βθ′, = if m < m̄ (25.3.4a)

θ = u′(f(x))(m + x) (25.3.4b)

−x = m(1− h) (25.3.4c)

(m,h, x) ∈ E (25.3.4d)

θ′ ∈ Ω (25.3.4d)

The right side of Bellman equation (25.3.3) is attained by policy functions

x = x(θ)

m = m(θ)

h = h(θ)

θ′ = g(θ).

(25.3.5)

2 We can also think of the entire sequence {θt}
∞
t=0 as having been chosen a Ramsey planner

at time t = 0.
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25.3.2. Subproblem 2: Ramsey problem

A Ramsey planner faces different opportunities and constraints than do con-

tinuation Ramsey planners. The Ramsey planner does not inherit a θ0 that it

must deliver with a suitable choice of (m0, h0, x0) but instead chooses one. Let

H be the value of the Ramsey problem. It satisfies

H = max
h,m,x,θ

u(f(x)) + v(m) + βJ(θ) (25.3.6)

where maximization is subject to

m[u′(f(x)) − v′(m)] ≤ βθ, = if m < m̄ (25.3.7a)

−x = m(1− h) (25.3.7b)

(m,h, x) ∈ E (25.3.7c)

θ ∈ Ω (25.3.7d)

The maximized value H is attained by a triple (h0,m0, x0) of time 0 choices

and a continuation θ ∈ Ω to pass on to a time 1 continuation Ramsey planner.

To find remaining settings of the Ramsey plan, we iterate on (25.3.5) starting

from the θ chosen by the Ramsey planner to deduce a continuation Ramsey tax

plan {xt}∞t=1 and associated continuation inverse money growth, real balance

sequence {ht,mt}∞t=1 . Time inconsistency manifests itself in (x0, h0,m0) 6=
(x1, h1,m1), so that a continuation of a Ramsey plan is not a Ramsey plan, as

encountered in other contexts in chapters 19 and 20.

An equivalent way to express subproblem 2 is

H = max
θ,m,x,h

J(θ) (25.3.8)

where maximization is subject to

θ = u′(f(x))(m + x) (25.3.9a)

and restrictions (25.3.7b) and (25.3.7c).3

3 Please note that in equation (25.3.6), θ is next period’s value of θ to be handed over to

a continuation Ramsey planner, while in equation (25.3.8), θ is a time 0 value of θ .
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25.3.3. Finding set Ω

The preceding calculations assume that we know the set Ω. We describe Chang’s

method for constructing Ω later in this chapter, but also provide a brief sketch

here. Chang uses backward induction in the style of Abreu, Pearce, and Stac-

chetti. Thus, Chang starts by guessing a compact set Ω0 of candidate continua-

tion θ s. For a reason to be explained momentarily, it is important for Chang to

start with guess Ω0 that contains Ω. He defines a three-tuple (x0, h0,m0) ∈ E

and a θ1 ∈ Ω0 that together satisfy time 0 versions of restrictions (25.2.4) and

(25.2.8) as “admissible with respect to Ω0”. Notice that if the guess Ω0 happens

to equal Ω, then being admissible with respect to Ω0 means that (x0, h0,m0)

would be time t = 0 variables for a competitive equilibrium that is associated

with a continuation competitive equilibrium marginal utility of money θ1 , be-

cause θ1 is in Ω. But because Ω0 might be bigger than Ω, Chang can’t be sure

that that a four-tuple (x0, h0,m0, θ1) that is admissible with respect to Ω0 rep-

resents a competitive equilibrium. Therefore, he proceeds as follows. He starts

by seeking all four-tuples (x0, h0,m0) that are admissible with respect to Ω0 .

For each admissible four-tuple he calculates a value θ0 = u′(f(x0))(m0 + x0).

He then constructs a set, call it Ω1 , of all such θ0 ’s associated with four-tuples

that are admissible with respect to Ω0 . In this way, Chang constructs an op-

erator D that maps a set Ω0 of candidate continuation θ1 ’s into a set Ω1 of

implied time 0 θ0 ’s. Call this operator D . Chang constructs Ω by iterating

to convergence on D . Chang shows that if he starts with a big enough set Ω0 ,

this algorithm converges to Ω. Chang’s proof strategy relies on verifying that

D is monotone.

25.3.4. An example

Figures 25.3.1, 25.3.2, 25.3.3, and 25.3.4 describe policies that attain Bellman

equation (25.3.3)-(25.3.4) for fundamentals u(c) = log(c), v(m) = 1
2000 (mm̄ −

.5m2).5, f(x) = 180 − (.4x)2 , and m̄ = 30, β = 9 with h is confined to the

interval [.8, 1.3]. The domain for each of the functions reported in these figures

is the set Ω of marginal utilities of money affiliated with competitive equilibria,

which we computed by the method described in subsection 25.3.3. Figure 25.3.1

shows θ0 , the maximizer of value function J(θ) of a continuation Ramsey plan-

ner; it also shows the limit point θ∞ ≡= limt→+∞ θt that the marginal utility
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Figure 25.3.1: Value function J(θ) for continuation Ramsey

planner.

of money under a Ramsey plan approaches as t → +∞ . Figure 25.3.1 shows

θ′ as a function of θ . The policy functions in figure 25.3.3 and the time series

that they imply displayed in figure 25.3.4 show how the Ramsey planner grad-

ually raises the tax rate xt and the inverse money growth rate ht , measures

that cause real balances mt gradually to rise. The Ramsey planner wants to

push up real balances m but dislikes the distorting taxes x required to make

the inverse money growth rate bigger than 1. The Ramsey planner also under-

stands that the household’s forward looking behavior makes its demand for real

balances depend inversely on future rates of inflation and therefore on future

inverse money growth rates.4 Therefore, a Ramsey planner who plans to set

high inverse money growth rates at dates t ≥ 1 reaps benefits in terms of higher

real balances at time 0. By setting time 0 inverse money growth and distorting

taxes to be high, the Ramsey planner reaps no such benefits from higher real

balances at date t < 0. The different structures of payoffs to the Ramsey plan-

ner from settings of xt, ht at different dates accounts for the Ramsey planner’s

decision gradually to raise inverse money growth rates and distorting taxes.

4 See the analysis of a demand function for money that highlights this channel in exercise

19.1 of chapter19.
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Figure 25.3.2: θt+1 as function of θt together with initial con-

dition θ0 and fixed point θ∗ under Ramsey plan.
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Figure 25.3.3: Policy functions showing θ′,m, h and x as func-

tions of θ .

25.4. Chang’s formulation

This section describes Chang’s (1998) way of formulating competitive equilib-

ria, the set Ω of marginal utilities associated with continuation competitive

equilibria, and a Ramsey plan.
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Figure 25.3.4: Time series of θ,m, h, x under Ramsey plan.

25.4.1. Competitive equilibrium

Definition: A government policy is a pair of sequences (~h, ~x) where ht ∈
Π ∀t ≥ 0. A price system is a nonnegative value of money sequence ~q . An

allocation is a triple of nonnegative sequences (~c, ~m, ~y).

It is required that time t components (mt, xt, ht) ∈ E .

Definition: Given M−1 , a government policy (~h, ~x), price system ~q , and

allocation (~c, ~m, ~y) are said to be a competitive equilibrium if

i. mt = qtMt and yt = f(xt).

ii. The government budget constraint (25.2.4) is satisfied.

iii. Given ~q, ~x, ~y , (~c, ~m) solves the household’s problem.

25.5. Inventory of key objects

Chang constructs the following objects.

1. A set Ω of initial marginal utilities of money θ0 .

Let Ω denote the set of initial promised marginal utilities of money θ0 asso-

ciated with competitive equilibria. Chang exploits the fact that a competitive

equilibrium consists of a first period outcome (h0,m0, x0) and a continuation

competitive equilibrium with marginal utility of money θ1 ∈ Ω.
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2. Competitive equilibria that have a recursive representation.

A competitive equilibrium with a recursive representation consists of an initial θ0

and a four-tuple of functions (h,m, x,Ψ) mapping θ into this period’s (h,m, x)

and next period’s θ , respectively.5 A competitive equilibrium starts from a

four-tuple (x0, h0,m0, θ1) such that (x0, h0,m0) ∈ E , θ1 ∈ Ω, and restrictions

(25.2.4) and (25.2.8) are satisfied at t = 0. Thereafter it can be represented

recursively by iterating on
ht = h(θt)

mt = m(θt)

xt = x(θt)

θt+1 = Ψ(θt)

(25.5.1)

starting from θ1 The range and domain of Ψ(·) are both Ω.

3. A recursive representation of a Ramsey plan.

A recursive representation of a Ramsey plan is a recursive competitive equilib-

rium θ0, (h,m, x,Ψ) that, among all recursive competitive equilibria, maximizes∑∞
t=0 β

t [u(ct) + v(qtMt)] . The Ramsey planner chooses θ0, (h,m, x,Ψ) from

among the set of recursive competitive equilibria at time 0. Iterations on the

function Ψ determine subsequent θt ’s that summarize the aspects of the contin-

uation competitive equilibria that influence the household’s decisions. At time

0, the Ramsey planner commits to this implied sequence {θt}∞t=0 and therefore

to an associated sequence of continuation competitive equilibria.6

4. A credible government policy with a recursive representation.

Here there is no time 0 Ramsey planner. Instead there is a sequence of govern-

ment decision makers. The time t decision maker chooses time t government

5 Proposition 3 of Chang (1998) establishes that there exists a competitive equilibrium with

such a recursive representation that solves the Ramsey problem. The proposition is silent

about whether there exist additional competitive equilibria not having recursive representa-

tions that also solve the Ramsey problem.
6 In several contexts, Atkeson, Chari, and Kehoe (2010) show that to implement a Ramsey

plan uniquely, it can be important to add mt to the right side of the arguments of the functions

x and Ψ determining xt and θt+1 in (25.5.1). Adding (what in their model amounts to a

counterpart to) mt to these functions allows Atkeson, Chari, and Kehoe to express how the

government would respond if the representative household were to deviate from the outcome

m̂t = m(θt) prescribed by the Ramsey plan. They construct these augmented functions to

provide incentives that deter private sector deviations from the Ramsey plan.
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actions after forecasting what future government decision makers will do. Let

w =
∑∞

t=0 β
t [u(ct) + v(qtMt)] be a value associated with a particular compet-

itive equilibrium. A recursive representation of a credible government policy is

a pair of initial conditions (w0, θ0) and a five-tuple of functions7

h(wt, θt),m(ht, wt, θt), x(ht, wt, θt), χ(ht, wt, θt),Ψ(ht, wt, θt)

mapping wt, θt and in some cases ht into ĥt,mt, xt, wt+1 , and θt+1 , respec-

tively. Starting from initial condition (w0, θ0), a credible government policy

can be constructed by iterating on these functions in the following order that

respects the within-period timing:

ĥt = h(wt, θt)

mt = m(ht, wt, θt)

xt = x(ht, wt, θt)

wt+1 = χ(ht, wt, θt)

θt+1 = Ψ(ht, wt, θt).

(25.5.2)

Here it is to be understood that ĥt is the action that the government policy

instructs the government to take, while ht possibly not equal to ĥt is some other

action that the government is free to take at time t . The plan is called credible

if it is in the time t government’s interest to execute it. Credibility requires

that the plan be such that for all possible choices of ht that are consistent with

competitive equilibria,

u(f(x(ĥt, wt, θt))) + v(m(ĥt, wt, θt)) + βχ(ĥt, wt, θt)

≥ u(f(x(ht, wt, θt))) + v(m(ht, wt, θt)) + βχ(ht, wt, θt),

so that at each instance and circumstance of choice, a government attains a

weakly higher lifetime utility for the consumer with continuation value wt+1 =

Ψ(ht, wt, θt) by adhering to the plan and confirming the associated time t action

ĥt that the public had expected earlier.8

7 Again, in the spirit of footnote 5, there can exist additional credible plans that do not

have a recursive representation.
8 The incentive constraint deters the government only from one-period deviations. But

this is a context in which deterring one-period deviations is sufficient to deter multi-period

deviations.
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Please note the subtle change in arguments of the functions used to represent

a competitive equilibrium and a Ramsey plan, on the one hand, and a credible

government plan, on the other hand. The extra arguments appearing in the

functions used to represent a credible plan come from allowing the government

to contemplate disappointing the private sector’s expectation about its time t

choice ĥt . A credible plan induces the government to confirm the private sector’s

expectation. The recursive representation of the plan uses the evolution of the

continuation value w to deter the government from disappointing the private

sector’s expectations.

Technically, both the Ramsey plan and the credible plan incorporate history

dependence. For the Ramsey plan, this is encoded in the dynamics of the

state variable θt , a promised marginal utility that the Ramsey plan delivers

to the private sector. For a credible government plan, the evolution of the

two-dimensional state vector (wt, θt) encodes history dependence.

25.6. Analysis

A competitive equilibrium is a triple of sequences (~m, ~x,~h) ∈ E∞ .

Definition: CE =
{
(~m, ~x,~h) ∈ E∞ such that (25.2.4), (25.2.5), and (25.2.6)

are satisfied.
}

CE is not empty because there exists a competitive equilibrium with ht = 1

for all t ≥ 1, namely, an equilibrium with a constant money supply and constant

price level. Chang establishes that CE is also compact. Chang makes the

following key observation that combines ideas of APS with insights of Kydland

and Prescott (1980).

Proposition: A continuation of a competitive equilibrium is a competitive

equilibrium. That is, (~m, ~x,~h) ∈ CE implies that (~mt, ~xt,~ht) ∈ CE ∀ t ≥ 1.

Ramsey problem:

max
(~m,~x,~h)∈E∞

∞∑

t=0

βt [u(ct) + v(mt)]

subject to (25.2.4), (25.2.5), and (25.2.6). Evidently, associated with any com-

petitive equilibrium (m0, x0) is an implied value of θ0 = u′(f(x0))(m0 + x0).
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To bring out a recursive structure inherent in the Ramsey problem, Chang

defines the set

Ω =
{
θ ∈ IR such that θ = u′(f(x0))(m0 + x0) for some (~m, ~x,~h) ∈ CE

}
.

Equation (25.2.6) inherits from the household’s Euler equation for money hold-

ings the property that the value of m0 consistent with the representative house-

hold’s choices depends on (~h1, ~m1). This dependence is captured by making Ω

be the set of first period values of θ0 satisfying θ0 = u′(f(x0))(m0 + x0) for

first period component (m0, h0) of competitive equilibrium sequences (~m, ~x,~h).

Chang establishes that Ω is a nonempty and compact subset of IR+ .

Next Chang advances:

Definition: Γ(θ) =
{
(~m, ~x,~h) ∈ CE|θ = u′(f(x0))(m0 + x0)

}
.

Thus, Γ(θ) is the set of competitive equilibrium sequences (~m, ~x,~h) whose

first period components (m0, h0) deliver the prescribed value θ for first period

marginal utility.

If we knew the sets Ω,Γ(θ), we could use the following version of the two-

subproblem approach described in section 25.3 to find the value of the Ramsey

outcome to the representative household.

1. Find the indirect value function w(θ) defined as

w(θ) = max
(~m,~x,~h)∈Γ(θ)

∞∑

t=0

βt [u(f(xt)) + v(mt)] .

2. Compute the value of the Ramsey outcome by solving maxθ∈Ωw(θ).

Chang states

Proposition: w(θ) satisfies the Bellman equation

w(θ) = max
x,m,h,θ′

{
u(f(x)) + v(m) + βw(θ′)

}
(25.6.1)

where the maximization is subject to

(m,x, h) ∈ E and θ′ ∈ Ω (25.6.2)

θ = u′(f(x))(m + x) (25.6.3)

−x = m(1 − h) (25.6.4)

m · [u′(f(x)) − v′(m)] ≤ βθ′, = if m < m̄. (25.6.5)
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Note that the proposition relies on knowing the set Ω. To find Ω, Chang

uses a method reminiscent of chapter 24’s APS iteration to convergence on an

operator B that maps continuation values into values. We want an operator

that maps a continuation θ into a current θ . Chang lets Q be a nonempty,

bounded subset of IR . Elements of the set Q are candidates for continuation

marginal utilities. Chang defines an operator

B(Q) = {θ ∈ IR : there is (m,x, h, θ′) ∈ E ×Q such that

(25.6.3), (25.6.4), and (25.6.5) hold}

Thus, B(Q) is the set of first period θ ’s attainable with (m,x, h) ∈ E and some

θ′ ∈ Q .

Proposition:

i. Q ⊂ B(Q) implies B(Q) ⊂ Ω. (‘self-generation’)

ii. Ω = B(Ω). (‘factorization’)

The proposition characterizes Ω as the largest fixed point of B . It is easy

to establish that B(Q) is a monotone operator. This property allows Chang to

compute Ω as the limit of iterations on B provided that iterations begin from

a sufficiently large initial set.

25.6.1. Notation

Let ~ht = (h0, h1, . . . , ht) denote a history of inverse money creation rates with

time t component ht ∈ Π. A government strategy σ = {σt}∞t=0 is a σ0 ∈ Π

and for t ≥ 1 a sequence of functions σt : Πt−1 → Π. Chang restricts the

government’s choice of strategies to the following space:

CEπ = {~h ∈ Π∞ : there is some (~m, ~x) such that (~m, ~x,~h) ∈ CE}.

In words, CEπ is the set of money growth sequences consistent with the ex-

istence of competitive equilibria. Chang observes that CEπ is nonempty and

compact.

Definition: σ is said to be admissible if for all t ≥ 1 and after any history
~ht−1 , the continuation ~ht implied by σ belongs to CEπ .
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Admissibility of σ means that anticipated policy choices associated with σ

are consistent with the existence of competitive equilibria after each possible

subsequent history. After any history ~ht−1 , admissibility restricts the govern-

ment’s choice in period t to the set

CE0
π = {h ∈ Π : there is ~h ∈ CEπ with h = h0}.

In words, CE0
π is the set of all first period money growth rates h = h0 , each

of which is consistent with the existence of a sequence of money growth rates ~h

starting from h0 in the initial period and for which a competitive equilibrium

exists.

Remark: CE0
π = {h ∈ Π : there is (m, θ′) ∈ [0, m̄] × Ω such that mu′[f((h −

1)m)− v′(m)] ≤ βθ′ with equality if m < m̄.}

Definition: An allocation rule is a sequence of functions ~α = {αt}∞t=0 such

that αt : Π
t → [0, m̄]×X .

Thus, the time t component of αt(h
t) is a pair of functions (mt(h

t), xt(h
t)).

Definition: Given an admissible government strategy σ , an allocation rule α

is called competitive if given any history ~ht−1 and ht ∈ CE0
π , the continuations

of σ and α after (~ht−1, ht) induce a competitive equilibrium sequence.

25.6.2. An operator

At this point it is convenient to introduce an operator D that can be used

to compute a Ramsey plan. For computing a Ramsey plan, this operator is

wasteful because it works with a state vector that is bigger than necessary. We

introduce operator D because it helps to prepare the way for Chang’s operator

D̃(Z) that we shall define in section 25.7. It is also useful because a fixed point

of the operator D(Z) is a good guess for an initial set from which to initiate

iterations on Chang’s set-to-set operator D̃(Z).

Let S be the set of all pairs (w, θ) of competitive equilibrium values and

associated initial marginal utilities. Let W be a bounded set of values in IR .
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Let Z be a nonempty subset of W ×Ω and think of using pairs (w′, θ′) drawn

from Z as candidate continuation value, θ pairs. Define the operator

D(Z) =
{
(w, θ) : there is h ∈ CE0

π

and a four− tuple (m(h), x(h), w′(h), θ′(h)) ∈ [0, m̄]×X × Z

such that

w = u(f(x(h))) + v(m(h)) + βw′(h) (25.6.6)

θ = u′(f(x(h)))(m(h) + x(h)) (25.6.7)

x(h) = m(h)(h− 1) (25.6.8)

m(h)(u′(f(x(h))) − v′(m(h))) ≤ βθ′(h) (25.6.9)

with equality if m(h) < m̄.
}

It is possible to establish

Proposition:

i. If Z ⊂ D(Z), then D(Z) ⊂ S . (‘self-generation’)

ii. S = D(S). (‘factorization’)

Proposition:

i. Monotonicity of D : Z ⊂ Z ′ implies D(Z) ⊂ D(Z ′).

ii. Z compact implies that D(Z) is compact.

It can be shown that S is compact and that therefore there exists a (w, θ)

pair within S that attains the highest possible value w . This (w, θ) pair is

associated with a Ramsey plan. Further, we can compute S by iterating to

convergence on D provided that one begins with a sufficiently large initial set

S0 . As a useful by-products, the algorithm that finds the largest fixed point

S = D(S) also produces the Ramsey plan, its value w , and an associated

continuation marginal of money that the Ramsey planner hands over to the

first continuation Ramsey planner.
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Figure 25.6.1: Sets of (w, θ) pairs associated with competitive

equilibria (the larger set) and with sustainable plans (the smaller

set) for β = .3. The Ramsey plan is associated with the (w, θ)

pair denoted R , which among points in the larger set maximizes

w . Attaining R requires an initial θ equal to the projection of R

onto the vertical axis.

The larger sets in figures 25.6.1 and 25.6.2 report sets of (w, θ) pairs asso-

ciated with competitive equilibria for two parameterizations. (We will discuss

the smaller sets in the next section about sustainable plans.) In both figures,

u(c) = log(c), v(m) = 1
2000 (mm̄− .5m2).5, f(x) = 180− (.4x)2 , and m̄ = 30. In

figure 25.6.1 β = .3 and h is confined to the interval [.9, 2]. In figure 25.6.2,

β = .8 and h is confined to the interval [.9, 1/.8]. In both figures, the Ramsey

outcome is associated with the (w, θ) pair denoted R , which among points in

the larger set maximizes w . To find the initial θ associated with the Ramsey

plan, project R onto the vertical axis.9 The value of the Ramsey plan is the

projection of the point R onto the horizontal axis.

9 We thank Sebastian Graves for computing these sets and also the smaller ones to be

described below. Graves used the outer approximation method of Judd, Yeltekin, and Conklin

(2003) to compute this set. A public randomization device is introduced to convexify the set

of equilibrium values.
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Figure 25.6.2: Sets of (w, θ) pairs associated with competitive

equilibria (the larger set) and with sustainable plans (the smaller

set) for β = .8 The Ramsey plan is associated with the (w, θ)

pair denoted R , which among points in the larger set maximizes

w . Attaining R requires an initial θ equal to the projection of R

onto the vertical axis.

25.7. Sustainable plans

Definition: A government strategy σ and an allocation rule α constitute a

sustainable plan (SP) if

i. σ is admissible.

ii. Given σ , α is competitive.

iii. After any history ~ht−1 , the continuation of σ is optimal for the government;

i.e., the sequence ~ht induced by σ after ~ht−1 maximizes (25.2.1) over CEπ

given α .

Remark: Given any history ~ht−1 , the continuation of a sustainable plan is a

sustainable plan.

Definition: Let Θ = {(~m, ~x,~h) ∈ CE : there is an SP whose outcome is (~m, ~x,~h)}.

Sustainable outcomes are elements of Θ.
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Now consider the set

S =
{
(w, θ) : there is a sustainable outcome (~m, ~x,~h) ∈ Θ with value

w =

∞∑

t=0

βt[u(f(xt)) + v(mt)] and such that u′(f(x0))(m0 + x0) = θ
}

Set S is a compact subset of W × Ω, where W = [w,w] is the set of values

associated with sustainable plans. Here w and w are finite bounds on the set

of values. Because there is at least one sustainable plan, S is nonempty.

Now recall the within-period timing protocol, which we can depict (h, x) →
m = qM → y = c . With this timing protocol in mind, the time 0 component

of an SP has the following components:

i. A period 0 action ĥ ∈ Π that the public expects the government to take,

together with subsequent within-period consequences m(ĥ), x(ĥ) when the

government acts as the household had expected.

ii. For any first period action h 6= ĥ with h ∈ CE0
π , a pair of within-period

consequences m(h), x(h) when the government does not act as the household

had expected.

iii. For every h ∈ Π, a pair (w′(h), θ′(h)) ∈ S to carry into next period.

These components must be such that it is optimal for the government to

choose ĥ as expected; and for every possible h ∈ Π, the government budget

constraint and the household’s Euler equation must hold with continuation θ

being θ′(h).

Given the timing protocol, the representative household’s response to a gov-

ernment deviation to h 6= ĥ from a prescribed ĥ consists of a first period action

m(h) and associated subsequent actions, together with future equilibrium prices,

captured by (w′(h), θ′(h)).10

At this point, Chang introduces an idea of APS. Let Z be a nonempty subset

of W × Ω and think of using pairs (w′, θ′) drawn from Z as candidate contin-

uation value, promised marginal utility of money pairs. Define the following

operator:

D̃(Z) =
{
(w, θ) : there is ĥ ∈ CE0

π and for each h ∈ CE0
π

10 The prescribed government action ĥ equals the public’s forecast of what the government

would do.
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a four− tuple (m(h), x(h), w′(h), θ′(h)) ∈ [0, m̄]×X × Z

such that

w = u(f(x(ĥ))) + v(m(ĥ)) + βw′(ĥ) (25.7.1)

θ = u′(f(x(ĥ)))(m(ĥ) + x(ĥ)) (25.7.2)

and for all h ∈ CE0
π

w ≥ u(f(x(h))) + v(m(h)) + βw′(h) (25.7.3)

x(h) = m(h)(h− 1) (25.7.4)

and

m(h)(u′(f(x(h))) − v′(m(h))) ≤ βθ′(h) (25.7.5)

with equality if m(h) < m̄.
}

This operator adds the key incentive constraint (25.7.3) to the conditions

that defined the D(Z) operator from subsection 25.6.2. Condition (25.7.3)

requires that the plan deter the government from wanting to take one-shot

deviations when candidate continuation values are drawn from Z .

Proposition:

i. If Z ⊂ D̃(Z), then D̃(Z) ⊂ S . (‘self-generation’)

ii. S = D̃(S). (‘factorization’)

Proposition:

i. Monotonicity of D̃ : Z ⊂ Z ′ implies D̃(Z) ⊂ D̃(Z ′).

ii. Z compact implies that D̃(Z) is compact.

Chang establishes that S is compact and that therefore there exists a highest

value SP and a lowest value SP. Further, the preceding structure allows Chang

to compute S by iterating to convergence on D̃ provided that one begins with

a sufficiently large initial set Z0 .

The smaller sets in figures 25.6.1 and 25.6.2 show sets of (w, θ) pairs asso-

ciated with sustainable plans. Comparing the sets associated with the 25.6.1

economy in which β = .3 with those associated with the 25.6.2 economy in

which β = .8 indicates how raising β expands the set of values associated with

sustainable plans, and that for a sufficiently large β < 1, it is possible to attain
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a (w, θ) pair associated with the Ramsey plan. For the low β figure 25.6.1

economy, the Ramsey outcome is not sustainable, while for the high β figure

25.6.2 economy, it is.

This structure delivers the following recursive representation of a sustainable

plan: (1) choose an initial (w0, θ0) ∈ S ; (2) generate outcomes recursively by

iterating on (25.5.2), which we repeat here for convenience:

ĥt = h(wt, θt)

mt = m(ht, wt, θt)

xt = x(ht, wt, θt)

wt+1 = χ(ht, wt, θt)

θt+1 = Ψ(ht, wt, θt).

25.8. Concluding remarks

This chapter has studied how Roberto Chang (1998) encodes two sources of

history dependence, each with its own “forward looking” state variable. One

state variable indexes a continuation competitive equilibrium while the other

is a discounted present value that an earlier government decision maker had

promised that subsequent government decision makers would deliver. Chang

represents credible government plans recursively in terms of these two state

variables. The need to assure that government plans are credible impelled Chang

to expand the dimension of the state beyond those used in either chapters 19

and 20 or in chapter 24.





Chapter 26
Two Topics in International Trade

26.1. Two dynamic contracting problems

This chapter studies two models in which recursive contracts are used to over-

come incentive problems commonly thought to occur in international trade. The

first is Andrew Atkeson’s model of lending in the context of a dynamic setting

that contains both a moral hazard problem due to asymmetric information and

an enforcement problem due to borrowers’ option to disregard the contract. It

is a considerable technical achievement that Atkeson managed to include both

of these elements in his contract design problem. But this substantial technical

accomplishment is not just showing off. As we shall see, both the moral hazard

and the self-enforcement requirement for the contract are required in order to

explain the feature of observed repayments that Atkeson was after: that the

occurrence of especially low output realizations prompt the contract to call for

net repayments from the borrower to the lender, exactly the occasions when an

unhampered insurance scheme would have lenders extend credit to borrowers.

The second is Bond and Park’s model of a recursive contract that induces

two countries to adopt free trade when they begin with a pair of promised values

that implicitly determine the distribution of eventual welfare gains from trade

liberalization. The new policy is accomplished by a gradual relaxation of tariffs,

accompanied by trade concessions. Bond and Park’s model of gradualism is

all about the dynamics of promised values that are used optimally to manage

participation constraints.

– 1083 –
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26.2. Moral hazard and difficult enforcement

Andrew Atkeson (1991) designed a model to explain how, in defiance of the

pattern predicted by complete markets models, low output realizations in var-

ious countries in the mid-1980s prompted international lenders to ask those

countries for net repayments. A complete markets model would have net flows

to a borrower during periods of bad endowment shocks. Atkeson’s idea was

that information and enforcement problems could produce the observed out-

come. Thus, Atkeson’s model combines two features of the models we have seen

in chapter 21: incentive problems from private information and participation

constraints coming from enforcement problems.

Atkeson showed that the optimal contract handles enforcement and informa-

tion problems through the shape of the repayment schedule, thereby indirectly

manipulating continuation values. Continuation values respond only by updat-

ing a single state variable, a measure of resources available to the borrower, that

appears in the optimum value function, which in turn is affected only through

the repayment schedule. Once this state variable is taken into account, promised

values do not appear as independently manipulated state variables.1

Atkeson’s model brings together several features. He studies a “borrower”

who by himself is situated like a planner in a stochastic growth model, with the

only vehicle for saving being a stochastic investment technology. Atkeson adds

the possibility that the planner can also borrow subject to both participation

and information constraints.

A borrower lives for t = 0, 1, 2, . . . . He begins life with Q0 units of a single

good. At each date t ≥ 0, the borrower has access to an investment technology.

If It ≥ 0 units of the good are invested at t , Yt+1 = f(It, εt+1) units of time t+1

goods are available, where εt+1 is an i.i.d. random variable. Let g(Yt+1, It) be

the probability density of Yt+1 conditioned on It . It is assumed that increased

investment shifts the distribution of returns toward higher returns.

The borrower has preferences over consumption streams ordered by

(1− δ)E0

∞∑

t=0

δtu(ct) (26.2.1)

1 To understand how Atkeson achieves this outcome, the reader should also digest the

approach described in chapter 24.
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where δ ∈ (0, 1) and u(·) is increasing, strictly concave, twice continuously

differentiable, and u′(0) = +∞ .

Atkeson used various technical conditions to render his model tractable. He

assumed that for each investment I , g(Y, I) has finite support (Y1, . . . , Yn) ,

with Yn > Yn−1 > . . . > Y1 . He assumed that g(Yi, I) > 0 for all values of I

and all states Yi , making it impossible precisely to infer I from Y . He further

assumed that the distribution g (Y, I) is given by the convex combination of two

underlying distributions g0(Y ) and g1(Y ) as follows:

g(Y, I) = λ(I)g0(Y ) + [1− λ(I)]g1(Y ), (26.2.2)

where g0(Yi)/g1(Yi) is monotone and increasing in i , 0 ≤ λ(I) ≤ 1, λ′ (I) > 0,

and λ′′ (I) ≤ 0 for all I . Note that

gI(Y, I) = λ′(I)[g0(Y )− g1(Y )], (26.2.3)

where gI denotes the derivative with respect to I . Moreover, the assumption

that increased investment shifts the distribution of returns toward higher returns

implies ∑

i

Yi [g0(Yi)− g1(Yi)] > 0. (26.2.4)

We shall consider the borrower’s choices in three environments: (1) autarky,

(2) lending from risk-neutral lenders under complete observability of the bor-

rower’s choices and complete enforcement, and (3) lending under incomplete

observability and limited enforcement. Environment 3 is Atkeson’s. We can use

environments 1 and 2 to construct bounds on the value function for performing

computations described in an appendix.
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26.2.1. Autarky

Suppose that there are no lenders. Thus, the “borrower” is just an isolated

household endowed with the technology. The household chooses (ct, It) to max-

imize expression (26.2.1) subject to

ct + It ≤ Qt

Qt+1 = Yt+1.

The optimal value function U(Q) for this problem satisfies the Bellman equation

U(Q) = max
Q≥I≥0

{
(1 − δ)u(Q− I) + δ

∑

Q′

U
(
Q′
)
g(Q′, I)

}
. (26.2.5)

The first-order condition for I is

−(1− δ)u′(Q− I) + δ
∑

Q′

U(Q′)gI(Q
′, I) ≤ 0, = 0 if I > 0. (26.2.6)

This first-order condition implicitly defines a rule for accumulating capital under

autarky.

26.2.2. Investment with full insurance

We now consider an environment in which in addition to investing I in the

technology, the borrower can issue Arrow securities at a vector of prices q(Y ′, I),

where we let ′ denote next period’s values, and d(Y ′) the quantity of one-

period Arrow securities issued by the borrower; d(Y ′) is the number of units of

next period’s consumption good that the borrower promises to deliver. Lenders

observe the level of investment I , and so the pricing kernel q(Y ′, I) depends

explicitly on I . Thus, for a promise to pay one unit of output next period

contingent on next-period output realization Y ′ , for each level of I , the borrower

faces a different price. (As we shall soon see, in Atkeson’s model lenders cannot

observe I , making it impossible to condition the price on I .) We shall assume

that the Arrow securities are priced by risk-neutral investors who also have

one-period discount factor δ . This implies prices of Arrow securities

q(Y ′, I) = δg(Y ′, I), (26.2.7)
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that in turn imply that the gross one-period risk-free interest rate is δ−1 .

In a complete markets world where there is no problem with information

or enforcement, the borrower’s optimal investment decision is not a function of

the borrower’s own holdings of the good. Instead, the optimal investment level

maximizes the project’s present value when evaluated at the prices for Arrow

securities:

max
I≥0

{
−I +

∑

Y ′

Y ′q(Y ′, I)
}
, (26.2.8)

and after imposing expression (26.2.7)

max
I≥0

{
−I + δ

∑

Y ′

Y ′g(Y ′, I)
}
.

Hence, when the prices for Arrow securities are determined by risk-neutral in-

vestors, the optimal investment level maximizes the project’s expected payoffs

discounted at the risk-free interest rate δ−1 . The first-order condition for I is

∑

Y ′

Y ′gI(Y
′, I) ≤ δ−1, = δ−1 if I > 0; (26.2.9)

and after invoking equation (26.2.3)

λ′(I)
∑

Y ′

Y ′ [g0(Y
′)− g1(Y

′)] ≤ δ−1, = δ−1 if I > 0.

This condition uniquely determines the investment level I , since the left side is

decreasing in I and must eventually approach zero because of the upper bound

on λ(I).

We formulate the borrower’s budget constraints recursively as

c−
∑

Y ′

q(Y ′, I∗)d(Y ′) + I∗ ≤ Q (26.2.10a)

Q′ = Y ′ − d(Y ′), (26.2.10b)

where I∗ is the solution to investment problem (26.2.8). The optimal value

W (Q) for a borrower with goods Q satisfies the Bellman equation

W (Q) = max
c,d(Y ′)

{
(1− δ)u(c) + δ

∑

Y ′

W [Y ′ − d(Y ′)]g(Y ′, I∗)

+ µ[Q− c+
∑

Y ′

q(Y ′, I∗)d(Y ′)− I∗]

}
,

(26.2.11)
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where µ is a Lagrange multiplier on expression (26.2.10a). First-order condi-

tions with respect to c, d(Y ′), respectively, are

c: (1− δ)u′(c)− µ = 0, (26.2.12a)

d(Y ′): − δW ′[Y ′ − d(Y ′)]g(Y ′, I∗) + µq(Y ′, I∗) = 0. (26.2.12b)

By substituting (26.2.7) and (26.2.12a) into first-order condition (26.2.12b), we

obtain

−W ′[Y ′ − d(Y ′)] + (1− δ)u′(c) = 0,

and after invoking the Benveniste-Scheinkman condition, W ′(Q′) = (1−δ)u′(c′),
we arrive at the consumption-smoothing result c′ = c . This in turn implies, via

the status of Q as the state variable in the Bellman equation, that Q′ = Q = Q0 .

Thus, the solution has I constant over time at a level I∗ determined by equation

(26.2.9), and c and the functions d(Y ′) satisfying

c+ I∗ = Q0 +
∑

Y ′

q(Y ′, I∗)d(Y ′) (26.2.13a)

d(Y ′) = Y ′ −Q0. (26.2.13b)

The borrower borrows a constant
∑

Y ′ q(Y ′, I∗)d(Y ′) each period, invests the

same I∗ each period, and makes high repayments when Y ′ is high and low

repayments when Y ′ is low. This is the standard full-insurance solution.

We now turn to Atkeson’s setting where the borrower does better than under

autarky but worse than with the loan contract under perfect enforcement and

observable investment. Atkeson found a contract with value V (Q) for which

U(Q) ≤ V (Q) ≤ W (Q). We shall want to compute W (Q) and U(Q) in order

to compute the value of the borrower under the more restricted contract.
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26.2.3. Limited commitment and unobserved investment

Atkeson designed an optimal recursive contract that copes with two impedi-

ments to risk sharing: (1) moral hazard, that is, hidden action: the lender

cannot observe the borrower’s action It that affects the probability distribution

of returns Yt+1 ; and (2) one-sided limited commitment: the borrower is free to

default on the contract and can choose to revert to autarky at any state.

Each period, the borrower confronts a two-period-lived, risk-neutral lender

who is endowed with M > 0 in each period of his life. Each lender can lend or

borrow at a risk-free gross interest rate of δ−1 and must earn an expected return

of at least δ−1 if he is to lend to the borrower. The lender is also willing to

borrow at this same expected rate of return. The lender can lend up to M units

of consumption to the borrower in the first period of his life, and could repay (if

the borrower lends) up to M units of consumption in the second period of his

life. The lender lends bt ≤M units to the borrower and gets a state-contingent

repayment d(Yt+1), where −M ≤ d(Yt+1), in the second period of his life. That

the repayment is state contingent lets the lender insure the borrower.

A lender is willing to make a one-period loan to the borrower, but only if the

loan contract ensures repayment. The borrower will fulfill the contract only if

he wants. The lender observes Q , but observes neither C nor I . Next period,

the lender can observe Yt+1 . He bases the repayment on that observation.

Where ct+ It− bt = Qt , Atkeson’s optimal recursive contract takes the form

dt+1 = d (Yt+1, Qt) (26.2.14a)

Qt+1 = Yt+1 − dt+1 (26.2.14b)

bt = b(Qt). (26.2.14c)

The repayment schedule d(Yt+1, Qt) depends only on observables and is de-

signed to recognize the limited commitment and moral hazard problems.

Notice how Qt is the only state variable in the contract. Atkeson uses the

apparatus of Abreu, Pearce, and Stacchetti (1990), discussed in chapter 24, to

show that the state can be taken to be Qt , and that it is not necessary to

keep track of the history of past Q ’s. Atkeson obtains the following Bellman

equation. Let V (Q) be the optimum value of a borrower in state Q under the

optimal contract. Let A = (c, I, b, d(Y ′)), all to be chosen as functions of Q .

The Bellman equation is

V (Q) = max
A

{
(1− δ) u ( c ) + δ

∑

Y ′

V [Y ′ − d (Y ′, Q)] g (Y ′, I)
}

(26.2.15a)
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subject to

c+ I − b ≤ Q, b ≤M, −d(Y ′, Q) ≤M, c ≥ 0, I ≥ 0 (26.2.15b)

b ≤ δ
∑

Y ′

d(Y ′) g (Y ′, I ) (26.2.15c)

V [Y ′ − d (Y ′)] ≥ U (Y ′) (26.2.15d)

I = argmax
Ĩ ǫ[0,Q+b]

{(
1−δ

)
u
(
Q+b−Ĩ

)
+δ
∑

Y ′

V
[
Y ′−d (Y ′, Q)

]
g (Y ′, Ĩ)

}
. (26.2.15e)

Condition (26.2.15b) is feasibility. Condition (26.2.15c) is a rationality con-

straint for lenders: it requires that the gross return from lending to the borrower

be at least as great as the alternative yield available to lenders, namely, the

risk-free gross interest rate δ−1 . Condition (26.2.15d) says that in every state

tomorrow, the borrower must want to comply with the contract; thus the value

of affirming the contract (the left side) must be at least as great as the value of

autarky. Condition (26.2.15e) states that the borrower chooses I to maximize

his expected utility under the contract.

There are many value functions V (Q) and associated contracts b(Q), d(Y ′, Q)

that satisfy conditions (26.2.15). Because we want the optimal contract, we

want the V (Q) that is the largest (hopefully, pointwise). The usual strategy of

iterating on the Bellman equation, starting from an arbitrary guess V 0(Q), say,

0, will not work in this case because high candidate continuation values V (Q′)

are needed to support good current-period outcomes. But a modified version

of the usual iterative strategy does work, which is to make sure that we start

with a large enough initial guess at the continuation value function V 0(Q′).

Atkeson (1988, 1991) verified that the optimal contract can be constructed by

iterating to convergence on conditions (26.2.15), provided that the iterations

begin from a large enough initial value function V 0(Q). (See the appendix for

a computational exercise using Atkeson’s iterative strategy.) He adapted ideas

from Abreu, Pearce, and Stacchetti (1990) to show this result.2 In the next

subsection, we shall form a Lagrangian in which the role of continuation values

is explicitly accounted for.

2 See chapter 24 for some work with the Abreu, Pearce, and Stacchetti structure, and for

how, with history dependence, dynamic programming principles direct attention to sets of

continuation value functions. The need to handle a set of continuation values appropriately is

why Atkeson must initiate his iterations from a sufficiently high initial value function.
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Binding participation constraint

Atkeson motivated his work as an effort to explain why countries often expe-

rience capital outflows in the very-low-income periods in which they would be

borrowing more in a complete markets setting. The optimal contract associated

with conditions (26.2.15) has the feature that Atkeson sought: the borrower

makes net repayments dt > bt in states with low output realizations.

Atkeson establishes this property using the following argument. First, to

permit him to capture the borrower’s best response with a first-order condition,

he assumes the following conditions about the outcomes:3

Assumptions: For the optimum contract

∑

i

di
[
g0(Yi)− g1(Yi)

]
≥ 0. (26.2.16)

This makes the value of repayments increasing in investment. In addition, as-

sume that the borrower’s constrained optimal investment level is interior.

Atkeson assumes conditions (26.2.16) and (26.2.2) to justify using the first-

order condition for the right side of equation (26.2.15e) to characterize the

investment decision. The first-order condition for investment is

−(1− δ)u′(Q+ b− I) + δ
∑

i

V (Yi − di)gI(Yi, I) = 0.

3 The first assumption makes the lender prefer that the borrower would make larger rather

than smaller investments. See Rogerson (1985b) for conditions needed to validate the first-

order approach to incentive problems.
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26.2.4. Optimal capital outflows under distress

To deduce a key property of the repayment schedule, we will follow Atkeson

by introducing a continuation value Ṽ as an additional choice variable in a

programming problem that represents a form of the contract design problem.

Atkeson shows how (26.2.15) can be viewed as the outcome of a more elementary

programming problem in which the contract designer chooses the continuation

value function from a set of permissible values.4 Following Atkeson, let Ud(Yi) ≡
Ṽ (Yi−d(Yi)) where Ṽ (Yi−d(Yi)) is a continuation value function to be chosen

by the author of the contract. Atkeson shows that we can regard the contract

author as choosing a continuation value function along with the elements of A ,

but that in the end it will be optimal for him to choose the continuation values

to satisfy the Bellman equation (26.2.15a).

We follow Atkeson and regard the Ud(Yi)’s as choice variables. They must

satisfy Ud(Yi) ≤ V (Yi − di), where V (Yi − di) satisfies the Bellman equation

(26.2.15). Form the Lagrangian

J(A,Ud, µ) =(1− δ)u(c) + δ
∑

i

Ud(Yi)g(Yi, I)

+ µ1(Q+ b− c− I)

+ µ2

[
δ
∑

i

dig(Yi, I)− b
]

+ δ
∑

i

µ3(Yi)g(Yi, I)
[
Ud(Yi)− U(Yi)

]

+ µ4

[
−(1− δ)u′(Q + b− I) + δ

∑

i

Ud(Yi)gI(Yi, I)
]

+ δ
∑

i

µ5(Yi)g(Yi, I)
[
V (Yi − di)− Ud(Yi)

]
,

(26.2.17)

where the µj ’s are nonnegative Lagrange multipliers. To investigate the conse-

quences of a binding participation constraint, rearrange the first-order condition

with respect to Ud(Yi) to get

1 + µ4
gI(Yi, I)

g(Yi, I)
= µ5(Yi)− µ3(Yi), (26.2.18)

where gI/g = λ′(I)
[ g0(Yi)−g1(Yi)

g(Y,I)

]
, which is negative for low Yi and positive for

high Yi . All the multipliers are nonnegative. Then evidently when the left side

4 See Atkeson (1991) and chapter 24.
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of equation (26.2.18) is negative, we must have µ3(Yi) > 0, so that condition

(26.2.15d) is binding and Ud(Yi) = U(Yi). Therefore, V (Yi − di) = U(Yi)

for states with µ3(Yi) > 0. Atkeson uses this finding to show that in states

Yi where µ3(Yi) > 0, new loans b′ cannot exceed repayments di = d(Yi).

This conclusion follows from the following argument. The optimality condition

(26.2.15e) implies that V (Q) will satisfy

V (Q) = max
I∈[0,Q+b]

u(Q+ b− I) + δ
∑

Y ′

V (Y ′ − d(Y ′))g(Y ′, I). (26.2.19)

Using the participation constraint (26.2.15d) on the right side of (26.2.19) im-

plies

V (Q) ≥ max
I∈[0,Q+b]

{
u(Q+ b− I) + δ

∑

Y ′

U(Y ′
i )g(Y

′, I)

}
≡ U(Q+ b) (26.2.20)

where U is the value function for the autarky problem (26.2.5). In states

in which µ3 > 0, we know that, first, V (Q) = U(Y ), and, second, that by

(26.2.20) V (Q) ≥ U(Y + (b − d)). But we also know that U is increasing.

Therefore, we must have that (b − d) ≤ 0, for otherwise U being increasing

induces a contradiction. We conclude that for those low-Yi states for which

µ3 > 0, b ≤ d(Yi), meaning that there are no capital inflows for these states.5

Capital outflows in bad times provide good incentives because they occur

only at output realizations so low that they are more likely to occur when

the borrower has undertaken too little investment. Their role is to provide

incentives for the borrower to invest enough to make it unlikely that those low-

output states will occur. The occurrence of capital outflows at low outputs is

not called for by the complete markets contract (26.2.13b). On the contrary,

the complete markets contract provides a “capital inflow” to the lender in low-

output states. That the pair of functions bt = b(Qt), dt = d(Yt, Qt−1) forming

the optimal contract specifies repayments in those distressed states is how the

contract provides incentives for the borrower to make investment decisions that

reduce the likelihood that combinations of (Yt, Qt, Qt−1) will occur that trigger

capital outflows under distress.

We remind the reader of the remarkable feature of Atkeson’s contract that

the repayment schedule and the state variable Q “do all the work.” Atkeson’s

5 This argument highlights the important role of limited enforcement in producing capital

outflows at low output realizations.
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contract manages to encode all history dependence in an extremely economical

fashion. In the end, there is no need, as occurred in the problems that we studied

in chapter 21, to add a promised value as an independent state variable.

26.3. Gradualism in trade policy

We now describe a version of Bond and Park’s (2002) analysis of gradualism

in bilateral agreements to liberalize international trade. Bond and Park cite

examples in which a large country extracts a possibly rising sequence of transfers

from a small country in exchange for a gradual lowering of tariffs in the large

country. Bond and Park interpret gradualism in terms of the history-dependent

policies that vary the continuation value of the large country in a way that

induces it gradually to reduce its distortions from tariffs while still gaining from

a move toward free trade. They interpret the transfers as trade concessions.6

We begin by laying out a simple general equilibrium model of trade between

two countries.7 The outcome of this theorizing will be a pair of indirect utility

functions rL and rS that give the welfare of a large and small country, respec-

tively, both as functions of a tariff tL that the large country imposes on the

small country, and a transfer eS that the small country voluntarily offers to the

large country.

6 Bond and Park say that in practice, the trade concessions take the form of reforms of

policies in the small country about protecting intellectual property, protecting rights of foreign

investors, and managing the domestic economy. They do not claim explicitly to model these

features.
7 Bond and Park (2002) work in terms of a partial equilibrium model that differs in details

but shares the spirit of our model.
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26.3.1. Closed-economy model

First, we describe a one-country model. The country consists of a fixed number

of identical households. A typical household has preferences

u(c, ℓ) = c+ ℓ− 0.5 ℓ 2, (26.3.1)

where c and ℓ are consumption of a single consumption good and leisure, re-

spectively. The household is endowed with a quantity ȳ of the consumption

good and one unit of time that can be used for either leisure or work,

1 = ℓ+ n1 + n2, (26.3.2)

where nj is the labor input in the production of intermediate good xj , for

j = 1, 2. The two intermediate goods can be combined to produce additional

units of the final consumption good. The technology is as follows:

x1 = n1, (26.3.3a)

x2 = γ n2, γ ∈ [0, 1], (26.3.3b)

y = 2 min{x1, x2}, (26.3.3c)

c = y + ȳ, (26.3.3d)

where consumption c is the sum of production y and the endowment ȳ .

Because of the Leontief production function for the final consumption good,

a closed economy will produce the same quantity of each intermediate good.

For a given production parameter γ , let χ̃(γ) be the identical amount of each

intermediate good that would be produced per unit of labor input. That is, a

fraction χ̃(γ) of one unit of labor input would be spent on producing χ̃(γ) units

of intermediate good 1 and another fraction χ̃(γ)/γ of the labor input would

be devoted to producing the same amount of intermediate good 2:

χ̃(γ) +
χ̃(γ)

γ
= 1 =⇒ χ̃(γ) =

γ

1 + γ
. (26.3.4)

The linear technology implies a competitively determined wage at which all

output is paid out as labor compensation. The optimal choice of leisure makes

the marginal utility of consumption from an extra unit of labor input equal to the

marginal utility of an extra unit of leisure: 2 min{χ̃(γ), χ̃(γ)} = d
dℓ

[
ℓ− 0.5 ℓ 2

]
.
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Substituting for χ̃(γ) from (26.3.4) gives 2 γ
1+γ = 1− ℓ , which can be rearranged

to become

ℓ = L(γ) = 1− γ

1 + γ
. (26.3.5)

It follows that per capita, the equilibrium quantity of each intermediate good is

given by

x1 = x2 = χ(γ) ≡ χ̃(γ)[1 − L(γ)] = 2 γ2

(1 + γ)2
. (26.3.6)

Two countries under autarky

Suppose that there are two countries named L and S (denoting large and

small). Country L consists of N ≥ 1 identical consumers, while country S

consists of one household. All households have the same preferences (26.3.1),

but technologies differ across countries. Specifically, country L has production

parameter γ = 1 while country S has γ = γS < 1.

Under no trade or autarky, each country is a closed economy whose alloca-

tions are given by (26.3.5), (26.3.6), and (26.3.3). Evaluating these expressions,

we obtain

{ℓL, n1L, n2L, cL} = {0, 0.5, 0.5, ȳ + 1},
{ℓS, n1S , n2S , cS} = {L(γS), χ(γS), χ(γS)/γS , ȳ + 2χ(γS)}.

The relative price between the two intermediate goods is 1 in country L while for

country S , intermediate good 2 trades at a price γ−1
S in terms of intermediate

good 1. The difference in relative prices across countries implies gains from

trade.
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26.3.2. A Ricardian model of two countries under free trade

Under free trade, country L is large enough to meet both countries’ demands for

intermediate good 2 at a relative price of 1 and hence country S will specialize

in the production of intermediate good 1 with n1S = 1. To find the time n1L

that a worker in country L devotes to the production of intermediate good 1,

note that the world demand at a relative price of 1 is equal to 0.5(N + 1) and,

after imposing market clearing, that

N n1L + 1 = 0.5 (N + 1)

n1L =
N − 1

2N
.

The free-trade allocation becomes

{ℓL, n1L, n2L, cL} = {0, (N − 1)/(2N), (N + 1)/(2N), ȳ + 1},
{ℓS, n1S , n2S , cS} = {0, 1, 0, ȳ + 1}.

Notice that the welfare of a household in country L is the same as under autarky

because we have ℓL = 0, cL = ȳ + 1. The invariance of country L ’s allocation

to opening trade is an immediate implication of the fact that the equilibrium

prices under free trade are the same as those in country L under autarky. Only

country S stands to gain from free trade.

26.3.3. Trade with a tariff

Although country L has nothing to gain from free trade, it can gain from trade

if it is accompanied by a distortion to the terms of trade that is implemented

through a tariff on country L ’s imports. Thus, assume that country L imposes

a tariff of tL ≥ 0 on all imports into L . For any quantity of intermediate or final

goods imported into country L , country L collects a fraction tL of those goods

by levying the tariff. A necessary condition for the existence of an equilibrium

with trade is that the tariff does not exceed (1−γS), because otherwise country
S would choose to produce intermediate good 2 rather than import it from

country L .

Given that tL ≤ 1 − γS , we can find the equilibrium with trade as follows.

From the perspective of country S , (1− tL) acts like the production parameter
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γ , i.e., it determines the cost of obtaining one unit of intermediate good 2 in

terms of foregone production of intermediate good 1. Under autarky that price

was γ−1 ; with trade and a tariff tL , that price becomes (1− tL)−1 . For country

S , we can therefore draw upon the analysis of a closed economy and just replace

γ by 1− tL . The allocation with trade for country S becomes

{ℓS , n1S, n2S , cS} = {L(1− tL), 1− L(1 − tL), 0, ȳ + 2χ(1− tL)}. (26.3.7)

In contrast to the equilibrium under autarky, country S now allocates all labor

input 1 − L(1 − tL) to the production of intermediate good 1 but retains only

a quantity χ(1 − tL) of total production for its own use, and exports the rest

χ(1 − tL)/(1 − tL) to country L . After paying tariffs, country S purchases an

amount χ(1− tL) of intermediate good 2 from country L . Since this quantity of

intermediate good 2 exactly equals the amount of intermediate good 1 retained

in country S , production of the final consumption good given by (26.3.3c)

equals 2χ(1− tL).

Country L receives a quantity χ(1 − tL)/(1 − tL) of intermediate good 1

from country S , partly as tariff revenue tL χ(1 − tL)/(1 − tL) and partly as

payments for its exports of intermediate good 2, χ(1 − tL). In response to the

inflow of intermediate good 1, an aggregate quantity of labor equal to χ(1 −
tL) + 0.5 tL χ(1− tL)/(1− tL) is reallocated in country L from the production

of intermediate good 1 to the production of intermediate good 2. This allows

country L to meet the demand for intermediate good 2 from country S and at

the same time increase its own use of each intermediate good by 0.5 tL χ(1 −
tL)/(1− tL). The per capita trade allocation for country L becomes

{ℓL, n1L, n2L,cL} =

{
0, 0.5− (1− 0.5tL)χ(1− tL)

(1 − tL)N
,

0.5 +
(1− 0.5tL)χ(1− tL)

(1 − tL)N
, ȳ + 1 + tL

χ(1− tL)

(1− tL)N

}
. (26.3.8)
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26.3.4. Welfare and Nash tariff

For a given tariff tL ≤ 1 − γS , we can compute the welfare levels in a trade

equilibrium. Let uS(tL) and uL(tL) be the indirect utility of country S and

country L , respectively, when the tariff is tL . After substituting the equilibrium

allocation (26.3.7) and (26.3.8) into the utility function of (26.3.1), we obtain

uS(tL) = u(cS , ℓS)

= ȳ + 2χ(1− tL) + L(1 − tL)− 0.5L(1− tL)
2,

uL(tL) = N u(cL, ℓL) = N (ȳ + 1) + tL
χ(1 − tL)

1− tL
,

(26.3.9)

where we multiply the utility function of the representative agent in country L

by N because we are aggregating over all agents in a country. We now invoke

equilibrium expressions (26.3.5) and (26.3.6), and take derivatives with respect

to tL . As expected, the welfare of country S decreases with the tariff while the

welfare of country L is a strictly concave function that initially increases with

the tariff:

duS(tL)

dtL
= −4 (1− tL)

(2− tL)3
< 0 , (26.3.10a)

d uL(tL)

d tL
=

2 (2− 3tL)

(2− tL)3

{
> 0 for tL < 2/3

≤ 0 for tL ≥ 2/3
(26.3.10b)

and
d 2uL(tL)

d t2L
= − 12tL

(2− tL)4
≤ 0 , (26.3.10c)

where it is understood that the expressions are evaluated for tL ≤ 1− γS .

The tariff enables country L to reap some of the benefits from trade. In our

model, country L prefers a tariff tL that maximizes its tariff revenues.

Definition: In a one-period Nash equilibrium, the government of country L

imposes a tariff rate that satisfies

tNL = min
{
argmax

tL

uL(tL), 1− γS

}
. (26.3.11)

From expression (26.3.10b), we have tNL = min{2/3, 1− γS} .
Remark: At the Nash tariff, country S gains from trade if 2/3 < 1 − γS .

Country S gets no gains from trade if 1− γS ≤ 2/3.
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Measure world welfare by uW (tL) ≡ uS(tL)+uL(tL). This measure of world

welfare satisfies

d uW (tL)

d tL
= − 2 tL

(2− tL)3
≤ 0 , (26.3.12a)

and
d 2uW (tL)

d t2L
= −4 (1 + tL)

(2− tL)4
< 0 . (26.3.12b)

We summarize our findings:

Proposition 1: World welfare uW (tL) is strictly concave, is decreasing in

tL ≥ 0, and is maximized by setting tL = 0. But uL(tL) is strictly concave in

tL and is maximized at tNL > 0. Therefore, uL(t
N
L ) > uL(0).

A consequence of this proposition is that country L prefers the Nash equilibrium

to free trade, but country S prefers free trade. To induce country L to accept

free trade, country S will have to transfer resources to it. We now study how

country S can do that efficiently in an intertemporal version of the model.

26.3.5. Trade concessions

To get a model in the spirit of Bond and Park (2002), we now assume that the

two countries can make trade concessions that take the form of a direct transfer

of the consumption good between them. We augment utility functions uL, uS

of the form (26.3.1) with these transfers to obtain the payoff functions

rL(tL, eS) = uL(tL) + eS (26.3.13a)

rS(tL, eS) = uS(tL)− eS, (26.3.13b)

where tL ≥ 0 is a tariff on the imports of country L , eS ≥ 0 is a transfer from

country S to country L . These definitions make sense because the indirect

utility functions (26.3.9) are linear in consumption of the final consumption

good, so that by transferring the final consumption good, the small country

transfers utility. The transfers eS are to be voluntary and must be nonnegative

(i.e., the country cannot extract transfers from the large country). We have

already seen that uL(tL) is strictly concave and twice continuously differentiable

with u′L(0) > 0 and that uW (tL) ≡ uS(tL) + uL(tL) is strictly concave and
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twice continuously differentiable with u′W (0) = 0. We call free trade a situation

in which tL = 0. We let (tNL , e
N
S ) be the Nash equilibrium tariff rate and

transfer for a one-period, simultaneous-move game in which the two countries

have payoffs (26.3.13a) and (26.3.13b). Under Proposition 1, tNL > 0, eNS = 0.

Also, uL(t
N
L ) > uL(0) and uS(0) > uS(t

N
L ), so that country S gains and country

L loses in moving from the Nash equilibrium to free trade with eS = 0.

26.3.6. A repeated tariff game

We now suppose that the economy repeats itself infinitely. for t ≥ 0. Denote the

pair of time t actions of the two countries by ρt = (tLt, eSt). For t ≥ 1, denote

the history of actions up to time t − 1 as ρt−1 = [ρt−1, . . . , ρ0] . A policy σS

for country S is an initial eS0 and for t ≥ 1 a sequence of functions expressing

eSt = σSt(ρ
t−1). A policy σL for country L is an initial tL0 and for t ≥ 1

a sequence of functions expressing tLt = σLt(ρ
t−1). Let σ denote the pair of

policies (σL, σS). The policy or strategy profile σ induces time t payoff ri(σt)

for country i at time t , where σt is the time t component of σ . We measure

country i ’s present discounted value by

vi(σ) =

∞∑

t=0

βtri(σt) (26.3.14)

where σ affects ri through its effect on ci . Define σ|ρt−1 as the continuation of

σ starting at t after history ρt−1 . Define the continuation value of i at time t

vit = vi(σ|ρt−1 ) =

∞∑

j=0

βjri(σj |ρt−1).

We use the following standard definition:

Definition: A subgame perfect equilibrium is a strategy profile σ such that

for all t ≥ 0 and all histories ρt , country L maximizes its continuation value

starting from t , given σS , and country S maximizes its continuation value

starting from t , given σL .

It is easy to verify that a strategy that forever repeats the static Nash equi-

librium outcome (tL, eS) = (tNL , 0) is a subgame perfect equilibrium.



1102 Two Topics in International Trade

26.3.7. Time-invariant transfers

We first study circumstances under which there exists a time-invariant transfer

eS > 0 that will induce country L to move to free trade.

Let vNi =
ui(t

N
L )

1−β be the present discounted value of country i when the

static Nash equilibrium is repeated forever. If both countries are to prefer free

trade with a time-invariant transfer level eS > 0, the following two participation

constraints must hold:

vL ≡ uL(0) + eS
1− β

≥ uL(t
N
L ) + eS + βvNL (26.3.15)

vS ≡ uS(0)− eS
1− β

≥ uS(0) + βvNS . (26.3.16)

The timing here articulates what it means for L and S to choose simultane-

ously: when L defects from (0, eS), L retains the transfer eS for that period.

Symmetrically, if S defects, it enjoys the zero tariff for that one period. These

temporary gains provide the temptations to defect. Inequalities (26.3.15) and

(26.3.16) say that countries L and S both get higher continuation values from

remaining in free trade with the transfer eS than they get in the repeated static

Nash equilibrium. Inequalities (26.3.15) and (26.3.16) invite us to study strate-

gies that have each country respond to any departure from what it had expected

the other country to do this period by forever after choosing the Nash equilib-

rium actions tL = tNL for country L and eS = 0 for country S . Thus, the

response to any deviation from anticipated behavior is to revert to the repeated

static Nash equilibrium, itself a subgame perfect equilibrium.8

Inequality (26.3.15) (the participation constraint for L) and the definition

of vNL can be rearranged to get

eS ≥ uL(t
N
L )− uL(0)

β
. (26.3.17)

Time-invariant transfers eS that satisfy inequality (26.3.17) are sufficient to in-

duce L to abandon the Nash equilibrium and set its tariff to zero. Theminimum

time-invariant transfer that will induce L to accept free trade is then

eSmin =
uL(t

N
L )− uL(0)

β
. (26.3.18)

8 In chapter 24, we study the consequences of reverting to a subgame perfect equilibrium

that gives worse payoffs to both S and L and how the worst subgame perfect equilibrium

payoffs and strategies can be constructed.
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Inequality (26.3.16) (the participation constraint for S ) and the definition

of vNS yield

eS ≤ β(uS(0)− uS(t
N
L )), (26.3.19)

which restricts the time-invariant transfer that S is willing to make to move to

free trade by setting tL = 0. Evidently, the largest time-invariant transfer that

S is willing to pay is

eSmax = β(uS(0)− uS(t
N
L )). (26.3.20)

If we substitute eS = eSmin into the definition of vL in (26.3.15), we find

that the lowest continuation value vL for country L that can be supported by

a stationary transfer is

v∗L = β−1(vNL − uL(0)). (26.3.21)

If we substitute eS = eSmax into the definition of vL we can conclude that the

highest vL that can be sustained by a stationary transfer is

v∗∗L =
uL(0) + β(uS(0)− uS(t

N
L ))

1− β
. (26.3.22)

For there to exist a time-invariant transfer eS that induces both countries

to accept free trade, we require that v∗L < v∗∗L so that [v∗L, v
∗∗
L ] is nonempty.

For a class of world economies differing only in their discount factors, we can

compute a discount factor β that makes v∗L = v∗∗L . This is the critical value for

the discount factor below which the interval [v∗L, v
∗∗
L ] is empty. Thus, equating

the right sides of (26.3.21) and (26.3.22) and solving for β gives the critical

value

βc ≡
√
uL(tNL )− uL(0)

uS(0)− uS(tNt )
. (26.3.23)

We know that the numerator under the square root is positive and that it is

less than the denominator (because S gains by moving to free trade more than

L loses, i.e., uW (tL) is maximized at tL = 0). Thus, (26.3.23) has a solution

βc ∈ (0, 1). For β > βc , there is a nontrivial interval [v∗L, v
∗∗
L ] . For β < βc , the

interval is empty.

Now consider the utility possibility frontier without the participation con-

straints (26.3.15), (26.3.16), namely,

vS =
uW (0)

1− β
− vL. (26.3.24)
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Then we have the following:

Proposition 2: There is a critical value βc such that for β > βc , the interval

[v∗L, v
∗∗
L ] is nonempty. For vL ∈ [v∗L, v

∗∗
L ] , a pair (vL, vS) on the unconstrained

utility possibility frontier (26.3.24) can be attained by a time-invariant pol-

icy (0, es) with transfer eS > 0 from S to L . The policy is supported by a

trigger strategy profile that reverts forever to (tL, 0) if expectations are ever

disappointed.

26.3.8. Gradualism: time-varying trade policies

From now on, we assume that β > βc , so that [v∗L, v
∗∗
L ] is nonempty. We make

this assumption because we want to study settings in which the two countries

eventually move to free trade even if they don’t start there. Notice from expres-

sion (26.3.21) that

v∗L = β−1
([
uL(t

N
L ) + βvNL

]
− uL(0)

)

= vNL + β−1
(
uL(t

N
L )− uL(0)

)
> vNL .

(26.3.25)

Thus, even when [v∗L, v
∗∗
L ] is nonempty, there is an interval of continuation values

[vNL , v
∗
L) that cannot be sustained by a time-invariant transfer scheme. Values

vL > v∗∗L also fail to be sustainable by a time-invariant transfer because the

required eS is too high. For initial values vL < v∗L or vL > v∗∗L , Bond and

Park construct time-varying tariff and transfer schemes that sustain continua-

tion value vL . They proceed by designing a recursive contract similar to ones

constructed by Thomas and Worrall (1988) and again by Kocherlakota (1996a).

Let vL(σ), vS(σ) be the discounted present values delivered to countries L

and S under policy σ . For a given initial promised value vL for country L ,

let P (vL) be the maximal continuation value vS for country S , associated with

a possibly time-varying trade policy. The value function P (vL) satisfies the

functional equation

P (vL) = sup
tL,eS ,y

{uS(tL)− eS + βP (y)} , (26.3.26)

where the maximization is subject to tL ≥ 0, eS ≥ 0 and

uL(tL) + eS + βy ≥ vL (26.3.27a)

uL(tL) + eS + βy ≥ uL(t
N
L ) + eS + βvNL (26.3.27b)

uS(tL)− eS + βP (y) ≥ uS(tL) + βvNS . (26.3.27c)
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Here, y is the continuation value for L , meaning next period’s value of vL .

Constraint (26.3.27a) is the promise-keeping constraint, while (26.3.27b) and

(26.3.27c) are the participation constraints for countries L and S , respectively.

The constraint set is convex and the objective is concave, so P (vL) is concave

(though not strictly concave, an important qualification, as we shall see).

As with our study of Thomas and Worrall’s and Kocherlakota’s model, we

place nonnegative multipliers θ on (26.3.27a) and µL, µS on (26.3.27b) and

(26.3.27c), respectively, form a Lagrangian, and obtain the following first-order

necessary conditions for a saddlepoint:

tL : u′S(tL) + (θ + µL)u
′
L(tL) ≤ 0, = 0 if tL > 0 (26.3.28a)

y : P ′(y)(1 + µS) + (θ + µL) = 0 (26.3.28b)

eS : − 1 + θ − µS ≤ 0, = 0 if eS > 0. (26.3.28c)

We analyze the consequences of these first-order conditions for the optimal con-

tract in three regions delineated by the continuation values v∗L, v
∗∗
L .

We break our analysis into two parts. We begin by displaying particular

policies that attain initial values on the constrained Pareto frontier. Later, we

show that there can be many additional policies that attain the same values,

which as we shall see is a consequence of a flat interval in the constrained Pareto

frontier.

26.3.9. Baseline policies

Region I: vL ∈ [v∗L, v
∗∗
L ] (neither PC binds)

When the initial value is in this interval, the continuation value stays in this

interval. From the envelope property, P ′(vL) = −θ . If vL ∈ [v∗L, v
∗∗
L ] , neither

participation constraint binds, and we have µS = µL = 0. Then (26.3.28b)

implies

P ′(y) = P ′(vL).

This can be satisfied by setting y = vL . Then y = vL and the always binding

promise-keeping constraint in (26.3.27a) imply that

vL = y =
uL(tL) + eS

1− β
≥ v∗L > vNL ≡ uL(t

N
L )

1− β
, (26.3.29)
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where the weak inequality states that vL trivially satisfies the lower bound of

region I, which in turn is strictly greater than the Nash value vNL according to

expression (26.3.25). Because uL(t) is maximized at tNL , the strict inequality

in expression (26.3.29) holds only if eS > 0. Then inequality (26.3.28c) and

eS > 0 imply that θ = 1. Rewrite (26.3.28a) as

u′W (tL) ≤ 0, = 0 if tL > 0.

By Proposition 1, this implies that tL = 0. We can solve for eS from

vL =
uL(0) + eS

1− β
(26.3.30)

and then obtain P (vL) from uS(0)−eS
1−β .

Before turning to region II with vL > v∗∗L , we shall first establish that there

indeed exist such high continuation values for the large country which cannot

be sustained by a time-invariant transfer scheme. This is done by showing that

P (v∗∗L ) > vNS . That is, there is scope for further increasing the continuation

value of the large country beyond v∗∗L before the associated continuation value

of the small country is reduced to vNS . The argument goes as follows:

P (v∗∗L ) =
uW (0)

1− β
− v∗∗L

=
uL(0) + uS(0)

1− β
− uL(0) + β(uS(0)− uS(t

N
L ))

1− β

= uS(0) + β
uS(t

N
L )

1− β
> uS(t

N
L ) + β

uS(t
N
L )

1− β
≡ vNS ,

(26.3.31)

where the first equality uses the fact that the continuation value v∗∗L lies on the

unconstrained Pareto frontier whose slope is −1 and the second equality invokes

expression (26.3.22). It then follows that P (v∗∗L ) > vNS .

Region II: vL > v∗∗L (PCS binds)

We shall verify that in region II, there is a solution to the first-period first order

necessary conditions with µS > 0 and eS > 0. When vL > v∗∗L , µS ≥ 0 and

µL = 0. When µS > 0, inequality (26.3.28c) and eS > 0 imply

θ = 1 + µS > 1. (26.3.32)
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Express (26.3.28a) as

u′W (tL) + (θ − 1)u′L(tL) ≤ 0, = 0 if tL > 0. (26.3.33)

Because u′W (0) = 0 and u′L(0) > 0, this inequality can be satisfied only if

tL > 0. Equation (26.3.28b) implies that

P ′(y) = −(1 + µS)
−1θ = −1,

where the second inequality invokes (26.3.32). Therefore, y ∈ [v∗L, v
∗∗
L ] , the

region of the Pareto frontier whose slope is −1 and in which neither participation

constraint binds. We can solve for the required transfer from t = 1 onward from

the following version of (26.3.30):

y =
uL(0) + e′S

1− β
, (26.3.34)

where e′S denotes the value of eS for t ≥ 1, because once we move into region I,

we stay there, having a time invariant e′S > 0 with t′L = 0, as our analysis of

region I indicated. We can solve for tL, eS for period zero as follows. For a

given θ > 1, solve the following equations for y, P (y), tL, eS , P (vL):

u′S(tL) + θu′L(tL) = 0 (26.3.35a)

vL = uL(tL) + eS + βy (26.3.35b)

− eS + βP (y) = βvNS (26.3.35c)

P (vL) = uS(tL)− eS + βP (y) (26.3.35d)

y + P (y) =
uW (0)

1− β
. (26.3.35e)

To find the maximized value P (vL), we must search over solutions of (26.3.35)

for the θ > 1 that corresponds to the specified initial continuation value vL , (i.e.,

we are performing the minimization over µS entailed in finding the saddlepoint

of the Lagrangian).

Using expression (26.3.35c), we can show that the transfer eS in period zero

is also strictly positive,

eS = β[P (y)− vNS ] ≥ β
[
P (v∗∗L )− vNS

]
> 0,

where we have used the fact that y ≤ v∗∗L and invoked the finding in expression

(26.3.31) that P (v∗∗L ) > vNS . Concerning the relative size of eS at t = 0
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compared to the transfer e′S that the small country pays in period t = 1 and

forever afterwards, we notice that e′S is also subject to a participation constraint

(26.3.27c) with the very same continuation value P (y) (but where uS(t
′
L) =

uS(0)). Hence, we can express (26.3.27c) for all periods t ≥ 1, given a time-

invariant continuation value P (y) determined by (26.3.35), as

e′S ≤ β[P (y)− vNS ] = eS ,

where the equality sign follows from (26.3.35c). We conclude that the transfer

is nonincreasing over time for our solution to an initial continuation value in

region II.

Thus, in region II, tL > 0 in period 0, followed by t′L = 0 thereafter.

Moreover, the initial promised value to the large country vL > v∗∗L is followed

by a lower time-invariant continuation value y ≤ v∗∗L . Subtracting (26.3.35b)

from (26.3.34) gives

y = vL + (uL(0)− uL(tL)) + (e′S − eS).

The contract sets the continuation value y < vL by making tL > 0 (thereby

making uL(0) − uL(tL) < 0) and also possibly letting e′S − eS < 0, so that

transfers can fall between periods 0 and 1. In region II, country L induces S

to accept free trade by a two-stage lowering of the tariff from the Nash level, so

that 0 < tL < tNL in period 0, with t′L = 0 for t ≥ 1; in return, it gets period

0 transfers of eS > 0 and constant transfers e′S > 0 thereafter.

Region III: vL ∈ [vNL , v
∗
L) (PCL binds)

The analysis of region III is subtle.9 It is natural to expect that µS = 0, µL >

0 in this region. However, assuming that µL > 0 can be shown to lead to

a contradiction, implying that the pair vL, P (vL) both is and is not on the

unconstrained Pareto frontier.10

We can avoid the contradiction by assuming that µL = 0, so that the partic-

ipation constraint for country L is barely binding. We shall construct a solution

to (26.3.28) and (26.3.27) with period 0 transfer eS > 0. Note that (26.3.28c)

with eS > 0 implies θ = 1, which from the envelope property P ′(vL) = −θ

9 The findings of this section reproduce ones summarized in Bond and Park’s (2002) corollary

to their Proposition 2.
10 Please show this in exercise 26.2 .
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implies that (vL, P (vL)) is actually on the unconstrained Pareto frontier, a

reflection of the participation constraint for country L barely binding. With

θ = 1 and µL = 0, (26.3.28a) implies that tL = 0, which confirms (vL, P (vL))

being on the Pareto frontier. We can then solve the following equations for

P (vL), eS , y, P (y):

P (vL) + vL =
uW (0)

1− β
(26.3.36a)

vL = uL(0) + eS + βy (26.3.36b)

uL(0) + eS + βy = uL(t
N
L ) + eS + βvNL (26.3.36c)

P (vL) = uS(0)− eS + βP (y) (26.3.36d)

P (y) + y =
uW (0)

1− β
. (26.3.36e)

We shall soon see that these constitute only four linearly independent equa-

tions. Equations (26.3.36a) and (26.3.36e) impose that both (vL, P (vL)) and

(y, P (y)) lie on the unconstrained Pareto frontier. We can solve these equa-

tions recursively. First, solve for y from (26.3.36c). Then solve for P (y) from

(26.3.36e). Next, solve for P (vL) from (26.3.36a). Get eS from (26.3.36b).

Finally, equations (26.3.36a), (26.3.36b), and (26.3.36d) imply that equation

(26.3.36e) holds, which establishes the reduced rank of the system of equations.

We can use (26.3.34) to compute e′S , the transfer from period 1 onward. In

particular, e′S satisfies y = uL(0) + e′S + βy . Subtracting (26.3.36b) from this

equation gives

y − vL = e′S − eS > 0.

Thus, when vL < v∗L , country S induces country L immediately to reduce

its tariff to zero by paying transfers that rise between period 0 and period 1 and

that thereafter remain constant. That the initial tariff is zero means that we are

immediately on the unconstrained Pareto frontier. It just takes time-varying

transfers to put us there.

Interpretations

For values of vL within regions II and III, time-invariant transfers eS from

country S to country L are not capable of sustaining immediate and enduring

free trade. But patterns of time-varying transfers and tariff reductions are able

to induce both countries to move permanently to free trade after a one-period



1110 Two Topics in International Trade

vv v

P(v  )

L

L

LL
* **N

Figure 26.3.1: The constrained Pareto frontier vS = P (vL) in

the Bond-Park model.

transition. There is an asymmetry between regions II and III, revealed in Figure

26.3.1 and in our finding that tL = 0 in region III, so that the move to free

trade is immediate. The asymmetry emerges from a difference in the quality

of instruments that the unconstrained country (L in region II, S in region III)

has to induce the constrained country eventually to accept free trade by moving

those instruments over time appropriately to manipulate the continuation values

of the constrained country to gain its assent. In region II, where S is constrained,

all that L can do is manipulate the time path of tL , a relatively inefficient

instrument because it is a distorting tax. By lowering tL gradually, L succeeds

in raising the continuation values of S gradually, but at the cost of imposing a

distorting tax, thereby keeping (vL, P (vL)) inside the Pareto frontier. In region

III, where L is constrained, S has at its disposal a nondistorting instrument

for raising country L ’s continuation value by increasing the transfer eS after

period 0.

The basic principle at work is to make the continuation value rise for the

country whose participation constraint is binding.



Gradualism in trade policy 1111

26.3.10. Multiplicity of payoffs and continuation values

We now find more equilibrium policies that support values in our three regions.

The unconstrained Pareto frontier is a straight line in the space (vL, vS) with

a slope of −1:

vL + vS =
uW (0)

1− β
≡W.

This reflects the fact that utility is perfectly transferable between the two

countries. As a result, there is a continuum of ways to pick current payoffs

{ri; i = L, S} and continuation values {v′i; i = L, S} that deliver the promised

values vL and vS to country L and S , respectively. For example, each country

could receive a current payoff equal to the annuity value of its promised value,

ri = (1 − β)vi , and retain its promised value as a continuation value, v′i = vi .

That would clearly deliver the promised value to each country,

ri + βv′i = (1− β)vi + βvi = vi.

Another example would reduce the prescribed current payoff to country S by

△S > 0 and increase the prescribed payoff to country L by the same amount.

Continuation values (v′S , v
′
L) would then have to be set such that

(1− β)vS −△S + βv′S = vS ,

(1− β)vL +△S + βv′L = vL.

Solving from these equations, we get

△S = β(v′S − vS) = −β(v′L − vL).

Here country S is compensated for the reduction in current payoff by an equiv-

alent increase in the discounted continuation value, while country L receives

corresponding changes of opposite signs.

Since the constrained Pareto frontier coincides with the unconstrained Pareto

frontier in regions I and III, we would expect that the tariff games would also

be characterized by multiplicities of payoffs and continuation values. We will

now examine how the participation constraints shape the range of admissible

equilibrium values.
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Region I (revisited): vL ∈ [v∗L, v
∗∗
L ]

From our earlier analysis, an equilibrium in region I satisfies

uL(0) + eS + βy = vL, (26.3.37a)

uL(0) + eS + βy ≥ uL(t
N
L ) + eS + βvNL , (26.3.37b)

uS(0)− eS + β(W − y) ≥ uS(0) + βvNS , (26.3.37c)

where we have invoked that P (y) = W − y in regions I and III. We consider

only y ∈ [vNL , v
∗∗
L ] because our earlier analysis ruled out any transitions from

region I to region II.

Equation (26.3.37a) determines the transfer and continuation value needed

to deliver the promised value vL to country L under free trade:

eS + βy = vL − uL(0).

The participation constraint for country S requires that inequality (26.3.37c)

be satisfied, which can be rewritten as

eS + βy ≤ β(W − vNS ). (26.3.38)

Since we are postulating that we are in region I with no binding participation

constraints, this condition is indeed satisfied. Notice that incentive compatibility

on behalf of country S does not impose any restrictions on the mixture of

transfer and continuation value that deliver eS + βy to country L beyond our

restriction above that y ≤ v∗∗L .

Turning to the participation constraint for country L , we can rearrange

inequality (26.3.37b) to become

y ≥ β−1
(
uL(t

N
L ) + βvNL − uL(0)

)
= β−1

(
vNL − uL(0)

)
= v∗L.

Thus, there cannot be a transition from region I to region III, a result to be

interpreted as follows. We showed earlier that free trade is not incentive com-

patible with a time-invariant transfer when the promised value of country L lies

in region III. In other words, an initial promised value in region III cannot by

itself serve as a continuation value to support free trade. Now we are trying

to attain free trade by offering country L a continuation value in that very

region III together with a transfer that is even larger than the time-invariant
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transfer considered earlier. (The transfer is larger than the earlier time-invariant

transfer because the initial promised value vL is now assumed to lie in region

I.) Since that continuation value in region III was not incentive compatible for

country L at a smaller transfer from country S , it will certainly not be incentive

compatible now when the transfer is larger.

We conclude that there is a multiplicity of current payoffs and continuation

values in region I. Specifically, admissible equilibrium continuation values are

y ∈
[
v∗L, min

{
β−1 (vL − uL(0)) , v

∗∗
L

}]
, (26.3.39)

where the upper bound incorporates our nonnegativity constraint on transfers

from country S to country L , i.e., imposing eS ≥ 0 in equation (26.3.37a).

Region II (revisited): vL > v∗∗L

From our earlier analysis, an equilibrium in region II satisfies:

uL(tL) + eS + βy = vL (26.3.40a)

uL(tL) + eS + βy ≥ uL(t
N
L ) + eS + βvNL (26.3.40b)

uS(tL)− eS + β(W − y) = uS(tL) + βvNS , (26.3.40c)

where 0 < tL < tNL and we have used our earlier finding that the continuation

value y will be in the region of the constrained Pareto frontier whose slope is

−1, i.e., y ∈ [vNL , v
∗∗
L ] for which P (y) =W − y .

Equation (26.3.40c) determines the combination of the transfer and contin-

uation value received by country L :

eS + βy = β(W − vNS ).

Once again, this participation constraint for country S does not impose any

restrictions on the relative composition of the transfer versus the continuation

value assigned to country L (besides our restriction above that y ≤ v∗∗L ). For

region II, we have already shown that the combined value of eS + βy is not

sufficient to support free trade, and that the necessary tariff in period 0 can

then be computed from equation (26.3.40a).

Finally, the participation constraint (26.3.40b) for country L does impose a

restriction on admissible equilibrium continuation values y ,

y ≥ β−1
(
uL(t

N
L ) + βvNL − uL(tL)

)
= β−1

(
vNL − uL(tL)

)
.
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Notice that this lower bound on admissible values of y lies inside region III,

β−1
(
vNL − uL(tL)

)



> β−1

(
vNL − uL(t

N
L )
)
= vNL ,

< β−1
(
vNL − uL(0)

)
= v∗L.

In contrast to our analysis of region I, a transition into region III is possible when

the initial promised value belongs to region II. The reason is that the constrained

efficient tariff is then strictly positive in period 0, which relaxes the participation

constraint for country L . Hence, the range of admissible continuation values in

region II becomes

y ∈
[
β−1

(
vNL − uL(tL)

)
, v∗∗L

]
.

Region III (revisited): vL ∈ [vNL , v
∗
L)

The study of multiplicity of current payoffs and continuation values in region III

exactly parallels our analysis of region I. The range of admissible continuation

values is once again given by (26.3.39). The lower bound of v∗L is pinned down

by the participation constraint (26.3.37b) for country L and this implies an

immediate transition out of region III into region I.

For the lowest possible promised value vL = vNL , the range of continuation

values in (26.3.39) becomes degenerate, with only one admissible value of y =

v∗L . From equation (26.3.37a), we can verify that the pair (vL, y) = (vNL , v
∗
L)

implies an equilibrium transfer that is zero, eS = 0. For any other promised

value in region III, vL ∈ (vNL , v
∗
L] , there is a multiplicity of current payoffs

and continuation values. We can then pick a continuation value y > v∗L that

implies that the participation constraint for country L is not binding. Without

any binding participation constraints, it becomes apparent why our analysis of

multiplicity in region I is also valid for region III.
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26.4. Another model

Fuchs and Lippi (2006) are motivated by a vision about the nature of mone-

tary unions that was not well captured by work in the previous literature. In

particular, earlier work (1) assumed away commitment problems between mem-

bers that would occur within an ongoing currency union, and (2) modeled the

consequences of abandoning a currency as reversion to a worst case outcome

of a repeated game played by independent monetary-fiscal authorities. The

Fuchs-Lippi paper repairs both of these deficiencies by (1) imposing participa-

tion constraints each period for each member within a currency union, and (2)

assuming that the consequence of a breakup is to move to the best outcome of

the game played by independent monetary-fiscal authorities.

Here is the setup. Two countries have ideal levels of a policy setting (e.g.,

an interest rate) that are each hit by country-specific idiosyncratic shocks. The

history of these shocks is common knowledge. When not in a union, the countries

play a repeated game. The best equilibrium outcome is the point to which the

countries revert after a breakup. When in a union, the two countries play

another repeated game. The authors model the benefit of being in the union as

making it harder to effect a surprise change than it is outside it, thereby making

it easier to abstain from opportunistic monetary policy that, e.g., exploits the

Phillips curve to get short run benefits in exchange for long-run costs.

The authors use ‘dynamic programming squared’ to express equilibrium

strategies within the currency union game in terms of the current observed shock

vector and continuation values. The union chooses a ‘public good’, namely, the

common policy each period. It is a weighted average of the ideal points for the

two individual countries, with the weights being tilted a country whose partici-

pation constraint is binding that period. The authors show that there are three

possible cases: (1) the shocks and initial continuation values are such that only

country A’s constraint is binding, in which case the policy tilts toward country

A’s ideal point; (2) only country B’s participation constraint is binding, in which

case the policy tilts toward country B’s ideal point; (3) the continuation values

and shocks are such that both countries’ participation constraints are binding.

In case (3), the currency union breaks up.



1116 Two Topics in International Trade

Depending on specifications of functional forms, preferences, and the joint

distribution of shocks, case (3) may or may not be possible. When it is, one can

use the model to calculate waiting times to breakup of a union. Many currency

unions have broken up in the past, an observation that could be used to help

reverse engineer parameter values – something that the authors don’t do.

It is interesting to compare this model with an earlier risk-sharing model of

Thomas and Worrall and Kocherlakota that we studied in chapter 21. In that

model, there was no case 3 and the analogue of the union, the relationship be-

tween the firm and the worker in Thomas and Worrall or between two consumers

in Kocherlakota, lasts forever. One never observes defaults along the equilibrium

path. What is the source of the different outcome in the Fuchs-Lippi model?

The answer hinges on the part of the payoff structure of the Fuchs-Lippi model

that captures the ‘public good’ aspect of the monetary union policy choice. Both

countries have to live with the same setting of a policy instrument and what one

gains the other does not necessarily lose. In the chapter 21 model, each period

when one person gets more, the other necessarily gets less, creating a symmetry

in the participation constraints that prevents them from binding simultaneously.

26.5. Concluding remarks

Although substantive details differ, mechanically the models of this chapter work

much like models that we studied in chapters 19, 21, and 24. The key idea is to

cope with binding incentive constraints (in this case, participation constraints),

partly by changing the continuation values for those agents whose incentive

constraints are binding. For example, that creates “intertemporal tie-ins” that

Bond and Park interpret as “gradualism.”
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A. Computations for Atkeson’s model

It is instructive to compute a numerical example of the optimal contract for

Atkeson’s (1988) model. Following Atkseson, we work with the following numer-

ical example. Assume u(c) = 2c.5, λ(I) =
(

I
Yn+2M

).5
, gi(Yj) = exp−αiYj∑

n

k=1
exp−αiYk

with n = 5, Y1 = 100, Yn = 200,M = 100, α1 = α2 = −.5, δ = .9. Here is a

version of Atkeson’s numerical algorithm:

1. First, solve the Bellman equation (26.2.5) and (26.2.6) for the autarky value

U(Q). Use a polynomial for the value function.11

2. Solve the Bellman equation for the full-insurance setting for the value func-

tion W (Q) as follows. First, solve equation (26.2.9) for I . Then solve equa-

tion (26.2.13b) for d(Y ′) = Y ′ −Q and compute c = c(Q) from (26.2.13a).

Since c is constant, W (Q) = u[c(Q)] .

Now, solve the Bellman equation for the contract with limited commitment

and unobserved action. First, approximate V (Q) by a polynomial, using the

method described in chapter 4. Next, iterate on the Bellman equation, starting

from initial value function V 0(Q) =W (Q) computed earlier. As Atkeson shows,

it is important to start with a value function above V (Q). We know that

W (Q) ≥ V (Q).

Use the following steps:

1. Let V j(Q) be the value function at the j th iteration. Let d be the vector

[ d1 . . . dn ]
′
. Define

X(d) =
∑

i

V j(Yi − di)[g0(Yi)− g1(Yi)]. (26.A.1)

The first-order condition for the borrower’s problem (26.2.15e) is

−(1− δ)u′(Q+ b− I) + δλ′(I)X ≥ 0, = 0 if I > 0.

Given a candidate continuation value function V j , a value Q , and b, d1, . . . , dn ,

solve the borrower’s first-order condition for a function

I = f(b, d1, . . . , dn;Q).

11 We recommend the Schumaker shape-preserving spline mentioned in chapter 4 and de-

scribed by Judd (1998).
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Evidently, when X(d) < 0, I = 0. From equation (26.A.1) and the partic-

ular example,

I = f(b, d;Q) =
δ2(Yn + 2M)X(d)2

4(1− δ)2 + δ2(Yn + 2M)X(d)2
(Q+ b). (26.A.2)

Summarize this equation in a Matlab function.

2. Use equation (26.A.2) and the constraint (26.2.15c) at equality to form

b = δ
∑

i

dig[Yi, f(b, d)].

Solve this equation for a new function

b = m(d). (26.A.3)

3. Write one step on the Bellman equation as

V j+1(Q) =max
d

{
(1 − δ)u

[
Q+m(d)− f(m(d), d)

]

+ δ
∑

i

V j(Yi − di)g
[
Yi, f(m(d), d)

]

−
∑

i

θi

[
max

(
0, U(Yi)− V j(Yi − di)

)]

−
∑

i

ηimax[0,−di −M ]− η0 max[0,m(d)−M ]

}
,

(26.A.4)

where V j(Q) is the value function at the j th iteration, and θi > 0, ηi are

positive penalty parameters designed to enforce the participation constraints

(26.2.15d) and the restrictions on the size of borrowing and repayments. The

idea is to set the θi ’s and ηi ’s large enough to assure that d is set so that

constraint (26.2.15d) is satisfied for all i .
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Exercises

Exercise 26.1

Consider a version of Bond and Park’s model with γS = .4 and payoff functions

(26.3.13a) and (26.3.13b), with

uL(tL) = −.5(tL − .5)2

uW (tL) = −.5t2L,

where uW (tL) = uL(tL) + uS(tL).

a. Compute the cutoff value βc from (26.3.23). For β ∈ (βc, 1), compute

v∗L, v
∗∗
L .

b. Compute the constrained Pareto frontier. (Hint: In region II, use (26.3.35)

for a grid of values vL satisfying vL > v∗∗L .)

c. For a given vL ∈ (vNL , v
∗), compute eS, e

′
S , y .

Exercise 26.2

Consider the Bond-Park model analyzed above. Assume that in region III,

µL > 0, µS = 0. Show that this leads to a contradiction.
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Classical Monetary and Labor Economics





Chapter 27
Fiscal-Monetary Theories of Inflation

27.1. The issues

This chapter introduces some issues in monetary theory that mostly revolve

around coordinating monetary and fiscal policies. We start from the observa-

tion that complete markets models have no role for inconvertible currency, and

therefore assign zero value to it.1 We describe one way to alter a complete mar-

kets economy so that a positive value is assigned to an inconvertible currency:

we impose a transaction technology with shopping time and real money balances

as inputs.2 We use the model to illustrate 10 doctrines in monetary economics.

Most of these doctrines transcend many of the details of the model. The im-

portant thing about the transactions technology is that it makes demand for

currency a decreasing function of the rate of return on currency. Our monetary

doctrines mainly emerge from manipulating that demand function and the gov-

ernment’s intertemporal budget constraint under alternative assumptions about

government monetary and fiscal policy.3

1 In complete markets models, money holdings would only serve as a store of value. The

following transversality condition would hold in a nonstochastic economy:

lim
T→∞

T−1∏

t=0

R−1
t

mT+1

pT
= 0.

The real return on money, pt/pt+1 , would have to equal the return Rt on other assets, which,

substituted into the transversality condition, yields

lim
T→∞

T−1∏

t=0

pt+1

pt

mT+1

pT
= lim
T→∞

mT+1

p0
= 0.

That is, an inconvertible money (i.e., one for which limT→∞mT+1 > 0) must be valueless,

p0 = ∞ .
2 See Bennett McCallum (1983) for an early shopping time specification.
3 Many of the doctrines were originally developed in setups differing in details from the one

in this chapter.

– 1123 –
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After describing our 10 doctrines, we use the model to analyze two important

issues: the validity of Friedman’s rule in the presence of distorting taxation, and

its sustainability in the face of a time consistency problem. Here, we use the

methods for solving an optimal taxation problem with commitment in chapter

16, and for characterizing a credible government policy in chapter 24.

27.2. A shopping time monetary economy

Consider an endowment economy with no uncertainty. A representative house-

hold has one unit of time. There is a single good of constant amount y > 0 each

period t ≥ 0. The good can be divided between private consumption {ct}∞t=0

and government purchases {gt}∞t=0 , subject to

ct + gt = y. (27.2.1)

The preferences of the household are ordered by

∞∑

t=0

βtu(ct, ℓt), (27.2.2)

where β ∈ (0, 1), ct ≥ 0 and ℓt ≥ 0 are consumption and leisure at time t ,

respectively, and uc , uℓ > 0, ucc , uℓℓ < 0, and ucℓ ≥ 0. With one unit of time

per period, the household’s time constraint becomes

1 = ℓt + st. (27.2.3)

We use uc(t) and so on to denote time t values of the indicated objects, evalu-

ated at an allocation to be understood from the context.

To acquire the consumption good, the household allocates time to shopping.

The amount of shopping time st needed to purchase a particular level of con-

sumption ct is negatively related to the household’s holdings of real money

balances mt+1/pt . Specifically, the shopping or transaction technology is

st = H

(
ct,

mt+1

pt

)
, (27.2.4)

where H, Hc, Hcc, Hm/p,m/p ≥ 0, Hm/p, Hc,m/p ≤ 0. A parametric example of

this transaction technology is

H

(
ct,

mt+1

pt

)
=

ct
mt+1/pt

ǫ, (27.2.5)
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where ǫ > 0. This corresponds to a transaction cost that would arise in the

frameworks of Baumol (1952) and Tobin (1956). When a household spends

money holdings for consumption purchases at a constant rate ct per unit of

time, ct(mt+1/pt)
−1 is the number of trips to the bank, and ǫ is the time cost

per trip to the bank.

27.2.1. Household

The household maximizes expression (27.2.2) subject to the transaction tech-

nology (27.2.4) and the sequence of budget constraints

ct +
bt+1

Rt
+
mt+1

pt
= y − τt + bt +

mt

pt
. (27.2.6)

Here, mt+1 is nominal balances held between times t and t+1; pt is the price

level; bt is the real value of one-period government bond holdings that mature

at the beginning of period t , denominated in units of time t consumption; τt

is a lump-sum tax at t ; and Rt is the real gross rate of return on one-period

bonds held from t to t + 1. Maximization of expression (27.2.2) is subject to

mt+1 ≥ 0 for all t ≥ 0,4 no restriction on the sign of bt+1 for all t ≥ 0, and

given initial stocks m0, b0 .

After consolidating two consecutive budget constraints given by equation

(27.2.6), we arrive at

ct +
ct+1

Rt
+

(
1− pt

pt+1

1

Rt

)
mt+1

pt
+

bt+2

RtRt+1
+
mt+2/pt+1

Rt

= y − τt +
y − τt+1

Rt
+ bt +

mt

pt
. (27.2.7)

To ensure a bounded budget set, the expression in parentheses multiplying non-

negative holdings of real balances must be greater than or equal to zero. Thus,

we have the arbitrage condition,

1− pt
pt+1

1

Rt
= 1− Rmt

Rt
=

it
1 + it

≥ 0, (27.2.8)

where Rmt ≡ pt/pt+1 is the real gross return on money held from t to t+1, that

is, the inverse of the inflation rate, and 1 + it ≡ Rt/Rmt is the gross nominal

4 Households cannot issue money.
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interest rate. The real return on money Rmt must be less than or equal to the

return on bonds Rt , because otherwise agents would be able to make arbitrarily

large profits by choosing arbitrarily large money holdings financed by issuing

bonds. In other words, the net nominal interest rate it cannot be negative.

The Lagrangian for the household’s optimization problem is

∞∑

t=0

βt

{
u(ct, ℓt) + λt

(
y − τt + bt +

mt

pt
− ct −

bt+1

Rt
− mt+1

pt

)

+µt

[
1− ℓt −H

(
ct,

mt+1

pt

)]}
.

At an interior solution, the first-order conditions with respect to ct , ℓt , bt+1 ,

and mt+1 are

uc(t)− λt − µtHc(t) = 0, (27.2.9)

uℓ(t)− µt = 0, (27.2.10)

−λt
1

Rt
+ βλt+1 = 0, (27.2.11)

−λt
1

pt
− µtHm/p(t)

1

pt
+ βλt+1

1

pt+1
= 0. (27.2.12)

From equations (27.2.9) and (27.2.10),

λt = uc(t)− uℓ(t)Hc(t). (27.2.13)

The Lagrange multiplier on the budget constraint is equal to the marginal utility

of consumption reduced by the marginal disutility of having to shop for that

increment in consumption. By substituting equation (27.2.13) into equation

(27.2.11), we obtain an expression for the real interest rate,

Rt =
1

β

uc(t)− uℓ(t)Hc(t)

uc(t+ 1)− uℓ(t+ 1)Hc(t+ 1)
. (27.2.14)

The combination of equations (27.2.11) and (27.2.12) yields

Rt −Rmt
Rt

λt = −µtHm/p(t), (27.2.15)

which sets the cost equal to the benefit of the marginal unit of real money

balances held from t to t+1, all expressed in time t utility. The cost of holding
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money balances instead of bonds is lost interest earnings (Rt−Rmt) discounted

at the rate Rt and expressed in time t utility when multiplied by the shadow

price λt . The benefit of an additional unit of real money balances is the savings

in shopping time −Hm/p(t) evaluated at the shadow price µt . By substituting

equations (27.2.10) and (27.2.13) into equation (27.2.15), we get

(
1− Rmt

Rt

) [uc(t)
uℓ(t)

−Hc(t)
]
+Hm/p(t) = 0, (27.2.16)

with uc(t) and uℓ(t) evaluated at ℓt = 1−H(ct, mt+1/pt). Equation (27.2.16)

implicitly defines a money demand function

mt+1

pt
= F (ct, Rmt/Rt), (27.2.17)

which is increasing in both of its arguments, as can be shown by applying the

implicit function rule to expression (27.2.16).

27.2.2. Government

The government finances the purchase of the stream {gt}∞t=0 subject to the

sequence of budget constraints

gt = τt +
Bt+1

Rt
−Bt +

Mt+1 −Mt

pt
, (27.2.18)

where B0 and M0 are given. Here Bt is government indebtedness to the private

sector, denominated in time t goods, maturing at the beginning of period t , and

Mt is the stock of currency that the government has issued as of the beginning

of period t .
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27.2.3. Equilibrium

We use the following definitions:

Definition: A price system is a pair of positive sequences {Rt, pt}∞t=0 .

Definition: We take as exogenous sequences {gt, τt}∞t=0 . We also take B0 = b0

and M0 = m0 > 0 as given. An equilibrium is a price system, a consumption

sequence {ct}∞t=0 , a sequence for government indebtedness {Bt}∞t=1 , and a posi-

tive sequence for the money supply {Mt}∞t=1 for which the following statements

are true: (a) given the price system and taxes, the household’s optimum problem

is solved with bt = Bt and mt =Mt ; (b) the government’s budget constraint is

satisfied for all t ≥ 0; and (c) ct + gt = y .

27.2.4. “Short run” versus “long run”

We shall study government policies designed to ascribe a definite meaning to

a distinction between outcomes in the “short run” (initial date) and the “long

run” (stationary equilibrium). We assume

gt = g, ∀t ≥ 0;

τt = τ, ∀t ≥ 1;

Bt = B, ∀t ≥ 1.

(27.2.19)

We permit τ0 6= τ and B0 6= B .

These settings of policy variables are designed to let us study circumstances

in which the economy is in a stationary equilibrium for t ≥ 1, but starts from

some other position at t = 0. We have enough free policy variables to discuss

two alternative meanings that the theoretical literature has attached to the

phrase “open market operations.”



A shopping time monetary economy 1129

27.2.5. Stationary equilibrium

We seek an equilibrium for which

pt/pt+1 = Rm, ∀t ≥ 0;

Rt = R, ∀t ≥ 0;

ct = c, ∀t ≥ 0;

st = s, ∀t ≥ 0.

(27.2.20)

Substituting equations (27.2.20) into equations (27.2.14) and (27.2.17) yields

R = β−1,
mt+1

pt
= f(Rm),

(27.2.21)

where we define f(Rm) ≡ F (c, Rm/R) and we have suppressed the constants

c and R in the money demand function f(Rm) in a stationary equilibrium.

Notice that f ′(Rm) ≥ 0, an inequality that plays an important role below.

Substituting equations (27.2.19), (27.2.20), and (27.2.21) into the govern-

ment budget constraint (27.2.18), using the equilibrium condition Mt = mt ,

and rearranging gives

g − τ +B(R− 1)/R = f(Rm)(1 −Rm), ∀t ≥ 1. (27.2.22)

Given the policy variables (g, τ, B), equation (27.2.22) determines the station-

ary rate of return on currency Rm . In (27.2.22), g − τ is the net of interest

deficit, sometimes called the operational deficit; g− τ +B(R−1)/R is the gross

of interest government deficit; and f(Rm)(1 − Rm) is the rate of seigniorage

revenues from printing currency.5 The inflation tax rate is (1 − Rm) and the

quantity of real balances f(Rm) is the base of the inflation tax.

5 The stationary value of seigniorage per period is given by

Mt+1 −Mt

pt
=
Mt+1

pt
−

Mt

pt−1

pt−1

pt
= f(Rm)(1 − Rm).
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27.2.6. Initial date (time 0)

Because M1/p0 = f(Rm), the government budget constraint at t = 0 can be

written

M0/p0 = f(Rm)− (g +B0 − τ0) +B/R. (27.2.23)

27.2.7. Equilibrium determination

Given the policy parameters (g, τ, τ0, B), the initial stocks B0 and M0 , and the

equilibrium gross real interest rate R = β−1 , equations (27.2.22) and (27.2.23)

determine (Rm, p0). The two equations are recursive: equation (27.2.22) de-

termines Rm , then equation (27.2.23) determines p0 .

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10

R
m

g − τ + B(R−1)/R

f(R
m

) (1−R
m

)

Figure 27.2.1: The stationary rate of return on currency, Rm ,

is determined by the intersection between the stationary gross of

interest deficit g− τ +B(R− 1)/R and the stationary seigniorage

f(Rm)(1 −Rm).
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Figure 27.2.2: Given Rm , the real value of initial money balances

M0/p0 is determined by f(Rm)− (g+B0 − τ0) +B/R . Thus, the

price level p0 is determined because M0 is given.

It is useful to illustrate the determination of an equilibrium with a parametric

example. Let the utility function and the transaction technology be given by

u(ct, lt) =
c1−δt

1− δ
+

l1−αt

1− α
,

H(ct, mt+1/pt) =
ct

1 +mt+1/pt
,

where the latter is a modified version of equation (27.2.5), so that transactions

can be carried out even in the absence of money.

For parameter values (β, δ, α, c) = (0.96, 0.7, 0.5, 0.4), Figure 27.2.1 displays

the stationary gross of interest deficit g − τ + B(R − 1)/R and the stationary

seigniorage f(Rm)(1−Rm);6 Figure 27.2.2 shows f(Rm)−(g+B0−τ0)+B/R .

Stationary equilibrium is determined as follows: name constant values {g, τ, B}
which imply a stationary gross of interest deficit g− τ +B(R− 1)/R , then read

an associated stationary value Rm from Figure 27.2.1 that satisfies equation

6 For our parameterization in Figure 27.2.1, households choose to hold zero money balances

for Rm < 0.15, so at these rates there is no seigniorage collected. Seigniorage turns negative

for Rm > 1 because the government is then continuously withdrawing money from circulation

to raise the real return on money above 1.
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(27.2.22); for this value of Rm , find the value of f(Rm)− (g +B0 − τ0) +B/R

in Figure 27.2.2 which is equal to M0/p0 by equation (27.2.23). Thus, the

initial price level p0 is determined because M0 is given in period 0.

27.3. Ten monetary doctrines

We now use equations (27.2.22) and (27.2.23) to explain some important doc-

trines about money and government finance.

27.3.1. Quantity theory of money

The classic “quantity theory of money” experiment is to increase M0 by some

factor λ > 1 (a “helicopter drop” of money), leaving all of the other parameters

of the model fixed (including the fiscal policy parameters (τ0, τ, g, B )). The

effect is to multiply the initial equilibrium price and money supply sequences

by λ and to leave all other variables unaltered.

27.3.2. Sustained deficits cause inflation

The parameterization in Figures 27.2.1 and 27.2.2 shows that there can be mul-

tiple values of Rm that solve equation (27.2.22). As can be seen in Figure

27.2.1, some values of the gross-of-interest deficit g − τ + B(R − 1)/R can be

financed with either a low or high rate of return on money. The tax rate on real

money balances is (1−Rm) in a stationary equilibrium, so the higher Rm that

solves equation (27.2.22) is on the good side of a “Laffer curve” in the inflation

tax rate.

If there are multiple values of Rm that solve equation (27.2.22), we shall

always select the highest one for the purposes of doing our comparative dynamic

exercises.7 The stationary equilibrium with the higher rate of return on currency

7 In chapter 9, we studied the perfect-foresight dynamics of a closely related system and

saw that the stationary equilibrium selected here was not the limit point of those dynamics.

Our selection of the higher rate of return equilibrium can be defended by appealing to various

forms of “adaptive” (nonrational) dynamics. See Bruno and Fischer (1990), Marcet and

Sargent (1989), and Marimon and Sunder (1993). Also, see exercise 27.2.
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is associated with classical comparative dynamics: an increase in the stationary

gross-of-interest government budget deficit causes a decrease in the rate of return

on currency (i.e., an increase in the inflation rate). Notice how the stationary

equilibrium associated with the lower rate of return on currency has “perverse”

comparative dynamics, from the point of view of the classical doctrine that

sustained government deficits cause inflation.

27.3.3. Fiscal prerequisites of zero inflation policy

Equation (27.2.22) implies a restriction on fiscal policy that is necessary and

sufficient to sustain a zero inflation (Rm = 1) equilibrium:

g − τ +B(R − 1)/R = 0,

or

B =
R

R− 1
(τ − g) =

∞∑

t=0

R−t(τ − g).

This equation states that the real value of interest-bearing government indebt-

edness equals the present value of the net-of-interest government surplus, with

zero revenues being contributed by an inflation tax. In this case, increased

government debt implies a flow of future government surpluses, with complete

abstention from the inflation tax.

27.3.4. Unpleasant monetarist arithmetic

This doctrine describes the paradoxical effects of an open market operation

defined in the standard way that withholds from the monetary authority the

ability to alter taxes or expenditures. Consider an open market sale of bonds

at time 0, defined as a decrease in M1 accompanied by an increase in B , with

all other government fiscal policy variables constant, including (τ0, τ ). This

policy can be analyzed by increasing B in equations (27.2.22) and (27.2.23).

The effect of the policy is to shift the permanent gross-of-interest deficit upward

by (R − 1)/R times the increase in B , which decreases the real return on

money Rm in Figure 27.2.1. That is, the effect is unambiguously to increase the

stationary inflation rate (the inverse of Rm ). However, the effect on the initial
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price level p0 can go either way, depending on the slope of the revenue curve

f(Rm)(1 − Rm); the decrease in Rm reduces the right-hand side of equation

(27.2.23), f(Rm) − (g + B0 − τ0) + B/R , while the increase in B raises the

value. Thus, the upward shift of the curve in Figure 27.2.2 due to the higher

value of B , and the downward movement along that new curve due to the lower

equilibrium value of Rm , can cause M0/p0 to move up or down, that is, a

decrease or an increase in the initial price level p0 .

The effect of a decrease in the money supply M1 accomplished through

such an open market operation is at best temporarily to drive the price level

downward, at the cost of causing the inflation rate to be permanently higher.

Sargent and Wallace (1981) called this “unpleasant monetarist arithmetic.”

27.3.5. An “open market” operation delivering neutrality

We now alter the definition of open market operations for the purpose of dis-

arming unpleasant monetarist arithmetic. We supplement the fiscal powers of

the monetary authority in a way that lets open market operations have effects

like those in the quantity theory experiment. Let there be an initial equilibrium

with policy values denoted by bars over variables. Consider an open market sale

or purchase defined as a decrease in M1 and simultaneous increases in B and

τ sufficient to satisfy

(1 − 1/R)(B̂ − B̄) = τ̂ − τ̄ , (27.3.1)

where variables with hats denote the new values of the corresponding variables.

We assume that τ̂0 = τ̄0 .

As long as the tax rate from time 1 on is adjusted according to equation

(27.3.1), equation (27.2.22) will be satisfied at the initial value of Rm . Equation

(27.3.1) imposes a requirement that the lump-sum tax τ be adjusted by just

enough to service whatever additional interest payments are associated with the

alteration in B resulting from the exchange of M1 for B .8 Under this definition

of an open market operation, reductions in M1 achieved by increases in B and

the taxes needed to service B cause proportionate decreases in the paths of the

money supply and the price level, and leave Rm unaltered. In this way, we have

salvaged a version of the pure quantity theory of money.

8 This definition of an “open market” operation imputes unrealistic power to a monetary

authority: on earth, central banks don’t set tax rates.
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27.3.6. The “optimum quantity” of money

Friedman’s (1969) ideas about the optimum quantity of money can be repre-

sented in Figures 27.2.1 and 27.2.2. Friedman noted that, given the stationary

levels of (g,B ), the representative household prefers stationary equilibria with

higher rates of return on currency. In particular, the higher the stationary level

of real balances, the better the household likes it. By running a sufficiently large

gross-of-interest surplus, that is, a negative value of g − τ + B(R − 1)/R , the

government can attain any value of Rm ∈ (1, β−1). Given (g,B) and the target

value of Rm in this interval, a tax rate τ can be chosen to assure the required

surplus. The proceeds of the tax are used to retire currency from circulation,

thereby generating a deflation that makes the rate of return on currency equal

to the target value of Rm . According to Friedman, the optimal policy is to

satiate the system with real balances, insofar as it is possible to do so.

The social value of real money balances in our model is that they reduce

households’ shopping time. The optimum quantity of money is the one that

minimizes the time allocated to shopping. For the sake of argument, suppose

there is a satiation point in real balances ψ(c) for any consumption level c ,

that is, Hm/p(c, mt+1/pt) = 0 for mt+1/pt ≥ ψ(c). According to condition

(27.2.15), the government can attain this optimal allocation only by choosing

Rm = R , since λt, µt > 0. (Utility is assumed to be strictly increasing in both

consumption and leisure.) Thus, welfare is at a maximum when the economy is

satiated with real balances. For the transaction technology given by equation

(27.2.5), the Friedman rule can be attained only approximately because money

demand is insatiable.

27.3.7. Legal restrictions to boost demand for currency

If the government can somehow force households to increase their real money

balances to f̃(Rm) > f(Rm), it can finance a given stationary gross of interest

deficit g − τ + B(R − 1)/R at a higher stationary rate of return on currency

Rm . The increased demand for money balances shifts the seigniorage curve

in Figure 27.2.1 upward to f̃(Rm)(1 − Rm), thereby increasing the higher of

the two intersections of the curve f̃(Rm)(1 − Rm) with the gross-of-interest

deficit line in Figure 27.2.1. By increasing the base of the inflation tax, the rate

(1−Rm) of inflation taxation can be diminished. Examples of legal restrictions
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to increase the demand for government issued currency include (a) restrictions

on the rights of banks and other intermediaries to issue bank notes or other

close substitutes for government issued currency,9 (b) arbitrary limitations on

trading other assets that are close substitutes with currency, and (c) reserve

requirements.

Governments intent on raising revenues through the inflation tax have fre-

quently resorted to legal restrictions and threats designed to promote the de-

mand for its currency. In chapter 28, we shall study a version of Bryant and

Wallace’s (1984) theory of some of those restrictions. Sargent and Velde (1995)

describe the sharp tools used to enforce such restrictions during “the Terror”

during the French Revolution.

To assess the welfare effects of policies forcing households to hold higher real

balances, we must go beyond the incompletely articulated transaction process

underlying equation (27.2.4). We need an explicit model of how money facili-

tates transactions and how the government interferes with markets to increase

the demand for real balances. In such a model, there would be opposing effects

on social welfare. On the one hand, our discussion of the optimum quantity

of money says that a higher real return on money Rm tends to improve wel-

fare. On the other hand, the imposition of legal restrictions aimed at forcing

households to hold higher real balances might elicit socially wasteful activities

devoted to evading those restrictions.

27.3.8. One big open market operation

Lucas (1986) and Wallace (1989) describe a large open market purchase of pri-

vate indebtedness at time 0. The purpose of the operation is to provide the

government with a portfolio of interest-earning claims on the private sector, one

that is sufficient to permit it to run a gross-of-interest surplus. The government

uses the surplus to reduce the money supply each period, thereby engineering

a deflation that raises the gross rate of return on money above 1. That is, the

government uses its own lending to reduce the gap in rates of return between its

money and higher-yield bonds. As we know from our discussion of the optimum

9 In the U.S. Civil War, the U.S. Congress taxed out of existence the notes that state-

chartered banks had issued, which before the war had been the country’s paper currency.
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quantity of money, the increase in the real return on money Rm will lead to

higher welfare.10

To highlight the effects of the described open market policy, we impose a

nonnegative net-of-interest deficit, g−τ ≥ 0, which prevents financing deflation

by direct taxation. The proposed operation is then to increase M1 and decrease

B , with B < 0 indicating private indebtedness to the government. We generate

a candidate policy as follows: Given values of (g, τ ), use equation (27.2.22)

to pick a value of B that solves equation (27.2.22) for a desired level of Rm ,

with 1 < Rm ≤ β−1 . Notice that a negative level of B will be required,

since g − τ ≥ 0. Substituting equation (27.2.23) into equation (27.2.22) [by

eliminating f(Rm)] and rearranging gives

M0/p0 =

(
R −Rm
1−Rm

)
B

R
+

(
1

1−Rm

)
(g − τ)− (g +B0 − τ0). (27.3.2)

The first term on the right side is positive, while the remainder may be positive

or negative. The candidate policy is consistent with an equilibrium only if

g, τ, τ0, and B0 assume values for which the entire right side is positive. In this

case, there exists a positive price level p0 that solves equation (27.3.2).

As an example, assume that g − τ = 0 and that g + B0 − τ0 = 0, so that

the government budget net of interest is balanced from time t = 1 onward.

Then we know that the right-hand side of equation (27.3.2) is positive. In

this case it is feasible to operate a scheme like this to support any return on

currency 1 < Rm < 1/β . In the limit, when conducting an arbitrarily large

open market operation, the stationary return on money Rm would approach

1/β = R and, hence, M0/p0 in equation (27.3.2) would approach zero. This

means that the government is engineering a hyperinflation in period 0 that

makes the initial nominal money stock M0 practically worthless. But how is

it that the government after such a hyperinflation in period 0, can support a

stationary return on money of R for the indefinite future? The explanation

is as follows. Since the hyperinflation in period 0 has made the initial money

10 Beatrix Paal (2000) describes how the stabilization of the second Hungarian hyperinflation

had some features of “one big open market operation.” After the stabilization the government

lent the one-time seigniorage revenues gathered from remonetizing the economy. The severe

hyperinflation (about 4×1024 in the previous year) had reduced real balances of fiat currency

virtually to zero. Paal argues that the fiscal aspects of the stabilization, dependent as they

were on those one-time seigniorage revenues, were foreseen and shaped the dynamics of the

preceding hyperinflation.
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holdings almost worthless, the private sector’s real balances at the end of period

0, M1/p0 , come almost entirely from that period’s open-market operation. The

government injects that money stock into the economy in exchange for interest-

earning claims on the private sector, B/R ≈ −M1/p0 . In future periods, the

government keeps those bond holdings constant while using the net interest

earnings to reduce the money supply in each future period. The government

passes the interest earnings on to money holders by engineering a deflation that

yields a return on money equal to Rm ≈ R .

27.3.9. A fiscal theory of the price level

The preceding sections have illustrated what might be called a fiscal theory of

inflation. This theory assumes that at time t = 0 the government commits to a

specific sequence of exogenous variables ranging over t ≥ 0. In particular, the

government sets g, τ0, τ , and B , while B0 and M0 are inherited from the past.

The model then determines Rm and p0 via equations (27.2.22) and (27.2.23).

This system of equations determining equilibrium values is recursive: given g, τ ,

and B , equation (27.2.22) determines the rate of return on currency Rm (and

therefore, in light of equation (27.2.8), inflation); then, given g, τ, B , and Rm ,

equation (27.2.23) determines p0 . After p0 is determined, M1 is determined

from M1/p0 = f(Rm). In this setting, the government commits to a long-run

gross-of-interest government deficit g − τ + B(R − 1)/R , and then the market

determines p0, Rm .

Woodford (1995) and Sims (1994) have converted a version of the same model

into a fiscal theory of the price level by altering assumptions about the variables

that the government sets. Rather than assuming that the government sets B ,

and thereby the gross-of-interest government deficit, Woodford assumes that B

is endogenous and that instead the government sets in advance a present value of

seigniorage f(Rm)(1−Rm)/(R−1). This assumption is equivalent to saying that

the government commits to fix either the nominal interest rate or the gross rate of

inflation R−1
m (the nominal interest rate and Rm are locked together by equation

(27.2.8)). Woodford emphasizes that in the present setting, such a nominal

interest rate peg leaves the equilibrium price level process determinate.11 To

11 Woodford (1995) interprets this finding against the background of a literature that oc-

casionally asserted a different result, namely, that interest rate pegging led to price level
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illustrate Woodford’s argument in our setting, rearrange equation (27.2.22) to

obtain

B/R =
1

R− 1

[
(τ − g) + f(Rm)(1−Rm)

]

=

∞∑

t=1

R−t(τ − g) + f(Rm)
1−Rm
R− 1

,
(27.3.3)

which when substituted into equation (27.2.23) yields

M0

p0
+ B0 =

∞∑

t=0

R−t(τt − gt) + f(Rm)
(
1 +

1−Rm
R− 1

)

=

∞∑

t=0

R−t(τt − gt) +

∞∑

t=1

R−tf(Rm)(R−Rm). (27.3.4)

In a stationary equilibrium, the real interest rate is equal to 1/β , so by multi-

plying the nominal interest rate by β we obtain the inverse of the corresponding

value for Rm . Thus, pegging a nominal rate is equivalent to pegging the infla-

tion rate and the steady-state flow of seigniorage f(Rm)(1 − Rm). Woodford

uses such equations as follows: The government chooses g, τ, τ0 , and Rm (or

equivalently, f(Rm)(1 − Rm)). Then equation (27.3.3) determines B as the

present value of the government surplus from time 1 on, including seigniorage

revenues. Equation (27.3.4) then determines p0 . Equation (27.3.4) says that

the price level is set to equate the real value of total initial government indebt-

edness to the present value of the net-of-interest government surplus, including

seigniorage revenues. Finally, the endogenous quantity of real money balances

is determined by the demand function for money (27.2.17),

M1/p0 = f(Rm). (27.3.5)

Woodford uses this experiment to emphasize that without saying much more,

the mere presence of a “quantity theory” equation of the form (27.3.5) does not

imply the “monetarist” conclusion that it is necessary to make the money supply

exogenous in order to determine the path of the price level.

indeterminacy because of the associated money supply endogeneity. That other literature fo-

cused on the homogeneity properties of conditions (27.2.14) and (27.2.16): the only ways in

which the price level enters are as ratios to the money supply or to the price level at another

date. This property suggested that a policy regime that leaves the money supply, as well as

the price level, endogenous will will determine neither.
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Several commentators have remarked that the Sims-Woodford use of these

equations puts the government on a different setting than the private agents.12

Private agents’ demand curves are constructed by requiring their budget con-

straints to hold for all hypothetical price processes, not just the equilibrium

one. However, under Woodford’s assumptions about what the government has

already chosen regardless of the (p0, Rm) it faces, the only way an equilibrium

can exist is if p0 adjusts to make equation (27.3.4) satisfied. The government

budget constraint would not be satisfied unless p0 adjusts to satisfy (27.3.4).

By way of contrast, in the fiscal theory of inflation described by Sargent and

Wallace (1981) and Sargent (2013), embodied in our description of unpleasant

monetarist arithmetic, the focus is on how the one tax rate that is assumed to be

free to adjust, the inflation tax, responds to fiscal conditions that the government

inherits. Sims and Woodford forbid the inflation tax from adjusting, having set

it once and all for by pegging the nominal interest rate. They thereby force

other aspects of fiscal policy and the price system to adjust.

27.3.10. Exchange rate indeterminacy

Kareken and Wallace’s (1981) exchange rate indeterminacy result provides a

good laboratory for putting the fiscal theory of the price level to work. First,

we will describe a version of Kareken and Wallace’s result. Then, we will show

how it can be overturned by changing the assumptions about policy to ones like

Woodford’s.

To describe the theory of exchange rate indeterminacy, we change the pre-

ceding model so that there are two countries with identical technologies and

preferences. Let yi and gi be the endowment of the good and government pur-

chases for country i = 1, 2; where y1 + y2 = y and g1 + g2 = g . Under the

assumption of complete markets, equilibrium consumption ci in country i is

constant over time and c1 + c2 = c .

Each country issues currency. The government of country i has Mit+1 units

of its currency outstanding at the end of period t . The price level in terms of

currency i is pit , and the exchange rate et satisfies the purchasing power parity

condition p1t = etp2t . The household is indifferent about which currency to use

so long as both currencies bear the same rate of return, and will not hold one

12 See Buiter (2002) and McCallum (2001).
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with an inferior rate of return. This fact implies that p1t/p1t+1 = p2t/p2t+1 ,

which in turn implies that et+1 = et = e . Thus, the exchange rate is constant in

a nonstochastic equilibrium with two currencies being valued. We let Mt+1 =

M1t+1 + eM2t+1 . For simplicity, we assume that the money demand function

is linear in the transaction volume, F (c, Rm/R) = cF̂ (Rm/R). It then follows

that the equilibrium condition in the world money market is

Mt+1

p1t
= f(Rm). (27.3.6)

In order to study stationary equilibria where all real variables remain con-

stant over time, we restrict attention to identical monetary growth rates in the

two countries, Mit+1/Mit = 1+ǫ for i = 1, 2. We let τi and Bi denote constant

steady-state values for lump-sum taxes, and real government indebtedness for

government i . The budget constraint of government i is

τi = gi −Bi
(1−R)

R
− Mit+1 −Mit

pit
. (27.3.7)

Here is a version of Kareken and Wallace’s exchange rate indeterminacy

result: Assume that the governments of each country set gi , Bi , and Mit+1 =

(1 + ǫ)Mit , planning to adjust the lump-sum tax τi to raise whatever revenues

are needed to finance their budgets. Then the constant monetary growth rate

implies Rm = (1+ǫ)−1 and equation (27.3.6) determines the worldwide demand

for real balances. But the exchange rate is not determined under these policies.

Specifically, the market clearing condition for the money market at time 0 holds

for any positive e with a price level p10 given by

M11 + eM21

p10
= f(Rm). (27.3.8)

For any such pair (e, p10) that satisfies equation (27.3.8) with an associated

value for p20 = p10/e , governments’ budgets are financed by setting lump-sum

taxes according to (27.3.7). Kareken and Wallace conclude that under such

settings for government policy variables, something more is needed to deter-

mine the exchange rate. With policy as specified here, the exchange rate is

indeterminate.13

13 See Sargent and Velde (1990) for an application of this theory to events surrounding

German monetary unification.
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27.3.11. Determinacy of the exchange rate retrieved

A version of Woodford’s assumptions about the variables that governments

choose can render the exchange rate determinate. Thus, suppose that each

government sets a real level of seigniorage xi = (Mit+1 −Mit)/pit for all t ≥ 1.

The budget constraint of government i is then

τi = gi −Bi
(1−R)

R
− xi. (27.3.9)

In order to study stationary equilibria where all real variables remain constant

over time, we allow for three cases with respect to x1 and x2 : they are both

strictly positive, strictly negative, or equal to zero.

To retrieve exchange rate determinacy, we assume that the governments of

each country set gi , Bi , xi , and τi so that budgets are financed according to

(27.3.9). Hence, the endogenous inflation rate is pegged to deliver the targeted

levels of seigniorage,

x1 + x2 = f(Rm)(1 −Rm). (27.3.10)

The implied return on money Rm determines the endogenous monetary growth

rates in a stationary equilibrium,

R−1
m =

Mit+1

Mit
≡ 1 + ǫ, for i = 1, 2. (27.3.11)

That is, nominal supplies of both monies grow at the rate of inflation so that

real money supplies remain constant over time. The levels of those real money

supplies satisfy the equilibrium condition that the real value of net monetary

growth is equal to the real seigniorage chosen by the government,

ǫMit

pit
= xi, for i = 1, 2. (27.3.12)

Equations (27.3.12) determine the price levels in the two countries so long as

the chosen amounts of seigniorage are not equal to zero, which in turn determine

a unique exchange rate,

e =
p1t
p2t

=
M1t

M2t

x2
x1

=
(1 + ǫ)tM10

(1 + ǫ)tM20

x2
x1

=
M10

M20

x2
x1
.

Thus, with this Sims-Woodford structure of government commitments (i.e., set-

ting of exogenous variables), the exchange rate is determinate. It is only the
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third case of stationary equilibria with x1 and x2 equal to zero where the

exchange rate is indeterminate, because then there is no relative measure of

seigniorage levels that is needed to pin down the denomination of the world real

money supply for the purpose of financing governments’ budgets.

27.4. An example of exchange rate (in)determinacy

As an illustration of the Kareken-Wallace exchange rate indeterminacy and the

Sims-Woodford fiscal theory of the price level, consider the following version of

the two-country environment in section 27.3.10:

y1 = y2 = y/2, (27.4.1a)

g1 = g2 = 0, (27.4.1b)

B1 = B2 = 0, (27.4.1c)

M10 =M20, (27.4.1d)

M1t+1

M1t
=
M2t+1

M2t
= 1 + ǫ > 1, ∀t ≥ 0. (27.4.1e)

The governments in the two countries have no purchases to finance and no bond

holdings. The seigniorage raised by printing money is handed over as lump-sum

transfers to the households in each country, respectively. The budget constraint

of government i is

−τi =
Mit+1 −Mit

pit
= xi, (27.4.2)

where the negative lump-sum tax, −τi , is equal to the real value of the country’s

seigniorage, xi .

To operationalize the concept of exchange rate indeterminacy, we assume

that there is a ‘sunspot’ variable that can take on three values at the start of

the economy.14 Each realization of the sunspot variable is associated with a

particular belief about the equilibrium value of the exchange rate e ∈ {0, 1,∞}
that will prevail in period 0 and forever thereafter. That is, depending on the

sunspot realization, all households will coordinate on one of the following three

beliefs about the equilibrium outcome in the world money market:

14 Sunspots were introduced by Cass and Shell (1983) to explain “excess market volatility.”

Sunspots represent extrinsic uncertainty not related to the fundamentals of the economy.
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1. the currency of country 2 is worthless (e = 0 and p2t = ∞, ∀t ≥ 0);

2. the two currencies are traded one for one (e = 1 and p1t = p2t, ∀t ≥ 0);

3. the currency of country 1 is worthless (e = ∞ and p1t = ∞, ∀t ≥ 0).

We assume that all households share the same belief about the sunspot process,

and that each sunspot realization is perceived to occur with the same probability

equal to 1/3.

We also postulate that all households are risk-averse with identical prefer-

ences and as stated in (27.4.1a) that they have the same constant endowment

stream. As initial conditions, the representative household in country i owns

the beginning-of-period money stock Mi0 of its country.

27.4.1. Trading before sunspot realization

The equilibrium allocation in this economy will depend on whether or not house-

holds can trade before observing the sunspot realization. In chapter 8, we as-

sumed that all trade took place after any uncertainty had been resolved in the

first period. In our current setting, this would translate into households trading

after the sunspot realization, i.e., after the agents have seen the sunspot and

therefore after the coordination of beliefs about the equilibrium value of the ex-

change rate. In cases i) and iii), this implies that the households in the country

with a valued currency will be better off because their initial money holdings are

valuable and they will receive lump-sum transfers equal to their government’s

revenue from seigniorage in each period. In case ii), all households are equally

well off in the world economy because of identical budget constraints.

Alternatively, we can assume that households can trade in markets before the

sunspot realization. In a complete market world, agents would be able to trade

in contingent claims with payoffs conditional on the sunspot realization. Given

the symmetries in the environment with respect to preferences, endowment and

expected asset/transfer outcomes associated with the sunspot process, the equi-

librium allocation will be one of perfect pooling with each household consuming

y/2 in every period.15 Hence, the households will use security markets to pool

the risks associated with the sunspot process. Given the ex ante symmetry in

15 See Lucas (1982) for a perfect pooling equilibrium in a two-country world with two curren-

cies. However, Lucas considers only intrinsic uncertainty arising from stochastic endowment

streams.



An example of exchange rate (in)determinacy 1145

possible sunspot realizations, it follows that equilibrium contingent-claim prices

will be such that a household in country i can afford to trade half of its ini-

tial money holdings, Mi0/2, and half of the entitlement to its future stream of

lump-sum transfers, xi/2, in exchange for the corresponding quantities from a

household in the other country. As a result, these diversified portfolios enable

each household to finance a smooth consumption stream equal to y/2 in every

period regardless of the sunspot realization.

We have constructed a rational expectations equilibrium where the equilib-

rium exchange rate is influenced by a sunspot process. But even though the

exchange rate can take on three different values in this example, the households

are insulated from any real effects because of their trades in complete markets

prior to the sunspot realization. In this world, each government is assumed to

print more of its currency each period at the net rate ǫ > 0 and hand over the

newly printed money to its households as lump-sum transfers. The households

in turn have entered into contingent-claim contracts that oblige them to hand

over half of this newly printed currency to a household in the other country,

while receiving half of that other household’s government transfer. Given a

sunspot realization that is associated with either case i) or case iii) above, it

follows that these deliveries of newly printed currencies between households are

valuable in one direction but not in the other direction.

27.4.2. Fiscal theory of the price level

How can a fiscal theory of the price level overcome this indeterminacy of the

exchange rate? In the spirit of section 27.3.11, suppose that each government

sets a real level of seigniorage given by

x1 = x2 = 0.5 · f
(

1

1 + ǫ

)[
1− 1

1 + ǫ

]
.

From equations (27.3.10) and (27.3.11), we see that the governments split the

total world seigniorage associated with a gross money growth rate equal to 1+ǫ .

Given such policies, both governments can satisfy their budget constraints only

if the equilibrium exchange rate is indeed e = 1. Hence, the fiscal theory of

the price level here would claim that case ii) is the only viable rational expecta-

tions equilibrium. In the words of Kocherlakota and Phelan (1999), “the fiscal
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theory of the price level is, at its core, a device for selecting equilibria from the

continuum which can exist in monetary models.”

Kocherlakota and Phelan (1999) are skeptical about this recommendation

for selecting an equilibrium. The fiscal theory proposes to rule out other equi-

libria by specifying government policies in such a way that government budget

constraints hold only for one particular exchange rate. But what would happen

if the sunspot realization signals case i) or case iii) to the households so that

they actually abandon one currency, making it worthless? The fiscal theory

formulated by Sims and Woodford contains no answer to this question. Critics

of the fiscal theory of the price level instead prefer to specify government poli-

cies so that a government’s budget constraint is satisfied for all hypothetical

outcomes, including e ∈ {0,∞} . For example, a government that finds itself

issuing a worthless currency could surrender its aspiration to make lump-sum

transfers with strictly positive value to its citizens, while the other government

would accept that the value of the transfer of newly printed money to its citi-

zens has doubled in real terms. But of course, this remedy to the puzzle would

refute the fiscal theory of the price level and once again render the exchange

rate indeterminate.

27.4.3. A game theoretic view of the fiscal theory of the price level

Bassetto (2002) agrees with criticisms of the fiscal theory of the price level that

question how the government can adopt a fiscal policy without being concerned

about outcomes that could make the policy infeasible. Bassetto reformulates

the fiscal theory of the price level in terms of a game. The essence of his

argument is that in order to select an equilibrium, a government must specify

strategies for all arbitrary outcomes so that its desired outcome is the only

one that can be supported as an equilibrium outcome, merely on the basis of

individual rationality of private actors.

Bassetto (2002) studies a government that seeks to finance occasional deficits

by issuing debt in a model with ‘trading posts.’ In such a trading environment it

might happen that not all government debt can be sold because private agents

fail to submit enough bids. What would the equilibrium outcome be then?

The fiscal theory formulated by Sims and Woodford contains no answer since it

presupposes that the government budget constraint will be satisfied for a given
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fiscal policy. Bassetto provides an answer by arguing that the government should

formulate a strategy for that and all other arbitrary outcomes. Specifically, the

following government strategy supports the desired fiscal policy as a unique

equilibrium outcome. If some debt cannot be sold, the government responds by

increasing taxes to make up for the present shortfall, but without altering future

taxes. Thus, “the onset of a debt crisis would be accompanied by an increase

in the amount of resources that are offered in repayment of debt and hence an

increase in the rate of return of government debt. As a consequence, any rational

household would respond to a debt crisis by lending the governmentmore, rather

than less, which ensures that no such crisis can occur in an equilibrium.”16

Because Bassetto’s argument works equally well in a real economy, the pre-

ceding paragraph did not mention money or nominal prices. Moreover, our

omission of money seems appropriate since Bassetto studies a cashless economy

where the relative price of goods and nominal bonds merely determines the value

of the unit of account (the ‘dollar’). Atkeson et al. (2010) extend the analysis to

a monetary economy, and follow the same approach to multiplicity of equilibria

that we took in the cash-in-advance model in section 16.17.3. While theirs is a

new-Keynesian model, they analyze sunspot equilibria that satisfy a constraint

similar to ours when we imposed an unchanged value for the denominator of

equation (16.16.7), without any constraint on each individual next-period price

level. In the analysis of Atkeson et al. (2010), the corresponding restriction on

sunspot equilibria is that the expected inflation is unchanged when perturbing

the sunspot-driven uncertainty in next period’s price level.

Note that different versions of the fiscal theory of the price level share the

same key assumption that a government can fully commit to its policy or strat-

egy. In chapters 24 and 25, we study credible government policies – policies that

a government would like to enact under all circumstances.

16 A similar strategy would establish Bassetto’s version of the fiscal theory of the price level

in section 27.4.2. For example, suppose that each government promises to increase taxation

in order to purchase its currency if it turns worthless, say, at the price level that would have

prevailed in case ii). Such strategies can effectively rule out cases i) and iii) as equilibrium

outcomes, and make exchange rate e = 1 the only possible equilibrium.
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27.5. Optimal inflation tax: the Friedman rule

Given lump-sum taxation, the sixth monetary doctrine (about the “optimum

quantity” of money) establishes the optimality of the Friedman rule. The opti-

mal policy is to satiate the economy with real balances by generating a deflation

that drives the net nominal interest rate to zero. In a stationary economy, there

can be deflation only if the government retires currency with a government sur-

plus. We now ask if such a costly scheme remains optimal when all government

revenues must be raised through distortionary taxation. Or would the Ramsey

plan then include an inflation tax on money holdings whose rate depends on the

interest elasticity of money demand?

Following Correia and Teles (1996), we show that even with distortionary

taxation the Friedman rule is the optimal policy under a transaction technology

(27.2.4) that satisfies a homogeneity condition.

Earlier analyses of the optimal tax on money in models with transaction

technologies include Kimbrough (1986), Faig (1988), and Guidotti and Vegh

(1993). Chari, Christiano, and Kehoe (1996) also develop conditions for the

optimality of the Friedman rule in models with cash and credit goods (see section

16.16), and money in the utility function.

27.5.1. Economic environment

We convert our shopping time monetary economy into a production economy

with labor nt as the only input in a linear technology:

ct + gt = nt. (27.5.1)

The household’s time constraint becomes

1 = ℓt + st + nt. (27.5.2)

The shopping technology is now assumed to be homogeneous of degree ν ≥ 0

in consumption ct and real money balances m̂t+1 ≡ mt+1/pt ;

st = H(ct, m̂t+1) = cνtH

(
1,
m̂t+1

ct

)
, for ct > 0. (27.5.3)

By Euler’s theorem we have

Hc(c, m̂)c+Hm̂(c, m̂)m̂ = νH(c, m̂). (27.5.4)
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For any consumption level c , we also assume a point of satiation in real money

balances ψc such that

Hm̂(c, m̂) = H(c, m̂) = 0, for m̂ ≥ ψc. (27.5.5)

27.5.2. Household’s optimization problem

After replacing net income (y− τt) in equation (27.2.7) by (1− τt)(1− ℓt− st),

consolidation of budget constraints yields the household’s present-value budget

constraint

∞∑

t=0

q0t

(
ct +

it
1 + it

m̂t+1

)
=

∞∑

t=0

q0t (1 − τt)(1 − ℓt − st) + b0 +
m0

p0
, (27.5.6)

where we have used equation (27.2.8), and q0t is the Arrow-Debreu price

q0t =

t−1∏

i=0

R−1
i

with the numeraire q00 = 1. We have also imposed the transversality conditions,

lim
T→∞

q0T
bT+1

RT
= 0, (27.5.7a)

lim
T→∞

q0T m̂T+1 = 0. (27.5.7b)

Given the satiation point in equation (27.5.5), real money balances held for

transaction purposes are bounded from above by ψ . Real balances may also be

held purely for savings purposes if money is not dominated in rate of return by

bonds, but an agent would never find it optimal to accumulate balances that

violate the transversality condition. Thus, for whatever reason money is being

held, condition (27.5.7b) must hold in an equilibrium.

Substitute st = H(ct, m̂t+1) into equation (27.5.6), and let λ be the La-

grange multiplier on this present-value budget constraint. At an interior solu-

tion, the first-order conditions of the household’s optimization problem become

ct: βtuc(t)− λq0t
[
(1− τt)Hc(t) + 1

]
= 0, (27.5.8a)

ℓt: βtuℓ(t)− λq0t (1− τt) = 0, (27.5.8b)

m̂t+1: − λq0t

[
(1− τt)Hm̂(t) +

it
1 + it

]
= 0. (27.5.8c)
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From conditions (27.5.8a) and (27.5.8b), we obtain

uℓ(t)

1− τt
= uc(t)− uℓ(t)Hc(t). (27.5.9)

The left side of equation (27.5.9) is the utility of extra leisure obtained from giv-

ing up one unit of disposable labor income, which at the optimum should equal

the marginal utility of consumption reduced by the disutility of shopping for

the marginal unit of consumption, given by the right side of equation (27.5.9).

Using condition (27.5.8b) and the corresponding expression for t = 0 with the

numeraire q00 = 1, the Arrow-Debreu price q0t can be expressed as

q0t = βt
uℓ(t)

uℓ(0)

1− τ0
1− τt

; (27.5.10)

and by condition (27.5.8c),

it
1 + it

= −(1− τt)Hm̂(t). (27.5.11)

This last condition equalizes the cost of holding one unit of real balances (the

left side) with the opportunity value of the shopping time that is released by

an additional unit of real balances, measured on the right side by the extra

after-tax labor income that can be generated.

27.5.3. Ramsey plan

Following the method for solving a Ramsey problem in chapter 16, we use the

household’s first-order conditions to eliminate prices and taxes from its present-

value budget constraint. Specifically, we substitute equations (27.5.10) and

(27.5.11) into equation (27.5.6), and then multiply by uℓ(0)/(1 − τ0). After

also using equation (27.5.9), the implementability condition becomes

∞∑

t=0

βt
{[
uc(t)− uℓ(t)Hc(t)

]
ct − uℓ(t)Hm̂(t)m̂t+1 − uℓ(t)(1− ℓt − st)

}
= 0,

where we have assumed zero initial assets, b0 = m0 = 0. Finally, we substitute

st = H(ct, m̂t+1) into this expression and invoke Euler’s theorem (27.5.4), to

arrive at
∞∑

t=0

βt {uc(t)ct − uℓ(t) [1− ℓt − (1 − ν)H(ct, m̂t+1)]} = 0. (27.5.12)
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The Ramsey problem is to maximize expression (27.2.2) subject to equation

(27.5.12) and a feasibility constraint that combines equations (27.5.1) through

(27.5.3):

1− ℓt −H(ct, m̂t+1)− ct − gt = 0. (27.5.13)

Let Φ and {θt}∞t=0 be a Lagrange multiplier on equation (27.5.12) and a se-

quence of Lagrange multipliers on equation (27.5.13), respectively. First-order

conditions for this problem are

ct: uc(t) + Φ {ucc(t)ct + uc(t)

− uℓc(t) [1− ℓt − (1− ν)H(ct, m̂t+1)]

+ (1− ν)uℓ(t)Hc(t)} − θt [Hc(t) + 1] = 0, (27.5.14a)

ℓt: uℓ(t) + Φ {ucℓ(t)ct + uℓ(t)

− uℓℓ(t) [1− ℓt − (1− ν)H(ct, m̂t+1)]} = −θt, (27.5.14b)

m̂t+1: Hm̂(t) [Φ(1− ν)uℓ(t)− θt] = 0. (27.5.14c)

The first-order condition for real money balances (27.5.14c) is satisfied when

either Hm̂(t) = 0 or

θt = Φ(1− ν)uℓ(t). (27.5.15)

We now show that equation (27.5.15) cannot be a solution of the problem.

Notice that when ν > 1, equation (27.5.15) implies that the multipliers Φ and

θt will either be zero or have opposite signs. Such a solution is excluded because

Φ is nonnegative, while the insatiable utility function implies that θt is strictly

positive. When ν = 1, a strictly positive θt also excludes equation (27.5.15) as

a solution. To reject equation (27.5.15) for ν ∈ [0, 1), we substitute equation

(27.5.15) into equation (27.5.14b),

uℓ(t) + Φ {ucℓ(t)ct + νuℓ(t)− uℓℓ(t) [1− ℓt − (1− ν)H(ct, m̂t+1)]} = 0,

which is a contradiction because the left side is strictly positive, given our as-

sumption that ucℓ(t) ≥ 0. We conclude that equation (27.5.15) cannot charac-

terize the solution of the Ramsey problem when the transaction technology is

homogeneous of degree ν ≥ 0, so the solution has to be Hm̂(t) = 0. In other

words, the social planner follows the Friedman rule and satiates the economy

with real balances. According to condition (27.5.8c), this aim can be accom-

plished with a monetary policy that sustains a zero net nominal interest rate.
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As an illustration of how the Ramsey plan is implemented, suppose that

gt = g in all periods. Example 1 of chapter 16 presents the Ramsey plan for

this case if there were no transaction technology and no money in the model. The

optimal outcome is characterized by a constant allocation (ĉ, n̂) and a constant

tax rate τ̂ that supports a balanced government budget. We conjecture that the

Ramsey solution to the present monetary economy shares that real allocation.

But how can it do so in the present economy with its additional constraint in

the form of a transaction technology? First, notice that the preceding Ramsey

solution calls for satiating the economy with real balances, so there will be no

time allocated to shopping in the Ramsey outcome. Second, the real balances

needed to satiate the economy are constant over time and equal to

Mt+1

pt
= ψĉ, ∀t ≥ 0, (27.5.16)

and the real return on money is equal to the constant real interest rate,
pt
pt+1

= R, ∀t ≥ 0. (27.5.17)

Third, the real balances in equation (27.5.16) also equal the real value of assets

acquired by the government in period 0 from selling the money supply M1 to

the households. These government assets earn a net real return in each future

period equal to

(R− 1)ψĉ = R
Mt

pt−1
− Mt+1

pt
=
pt−1

pt

Mt

pt−1
− Mt+1

pt
=
Mt −Mt+1

pt
,

where we have invoked equations (27.5.16) and (27.5.17) to show that the in-

terest earnings just equal the funds for retiring currency from circulation in all

future periods needed to sustain an equilibrium in the money market with a

zero net nominal interest rate. It is straightforward to verify that households

would be happy to incur the indebtedness of the initial period. They use the

borrowed funds to acquire money balances and meet future interest payments

by surrendering some of these money balances. Yet their real money balances

are unchanged over time because of the falling price level. In this way, money

holdings are costless to the households, and their optimal decisions with respect

to consumption and labor are the same as in the nonmonetary version of this

economy.
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27.6. Time consistency of monetary policy

The optimality of the Friedman rule was derived in the previous section under

the assumption that the government can commit to a plan for its future actions.

The Ramsey plan is not time consistent and requires that the government have a

technology to bind itself to it. In each period along the Ramsey plan, the govern-

ment is tempted to levy an unannounced inflation tax in order to reduce future

distortionary labor taxes. Rather than examine this time consistency problem

due to distortionary taxation, we now turn to another time consistency problem

arising from a situation where surprise inflation can reduce unemployment.

Kydland and Prescott (1977) and Barro and Gordon (1983a, 1983b) study

the time consistency problem and credible monetary policies in reduced-form

models with a trade-off between surprise inflation and unemployment. In their

spirit, Ireland (1997) proposes a model with microeconomic foundations that

gives rise to such a trade-off because monopolistically competitive firms set

nominal goods prices before the government sets monetary policy.17 The gov-

ernment is here tempted to create surprise inflation that erodes firms’ markups

and stimulates employment above a suboptimally low level. But any anticipated

inflation has negative welfare effects that arise as a result of a postulated cash-

in-advance constraint. More specifically, anticipated inflation reduces the real

value of nominal labor income that can be spent or invested first in the next

period, thereby distorting incentives to work.

The following setup modifies Ireland’s model and assumes that each house-

hold has some market power with respect to its labor supply while a single good

is produced by perfectly competitive firms.

17 Ireland’s model takes most of its structure from those developed by Svensson (1986) and

Rotemberg (1987). See Rotemberg and Woodford (1997) and King and Wolman (1999) for

empirical implementations of related models.
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27.6.1. Model with monopolistically competitive wage setting

There is a continuum of households indexed on the unit interval, i ∈ [0, 1]. At

time t , household i consumes cit of a single consumption good and supplies

labor nit ≥ 0.18 The preferences of the household are

∞∑

t=0

βt
(
cγit
γ

− nit

)
, (27.6.1)

where β ∈ (0, 1) and γ ∈ (0, 1). The parameter restriction on γ ensures that

the household’s utility is well defined at zero consumption.

The technology for producing the single consumption good is

yt =

(∫ 1

0

n
1−α
1+α

it di

) 1+α
1−α

, (27.6.2)

where yt is per capita output and α ∈ (0, 1). The technology has constant

returns to scale in labor inputs, and if all types of labor are supplied in the

same quantity nt , we have yt = nt . The marginal product of labor of type i is

∂ yt
∂ nit

=

(∫ 1

0

n
1−α
1+α

it di

) 2α
1−α

n
−2α
1+α

it =

(
yt
nit

) 2α
1+α

≡ ŵ(yt, nit). (27.6.3)

The single good is produced by a large number of competitive firms that are

willing to pay a real wage to labor of type i equal to the marginal product in

equation (27.6.3).

The definition of the function ŵ(yt, nit) with its two arguments yt and nit

is motivated by the first of the following two assumptions on households’ labor-

supply behavior.19

1. When maximizing the rent of its labor supply, household i perceives that

it can affect the marginal product ŵ(yt, nit) through the second argument,

while yt is taken as given.

18 For analytical simplicity, we assume that the households can supply any nonnegative

amount of labor. When we imposed a finite time endowment in the first edition of this book,

we had to confront the issue of labor rationing across firms along some equilibrium paths.
19 Analogous assumptions are made implicitly by Ireland (1997), who takes the aggregate

price index as given in the monopolistically competitive firms’ profit maximization problem,

and disregards firms’ profitability when computing the output effect of a monetary policy

deviation.
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2. The nominal wage for labor of type i at time t is chosen by household i at

the very beginning of period t . Given the nominal wage wit , household i is

obliged to deliver any amount of labor nit that is demanded in the economy.

The government’s only task is to increase or decrease the money supply by

making lump-sum transfers (xt − 1)Mt to the households, where Mt is the per

capita money supply at the beginning of period t and xt is the gross growth

rate of money in period t :

Mt+1 = xtMt. (27.6.4)

Following Ireland (1997), we assume that xt ∈ [β, x̄] . These bounds on money

growth ensure the existence of a monetary equilibrium. The lower bound will

be shown to yield a zero net nominal interest rate in a stationary equilibrium,

whereas the upper bound x̄ < ∞ guarantees that households never abandon

the use of money altogether.

During each period t , events unfold as follows for household i : The house-

hold starts period t with money mit and real private bonds bit , and the house-

hold sets the nominal wage wit for its type of labor. After the wage is deter-

mined, the government chooses a nominal transfer (xt−1)Mt to be handed over

to the household. Thereafter, the household enters the asset market to settle

maturing bonds bit and to pick a new portfolio composition with money and

real bonds bi,t+1 . After the asset market has closed, the household splits into

a shopper and a worker.20 During period t , the shopper purchases cit units of

the single good subject to the cash-in-advance constraint,

mit

pt
+

(xt − 1)Mt

pt
+ bit −

bi,t+1

Rt
≥ cit, (27.6.5)

where pt and Rt are the price level and the real interest rate, respectively.

Given the household’s predetermined nominal wage wit , the worker supplies

all the labor nit demanded by firms. At the end of period t when the goods

market has closed, the shopper and the worker reunite, and the household’s

money holdings mi,t+1 now equal the worker’s labor income witnit plus any

unspent cash from the shopping round. Thus, the budget constraint of the

20 The interpretation that the household splits into a shopper and a worker follows Lucas’s

(1980b) cash-in-advance framework. It embodies the constraint on transactions recommended

by Clower (1967).
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household becomes21

mit

pt
+

(xt − 1)Mt

pt
+ bit +

wit
pt
nit = cit +

bi,t+1

Rt
+
mi,t+1

pt
. (27.6.6)

27.6.2. Perfect foresight equilibrium

We first study household i ’s optimization problem under perfect foresight. Given

initial assets (mi0, bi0) and sequences of prices {pt}∞t=0 , real interest rates

{Rt}∞t=0 , output levels {yt}∞t=0 , and nominal transfers {(xt − 1)Mt}∞t=0 , the

household maximizes expression (27.6.1) by choosing sequences of consumption

{cit}∞t=0 , labor supply {nit}∞t=0 , money holdings {mi,t+1}∞t=0 , real bond hold-

ings {bi,t+1}∞t=0 , and nominal wages {wit}∞t=0 that satisfy cash-in-advance con-

straints (27.6.5) and budget constraints (27.6.6), with the real wage equaling the

marginal product of labor of type i at each point in time, wit/pt = ŵ(yt, nit).

The last constraint ensures that the household’s choices of nit and wit are con-

sistent with competitive firms’ demand for labor of type i . Let us incorporate

this constraint into budget constraint (27.6.6) by replacing the real wage wit/pt

by the marginal product ŵ(yt, nit). With βtµit and βtλit as the Lagrange

multipliers on the time t cash-in-advance constraint and budget constraint, re-

spectively, the first-order conditions at an interior solution are

cit: cγ−1
it − µit − λit = 0, (27.6.7a)

nit: − 1 + λit

[
∂ ŵ(yt, nit)

∂ nit
nit + ŵ(yt, nit)

]
= 0, (27.6.7b)

mi,t+1: − λit
1

pt
+ β (λi,t+1 + µi,t+1)

1

pt+1
= 0, (27.6.7c)

bi,t+1: − (λit + µit)
1

Rt
+ β (λi,t+1 + µi,t+1) = 0. (27.6.7d)

The first-order condition (27.6.7b) for the rent-maximizing labor supply nit

can be rearranged to read

ŵ(yt, nit) =
λ−1
it

1 + ǫ−1
it

=
1 + α

1− α
λ−1
it , (27.6.8)

where ǫit =
[∂ ŵ(yt, nit)
∂ nit

nit
ŵ(yt, nit)

]−1

= −1 + α

2α
< 0.

21 The assumptions of constant returns to scale and perfect competition in the goods market

imply that profits of firms are zero.
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The Lagrange multiplier λit is the shadow value of relaxing the budget con-

straint in period t by one unit, measured in “utils” at time t . Since preferences

(27.6.1) are linear in the disutility of labor, λ−1
it is the value of leisure in period

t in terms of the units of the budget constraint at time t . Equation (27.6.8) is

then the familiar expression that the monopoly price ŵ(yt, nit) should be set as

a markup above marginal cost λ−1
it , and the markup is inversely related to the

absolute value of the demand elasticity of labor type i , |ǫit| .
First-order conditions (27.6.7c) and (27.6.7d) for asset decisions can be used

to solve for rates of return,

pt
pt+1

=
λit

β (λi,t+1 + µi,t+1)
, (27.6.9a)

Rt =
λit + µit

β (λi,t+1 + µi,t+1)
. (27.6.9b)

Whenever the Lagrange multiplier µit on the cash-in-advance constraint is

strictly positive, money has a lower rate of return than bonds, or, equivalently,

the net nominal interest rate is strictly positive, as shown in equation (27.2.8).

Given initial conditions mi0 = M0 and bi0 = 0, we now turn to character-

izing an equilibrium under the additional assumption that the cash-in-advance

constraint (27.6.5) holds with equality, even when it does not bind. Since all

households are perfectly symmetric, they will make identical consumption and

labor decisions, cit = ct and nit = nt , so by goods market clearing and the

constant-returns-to-scale technology (27.6.2), we have

ct = yt = nt, (27.6.10a)

and from the expression for the marginal product of labor in equation (27.6.3),

ŵ(yt, nt) = 1. (27.6.10b)

Equilibrium asset holdings satisfy mi,t+1 = Mt+1 and bi,t+1 = 0. The substi-

tution of equilibrium quantities into the cash-in-advance constraint (27.6.5) at

equality yields
Mt+1

pt
= ct, (27.6.10c)

where a version of the “quantity theory of money” determines the price level,

pt =Mt+1/ct . We now substitute this expression and conditions (27.6.7a) and
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(27.6.8) into equation (27.6.9a):

Mt+1/ct
Mt+2/ct+1

=

[1− α

1 + α
ŵ(yt, nt)

]−1

β cγ−1
t+1

,

which can be rearranged to read

ct =
1− α

1 + α

β

xt+1
cγt+1,

where we have used equations (27.6.4) and (27.6.10b). After taking the loga-

rithm of this expression, we get

log(ct) = log

(
1− α

1 + α
β

)
+ γ log(ct+1)− log(xt+1).

Since 0 < γ < 1 and xt+1 is bounded, this linear difference equation in log(ct)

can be solved forward to obtain

log(ct) =
log
(
1− α
1 + α β

)

1− γ
−

∞∑

j=0

γj log(xt+1+j), (27.6.11)

where equilibrium considerations have prompted us to choose the particular

solution that yields a bounded sequence.22

27.6.3. Ramsey plan

The Ramsey problem is to choose a sequence of monetary growth rates {xt}∞t=0

that supports the perfect foresight equilibrium with the highest possible welfare;

that is, the optimal choice of {xt}∞t=0 maximizes the representative household’s

utility in expression (27.6.1) subject to expression (27.6.11) and nt = ct . From

the expression (27.6.11) it is apparent that the constraints on money growth,

xt ∈ [β, x̄] , translate into lower and upper bounds on consumption, ct ∈ [c, c̄] ,

where

c =

(
β

x̄

1− α

1 + α

) 1
1−γ

, and c̄ =

(
1− α

1 + α

) 1
1−γ

< 1. (27.6.12)

22 See the appendix to chapter 2 for the solution of scalar linear difference equations.
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The Ramsey plan then follows directly from inspecting the one-period return of

the Ramsey optimization problem,

cγt
γ

− ct, (27.6.13)

which is strictly concave and reaches a maximum at c = 1. Thus, the Ramsey

solution calls for xt+1 = β for t ≥ 0 in order to support ct = c̄ for t ≥ 0.

Notice that the Ramsey outcome can be supported by any initial money growth

x0 . It is only future money growth rates that must be equal to β in order to

eliminate labor supply distortions that would otherwise arise from the cash-in-

advance constraint if the return on money were to fall short of the return on

bonds. The Ramsey outcome equalizes the returns on money and bonds; that

is, it implements the Friedman rule with a zero net nominal interest rate.

It is instructive to highlight the inability of the Ramsey monetary policy to

remove the distortions coming from monopolistic wage setting. Using the fact

that the equilibrium real wage is unity, we solve for λit from equation (27.6.8)

and substitute into equation (27.6.7a),

cγ−1
it = µit +

1 + α

1− α
> 1. (27.6.14)

The left side of equation (27.6.14) is the marginal utility of consumption. Since

technology (27.6.2) is linear in labor, the marginal utility of consumption should

equal the marginal utility of leisure in a first-best allocation. But the right side

of equation (27.6.14) exceeds unity, which is the marginal utility of leisure given

preferences (27.6.1). While the Ramsey monetary policy succeeds in removing

distortions from the cash-in-advance constraint by setting the Lagrange multi-

plier µit equal to zero, the policy cannot undo the distortion of monopolistic

wage setting manifested in the “markup” (1 + α)/(1 − α).23 Notice that the

Ramsey solution converges to the first-best allocation when the parameter α

goes to zero, that is, when households’ market power goes to zero.

To illustrate the time consistency problem, we now solve for the Ramsey plan

when the initial nominal wages are taken as given, wi0 = w0 ∈ [βM0, x̄M0] .

First, setting the initial period 0 aside, it is straightforward to show that the

solution for t ≥ 1 is the same as before. That is, the optimal policy calls for

23 The government would need to use fiscal instruments, that is, subsidies and taxation, to

correct the distortion from monopolistically competitive wage setting.
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xt+1 = β for t ≥ 1 in order to support ct = c̄ for t ≥ 1. Second, given w0 ,

the first-best outcome c0 = 1 can be attained in the initial period by choosing

x0 = w0/M0 . The resulting money supply M1 = w0 will then serve to transact

c0 = 1 at the equilibrium price p0 = w0 . Specifically, firms are happy to hire any

number of workers at the wage w0 when the price of the good is p0 = w0 . At the

price p0 = w0 , the goods market clears at full employment, since shoppers seek

to spend their real balances M1/p0 = 1. The labor market also clears because

workers are obliged to deliver the demanded n0 = 1. Finally, money growth

x1 can be chosen freely and does not affect the real allocation of the Ramsey

solution. The reason is that, because of the preset wage w0 , there cannot be any

labor supply distortions at time 0 arising from a low return on money holdings

between periods 0 and 1.

27.6.4. Credibility of the Friedman rule

Our comparison of the Ramsey equilibria with or without a preset initial wage

w0 hints at the government’s temptation to create positive monetary surprises

that will increase employment. We now ask if the Friedman rule is credible

when the government lacks the commitment technology implicit in the Ramsey

optimization problem. Can the Friedman rule be supported with a trigger strat-

egy where a government deviation causes the economy to revert to the worst

possible subgame perfect equilibrium?

Using the concepts and notation of chapter 24, we specify the objects of a

strategy profile and state the definition of a subgame perfect equilibrium (SPE).

Even though households possess market power with respect to their labor type,

they remain atomistic vis-à-vis the government. We therefore stay within the

framework of chapter 24 where the government behaves strategically, and the

households’ behavior can now be summarized as a “monopolistically competitive

equilibrium” that responds nonstrategically to the government’s choices. At

every date t for all possible histories, a strategy of the households σh and a

strategy of the government σg specify actions w̃t ∈ W̃ and xt ∈ X ≡ [β, x̄] ,

respectively, where

w̃t =
wt
Mt

, and xt =
Mt+1

Mt
.
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That is, the actions multiplied by the beginning-of-period money supply Mt

produce a nominal wage and a nominal money supply. (This scaling of nominal

variables is used by Ireland, 1997, throughout his analysis, since the size of the

nominal money supply at the beginning of a period has no significance per se.)

Definition: A strategy profile σ = (σh, σg) is a subgame perfect equilibrium

if, for each t ≥ 0 and each history (w̃t−1, xt−1) ∈ W̃ t ×Xt ,

(1) Given the trajectory of money growth rates {xt−1+j = x(σ|(w̃t−1,xt−1))j}∞j=1 ,

the wage-setting outcome w̃t = σht (w̃
t−1, xt−1) constitutes a monopolistically

competitive equilibrium.

(2) The government cannot strictly improve the households’ welfare by deviating

from xt = σgt (w̃
t−1, xt−1), that is, by choosing some other money growth rate

η ∈ X with the implied continuation strategy profile σ|(w̃t;xt−1,η) .

Besides changing to a “monopolistically competitive equilibrium,” the main dif-

ference from Definition 6 of chapter 24 lies in requirement (1). The equilibrium

in period t can no longer be stated in terms of an isolated government action at

time t but requires the trajectory of the current and all future money growth

rates, generated by the strategy profile σ|(w̃t−1,xt−1) . The monopolistically com-

petitive equilibrium in requirement (1) is understood to be the perfect foresight

equilibrium described previously. When the government is contemplating a de-

viation in requirement (2), the equilibrium is constructed as follows: In period

t when the deviation takes place, equilibrium consumption ct is a function of η

and w̃t as implied by the cash-in-advance constraint at equality,

ct =
ηMt

pt
=
ηMt

wt
=

η

w̃t
, (27.6.15)

where we use the equilibrium condition pt = wt . Starting in period t+ 1, the

deviation has triggered a switch to a new perfect foresight equilibrium with a

trajectory of money growth rates given by {xt+j = x(σ|(w̃t;xt−1,η))j}∞j=1 .

We conjecture that the worst SPE has ct = c for all periods, and the candi-

date strategy profile σ̂ is

σ̂ht =
x̄

c
∀ t , ∀ (w̃t−1, xt−1);

σ̂gt = x̄ ∀ t , ∀ (w̃t−1, xt−1).

The strategy profile instructs the government to choose the highest permissible

money growth rate x̄ for all periods and for all histories. Similarly, the house-

holds are instructed to set the nominal wages that would constitute a perfect
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foresight equilibrium when money growth will always be at its maximum. Thus,

requirement (1) of an SPE is clearly satisfied. It remains to show that the gov-

ernment has no incentive to deviate. Since the continuation strategy profile is

σ̂ regardless of the history, the government needs only to find the best response

in terms of the one-period return (27.6.13). After substituting the household’s

action w̃t = x̄/c into equation (27.6.15), we get ct = cη/x̄ , so the best response

of the government is to follow the proposed strategy x̄ . We conclude that the

strategy profile σ̂ is indeed an SPE, and it is the worst, since c is the lower

bound on consumption in any perfect foresight equilibrium.

We are now ready to address the credibility of the Friedman rule. The best

chance for the Friedman rule to be credible is if a deviation triggers a reversion

to the worst possible subgame perfect equilibrium given by σ̂ . The condition

for credibility becomes

c̄γ
γ − c̄

1− β
≥
(
1

γ
− 1

)
+ β

cγ

γ − c

1− β
. (27.6.16)

By following the Friedman rule, the government removes the labor supply dis-

tortion coming from a binding cash-in-advance constraint and keeps output at

c̄ . By deviating from the Friedman rule, the government creates a positive

monetary surprise that increases output to its efficient level of unity, thereby

eliminating the distortion caused by monopolistically competitive wage setting

as well. However, this deviation destroys the government’s reputation, and the

economy reverts to an equilibrium that induces the government to inflate at the

highest possible rate thereafter, and output falls to c . Hence, the Friedman rule

is credible if and only if equation (27.6.16) holds.

The Friedman rule is the more likely to be credible, the higher is the exoge-

nous upper bound on money growth x̄ , since c depends negatively on x̄ . In

other words, a higher x̄ translates into a larger penalty for deviating, so the

government becomes more willing to adhere to the Friedman rule to avoid this

penalty. In the limit when x̄ becomes arbitrarily large, c approaches zero and

condition (27.6.16) reduces to

(
1− α

1 + α

) γ
1−γ

(
1

γ
− 1− α

1 + α

)
≥ (1− β)

(
1

γ
− 1

)
,

where we have used the expression for c̄ in equations (27.6.12). The Friedman

rule can be sustained for a sufficiently large value of β . The government has
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less incentive to deviate when households are patient and put a high weight

on future outcomes. Moreover, the Friedman rule is credible for a sufficiently

small value of α , which is equivalent to households having little market power.

The associated small distortion from monopolistically competitive wage setting

means that the potential welfare gain of a monetary surprise is also small, so

the government is less tempted to deviate from the Friedman rule.

27.7. Concluding remarks

Besides shedding light on a number of monetary doctrines, this chapter has

brought out the special importance of the initial date t = 0 in the analysis.

This point is especially pronounced in Woodford’s (1995) model where the initial

interest-bearing government debt B0 is not indexed but rather denominated in

nominal terms. So, although the construction of a perfect foresight equilibrium

ensures that all future issues of nominal bonds will ex post yield the real rates of

return that are needed to entice the households to hold these bonds, the realized

real return on the initial nominal bonds can be anything, depending on the price

level p0 . Activities at the initial date were also important when we considered

dynamic optimal taxation in chapter 16.

Monetary issues are also discussed in other chapters of the book. Chapters

9 and 18 study money in overlapping generations models and Bewley mod-

els, respectively. Chapters 28 and 29 present other explicit environments that

give rise to a positive value of fiat money: Townsend’s turnpike model and the

Kiyotaki-Wright search model.
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Exercises

Exercise 27.1 Why deficits in Italy and Brazil were once extraordinary

proportions of GDP

The government’s budget constraint can be written as

gt − τt +
bt

Rt−1
(Rt−1 − 1) =

bt+1

Rt
− bt
Rt−1

+
Mt+1

pt
− Mt

pt
. (1)

The left side is the real gross-of-interest government deficit; the right side is

change in the real value of government liabilities between t− 1 and t .

Government budgets often report the nominal gross-of-interest government

deficit, defined as

pt(gt − τt) + ptbt

(
1− 1

Rt−1pt/pt−1

)
,

and their ratio to nominal GNP, ptyt , namely,

[
(gt − τt) + bt

(
1− 1

Rt−1pt/pt−1

)]
/yt.

For countries with a large bt (e.g., Italy), this number can be very big even with

a moderate rate of inflation. For countries with a rapid inflation rate, like Brazil

in 1993, this number sometimes comes in at 30 percent of GDP. Fortunately,

this number overstates the magnitude of the government’s “deficit problem,”

and there is a simple adjustment to the interest component of the deficit that

renders a more accurate picture of the problem. In particular, notice that the

real values of the interest component of the real and nominal deficits are related

by

bt

(
1− 1

Rt−1

)
= αtbt

(
1− 1

Rt−1pt/pt−1

)
,

where

αt =
Rt−1 − 1

Rt−1 − pt−1/pt
.

Thus, we should multiply the real value of nominal interest payments bt[1 −
pt−1/(Rt−1pt)] by αt to get the real interest component of the debt that appears

on the left side of equation (1).
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a. Compute αt for a country that has a bt/y ratio of .5, a gross real interest

rate of 1.02, and a zero net inflation rate.

b. Compute α for a country that has a bt/y ratio of .5, a gross real interest

rate of 1.02, and a 100 percent per year net inflation rate.

Exercise 27.2 A strange example of Brock (1974)

Consider an economy consisting of a government and a representative household.

There is one consumption good, which is not produced and not storable. The

exogenous supply of the good at time t ≥ 0 is yt = y > 0. The household owns

the good. At time t the representative household’s preferences are ordered by

∞∑

t=0

βt{ln ct + γ ln(mt+1/pt)}, (1)

where ct is the household’s consumption at t , pt is the price level at t , and

mt+1/pt is the real balances that the household carries over from time t to t+1.

Assume that β ∈ (0, 1) and γ > 0. The household maximizes equation (1) over

choices of {ct,mt+1} subject to the sequence of budget constraints

ct +mt+1/pt = yt − τt +mt/pt, t ≥ 0, (2)

where τt is a lump-sum tax due at t . The household faces the price sequence

{pt} as a price taker and has given initial value of nominal balances m0 .

At time t the government faces the budget constraint

gt = τt + (Mt+1 −Mt)/pt, t ≥ 0, (3)

where Mt is the amount of currency that the government has outstanding at the

beginning of time t and gt is government expenditures at time t . In equilibrium,

we require that Mt = mt for all t ≥ 0. The government chooses sequences of

{gt, τt,Mt+1}∞t=0 subject to the budget constraints (3) being satisfied for all

t ≥ 0 and subject to the given initial value M0 = m0 .

a. Define a competitive equilibrium.

For the remainder of this problem assume that gt = g < y for all t ≥ 0, and

that τt = τ for all t ≥ 0. Define a stationary equilibrium as an equilibrium in

which the rate of return on currency is constant for all t ≥ 0.
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b. Find conditions under which there exists a stationary equilibrium for which

pt > 0 for all t ≥ 0. Derive formulas for real balances and the rate of return on

currency in that equilibrium, given that it exists. Is the stationary equilibrium

unique?

c. Find a first-order difference equation in the equilibrium level of real balances

ht =Mt+1/pt whose satisfaction ensures equilibrium (possibly nonstationary).

d. Show that there is a fixed point of this difference equation with positive

real balances, provided that the condition that you derived in part b is satis-

fied. Show that this fixed point agrees with the level of real balances that you

computed in part b.

Exercise 27.3 Optimal inflation tax in a cash-in-advance model

Consider the version of Ireland’s (1997) model described in the text, but assume

perfect competition (i.e., α = 0) with flexible market-clearing wages. Suppose

now that the government must finance a constant amount of purchases g in

each period by levying flat-rate labor taxes and raising seigniorage. Solve the

optimal taxation problem under commitment.

Exercise 27.4 Deficits, inflation, and anticipated monetary shocks,

donated by Rodolfo Manuelli

Consider an economy populated by a large number of identical individuals. Pref-

erences over consumption and leisure are given by

∞∑

t=0

βtcαt ℓ
1−α
t ,

where 0 < α < 1. Assume that leisure is positively related – this is just a

reduced form of a shopping-time model – to the stock of real money balances,

and negatively related to a measure of transactions:

ℓt = A(mt+1/pt)/c
η
t , A > 0,

and α − η(1 − α) > 0. Each individual owns a tree that drops y units of

consumption per period (dividends). There is a government that issues one-

period real bonds, money, and collects taxes (lump-sum) to finance spending.

Per capita spending is equal to g . Thus, consumption equals c = y − g . The

government’s budget constraint is:

gt +Bt = τt +Bt+1/Rt + (Mt+1 −Mt)/pt.
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Let the rate of return on money be Rmt = pt/pt+1 . Let the nominal interest

rate at time t be 1 + it = Rtpt+1/pt = Rtπt .

a. Derive the demand for money, and show that it decreases with the nominal

interest rate.

b. Suppose that the government policy is such that gt = g , Bt = B and τt = τ .

Prove that the real interest rate, R , is constant and equal to the inverse of the

discount factor.

c. Define the deficit as d , where d = g+(B/R)(R−1)−τ . What is the highest

possible deficit that can be financed in this economy? An economist claims that

increases in d , which leave g unchanged, will result in increases in the inflation

rate. Discuss this view.

d. Suppose that the economy is open to international capital flows and that the

world interest rate is R∗ = β−1 . Assume that d = 0, and that Mt = M . At

t = T , the government increases the money supply to M ′ = (1 + µ)M . This

increase in the money supply is used to purchase (government) bonds. This,

of course, results in a smaller deficit at t > T . (In this case, it will result in

a surplus.) However, the government also announces its intention to cut taxes

(starting at T+1) to bring the deficit back to zero. Argue that this open market

operation will have the effect of increasing prices at t = T by µ ; p′ = (1+ µ)p ,

where p is the price level from t = 0 to t = T − 1.

e. Consider the same setting as in d. Suppose now that the open market

operation is announced at t = 0 (it still takes place at t = T ). Argue that

prices will increase at t = 0 and, in particular, that the rate of inflation between

T − 1 and T will be less than 1 + µ .

Exercise 27.5 Interest elasticity of the demand for money, donated by

Rodolfo Manuelli

Consider an economy in which the demand for money satisfies

mt+1/pt = F (ct, Rmt/Rt),

where Rmt = pt/pt+1 and Rt is the one-period interest rate. Consider the

following open market operation: At t = 0, the government sells bonds and

“destroys” the money it receives in exchange for those bonds. No other real

variables, e.g., government spending or taxes, are changed. Find conditions on
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the income elasticity of the demand for money such that the decrease in money

balances at t = 0 results in an increase in the price level at t = 0.

Exercise 27.6 Dollarization, donated by Rodolfo Manuelli

In recent years, several countries, e.g., Argentina and countries hit by the Asian

crisis, have considered the possibility of giving up their currencies in favor of

the U.S. dollar. Consider a country, say A , with deficit d and inflation rate

π = 1/Rm . Output and consumption are constant, and hence the real interest

rate is fixed, with R = β−1 . The (gross-of-interest-payments) deficit is d , with

d = g − τ + (B/R)(R− 1).

Let the demand for money be mt+1/pt = F (ct, Rmt/Rt), and assume that

ct = y − g . Thus, the steady-state government budget constraint is

d = F (y − g, βRm)(1 −Rm) > 0.

Assume that the country is considering, at t = 0, the retirement of its money

in exchange for dollars. The government promises to give to each person who

brings a “peso” to the Central Bank 1/e dollars, where e is the exchange rate (in

pesos per dollar) between the country’s currency and the U.S. dollar. Assume

that the U.S. inflation rate (before and after the switch) is given and equal to

π∗ = 1/R∗
m < π , and that the country is on the “good” part of the Laffer curve.

a. If you are advising the government of A , how much would you say that it

should demand from the U.S. government to make the switch? Why?

b. After the dollarization takes place, the government understands that it needs

to raise taxes. Economist 1 argues that the increase in taxes (on a per period

basis) will equal the loss of revenue from inflation – F (y − g, βRm)(1 − Rm) –

while Economist 2 claims that this is an overestimate. More precisely, he or she

claims that if the government is a good negotiator vis-à-vis the U.S. government,

taxes need only increase by F (y − g, βRm)(1 − Rm)− F (y − g, βR∗
m)(1 − R∗

m)

per period. Discuss these two views.

Exercise 27.7 Currency boards, donated by Rodolfo Manuelli

In the last few years, several countries, e.g., Argentina (1991), Estonia (1992),

Lithuania (1994), Bosnia (1997) and Bulgaria (1997), have adopted the currency
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board model of monetary policy. In a nutshell, a currency board is a commitment

on the part of the country to fully back its domestic currency with foreign-

denominated assets. For simplicity, assume that the foreign asset is the U.S.

dollar.

The government’s budget constraint is given by

gt +Bt +B∗
t+1e/(Rpt) = τt +Bt+1/R+B∗

t e/pt + (Mt+1 −Mt)/pt,

where B∗
t is the stock of one-period bonds, denominated in dollars, held by

this country, e is the exchange rate (pesos per dollar), and 1/R is the price

of one-period bonds (both domestic and dollar denominated). Note that the

budget constraint equates the real value of income and liabilities in units of

consumption goods.

The currency board “contract” requires that the money supply be fully

backed. One interpretation of this rule is that the domestic money supply is

Mt = eB∗
t .

Thus, the right side is the local currency value of foreign reserves (in bonds)

held by the government, while the left side is the stock of money. Finally, let

the law of one price hold: pt = ep∗t , where p
∗
t is the foreign (U.S.) price level.

a. Assume that Bt = B , and that foreign inflation is zero, p∗t = p∗ . Show that

even in this case, the properties of the demand for money – which you may take

to be given by F (y− g, βRm) – are important in determining total revenue. In

particular, explain how a permanent increase in y , income per capita, allows

the government to lower taxes (permanently).

b. Assume that Bt = B . Let foreign inflation be positive, that is, π∗ > 1.

In this case, the price in dollars of a one-period dollar-denominated bond is

1/(Rπ∗). Go as far as you can describing the impact of foreign inflation on

domestic inflation, and on per capita taxes, τ .

c. Assume that Bt = B . Go as far as you can describing the effects of a once-

and-for-all surprise devaluation, i.e., an unexpected and permanent increase in

e , on the level of per capita taxes.
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Exercise 27.8 Growth and inflation, donated by Rodolfo Manuelli

Consider an economy populated by identical individuals with instantaneous util-

ity function given by

u(c, ℓ) = [cϕℓ1−ϕ](1−σ)/(1− σ).

Assume that shopping time is given by st = ψct/(mt+1/pt). Assume that in

this economy, income grows exogenously at the rate γ > 1. Thus, at time

t , yt = γty . Assume that government spending also grows at the same rate,

gt = γtg . Finally, ct = yt − gt .

a. Show that for this specification, if the demand for money at t is x = mt+1/pt ,

then the demand at t + 1 is γx . Thus, the demand for money grows at the

same rate as the economy.

b. Show that the real rate of interest depends on the growth rate. (You may

assume that ℓ is constant for this calculation.)

c. Argue that even for monetary policies that keep the price level constant,

that is, pt = p for all t , the government raises positive amounts of revenue from

printing money. Explain.

d. Use your finding in c to discuss why, following monetary reforms that generate

big growth spurts, many countries manage to “monetize” their economies (this

is just jargon for increases in the money supply) without generating inflation.



Chapter 28
Credit and Currency

28.1. Credit and currency with long-lived agents

This chapter describes Townsend’s (1980) turnpike model of money and puts it

to work. The model uses a particular pattern of heterogeneity of endowments

and locations to create a demand for currency. The model is more primitive than

the shopping time model of chapter 27. As with the overlapping generations

model, the turnpike model starts from a setting in which diverse intertemporal

endowment patterns across agents prompt borrowing and lending. If something

prevents loan markets from operating, it is possible that an unbacked currency

can play a role in helping agents smooth their consumption over time. Following

Townsend, we shall eventually appeal to locational heterogeneity as the force

that causes loan markets to fail in this way.

The turnpike model can be viewed as a simplified version of the stochastic

model proposed by Truman Bewley (1980). We use the model to study a number

of interrelated issues and theories, including (1) a permanent income model of

consumption, (2) a Ricardian doctrine that government borrowing and taxes

have equivalent economic effects, (3) some restrictions on the operation of private

loan markets needed in order that unbacked currency be valued, (4) a theory of

inflationary finance, (5) a theory of the optimal inflation rate and the optimal

behavior of the currency stock over time, (6) a “legal restrictions” theory of

inflationary finance, and (7) a theory of exchange rate indeterminacy.1

1 Some of the analysis in this chapter follows Manuelli and Sargent (2010). Also see

Chatterjee and Corbae (1996) and Ireland (1994) for analyses of policies within a turnpike

environment.

– 1171 –
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28.2. Preferences and endowments

There is one consumption good. It cannot be produced or stored. The total

amount of goods available each period is constant at N . There are 2N house-

holds, divided into equal numbers N of two types, according to their endowment

sequences. The two types of households, dubbed odd and even, have endowment

sequences
{yot }∞t=0 = {1, 0, 1, 0, . . .},
{yet }∞t=0 = {0, 1, 0, 1, . . .}.

Households of both types order consumption sequences {cht } according to the

common utility function

U =

∞∑

t=0

βtu(cht ),

where β ∈ (0, 1), and u(·) is twice continuously differentiable, increasing, and

strictly concave, and satisfies

lim
c↓0

u′(c) = +∞. (28.2.1)

28.3. Complete markets

As a benchmark, we study a version of the economy with complete markets.

Later, we shall more or less arbitrarily shut down many of the markets to make

room for money.
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28.3.1. A Pareto problem

Consider the following Pareto problem: Let θ ∈ [0, 1] be a weight indexing how

much a social planner likes odd agents. The problem is to choose consumption

sequences {cot , cet}∞t=0 to maximize

θ

∞∑

t=0

βtu(cot ) + (1− θ)

∞∑

t=0

βtu(cet ), (28.3.1)

subject to

cet + cot = 1, t ≥ 0. (28.3.2)

The first-order conditions are

θu′(cot )− (1− θ)u′(cet ) = 0.

Substituting the constraint (28.3.2) into this first-order condition and rearrang-

ing gives the condition
u′(cot )

u′(1 − cot )
=

1− θ

θ
. (28.3.3)

Since the right side is independent of time, the left must be also, so that condition

(28.3.3) determines the one-parameter family of optimal allocations

cot = co(θ), cet = 1− co(θ).

28.3.2. A complete markets equilibrium

A household takes the price sequence {q0t } as given and chooses a consumption

sequence to maximize
∑∞

t=0 β
tu(ct) subject to the budget constraint

∞∑

t=0

q0t ct ≤
∞∑

t=0

q0t yt.

The household’s Lagrangian is

L =

∞∑

t=0

βtu(ct) + µ

∞∑

t=0

q0t (yt − ct),
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where µ is a nonnegative Lagrange multiplier. The first-order conditions for the

household’s problem are

βtu′(ct) ≤ µq0t , = if ct > 0.

Definition 1: A competitive equilibrium is a price sequence {qot }∞t=0 and an

allocation {cot , cet}∞t=0 that have the property that (a) given the price sequence,

the allocation solves the optimum problem of households of both types; and (b)

cot + cet = 1 for all t ≥ 0.

To find an equilibrium, we have to produce an allocation and a price system

for which we can verify that the first-order conditions of both households are

satisfied. We start with a guess inspired by the constant-consumption property

of the Pareto optimal allocation. We guess that cot = co, cet = ce ∀t, where

ce + co = 1. This guess and the first-order condition for the odd agents imply

q0t =
βtu′(co)

µo
,

or

q0t = q00β
t, (28.3.4)

where we are free to normalize by setting q00 = 1. For odd agents, the right side

of the budget constraint evaluated at the prices given in equation (28.3.4) is

then
1

1− β2
,

and for even households it is
β

1− β2
.

The left side of the budget constraint evaluated at these prices is

ci

1− β
, i = o, e.

For both of the budget constraints to be satisfied with equality, we evidently

require that

co =
1

β + 1

ce =
β

β + 1
.

(28.3.5)
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The price system given by equation (28.3.4) and the constant-over-time alloca-

tions given by equations (28.3.5) are a competitive equilibrium.

Notice that the competitive equilibrium allocation corresponds to a particu-

lar Pareto optimal allocation.

28.3.3. Ricardian proposition

We temporarily add a government to the model. The government levies lump-

sum taxes on agents of type i = o, e at time t of τ it . The government uses the

proceeds to finance a constant level of government purchases of G ∈ (0, 1) each

period t . Consumer i ’s budget constraint is

∞∑

t=0

q0t c
i
t ≤

∞∑

t=0

q0t (y
i
t − τ it ).

The government’s budget constraint is

∞∑

t=0

q0tG =
∑

i=o,e

∞∑

t=0

q0t τ
i
t .

We modify Definition 1 as follows:

Definition 2: A competitive equilibrium is a price sequence {q0t }∞t=0 , a tax

system {τot , τet }∞t=0 , and an allocation {cot , cet , Gt}∞t=0 such that given the price

system and the tax system the following conditions hold: (a) the allocation

solves each consumer’s optimum problem; (b) the government budget constraint

is satisfied for all t ≥ 0; and (c) N(cot + cet ) +Gt = N for all t ≥ 0.

Let the present value of the taxes imposed on consumer i be τ i ≡∑∞
t=0 q

0
t τ
i
t .

Then it is straightforward to verify that the equilibrium price system is still

equation (28.3.4) and that equilibrium allocations are

co =
1

β + 1
− τo(1− β)

ce =
β

β + 1
− τe(1 − β).

This equilibrium features a “Ricardian proposition”:
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Ricardian Proposition: The equilibrium is invariant to changes in the tim-

ing of tax collections that leave unaltered the present value of lump-sum taxes

assigned to each agent.

28.3.4. Loan market interpretation

Define total time t tax collections as τt =
∑

i=o,e τ
i
t , and write the government’s

budget constraint as

(G0 − τ0) =

∞∑

t=1

q0t
q00

(τt −Gt) ≡ B1,

where B1 can be interpreted as government debt issued at time 0 and due at

time 1. Notice that B1 equals the present value of the future (i.e., from time 1

onward) government surpluses (τt −Gt). The government’s budget constraint

can also be represented as

q00
q01

(G0 − τ0) + (G1 − τ1) =
∞∑

t=2

q0t
q01

(τt −Gt) ≡ B2,

or

R1B1 + (G1 − τ1) = B2,

where R1 =
q00
q01

is the gross rate of return between time 0 and time 1, measured

in time 1 consumption goods per unit of time 0 consumption good. More

generally, we can represent the government’s budget constraint by the sequence

of budget constraints

RtBt + (Gt − τt) = Bt+1, t ≥ 0,

subject to the boundary condition B0 = 0. In the equilibrium computed here,

Rt = β−1 for all t ≥ 1.

Similar manipulations of consumers’ budget constraints can be used to ex-

press them in terms of sequences of one-period budget constraints. That no

opportunities are lost to the government or the consumers by representing the

budget sets in this way lies behind the following fact: The Arrow-Debreu allo-

cation in this economy can be implemented with a sequence of one-period loan

markets.
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In the following section, we shut down all loan markets, and also set govern-

ment expenditures G = 0.

28.4. A monetary economy

We keep preferences and endowment patterns as they were in the preceding

economy, but we rule out all intertemporal trades achieved through borrowing

and lending or trading of future-dated consumptions. We replace complete

markets with a fiat money mechanism. At time 0, the government endows each

of the N even agents with M/N units of an unbacked or inconvertible currency.

Odd agents are initially endowed with zero units of the currency. Let pt be the

time t price level, denominated in dollars per time t consumption good. We

seek an equilibrium in which currency is valued (pt < +∞ ∀t ≥ 0) and in which

each period agents not endowed with goods pass currency to agents who are

endowed with goods. Contemporaneous exchanges of currency for goods are the

only exchanges that we, the model builders, permit. (Later, Townsend will give

us a defense or reinterpretation of this high-handed shutting down of markets.)

Given the sequence of prices {pt}∞t=0 , the household’s problem is to choose

nonnegative sequences {ct,mt}∞t=0 to maximize
∑∞

t=0 β
tu(ct) subject to

mt + ptct ≤ ptyt +mt−1, t ≥ 0, (28.4.1)

where mt is currency held from t to t+ 1. Form the household’s Lagrangian

L =

∞∑

t=0

βt{u(ct) + λt(ptyt +mt−1 −mt − ptct)},

where {λt} is a sequence of nonnegative Lagrange multipliers. The household’s

first-order conditions for ct and mt , respectively, are

u′(ct) ≤ λtpt, = if ct > 0,

−λt + βλt+1 ≤ 0, = if mt > 0.

Substituting the first condition at equality into the second gives

βu′(ct+1)

pt+1
≤ u′(ct)

pt
, = if mt > 0. (28.4.2)
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Definition 3: A competitive equilibrium is an allocation {cot , cet}∞t=0 , nonneg-

ative money holdings {mo
t ,m

e
t}∞t=−1 , and a nonnegative price level sequence

{pt}∞t=0 such that (a) given the price level sequence and (mo
−1,m

e
−1); the al-

location solves the optimum problems of both types of households; and (b)

cot + cet = 1, mo
t−1 +me

t−1 =M/N , for all t ≥ 0.

The periodic nature of the endowment sequences prompts us to guess the

following two-parameter form of stationary equilibrium:

{cot}∞t=0 = {c0, 1− c0, c0, 1− c0, . . .},

{cet}∞t=0 = {1− c0, c0, 1− c0, c0, . . .},
(28.4.3)

and pt = p for all t ≥ 0. To determine the two undetermined parameters

(c0, p), we use the first-order conditions and budget constraint of the odd agent

at time 0. His endowment sequence for periods 0 and 1, (yo0 , y
o
1) = (1, 0), and

the Inada condition (28.2.1) ensure that both of his first-order conditions at

time 0 will hold with equality. That is, his desire to set co0 > 0 can be met

by consuming some of the endowment yo0 , and the only way for him to secure

consumption in the following period 1 is to hold strictly positive money holdings

mo
0 > 0. From his first-order conditions at equality, we obtain

βu′(1− c0)

p
=
u′(c0)

p
,

which implies that c0 is to be determined as the root of

β − u′(c0)

u′(1− c0)
= 0. (28.4.4)

Because β < 1, it follows that c0 ∈ (.5, 1). To determine the price level, we

use the odd agent’s budget constraint at t = 0, evaluated at mo
−1 = 0 and

mo
0 =M/N , to get

pc0 +M/N = p · 1,
or

p =
M

N(1 − c0)
. (28.4.5)

See Figure 28.4.1 for a graphical determination of c0 .

From equation (28.4.4), it follows that for β < 1, c0 > 0.5 and 1 − c0 <

0.5. Thus, both types of agents experience fluctuations in their consumption

sequences in this monetary equilibrium. Because Pareto optimal allocations

have constant consumption sequences for each type of agent, this equilibrium

allocation is not Pareto optimal.
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Figure 28.4.1: The trade-off between time t and time (t + 1)

consumption faced by agent o(e) in equilibrium for t even (odd).

For t even, cot = c0 , c
o
t+1 = 1− c0 , mo

t = p(1− c0), and mo
t+1 = 0.

The slope of the indifference curve at X is −u′(cht )/βu′(cht+1) =

−u′(c0)/βu′(1 − c0) = −1, and the slope of the indifference curve

at Y is −u′(1− c0)/βu
′(c0) = −1/β2 .

28.5. Townsend’s “turnpike” interpretation

The preceding analysis of currency is artificial in the sense that it depends

entirely on our having arbitrarily ruled out the existence of markets for private

loans. The physical setup of the model itself provided no reason for those loan

markets not to exist, and indeed good reasons for them to exist. In addition,

for many questions that we want to analyze, we want a model in which private

loans and currency coexist, with currency being valued.2

Robert Townsend has proposed a model whose mathematical structure is

identical with the preceding model, but in which a global market in private

loans cannot emerge because agents are spatially separated. Townsend’s setup

2 In the United States today, for example, M1 consists of the sum of demand deposits (a

part of which is backed by commercial loans and another, smaller part of which is backed by

reserves or currency) and currency held by the public. Thus, M1 is not interpretable as the

m in our model.
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can accommodate local markets for private loans, so that it meets the objections

to the model that we have expressed. But first we will focus on a version

of Townsend’s model where local credit markets cannot emerge, which will be

mathematically equivalent to our model above.
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Figure 28.5.1: Endowment pattern along a Townsend turnpike.

The turnpike is of infinite extent in each direction, and has equidis-

tant trading posts. Each trading post has equal numbers of east-

heading and west-heading agents. At each trading post (the black

dots) each period, for each east-heading agent there is a west-

heading agent with whom he would like to borrow or lend. But

itineraries rule out the possibility of repayment.

The economy starts at time t = 0, with N east-heading migrants and

N west-heading migrants physically located at each of the integers along a

“turnpike” of infinite length extending in both directions. Each of the integers

n = 0,±1,±2, . . . is a trading post number. Agents can trade the one good

only with agents at the trading post at which they find themselves at a given

date. An east-heading agent at an even-numbered trading post is endowed with

one unit of the consumption good, and an odd-numbered trading post has an

endowment of zero units (see Figure 28.5.1). A west-heading agent is endowed

with zero units at an even-numbered trading post and with one unit of the con-

sumption good at an odd-numbered trading post. Finally, at the end of each

period, each east-heading agent moves one trading post to the east, whereas

each west-heading agent moves one trading post to the west. The turnpike

along which the trading posts are located is of infinite length in each direction,

implying that the east-heading and west-heading agents who are paired at time

t will never meet again. This feature means that there can be no private debt

between agents moving in opposite directions. An IOU between agents moving

in opposite directions can never be collected because a potential lender never
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meets the potential borrower again, nor does the lender meet anyone who ever

meets the potential borrower, and so on, ad infinitum.

Let an agent who is endowed with one unit of the good t = 0 be called an

agent of type o and an agent who is endowed with zero units of the good at t = 0

be called an agent of type e . Agents of type h have preferences summarized

by
∑∞
t=0 β

tu(cht ). Finally, start the economy at time 0 by having each agent of

type e endowed with me
−1 = m units of unbacked currency and each agent of

type o endowed with mo
−1 = 0 units of unbacked currency.

With the symbols thus reinterpreted, this model involves precisely the same

mathematics as that which was analyzed earlier. Agents’ spatial separation and

their movements along the turnpike have been set up to produce a physical rea-

son that a global market in private loans cannot exist. The various propositions

about the equilibria of the model and their optimality that were already proved

apply equally to the turnpike version.3 , 4 Thus, in Townsend’s version of the

model, spatial separation is the “friction” that provides a potential social role

for a valued unbacked currency. The spatial separation of agents and their en-

dowment patterns give a setting in which private loan markets are limited by

the need for people who trade IOUs to be linked together, if only indirectly,

recurrently over time and space.

3 A version of the model could be constructed in which local private markets for loans coexist

with valued unbacked currency. To build such a model, one would assume some heterogeneity

in the time patterns of the endowment of agents who are located at the same trading post and

are headed in the same direction. If half of the east-headed agents located at trading post i at

time t have present and future endowment pattern yht = (α, γ, α, γ . . .) , for example, whereas

the other half of the east-headed agents have (γ, α, γ, α, . . .) with γ 6= α , then there is room

for local private loans among this cohort of east-headed agents. Whether or not there exists

an equilibrium with valued currency depends on how nearly Pareto optimal the equilibrium

with local loan markets is.
4 Narayana Kocherlakota (1998) has analyzed the frictions in the Townsend turnpike and

overlapping generations model. By permitting agents to use history-dependent decision rules,

he has been able to support optimal allocations with the equilibrium of a gift-giving game.

Those equilibria leave no room for valued fiat currency. Thus, Kocherlakota’s view is that the

frictions that give valued currency in the Townsend turnpike must include the restrictions on

the strategy space that Townsend implicitly imposed.
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28.6. The Friedman rule

Friedman’s proposal to pay interest on currency by engineering a deflation can

be used to solve for a Pareto optimal allocation in this economy. Friedman’s

proposal is to decrease the currency stock by means of lump-sum taxes at a

properly chosen rate. Let the government’s budget constraint be

Mt = (1 + τ)Mt−1.

There are N households of each type. At time t , the government transfers or

taxes nominal balances in amount τMt−1/(2N) to each household of each type.

The total transfer at time t is thus τMt−1 , because there are 2N households

receiving transfers.

The household’s time t budget constraint becomes

ptct +mt ≤ ptyt +
τ

2

Mt−1

N
+mt−1.

We guess an equilibrium allocation of the same periodic pattern (28.4.3).

For the price level, we make the “quantity theory” guess Mt/pt = k , where k

is a constant. Substituting this guess into the government’s budget constraint

gives
Mt

pt
= (1 + τ)

Mt−1

pt−1

pt−1

pt
or

k = (1 + τ)k
pt−1

pt
,

or

pt = (1 + τ)pt−1, (28.6.1)

which is our guess for the price level.

Substituting the price level guess and the allocation guess into the odd agent’s

first-order condition (28.4.2) at t = 0 and rearranging shows that c0 is now the

root of
1

(1 + τ)
− u′(c0)

βu′(1 − c0)
= 0. (28.6.2)

The price level at time t = 0 can be determined by evaluating the odd agent’s

time 0 budget constraint at mo
−1 = 0 and mo

0 =M0/N = (1+ τ)M−1/N , with

the result that

(1− c0)p0 =
M−1

N

(
1 +

τ

2

)
.
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Finally, the allocation guess must also satisfy the even agent’s first-order

condition (28.4.2) at t = 0 but not necessarily with equality, since the stationary

equilibrium has me
0 = 0. After substituting (ce0, c

e
1) = (1− c0, c0) and (28.6.1)

into (28.4.2), we have
1

1 + τ
≤ u′(1− c0)

βu′(c0)
. (28.6.3)

The substitution of (28.6.2) into (28.6.3) yields a restriction on the set of peri-

odic allocations of type (28.4.3) that can be supported as one of our stationary

monetary equilibria,

[
u′(c0)

u′(1− c0)

]2
≤ 1 =⇒ c0 ≥ 0.5.

This restriction on c0 , together with (28.6.2), implies a corresponding restriction

on the set of permissible monetary/fiscal policies, 1 + τ ≥ β .

28.6.1. Welfare

For allocations of the class (28.4.3), the utility functionals of odd and even

agents, respectively, take values that are functions of the single parameter c0 ,

namely,

Uo(c0) =
u(c0) + βu(1− c0)

1− β2
,

Ue(c0) =
u(1− c0) + βu(c0)

1− β2
.

Both expressions are strictly concave in c0 , with derivatives

Uo′(c0) =
u′(c0)− βu′(1− c0)

1− β2
,

Ue′(c0) =
−u′(1 − c0) + βu′(c0)

1− β2
.

The Inada condition (28.2.1) ensures strictly interior maxima with respect to

c0 . For the odd agents, the preferred c0 satisfies Uo′(c0) = 0, or

u′(c0)

βu′(1− c0)
= 1, (28.6.4)



1184 Credit and Currency

which by (28.6.2) is the zero-inflation equilibrium, τ = 0. For the even agents,

the preferred allocation given by Ue′(c0) = 0 implies c0 < 0.5, and can there-

fore not be implemented as a monetary equilibrium above. Hence, the even

agents’ preferred stationary monetary equilibrium is the one with the smallest

permissible c0 , i.e., c0 = 0.5. According to (28.6.2), this allocation can be

supported by choosing money growth rate 1 + τ = β , which is then also the

equilibrium gross rate of deflation. Notice that all agents, both odd and even,

are in agreement that they prefer no inflation to positive inflation, that is, they

prefer c0 determined by (28.6.4) to any higher value of c0 .

To abstract from the described conflict of interest between odd and even

agents, suppose that the agents must pick their preferred monetary policy under

a “veil of ignorance,” before knowing their true identity. Since there are equal

numbers of each type of agent, an individual faces a fifty-fifty chance of her

identity being an odd or an even agent. Hence, prior to knowing one’s identity,

the expected lifetime utility of an agent is

Ū(c0) ≡
1

2
Uo(c0) +

1

2
Ue(c0) =

u(c0) + u(1− c0)

2(1− β)
.

The ex ante preferred allocation c0 is determined by the first-order condition

Ū ′(c0) = 0, which has the solution c0 = 0.5. Collecting equations (28.6.1),

(28.6.2), and (28.6.3), this preferred policy is characterized by

pt
pt+1

=
1

1 + τ
=

u′(cot )

βu′(cot+1)
=

u′(cet )

βu′(cet+1)
=

1

β
, ∀t ≥ 0,

where cij = 0.5 for all j ≥ 0 and i ∈ {o, e} . Thus, the real return on money,

pt/pt+1 , equals a common marginal rate of intertemporal substitution, β−1 ,

and this return would therefore also constitute the real interest rate if there

were a credit market. Moreover, since the gross real return on money is the

inverse of the gross inflation rate, it follows that the gross real interest rate β−1

multiplied by the gross rate of inflation is unity, or the net nominal interest rate

is zero. In other words, all agents are ex ante in favor of Friedman’s rule.

Figure 28.6.1 shows the “utility possibility frontier” associated with this econ-

omy. Except for the allocation associated with Friedman’s rule, the allocations

associated with stationary monetary equilibria lie inside the utility possibility

frontier.
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Figure 28.6.1: Utility possibility frontier on the Townsend turn-

pike. The locus of points ABC denotes allocations attainable in

stationary monetary equilibria. Point B is the allocation asso-

ciated with the zero-inflation monetary equilibrium. Point A is

associated with Friedman’s rule, while points between B and C

correspond to stationary monetary equilibria with inflation.

28.7. Inflationary finance

The government prints new currency in total amount Mt−Mt−1 in period t and

uses it to purchase a constant amount G of goods in period t . The government’s

time t budget constraint is

Mt −Mt−1 = ptG, t ≥ 0. (28.7.1)
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Preferences and endowment patterns of odd and even agents are as specified

previously. We now use the following definition:

Definition 4: A competitive equilibrium is a price level sequence {pt}∞t=0 ,

a money supply process {Mt}∞t=−1 , an allocation {cot , cet , Gt}∞t=0 and nonnega-

tive money holdings {mo
t ,m

e
t}∞t=−1 such that (a) given the price sequence and

(mo
−1,m

e
−1), the allocation solves the optimum problems of households of both

types; (b) the government’s budget constraint is satisfied for all t ≥ 0; and (c)

N(cot + cet ) +Gt = N , for all t ≥ 0; and mo
t +me

t =Mt/N , for all t ≥ −1.

For t ≥ 1, write the government’s budget constraint as

Mt

Npt
=
pt−1

pt

Mt−1

Npt−1
+
G

N
,

or

m̃t = Rt−1m̃t−1 + g, (28.7.2)

where g = G/N ,m̃t = Mt/(Npt) is per-odd-person real balances, and Rt−1 =

pt−1/pt is the rate of return on currency from t− 1 to t .

To compute an equilibrium, we guess an allocation of the periodic form

{cot}∞t=0 = {c0, 1− c0 − g, c0, 1− c0 − g, . . .},

{cet}∞t=0 = {1− c0 − g, c0, 1− c0 − g, c0, . . .}.
(28.7.3)

We guess that Rt = R for all t ≥ 0, and again guess a “quantity theory”

outcome

m̃t = m̃ ∀t ≥ 0.

Evaluating the odd household’s time 0 first-order condition for currency at

equality gives

βR =
u′(c0)

u′(1 − c0 − g)
. (28.7.4)

With our guess, real balances held by each odd agent at the end of period 0,

mo
0/p0 , equal 1−c0 , and time 1 consumption, which also is R times the value of

these real balances held from 0 to 1, is 1−c0−g . Thus, (1−c0)R = (1−c0−g),
which implies that

R =
1− c0 − g

1− c0
. (28.7.5)

Equations (28.7.4) and (28.7.5) are two simultaneous equations that we want

to solve for (c0, R).
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Figure 28.7.1: Revenue from inflation tax m(R)(1 − R) and

deficit for β = .95, δ = 2, g = .2. The gross rate of return on

currency is on the x-axis; g and the revenue from inflation are on

the y -axis.

Use equation (28.7.5) to eliminate (1− c0−g) from equation (28.7.4) to get

βR =
u′(c0)

u′[R(1− c0)]
.

Recalling that (1− c0) = m0 , this can be written

βR =
u′(1−m0)

u′(Rm0)
. (28.7.6)

For the power utility function u(c) = c1−δ

1−δ , this equation can be solved for m0

to get the demand function for currency

m0 = m̃(R) ≡ (βR1−δ)1/δ

1 + (βR1−δ)1/δ
. (28.7.7)

Substituting this into the government budget constraint (28.7.2) gives

m̃(R)(1−R) = g. (28.7.8)

This equation equates the revenue from the inflation tax, namely, m̃(R)(1−R)

to the government deficit, g . The revenue from the inflation tax is the product

of real balances and the inflation tax rate 1 − R . The equilibrium value of R

solves equation (28.7.8).
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Figure 28.7.2: Revenue from inflation tax m(R)(1 − R) and

deficit for β = .95, δ = .7, g = .2. The rate of return on currency is

on the x-axis; g and the revenue from inflation are on the y -axis.

Here there is a Laffer curve.

Figures 28.7.1 and 28.7.2 depict the determination of the stationary equilib-

rium value of R for two sets of parameter values. For the case δ = 2, shown in

Figure 28.7.1, there is a unique equilibrium R ; there is a unique equilibrium for

every δ ≥ 1. For δ ≥ 1, the demand function for currency slopes upward as a

function of R , as for the example in Figure 28.7.3. For δ < 1, there can occur

multiple stationary equilibria, as for the example in Figure 28.7.2. In such cases,

there is a Laffer curve in the revenue from the inflation tax. Notice that the

demand for real balances is downward sloping as a function of R when δ < 1.

The initial price level is determined by the time 0 budget constraint of the

government, evaluated at equilibrium time 0 real balances. In particular, the

time 0 government budget constraint can be written

M0

Np0
− M−1

Np0
= g,

or

m̃− g =
M−1

Np0
.

Equating m̃ to its equilibrium value 1− c0 and solving for p0 gives

p0 =
M−1

N(1− c0 − g)
.
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Figure 28.7.3: Demand for real balances on the y -axis as a func-

tion of the gross rate of return on currency on the x-axis when

β = .95, δ = 2.

28.8. Legal restrictions

This section adapts ideas of Bryant and Wallace (1984) and Villamil (1988)

to the turnpike environment. Those authors analyzed situations in which the

government could make all savers better off by introducing a price discrimination

scheme for marketing its debt. The analysis formalizes some ideas mentioned

by John Maynard Keynes (1940).

Figure 28.8.1 depicts the terms on which an odd agent at t = 0 can transfer

consumption between 0 and 1 in an equilibrium with inflationary finance. The

agent is endowed at the point (1, 0). The monetary mechanism allows him to

transfer consumption between periods on the terms c1 = R(1− c0), depicted by

the budget line connecting 1 on the ct -axis with the point B on the ct+1 -axis.

The government insists on raising revenues in the amount g for each pair of an

odd and an even agent, which means that R must be set so that the tangency

between the agent’s indifference curve and the budget line c1 = R(1−c0) occurs
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Figure 28.8.1: The budget line starting at (1, 0) and ending

at the point B describes an odd agent’s time 0 opportunities in

an equilibrium with inflationary finance. Because this equilibrium

has the “private consumption feasibility menu” intersecting the

odd agent’s indifference curve, a “forced saving” legal restriction

can be used to put the odd agent onto a higher indifference curve

than I , while leaving even agents better off and the government

with revenue g . If the individual is confronted with a minimum

denomination F at the rate of return associated with the budget

line ending at H , he would choose to consume 1− F .

at the intersection of the budget line and the straight line connecting 1− g on

the ct -axis with the point 1 − g on the ct+1 -axis. At this point, the marginal

rate of substitution for odd agents is

u′(c0)

βu′(1− c0 − g)
= R,
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Figure 28.8.2: The minimum denomination F and the return on

money can be lowered vis- à -vis their setting associated with line

DH in Figure 28.8.1 to make the odd household better off, raise

the same revenues for the government, and leave even households

better off (as compared to no government intervention). The lower

value of F puts the odd household at E , which leaves him at the

higher indifference curve I ′ . The minimum denomination F and

the return on money can be lowered vis- à -vis their setting asso-

ciated with line DH in Figure 28.8.1 to make the odd household

better off, raise the same revenues for the government, and leave

even households better off (as compared to no government inter-

vention). The lower value of F puts the odd household at E ,

which leaves him at the higher indifference curve I ′ .

(because currency holdings are positive). For even agents, the marginal rate of

substitution is

u′(1− c0 − g)

βu′(c0)
=

1

β2R
> 1,
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where the inequality follows from the fact that R < 1 under inflationary finance.

The fact that the odd agent’s indifference curve intersects the solid line con-

necting (1 − g) on the two axes indicates that the government could improve

the welfare of the odd agent by offering him a higher rate of return subject to

a minimal real balance constraint. The higher rate of return is used to send

the line c1 = (1−R)c0 into the lens-shaped area in Figure 28.8.1 onto a higher

indifference curve. The minimal real balance constraint is designed to force the

agent onto the “postgovernment share” feasibility line connecting the points

1− g on the two axes.

Thus, notice that in Figure 28.8.1, the government can raise the same rev-

enue by offering odd agents the higher rate of return associated with the line

connecting 1 on the ct axis with the point H on the ct+1 axis, provided that

the agent is required to save at least F , if he saves at all. This minimum saving

requirement would make the household’s budget set the point (1, 0) together

with the heavy segment DH . With the setting of F,R associated with the line

DH in Figure 28.8.1, odd households have the same two-period utility as with-

out this scheme. (Points D and A lie on the same indifference curve.) However,

it is apparent that there is room to lower F and lower R a bit, and thereby

move the odd household into the lens-shaped area. See Figure 28.8.2.

The marginal rates of substitution that we computed earlier indicate that

this scheme makes both odd and even agents better off relative to the original

equilibrium. The odd agents are better off because they move into the lens-

shaped area in Figure 28.8.1. The even agents are better off because relative

to the original equilibrium, they are being permitted to “borrow” at a gross

rate of interest of 1. Since their marginal rate of substitution at the original

equilibrium is 1/(β2R) > 1, this ability to borrow makes them better off.
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28.9. A two-money model

There are two types of currency being issued, in amounts Mit, i = 1, 2, by each

of two countries. The currencies are issued according to the rules

Mit −Mit−1 = pitGit, i = 1, 2, (28.9.1)

where Git is total purchases of time t goods by the government issuing currency

i , and pit is the time t price level denominated in units of currency i . We

assume that currencies of both types are initially equally distributed among the

even agents at time 0. Odd agents start out with no currency.

Household h ’s optimum problem becomes to maximize
∑∞

t=0 β
tu(cht ) subject

to the sequence of budget constraints

cht +
mh

1t

p1t
+
mh

2t

p2t
≤ yht +

mh
1t−1

p1t
+
mh

2t−1

p2t
,

where mh
jt−1 are nominal holdings of country j ’s currency by household h .

Currency holdings of each type must be nonnegative. The first-order conditions

for the household’s problem with respect to mh
jt for j = 1, 2 are

βu′(cht+1)

p1t+1
≤ u′(cht )

p1t
, = if mh

1t > 0,

βu′(cht+1)

p2t+1
≤ u′(cht )

p2t
, = if mh

2t > 0.

If agent h chooses to hold both currencies from t to t + 1, these first-order

conditions imply that

p2t
p1t

=
p2t+1

p1t+1
,

or

p1t = ep2t, ∀t ≥ 0, (28.9.2)

for some constant e > 0.5 This equation states that if in each period there is

some household that chooses to hold positive amounts of both types of currency,

the rate of return from t to t+1 must be equal for the two types of currencies,

meaning that the exchange rate must be constant over time.6

5 Evaluate both of the first-order conditions at equality, then divide one by the other to

obtain this result.
6 As long as we restrict ourselves to nonstochastic equilibria.
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We use the following definition:

Definition 5: A competitive equilibrium with two valued fiat currencies is an al-

location {cot , cet , G1t, G2t}∞t=0 , nonnegative money holdings {mo
1t,m

e
1t,m

o
2t,m

e
2t}∞t=−1 ,

a pair of finite price level sequences {p1t, p2t}∞t=0 and currency supply sequences

{M1t,M2t}∞t=−1 such that (a) given the price level sequences and (mo
1,−1,m

e
1,−1,

mo
2,−1,m

e
2,−1), the allocation solves the households’ problems; (b) the budget

constraints of the governments are satisfied for all t ≥ 0; and (c) N(cot + cet ) +

G1t + G2t = N , for all t ≥ 0; and mo
jt +me

jt = Mjt/N , for j = 1, 2 and all

t ≥ −1.

In the case of constant government expenditures (G1t, G2t) = (Ng1, Ng2)

for all t ≥ 0, we guess an equilibrium allocation of the form (28.7.3), where we

reinterpret g to be g = g1 + g2 . We also guess an equilibrium with a constant

real value of the “world money supply,” that is,

m̃ =
M1t

Np1t
+

M2t

Np2t
,

and a constant exchange rate, so that we impose condition (28.9.2). We let

R = p1t/p1t+1 = p2t/p2t+1 be the constant common value of the rate of return

on the two currencies.

With these guesses, the sum of the two countries’ budget constraints for

t ≥ 1 and the conjectured form of the equilibrium allocation imply an equation

of the form (28.7.8), where now

m̃(R) =
M1t

p1tN
+

M2t

p2tN
.

Equation (28.7.8) can be solved for R in the fashion described earlier. Once

R has been determined, so has the constant real value of the world currency

supply, m̃ . To determine the time t price levels, we add the time 0 budget

constraints of the two governments to get

M10

Np10
+

M20

Np20
=
M1,−1 + eM2,−1

Np10
+ (g1 + g2),

or

m̃− g =
M1,−1 + eM2,−1

Np10
.
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In the conjectured allocation, m̃ = (1− c0), so this equation becomes

M1,−1 + eM2,−1

Np10
= 1− c0 − g, (28.9.3)

which, given any e > 0, has a positive solution for the initial country 1 price

level. Given the solution p10 and any e ∈ (0,∞), the price level sequences for

the two countries are determined by the constant rate of return on currency R .

To determine the values of the nominal currency stocks of the two countries, we

use the government budget constraints (28.9.1).

Our findings are a special case of the following remarkable proposition:

Proposition (Exchange Rate Indeterminacy): Given the initial stocks of

currencies (M1,−1,M2,−1) that are equally distributed among the even agents

at time 0, if there is an equilibrium for one constant exchange rate e ∈ (0,∞),

then there exists an equilibrium for any ê ∈ (0,∞) with the same consumption

allocation but different currency supply sequences.

Proof: Let p10 be the country 1 price level at time zero in the equilibrium

that is assumed to exist with exchange rate e . For the conjectured equilibrium

with exchange rate ê , we guess that the corresponding price level is

p̂10 = p10
M1,−1 + êM2,−1

M1,−1 + eM2,−1
.

After substituting this expression into (28.9.3), we can verify that the real

value at time 0 of the initial “world money supply” is the same across equi-

libria. Next, we guess that the conjectured equilibrium shares the same rate

of return on currency, R , and constant end-of-period real value of the “world

money supply”, m̃ , as the the original equilibrium. By construction from the

original equilibrium, we know that this setting of the world money supply pro-

cess guarantees that the consolidated budget constraint of the two governments

is satisfied in each period. To determine the values of each country’s prices and

nominal money supplies, we proceed as above. That is, given p̂10 and ê , the

price level sequences for the two countries are determined by the constant rate

of return on currency R . The evolution of the nominal money stocks of the two

countries is governed by government budget constraints (28.9.1).

Versions of this proposition were stated by Kareken and Wallace (1980).

See chapter 27 for a discussion of a possible way to alter assumptions to make

the exchange rate determinate.
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28.10. A model of commodity money

Consider the following “small-country” model.7 There are now two goods, the

consumption good and a durable good, silver. Silver has a gross physical rate of

return of 1: storing one unit of silver this period yields one unit of silver next

period. Silver is not valued domestically, but it can be exchanged abroad at a

fixed price of v units of the consumption good per unit of silver; v is constant

over time and is independent of the amount of silver imported or exported from

this country. There are equal numbers N of odd and even households, endowed

with consumption good sequences

{yot }∞t=0 = {1, 0, 1, 0, . . .},

{yet }∞t=0 = {0, 1, 0, 1, . . .}.

Preferences continue to be ordered by
∑∞

t=0 β
tu(cit) for each type of person,

where ct is consumption of the consumption good.

Each even person is initially endowed with S units of silver at time 0. Odd

agents own no silver at t = 0.

Households are prohibited from borrowing or lending with each other, or

with foreigners. However, they can exchange silver with each other and with

foreigners. At time t , a household of type i faces the budget constraint

cit +mi
tv ≤ yit +mi

t−1v,

subject to mi
t ≥ 0, where mi

t is the amount of silver stored from time t to time

t+ 1 by agent i .

7 See Sargent and Wallace (1983), Sargent and Smith (1997), and Sargent and Velde (1999)

for alternative models of commodity money.
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Figure 28.10.1: Determination of equilibrium when u′(vS) <

βu′(c0). For as long as it is feasible, the even agent sets u′(cet+1)/u
′(cet ) =

β by running down his silver holdings. This implies that cet+1 < cet
during the run-down period. Eventually, the even agent runs out of

silver, so that the tail of his allocation is {c0, 1− c0, c0, 1− c0, . . .} ,
determined as before. The figure depicts how the spending of silver

pushes the agent onto lower two-period budget sets.

28.10.1. Equilibrium

Definition 6: A competitive equilibrium is an allocation {cot , cet}∞t=0 and non-

negative asset holdings {mo
t ,m

e
t}∞t=−1 such that, given (mo

−1,

me
−1), the allocation solves each agent’s optimum problem.

Adding the budget constraints of the two types of agents with equality at

time t gives

cot + cet = 1 + v(St−1 − St), (28.10.1)

where St = mo
t +me

t is the total (per odd person) stock of silver in the country

at time t . Equation (28.10.1) asserts that total domestic consumption at time

t is the sum of the country’s endowment plus its imports of goods, where the

latter equals its exports of silver, v(St−1 − St).

Given the opportunity to choose nonnegative asset holdings with a gross rate

of return equal to 1, the equilibrium allocation to the odd agent is {cot}∞t=0 =
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{c0, 1− c0, c0, 1− c0, . . . , } , where c0 is the solution to equation (28.4.4). Thus,

the odd agent holds (1− c0) units of silver from time 0 to time 1. He gets this

silver either from even agents or from abroad.

Concerning the allocation to even agents, two types of equilibria are possible,

depending on the value of vS relative to the value c0 that solves equation

(28.4.4). If u′(vS) ≥ βu′(c0), the equilibrium allocation to the even agent is

{cet}∞t=0 = {ce0, c0, 1− c0, c0, 1− c0, . . .} , where ce0 = vS . In this equilibrium, the

even agent at time 0 sells all of his silver to support time 0 consumption. Net

exports of silver for the country at time 0 are S−(1−c0)/v , i.e., summing up the

transactions of an even and an odd agent. For t ≥ 1, the country’s allocation

and trade pattern is exactly as in the original model (with a stationary fiat

money equilibrium).

If the solution c0 to equation (28.4.4) and vS are such that u′(vS) <

βu′(c0), the equilibrium allocation to the odd agents remains the same, but

the allocation to the even agents is different. The situation is depicted in Figure

28.10.1. Even agents have so much silver at time 0 that they want to carry over

positive amounts of silver into time 1 and maybe beyond. As long as they are

carrying over positive amounts of silver from t− 1 to t , the allocation to even

agents has to satisfy
u′(cet−1)

βu′(cet )
= 1, (28.10.2)

which implies that cet < cet−1 . Also, as long as they are carrying over positive

amounts of silver, their first T budget constraints can be used to deduce an

intertemporal budget constraint

T∑

t=0

cet ≤
{
vS + (T + 1)/2, if T odd;

vS + T/2, if T even.
(28.10.3)

The even agent finds the largest horizon T over which he satisfies both (28.10.2)

and (28.10.3) at equality with nonnegative carryover of silver for each period.

This largest horizon T will occur on an even date.8 The equilibrium allocation

8 Suppose to the contrary that the largest horizon T is an odd date. That is, up until date

T , both (28.10.2) and (28.10.3) are satisfied with nonnegative savings for each period. Now,

let us examine what happens if we add one additional period and the horizon becomes T +1.

Since that additional period is an even date, the right side of budget constraint (28.10.3) is

unchanged. Therefore, condition (28.10.2) implies that the extra period induces the agent to

reduce consumption in all periods t ≤ T , in order to save for consumption in period T + 1.
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to the even agents is determined by “gluing” this initial piece with declining

consumption onto a “tail” of the allocation assigned to even agents in the original

model, starting on an odd date, {ct}∞t=T+1 = {c0, 1− c0, c0, 1− c0, . . .} .9

28.10.2. Virtue of fiat money

This is a model with an exogenous price level and an endogenous stock of cur-

rency. The model can be used to express a version of Friedman’s and Keynes’s

condemnation of commodity money systems: the equilibrium allocation can be

Pareto dominated by the allocation in a fiat money equilibrium in which, in

addition to the stock of silver at time 0, the even agents are endowed with

M units of an unbacked fiat currency. We can then show that there exists a

monetary equilibrium with a constant price level p satisfying (28.4.5),

p =
M

N(1 − c0)
.

In effect, the time 0 endowment of the even agents is increased by 1−c0 units of

consumption good. Fiat money creates wealth by removing commodity money

from circulation, which instead can be transformed into consumption.

Since the initial horizon T satisfied (28.10.2) and (28.10.3) with nonnegative savings, it

follows that so must also horizon T + 1. Therefore, the largest horizon T must occur on an

even date.
9 Is the equilibrium with u′(vS) < βu′(c0) , a stylized model of Spain in the sixteenth

century? At the beginning of the sixteenth century, Spain suddenly received a large claim on

silver and gold from the New World. During the century, Spain exported gold and silver to

the rest of Europe to finance government and private purchases.
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28.11. Concluding remarks

The model of this chapter is basically a “nonstochastic incomplete markets

model,” a special case of the stochastic incomplete markets models of chapter

18. The virtue of the model is that we can work out many things by hand. The

limitation on markets in private loans leaves room for a consumption-smoothing

role to be performed by a valued fiat currency. The reader might note how some

of the monetary doctrines worked out precisely in this chapter have counterparts

in the stochastic incomplete markets models of chapter 18.

Exercises

Exercise 28.1 Arrow-Debreu

Consider an environment with equal numbers N of two types of agents, odd

and even, who have endowment sequences

{yot }∞t=0 = {1, 1, 0, 1, 1, 0, . . .}

{yet }∞t=0 = {0, 0, 1, 0, 0, 1, . . .}.

Households of type h order consumption sequences by
∑∞
t=0 β

tu(cht ). Compute

the Arrow-Debreu equilibrium for this economy.

Exercise 28.2 One-period consumption loans

Consider an environment with equal numbers N of two types of agents, odd

and even, who have endowment sequences

{yot }∞t=0 = {1, 0, 1, 0, . . .}

{yet }∞t=0 = {0, 1, 0, 1, . . .}.

Households of type h order consumption sequences by
∑∞

t=0 β
tu(cht ). The only

market that exists is for one-period loans. The budget constraints of household

h are

cht + bht ≤ yht +Rt−1b
h
t−1, t ≥ 0,

where bh−1 = 0, h = o, e . Here bht is agent h ’s lending (if positive) or borrowing

(if negative) from t to t + 1, and Rt−1 is the gross real rate of interest on

consumption loans from t− 1 to t .
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a. Define a competitive equilibrium with one-period consumption loans.

b. Compute a competitive equilibrium with one-period consumption loans.

c. Is the equilibrium allocation Pareto optimal? Compare the equilibrium

allocation with that for the corresponding Arrow-Debreu equilibrium for an

economy with identical endowment and preference structure.

Exercise 28.3 Stock market

Consider a “stock market” version of an economy with endowment and prefer-

ence structure identical to the one in the previous economy. Now odd and even

agents begin life owning one of two types of “trees.” Odd agents own the “odd”

tree, which is a perpetual claim to a dividend sequence

{yot }∞t=0 = {1, 0, 1, 0, . . .},

while even agents initially own the “even” tree, which entitles them to a per-

petual claim on dividend sequence

{yet}∞t=0 = {0, 1, 0, 1, . . .}.

Each period, there is a stock market in which people can trade the two types

of trees. These are the only two markets open each period. The time t price of

type j trees is ajt , j = o, e . The time t budget constraint of agent h is

cht + aot s
ho
t + aets

he
t ≤ (aot + yot )s

ho
t−1 + (aet + yet )s

he
t−1,

where shjt is the number of shares of stock in tree j held by agent h from t to

t+ 1. We assume that soo−1 = 1, see−1 = 1, sjk−1 = 0 for j 6= k .

a. Define an equilibrium of the stock market economy.

b. Compute an equilibrium of the stock market economy.

c. Compare the allocation of the stock market economy with that of the corre-

sponding Arrow-Debreu economy.

Exercise 28.4 Inflation

Consider a Townsend turnpike model in which there are N odd agents and N

even agents who have endowment sequences, respectively, of

{yot }∞t=0 = {1, 0, 1, 0, . . .}

{yet }∞t=0 = {0, 1, 0, 1, . . .}.
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Households of each type order consumption sequences by
∑∞

t=0 β
tu(ct). The

government makes the stock of currency move according to

Mt = zMt−1, t ≥ 0.

At the beginning of period t , the government hands out (z − 1)mh
t−1 to each

type h agent who held mh
t−1 units of currency from t− 1 to t . Households of

type h = o, e have time t budget constraint of

ptc
h
t +mh

t ≤ pty
h
t +mh

t−1 + (z − 1)mh
t−1.

a. Guess that an equilibrium endowment sequence of the periodic form (28.4.3)

exists. Make a guess at an equilibrium price sequence {pt} and compute the

equilibrium values of (c0, {pt}). (Hint: Make a “quantity theory” guess for the

price level.)

b. How does the allocation vary with the rate of inflation? Is inflation “good”

or “bad”? Describe odd and even agents’ attitudes toward living in economies

with different values of z .

Exercise 28.5 A Friedman-like scheme

Consider Friedman’s scheme to improve welfare by generating a deflation. Sup-

pose that the government tries to boost the rate of return on currency above β−1

by setting β > (1+τ). Show that there exists no equilibrium with an allocation

of the class (28.4.3) and a price-level path satisfying pt = (1+ τ)pt−1 , with odd

agents holding mo
0 > 0. [(That is, the piece of the “restricted Pareto optimality

frontier” does not extend above the allocation (.5,.5) in Figure 28.6.1.)

Exercise 28.6 Distribution of currency

Consider an economy consisting of large and equal numbers of two types of

infinitely lived agents. There is one kind of consumption good, which is non-

storable. “Odd” agents have period 2 endowment pattern {yot }∞t=0 , while “even”

agents have period 2 endowment pattern {yet }∞t=0 . Agents of both types have

preferences that are ordered by the utility functional

∞∑

t=0

βt ln(cit), i = o, e, 0 < β < 1,
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where cit is the time t consumption of the single good by an agent of type i .

Assume the following endowment pattern:

yot = {1, 0, 1, 0, 1, 0, . . .}

yet = {0, 1, 0, 1, 0, 1, . . .}.

Now assume that all borrowing and lending is prohibited, either ex cathedra

through legal restrictions or by virtue of traveling and locational restrictions of

the kind introduced by Robert Townsend. At time t = 0, all odd agents are

endowed with αH units of an unbacked, inconvertible currency, and all even

units are endowed with (1 − α)H units of currency, where α ∈ [0, 1]. The

currency is denominated in dollars and is perfectly durable. Currency is the

only object that agents are permitted to carry over from one period to the next.

Let pt be the price level at time t , denominated in units of dollars per time t

consumption good.

a. Define an equilibrium with valued fiat currency.

b. Let an “eventually stationary” equilibrium with valued fiat currency be one

in which there exists a t̄ such that for t ≥ t̄ , the equilibrium allocation to

each type of agent is of period 2 (i.e., for each type of agent, the allocation is a

periodic sequence that oscillates between two values). Show that for each value

of α ∈ [0, 1], there exists such an equilibrium. Compute this equilibrium.

Exercise 28.7 Capital overaccumulation

Consider an environment with equal numbers N of two types of agents, odd

and even, who have endowment sequences

{yot }∞t=0 = {1− ε, ε, 1− ε, ε, . . .}

{yet }∞t=0 = {ε, 1− ε, ε, 1− ε, . . .}.

Here, ε is a small positive number that is very close to zero. Households of

each type h order consumption sequences by
∑∞

t=0 β
t ln(cht ) where β ∈ (0, 1).

The one good in the model is storable. If a nonnegative amount kt of the good

is stored at time t , the outcome is that δkt of the good is carried into period

t+1, where δ ∈ (0, 1). Households are free to store nonnegative amounts of the

good.
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a. Assume that there are no markets. Households are on their own. Find the

autarkic consumption allocations and storage sequences for the two types of

agents. What is the total per-period storage in this economy?

b. Now assume that there exists a fiat currency, available in fixed supply of M ,

all of which is initially equally distributed among the even agents. Define an

equilibrium with valued fiat currency. Compute a stationary equilibrium with

valued fiat currency. Show that the associated allocation Pareto dominates the

one you computed in part a.

c. Suppose that in the storage technology δ = 1 (no depreciation) and that

there is a fixed supply of fiat currency, initially distributed as in part b. Define

an “eventually stationary” equilibrium. Show that there is a continuum of

eventually stationary equilibrium price levels and allocations.

Exercise 28.8 Altered endowments

Consider a Bewley model identical to the one in the text, except that now the

odd and even agents are endowed with the sequences

y0t = {1− F, F, 1 − F, F, . . .}
yet = {F, 1− F, F, 1 − F, . . .},

where 0 < F < (1− co), where co is the solution of equation (28.4.4).

Compute the equilibrium allocation and price level. How do these objects

vary across economies with different levels of F ? For what values of F does a

stationary equilibrium with valued fiat currency exist?

Exercise 28.9 Inside money

Consider an environment with equal numbers N of two types of households,

odd and even, who have endowment sequences

{yot }∞t=0 = {1, 0, 1, 0, . . .}

{yet }∞t=0 = {0, 1, 0, 1, . . .}.

Households of type h order consumption sequences by
∑∞

t=0 β
tu(cht ). At the

beginning of time 0, each even agent is endowed with M units of an unbacked

fiat currency and owes F units of consumption goods; each odd agent is owed

F units of consumption goods and owns 0 units of currency. At time t ≥ 0, a
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household of type h chooses to carry over mh
t ≥ 0 of currency from time t to

t+1. (We start households out with these debts or assets at time 0 to support

a stationary equilibrium.) Each period t ≥ 0, households can issue indexed

one-period debt in amount bt , promising to pay off btRt at t+1, subject to the

constraint that bt ≥ −F/Rt , where F > 0 is a parameter characterizing the

borrowing constraint and Rt is the rate of return on these loans between time t

and t+ 1. (When F = 0, we get the Bewley-Townsend model.) A household’s

period t budget constraint is

ct +mt/pt + bt = yt +mt−1/pt + bt−1Rt−1,

where Rt−1 is the gross real rate of return on indexed debt between time t− 1

and t . If bt < 0, the household is borrowing at t , and if bt > 0, the household

is lending at t .

a. Define a competitive equilibrium in which valued fiat currency and private

loans coexist.

b. Argue that, in the equilibrium defined in part a, the real rates of return on

currency and indexed debt must be equal.

c. Assume that 0 < F < (1−co)/2, where co is the solution of equation (28.4.4).

Show that there exists a stationary equilibrium with a constant price level and

that the allocation equals that associated with the stationary equilibrium of the

F = 0 version of the model. How does F affect the price level? Explain.

d. Suppose that F = (1 − co)/2. Show that there is a stationary equilibrium

with private loans but that fiat currency is valueless in that equilibrium.

e. Suppose that F = β
1+β . For a stationary equilibrium, find an equilibrium

allocation and interest rate.

f. Suppose that F ∈ [(1 − co)/2, β
1+β ] . Argue that there is a stationary equi-

librium (without valued currency) in which the real rate of return on debt is

R ∈ (1, β−1).

Exercise 28.10 Initial conditions and inside money

Consider a version of the preceding model in which each odd person is initially

endowed with no currency and no IOUs, and each even person is initially en-

dowed with M/N units of currency but no IOUs. At every time t ≥ 0, each
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agent can issue one-period IOUs promising to pay off F/Rt units of consump-

tion in period t + 1, where Rt is the gross real rate of return on currency or

IOUs between periods t and t+1. The parameter F obeys the same restrictions

imposed in exercise 28.9 .

a. Find an equilibrium with valued fiat currency in which the tail of the alloca-

tion for t ≥ 1 and the tail of the price level sequence, respectively, are identical

with that found in exercise 28.9 .

b. Find the price level, the allocation, and the rate of return on currency and

consumption loans at period 0.

Exercise 28.11 Real bills experiment

Consider a version of exercise 28.9 . The initial conditions and restrictions on

borrowing are as described in exercise 28.9 . However, now the government

augments the currency stock by an “open market operation” as follows: In

period 0, the government issues M̄ − M units per each odd agent for the

purpose of purchasing ∆ units of IOUs issued at time 0 by the even agents.

Assume that 0 < ∆ < F . At each time t ≥ 1, the government uses any net

real interest payments from its stock IOUs from the private sector to decrease

the outstanding stock of currency. Thus, the government’s budget constraint

sequence is
M̄ −M

p0
= ∆, t = 0,

M̄t − M̄t−1

pt
= −(Rt−1 − 1)∆ t ≥ 1.

Here,Rt−1 is the gross rate of return on consumption loans from t− 1 to t , and

M̄t is the total stock of currency outstanding at the end of time t .

a. Verify that there exists a stationary equilibrium with valued fiat currency in

which the allocation has the form (28.4.3) where c0 solves equation (28.4.4).

b. Find a formula for the price level in this stationary equilibrium. Describe

how the price level varies with the value of ∆.

c. Does the “quantity theory of money” hold in this example?



Chapter 29

Equilibrium Search, Matching, and Lotteries

29.1. Introduction

This chapter presents various equilibrium models of the labor market. We de-

scribe (1) Lucas and Prescott’s version of search in an island model; (2) some

matching models in the style of Mortensen, Pissarides, and Diamond; and (3) a

model of employment lotteries as formulated by Rogerson and Hansen.

Chapter 6 studied the optimization problem of a single unemployed worker

who searches for a job by drawing from an exogenous wage offer distribution.

We now turn to a model with a continuum of workers who interact across a

large number of spatially separated labor markets. Phelps (1970, introductory

chapter) recommended such an “island economy” as a good model of labor

market frictions. We present an analysis in the spirit of Lucas and Prescott’s

(1974) version of such an economy. Workers on an island can choose to work

at the market-clearing wage in their own labor market or seek their fortune

by moving to another island and its labor market. In an equilibrium, agents

tend to move to islands that experience good productivity shocks, while an

island with bad productivity may see some of its labor force depart. Frictional

unemployment arises because moves between labor markets take time.

A distinct approach to modeling unemployment is the matching framework

described by Diamond (1982), Mortensen (1982), and Pissarides (1990). This

framework postulates a matching function that maps measures of unemployment

and vacancies into a measure of matches. A match pairs a worker and a firm,

who then have to bargain about how to share the “match surplus,” that is, the

value that will be lost if the two parties cannot agree and break the match. In

contrast to the island model with price-taking behavior and no externalities,

the decentralized outcome in the matching framework is in general not efficient.

Unless parameter values satisfy a knife-edge restriction, there will be either too

many or too few vacancies posted in an equilibrium. The efficiency problem is

further exacerbated if it is assumed that heterogeneous jobs must be created via

– 1207 –
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a single matching function. This assumption creates a tension between getting

an efficient mix of jobs and an efficient total supply of jobs.

As a comparison point for models with search and matching frictions, we also

study a frictionless aggregate labor market but assume that labor is indivisible.

For example, agents are constrained to work either full time or not at all. This

kind of assumption has been used in the real business cycle literature to gener-

ate unemployment. If markets for contingent claims exist, Hansen (1985) and

Rogerson (1988) show that employment lotteries can be welfare enhancing and

that they imply that only a fraction of agents will be employed in an equilib-

rium. Using this model and the other two frameworks that we have mentioned,

we analyze how layoff taxes affect an economy’s employment level. The different

models yield very different conclusions, shedding further light on the economic

forces at work in the various frameworks.

To illustrate another application of search and matching, we study Kiyotaki

and Wright’s (1993) search model of money. Agents who differ with respect to

their taste for different goods meet pairwise and at random. In this model, fiat

money can potentially ameliorate the problem of “double coincidence of wants.”

29.2. An island model

The model here is a simplified version of Lucas and Prescott’s (1974) “island

economy.” There is a continuum of agents populating a large number of spatially

separated labor markets. Each island is endowed with an aggregate production

function θf(n), where n is the island’s employment level and θ > 0 is an

idiosyncratic productivity shock. The production function satisfies

f ′ > 0, f ′′ < 0, and lim
n→0

f ′(n) = ∞ . (29.2.1)

The productivity shock takes on m possible values, θ1 < θ2 < · · · < θm , and

the shock is governed by strictly positive transition probabilities, π(θ, θ′) > 0.

That is, an island with a current productivity shock of θ faces a probability

π(θ, θ′) that its next period’s shock is θ′ . The productivity shock is persis-

tent in the sense that the cumulative distribution function, Prob (θ′ ≤ θk|θ) =∑k
i=1 π(θ, θi), is a decreasing function of θ .
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At the beginning of a period, agents are distributed in some way over the

islands. After observing the productivity shock, the agents decide whether or

not to move to another island. A mover forgoes his labor earnings in the period

of the move, whereas he can choose the destination with complete information

about current conditions on all islands. An agent’s decision to work or to move is

taken so as to maximize the expected present value of his earnings stream. Wages

are determined competitively, so that each island’s labor market clears with a

wage rate equal to the marginal product of labor. We will study stationary

equilibria.

29.2.1. A single market (island)

The state of a single market is given by its productivity level θ and its beginning-

of-period labor force x . In an equilibrium, there will be functions mapping

this state into an employment level, n(θ, x), and a wage rate, w(θ, x). These

functions must satisfy the market-clearing condition

w(θ, x) = θf ′
[
n(θ, x)

]

and the labor supply constraint

n(θ, x) ≤ x .

Let v(θ, x) be the value of the optimization problem for an agent finding

himself in market (θ, x) at the beginning of a period. Let vu be the expected

value obtained next period by an agent leaving the market, a value to be deter-

mined by conditions in the aggregate economy. The value now associated with

leaving the market is then βvu . The Bellman equation can then be written as

v(θ, x) = max
{
βvu , w(θ, x) + βE [v(θ′, x′)|θ, x]

}
, (29.2.2)

where the conditional expectation refers to the evolution of θ′ and x′ if the

agent remains in the same market.

The value function v(θ, x) is equal to βvu whenever there are any agents

leaving the market. It is instructive to examine the opposite situation when

no one leaves the market. This means that the current employment level is
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n(θ, x) = x and the wage rate becomes w(θ, x) = θf ′(x). Concerning the

continuation value for next period, βE [v(θ′, x′)|θ, x] , there are two possibilities:

Case i: All agents remain, and some additional agents arrive next period. The

arrival of new agents corresponds to a continuation value of βvu in the market.

Any value less than βvu would not attract any new agents, and a value higher

than βvu would be driven down by a larger inflow of new agents. It follows that

the current value function in equation (29.2.2) can under these circumstances

be written as

v(θ, x) = θ f ′(x) + βvu .

Case ii: All agents remain, and no additional agents arrive next period. In this

case x′ = x , and the lack of new arrivals implies that the market’s continuation

value is less than or equal to βvu . The current value function becomes

v(θ, x) = θ f ′(x) + βE [v(θ′, x)|θ] ≤ θ f ′(x) + βvu .

After putting both of these cases together, we can rewrite the value function

in equation (29.2.2) as follows:

v(θ, x) = max
{
βvu , θ f

′(x) + min
{
βvu , βE [v(θ′, x)|θ]

}}
. (29.2.3)

Given a value for vu , this functional equation has a unique solution v(θ, x) that

is nondecreasing in θ and nonincreasing in x .

On the basis of agents’ optimization behavior, we can study the evolution of

the island’s labor force. There are three possible cases:

Case 1: Some agents leave the market. An implication is that no additional

workers will arrive next period, when the beginning-of-period labor force will be

equal to the current employment level, x′ = n . The current employment level,

equal to x′ , can then be computed from the condition that agents remaining in

the market receive the same utility as the movers, given by βvu ,

θ f ′(x′) + βE [v(θ′, x′)|θ] = βvu . (29.2.4)

This equation implicitly defines x+(θ) such that x′ = x+(θ) if x ≥ x+(θ).

Case 2: All agents remain in the market, and some additional workers arrive next

period. The arriving workers must expect to attain the value vu , as discussed

in case i. That is, next period’s labor force x′ must be such that

E [v(θ′, x′)|θ] = vu . (29.2.5)
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This equation implicitly defines x−(θ) such that x′ = x−(θ) if x ≤ x−(θ). It

can be seen that x−(θ) < x+(θ).

Case 3: All agents remain in the market, and no additional workers arrive next

period. This situation was discussed in case ii. It follows here that x′ = x if

x−(θ) < x < x+(θ).

29.2.2. The aggregate economy

The previous section assumed an exogenous value to search, vu . This assump-

tion will be maintained in the first part of this section on the aggregate economy.

The approach amounts to assuming a perfectly elastic outside labor supply with

reservation utility vu . We end the section by showing how to endogenize the

value to search in the face of a given inelastic aggregate labor supply.

Define a set X of possible labor forces in a market as follows:

X ≡





{
x ∈

{
x−(θi) , x

+(θi)
}m
i=1

: x+(θ1) ≤ x ≤ x−(θm)
}
,

if x+(θ1) ≤ x−(θm);
{
x ∈ [x−(θm) , x+(θ1)]

}
, otherwise.

The set X is the ergodic set of labor forces in a stationary equilibrium. This can

be seen by considering a single market with an initial labor force x . Suppose

that x > x+(θ1); the market will then eventually experience the least advanta-

geous productivity shock with a next period’s labor force of x+(θ1). Thereafter,

the island can at most attract a labor force x−(θm) associated with the most

advantageous productivity shock. Analogously, if the market’s initial labor force

is x < x−(θm), it will eventually have a labor force of x−(θm) after experiencing

the most advantageous productivity shock. Its labor force will thereafter never

fall below x+(θ1), which is the next period’s labor force of a market experi-

encing the least advantageous shock (given a current labor force greater than

or equal to x+(θ1)). Finally, in the case that x+(θ1) > x−(θm), any initial

distribution of workers such that each island’s labor force belongs to the closed

interval [x−(θm) , x+(θ1)] can constitute a stationary equilibrium. This would

be a parameterization of the model where agents do not find it worthwhile to

relocate in response to productivity shocks.
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In a stationary equilibrium, a market’s transition probabilities among states

(θ, x) are given by

Γ(θ′, x′|θ, x) = π(θ, θ′) · I
( [

x′ = x+(θ) and x ≥ x+(θ)
]
or

[
x′ = x−(θ) and x ≤ x−(θ)

]
or

[
x′ = x and x−(θ) < x < x+(θ)

] )
,

for x, x′ ∈ X and all θ, θ′ ;

where I(·) is the indicator function that takes on the value 1 if any of its

arguments are true and 0 otherwise. These transition probabilities define an

operator P on distribution functions Ψt(θ, x; vu) as follows: Suppose that at

a point in time, the distribution of productivity shocks and labor forces across

markets is given by Ψt(θ, x; vu), then the next period’s distribution is

Ψt+1(θ
′, x′; vu) = PΨt(θ

′, x′; vu)

=
∑

x∈X

∑

θ

Γ(θ′, x′|θ, x)Ψt(θ, x; vu) .

Except for the case when the stationary equilibrium involves no reallocation of

labor, the described process has a unique stationary distribution, Ψ(θ, x; vu).

Using the stationary distribution Ψ(θ, x; vu), we can compute the economy’s

average labor force per market,

x̄(vu) =
∑

x∈X

∑

θ

xΨ(θ, x; vu) ,

where the argument vu makes explicit that the construction of a stationary

equilibrium rests on the maintained assumption that the value to search is ex-

ogenously given by vu . The economy’s equilibrium labor force x̄ varies neg-

atively with vu . In a stationary equilibrium with labor movements, a higher

value to search is only consistent with higher wage rates, which in turn require

higher marginal products of labor, that is, a smaller labor force on the islands.

From an economy-wide viewpoint, it is the size of the labor force that is

fixed, let’s say x̂ , and the value to search that adjusts to clear the markets. To

find a stationary equilibrium for a particular x̂ , we trace out the schedule x̄(vu)

for different values of vu . The equilibrium pair (x̂, vu) can then be read off at

the intersection x̄(vu) = x̂ , as illustrated in Figure 29.2.1.
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Figure 29.2.1: The curve maps an economy’s average labor force

per market, x̄ , into the stationary equilibrium value to search, vu .

29.3. A matching model

Another model of unemployment is the matching framework, as described by

Diamond (1982), Mortensen (1982), and Pissarides (1990). The basic model is as

follows: Let there be a continuum of identical workers with measure normalized

to 1. The workers are infinitely lived and risk neutral. The objective of each

worker is to maximize the expected discounted value of leisure and labor income.

The leisure enjoyed by an unemployed worker is denoted z , while the current

utility of an employed worker is given by the wage rate w . The workers’ discount

factor is β = (1 + r)−1 .

The production technology is constant returns to scale, with labor as the

only input. Each employed worker produces y units of output. Without loss of

generality, suppose each firm employs at most one worker. A firm entering the

economy incurs a vacancy cost c in each period when looking for a worker, and

in a subsequent match the firm’s per-period earnings are y−w . All matches are

exogenously destroyed with per-period probability s . Free entry implies that

the expected discounted stream of a new firm’s vacancy costs and earnings is

equal to zero. The firms have the same discount factor as the workers (who

would be the owners in a closed economy).
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The measure of successful matches in a period is given by a matching function

M(u, v), where u and v are the aggregate measures of unemployed workers and

vacancies. The matching function is increasing in both its arguments, concave,

and homogeneous of degree 1. By the homogeneity assumption, we can write

the probability of filling a vacancy as q(v/u) ≡ M(u, v)/v . The ratio between

vacancies and unemployed workers, θ ≡ v/u , is commonly labelled the tightness

of the labor market. The probability that an unemployed worker will be matched

in a period is θq(θ). We will assume that the matching function has the Cobb-

Douglas form, which implies constant elasticities,

M(u, v) = Auαv1−α ,

∂M(u, v)

∂u

u

M(u, v)
= −q′(θ) θ

q(θ)
= α , (29.3.1)

where A > 0, α ∈ (0, 1), and the last equality will be used repeatedly in our

derivations that follow.

Finally, the wage rate is assumed to be determined in a Nash bargain between

a matched firm and worker. Let φ ∈ [0, 1) denote the worker’s bargaining

strength, or his weight in the Nash product, as described in the next subsection.

29.3.1. A steady state

In a steady state, the measure of laid-off workers in a period, s(1− u), must be

equal to the measure of unemployed workers gaining employment, θq(θ)u . The

steady-state unemployment rate can therefore be written as

u =
s

s + θq(θ)
. (29.3.2)

To determine the equilibrium value of θ , we now turn to the situations faced by

firms and workers, and we impose the no-profit condition for vacancies and the

Nash bargaining outcome on firms’ and workers’ payoffs.

A firm’s value of a filled job J and a vacancy V are given by

J = y − w + β [sV + (1− s)J ] , (29.3.3)

V = −c + β
{
q(θ)J + [1− q(θ)]V

}
. (29.3.4)

That is, a filled job turns into a vacancy with probability s , and a vacancy

turns into a filled job with probability q(θ). After invoking the condition that
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vacancies earn zero profits, V = 0, equation (29.3.4) becomes

J =
c

βq(θ)
, (29.3.5)

which we substitute into equation (29.3.3) to arrive at

w = y − r + s

q(θ)
c . (29.3.6)

The wage rate in equation (29.3.6) ensures that firms with vacancies break even

in an expected present-value sense. In other words, a firm’s match surplus must

be equal to J in equation (29.3.5) in order for the firm to recoup its average

discounted costs of filling a vacancy.

The worker’s share of the match surplus is the difference between the value

of an employed worker E and the value of an unemployed worker U ,

E = w + β
[
sU + (1− s)E

]
, (29.3.7)

U = z + β
{
θq(θ)E + [1− θq(θ)]U

}
, (29.3.8)

where an employed worker becomes unemployed with probability s and an un-

employed worker finds a job with probability θq(θ). The worker’s share of the

match surplus, E − U , has to be related to the firm’s share of the match sur-

plus, J , in a particular way to be consistent with Nash bargaining. Let the

total match surplus be denoted S = (E − U) + J , which is shared according to

the Nash product

max
(E−U),J

(E − U)φJ1−φ (29.3.9)

subject to S = E − U + J ,

with solution

E − U = φS and J = (1− φ)S . (29.3.10)

After solving equations (29.3.3) and (29.3.7) for J and E , respectively, and

substituting them into equations (29.3.10), we get

w =
r

1 + r
U + φ

(
y − r

1 + r
U

)
. (29.3.11)
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The expression is quite intuitive when seeing r(1 + r)−1U as the annuity value

of being unemployed. The wage rate is just equal to this outside option plus

the worker’s share φ of the one-period match surplus. The annuity value of

being unemployed can be obtained by solving equation (29.3.8) for E −U and

substituting this expression and equation (29.3.5) into equations (29.3.10),

r

1 + r
U = z +

φ θ c

1− φ
. (29.3.12)

Substituting equation (29.3.12) into equation (29.3.11), we obtain still another

expression for the wage rate,

w = z + φ(y − z + θc) . (29.3.13)

That is, the Nash bargaining results in the worker receiving compensation for

lost leisure z and a fraction φ of both the firm’s output in excess of z and the

economy’s average vacancy cost per unemployed worker.

The two expressions for the wage rate in equations (29.3.6) and (29.3.13)

determine jointly the equilibrium value for θ ,

y − z =
r + s + φ θ q(θ)

(1− φ)q(θ)
c . (29.3.14)

This implicit function for θ ensures that vacancies are associated with zero

profits, and that firms’ and workers’ shares of the match surplus are the outcome

of Nash bargaining.

29.3.2. Welfare analysis

A planner would choose an allocation that maximizes the discounted value of

output and leisure net of vacancy costs. The social optimization problem does

not involve any uncertainty because the aggregate fractions of successful matches

and destroyed matches are just equal to the probabilities of these events. The

social planner’s problem of choosing the measure of vacancies, vt , and next

period’s employment level, nt+1 , can then be written as

max
{vt,nt+1}t

∞∑

t=0

βt [ynt + z(1− nt) − cvt] , (29.3.15)

subject to nt+1 = (1 − s)nt + q

(
vt

1− nt

)
vt , (29.3.16)

given n0 .
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The first-order conditions with respect to vt and nt+1 , respectively, are

−βtc + λt [q
′ (θt) θt + q (θt)] = 0 , (29.3.17)

−λt + βt+1(y − z) + λt+1

[
(1− s) + q′ (θt+1) θ

2
t+1

]
= 0 , (29.3.18)

where λt is the Lagrangian multiplier on equation (29.3.16). Let us solve for

λt from equation (29.3.17), and substitute into equation (29.3.18) evaluated at

a stationary solution

y − z =
r + s + α θ q(θ)

(1− α)q(θ)
c . (29.3.19)

A comparison of this social optimum to the private outcome in equation (29.3.14)

shows that the decentralized equilibrium is only efficient if φ = α . If the work-

ers’ bargaining strength φ exceeds (falls below) α , the equilibrium job supply

is too low (high). Recall that α is both the elasticity of the matching function

with respect to the measure of unemployment, and the negative of the elasticity

of the probability of filling a vacancy with respect to θt . In its latter meaning,

a high α means that an additional vacancy has a large negative impact on all

firms’ probability of filling a vacancy; the social planner would therefore like to

curtail the number of vacancies by granting workers a relatively high bargaining

power. Hosios (1990) shows how the efficiency condition φ = α is a general one

for the matching framework.

It is instructive to note that the social optimum is equivalent to choosing

the worker’s bargaining power φ such that the value of being unemployed is

maximized in a decentralized equilibrium. To see this point, differentiate the

value of being unemployed (29.3.12) to find the slope of the indifference in the

space of φ and θ ,
∂θ

∂φ
= − θ

φ(1− φ)
,

and use the implicit function rule to find the corresponding slope of the equilib-

rium relationship (29.3.14),

∂θ

∂φ
= − y − z + θc

[φ − (r + s) q′(θ) q(θ)−2] c
.

We set the two slopes equal to each other because a maximum would be at-

tained at a tangency point between the highest attainable indifference curve
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and equation (29.3.14) (both curves are negatively sloped and convex to the

origin):

y − z =
(r + s)α

φ
+ φ θ q(θ)

(1− φ)q(θ)
c . (29.3.20)

When we also require that the point of tangency satisfy the equilibrium condition

(29.3.14), it can be seen that φ = α maximizes the value of being unemployed in

a decentralized equilibrium. The solution is the same as the social optimum be-

cause the social planner and an unemployed worker both prefer an optimal rate

of investment in vacancies, one that takes matching externalities into account.

29.3.3. Size of the match surplus

The size of the match surplus depends naturally on the output y produced by

the worker, which is lost if the match breaks up and the firm is left to look for

another worker. In principle, this loss includes any returns to production factors

used by the worker that cannot be adjusted immediately. It might then seem

puzzling that a common assumption in the matching literature is to exclude

payments to physical capital when determining the size of the match surplus

(see, e.g., Pissarides, 1990). Unless capital can be moved without friction in

the economy, this exclusion of payments to physical capital must rest on some

implicit assumption of outside financing from a third party that is removed

from the wage bargain between the firm and the worker. For example, suppose

the firm’s capital is financed by a financial intermediary that demands specific

rental payments in order not to ask for the firm’s bankruptcy. As long as the

financial intermediary can credibly distance itself from the firm’s and worker’s

bargaining, it would be rational for the two latter parties to subtract the rental

payments from the firm’s gross earnings and bargain over the remainder.

In our basic matching model, there is no physical capital, but there is invest-

ment in vacancies. Let us consider the possibility that a financial intermediary

provides a single firm funding for this investment. The simplest contract would

be that the intermediary hand over funds c to a firm with a vacancy in ex-

change for a promise that the firm pay ǫ in every future period of operation. If

the firm cannot find a worker in the next period, it fails and the intermediary

writes off the loan, and otherwise the intermediary receives the stipulated inter-

est payment ǫ so long as a successful match stays in business. This agreement
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with a single firm will have a negligible effect on the economy-wide values of

market tightness θ and the value of being unemployed U . Let us examine the

consequences for the particular firm involved and the worker it meets.

Under the conjecture that a match will be acceptable to both the firm and

the worker, we can compute the interest payment ǫ needed for the financial

intermediary to break even in an expected present-value sense,

c = q(θ)β

∞∑

t=0

βt(1− s)tǫ =⇒ ǫ =
r + s

q(θ)
c . (29.3.21)

A successful match will then generate earnings net of the interest payment equal

to ỹ = y− ǫ . To determine how the match surplus is split between the firm and

the worker, we replace y , w , J , and E in equations (29.3.3) and (29.3.7), and

(29.3.9) by ỹ , w̃ , J̃ , and Ẽ . That is, J̃ and Ẽ are the values to the firm and

the worker, respectively, for this particular filled job. We treat θ , V , and U

as constants, since they are determined in the rest of the economy. The Nash

bargaining can then be seen to yield

w̃ =
r

1 + r
U + φ

(
ỹ − r

1 + r
U

)
=

r

1 + r
U + φ

φ (r + s)

(1 − φ) q(θ)
c ,

where the first equality corresponds to the previous equation (29.3.11). The

second equality is obtained after invoking ỹ = y − ǫ and equations (29.3.12),

(29.3.14), and (29.3.21), and the resulting expression confirms the conjecture

that the match is acceptable to the worker who receives a wage in excess of the

annuity value of being unemployed. The firm will, of course, be satisfied with

any positive ỹ− w̃ because it has not incurred any costs whatsoever in order to

form the match,

ỹ − w̃ =
φ (r + s)

q(θ)
c > 0 ,

where we once again have used ỹ = y − ǫ , equations (29.3.12), (29.3.14), and

(29.3.21), and the preceding expression for w̃ . Note that ỹ − w̃ = φǫ with the

following interpretation: If the interest payment on the firm’s investment, ǫ , was

not subtracted from the firm’s earnings prior to the Nash bargain, the worker

would receive an increase in the wage equal to his share φ of the additional

“match surplus.” The present financial arrangement saves the firm this extra

wage payment, and the saving becomes the firm’s profit. Thus, a single firm

with the proposed contract would have a strictly positive present value when
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entering the economy of the previous subsection. If there were unlimited entry

of new firms having access to intermediaries offering such a contract, those

profits would be competed away. We ask the reader to characterize equilibrium

outcomes under free entry.

29.4. Matching model with heterogeneous jobs

Acemoglu (1997), Bertola and Caballero (1994), and Davis (1995) explore match-

ing models where heterogeneity on the job supply side must be negotiated

through a single matching function, which gives rise to additional externali-

ties. Here, we will study an infinite horizon version of Davis’s model, which

assumes that heterogeneous jobs are created in the same labor market with

only one matching function. We extend our basic matching framework as fol-

lows: Let there be I types of jobs. A filled job of type i produces yi . The

cost in each period of creating a measure vi of vacancies of type i is given

by a strictly convex upward-sloping cost schedule, Ci(vi). In a decentralized

equilibrium, we will assume that vacancies are competitively supplied at a price

equal to the marginal cost of creating an additional vacancy, Ci
′
(vi), and we

retain the assumption that firms employ at most one worker. Another implicit

assumption is that {yi, Ci(·)} are such that all types of jobs are created in both

the decentralized steady state and the socially optimal steady state.

29.4.1. A steady state

In a steady state, there will be a time-invariant distribution of employment and

vacancies across types of jobs. Let ηi be the fraction of type i jobs among all

vacancies. With respect to a job of type i , the value of an employed worker,

Ei , and a firm’s values of a filled job, J i , and a vacancy, V i , are given by

J i = yi − wi + β
[
sV i + (1 − s)J i

]
, (29.4.1)

V i = −Ci′(vi) + β
{
q(θ)J i +

[
1− q(θ)

]
V i
}
, (29.4.2)

Ei = wi + β
[
sU + (1− s)Ei

]
, (29.4.3)

U = z + β
{
θq(θ)

∑

j

ηjEj +
[
1− θq(θ)

]
U
}
, (29.4.4)
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where the value of being unemployed, U , reflects that the probabilities of being

matched with different types of jobs are equal to the fractions of these jobs

among all vacancies.

After imposing a zero-profit condition on all types of vacancies, we arrive at

the analogue to equation (29.3.6),

wi = yi − r + s

q(θ)
Ci

′
(vi) . (29.4.5)

As before, Nash bargaining can be shown to give rise to still another character-

ization of the wage,

wi = z + φ
[
yi − z + θ

∑

j

ηjCj
′
(vj)

]
, (29.4.6)

which should be compared to equation (29.3.13). After setting the two wage

expressions (29.4.5) and (29.4.6) equal to each other, we arrive at a set of

equilibrium conditions for the steady-state distribution of vacancies and the

labor market tightness,

yi − z =

r + s + φ θ q(θ)

∑
j η

jCj
′
(vj)

Ci
′
(vi)

(1 − φ)q(θ)
Ci

′
(vi) . (29.4.7)

When we next turn to the efficient allocation in the current setting, it will

be useful to manipulate equation (29.4.7) in two ways. First, subtract from this

equilibrium expression for job i the corresponding expression for job j ,

yi − yj =
r + s

(1− φ)q(θ)

[
Ci

′
(vi) − Cj

′
(vj)

]
. (29.4.8)

Second, multiply equation (29.4.7) by vi and sum over all types of jobs,

∑

i

vi(yi − z) =
r + s + φ θ q(θ)

(1− φ)q(θ)

∑

i

viCi
′
(vi) . (29.4.9)

(This expression is reached after invoking ηj ≡ vj/
∑
h v

h , and an interchange

of summation signs.)
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29.4.2. Welfare analysis

The social planner’s optimization problem becomes

max
{vit,n

i
t+1

}t,i

∞∑

t=0

βt
[∑

j

yjnjt + z
(
1−

∑

j

njt

)
−
∑

j

Cj(vjt )
]
, (29.4.10a)

subject to nit+1 = (1 − s)nit + q

( ∑
j v

j
t

1−∑j n
j
t

)
vit , ∀i, t ≥ 0, (29.4.10b)

given
{
ni0
}
i
. (29.4.10c)

The first-order conditions with respect to vit and nit+1 , respectively, are

− βtCi
′
(vit) + λitq(θt) +

q′ (θt)

1−∑j n
j
t

∑

j

λjt v
j
t = 0 , (29.4.11)

− λit + βt+1(yi − z) + λit+1(1− s)

+
q′ (θt+1) θt+1

1−∑j n
j
t+1

∑

j

λjt+1 v
j
t+1 = 0 . (29.4.12)

To explore the efficient relative allocation of different types of jobs, we subtract

from equation (29.4.11) the corresponding expression for job j ,

λit − λjt =
βt
[
Ci

′
(vit) − Cj

′
(vjt )

]

q(θt)
. (29.4.13)

Next, we do the same computation for equation (29.4.12) and substitute equa-

tion (29.4.13) into the resulting expression evaluated at a stationary solution,

yi − yj =
r + s

q(θ)

[
Ci

′
(vi) − Cj

′
(vj)

]
. (29.4.14)

A comparison of equation (29.4.14) to equation (29.4.8) suggests that there

will be an efficient relative supply of different types of jobs in a decentralized

equilibrium only if φ = 0. For any strictly positive φ , the difference in marginal

costs of creating vacancies for two different jobs is smaller in the decentralized

equilibrium as compared to the social optimum; that is, the decentralized equi-

librium displays smaller differences in the distribution of vacancies across types

of jobs. In other words, the decentralized equilibrium creates relatively too
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many “bad jobs” with low y ’s or, equivalently, relatively too few “good jobs”

with high y ’s. The inefficiency in the mix of jobs disappears if the workers have

no bargaining power so that the firms reap all the benefits of upgrading jobs.1

But from before we know that workers’ bargaining power is essential to correct

an excess supply of the total number of vacancies.

To investigate the efficiency with respect to the total number of vacancies,

multiply equation (29.4.11) by vi and sum over all types of jobs,

∑

i

λit v
i
t =

βt
∑

i v
i
tC

i′(vit)

q(θt) + q′(θt)θt
. (29.4.15)

Next, we do the same computation for equation (29.4.12) and substitute equa-

tion (29.4.15) into the resulting expression evaluated at a stationary solution,

∑

i

vi(yi − z) =
r + s + α θ q(θ)

(1− α)q(θ)

∑

i

viCi
′
(vi) . (29.4.16)

A comparison of equations (29.4.16) and (29.4.9) suggests the earlier result

from the basic matching model; that is, an efficient total supply of jobs in a

decentralized equilibrium calls for φ = α .2 Hence, Davis (1995) concludes that

1 The interpretation that φ = 0, which is needed to attain an efficient relative supply of

different types of jobs in a decentralized equilibrium, can be made precise in the following

way: Let v and n denote any sustainable stationary values of the economy’s measure of

total vacancies and employment rate, that is, sn = q
(

v
1−n

)
v . Solve the social planner’s

optimization problem in equation (29.4.10) subject to the additional constraints
∑

i v
i
t =

v ,
∑

i n
i
t+1 = n ∀t ≥ 0, given {ni0 :

∑
i n
i
0 = n} . After applying the steps in the main text

to the first-order conditions of this problem, we arrive at the very same expression (29.4.14).

Thus, if {v, n} is taken to be the steady-state outcome of the decentralized economy, it follows

that equilibrium condition (29.4.8) satisfies efficiency condition (29.4.14) when φ = 0.
2 The suggestion that φ = α , which is needed to attain an efficient total supply of jobs in a

decentralized equilibrium, can be made precise in the following way. Suppose that the social

planner is forever constrained to some arbitrary relative distribution, {γi} , of types of jobs

and vacancies, where γi ≥ 0 and
∑

i γ
i = 1. The constrained social planner’s problem is then

given by equations (29.4.10) subject to the additional restrictions vit = γivt , n
i
t = γint ∀t ≥ 0.

That is, the only choice variables are now total vacancies and employment, {vt, nt+1} . After

consolidating the two first-order conditions with respect to vt and nt+1 , and evaluating at a

stationary solution, we obtain

∑

j

yjγj − z =
r + s + αθ q(θ)

(1− α)q(θ)

∑

j

γjCj
′
(γjv) .
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there is a fundamental tension between the condition for an efficient mix of jobs

(φ = 0) and the standard condition for an efficient total supply of jobs (φ = α).

29.4.3. The allocating role of wages I: separate markets

The last section clearly demonstrates Hosios’s (1990) characterization of the

matching framework: “Though wages in matching-bargaining models are com-

pletely flexible, these wages have nonetheless been denuded of any allocating

or signaling function: this is because matching takes place before bargaining

and so search effectively precedes wage-setting.” In Davis’s matching model,

the problem of wages having no allocating role is compounded through the exis-

tence of heterogeneous jobs. But as discussed by Davis, this latter complication

would be overcome if different types of jobs were ex ante sorted into separate

markets. Equilibrium movements of workers across markets would then remove

the tension between the optimal mix and the total supply of jobs. Different

wages in different markets would serve an allocating role for the labor supply

across markets, even though the equilibrium wage in each market would still be

determined through bargaining after matching.

Let us study the outcome when there are such separate markets for different

types of jobs and each worker can participate in only one market at a time.

The modified model is described by equations (29.4.1), (29.4.2), and (29.4.3)

where the market tightness variable is now also indexed by i and θi , and the

new expression for the value of being unemployed is

U = z + β
{
θiq(θi)Ei +

[
1− θiq(θi)

]
U
}
. (29.4.17)

In an equilibrium, an unemployed worker attains the value U regardless of which

labor market he participates in. The characterization of a steady state proceeds

along the same lines as before. Let us here reproduce only three equations that

will be helpful in our reasoning. The wage in market i and the annuity value of

an unemployed worker can be written as

wi = φyi + (1 − φ)
r

1 + r
U , (29.4.18)

By multiplying both sides by v , we arrive at the very same expression (29.4.16). Thus, if

the arbitrary distribution {γi} is taken to be the steady-state outcome of the decentralized

economy, it follows that equilibrium condition (29.4.9) satisfies efficiency condition (29.4.16)

when φ = α .
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r

1 + r
U = z +

φθiCi
′
(vi)

1− φ
, (29.4.19)

and the equilibrium condition for market i becomes

yi − z =
r + s + φ θi q(θi)

(1− φ)q(θi)
Ci

′
(vi) . (29.4.20)

The social planner’s objective function is the same as expression (29.4.10a),

but the earlier constraint (29.4.10b) is now replaced by

nit+1 = (1 − s)nit + q

(
vit
uit

)
vit ,

1 =
∑

j

(
ujt + njt

)
,

where uit is the measure of unemployed workers in market i . At a stationary

solution, the first-order conditions with respect to vit , u
i
t , and nit+1 can be

combined to read

yi − z =
r + s + α θi q(θi)

(1− α)q(θi)
Ci

′
(vi) . (29.4.21)

Equations (29.4.20) and (29.4.21) confirm Davis’s finding that the social opti-

mum can be attained with φ = α as long as different types of jobs are sorted

into separate markets.

It is interesting to note that the socially optimal wages, that is, equation

(29.4.18) with φ = α , imply wage differences for ex ante identical workers.

Wage differences here are not a sign of any inefficiency but rather necessary to

ensure an optimal supply and composition of jobs. Workers with higher pay are

compensated for an unemployment spell in their job market, which is on average

longer.
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29.4.4. The allocating role of wages II: wage announcements

According to Moen (1997), we can reinterpret the socially optimal steady state

in the last section as an economy with competitive wage announcements instead

of wage bargaining with φ = α . Firms are assumed to freely choose a wage

to announce, and then they join the market offering this wage without any

bargaining. The socially optimal equilibrium is attained when workers as wage

takers choose between labor markets, so that the value of an unemployed worker

is equalized in the economy.

To demonstrate that wage announcements are consistent with the socially

optimal steady state, consider a firm with a vacancy of type i which is free to

choose any wage w̃ and then join a market with this wage. A labor market

with wage w̃ has a market tightness θ̃ such that the value of unemployment is

equal to the economy-wide value U . After replacing w , E , and θ in equations

(29.4.3) and (29.4.17) by w̃ , Ẽ , and θ̃ , we can combine these two expressions

to arrive at a relationship between w̃ and θ̃ ,

w̃ =
r

1 + r
U +

r + s

θ̃q(θ̃)

( r

1 + r
U − z

)
. (29.4.22)

The expected present value of posting a vacancy of type i for one period in

market (w̃, θ̃) is

−Ci′(vi) + q(θ̃)β

∞∑

t=0

βt(1 − s)t(yi − w̃) = −Ci′(vi) + q(θ̃)
yi − w̃

r + s
.

After substituting equation (29.4.22) into this expression, we can compute the

first-order condition with respect to θ̃ as

q′(θ̃)
yi

r + s
− z

θ̃2
+

[
1

θ̃2
− q′(θ̃)

r + s

]
r

1 + r
U = 0 .

Since the socially optimal steady state is our conjectured equilibrium, we get

the economy-wide value U from equation (29.4.19) with φ replaced by α . The

substitution of this value for U into the first-order condition yields

yi − z =
r + s + α θ̃ q(θ̃)

(1 − α)q(θ̃)

θi

θ̃
Ci

′
(vi) . (29.4.23)

The right side is strictly decreasing in θ̃ , so by equation (29.4.21) the equality

can only hold with θ̃ = θi . We have therefore confirmed that the wages in an
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optimal steady state are such that firms would like freely to announce them and

to participate in the corresponding markets without any wage bargaining. The

equal value of an unemployed worker across markets ensures the participation

of workers, who now also act as wage takers.

29.5. Employment lotteries

Consider a labor market without search and matching frictions but where labor

is indivisible. An individual can supply either one unit of labor or no labor at

all, as assumed by Hansen (1985) and Rogerson (1988). In such a setting, em-

ployment lotteries can be welfare enhancing. The argument is best understood

in Rogerson’s static model, but with physical capital (and its implication of

diminishing marginal product of labor) removed from the analysis. We assume

that a single good can be produced with labor, n , as the sole input in a constant

returns to scale technology,

f(n) = γn , where γ > 0 . (29.5.1)

In a competitive equilibrium, the equilibrium wage is then equal to γ . Follow-

ing Hansen and Rogerson, the preferences of an individual are assumed to be

additively separable in consumption, c , and labor,

u(c) − v(n) .

The standard assumptions are that both u and v are twice continuously differ-

entiable and increasing, but while u is strictly concave, v is convex. However,

as pointed out by Rogerson, the precise properties of the function v are not

essential because of the indivisibility of labor. The only values of v(n) that

matter are v(0) and v(1). Let v(0) = 0 and v(1) = A > 0. An individual who

can supply one unit of labor in exchange for γ units of goods would then choose

to do so if

u(γ) − A ≥ u(0) ,

and otherwise the individual would choose not to work.

The proposed allocation might be improved upon by introducing employment

lotteries. That is, each individual chooses a probability of working, ψ ∈ [0, 1],
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and he trades his stochastic labor earnings in contingency markets. We assume a

continuum of agents so that the idiosyncratic risks associated with employment

lotteries do not pose any aggregate risk, and the contingency prices are then

determined by the probabilities of events occurring. (See chapters 8, 13, and

14.) Let c1 and c2 be the individual’s choice of consumption when working and

not working, respectively. The optimization problem becomes

max
c1,c2,ψ

ψ [u(c1) − A] + (1− ψ)u(c2) ,

subject to ψc1 + (1− ψ)c2 ≤ ψγ ,

c1, c2 ≥ 0 , ψ ∈ [0, 1] .

At an interior solution for ψ , the first-order conditions for consumption imply

that c1 = c2 ,
ψ u′(c1) = ψ λ ,

(1− ψ)u′(c2) = (1− ψ)λ ,

where λ is the multiplier on the budget constraint. Since there is no harm

in also setting c1 = c2 when ψ = 0 or ψ = 1, the individual’s maximization

problem can be simplified to read

max
c,ψ

u(c) − ψA ,

subject to c ≤ ψγ , c ≥ 0 , ψ ∈ [0, 1] .
(29.5.2)

The welfare-enhancing potential of employment lotteries is implicit in the re-

laxation of the earlier constraint that ψ could only take on two values, 0 or 1.

With employment lotteries, the marginal rate of transformation between leisure

and consumption is equal to γ .

The solution to expression (29.5.2) can be characterized by considering three

possible cases:

Case 1. A/u′(0) ≥ γ .

Case 2. A/u′(0) < γ < A/u′(γ).

Case 3. A/u′(γ) ≤ γ .

The introduction of employment lotteries will only affect individuals’ behavior

in the second case. In the first case, if A/u′(0) ≥ γ , it will under all circum-

stances be optimal not to work (ψ = 0), since the marginal value of leisure in

terms of consumption exceeds the marginal rate of transformation even at a zero
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consumption level. In the third case, if A/u′(γ) ≤ γ , it will always be optimal

to work (ψ = 1), since the marginal value of leisure falls short of the marginal

rate of transformation when evaluated at the highest feasible consumption per

worker. The second case implies that expression (29.5.2) has an interior solution

with respect to ψ and that employment lotteries are welfare enhancing. The

optimal value, ψ∗ , is then given by the first-order condition

A

u′(γψ∗)
= γ .

An example of the second case is shown in Figure 29.5.1. The situation here

is such that the individual would choose to work in the absence of employment

lotteries, because the curve u(γn)−u(0) is above the curve v(n) when evaluated

at n = 1. After the introduction of employment lotteries, the individual chooses

the probability ψ∗ of working, and his welfare increases by △ψ −△ .

γu (   n) - u (0)

∆ψ

n1

A

Utils

v (n)

ψ

∆

∗

Figure 29.5.1: The optimal employment lottery is given by prob-

ability ψ∗ of working, which increases expected welfare by △ψ−△
as compared to working full-time, n = 1.
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29.6. Lotteries for households versus lotteries for firms

Prescott (2005b) focuses on the role of nonconvexities at the level of individual

households and production units in the study of business cycles. On the house-

hold side, he envisions indivisibilities in labor supply like those in the previous

section, while on the firm side, he uses capacity constraints as an example. In

spite of these nonconvexities at the micro level, where all units are assumed to

be infinitesimal, Prescott points out that the aggregate economy is convex when

there are lotteries for households and lotteries for firms that serve to smooth

the nonconvexities and that thereby deliver both a stand-in household and a

stand-in firm.

Prescott thus recommends an aggregation theory to rationalize a stand-in

household that is analogous to better-known aggregation results that underlie

the stand-in firm and the aggregate production function. He emphasizes the

formal similarities associated with smoothing out nonconvexities by aggregating

over firms, on the one hand, and aggregating over households, on the other.

Here we shall argue that the economic interpretations that attach to these two

types of aggregation make the two aggregation theories very different.3 Perhaps

this explains why this aggregation method has been applied more to firms than

to households.4

Before turning to a critical comparison of the two aggregation theories, we

first describe a simple technology that will capture the essence of Prescott’s

example of nonconvexities on the firm side, while leaving intact most of our

analysis in section 29.5.

3 Our argument is based on Ljungqvist and Sargent’s (2005) comment on Prescott (2005b).

4 Sherwin Rosen often used a lottery model for the household. Instead of analyzing why

a particular individual chose higher education, Rosen modeled a family with a continuum of

members that allocates fractions of its members to distinct educational choices that involve

different numbers of years of schooling. See Ryoo and Rosen (2003).
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29.6.1. An aggregate production function

We replace our earlier linear technology (29.5.1) with a production technology

based on a strictly concave function g(·),

g(0) = 0, g(1) = γ, g′ > 0, g′′ < 0 =⇒ g′(1) < γ.

The point of normalization, g(1) = γ , will be a focal point in our analysis, and

the strict concavity of g ensures that g′(1) < γ .

We assume that there is a continuum of firms and each firm has a production

technology given by

f(n) =

{
g(n) if n ≥ 1,

0 otherwise,
(29.6.1)

where n is the amount of labor employed in the firm. Note that production can

take place only if the firm employs at least n ≥ 1.5 We normalize the measure of

households in section 29.5 to unity and assume that there is a measure of firms

equal to Z < 1, i.e., there are more households than firms. Each household

owns an equal share of all firms.

In a competitive equilibrium where N households are working, there will

be min{N,Z} firms in operation. Because of the technological constraint in

(29.6.1), firms will choose to operate only if they can employ at least one worker.

Moreover, competitive forces will guarantee that the maximum number of firms

is operating subject to the constraint that each firm employs at least one worker.

This is an implication of our assumption of decreasing returns to scale in each

firm. The assumption guarantees that it is profitable to operate many small

firms rather than one large firm and that all operating firms will employ the

same amount of labor. Thus, in a competitive equilibrium, aggregate output as

a function of aggregate employment N is given by

F (N) =

{
N γ if N < Z,

Z g
(
N
Z

)
if N ≥ Z.

(29.6.2)

The aggregate production function in (29.6.2) can be understood as follows.

In the first case, only N firms are active and each employs one worker. Hence,

5 As a clarification, note that we do not impose an integer constraint on employment in a

firm. It is true that each household in section 29.5 faces the integer constraint of supplying

either one unit of labor or no labor at all. However, a household that chooses to work can

very well divide its one unit of labor across several firms.
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aggregate output is equal to N g(1) = N γ , and the economy is operating at

less than full capacity because there are idle firms (N < Z ). In the second

case, all Z firms are active and each one employs the same amount of labor,

n = N/Z . Hence, aggregate output is equal to Z g(N/Z), and the economy is

operating at full capacity in the sense that there are no idle firms. Note that

the aggregate production function in (29.6.2) is convex even though individual

firms are subject to a nonconvexity in (29.6.1).

We now turn to an example of time-varying capacity utilization to compare

and criticize the aggregation theory underlying the stand-in household in section

29.5 and the aggregation theory underlying the aggregate production function

in (29.6.2).6

29.6.2. Time-varying capacity utilization

We assume that the stand-in household in section 29.5 is subject to an aggregate

preference shock where the disutility of working can take on two different values,

A ∈ {0, Ā} . The parameters satisfy the following restrictions:

Ā

u′(0)
< γ, g′

(
1

Z

)
<

Ā

u′
[
Z g
(
1
Z

)] . (29.6.3)

These parameter restrictions are the analogue to the parameter restriction in

case 2 of section 29.5. In particular, restrictions (29.6.3) guarantee an interior

solution with respect to the employment lottery when A = Ā , i.e., employment,

will then satisfy N ∈ (0, 1) where N is both the measure of households working

and the probability of an individual household working since the population of

all households is normalized to one.

To see that parameter restrictions (29.6.3) guarantee an interior solution

with respect to N when A = Ā , we will examine why neither N = 0 nor

N = 1 can constitute an equilibrium. First, we can reject N = 0 with the

following argument. Whenever N < Z , competition among firms drives up

6 There are three differences between Prescott’s (2005b) example and ours, but none mate-

rially effects our illustration of time-varying capacity utilization. First, Prescott postulates an

additional production factor, capital, that can also be freely allocated across firms. Second,

Prescott assumes a technology for creating new firms. Third, Prescott studies technology

shocks while we explore preference shocks.
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the equilibrium wage to w = g(1) = γ . That is, firms are then not a scarce

input in production and, therefore, earn no rents. Given the equilibrium wage

w = γ , the first inequality in (29.6.3) states that the stand-in household’s

first-order conditions would be violated if N = 0. Second, we can reject an

equilibrium outcome with N = 1 as follows. At full employment, all firms are

operating and aggregate output is given by Z g(1/Z), which is also equal to per

capita output since the measure of households is normalized to one. Moreover,

according to section 29.5, households will trade in contingent claims prior to

the outcome of the employment lottery so that each household’s consumption is

also given by c = Z g(1/Z). The equilibrium wage at full employment is given

by w = g′(1/Z), i.e, the marginal product of labor in an individual firm that

employs the same amount of labor as all other firms. Given the consumption

outcome and wage rate when N = 1, we can ask if the stand-in household would

indeed choose the probability of working equal to one that would be required in

order for this allocation to constitute an equilibrium. According to the second

inequality in (29.6.3), the answer is no because the stand-in household would

then value a marginal increase in leisure more than the loss of wage income.

Thus, we can conclude that parameter restrictions (29.6.3) guarantee an interior

solution with respect to the probability of working when A = Ā .

In contrast, when the preference shock is A = 0, the stand-in household will

inelastically supply one unit of labor since there is no disutility of working. The

economy will then be operating at full employment with no idle firms. Hence,

different realizations of the preference shock A ∈ {0, Ā} will trigger changes

in unemployment and potentially changes in capacity utilization, where the

latter depends on the size of the given measure of firms. Everything else being

equal, a higher Z makes it more likely that the preference shock Ā entails

idle firms in an equilibrium. The households and firms that are designated

to be unemployed and idle, respectively, are determined by the outcome of

lotteries among households and lotteries among firms. Prescott’s assertion that

the aggregation theory for households is the analogue of the aggregation theory

for firms seems to be accurate. So what is the difference between these two

aggregation theories?

An important distinction between firms and households is that firms have no

independent preferences. They serve only as vehicles for generating rental pay-

ments for employed factors and profits for their owners. When a firm becomes

inactive, the “firm” itself does not care whether it continues or ceases to exist.
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Our example of a nonconvex production technology that generates time-varying

capacity utilization illustrates this point very well. The firms that do not find

any workers stay idle; that is just as well for those idle firms because the firms in

operation earn zero rents. In short, whether individual firms operate or remain

idle is the end of the story in the aggregation theory behind the aggregate pro-

duction function in (29.6.2). But in the aggregation theory behind the stand-in

household’s utility function in (29.5.2), it is really just the beginning. Individual

households do have preferences and care about alternative states of the world.

So the aggregation theory behind the stand-in household has an additional as-

pect that is not present in the theory that aggregates over firms, namely, it says

how consumption and leisure are smoothed across households with the help of

an extensive set of contingent claim markets. This market arrangement and

randomization device stands at the center of the employment lottery model. To

us, it seems that they make the aggregation theory behind the stand-in house-

hold fundamentally different than the well-known aggregation theory for the

firm side.

29.7. Employment effects of layoff taxes

The models of employment determination in this chapter can be used to address

the question, how do layoff taxes affect an economy’s employment? Hopen-

hayn and Rogerson (1993) apply the model of employment lotteries to this very

question and conclude that a layoff tax would reduce the level of employment.

Mortensen and Pissarides (1999b) reach the opposite conclusion in a matching

model. We will here examine these results by scrutinizing the economic forces

at work in different frameworks. The purpose is both to gain further insights

into the workings of our theoretical models and to learn about possible effects

of layoff taxes.7

Common features of many analyses of layoff taxes are as follows: The pro-

ductivity of a job evolves according to a Markov process, and a bad enough

realization triggers a layoff. The government imposes a tax τ on each layoff.

7 The analysis is based on Ljungqvist’s (2002) study of layoff taxes in different models of

employment determination.
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The tax revenues are handed back as equal lump-sum transfers to all agents,

denoted by T per capita.

Here, we assume the simplest possible Markov process for productivities. A

new job has productivity p0 . In all future periods, with probability ξ , the

worker keeps the productivity from last period, and with probability 1− ξ , the

worker draws a new productivity from a distribution G(p).

In our numerical examples, the model period is 2 weeks, and the assumption

that β = 0.9985 then implies an annual real interest rate of 4 percent. The

initial productivity of a new job is p0 = 0.5, and G(p) is taken to be a uniform

distribution on the unit interval. An employed worker draws a new productivity

on average once every two years when we set ξ = 0.98.

29.7.1. A model of employment lotteries with layoff taxes

In a model of employment lotteries, a market-clearing wage w equates the de-

mand and supply of labor. The constant-returns-to-scale technology implies

that this wage is determined from the supply side, as follows. At the beginning

of a period, let V (p) be the firm’s value of an employee with productivity p :

V (p) = max
{
p − w + β

[
ξV (p) + (1 − ξ)

∫
V (p′) dG(p′)

]
,

− τ
}
.

(29.7.1)

Given a value of w , the solution to this Bellman equation is a reservation pro-

ductivity p̄ . If there exists an equilibrium with strictly positive employment,

the equilibrium wage must be such that new hires exactly break even, so that

V (p0) = p0 − w + β
[
ξV (p0) + (1− ξ)

∫
V (p′) dG(p′)

]
= 0

⇒ w = p0 + β(1 − ξ)Ṽ , (29.7.2)

where

Ṽ ≡
∫
V (p′) dG(p′) .

To compute Ṽ , we first look at the value of V (p) when p ≥ p̄ ,

V (p)
∣∣∣
p≥p̄

= p − w + β
[
ξV (p) + (1− ξ)Ṽ

]
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= p − w + βξ
{
p − w + β

[
ξV (p) + (1− ξ)Ṽ

]}
+ β(1 − ξ)Ṽ

= (1 + βξ)
[
p − w + β(1 − ξ)Ṽ

]
+ β2ξ2V (p)

=
p − w + β(1− ξ)Ṽ

1 − βξ
=

p − p0
1 − βξ

, (29.7.3)

where the first equalities are obtained through successive substitutions of V (p),

and the last equality incorporates equation (29.7.2). We can then use equation

(29.7.3) to find an expression for Ṽ ,

Ṽ =

∫ p̄

−∞

−τ dG(p) +

∫ ∞

p̄

V (p) dG(p)

= −τ G(p̄) +

∫ ∞

p̄

p − p0
1 − βξ

dG(p) . (29.7.4)

From Bellman equation (29.7.1), the reservation productivity satisfies

p̄ − w + β
[
ξV (p̄) + (1− ξ)Ṽ

]
= −τ .

After imposing equation (29.7.2) and V (p̄) = −τ , we find

p̄ = p0 − (1− βξ)τ ≡ p̄(τ) . (29.7.5)

Equations (29.7.5), (29.7.4), and (29.7.2) can be used to solve for the equilib-

rium wage w = w(τ).

In a stationary equilibrium, let µ be the mass of new jobs created in every

period. The mass of jobs with productivity p0 that have not yet experienced a

new productivity draw can then be expressed as

µ

∞∑

i=0

ξi =
µ

1− ξ
, (29.7.6)

and the mass of jobs that have experienced a new productivity draw and are

still operating is given by

∞∑

i=0

ξiµ(1− ξ) [1−G(p̄)]

∞∑

j=0

{
ξ + (1− ξ) [1−G(p̄)]

}j

=
µ

1− ξ

1−G(p̄)

G(p̄)
. (29.7.7)
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After equating the sum of these two kinds of jobs to N (which we use to denote

the total mass of all jobs), we get the following steady-state relationship:

µ = NG(p̄)(1 − ξ). (29.7.8)

The firms generate aggregate profits Π. These profits are here computed gross

of aggregate layoff taxes, i.e., Π + T . (Recall that the government hands back

layoff tax revenues to the representative agent as a lump-sum transfer T .) Using

the masses of jobs in expressions (29.7.6) and (29.7.7), we have

Π + T =
µ

1− ξ
(p0 − w) +

µ

1− ξ

1−G(p̄)

G(p̄)

∫ ∞

p̄

p− w

1−G(p̄)
dG(p)

= N

[
G(p̄) (p0 − w) +

∫ ∞

p̄

(p− w) dG(p)

]
, (29.7.9)

where the last inequality invokes relationship (29.7.8).

In a stationary equilibrium with wage w and a gross interest rate 1/β , the

representative agent’s optimization problem reduces to the static problem:

max
c,ψ

u(c) − ψA ,

subject to c ≤ ψw + Π + T , c ≥ 0 , ψ ∈ [0, 1] ,
(29.7.10)

where the profits Π and the lump-sum transfer T are taken as given by the

agents.8 We let ψ∗ denote the optimally chosen probability of working. It is

equal to N in equilibrium; the corresponding optimal consumption level is

c∗ = Nw + Π + T = N

[
G(p̄)p0 +

∫ ∞

p̄

p dG(p)

]
, (29.7.11)

where we have invoked expression (29.7.9). Hence, the steady-state expected

lifetime utility of an agent before seeing the outcome of any employment lottery

is equal to
∞∑

t=0

βt
[
u (c∗) − ψ∗A

]
.

Following Hopenhayn and Rogerson (1993), the preference specification is

u(c) = log(c) and the disutility of work is calibrated to match an employment

8 As above, we are normalizing the measure of agents to unity so that aggregate variables

also represent per capita outcomes.
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to population ratio equal to 0.6, which leads us to choose A = 1.6. Figures

29.7.1–29.7.5 show how equilibrium outcomes vary with the layoff tax. The

curves labelled L pertain to the model of employment lotteries. As derived

in equation (29.7.5), the reservation productivity in Figure 29.7.1 falls when it

becomes more costly to lay off workers. Figure 29.7.2 shows how the decrease in

number of layoffs is outweighed by the higher tax per layoff, so total layoff taxes

as a fraction of GNP increase over almost the whole range. Figure 29.7.3 reveals

changing job prospects, where the probability of working falls with a higher

layoff tax (which is equivalent to falling employment in a model of employment

lotteries). The welfare loss associated with a layoff tax is depicted in Figure

29.7.4 as the amount of consumption that an agent would be willing to give up

in exchange for a steady state with no layoff tax, and the “willingness to pay”

is expressed as a fraction of per capita consumption at a zero layoff tax.

Figure 29.7.5 reproduces Hopenhayn and Rogerson’s (1993) result that em-

ployment falls with a higher layoff tax (except at the highest layoff taxes). In-

tuitively, from a private perspective, a higher layoff tax is like a deterioration

in the production technology; the optimal change in the agents’ employment

lotteries will therefore depend on the strength of the substitution effect versus

the income effect. The income effect is largely mitigated by the government’s

lump-sum transfer of the tax revenues back to the private economy. Thus, lay-

off taxes in models of employment lotteries have strong negative employment

implications that are caused by substituting leisure for work. Formally, the loga-

rithmic preference specification gives rise to an optimal choice of the probability

of working, which is equal to the employment outcome, as given by

ψ∗ =
1

A
− T +Π

w
. (29.7.12)

The precise employment effect here is driven by profit flows from firms gross

of layoff taxes expressed in terms of the wage rate. Since these profits are to

a large extent generated in order to pay for firms’ future layoff taxes, a higher

layoff tax tends to increase the accumulation of such funds with a corresponding

negative effect on the optimal choice of employment.

Negative employment effect of layoff taxes, when evaluated at τ = 0

Under the assumption that p0 = 1, i.e., the initial productivity of a new job

is equal to the upper support of the uniform distribution G(p) on the unit

interval [0, 1], we will show that the derivative of equilibrium employment is

strictly negative with respect to the layoff tax when evaluated at τ = 0.
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Expressions (29.7.4) and (29.7.9) can then be evaluated as follows:

Ṽ = −τ p̄+
[
1 + p̄

2
− 1

]
1− p̄

1− βξ
, (29.7.13)

and

Π + T = N

[
p̄+ (1− p̄)

1 + p̄

2
− w

]
. (29.7.14)

From equations (29.7.2) and (29.7.13),

w = 1 + β(1 − ξ)

[
−τ p̄− (1− p̄)2

2(1− βξ)

]
,

and after substituting for p̄ from (29.7.5)

w = 1 − β(1− ξ)τ

[
1− (1− βξ)τ

2

]
≡ w(τ) . (29.7.15)

By substituting (29.7.14) into (29.7.12) and using expressions (29.7.5) and

(29.7.15), we arrive at an equilibrium expression for N ,

N(τ) =
2w(τ)

A [2p̄(τ) + 1− p̄(τ)2]

with its derivative

dN(τ)

d τ
=

−2β(1− ξ)p̄(τ)
[
2p̄(τ) + 1− p̄(τ)2

]
+ 4(1− βξ) [1− p̄(τ)]w(τ)

A [2p̄(τ) + 1− p̄(τ)2]2
.

Evaluating the derivative at τ = 0, where p̄(0) = p0 = 1, we have

dN(τ)

d τ

∣∣∣∣∣
τ=0

=
−β(1− ξ)

A
< 0.

This states that in general equilibrium, employment falls in response to the

introduction of a layoff tax in our employment lottery model.
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Figure 29.7.1: Reservation productivity for different values of

the layoff tax.
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Figure 29.7.2: Total layoff taxes as a fraction of GNP for different

values of the layoff tax.
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Figure 29.7.3: Probability of working in the model with employ-

ment lotteries and probability of finding a job within 10 weeks in

the other models, for different values of the layoff tax.
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Figure 29.7.4: A job finder’s welfare loss due to the presence of

a layoff tax, computed as a fraction of per capita consumption at

a zero layoff tax.
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Figure 29.7.5: Employment index for different values of the layoff

tax. The index is equal to 1 at a zero layoff tax.

29.7.2. An island model with layoff taxes

To stay with the described technology in an island framework, let each job

represent a separate island, and an agent moving to a new island experiences

productivity p0 . We retain the feature that every agent bears the direct conse-

quences of his decisions. He receives his marginal product p when working and

incurs the layoff tax τ if leaving his island. The Bellman equation can then be

written as

V (p) = max

{
p − z + β

[
ξV (p) + (1− ξ)

∫
V (p′) dG(p′)

]
,

− τ + βT V (p0)

}
, (29.7.16)

where z is the forgone utility of leisure when working and T is the number of

periods it takes to move to another island.9 The solution to this equation is a

reservation productivity p̄ .

9 Note that we have left out the lump-sum transfer from the government because it does

not affect the optimization problem.
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If there exists an equilibrium with agents working, we must have

V (p0) = p0 − z + β

[
ξV (p0) + (1− ξ)

∫
V (p′) dG(p′)

]

=⇒ β(1− ξ)Ṽ = (1− βξ)V (p0) + z − p0 , (29.7.17)

where

Ṽ ≡
∫
V (p′) dG(p′) .

If the equilibrium entails agents moving between islands, the reservation pro-

ductivity, by equation (29.7.16), satisfies

p̄ − z + β
[
ξV (p̄) + (1− ξ)Ṽ

]
= −τ + βT V (p0) ,

and, after imposing equation (29.7.17) and V (p̄) = −τ + βT V (p0),

p̄ = p0 − (1− βξ)
[
τ + (1− βT )V (p0)

]
. (29.7.18)

Note that if agents could move instantaneously between islands, T = 0, the

reservation productivity would be the same as in the model of employment

lotteries, given by equation (29.7.5).

A higher layoff tax also reduces the reservation productivity in the island

model; that is, an increase in τ outweighs the drop in the second term in square

brackets in equation (29.7.18). For a formal proof, let us make explicit that the

value function and the reservation productivity are functions of the layoff tax,

V (p; τ) and p̄(τ). Consider two layoff taxes, τ and τ ′ , such that τ ′ > τ ≥ 0,

and denote the difference △τ = τ ′ − τ . We can then construct a lower bound

for V (p; τ ′) in terms of V (p; τ). In response to the higher layoff tax τ ′ , the

agent can always keep his decision rule associated with V (p; τ) and an upper

bound for his extra layoff tax payments would be that he paid △τ in the current

period and every T th period from there on,

V (p; τ ′) > V (p, τ) −
∞∑

i=0

βiT△τ , (29.7.19)

where the strict inequality follows from the fact that it cannot be optimal to

constantly move. In addition, the agent might be able to select a better decision

rule than the one associated with τ . In fact, the reservation productivity must
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fall in response to a higher layoff tax whenever there is an interior solution with

respect to p̄ , as given by equation (29.7.18). By using equations (29.7.18) and

(29.7.19), we have

p̄(τ ′) − p̄(τ) = −(1− βξ)
{
△τ + (1− βT )

[
V (p0; τ

′)− V (p0; τ)
]}

< −(1− βξ)
[
△τ − (1− βT )

∞∑

i=0

βiT△τ
]

= 0 .

The numerical illustration in Figures 29.7.1 through 29.7.5 is based on a

value of leisure z = 0.25 and a length of transition between jobs T = 7; that is,

unemployment spells last 14 weeks. The curves that pertain to the island model

are labeled S . The effects of layoff taxes on the reservation productivity, the

economy’s total layoff taxes, and the welfare of a recent job finder are all similar

to the outcomes in the model of employment lotteries. The sharp difference

appears in Figure 29.7.5 depicting the effect on the economy’s employment. In

the island model where agents are left to fend for themselves, a lower reservation

productivity is synonymous with both less labor reallocation and lower unem-

ployment. Lower unemployment is thus attained at the cost of a less efficient

labor allocation.

Layoff taxes also cause employment to rise in the general version of the

island model. For a given expected value of arriving on a new island vu , the

value function in equation (29.2.3) is replaced by

v(θ, x) = max
{
βvu − τ ,

θ f ′(x) + min
{
βvu , βE[v(θ′, x)|θ]

}}
, (29.7.20)

and equation (29.2.4) changes to

θ f ′(n) + βE [v(θ′, n)|θ] = βvu − τ . (29.7.21)

Lucas and Prescott (1974, p. 205) describe how a mobility cost like τ dampens

the reallocation of labor and shifts the curve x̄(vu) in Figure 29.2.1 downward.

The result is a decrease in unemployment and a decrease in the equilibrium value

of vu . Hence, Lucas and Prescott note “that lower average unemployment is

not, in general, associated with higher welfare for workers.” They also suggest

that the analysis could conceivably “help to account for the observed differences

in average unemployment across occupations and among countries.”
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29.7.3. A matching model with layoff taxes

We now modify the matching model to incorporate a layoff tax, and the exoge-

nous destruction of jobs is replaced by the described Markov process for a job’s

productivity. A job is now endogenously destroyed when the outside option,

taking the layoff tax into account, is higher than the value of maintaining the

match. The match surplus, Si(p), is a function of the job’s current productivity

p and can be expressed as

Si(p) + Ui = max

{
p+ β

[
ξSi(p) + (1 − ξ)

∫
Si(p

′) dG(p′) + Ui

]
,

Ui − τ

}
, (29.7.22)

where Ui is once again the agent’s outside option, that is, the value of being

unemployed. Both Si(p) and Ui are indexed by i , since we will explore the

implications of two alternative specifications of the Nash product, i ∈ {a, b} ,
[
Ea(p)− Ua

]φ
Ja(p)

1−φ , (29.7.23)
[
Eb(p)− Ub

]φ[
Jb(p) + τ

]1−φ
. (29.7.24)

Specification (29.7.23) leads to the usual result that the worker receives a frac-

tion φ of the match surplus, while the firm gets the remaining fraction (1−φ),

Ea(p)− Ua = φSa(p) and Ja(p) = (1 − φ)Sa(p) . (29.7.25)

The alternative specification (29.7.24) adopts the assumption of Saint-Paul

(1995) that the layoff cost changes the firm’s threat point from 0 to −τ , and
thereby increases the worker’s relative share of the match surplus. Solving for

the corresponding surplus-sharing rules, we get

Eb(p)− Ub = φ
(
Sb(p) + τ

)
,

Jb(p) = (1− φ)Sb(p)− φτ .
(29.7.26)

The worker’s continuation value outside of the match associated with Nash

product (29.7.23) or (29.7.24), respectively, is

Ua = z + β
[
θq(θ)φSa(p0) + Ua

]
, (29.7.27)

Ub = z + β
{
θq(θ)φ

[
Sb(p0) + τ

]
+ Ub

}
. (29.7.28)
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The equilibrium conditions that firms post vacancies until the expected profits

are driven down to zero become

(1− φ)Sa(p0) =
c

βq(θ)
, (29.7.29)

(1− φ)Sb(p0) − φτ =
c

βq(θ)
, (29.7.30)

for Nash products (29.7.23) and (29.7.24), respectively.

In the calibration, we choose a matching function M(u, v) = 0.01u0.5v0.5 , a

worker’s bargaining strength φ = 0.5, and the same value of leisure as in the

island model, z = 0.25. Qualitatively, the results in Figures 29.7.1 through

29.7.4 are the same across all the models considered here. The curve labeled

Ma pertains to the matching model in which the workers’ relative share of the

match surplus is constant, while the curve Mb refers to the model in which the

share is positively related to the layoff tax. However, matching model Mb does

stand out. Its reservation productivity plummets in response to the layoff tax

in Figure 29.7.1, and is close to zero at τ = 11. A zero reservation productivity

means that labor reallocation comes to a halt, and the economy’s tax revenues

fall to zero in Figure 29.7.2. The more dramatic outcomes under Mb have to

do with layoff taxes increasing workers’ relative share of the match surplus. The

equilibrium condition (29.7.30) requiring that firms finance incurred vacancy

costs with retained earnings from the matches becomes exceedingly difficult to

satisfy when a higher layoff tax erodes the fraction of match surpluses going to

firms. Firms can break even only if the expected time to fill a vacancy is cut

dramatically; that is, there has to be a large number of unemployed workers

for each posted vacancy. This equilibrium outcome is reflected in the sharply

falling probability of a worker finding a job within 10 weeks in Figure 29.7.3. As

a result, there are larger welfare costs in model Mb , as shown by the welfare loss

of a job finder in Figure 29.7.4. The welfare loss of an unemployed agent is even

larger in model Mb , whereas the differences between employed and unemployed

agents in the three other model specifications are negligible (not shown in any

figure).

In Figure 29.7.5, matching model Ma looks very much like the island model

with increasing employment, and matching model Mb displays initially falling

employment, similar to the model of employment lotteries. The later sharp

reversal of the employment effect in the Mb model is driven by our choice of a
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Markov process with rather little persistence. (For a comparison, see Ljungqvist,

2002, who explores Markov formulations with more persistence.)

Mortensen and Pissarides (1999a) propose still another bargaining specifica-

tion where expression (29.7.23) is the Nash product when a worker and a firm

meet for the first time, while the Nash product in expression (29.7.24) char-

acterizes all their consecutive negotiations. The idea is that the firm will not

incur any layoff tax if the firm and worker do not agree on a wage in the first

encounter; that is, there is never an employment relationship. In contrast, the

firm’s threat point is weakened in future negotiations with an already employed

worker because the firm would then have to pay a layoff tax if the match were

broken up. We will here show that, except for the wage profile, this alternative

specification is equivalent to just assuming Nash product (29.7.23) for all peri-

ods. The intuition is that the modified wage profile under the Mortensen and

Pissarides assumption is equivalent to a new hire posting a bond equal to his

share of the future layoff tax.

First, we compute the wage associated with expression (29.7.23), wa(p),

from the expression for a firm’s match surplus,

Ja(p) = p − wa(p) + β
[
ξJa(p) + (1− ξ)

∫
Ja(p

′) dG(p′)
]
, (29.7.31)

which together with equation (29.7.25) implies

wa(p) = p − (1 − φ)Sa(p) + β
[
ξ(1 − φ)Sa(p)

+ (1 − ξ)

∫
(1− φ)Sa(p

′) dG(p′)
]
. (29.7.32)

Second, we verify that the present value of these wages is exactly equal to that of

Mortensen and Pissarides’ bargaining scheme for any completed job, under the

maintained hypothesis that the two formulations have the same match surplus

Sa(p). Let J1(p) and J+(p) denote the firm’s match surplus with Mortensen and

Pissarides’ specification in the first period and all future periods, respectively.

The solutions to the maximization of their Nash products are

J1(p) = (1− φ)Sa(p) ,

J+(p) = (1− φ)Sa(p)− φτ .
(29.7.33)

The associated wage functions can be written as

w1(p) = p − J1(p) + β
[
ξJ+(p) + (1 − ξ)

∫
J+(p

′) dG(p′)
]
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= wa(p) − β φτ ,

w+(p) = p − J+(p) + β
[
ξJ+(p) + (1− ξ)

∫
J+(p

′) dG(p′)
]

= wa(p) + r β φτ ,

where the second equalities follow from equations (29.7.32) and (29.7.33), and

r ≡ β−1 − 1. It can be seen that the wage under the Mortensen and Pissarides’

specification is reduced in the first period by the worker’s share of any future

layoff tax, and future wages are increased by an amount equal to the net interest

on this posted “bond.” In other words, the present value of a worker’s total com-

pensation for any completed job is identical for the two specifications. It follows

that the present value of a firm’s match surplus is also identical across spec-

ifications. We have thereby confirmed that the same equilibrium allocation is

supported by Nash product (29.7.23) and Mortensen and Pissarides’ alternative

bargaining formulation.

29.8. Kiyotaki-Wright search model of money

We now explore a discrete-time version of Kiyotaki and Wright’s (1993) search

model of money.10 Let us first study their environment without money. The

economy is populated by a continuum of infinitely lived agents, with total popu-

lation normalized to unity. There is also a number of differentiated commodities,

which are indivisible and come in units of size one. Agents have idiosyncratic

tastes over these consumption goods as captured by a parameter x ∈ (0, 1). In

particular, x equals the proportion of commodities that can be consumed by

any given agent, and x also equals the proportion of agents that can consume

any given commodity. If a commodity can be consumed by an agent, then we

say that it is one of his consumption goods. An agent derives utility U > 0

from consuming one of his consumption goods, while the goods that he cannot

consume yield zero utility.

Initially, let each agent be endowed with one good, and let these goods be

randomly drawn from the set of all commodities. Goods are costlessly storable,

but each agent can store at most one good at a time. The only input in the

10 Our main simplification is that the time to produce is deterministic rather than stochastic.

We also alter the way money is introduced into the model.
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production of goods is the agents’ own prior consumption. After consuming one

of his consumption goods, an agent produces next period a new good drawn

randomly from the set of all commodities. We assume that agents can consume

neither their own output nor their initial endowment, so for consumption and

production to take place there must be exchange.

In each period, an agent meets one other agent with probability θ ∈ (0, 1];

he meets no other agent with probability 1 − θ . Two agents who meet trade

if there is a mutually agreeable transaction. Any transaction must be quid pro

quo because private credit arrangements are ruled out by the assumptions of a

random matching technology and a continuum of agents. We also assume that

there is a transaction cost ǫ ∈ (0, U) in terms of disutility, which is incurred

whenever accepting a commodity in trade. Thus, a trader who is indifferent

between holding two goods will never trade one for the other.

Agents choose trading strategies in order to maximize their expected dis-

counted utility from consumption net of transaction costs, taking as given the

strategies of other traders. Following Kiyotaki andWright (1993), we restrict our

attention to symmetric Nash equilibria, where all agents follow the same strate-

gies and all goods are treated the same, and to steady states, where strategies

and aggregate variables are constant over time.

In a symmetric equilibrium, an agent will trade only if he is offered a com-

modity that belongs to his set of consumption goods, and then consumes it im-

mediately. Accepting a commodity that is not one’s consumption good would

only give rise to a transaction cost ǫ without affecting expected future trading

opportunities. This statement is true because no commodities are treated as

special in a symmetric equilibrium, and therefore the probability of a commod-

ity being accepted by the next agent one meets is independent of the type of

commodity one has.11 It follows that x is the probability that a trader lo-

cated at random is willing to accept any given commodity, and x2 becomes

the probability that two traders consummate a barter in a situation of “double

coincidence of wants.”

At the beginning of a period before the realization of the matching process,

the value of an agent’s optimization problem becomes

V nc = θ x2 (U − ǫ) + βV nc ,

11 Kiyotaki and Wright (1989) analyze commodity money in a related model with nonsym-

metric equilibria, where some goods become media of exchange.
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where β ∈ (0, 1) is the discount factor. The superscript and subscript of V nc
denote a nonmonetary equilibrium and a commodity trader, respectively, to set

the stage for our next exploration of the role for money in this economy. How

will fiat money affect welfare? Keep the benchmark of a barter economy in

mind,

V nc =
θ x2 (U − ǫ)

1− β
. (29.8.1)

29.8.1. Monetary equilibria

At the beginning of time, suppose a fraction M̄ ∈ [0, 1) of all agents are each

offered one unit of fiat money. The money is indivisible, and an agent can store

at most one unit of money or one commodity at a time. That is, fiat money

will enter into circulation only if some agents accept money and discard their

endowment of goods. These decisions must be based solely on agents’ beliefs

about other traders’ willingness to accept money in future transactions, because

fiat money is by definition unbacked and intrinsically worthless. To determine

whether or not fiat money will initially be accepted, we will therefore first have

to characterize monetary equilibria.12

Fiat money adds two state variables in a symmetric steady state: the prob-

ability that a commodity trader accepts money, Π ∈ [0, 1], and the amount of

money circulating, M ∈ [0, M̄ ] , which is also the fraction of all agents carrying

money. An equilibrium pair (Π,M) must be such that an individual’s choice

of probability of accepting money when being a commodity trader, π , coincides

with the economy-wide Π, and the amount of money M is consistent with

the decisions of those agents who are initially free to replace their commodity

endowment with fiat money.

In a monetary equilibrium, agents can be divided into two types of traders.

An agent brings either a commodity or a unit of fiat money to the trading

process; that is, he is either a commodity trader or a money trader. At the

beginning of a period, the values associated with being a commodity trader and

12 If money is valued in an equilibrium, the relative price of goods and money is trivially

equal to 1, since both objects are indivisible and each agent can carry at most one unit of the

objects. Shi (1995) and Trejos and Wright (1995) endogenize the price level by relaxing the

assumption that goods are indivisible.
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a money trader are denoted Vc and Vm , respectively. The Bellman equations

can be written

Vc = θ(1 −M)x2
(
U − ǫ + βVc

)
+ θMxmax

π

[
πβVm + (1 − π)βVc

]

+
[
1 − θ(1 −M)x2 − θMx

]
βVc , (29.8.2)

Vm = θ(1 −M)xΠ
(
U − ǫ + βVc

)
+
[
1− θ(1 −M)xΠ

]
βVm. (29.8.3)

The value of being a commodity trader in equation (29.8.2) equals the sum

of three terms. The first term is the probability of the agent meeting other

commodity traders, θ(1 −M), times the probability that both want to trade,

x2 , times the value of trading, consuming, and returning as a commodity trader

next period, U−ǫ+βVc . The second term is the probability of the agent meeting

money traders, θM , times the probability that a money trader wants to trade,

x , times the value of accepting money with probability π , πβVm + (1− π)βVc ,

where π is chosen optimally. The third term captures the complement to the

two previous events when the agent stores his commodity to the next period with

a continuation value of βVc . According to equation (29.8.3), the value of being

a money trader equals the sum of two terms. The first term is the probability of

the agent meeting a commodity trader, θ(1−M), times the probability of both

wanting to trade, xΠ, times the value of trading, consuming, and becoming a

commodity trader next period, U − ǫ+βVc . The second term is the probability

of the described event not occurring times the value of keeping the unit of fiat

money to the next period, βVm .

The optimal choice of π depends solely on Π. First, note that if Π < x then

equations (29.8.2) and (29.8.3) imply that Vm < Vc , so the individual’s best

response is π = 0. That is, if money is being accepted with a lower probability

than a barter offer, then it is harder to trade using money than barter, so agents

would never like to exchange a commodity for money. Second, if Π > x , then

equations (29.8.2) and (29.8.3) imply that Vm > Vc , so the individual’s best

response is π = 1. If money is being accepted with a greater probability than a

barter offer, then it is easier to trade using money than barter, and agents would

always like to exchange a commodity for money whenever possible. Finally, if

Π = x , then equations (29.8.2) and (29.8.3) imply that Vm = Vc , so π can

be anything in [0, 1]. If monetary exchange and barter are equally easy, then

traders are indifferent between carrying commodities and fiat money, and they
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could accept money with any probability. Based on these results, the individual’s

best-response correspondence is as shown in Figure 29.8.1, and there are exactly

three values consistent with Π = π : Π = 0, Π = 1, and Π = x .

45
o

1x

π

Π

Figure 29.8.1: The best-response correspondence.

We can now answer our first question, namely, how many of the agents who

are initially free to exchange their commodity endowment for fiat money will

choose to do so? The answer is implicit in our discussion of the best-response

correspondence. Thus, we have the following three types of symmetric equilibria:

1. A nonmonetary equilibrium with Π = 0 and M = 0, which is identical

to the barter outcome in the previous section: Agents expect that money will

be valueless, so they never accept it, and this expectation is self-fulfilling. All

agents become commodity traders associated with a value of V nc , as given by

equation (29.8.1).

2. A pure monetary equilibrium with Π = 1 and M = M̄ : Agents expect

that money will be universally acceptable. From our previous discussion we

know that agents will then prefer to bring money rather than commodities

to the trading process. It is therefore a dominant strategy to accept money

whenever possible; that is, expectation is self-fulfilling. Another implication is

that the fraction M̄ of agents who are initially free to exchange their commodity
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endowment for fiat money will also do so. Let V pc and V pm denote the values

associated with being a commodity trader and a money trader, respectively, in

a pure monetary equilibrium.

3. A mixed monetary equilibrium with Π = x and M ∈ [0, M̄ ] : Traders

are indifferent between accepting and rejecting money as long as future trading

partners take it with probability Π = x , so partial acceptability with agents

setting π = x can also be self-fulfilling. However, a mixed monetary equilibrium

has no longer a unique mapping to the amount of circulating money M . Suppose

the initial choices between commodity endowment and fiat money are separate

from agents’ decisions on trading strategies. It follows that any amount of

money between [0, M̄ ] can constitute a mixed monetary equilibrium because

of the indifference between a commodity endowment and a unit of fiat money.

Of course, the allocation in a mixed monetary equilibrium with M = 0 is

identical to the one in a nonmonetary equilibrium. Let V ic (M) and V im(M)

denote the values associated with being a commodity trader and a money trader,

respectively, in a mixed monetary equilibrium with an amount of money equal

to M ∈ [0, M̄ ] .

29.8.2. Welfare

To compare welfare across different equilibria, we set π = Π in equations

(29.8.2) and (29.8.3) and solve for the reduced-form expressions

Vc =
ψ

1− β

{
(1− β)x + βθxΠ

[
MΠ+ (1−M)x

]}
, (29.8.4)

Vm =
ψ

1− β

{
(1− β)Π + βθxΠ

[
MΠ+ (1−M)x

]}
, (29.8.5)

where ψ = [θ(1 −M)x(U − ǫ)]/[1− β(1 − θxΠ)] > 0. The value Vm is greater

than or equal to Vc in a monetary equilibrium, since a necessary condition is

that monetary exchange is at least as easy as barter (Π ≥ x),

Vm = Vc + ψ (Π− x) .

After setting Π = x in equations (29.8.4) and (29.8.5), we see that a mixed

monetary equilibrium with M > 0 gives rise to a strictly lower welfare as
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compared to the barter outcome in equation (29.8.1),

V ic (M) = V im(M) = (1−M)V nc .

Even though some agents are initially willing to switch their commodity en-

dowment for fiat money, it is detrimental for the economy as a whole. Since

money is accepted with the same probability as commodities, money does not

ameliorate the problem of “double coincidence of wants” but only diverts real

resources from the economy.13 In fact, as noted by Kiyotaki and Wright (1990),

the mixed monetary equilibrium is isomorphic to the nonmonetary equilibrium

of another economy where the probability of meeting an agent is reduced from

θ to θ(1 −M).

In a pure monetary equilibrium (Π = 1), the value of being a money trader

is strictly greater than the value of being a commodity trader. A natural welfare

criterion is the ex ante expected utility before the quantity M̄ of fiat money is

randomly distributed,

W = M̄V pm + (1 − M̄)V pc

=
θ(1 − M̄)x(U − ǫ)

1− β

[
M̄ + (1− M̄)x

]
. (29.8.6)

The first and second derivatives of equation (29.8.6) are

∂W

∂M̄
=

θx(U − ǫ)

1− β

{
1 − 2

[
M̄ + (1 − M̄)x

]}
, (29.8.7)

∂2W

∂M̄2
= − 2

θx(U − ǫ)

1− β
(1− x) < 0 . (29.8.8)

Since the second derivative is negative, fiat money can only have a welfare-

enhancing role if the first derivative is positive when evaluated at M̄ = 0.

13 This welfare result differs from that of Kiyotaki and Wright (1993), who assume that a

fraction M̄ of all agents are initially endowed with fiat money without any choice. It follows

that those agents endowed with money are certainly better off in a mixed monetary equilibrium

as compared to the barter outcome, while the other agents are indifferent. The latter agents

are indifferent because the existence of the former agents has the same crowding-out effect

on their consumption arrival rate in both types of equilibria. Our welfare results reported

here are instead in line with Kiyotaki and Wright’s (1990) original working paper based on a

slightly different environment where agents can at any time dispose of their fiat money and

engage in production.
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Thus, according to equation (29.8.7), money can (cannot) increase welfare if

x < .5 (x ≥ .5). Intuitively speaking, when x ≥ .5, each agent is willing to

consume (and therefore accept) at least half of all commodities, so barter is not

very difficult. The introduction of money would here only reduce welfare by

diverting real resources from the economy. When x < .5, barter is sufficiently

difficult so that the introduction of some fiat money improves welfare. The

optimum quantity of money is then found by setting equation (29.8.7) equal

to zero, M̄⋆ = (1 − 2x)/(2 − 2x). That is, M̄⋆ varies negatively with x , and

the optimum quantity of money increases when x shrinks and the problem

of “double coincidence of wants” becomes more difficult. In particular, M̄⋆

converges to .5 when x goes to zero.

29.9. Concluding remarks

The frameworks of search and matching present various ways of departing from

the frictionless Arrow-Debreu economy where all agents meet in a complete

set of markets. This chapter has mainly focused on labor markets as a central

application of these theories. The presented models have the concept of frictions

in common, but there are also differences. The island economy has frictional

unemployment without any externalities. An unemployed worker does not inflict

any injury on other job seekers other than what a seller of a good imposes on

his competitors. The equilibrium value to search, vu , serves the function of any

other equilibrium price of signaling to suppliers the correct social return from

an additional unit supplied. In contrast, the matching model with its matching

function is associated with externalities. Workers and firms impose congestion

effects when they enter as unemployed in the matching function or add another

vacancy in the matching function. To arrive at an efficient allocation in the

economy, it is necessary that the bilaterally bargained wage be exactly right.

In a labor market with homogeneous firms and workers, efficiency prevails only

if the workers’ bargaining strength, φ , is exactly equal to the elasticity of the

matching function with respect to the measure of unemployment, α . In the case

of heterogeneous jobs in the same labor market with a single matching function,

we established the impossibility of efficiency without government intervention.
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The matching model unarguably offers a richer analysis through its extra in-

teraction effects, but it comes at the cost of the model’s microeconomic structure.

In an explicit economic environment, feasible actions can be clearly envisioned

for any population size, even if there is only one Robinson Crusoe. The island

economy is an example of such a model with its microeconomic assumptions,

such as the time it takes to move from one island to another. In contrast, the

matching model with its matching function imposes relationships between ag-

gregate outcomes. It is therefore not obvious how the matching function arises

when gradually increasing the population from one Robinson Crusoe to an econ-

omy with more agents. Similarly, it is an open question what determines when

heterogeneous firms and labor have to be matched through a common matching

function and when they have access to separate matching functions.

Peters (1991) and Montgomery (1991) suggest some microeconomic under-

pinnings to labor market frictions, which are further pursued by Burdett, Shi,

and Wright (2001). Firms post vacancies with announced wages, and unem-

ployed workers can apply to only one firm at a time. If the values of filled

jobs differ across firms, firms with more valued jobs will have an incentive to

post higher wages to attract job applicants. In an equilibrium, workers will

be indifferent between applying to different jobs, and they are assumed to use

identical mixed strategies in making their applications. In this way, vacancies

may remain unfilled because some firms do not receive any applicants, and some

workers may find themselves “second in line” for a job and therefore remain un-

employed. When assuming a large number of firms that take market tightness

as given for each posted wage, Montgomery finds that the decentralized equi-

librium does maximize welfare for reasons similar to Moen’s (1997) identical

finding that was discussed earlier in this chapter.

Lagos (2000) derives a matching function from a model without any exoge-

nous frictions at all. He studies a dynamic market for taxicab rides in which

taxicabs seek potential passengers on a spatial grid and the fares are regu-

lated exogenously. In each location, the shorter side determines the number

of matches. It is shown that a matching function exists for this model, but

this matching function is an equilibrium object that changes with policy experi-

ments. Lagos sounds a warning that assuming an exogenous matching function

when doing policy analysis might be misleading.
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Throughout our discussion of search and matching models, we have assumed

risk-neutral agents. Acemoglu and Shimer (1999), and Gomes, Greenwood,

and Rebelo (2001) analyze a matching model and a search model, respectively,

where agents are risk averse and hold precautionary savings because of imperfect

insurance against unemployment.

As a work horse for frictional unemployment in macro labor research, we

continue to explore the mechanics of the matching framework in chapter 30. In

chapter 31, we study how “time averaging” has replaced employment lotteries

as a theoretical foundation of aggregate labor supply.

Exercises

Exercise 29.1 An island economy (Lucas and Prescott, 1974)

Let the island economy in this chapter have a productivity shock that takes

on two possible values, {θL, θH} with 0 < θL < θH . An island’s productivity

remains constant from one period to another with probability π ∈ (.5, 1), and its

productivity changes to the other possible value with probability 1− π . These

symmetric transition probabilities imply a stationary distribution where half of

the islands experience a given θ at any point in time. Let x̂ be the economy’s

labor supply (as an average per market).

a. If there exists a stationary equilibrium with labor movements, argue that an

island’s labor force has two possible values, {x1, x2} with 0 < x1 < x2 .

b. In a stationary equilibrium with labor movements, construct a matrix Γ

with the transition probabilities between states (θ, x), and explain what the

employment level is in different states.

c. In a stationary equilibrium with labor movements, we observe only four values

of the value function v(θ, x) where θ ∈ {θL, θH} and x ∈ {x1, x2} . Argue that

the value function takes on the same value for two of these four states.

d. Show that the condition for the existence of a stationary equilibrium with

labor movements is

β(2π − 1)θH > θL , (1)
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and, if this condition is satisfied, an implicit expression for the equilibrium value

of x2 is

[θL + β(1 − π)θH ] f ′(2x̂− x2) = βπθHf
′(x2) . (2)

e. Verify that the allocation of labor in part d coincides with a social plan-

ner’s solution when maximizing the present value of the economy’s aggregate

production. Starting from an initial equal distribution of workers across islands,

condition (1) indicates when it is optimal for the social planner to increase the

number of workers on high-productivity islands. The first-order condition for

the social planner’s choice of x2 is then given by equation (2).

Exercise 29.2 Business cycles and search (Gomes, Greenwood, and Re-

belo, 2001)

Part I The worker’s problem

Think about an economy in which workers all confront the following common

environment: Time is discrete. Let t = 0, 1, 2, . . . index time. At the beginning

of each period, a previously employed worker can choose to work at her last

period’s wage or draw a new wage. If she draws a new wage, the old wage is

lost and she will be unemployed in the current period. She can start work at

the new wage in the next period. New wages are independent and identically

distributed from the cumulative distribution function F , where F (0) = 0, and

F (M) = 1 for M < ∞ . Unemployed workers face a similar problem. At the

beginning of each period, a previously unemployed worker can choose to work

at last period’s wage offer or to draw a new wage from F . If she draws a new

wage, the old wage offer is lost and she can start working at the new wage in

the following period. Someone offered a wage is free to work at that wage for as

long as she chooses (she cannot be fired). The income of an unemployed worker

is b , which includes unemployment insurance and the value of home production.

Each worker seeks to maximize E0

∑∞
t=0(1−µ)tβtIt, where µ is the probability

that a worker dies at the end of a period, β is the subjective discount factor, and

It is the worker’s income in period t ; that is, It is equal to the wage wt when

employed and the income b when unemployed. Here, E0 is the mathematical

expectation operator, conditioned on information known at time 0. Assume

that β ∈ (0, 1) and µ ∈ (0, 1).

a. Describe the worker’s optimal decision rule. In particular, what should an

employed worker do? What should an unemployed worker do?
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b. How would an increase in µ affect an unemployed worker’s behavior?

Part II Equilibrium unemployment rate

The economy is populated with a continuum of the workers just described.

There is an exogenous rate of new workers entering the labor market equal to

µ , which equals the death rate. New entrants are unemployed and must draw a

new wage.

c. Find an expression for the economy’s unemployment rate in terms of exoge-

nous parameters and the endogenous reservation wage. Discuss the determinants

of the unemployment rate.

We now change the technology so that the economy fluctuates between booms

(B ) and recessions (R). In a boom, all employed workers are paid an extra

z > 0. That is, the income of a worker with wage w is It = w + z in a boom

and It = w in a recession. Let whether the economy is in a boom or a recession

define the state of the economy. Assume that the state of the economy is i.i.d.

and that booms and recessions have the same probabilities of .5. The state of

the economy is publicly known at the beginning of a period before any decisions

are made.

d. Describe the optimal behavior of employed and unemployed workers. When,

if ever, might workers choose to quit?

e. Let wB and wR be the reservation wages in booms and recessions, respec-

tively. Assume that wB < wR . Let Gt be the fraction of workers employed

at wages w ∈ [wB , wR] in period t . Let Ut be the fraction of workers unem-

ployed in period t . Derive difference equations for Gt and Ut in terms of the

parameters of the model and the reservation wages, {F, µ, wB, wR} .
f. Figure 29.1 contains a simulated time series from the solution of the model

with booms and recessions. Interpret the time series in terms of the model.

Exercise 29.3 Business cycles and search again

The economy is either in a boom (B ) or recession (R) with probability .5.

The state of the economy (R or B ) is i.i.d. through time. At the beginning

of each period, workers know the state of the economy for that period. At the

beginning of each period, a previously employed worker can choose to work at

her last period’s wage or draw a new wage. If she draws a new wage, the old

wage is lost, b is received this period, and she can start working at the new
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Figure 29.1: Unemployment during business cycles.

wage in the following period. During recessions, new wages (for jobs to start

next period) are i.i.d. draws from the c.d.f. F , where F (0) = 0 and F (M) = 1

for M < ∞ . During booms, the worker can choose to quit and take two i.i.d.

draws of a possible new wage (with the option of working at the higher wage,

again for a job to start the next period) from the same c.d.f. F that prevails

during recessions. (This ability to choose is what “jobs are more plentiful during

booms” means to workers.) Workers who are unemployed at the beginning of

a period receive b this period and draw either one (in recessions) or two (in

booms) wage offers from the c.d.f. F to start work next period.

A worker seeks to maximize E0

∑∞
t=0(1 − µ)tβtIt , where µ is the probability

that a worker dies at the end of a period, β is the subjective discount factor,

and It is the worker’s income in period t ; that is, It is equal to the wage wt

when employed and the income b when unemployed.

a. Write the Bellman equation(s) for a previously employed worker.

b. Characterize the worker’s quitting policy. If possible, compare reservation

wages in booms and recessions. Will employed workers ever quit? If so, who

will quit and when?
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Exercises 29.4–29.6 European unemployment

The following three exercises are based on work by Ljungqvist and Sargent

(1998), Marimon and Zilibotti (1999), and Mortensen and Pissarides (1999b),

who calibrate versions of search and matching models to explain high European

unemployment. Even though the specific mechanisms differ, they all attribute

the rise in unemployment to generous benefits in times of more dispersed labor

market outcomes for job seekers.

Exercise 29.4 Skill-biased technological change (Mortensen and Pis-

sarides, 1999b)

Consider a matching model in discrete time with infinitely lived and risk-neutral

workers who are endowed with different skill levels. A worker of skill type

i produces hi goods in each period that she is matched to a firm, where

i ∈ {1, 2, . . . , N} and hi+1 > hi . Each skill type has its own but identical

matching function M(ui, vi) = Auαi v
1−α
i , where ui and vi are the measures

of unemployed workers and vacancies in skill market i . Firms incur a vacancy

cost c hi in every period that a vacancy is posted in skill market i ; that is,

the vacancy cost is proportional to the worker’s productivity. All matches are

exogenously destroyed with probability s ∈ (0, 1) at the beginning of a period.

An unemployed worker receives unemployment compensation b . Wages are de-

termined in Nash bargaining between matched firms and workers. Let φ ∈ [0, 1)

denote the worker’s bargaining weight in the Nash product, and we adopt the

standard assumption that φ = α .

a. Show analytically how the unemployment rate in a skill market varies with

the skill level hi .

b. Assume an even distribution of workers across skill levels. For different ben-

efit levels b , study numerically how the aggregate steady-state unemployment

rate is affected by mean-preserving spreads in the distribution of skill levels.

c. Explain how the results would change if unemployment benefits are propor-

tional to a worker’s productivity.

Exercise 29.5 Dispersion of match values (Marimon and Zilibotti, 1999)

We retain the matching framework of exercise 29.4 but assume that all workers

have the same innate ability h = h̄ and any earnings differentials are purely

match specific. In particular, we assume that the meeting of a firm and a worker
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is associated with a random draw of a match-specific productivity p from an

exogenous distribution G(p). If the worker and firm agree to stay together, the

output of the match is then p · h in every period as long as the match is not

exogenously destroyed as in exercise 29.4 . We also keep the assumptions of a

constant unemployment compensation b and Nash bargaining over wages.

a. Characterize the equilibrium of the model.

b. For different benefit levels b , study numerically how the steady-state unem-

ployment rate is affected by mean-preserving spreads in the exogenous distribu-

tion G(p).

Exercise 29.6 Idiosyncratic shocks to human capital (Ljungqvist and

Sargent, 1998)

We retain the assumption of exercise 29.5 that a worker’s output is the product

of his human capital h and a job-specific component which we now denote w ,

but we replace the matching framework with a search model. In each period of

unemployment, a worker draws a value w from an exogenous wage offer distri-

bution G(w) and, if the worker accepts the wage w , he starts working in the

following period. The wage w remains constant throughout the employment

spell that ends either because the worker quits or the job is exogenously de-

stroyed with probability s at the beginning of each period. Thus, in a given

job with wage w , a worker’s earnings wh can only vary over time because of

changes in human capital h . For simplicity, we assume that there are only two

levels of human capital, h1 and h2 where 0 < h1 < h2 <∞ . At the beginning

of each period of employment, a worker’s human capital is unchanged from last

period with probability πe and is equal to h2 with probability 1 − πe . Losses

of human capital are only triggered by exogenous job destruction. In the period

of an exogenous job loss, the laid off worker’s human capital is unchanged from

last period with probability πu and is equal to h1 with probability 1− πu . All

unemployed workers receive unemployment compensation, and the benefits are

equal to a replacement ratio γ ∈ [0, 1) times a worker’s last job earnings.

a. Characterize the equilibrium of the model.

b. For different replacement ratios γ , study numerically how the steady-state

unemployment rate is affected by changes in h1 .
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Comparison of models

c. Explain how the different models in exercises 29.4 through 29.6 address the

observations that European welfare states have experienced less of an increase

in earnings differentials as compared to the United States, but suffer more from

long-term unemployment where the probability of gaining employment drops off

sharply with the length of the unemployment spell.

d. Explain why the assumption of infinitely lived agents is innocuous for the

models in exercises 29.4 and 29.5 , but the alternative assumption of finitely

lived agents can make a large difference for the model in exercise 29.6 .

Exercise 29.7 Temporary jobs and layoff costs

Consider a search model with temporary jobs. At the beginning of each period,

a previously employed worker loses her job with probability µ , and she can

keep her job and wage rate from last period with probability 1−µ . If she loses

her job (or chooses to quit), she draws a new wage and can start working at

the new wage in the following period with probability 1. After a first period

on the new job, she will again in each period face probability µ of losing her

job. New wages are independent and identically distributed from the cumulative

distribution function F , where F (0) = 0, and F (M) = 1 for M < ∞ . The

situation during unemployment is as follows. At the beginning of each period, a

previously unemployed worker can choose to start working at last period’s wage

offer or to draw a new wage from F . If she draws a new wage, the old wage offer

is lost and she can start working at the new wage in the following period. The

income of an unemployed worker is b , which includes unemployment insurance

and the value of home production. Each worker seeks to maximize E0

∑∞
t=0 β

tIt ,

where β is the subjective discount factor, and It is the worker’s income in period

t ; that is, It is equal to the wage wt when employed and the income b when

unemployed. Here E0 is the mathematical expectation operator, conditioned

on information known at time 0. Assume that β ∈ (0, 1) and µ ∈ (0, 1].

a. Describe the worker’s optimal decision rule.

Suppose that there are two types of temporary jobs: short-lasting jobs with

µs and long-lasting jobs with µl , where µs > µl . When the worker draws a

new wage from the distribution F , the job is now randomly designated as either

short-lasting with probability πs or long-lasting with probability πl , where πs+

πl = 1. The worker observes the characteristics of a job offer, (w, µ).
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b. Does the worker’s reservation wage depend on whether a job is short-lasting

or long-lasting? Provide intuition for your answer.

We now consider the effects of layoff costs. It is assumed that the government

imposes a cost τ > 0 on each worker that loses a job (or quits).

c. Conceptually, consider the following two reservation wages, for a given value

of µ : (i) a previously unemployed worker sets a reservation wage for accepting

last period’s wage offer; (ii) a previously employed worker sets a reservation wage

for continuing working at last period’s wage. For a given value of µ , compare

these two reservation wages.

d. Show that an unemployed worker’s reservation wage for a short-lasting job

exceeds her reservation wage for a long-lasting job.

e. Let w̄s and w̄l be an unemployed worker’s reservation wages for short-

lasting jobs and long-lasting jobs, respectively. In period t , let Nst and Nlt

be the fractions of workers employed in short-lasting jobs and long-lasting jobs,

respectively. Let Ut be the fraction of workers unemployed in period t . Derive

difference equations for Nst , Nlt and Ut in terms of the parameters of the model

and the reservation wages, {F, µs, µl, πs, πl, w̄s, w̄l} .

Exercise 29.8 Productivity shocks, job creation, and job destruction,

donated by Rodolfo Manuelli

Consider an economy populated by a large number of identical individuals. The

utility function of each individual is

∞∑

t=0

βtxt,

where 0 < β < 1, β = 1/(1+r), and xt is income at time t . All individuals are

endowed with one unit of labor that is supplied inelastically: If the individual is

working in the market, its productivity is yt , while if he or she works at home,

productivity is z . Assume that z < yt . Individuals who are producing at home

can also, at no cost, search for a market job. Individuals who are searching

and jobs that are vacant get randomly matched. Assume that the number of

matches per period is given by

M(ut, xt),
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where M is concave, increasing in each argument, and homogeneous of degree

1. In this setting, ut is interpreted as the total number of unemployed workers,

and vt is the total number of vacancies. Let θ ≡ v/u , and let q(θ) =M(u, v)/v

be the probability that a vacant job (or firm) will meet a worker. Similarly, let

θq(θ) = M(u, v)/u be the probability that an unemployed worker is matched

with a vacant job. Jobs are exogenously destroyed with probability s . In order

to create a vacancy, a firm must pay a cost c > 0 per period in which the

vacancy is “posted” (i.e., unfilled). There is a large number of potential firms

(or jobs), and this guarantees that the expected value of a vacant job, V , is

zero. Finally, assume that when a worker and a vacant job meet, they bargain

according to the Nash bargaining solution, with the worker’s share equal to ϕ .

Assume that yt = y for all t .

a. Show that the zero-profit condition implies that

w = y − (r + s)c/q(θ).

b. Show that if workers and firms negotiate wages according to the Nash bar-

gaining solution (with worker’s share equal to ϕ), wages must also satisfy

w = z + ϕ(y − z + θc).

c. Describe the determination of the equilibrium level of market tightness, θ .

d. Suppose that at t = 0, the economy is at its steady state. At this point,

there is a once-and-for-all increase in productivity. The new value of y is y′ > y .

Show how the new steady-state value of θ , θ′ , compares with the previous value.

Argue that the economy “jumps” to the new value right away. Explain why there

are no “transitional dynamics” for the level of market tightness, θ .

e. Let ut be the unemployment rate at time t . Assume that at time 0 the

economy is at the steady-state unemployment rate corresponding to θ , the “old”

market tightness, and display this rate. Denote this rate as u0 . Let θ0 = θ′ .

Note that change in unemployment rate is equal to the difference between job

destruction at t, JDt and job creation at t, JCt . It follows that

JDt = (1 − ut)s,

JCt = θtq(θt)ut,

ut+1 − ut = JDt − JCt.
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Go as far as you can characterizing job creation and job destruction at t = 0

(after the shock). In addition, go as far as you can describing the behavior

of both JCt and JDt during the transition to the new steady state (the one

corresponding to θ′ ).

Exercise 29.9 Workweek restrictions, unemployment, and welfare, do-

nated by Rodolfo Manuelli

Recently, France has moved to a shorter workweek of about 35 hours per week.

In this exercise you are asked to evaluate the consequences of such a move. To

this end, consider an economy populated by risk-neutral, income-maximizing

workers with preferences given by

U = Et

∞∑

j=0

βjyt+j , 0 < β < 1, 1 + r = β−1.

Assume that workers produce z at home if they are unemployed, and that they

are endowed with one unit of labor. If a worker is employed, he or she can spend

x units of time at the job, and (1− x) at home, with 0 ≤ x ≤ 1. Productivity

on the job is yx , and x is perfectly observed by both workers and firms.

Assume that if a worker works x hours, his or her wage is wx .

Assume that all jobs have productivity y > z , and that to create a vacancy firms

have to pay a cost of c > 0 units of output per period. Jobs are exogenously

destroyed with probability s . Let the number of matches per period be given

by

M(u, v),

where M is concave, increasing in each argument, and homogeneous of degree

one. In this setting, u is interpreted as the total number of unemployed workers,

and v is the total number of vacancies. Let θ ≡ v/u , and let q(θ) =M(u, v)/v .

Assume that workers and firms bargain over wages, and that the outcome is

described by a Nash bargaining outcome with the workers’ bargaining power

equal to ϕ .

a. Go as far as you can describing the unconstrained (no restrictions on x other

than it be a number between 0 and 1) market equilibrium.

b. Assume that q(θ) = Aθ−α , for some 0 < α < 1. Does the solution of the

planner’s problem coincide with the market equilibrium?
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c. Assume now that the workweek is restricted to be less than or equal to

x∗ < 1. Describe the equilibrium.

d. For the economy in part c, go as far as you can (if necessary, make addi-

tional assumptions) describing the impact of this workweek restriction on wages,

unemployment rates, and the total number of jobs. Is the equilibrium optimal?

Exercise 29.10 Costs of creating a vacancy and optimality, donated by

Rodolfo Manuelli

Consider an economy populated by risk-neutral, income-maximizing workers

with preferences given by

U = Et

∞∑

j=0

βjyt+j , 0 < β < 1, 1 + r = β−1.

Assume that workers produce z at home if they are unemployed. Assume that

all jobs have productivity y > z , and that to create a vacancy firms have to

pay pA , with pA = C′(v), per period when they have an open vacancy, with v

being the total number of vacancies. Assume that the function C(v) is strictly

convex, twice differentiable and increasing. Jobs are exogenously destroyed with

probability s .

Let the number of matches per period be given by

M(u, v),

where M is concave, increasing in each argument, and homogeneous of degree

1. In this setting, u is interpreted as the total number of unemployed workers,

and v is the total number of vacancies. Let θ ≡ v/u , and let q(θ) =M(u, v)/v .

Assume that workers and firms bargain over wages and that the outcome is

described by a Nash bargaining outcome with the worker’s bargaining power

equal to ϕ .

a. Go as far as you can describing the market equilibrium. In particular, discuss

how changes in the exogenous variables, z , y , and the function C(v), affect the

equilibrium outcomes.

b. Assume that q(θ) = Aθ−α for some 0 < α < 1. Does the solution of the

planner’s problem coincide with the market equilibrium? Describe instances, if

any, in which this is the case.
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Exercise 29.11 Financial wealth, heterogeneity, and unemployment,

donated by Rodolfo Manuelli

Consider the behavior of a risk-neutral worker who seeks to maximize the ex-

pected present discounted value of wage income. Assume that the discount

factor is fixed and equal to β , with 0 < β < 1. The interest rate is also con-

stant and satisfies 1 + r = β−1 . In this economy, jobs last forever. Once the

worker has accepted a job, he or she never quits and the job is never destroyed.

Even though preferences are linear, a worker needs to consume a minimum of a

units of consumption per period. Wages are drawn from a distribution with sup-

port on [a, b] . Thus, any employed individual can have a feasible consumption

level. There is no unemployment compensation.

Individuals of type i are born with wealth ai , i = 0, 1, 2, where a0 = 0, a1 = a ,

a2 = a(1 + β). Moreover, in the period that they are born, all individuals

are unemployed. Population, Nt , grows at the constant rate 1 + n . Thus,

Nt+1 = (1 + n)Nt . It follows that, at the beginning of period t , at least nNt−1

individuals — those born in that period — will be unemployed. Of the nNt−1

individuals born at time t , ϕ0 are of type 0, ϕ1 of type 1, and the rest,

1−ϕ0 −ϕ1 , are of type 2. Assume that the mean of the offer distribution (the

mean offered, not necessarily accepted, wage) is greater than a/β .

a. Consider the situation of an unemployed worker who has a0 = 0. Argue that

this worker will have a reservation wage w∗(0) = a . Explain.

b. Let w∗(i) be the reservation wage of an individual with wealth i . Argue

that w∗(2) > w∗(1) > w∗(0). What does this say about the cross-sectional

relationship between financial wealth and employment probability? Discuss the

economic reasons underlying this result.

c. Let the unemployment rate be the number of unemployed individuals at

t, Ut , relative to the population at t, Nt . Thus, ut = Ut/Nt . Argue that in this

economy, the unemployment rate is constant.

d. Consider a policy that redistributes wealth in the form of changes in the

fraction of the population that is born with wealth ai . Describe as completely

as you can the effect upon the unemployment rate of changes in ϕi . Explain

your results.

Extra credit: Go as far as you can describing the distribution of the random

variable “number of periods unemployed” for an individual of type 2.



Chapter 30
Matching Models Mechanics

30.1. Introduction

We reserve the term search models to denote ones in the spirit of McCall (1970),

like the search-island model of Lucas and Prescott (1974) described in section

29.2. What are now widely called matching models have matching functions

that are designed to represent congestion externalities concisely.1,2 This chapter

explores some of the mechanics of matching models, especially those governing

the responses of labor market outcomes to productivity shocks.

To get big responses of unemployment to movements in productivity, match-

ing models require a high elasticity of market tightness with respect to productiv-

ity. Shimer (2005) pointed out that for common calibrations of what was then a

standard matching model, the elasticity of market tightness is too low to explain

business cycle fluctuations. To increase that elasticity, researchers reconfigured

matching models in various ways: by elevating the utility of leisure, by mak-

ing wages sticky, by assuming alternating-offer wage bargaining, by introducing

costly acquisition of credit, or by assuming fixed matching costs. Ljungqvist

and Sargent (2017) showed that beneath this apparent diversity there resides

an essential unity: all of these redesigned matching models increase responses of

unemployment to movements in productivity by diminishing what Ljungqvist

and Sargent called the fundamental surplus fraction, a name they gave to an

upper bound on the fraction of a job’s output that the invisible hand can allo-

cate to vacancy creation. Business cycle and welfare state dynamics of an entire

class of reconfigured matching models operate through this common channel.

Across a variety of matching models, the fundamental surplus fraction is

the single intermediate channel through which economic forces generating a

1 We encountered these earlier in section 29.3. In chapter 6, the word ‘matching’ described

Jovanovic’s (1979a) analysis of a process in which workers and firms gradually learn about

match quality. In macro labor, the term ‘matching models’ has come instead to mean models

that postulate matching functions.
2 Petrongolo and Pissarides (2001) call the matching function a black box because it de-

scribes outcomes of labor market frictions without explicitly modeling them.

– 1269 –
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high elasticity of market tightness with respect to productivity must operate.

Differences in the fundamental surplus explain why unemployment responds

sensitively to movements in productivity in some matching models but not in

others. The role of the fundamental surplus in generating that response sensi-

tivity transcends diverse matching models having very different outcomes along

other dimensions that include the elasticity of wages with respect to productivity

and whether or not outside values affect bargaining outcomes.

For any model with a matching function, to arrive at the fundamental sur-

plus take the output of a job, then deduct the sum of the value of leisure, the

annuitized values of layoff costs and training costs and a worker’s ability to

exploit a firm’s cost of delay under alternating-offer wage bargaining, and any

other items that must be set aside. The fundamental surplus is an upper bound

on what the invisible hand could allocate to vacancy creation. If that funda-

mental surplus constitutes a small fraction of a job’s output, it means that a

given change in productivity translates into a much larger percentage change

in the fundamental surplus. Because such large movements in the amount of

resources that could potentially be used for vacancy creation cannot be offset

by the invisible hand, significant variations in market tightness ensue, causing

large movements in unemployment.

In contrast to search models, matching models with inputs of unemployed

workers and vacancies in matching functions are typically plagued by external-

ities. What types of workers – perhaps differentiated by education, skill, age –

and what types of jobs – perhaps differentiated by required skills and strengths

– does the analyst make sit within the same matching functions? Broadly speak-

ing, matching analyses can be divided into those that focus on congestion exter-

nalities, and those that seek to eliminate such externalities, in order to facilitate

analytical tractability. For example, we describe a way of proliferating matching

functions and assigning workers to them that can be interpreted as expressing

‘directed search’ and that succeeds in arresting congestion externalities and im-

proving analytic tractability along some dimensions.

To illustrate the two types of matching analyses that either emphasize or

eliminate externalities, we turn to aging as one key source of heterogeneity.

Chéron, Hairault and Langot (2013), and Menzio, Telyukova and Visschers

(2016) study overlapping generations models in which unemployed workers ei-

ther enter a single matching function or are assigned to type-specific matching

functions. In a version of the model of Chéron, Hairault and Langot, we show
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that it is optimal to subsidize the continuing employment of old workers and to

tax that of young workers in order properly to rearrange the age composition of

unemployed workers sitting inside a single matching function. The age-specific

matching functions of Menzio, Telyukova and Visschers make those externali-

ties vanish and unleash market forces that make job finding rates decrease with

age. Equilibrium computation turns out to be ‘block recursive’ because agents’

value and policy functions depend on realizations of exogenous shocks but not

on the distribution of agents across employment and unemployment states. This

makes it easy to compute out-of-steady-state dynamics as well as equilibria with

aggregate shocks.

30.2. Fundamental surplus

With exogenous separation, a comparative steady state analysis decomposes the

elasticity of market tightness with respect to productivity into two multiplicative

factors, both of which are bounded from below by unity. In a matching model

of variety j , let ηjθ,y be the elasticity of market tightness θ with respect to

productivity y :

ηjθ,y ≡ d θ

d y

y

θ
= Υj

y

y − xj
. (30.2.1)

The first factor Υj has an upper bound coming from a consensus about values

of the elasticity of matching with respect to unemployment. The second factor

y/(y − xj) is the inverse of what we define to be the ‘fundamental surplus

fraction’. The fundamental surplus y − xj equals a quantity that deducts from

productivity y a value xj that the ‘invisible hand’ cannot allocate to vacancy

creation, a quantity whose economic interpretation differs across models. Unlike

Υj , the fraction y/(y − xj) has no widely agreed upon upper bound. To get

a high elasticity of market tightness requires that y/(y − xj) must be large,

i.e., that what we call the fundamental surplus fraction must be small.3 Across

reconfigured matching models, many details differ, but what ultimately matters

is the fundamental surplus.

3 We call y − x the fundamental surplus and y−x
y the fundamental surplus fraction.
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30.2.1. Sensitivity of unemployment to market tightness

To set the stage for studying how small changes in productivity can have large

effects on unemployment, we start by computing the elasticity of unemployment

with respect to market tightness. The derivative of steady-state unemployment

in equation (29.3.2) with respect to market tightness is

d u

d θ
= −s [q(θ) + θ q′(θ)]

[s + θ q(θ)]2
= −

[
1 +

θ q′(θ)

q(θ)

]
u q(θ)

s + θ q(θ)
= −(1−α) u q(θ)

s + θ q(θ)
,

where the second equality uses equation (29.3.2) and factors q(θ) from the

expression in square brackets of the numerator, and the third equality is obtained

after invoking the constant elasticity of matching with respect to unemployment,

α = −q′(θ) θ/q(θ). So the elasticity of unemployment with respect to market

tightness is

ηu,θ = −(1−α) θ q(θ)

s + θ q(θ)
= −(1−α)

(
1 − s

s + θ q(θ)

)
= −(1−α) (1−u) ,

where the second equality is obtained after adding and subtracting s to the

numerator, and the last third equality invokes expression (29.3.2).

Thus, to shed light on what contributes to significant volatility in unem-

ployment, we seek forces that can make market tightness θ highly elastic with

respect to productivity.

30.2.2. Nash bargaining model

In the standard version of the Nash bargaining model, the equilibrium expression

(29.3.14) for market tightness can be rewritten as

1− φ

c
(y − z) =

r + s

q(θ)
+ φ θ . (30.2.2)

Implicit differentiation yields

d θ

d y
= −

1− φ
c

−
(
−q′(θ) (r + s)

q(θ)2
+ φ

) = −

(
r + s
q(θ)

+ φ θ

)
1

y − z

−
(
α(r + s)
θq(θ)

+ φ

)

=
(r + s) + φ θ q(θ)

α(r + s) + φ θ q(θ)

θ

y − z
≡ ΥNash θ

y − z
, (30.2.3)
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where the second equality is obtained after using equation (30.2.2) to rearrange

the numerator, while in the denominator, we invoke the constant elasticity of

matching with respect to unemployment; the third equality follows from multi-

plying and dividing by θ q(θ). The elasticity of market tightness with respect

to productivity is then given by

ηθ,y =
(r + s) + φ θ q(θ)

α(r + s) + φ θ q(θ)

y

y − z
≡ ΥNash y

y − z
. (30.2.4)

This multiplicative decomposition of the elasticity of market tightness is central

to our analysis. Similar decompositions prevail in all of the reconfigured match-

ing models to be described below and those in Ljungqvist and Sargent (2017).

The first factor ΥNash in expression (30.2.4), has counterparts in other setups.

A consensus about reasonable parameter values bounds its contribution to the

elasticity of market tightness. Hence, the magnitude of the elasticity of market

tightness depends mostly on the second factor in expression (30.2.4), i.e., the

inverse of what we define to be the fundamental surplus fraction.

In the standard matching model with Nash bargaining, the fundamental

surplus is simply what remains after deducting the worker’s value of leisure

from productivity; x = z in expression (30.2.1). To induce them to work,

workers have to receive at least the value of leisure, so the invisible hand cannot

allocate that value to vacancy creation.

30.2.3. Shimer’s critique

Shimer (2005) observed that the average job finding rate θ q(θ) is large relative

to the observed value of the sum of the net interest rate and the separation

rate (r + s). When combined with reasonable parameter values for a worker’s

bargaining power φ and the elasticity of matching with respect to unemployment

α , this implies that the first factor ΥNash in expression (30.2.4), is close to its

lower bound of unity. More generally, the first factor in (30.2.4) is bounded from

above by 1/α . Because reasonable values of the elasticity α imply an upper

bound on the first factor, the second factor y/(y − z) in expression (30.2.4)

becomes critical for generating movements in market tightness. For values of

leisure within a commonly assumed range well below productivity, the second

factor is not large enough to generate the high volatility of market tightness

associated with observed business cycles. This is Shimer’s critique.
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Shimer (2005, pp. 39-40) documented that comparisons of steady states de-

scribed by expression (30.2.4) provide a good approximation to average out-

comes from simulations of an economy subject to aggregate productivity shocks.

Inspired by his finding, we will derive steady states under some alternative spec-

ifications. These will shed light on properties of stochastic simulations to be

reported in section 30.3.

30.2.4. Relationship to worker’s outside value

By rearranging equation (29.3.8) and imposing the first Nash-bargaining out-

come of equations (29.3.10), E − U = φS , the worker’s outside value can be

expressed as

U =
z

1− β
+

β

1− β
θq(θ)φS =

z

1− β
+ Ψm.surplus

u + Ψextra
u , (30.2.5)

where the second equality decomposes U into three nonnegative parts: (i) the

capitalized value of choosing leisure in all future periods, z(1 − β)−1 ; (ii) the

sum of the discounted values of the worker’s share of match surpluses in his or

her as yet unformed future matches4

Ψm.surplus
u =

r + s

r

θ q(θ)

r + s + θ q(θ)
φS ; (30.2.6)

4 Let Ψ
m.surplus
n be the analogous capital value of an employed worker’s share of all match

surpluses over lifetime, including current employment. The capital values Ψ
m.surplus
u and

Ψ
m.surplus
n solve the Bellman equations

Ψ
m.surplus
u = 0 + β

{
θq(θ)Ψ

m.surplus
n + [1− θq(θ)] Ψ

m.surplus
u

}
,

Ψ
m.surplus
n = ψ + β

{
(1 − s)Ψ

m.surplus
n + sΨ

m.surplus
u

}
,

where ψ is an annuity that, when paid for the duration of a match, has the same expected

present value as a worker’s share of the match surplus, E − U = φS :

∞∑

t=0

βt(1− s)tψ = φS =⇒ ψ = (r + s)βφS .



Fundamental surplus 1275

and, key to our new perspective, (iii) the parts of fundamental surpluses from

future employment matches that are not allocated to match surpluses

Ψextra
u =

θq(θ)

r + s
Ψm.surplus
u , (30.2.7)

which can be deduced from equation (30.2.5) after replacing Ψm.surplus
u with

expression (30.2.6).

We can use decomposition (30.2.5) of a worker’s outside value U to shed

light on the activities of the ‘invisible hand’ that make the elasticity of mar-

ket tightness with respect to productivity be low for common calibrations of

matching models. Those parameter settings entail a value of leisure z well be-

low productivity and a significant share φ of match surpluses being awarded to

workers, which together with a high job finding probability θq(θ) imply that

the sum Ψm.surplus
u + Ψextra

u in equation (30.2.5) forms a substantial part of a

worker’s outside value. Furthermore, Ψextra
u is the much larger term in that

sum, which follows from expression (30.2.7) and the assumption that θq(θ) is

large relative to r+s . That big term Ψextra
u makes it easy for the invisible hand

to realign a worker’s outside value in a way that leaves the match surplus almost

unchanged when productivity changes. Offsetting changes in Ψextra
u can absorb

the impact of productivity shocks so that resources devoted to vacancy creation

can remain almost unchanged, which in turn explains why unemployment does

not respond sensitively to productivity.

But in Hagedorn and Manovskii’s (2008) calibration with a high value of

leisure, the fundamental-surplus components of a worker’s outside value are so

small that there is little room for the invisible hand to realign things as we have

described, making the equilibrium amount of resources allocated to vacancy cre-

ation respond sensitively to variations in productivity. That results in a high

elasticity of market tightness with respect to productivity. Put differently, since

the fundamental surplus is a part of productivity, it follows that a given change

in productivity translates into a greater percentage change in the fundamental

surplus by a factor of y/(y−z), i.e., the inverse of the fundamental surplus frac-

tion. Thus, the small fundamental surplus fraction in calibrations like Hagedorn

and Manovskii’s having high values of leisure imply large percentage changes in

the fundamental surplus. Such large changes in the amount of resources that

could potentially be used for vacancy creation cannot be offset by the invisible

hand and hence variations in productivity lead to large variations in vacancy
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creation, resulting in a high elasticity of market tightness with respect to pro-

ductivity.5

30.2.5. Relationship to match surplus

How does the fundamental surplus relate to the match surplus? The fundamen-

tal surplus is an upper bound on resources that the invisible hand can allocate to

vacancy creation. Its magnitude as a fraction of output is the prime determinant

of the elasticity of market tightness with respect to productivity.6 In contrast,

although it is directly connected to resources that are devoted to vacancy cre-

ation, match surplus that is small relative to output has no direct bearing on the

elasticity of market tightness. Recall that in the standard matching model, the

zero-profit condition for vacancy creation implies that the expected present value

of a firm’s share of match surpluses equals the average cost of filling a vacancy.

Since common calibrations award firms a significant share of match surpluses,

and since vacancy cost expenditures are calibrated to be relatively small, it fol-

lows that equilibrium match surpluses must form small parts of output across

various matching models, regardless of the elasticity of market tightness in any

particular model.

Fundamental surpluses yield match surpluses, which in turn include firms’

profits. A small fundamental surplus fraction necessarily implies small match

surpluses and small firms’ profits. But small match surpluses and small firms’

profits don’t necessarily imply small fundamental surpluses. Therefore, the size

5 It is instructive to consider a single perturbation, φ = 0, to common calibrations of the

standard matching model, for which a worker’s outside value in expression (30.2.5) solely

equals the capitalized value of leisure and the worker receives no part of fundamental sur-

pluses, Ψ
m.surplus
u +Ψextra

u = 0. What explains that the elasticity of market tightness with

respect to productivity remains low for such perturbed parameter settings in which large fun-

damental surpluses end up affecting only firms’ profits that in equilibrium are all used for

vacancy creation? The answer lies precisely in the outcome that firms’ profits would then be

truly large; therefore, even though variations in productivity then affect firms’ profits directly,

the percentage wise impact of productivity shocks on such huge profits is negligible, so mar-

ket tightness and unemployment hardly changes. This shows that decomposition (30.2.5) of

a worker’s outside value can only go so far to shed light on the sensitivity of market tight-

ness to changes in productivity, because what ultimately matters is evidently the size of the

fundamental surplus fraction in expression (30.2.4).
6 We express the fundamental surplus as a flow value while the match surplus is typically a

capitalized value.
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of the fundamental surplus fraction is the only reliable indicator of the magni-

tude of the elasticity of market tightness with respect to productivity, a situation

conveyed by expression (30.2.4).

30.2.6. Fixed matching cost

Pissarides (2009) contributed what for us is another good laboratory in which

to study the pervasive role of the fundamental surplus when he argued that

fixed matching costs increase the elasticity of market tightness with respect

to productivity. So in addition to a vacancy posting cost c per period, we now

assume that a firm incurs a fixed cost H when matching with a worker. Our job

is to verify that the addition of these costs diminishes the fundamental surplus

fraction.

Under the assumption that a fixed matching cost H is incurred after the

firm and the worker have bargained over the consummation of a match (e.g., a

training cost before work commences),7 the match surplus S becomes

S =

{
∞∑

t=0

βt(1− s)t [y − (1 − β)U ]

}
−H =

y − (1− β)U − (1− β(1 − s))H

1− β(1 − s)
.

(30.2.8)

By Nash bargaining, the firm receives Sf and the worker Sw :

Sf = (1 − φ)S and Sw = φS. (30.2.9)

A worker’s value as unemployed is

U = z + β [θq(θ)Sw + U ] ,

which by using (30.2.9) can be rearranged to

U =
z + βθq(θ)

φ
1 − φ

Sf

1− β
. (30.2.10)

7 For the alternative assumption that the firm incurs the fixed matching cost before bar-

gaining with the worker, as well as for analyses of layoff costs upon separation, see Ljungqvist

and Sargent (2017).
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Equations (30.2.8), (30.2.9) and (30.2.10) imply that a firm’s match surplus

satisfies

Sf = (1− φ)
y − z − β(r + s)H

β(r + s) + βθq(θ)φ
, (30.2.11)

where we have used β = (1 + r)−1 and 1− β(1− s) = β(r + s).

A firm’s match surplus must also satisfy the zero profit condition for vacancy

creation:

c = βq(θ)Sf =⇒ Sf =
c

βq(θ)
. (30.2.12)

Expressions (30.2.11) and (30.2.12) for a firm’s match surplus imply that the

equilibrium θ satisfies

1− φ

c
[y − z − β(r + s)H ] =

r + s

q(θ)
+ φ θ . (30.2.13)

Paralleling the steps of implicit differentiation in subsection 30.2.2, we arrive

at the elasticity of market tightness with respect to productivity for the model

with a fixed matching cost:

ηθ,y = ΥNash y

y − z − β(r + s)H
. (30.2.14)

The only difference between the elasticity of market tightness with a fixed match-

ing cost (30.2.14) and the earlier expression (30.2.4) without such a cost is the

additional term β(r + s)H that is deducted from the fundamental surplus. So

long as the firm continues to operate, this is an annuity payment a having the

same expected present value as the fixed matching cost:

∞∑

t=0

βt(1− s)ta = H =⇒ a = [1− β(1 − s)]H = β(r + s)H .

The “invisible hand” cannot allocate those resources to vacancy creation, so it

is appropriate to subtract this annuity value when computing the fundamental

surplus.

We have thus reaffirmed Pissarides’s (2009) insight that the addition of a

fixed matching cost increases the elasticity of market tightness and shown how

the effect works through the fundamental surplus. In addition, our analysis

thus adds the insight that the quantitative effect coming from that fixed cost is

inversely related to the size of the fundamental surplus fraction.
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30.2.7. Sticky wages

The standard assumption of Nash bargaining in matching models is one way to

determine a wage, but not the only one. Matching frictions create a range of

wages that a firm and worker both prefer to breaking a match. Hall noted that

a constant wage can be consistent with no private inefficiencies in contractual

arrangements within a matching model. That motivated Hall (2005) to assume

sticky wages, in the form of a constant wage in his main analysis, as a way of

responding to the Shimer critique. Hall posited a ‘wage norm’ ŵ inside the Nash

bargaining set that must be paid to workers. Here we show that an appropriately

defined fundamental surplus fraction determines how does such a constant wage

affects the elasticity of market tightness with respect to productivity.

Given a constant wage w = ŵ , an equilibrium is characterized by the zero-

profit condition for vacancy creation in expression (29.3.6) of the standard

matching model

ŵ = y − r + s

q(θ)
c . (30.2.15)

There exists an equilibrium for any constant wage ŵ ∈ [z, y − (r + s)c] . The

lower bound is a worker’s utility of leisure and the upper bound is determined by

the zero-profit condition for vacancy creation evaluated at the point where the

probability of a firm filling a vacancy is at its maximum value of q(θ) = 1. After

implicitly differentiating (30.2.15), we can compute the elasticity of market

tightness as

ηθ,y =
1

α

y

y − ŵ
≡ Υsticky y

y − ŵ
. (30.2.16)

This equation resembles the earlier one for ηθ,y in (30.2.4). Not surprisingly,

if the constant wage equals the value of leisure, ŵ = z , then the elasticity

(30.2.16) is equal to that earlier elasticity of market tightness in the standard

matching model with Nash bargaining when the worker has a zero bargaining

weight, φ = 0. With such lopsided bargaining power, the equilibrium wage

would indeed be the constant value z of leisure.

This outcome reminds us that the first factor in expression (30.2.4) can play

only a limited role in magnifying the elasticity ηθ,y because it is bounded from

above by the inverse of the elasticity of matching with respect to unemployment,

α . In (30.2.16), the upper bound is attained. So again it is the second factor,

the inverse of the fundamental surplus fraction, that tells whether the elasticity

of market tightness is high or low. The pertinent definition of the fundamental
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surplus is now the difference between productivity and the stipulated constant

wage.

In Hall’s (2005) model, all of the fundamental surplus goes to vacancy cre-

ation (as also occurs in the standard matching model with Nash bargaining

when the worker’s bargaining weight is zero). A given percentage change in

productivity is multiplied by a factor y/(y − ŵ) to become a larger percentage

change in the fundamental surplus. Because all of the fundamental surplus now

goes to vacancy creation, there is a correspondingly magnified impact on un-

employment. Numerical simulations of economies with aggregate productivity

shocks in section 30.3.1 reaffirm this interpretation.

30.2.8. Alternating-offer wage bargaining

Hall and Milgrom (2008) proposed yet another response to the Shimer critique.

Instead of Nash bargaining, a firm and a worker take turns making wage offers.

The threat is not to break up and receive outside values, but instead to continue

to bargain because that choice has a strictly higher payoff than accepting the

outside option. After each unsuccessful bargaining round, the firm incurs a

cost of delay γ > 0 while the worker enjoys the value of leisure z . There is

also a probability δ that the job opportunity is exogenously destroyed between

bargaining rounds, sending the worker to the unemployment pool.

It is optimal for both bargaining parties to make barely acceptable offers.

The firm always offers wf and the worker always offers ww . Consequently, in

an equilibrium, the first wage offer is accepted. Hall and Milgrom assume that

firms make the first wage offer.

Hall and Milgrom (2008, p. 1673) chose to emphasize that “the limited in-

fluence of unemployment [the outside value of workers] on the wage results in

large fluctuations in unemployment under plausible movements in [productiv-

ity].” It is more accurate to emphasize that the key force is actually that an

appropriately defined fundamental surplus fraction has to be calibrated to be

small. Without a small fundamental surplus fraction, it matters little that the

outside value has been prevented from influencing bargaining. To illustrate this,

we compute the elasticity of market tightness with respect to productivity and

look under the hood.
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After a wage agreement, a firm’s value of a filled job, J , and the value of an

employed worker, E , are still given by expressions (29.3.3) and (29.3.7) in the

standard matching model. These can be rearranged to become

E =
w + β sU

1− β(1− s)
, (30.2.17)

J =
y − w

1− β(1− s)
, (30.2.18)

where we have imposed a zero-profit condition V = 0 on vacancy creation in the

second expression. Thus, using expression (30.2.17), the indifference condition

for a worker who has just received a wage offer wf from the firm and is choosing

whether to decline the offer and wait until the next period to make a counteroffer

ww is

wf + β sU

1− β(1 − s)
= z + β

[
(1− δ)

ww + β sU

1 − β(1− s)
+ δ U

]
. (30.2.19)

Using expression (30.2.18), the analogous condition for a firm contemplating a

counteroffer from the worker is

y − ww

1− β(1 − s)
= −γ + β(1 − δ)

y − wf

1− β(1− s)
. (30.2.20)

After collecting and simplifying the terms that involve the worker’s outside

value U , expression (30.2.19) becomes

wf

1− β(1 − s)
= z + β(1−δ) ww

1− β(1− s)
+ β

1− β

1− β(1− s)
(δ−s)U. (30.2.21)

As emphasized by Hall and Milgrom, the worker’s outside value U has a small

influence on bargaining: when δ = s , the outside value disappears from expres-

sion (30.2.21). That is, with bargaining that ends either with an agreement or

with destruction of the job, the outside value will matter only if job destruc-

tion probabilities differ before and after reaching an agreement. To strengthen

Hall and Milgrom’s (2008) observation that under their bargaining protocol the

outside value has at most a small influence, we proceed under the assumption

that δ = s , which makes the two indifference conditions (30.2.21) and (30.2.20)

become

wf = (1 − β̃) z + β̃ ww (30.2.22)

y − ww = −(1− β̃) γ + β̃ (y − wf ) , (30.2.23)
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where β̃ ≡ β(1− s). Solve for ww from (30.2.23) and substitute into (30.2.22)

to get

wf =
(1− β̃)

[
z + β̃(y + γ)

]

1− β̃2
=

z + β̃(y + γ)

1 + β̃
. (30.2.24)

This is the wage that a firm would immediately offer a worker when first

matched; the offer would be accepted.8 In an equilibrium, this wage must also

be consistent with the no-profit condition for vacancy creation. Substitution

of w = wf from expression (30.2.24) into the no-profit condition (29.3.6) of

the standard matching model results in the following expression for equilibrium

market tightness:
z + β̃(y + γ)

1 + β̃
= y − r + s

q(θ)
c. (30.2.25)

After implicit differentiation, we compute the elasticity of market tightness

ηθ,y =
1

α

y

y − z − β̃ γ
= Υsticky y

y − z − β̃ γ
, (30.2.26)

where the fundamental surplus is the productivity that remains after making

deductions for the value of leisure z and a firm’s discounted cost of delay β̃γ .

The latter item captures the worker’s prospective gains from his ability to exploit

the cost that delay imposes on the firm. What remains of productivity is the

fundamental surplus that could potentially be allocated by the ‘invisible hand’

to vacancy creation in an equilibrium.

To summarize, the alternative bargaining protocol of Hall and Milgrom

(2008) does suppress the influence of the worker’s outside value during bar-

gaining. But this outcome would be irrelevant if Hall and Milgrom had not

calibrated a small fundamental surplus fraction, as numerically illustrated in

their own parameterized model in section 30.3.3.

8 When firms make the first wage offer, a necessary condition for an equilibrium is that wf

in expression (30.2.24) is less than productivity y , i.e., the parameters must satisfy z+β̃γ < y .
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30.3. Business cycle simulations

To illustrate that a small fundamental surplus fraction is essential for generating

ample unemployment volatility over the business cycle in matching models, we

use Hall’s (2005) specification with discrete time and a random productivity

process. The monthly discount factor β corresponds to a 5-percent annual

rate and the value of leisure is z = 0.40. The elasticity of matching with

respect to unemployment is α = 0.235, and the exogenous monthly separation

rate is s = 0.034. Aggregate productivity takes on five values ys uniformly

spaced around a mean of one on the interval [0.9935, 1.00565], and is governed

by a monthly transition probability matrix Π with probabilities that are zero

except as follows: π1,2 = π4,5 = 2(1 − ρ), π2,3 = π3,4 = 3(1 − ρ), with the

upper triangle of the transition matrix symmetrical to the lower triangle and the

diagonal elements equal to one minus the sums of the nondiagonal elements. The

resulting serial correlation of y is ρ , which is parameterized to be ρ = 0.9899.

To facilitate the sensitivity analysis, following Ljungqvist and Sargent (2017),

we alter Hall’s model period from one month to one day.

30.3.1. Hall’s sticky wage

Following Hall (2005), we posit a fixed wage ŵ = 0.9657, which equals the flex-

ible wage that would prevail at the median productivity level under standard

Nash bargaining (with equal bargaining weights, φ = 0.5). Figure 30.3.1 repro-

duces Hall’s figures 2 and 4 for those two models. The solid line and the upper

dotted line depict unemployment rates at different productivities for the sticky-

wage model and the standard Nash-bargaining model, respectively.9 Unemploy-

ment is almost invariant to productivity under Nash bargaining but responds

sensitively under the sticky wage. These outcomes are explained by differences

in job-finding rates, as shown by the dashed line and the lower dotted line for

the sticky-wage model and the standard Nash-bargaining model, respectively,

9 Unemployment is a state variable that is not just a function of the current productivity, as

are all of the other variables, but depends on the history of the economy. But high persistence

of productivity and the high job-finding rates make the unemployment rate that is observed

at a given productivity level be well approximated by expression (29.3.2) evaluated at the

market tightness θ prevailing at that productivity (see Hall (2005, p. 59)).
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Figure 30.3.1: Sticky-wage model. Unemployment rates and

daily job-finding rates at different productivities (given a fixed

wage ŵ = 0.9657), where the dotted lines with almost no slopes

are counterparts from a standard Nash-bargaining model.

expressed at our daily frequency.10 Under the sticky wage, high productivities

cause firms to post many vacancies, making it easy for unemployed workers to

find jobs, while the opposite is true when productivity is low.

We conduct a sensitivity analysis of the choice of the fixed wage. The solid

line in Figure 30.3.2 shows how the average unemployment rate varies with the

fixed wage ŵ . A small set of wages spans outcomes ranging from very low to very

high average unemployment rates. Small variations in a fixed wage close to pro-

ductivity generate large changes in the fundamental surplus fraction, (y− ŵ)/y .
Free entry of firms makes that map directly into the amount of resources devoted

to vacancy creation. The dashed line in Figure 30.3.2 delineates implications

for the volatility of unemployment. The standard deviation of unemployment

is nearly zero at the left end of the graph where the job-finding probability is

almost one for all productivity levels. Unemployment volatility then increases

for higher constant wages until, outside of the graph at the right end, vacancy

creation becomes so unprofitable that average unemployment converges to its

maximum of 100 percent, causing there to be no more fluctuations.

10 Our daily job-finding rates are roughly 1/30 of the monthly rates in Hall (2005, figures 2

and 4), confirming our conversion from a monthly to a daily frequency.
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Figure 30.3.2: Sticky-wage model. Average unemployment rate

and standard deviation of unemployment for different postulated

values of the fixed wage.

At Hall’s fixed wage ŵ = 0.9657, Figure 30.3.2 shows a standard deviation

of unemployment equal to 1.80 percentage points, which is close to the target

of 1.54 to which Hall (2005) calibrated his model.

30.3.2. Hagedorn and Manovskii’s high value of leisure

It turns out that by elevating the value of leisure, the standard Nash-bargaining

model can attain the same volatility of unemployment as does the sticky wage

model of the previous subsection. To illustrate this, we use Hall’s (2005) param-

eterized environment but now simply assume standard Nash wage bargaining in

order to study Hagedorn and Manovskii’s (2008) analysis of the consequences of

positing a high value z = 0.960 of leisure and a low bargaining power of workers

φ = 0.0135. These parameter values imply a high standard deviation of 1.4

percentage points for unemployment. Figure 30.3.3, which depicts outcomes for

different constellations of z ∈ [0.4, .99] and φ ∈ [0.001, 0.5], sheds light on the

sensitivity of outcomes to the choice of parameters. To construct the figure,

for each pair (z, φ), we adjusted the efficiency parameter A of the matching

function to make the average unemployment rate stay at 5.5 percent. Because
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it implies a a small fundamental surplus fraction, a high value of leisure is es-

sential for obtaining large variations in market tightness and a high volatility of

unemployment.

To match the elasticity of wages with respect to productivity, Hagedorn

and Manovskii (2008) require a low bargaining power for workers. Given the

above parameterization with (z, φ) = (0.960, 0.0135), we obtain a wage elasticity

of 0.44, which is approximately the value that Hagedorn and Manovskii had

targeted. To conduct a sensitivity analysis to variations in z and φ , Figure

30.3.4 employs the same computational approach underlying Figure 30.3.3. The

figure confirms that a low φ is required to obtain a low wage elasticity.11

Taken together, Figures 30.3.3 and 30.3.4 seem to settle a difference of opin-

ions in favor of Hagedorn and Manovskii (2008, p. 1696), who argued that “the

volatility of labor market tightness is almost independent of [φ ] and is deter-

mined only by the level of z .” Rogerson and Shimer (2011, p. 660) apparently

disagreed when they instead emphasized that wages are rigid under the cali-

bration of “Hagedorn and Manovskii (2008), although it is worth noting that

the authors do not interpret their paper as one with wage rigidities. They cali-

brate ... a small value for the workers’ bargaining power [φ ]. This significantly

amplifies productivity shocks ...” But Figures 30.3.3 and 30.3.4 indicate that

the low wage elasticity of Hagedorn and Manovskii (2008) is incidental to and

neither necessary nor sufficient to obtain a high volatility of unemployment. We

suggest that instead of stressing the importance of a rigid wage, as Rogerson

and Shimer did, what should be concluded is the general principle that the

fundamental surplus fraction must be small in order to amplify business cycle

responses to productivity changes.

11 Note that the axes in Figure 30.3.4 are rotated relative to Figure 30.3.3, for easy viewing

of the relationship.
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Figure 30.3.3: Nash-bargaining model. Standard deviation of

unemployment in percentage points for different constellations of

the value of leisure z , and the bargaining power of workers φ .
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Figure 30.3.4: Nash-bargaining model. Wage elasticity with re-

spect to productivity for different constellations of the value of

leisure z , and the bargaining power of workers φ . (Note that the

axes are rotated relative to Figure 30.3.3.)
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30.3.3. Hall and Milgrom’s alternating-offer bargaining

Hall and Milgrom’s (2008) model of alternating-offer wage bargaining is another

way to increase unemployment volatility. Except for the wage formation pro-

cess, their environment is Hall’s (2005). But Hall and Milgrom parameterize

it differently. One difference between Hall and Milgrom’s parameterization and

Hall’s (2005) plays an especially important role in setting the fundamental sur-

plus: Hall and Milgrom’ raised the value of leisure to z = 0.71 from Hall’s

value of z = 0.40. Section 30.2.8 taught us that the values of leisure and of

the firm’s cost of delay in bargaining γ are likely to be critical determinants of

the elasticity of market tightness with respect to productivity and hence of the

volatility of unemployment.

But that is not what Hall and Milgrom (2008) chose to emphasize. Instead,

they stressed how much the outside value of unemployment is suppressed in

alternating-offer wage bargaining since disagreement no longer leads to unem-

ployment but instead to another round of bargaining. So from Hall and Mil-

grom’s perspective a key parameter is the exogenous rate δ at which parties

break up between bargaining rounds. Figure 30.3.5 shows how different con-

stellations of (γ, δ) affect the standard deviation of unemployment. For each

pair (γ, δ), we adjust the efficiency parameter A of the matching function to

make the average unemployment rate stay at 5.5 percent. Because Hall and

Milgrom (2008) assumed that productivity shocks are not the sole source of

unemployment fluctuations, leading them to lower their target standard devia-

tion of unemployment to 0.68 percentage points – a target attained with their

parameterization (γ, δ) = (0.27, 0.0055) and reproduced in Figure 30.3.5.

Figure 30.3.5 supports our earlier finding that the cost of delay γ together

with the value of leisure z are the keys to generating higher volatility of unem-

ployment. Without a cost of delay sufficiently high to reduce the fundamental

surplus fraction, the exogenous separation rate between bargaining rounds mat-

ters little.12

Although Hall and Milgrom (2008, p. 1670) notice that their “sum of z and

γ is . . . not very different from the value of z by itself in . . . Hagedorn and

Manovskii’s calibration” (as studied in our section 30.3.2), they demphasized

12 To be specific, our formula (30.2.26) for the steady-state comparative statics is an ap-

proximation of the elasticity of market tightness at the rear end of Figure 30.3.5 where the

exogenous rate δ at which parties break up between bargaining rounds is equal to Hall and

Milgrom’s (2008) assumed job destruction rate of 0.0014 per day.
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Figure 30.3.5: Alternating-offer bargaining model. Standard de-

viation of unemployment in percentage points for different constel-

lations of firms’ cost of delay γ in bargaining and the exogenous

separation rate δ while bargaining.

this similarity and instead emphasized differences in mechanisms across Hage-

dorn and Manovskii’s model and theirs. Focusing on the fundamental surplus

tells us that it is their similarity that should be stressed. Hall and Milgrom’s

and Hagedorn and Manovskii’s models are united in requiring a small fundamen-

tal surplus fraction to generate high unemployment volatility over the business

cycle.

30.3.4. Matching and bargaining protocols in a DSGE model

Christiano, Eichenbaum and Trabandt (2016) compare consequences of assum-

ing alternative-offer bargaining (AOB) and Nash bargaining in a dynamic stochas-

tic general equilibrium (DSGE) model with a matching function. They find

that, if they adjust structural parameters across the two models to fit the data,

models parameters estimated under the two alternative assumptions are able

to account for the data equally well. That includes comparable performance in

generating observed unemployment volatility. The solid lines in Figure 30.3.6 de-

pict responses of unemployment to a neutral technology shock that are virtually

identical across the two models. But beneath those nearly identical responses

there resides a substantial difference in estimates of a key parameter under the
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Figure 30.3.6: Impulse response of unemployment to a neutral

technology shock in the DSGE analyses. The solid lines refer to

estimates of AOB and Nash bargaining models, respectively. The

dashed lines refer to perturbed models where parameter values for

the replacement ratio and, in the AOB model, for a firm’s cost to

make a counteroffer are cut in half. The two solid (dashed) lines

are almost indistinguishable, except for the Nash bargaining model

being slightly below the AOB model.

two assumptions, namely, the replacement rate from unemployment insurance,

a parameter that corresponds to our value of leisure z . They estimate a value

of 0.37 under the AOB model versus 0.88 with the Nash bargaining model.

Christiano et al. (2016, pp. 1551-1552) remark that their high estimate of

the value of leisure in the Nash bargaining model “ . . . is reminiscent of Hage-

dorn and Manovskii’s (2008) argument that a high replacement ratio has the

potential to boost the volatility of unemployment”.13 To elaborate, Christiano

et al. demonstrate that if they restrict the replacement rate in the Nash bar-

gaining model to be the same as that of the AOB model and then recalculate

the impulse response functions, then there occurs a dramatic deterioration in

the performance of the Nash bargaining model. Thus, the dashed line in Fig-

ure 30.3.6 show how unemployment becomes much less responsive to a neutral

technology shock under that perturbation in the replacement rate.

13 See section 30.3.2 above.
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Christiano et al. (2016, p. 1547) proceed to interpret their low estimate of

the value of leisure in the AOB model as meaning that “the replacement ratio

does not play a critical role in the AOB model’s ability to account for the

data.” Their account conceals that the fundamental surplus is really at work

once again. Christiano et al. generously conducted for us a perturbation of the

AOB model that can be regarded as the analogue to their perturbation of the

Nash bargaining model; namely, a cutting in half of both the replacement rate

0.37 and a firm’s cost of delay in bargaining, where the latter in their model is

a firm’s cost of making a counteroffer calibrated to 0.6 of a firm’s daily revenue

per worker.14 As sections 30.2.8 and 30.3.3 lead us to expect, this perturbation

of the AOB model also brings a dramatic deterioration in performance, one as

bad as that of the perturbed Nash bargaining model: the dashed lines depicting

a dampened impulse response of unemployment to a neutral technology shock

in Figure 30.3.6 are almost the same across the two perturbed models. We

conclude from this exercise that contrary to what Christiano et al. say, the

replacement ratio is critical in the AOB model too, and that what is needed to

make the fundamental surplus fraction small in that model is a combination of

very high values of the replacement rate and a firm’s cost of delay in bargaining.

30.4. Overlapping generations in one matching function

To emphasize the important role of congestion externalities, it is useful to study

a matching model in which workers are heterogeneous along one or more di-

mensions, for example, age. Chéron, Hairault, and Langot (2013) and Menzio,

Telyukova, and Visschers (2016) study overlapping generations models under

alternative arrangements in which unemployed workers either enter a single

matching function or are assigned to type-specific matching functions. In this

section, we adopt a framework of Chéron, Hairault and Langot. They assume a

single matching function and an exogenous retirement age T+1. Each period, a

retiring generation is replaced by a new generation of the same size, normalized

to unity. All newborn workers enter the labor market being unemployed.

14 Christiano et al. (2016) assume that it takes one day for a wage offer to be extended, with

a firm and a worker alternating in making an offer.
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At the beginning of each period, a new productivity is drawn from a differ-

entiable cumulative distribution function G(ǫ) for each newly filled job and also

for each ongoing job. The continuous random variable ǫ has the support [ǫ, 1].

After observing the job productivity, the firm decides whether to operate the

job. If a job is not operated, the match between the firm and worker is bro-

ken, and the worker returns to the pool of unemployed. In an equilibrium, jobs

with productivities below age-specific reservation productivities Ri for workers

of age i are terminated. This setting gives rise to intergenerational labor market

externalities like those in the heterogeneous jobs model of section 29.4.

We assume that the worst productivity realization ǫ is so low that it triggers

job separations for any age in the decentralized equilibrium as well as in the

social planner solution. Hence, all reservation productivities are at interior

solutions. If that requires a negative parameter value ǫ , it can be thought of as

a ’labor hoarding cost’ for a (temporarily) non-productive job, which can only

be avoided by breaking the match and not operating the job.

30.4.1. A steady state

In a steady state, there is a list of time-invariant unemployment rates {ui}Ti=1 ,

where the index i denotes the age of workers. Since newborn workers enter as

unemployed, u1 = 1. Given equilibrium market tightness θ and reservation

productivities {Ri}Ti=2 , unemployment rates across ages evolve as

ui = ui−1

[
1− θq(θ)

(
1−G(Ri)

)]
+ (1 − ui−1)G(Ri) , (30.4.1)

for i = 2, . . . , T . Note that the unemployed of age i− 1 can be matched to jobs

in the subsequent period and hence the reservation productivity Ri determines

which of those jobs are operated. Total unemployment is u =
∑T
i=1 ui , with an

economy-wide unemployment rate of u/T .

For a job with productivity ǫ that is matched and acceptable to a worker

of age i (i.e., ǫ ≥ Ri ), a firm’s value, Ji(ǫ), and an employed worker’s value,

Ei(ǫ), are

Ji(ǫ) = ǫ − wi(ǫ) + β

[∫ 1

Ri+1

Ji+1(ǫ
′)dG(ǫ′) + G(Ri+1)V

]
(30.4.2)

V = −c + βq(θ)

T∑

i=2

[
ui−1

u

(∫ 1

Ri

Ji(ǫ)dG(ǫ) +G(Ri)V

)]
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+ β(1 − q(θ))V (30.4.3)

Ei(ǫ) = wi(ǫ) + β

[∫ 1

Ri+1

Ei+1(ǫ
′)dG(ǫ′) + G(Ri+1)Ui+1

]
(30.4.4)

Ui = z + βθq(θ)

[∫ 1

Ri+1

Ei+1(ǫ
′)dG(ǫ′) + G(Ri+1)Ui+1

]

+ β(1 − θq(θ))Ui+1

= z + βUi+1 + βθq(θ)

∫ 1

Ri+1

[
Ei+1(ǫ

′)− Ui+1

]
dG(ǫ′), (30.4.5)

where the value V of a vacancy reflects a firm’s probabilities of being matched

with workers of different ages. A free entry condition requires that a vacancy

earn zero expected profits, V = 0, and so equation (30.4.3) can be rewritten as

q(θ) =
c

β
∑T

i=2
ui−1

u

∫ 1

Ri
Ji(ǫ)dG(ǫ)

. (30.4.6)

The expression for the value of an unemployed worker of age i in the second

equality of equation (30.4.5) shows that a successful match earns the worker a

surplus of employment over the value of remaining unemployed, Ei+1(ǫ
′)−Ui+1 .

For an acceptable firm-worker match with a worker of age i and job produc-

tivity ǫ ≥ Ri , the match surplus is

Si(ǫ) = Ji(ǫ) + Ei(ǫ) − Ui ≥ 0. (30.4.7)

Nash bargaining implies that the surplus is divided between a worker and a firm

according to

Ei(ǫ) − Ui = φSi(ǫ) =
φ

1− φ
Ji(ǫ) . (30.4.8)

After substituting expressions (30.4.2), (30.4.4) and (30.4.5) in equation (30.4.7),

the surplus of an acceptable match becomes

Si(ǫ) = ǫ− z + β

∫ 1

Ri+1

[Ji+1(ǫ
′) + Ei+1(ǫ

′)] dG(ǫ′) − β [1−G(Ri+1)]Ui+1

− βθq(θ)

∫ 1

Ri+1

[Ei+1(ǫ
′)− Ui+1] dG(ǫ

′)

= ǫ− z + β [1− θq(θ)φ]

∫ 1

Ri+1

Si+1(ǫ
′) dG(ǫ′) , (30.4.9)
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where the last equality invokes (30.4.7) for match surpluses in period t+1, and

associated Nash bargaining outcomes (30.4.8), Ei+1(ǫ
′)− Ui+1 = φSi+1(ǫ

′).

We conclude that the surplus function satisfies

Si(ǫ) = max

{
ǫ− z + β [1− θq(θ)φ]

∫ 1

ǫ

Si+1(ǫ
′) dG(ǫ′) , 0

}
. (30.4.10)

The value Ri of the productivity ǫ at which the first argument behind the max

operator is zero is

Ri = z − β
[
1− θq(θ)φ

] ∫ 1

ǫ

Si+1(ǫ
′)dG(ǫ′) . (30.4.11)

Since the surplus function is zero for a worker who has retired from the labor

market, ST+1(ǫ
′) = 0, so we see from equation (30.4.11) that reservation pro-

ductivity in the last period before retirement is RT = z , i.e., acceptable jobs

are those having productivities above the value of leisure for an unemployed

worker. Furthermore, before the worker’s last period in the labor market, the

reservation productivity is strictly less than z because by staying in the match, a

firm-worker pair is assured of a new productivity draw next period, and without

having to incur any vacancy posting costs.15

15 When a worker has all the bargaining power, φ = 1, we see from equation (30.4.11) that

the reservation productivity at age i < T would be less than z if and only if the job finding

rate of an unemployed worker is less than one, θq(θ) < 1, which reflects the worker’s value

of staying on the job in order to be assured of a new productivity draw next period. But of

course, if φ = 1, there would not exist an equilibrium with job creation since firms then could

not recover their vacancy costs. The other extreme of a firm having all the bargaining power,

φ = 0, is consistent with job creation in an equilibrium. With such lopsided bargaining power,

the equilibrium wage would be the value of leisure, wi(ǫ) = z (see equation (30.4.18) below);

and at reservation productivity Ri in equation (30.4.11), the firm would be just indifferent

to operating the job and incurring the loss wi(Ri)− Ri = z − Ri in return for the expected

present value of the total match surplus next period, β
∫ 1

0
Si+1(ǫ

′)dG(ǫ′) .
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30.4.2. Reservation productivity is increasing in age

By substituting (30.4.11) in (30.4.10), the match surplus can be expressed as

Si(ǫ) = max {ǫ−Ri , 0} . (30.4.12)

We will now confirm that the reservation productivity is strictly increasing in

age, Ri < Ri+1 and hence the match surplus in (30.4.12) decreases in age,

Si(ǫ) ≥ Si+1(ǫ). Use expression (30.4.12) and apply integration by parts to the

integral over the future surplus in equation (30.4.11):

∫ 1

Ri+1

Si+1(ǫ
′) dG(ǫ′) =

∫ 1

Ri+1

[ǫ′ −Ri+1] dG(ǫ
′)

= [1−Ri+1]G(1) − [Ri+1 −Ri+1]G(Ri+1)−
∫ 1

Ri+1

G(ǫ′)dǫ′

= 1−Ri+1 −
∫ 1

Ri+1

G(ǫ′)dǫ′ =

∫ 1

Ri+1

[1−G(ǫ′)]dǫ′ . (30.4.13)

Since Si+1(ǫ
′) = 0 for ǫ′ < Ri+1 , we have appropriately integrated over the

region at which values are not zero. Substituting expression (30.4.13) into

equation (30.4.11) shows how reservation productivities are determined recur-

sively

Ri = z − β
[
1− θq(θ)φ

] ∫ 1

Ri+1

[1−G(ǫ′)]dǫ′ (30.4.14a)

for i = 2, . . . , T − 1, and

RT = z . (30.4.14b)

The momentum of the reduction in the reservation productivity when going from

age T to T−1 continues throughout the recursions, as the integral in (30.4.14a)

is computed for a successively widened range when working backward; that is,

the negative of the enlarged term with the integral on the right side of (30.4.14a)

causes the reservation productivity for the next younger age on the left side of

(30.4.14a) to become smaller, which in the subsequent recursion further widens

the range of integration and hence further reduces the right side of (30.4.14a),

and so on. Thus, the reservation productivity is strictly increasing in age.

The described feedback loop is an equilibrium outcome as follows. On the

one hand, when the reservation productivity is increasing in age, the range of
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acceptable productivity draws shrinks over the life cycle, and hence the expected

match surplus unambiguously falls with age. On the other hand, since the

expected match surplus for older workers is lower, labor hoarding on their jobs

becomes less valuable, and hence their reservation productivities are higher than

those of younger workers. At the very end, for workers of the highest age T in

the labor market, who will be retired next period, labor hoarding cannot be

rational so the reservation productivity becomes equal to the value of leisure.

30.4.3. Wage rate is decreasing in age

The outcome that the reservation productivity increases with age means that

employed older workers have a higher average productivity than younger ones.

However, as measured by wage rates conditional on job productivity, we shall

now show that older workers earn less than younger workers. Recall from wage

equation (29.3.11) in the standard matching model that the equilibrium wage is

a function of both a job’s productivity and a worker’s value of unemployment.

The latter decreases with a worker’s age in our model.

After substituting expression (30.4.6) for q(θ) in equation (30.4.5) and uti-

lizing Nash bargaining outcome (30.4.8), the value of an unemployed worker of

age i becomes

Ui = z + βUi+1 +
φ

1− φ
θ c κi+1, (30.4.15)

where

κi+1 ≡
∫ 1

Ri+1
Si+1(ǫ

′)dG(ǫ′)
∑T

j=2
uj−1

u

∫ 1

Rj
Sj(ǫ)dG(ǫ)

. (30.4.16)

Since the surplus function is decreasing in age, it follows that κi > κi+1 is also

decreasing in age. In addition, starting with the terminal value UT+1 = 0 and

then working backwards, the value of unemployment in equation (30.4.15) can

be shown to be decreasing in age.

To compute the equilibrium wage for a worker of age i , we start with the

Nash bargaining outcome in expression (30.4.8)

Ei(ǫ) − Ui = φ
[
Ji(ǫ) + Ei(ǫ) − Ui

]
(30.4.17)

and rearrange it to get

(1− φ)Ui = Ei(ǫ) − φ
[
Ji(ǫ) + Ei(ǫ)

]
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= wi(ǫ)− φǫ + (1− φ)βG(Ri+1)Ui+1

+ β

∫ 1

Ri+1

{
Ei+1(ǫ

′)− φ
[
Ji+1(ǫ

′) + Ei+1(ǫ
′)
]}
dG(ǫ′)

= wi(ǫ)− φǫ + (1− φ)βG(Ri+1)Ui+1 + (1− φ)β[1 −G(Ri+1)]Ui+1

+ β

∫ 1

Ri+1

{
Ei+1(ǫ

′)− Ui+1 − φ
[
Ji+1(ǫ

′) + Ei+1(ǫ
′)− Ui+1

]}
dG(ǫ′)

= wi(ǫ)− φǫ + (1− φ)βUi+1,

where the second equality is obtained by eliminating Ji(ǫ) and Ei(ǫ) by using

equations (30.4.2) and (30.4.4), and the third equality follows from adding and

subtracting (1 − φ)β[1 − G(Ri+1)]Ui+1 . The integral on the right side of the

third equality is zero according to Nash bargaining outcome (30.4.17); after

further simplification, we arrive at the last fourth equality. From the outermost

left and right sides of the above succession of equalities the equilibrium wage of

a worker of age i satisfies

wi(ǫ) = φǫ+ (1− φ) [Ui − βUi+1] .

After eliminating Ui by using equation (30.4.15), we arrive at

wi(ǫ) = z + φ[ǫ− z + θ c κi+1]. (30.4.18)

Since κT+1 = 0, it follows that the wage in the last period before retirement is

wT = z+φ(ǫ− z), i.e., the worker receives the outside payoff to an unemployed

worker, z , plus a worker’s Nash bargaining share of the surplus from a one-

period match, φ(ǫ − z). Wages before that last period (i < T ) are higher by

virtue of the higher outside value of younger workers as captured by the term

φ θ c κi+1 in expression (30.4.18), which is decreasing in age.
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30.4.4. Welfare analysis

We study a planning problem with equal Pareto weights on subsequent genera-

tions and individual agents who do not discount the future, β = 1. An optimal

allocation maximizes steady-state output net of vacancy costs plus the value of

leisure enjoyed by the unemployed. Given an unemployment rate ui−1 at the

end of age i− 1, the output of workers of age i is the product of the fraction of

age i workers employed,
[
ui−1θq(θ) + 1− ui−1

][
1−G(Ri)

]
, and their average

productivity,
[
1 − G(Ri)

]−1 ∫ 1

Ri
ǫ dG(ǫ). Omitting the constant zu1 from the

objective function, the planner’s optimization problem becomes

max
θ,{Ri,ui}T

i=2

T∑

i=2

{[
ui−1θq(θ) + 1− ui−1

] ∫ 1

Ri

ǫ dG(ǫ) + zui

}
− cθ

T∑

j=1

uj

subject to ui = ui−1

{
1− θq(θ) [1−G(Ri)]

}
+ (1− ui−1)G(Ri)

for i = 2, . . . , T

given u1 = 1 .

First-order necessary conditions at interior solutions are

θ :

T∑

i=2

ui−1

[
q(θ) + θq′(θ)

] ∫ 1

Ri

ǫ dG(ǫ)− c

T∑

j=1

uj

−
T∑

i=2

λi
[
q(θ) + θq′(θ)

]
[1−G(Ri)]ui−1 = 0

Ri :
[
ui−1θq(θ) + 1− ui−1

](
−Ri g(Ri)

)

+ λi

[
ui−1θq(θ)g(Ri) + (1− ui−1)g(Ri)

]
= 0

ui : z − cθ − λi +
[
θq(θ) − 1

] ∫ 1

Ri+1

ǫ dG(ǫ)

+ λi+1

{
1− θq(θ) [1−G(Ri+1)]−G(Ri+1)

}
= 0 ,

where the last two terms on the left side of the last equation should be under-

stood to be zero for the last period before retirement, uT , i.e., the first-order

condition becomes z − cθ − λT = 0. After rearranging and simplifying, let us
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rewrite the first-order conditions as

θ : c u = q(θ)[1 − α]

T∑

i=2

ui−1

{∫ 1

Ri

ǫ dG(ǫ) − λi [1−G(Ri)]

}
(30.4.19)

Ri : λi = Ri (30.4.20)

ui : λi = z − c θ −
[
1− θq(θ)

]

·
{∫ 1

Ri+1

ǫ dG(ǫ) − λi+1 [1−G(Ri+1)]

}
, (30.4.21)

where u is total unemployment, u =
∑T

j=1 uj , and α is the elasticity of match-

ing with respect to unemployment, α = −q′(θ) θ/q(θ), as described in equation

(29.3.1). By substituting (30.4.20) into (30.4.19) and (30.4.21), and by apply-

ing integration by parts,16 the following equations characterize the optimum of

the Pareto problem:

q(θ) =
c

[1− α]
∑T

i=2
ui−1

u

∫ 1

Ri

[
1−G(ǫ)

]
dǫ

(30.4.22)

Ri = z − c θ −
[
1− θq(θ)

] ∫ 1

Ri+1

[
1−G(ǫ)

]
dǫ (30.4.23a)

for i = 2, . . . , T − 1, and

RT = z − c θ . (30.4.23b)

Given a market tightness θ , it follows immediately from equations (30.4.23)

that the socially optimal reservation productivity is increasing in age, just as it

is in the decentralized or market economy analyzed above. However, note that

the reservation productivity (30.4.23b) in the last period before retirement is

lower than the corresponding reservation productivity (30.4.14b) in the market

economy, which seems to suggest that an optimal labor market policy calls for

employment subsidies for older workers that lower the reservation productivities

16 Integration by parts yields

∫ 1

Ri

ǫ dG(ǫ) = G(1) − RiG(Ri)−

∫ 1

Ri

G(ǫ) dǫ = Ri
[
1−G(Ri)

]
+

∫ 1

Ri

[
1−G(ǫ)

]
dǫ ,

where the last equality is obtained by adding and subtracting Ri .
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attached to hiring them. We will confirm this conjecture and also show that

employment of younger workers should be taxed.

To prepare to study an optimal labor market policy, it is useful to substitute

expression (30.4.22) for q(θ) in equation (30.4.23a)

Ri +

∫ 1

Ri+1

[
1−G(ǫ)

]
dǫ = z − c θ +

θ c

1− α
κ̂i+1, (30.4.24)

where

κ̂i+1 ≡
∫ 1

Ri+1

[
1−G(ǫ)

]
dǫ

∑T
j=2

uj−1

u

∫ 1

Rj

[
1−G(ǫ)

]
dǫ

(30.4.25)

for i = 2, . . . , T − 1. Add and subtract θ c κ̂i+1 to the right side of equation

(30.4.24) to get

Ri +

∫ 1

Ri+1

[
1−G(ǫ)

]
dǫ = z − c θ

[
1− κ̂i+1

]
+

α

1− α
θ c κ̂i+1. (30.4.26)

30.4.5. The optimal policy

The optimal allocation can be supported by age-specific subsidies δi to employ-

ment (taxes if negative)17 so long as workers’ bargaining strength φ satisifies

the Hosios condition, φ = α . We will assume that the Hosios condition holds

along with our assumption from the previous section that β = 1.

Introducing subsidies to employment alters equation (30.4.10) for the match

surplus to

Si(ǫ) = max

{
ǫ + δi − z + β [1− θq(θ)φ]

∫ 1

ǫ

Si+1(ǫ
′) dG(ǫ′) , 0

}
. (30.4.27)

In addition, equation (30.4.2) for a firm’s value of a filled job is modified to

become

Ji(ǫ) = ǫ + δi − wi(ǫ) + β

∫ 1

Ri+1

Ji+1(ǫ
′)dG(ǫ′). (30.4.28)

17 We assume that any deficit or surplus from the proposed scheme of employment subsidies

and taxes are offset with lump-sum transfers imposed on all agents.
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Following the same steps used to derive wages in section 30.4.3, we arrive at

wi(ǫ) = z + φ[ǫ+ δi − z + θ c κi+1]. (30.4.29)

At the reservation productivity Ri , we know that Ji(Ri) = 0 so from equa-

tion (30.4.28), we have

0 = Ri + δi − wi(Ri) + β(1 − φ)

∫ 1

Ri+1

Si+1(ǫ
′)dG(ǫ′)

= Ri + δi − wi(Ri) + β(1 − φ)

∫ 1

Ri+1

[
1−G(ǫ′)

]
dǫ′, (30.4.30)

where the first equality invokes the Nash bargaining outcome (30.4.8), Ji+1(ǫ
′) =

(1−φ)Si+1(ǫ
′), and the second equality uses expression (30.4.13). Similar invo-

cations of relationships (30.4.8) and (30.4.13) in the no-profit condition (30.4.6)

and in equation (30.4.16) for κi+1 establish that

q(θ) =
c

β(1 − φ)
∑T

i=2
ui−1

u

∫ 1

Ri

[
1−G(ǫ)

]
dǫ

(30.4.31)

κi+1 = κ̂i+1, (30.4.32)

respectively, where κ̂i+1 is given by equation (30.4.25).

After substituting expression (30.4.29) for wi(Ri) in equation (30.4.30), and

using equation (30.4.32), we find that an equilibrium is characterized by

Ri + β

∫ 1

Ri+1

[
1−G(ǫ)

]
dǫ = z − δi +

φ

1− φ
θ c κ̂i+1, (30.4.33)

By comparing expressions (30.4.26) and (30.4.33), and recalling our assump-

tions that φ = α and β = 1, it follows that an age-specific employment subsidy

of δi = c θ
[
1− κ̂i+1

]
would attain the socially optimal reservation productivity

whenever the market tightness is the same. By inspecting equations (30.4.22)

and (30.4.31), we can also confirm (via a circular or fixed-point argument) that

market tightness θ is indeed the same whenever the reservation productivites

are the same.

Thus, we have shown that employment in the last period before retirement,

should be subsidized by δT = c θ . Subsidies δi = c θ
[
1 − κ̂i+1

]
to employment

at earlier ages taper off with time to retirement, since κ̂i+1 is decreasing in age;
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at a sufficiently young age, the subsidy becomes negative and turns into a tax

on employment of young workers (when κ̂i+1 > 1). Note that, except for one

caveat, κ̂i+1 as defined in (30.4.25) is the expected next-period surplus for an

employed worker of age i relative to a weighted average across employed workers

of all ages, where the weights are age-specific unemployment, ui , as a fraction

of total unemployment, u . The caveat is that these weights sum to less than

one because unemployment of the youngest generation, u1 = 1, is included in

u while there are no employed workers in that generation. However, this caveat

just serves to emphasize that there is a critical cutoff age i at which κ̂j+1 > 1

for all j ≤ i , since the expected next-period surplus of such a young employed

worker, which tends to be greater than an economy-wide weighted average, is

compared to something less than a weighted average of expected next-period

surpluses of all employed workers.

The justification for the subsidy δT = c θ to employed workers in the last

period before retirement is that if one of them joins the ranks of the unemployed,

the economy incurs a vacancy cost per unemployed equal to c θ with no poten-

tial gain in terms of future matches. So long as this cost exceeds a worker’s value

of leisure when unemployed net of the output in the present job, c θ ≥ z − ǫ , it

is socially optimal for the worker to remain employed; the subsidy accomplishes

this by lowering the reservation productivity to RT = z − c θ . Similarly, em-

ployed workers further from retirement are also subsidized, but by less, in order

to ameliorate congestion in the matching function. Interestingly, the argument

is reversed for sufficiently young workers whose employment should instead be

taxed, because otherwise they would fail to internalize the positive externality

that they exert in the matching function.
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30.5. Directed search: age-specific matching functions

Following Menzio, Telyukova and Visschers (2016), we now assume age-specific

matching functions. Within a particular submarket and matching function,

firms post vacancies for a particular age of unemployed workers; only workers

of that age are allowed to sit in that matching function. Such a directed search

setting leads to a block recursive structure in which agents’ value and policy

functions and measures of market tightness are independent of the distribution

of workers across states of employment and unemployment. Two important fea-

tures are (1) computation of equilibria simplifies; (2) the congestion externali-

ties of section 30.4 vanish because there is no longer a mixture of heterogeneous

workers sitting inside a matching function.

To facilitate a transparent presentation, we shut down differences in pro-

ductivity, each employed worker produces y ; and let age be the only source of

heterogeneity. Matches break up exogenously with probability s .

30.5.1. Value functions and market tightness

A key difference from the section 30.4 setting is that there are now age-specific

measures of market tightness θi and values of vacancy creation Vi . Correspond-

ing to value functions (30.4.2)–(30.4.5), we have

Ji = y − wi + β(1 − s)Ji+1 (30.5.1)

Vi = −c + βq(θi)Ji+1 (30.5.2)

Ei = wi + β [(1− s)Ei+1 + sUi+1] (30.5.3)

Ui = z + βθiq(θi)Ei+1 + β [1− θiq(θi)]Ui+1

= z + βUi+1 + βθiq(θi) [Ei+1 − Ui+1] , (30.5.4)

where we have already imposed the zero-profit condition in vacancy creation on

the right sides of these equations. After also imposing Vi = 0 on the left side of

(30.5.2), a zero-profit condition becomes

q(θi) =
c

βJi+1
. (30.5.5)

The age-specific match surplus is given by

Si = Ji + Ei − Ui (30.5.6)
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and as before, Nash bargaining determines how this surplus is shared by a worker

and a firm according to

Ei − Ui = φSi =
φ

1− φ
Ji . (30.5.7)

After substituting expressions (30.5.5) and (30.5.7) into (30.5.4), the value of

an unemployed worker of age i becomes

Ui = z + βUi+1 + βθi
c

βJi+1

φ

1− φ
Ji+1 = z + βUi+1 +

φ

1− φ
c θi . (30.5.8)

Next, substitutions of expressions (30.5.1), (30.5.3) and (30.5.8) into (30.5.6)

yield an equation for the match surplus in terms of market tightness;

Si = Ji + Ei − Ui = y − wi + β(1 − s)Ji+1

+ wi + β [(1− s)Ei+1 + sUi+1]−
[
z + βUi+1 +

φ

1− φ
c θi

]

= y − z − φ

1− φ
c θi + β(1− s)Si+1

=

T−i∑

j=0

βj(1 − s)j
[
y − z − φ

1− φ
c θi+j

]
, (30.5.9)

where the last equality emerges after continued substitutions of subsequent

match surpluses at higher ages, Si+j , with the terminal value ST+1 = 0.

To arrive at a characterization of equilibrium market tightness in terms of

primitives, we start by deriving two expressions for wages that must be satisfied

in an equilibrium. A first expression is based on the no-profit condition for

vacancy creation. Specifically, solve forward for the value of a filled job in

equation (30.5.1)

Ji+1 = y − wi+1 + β(1 − s)Ji+2 =
T−i−1∑

j=0

βj(1− s)j [y − wi+1+j ]

=
1− βT−i(1− s)T−i

1− β(1− s)
y −

T−i−1∑

j=0

βj(1− s)jwi+1+j . (30.5.10)

By substituting this expression into (30.5.5), multiplying through by [1− β(1 − s)] ,

and rearranging, we obtain

[1− β(1 − s)]

T−i−1∑

j=0

βj(1− s)jwi+1+j =
[
1− βT−i(1− s)T−i

]
y − r + s

q(θi)
c ,

(30.5.11)
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where the last term uses β−1[1− β(1− s)] = [1− r− (1− s)] = r+ s . A second

expression requires that wage payments are consistent with Nash bargaining.

Specifically, use equations (30.5.3) and (30.5.8) and solve forward for a worker’s

part of the match surplus:

Ei+1 − Ui+1 = wi+1 + β [(1 − s)Ei+2 + sUi+2]−
[
z + βUi+2 +

φ

1− φ
c θi+1

]

= wi+1 − z − φ

1− φ
c θi+1 + β(1 − s) [Ei+2 − Ui+2]

=
T−i−1∑

j=0

βj(1 − s)jwi+1+j −
1− βT−i(1− s)T−i

1− β(1− s)
z

− φ

1− φ
c

T−i−1∑

j=0

βj(1− s)jθi+1+j . (30.5.12)

By substituting (30.5.10) and (30.5.12) into (30.5.7), (1 − φ)[Ei+1 − Ui+1] =

φJi+1 , and rearranging, we arrive at

[1− β(1 − s)]

T−i−1∑

j=0

βj(1− s)jwi+1+j =
[
1− βT−i(1− s)T−i

]
[φ y + (1− φ) z]

+ [1− β(1− s)]φ c

T−i−1∑

j=0

βj(1− s)jθi+1+j . (30.5.13)

Set the right sides of (30.5.11) and (30.5.13) equal to each other and rearrange

to get

[1− β(1 − s)]
φ

1− φ
c
T−i−1∑

j=0

βj(1 − s)jθi+1+j

=
[
1− βT−i(1− s)T−i

]
[y − z] − r + s

(1− φ)q(θi)
c. (30.5.14)

This expression determines age-specific market tightnesses and is a counterpart

of expression (29.3.14) in the standard matching model with infinitely-lived

workers.18

18 By imposing an infinite lifespan, T = ∞ , and constant market tightness, θi = θ , expres-

sion (30.5.14) reduces to (29.3.14). Likewise, the same manipulations of expressions (30.5.11)

and (30.5.13), including the imposition of constant wages, wi = w , yield expressions (29.3.6)

and (29.3.11) in the standard matching model with infinitely-lived workers.
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Equilibrium market tightnesses can be computed recursively. Starting at age

T , firms choose not to create any vacancies, θT = 0, since workers of age T are

known to retire next period, and hence there would be no return to investing

in such vacancies. Solving backward, measures of market tightness can then be

computed recursively from expression (30.5.14).

30.5.2. Job finding rate is decreasing in age

To determine the dynamics of age-specific market tightness, we compute dif-

ferences in match surpluses between two adjacent ages i and i + 1, for i =

1, 2, . . . , T − 1, using expression (30.5.9):

Si − Si+1 =

T−i∑

j=0

βj(1− s)j [y − z]−
T−i−1∑

j=0

βj(1− s)j [y − z]

− φ

1− φ
c
T−i∑

j=0

βj(1− s)jθi+j +
φ

1− φ
c
T−i−1∑

j=0

βj(1− s)jθi+1+j

= βT−i(1− s)T−i [y − z] − φ

1− φ
c θi

+
φ

1− φ
c

T−i−1∑

j=0

βj(1− s)j [1− β(1− s)] θi+1+j

= βT−i(1− s)T−i [y − z] − φ

1− φ
c θi

+
[
1− βT−i(1 − s)T−i

]
[y − z] − r + s

(1− φ)q(θi)
c

= y − z − r + s + φ θi q(θi)

(1− φ)q(θi)
c , (30.5.15)

where we replace the term with the summation sign in the second equality by

the right side of equation (30.5.14).

Under the assumption of long-lived workers, i.e., a large T , young workers’

experiences should resemble those of infinitely-lived workers. This can be con-

firmed from expression (30.5.15), evaluated at some young ages i and i + 1,

for which match surpluses would have to be practically the same. Specifically, a

near-zero value of the last equality in (30.5.15) shows that the equilibrium value

of θi would be practically identical to that of market tightness in the standard
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matching model with infinitely-lived workers, as given by equation (29.3.14).

The incentives of those firms and young workers to engage in job creation are

practically identical with those in a standard matching model with infinitely-

lived workers because the matches into which they enter will almost certainly

break before workers retire, and at most of those future separations, the worker

will still be much younger than retirement age T + 1. Therefore, in the setting

of this section, young workers’ experiences are similar to those of infinitely-lived

workers.

Because workers have finite lives, equilibrium values of θi have to be less than

market tightness in the standard matching model with infinitely-lived workers.

Subject to the risk of workers retiring before an exogenous job destruction shock,

the ‘invisible hand’ compensates firms that create vacancies with a higher prob-

ability of filling vacancies, i.e., a lower equilibrium value of market tightness.

By the last equality in (30.5.15), it follows that Si − Si+1 is strictly positive,

so match surpluses are decreasing in age, Si > Si+1 . By substituting (30.5.7)

into (30.5.5), q(θi) = c/(β(1 − φ)Si+1), we can confirm that market tightness

also declines in age, and hence a worker’s job finding rate decreases with age.

The declining job finding rate becomes especially pronounced towards the

end of a worker’s labor market career, more so with a low exogenous separation

rate s , i.e., when jobs are expected to last long in the absence of retirement. As

an illustration, Figure 30.5.1 reports a numerical example where the job finding

index is a worker’s job finding probability relative to that of the youngest worker

(with the highest job finding probability).19 The axis labeled mean job duration,

calculated as 1/s , identifies different economies defined by their exogenous job

destruction rate s . For each such economy, the age-specific job finding index is

shown for older workers defined by their times to retirement.

19 As in common parameterizations of matching models, the elasticity α of a Cobb-Douglas

matching function with respect to unemployment and a worker’s bargaining power φ are set

equal to each other and near the middle of the unit interval, α = φ = 0.5, and the replacement

ratio in unemployment is around half of worker productivity, z/y = 0.6. The annual discount

rate is 4 percent, and a worker’s labor market career lasts 45 years. (The model period is

set to be one day.) For different economies indexed by their exogenous job destruction rates

s , the vacancy cost c and a multiplicative efficiency parameter A in the matching function

are chosen to yield an unemployment rate of 5 percent in a corresponding matching model

with infinitely-lived workers. (When there is no calibration target for vacancies, fixing either

c or A amounts to a normalization, with the other parameter then being used to target an

unemployment rate.)
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Figure 30.5.1: Job finding index of older workers, defined by their

time left until retirement, in different economies, defined by their

mean job duration. The index is a worker’s job finding probability

relative to that of the youngest worker in respective economy.

30.5.3. Block recursive equilibrium computation

The value and policy functions and measures of market tightness described in

the previous subsections are independent of the distributions of workers across

age and employment and unemployment states. It is analytically convenient to

be able to derive those quantities before computing distributions of workers in

a steady state or along transition paths or in response to aggregate shocks. For

an example of business cycle analysis in a matching model with directed search,

see Menzio and Shi (2011) who bring out the benefits of such block recursive

structures. They show how agents’ value and policy functions depend on the

aggregate state of the economy through realization of aggregate shocks only,

and not through endogenous distributions of workers across employment and

unemployment states.

In our present framework, it is easy to compute a steady state. Under the

assumption of a stationary population in which the number of new labor market

entrants of age 1 equals the number of retiring workers of age T + 1, the age-

specific unemployment rates in a steady state are computed as follows. At age

1, all new entrants are unemployed since it takes at least one period to be

matched with a vacancy, u1 = 1. The unemployment rates for subsequent ages
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i = 2, 3, . . . , T are then sequentially computed as

ui =
[
1− θi−1q(θi−1)

]
ui−1 + s(1 − ui−1) . (30.5.16)

Besides having enough matching functions to assure that each type of worker-

job pair is matched within its own matching function, a block recursive equilib-

rium requires that matching and production technologies both exhibit constant

returns to scale and that financial funds are available in perfectly elastic supply.

The latter condition is actually an equilibrium outcome under a common as-

sumption in the matching literature that preferences are linear in consumption.

Linear preferences make workers not only risk neutral but also indifferent to the

timing of consumption at a gross interest equal to the inverse of their subjective

discount factor, β−1 , so that they are willing to finance new vacancy creation

and to acquire ownership of existing firms, valued by their ‘match capital’ in

filled jobs. Moreover, under the assumption of linear preferences, those asset

holdings can be omitted from a worker’s Bellman equations because they do not

affect equilibrium outcomes in labor markets.20

Other assumptions, such as a small open economy and an internationally

given interest rate, could support a block recursive equilibrium, but even when

block recursivity fails to prevail, the assumption of directed search simplifies

equilibrium computation by eliminating congestion externalities that would oth-

erwise arise if heterogeneous workers and jobs were to reside inside the same

matching function.

20 Many expositions of matching models don’t spell out a general equilibrium but instead

simply list workers and firms as separate actors, taking workers to be hand-to-mouth consumers

of wage income or unemployment benefits, and firms as profit maximizers while being silent

about how they are financed. But as suggested above, an equilibrium of a matching model

with risk-neutral preferences can be interpreted as a general equilibrium analogous to ones in

growth models of earlier chapters: workers own firms that are merely intermediaries who hire

factors of production and operate technologies to maximize shareholder value.
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30.5.4. Welfare analysis

Because directed search eliminates congestion externalities, we can expect a

decentralized equilibrium to be Pareto optimal, conditional on Hosios efficiency

conditions being satisfied. Moreover, the block recursive structure in the present

framework means that the welfare maximum of each generation can be studied

in isolation from other generations. The reason is that a block recursive struc-

ture eliminates feedbacks from aggregates to outcomes that can be deduced

from individual decision problems. Recall that value and policy functions and

measures of market tightness can be derived before computing distributions of

workers across age and employment and unemployment states. Our discussion

in the previous subsection alerts us to one caveat attached to this consequence of

block recursiveness in our present overlapping generations framework: each new

generation enters the economy as unemployed and without the resources needed

to create the vacancies that will allow them eventually to become employed. But

this caveat constitutes no obstacle to connecting the welfare analysis of a single

generation to that of the overall economy, since all agents are indifferent to in-

tertemporal trades that occur at a gross rate of return β−1 . That is, any earlier

born worker with resources available in the present period and who will be alive

next period, is willing to postpone consumption to fund vacancy creation in the

present period in exchange for repayment with interest next period.

The planner’s optimization problem for a single generation i becomes

max
θ1,{θi,ui}T

i=2

zu1 − θ1u1 c

+

T∑

i=2

βi−1
{
y
[
(1− s)(1 − ui−1) + θi−1q(θi−1)ui−1

]
+ zui − θiuic

}

subject to ui =
[
1− θi−1q(θi−1)

]
ui−1 + s(1 − ui−1) , for i = 2, . . . , T,

given u1 = 1 .

The optimal choice of market tightness for the last age is θT = 0 since there is

a cost term for posting such vacancies but no future return because workers will

retire at age T + 1. First-order conditions for remaining choice variables are

θi : − βi−1uic+ βiy
[
q(θi) + θiq

′(θi)
]
ui

− βiλi+1

[
q(θi) + θiq

′(θi)
]
ui = 0 , for i = 1, . . . , T − 1
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ui : βi−1[z − θic]− βi−1λi + βiy
[
−(1− s) + θiq(θi)

]

− βiλi+1

[
1− θiq(θi)− s

]
= 0 , for i = 2, . . . , T − 1

uT : βT−1[z − θT c]− βT−1λT = 0 .

After rearranging and simplifying, the first-order conditions can be written

θi : c = βq(θi)[1− α](y − λi+1) , for i = 1, . . . , T − 1 (30.5.17)

ui : λi = z − θi c− β
[
1− θiq(θi)− s

]
(y − λi+1) ,

for i = 2, . . . , T − 1 (30.5.18)

uT : λT = z , (30.5.19)

where α is the elasticity of matching with respect to unemployment, α =

−q′(θ) θ/q(θ), and the last expression invokes θT = 0. These equations en-

able us to solve backward for measures of optimal market tightness. Starting

with terminal shadow value λT = z , equation (30.5.17) for i = T−1 determines

optimal market tightness θT−1 . Next, given λT and θT−1 , equation (30.5.18)

for i = T − 1 determines λT−1 , and in that manner, we can continue solving

backward until we eventually recover all measures of optimal market tightness.

By applying this algorithm, the optimal market tightness θi , for i = 1, . . . ,

T − 1, can be expressed recursively as

[
1− βT−i(1 − s)T−i

]
[y − z]

=


 r + s

(1 − α)q(θi)
+ [1− β(1− s)]

α

1− α

T−i−1∑

j=0

βj(1 − s)jθi+1+j


 c. (30.5.20)

Comparing this with equilibrium expression (30.5.14) confirms our conjecture

that the equilibrium allocation is Pareto optimal so long as a worker’s bargaining

power is equal to the elasticity of matching with respect to unemployment,

φ = α .
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30.6. Concluding remarks

Ljungqvist and Sargent (2017) showed that in a variety of matching models, pro-

ductivity changes affect both business cycle and welfare state dynamics through

a single intermediate channel called the fundamental surplus. Thus, in studying

welfare state dynamics, Mortensen and Pissarides (1999b) and Ljungqvist and

Sargent (2007) attribute the outbreak of European unemployment after the late

1970s to changes in the economic environment in conjunction with the generous

unemployment benefits offered by European government, i.e., a higher z in the

formulation of matching models in this chapter. In a matching model with di-

rected search by workers with permanently different productivities, Mortensen

and Pissarides (1999b) model ‘skill-biased’ technology shocks in terms of a mean

preserving spread of the distribution of productivities. There is a convex inverse

relationship between the unemployment rate and worker productivity across sub-

markets, so moving workers to a lower range of productivities causes a larger

increase in unemployment than a decrease that would caused by moving workers

to higher productivities. Because the relationship becomes more convex for a

higher value of z , unemployment increases more in high z Europe than in low

z America. In a matching model with skill accumulation and unemployment

benefits that are paid as a fixed replacement rate of a worker’s past earnings,

Ljungqvist and Sargent (2007) study how European unemployment erupts in

‘turbulent’ times, modeled as an increased risk of skill loss at layoff events, both

under random search in a single matching function but more so under directed

search. They conclude that “the cost of posting vacancies is the lynchpin, or

to use a less kind metaphor, the tail that wags the dog, of matching models.”

Then how is it that vacancy costs that are commonly calibrated to be small

relative to aggregate output turn out to wag the dog in some matching models

but not in others? The answer is that it all depends on whether the fundamen-

tal surplus fraction is small. Here it helps to remember that the fundamental

surplus fraction serves as an upper bound on the fraction of a job’s output that

the invisible hand can allocate to vacancy creation.
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As mentioned in the introduction of this chapter as well as in the concluding

remarks of chapter 29, an important difference between matching models and

search models is whether there are congestion externalities. It is helpful to recall

how Lucas and Prescott (1974) and Pissarides (1992) summarized these distinct

frameworks. In their search-island economy, Lucas and Prescott remarked that

“the injury a searching worker imposes on his fellows is of exactly the same type

as the injury a seller of any good imposes on his fellow sellers: the equilibrium

expected return from job search serves the function of any other equilibrium

price of signalling to suppliers the correct social return from an additional unit

supplied.” Things are very different in Pissarides’s (1992) matching model with

two-period-lived overlapping generations in which workers who remain unem-

ployed in the first period of life lose skills. Because all unemployed workers

congest the same matching function, “a temporary shock to employment can

persist for a long time [outlasting the maximum duration of any worker’s un-

employment]. The key mechanism is a thin market externality that reduces the

supply of jobs when the duration of unemployment increases. ... persistence

and multiple equilibria are possible even with constant returns production and

matching technologies.”

Directed search in matching models disarms congestion externalities because

heterogeneous workers (and/or heterogeneous jobs) no longer sit in the same

matching function. Directed search simultaneously simplifies equilibrium com-

putation and eradicates congestion externalities.21 In some matching models

with directed search, all types of heterogeneous workers prefer to sit in their

assigned matching functions, but there are other models populated by some

workers who would like to ‘sneak’ into another matching function. For exam-

ple, an older worker in section 30.5 would prefer to sit in a matching function

with younger workers and thereby enjoy a higher job finding probability. A

firm encountering such a deviant job applicant would be disappointed with that

worker’s type, but nevertheless to recover some of its sunk vacancy-posting cost

would engage in Nash bargaining with the older worker and form a match be-

cause the match surplus is positive.

21 Scope for beneficial government interventions remain in matching models with directed

search whenever the elasticity of a matching function with respect to unemployment does not

equal a worker’s Nash bargaining power φ , i.e., whenever the Hosios efficiency condition is

violated.





Chapter 31

Foundations of Aggregate Labor Supply

31.1. Introduction

The section 29.5 employment lotteries model for years served as the foundation

of the high aggregate labor supply elasticity that generates big employment fluc-

tuations in real business cycle models. In the original version of his Nobel prize

lecture, Prescott (2005a) highlighted the central role of employment lotteries

for real business cycle models when he asserted that “Rogerson’s aggregation

result is every bit as important as the one giving rise to the aggregate produc-

tion function.” But Prescott’s enthusiasm for employment lotteries has not been

shared universally, especially by researchers who have studied labor market ex-

periences of individual workers. For example, Browning, Hansen, and Heckman

(1999) expressed doubts about the employment lotteries model when they as-

serted that “the employment allocation mechanism strains credibility and is at

odds with the micro evidence on individual employment histories.” This chap-

ter takes such criticisms of the employment lotteries to heart by investigating

how the aggregate labor supply elasticity would be affected were we to replace

employment lotteries and complete markets for consumption insurance with the

incomplete markets arrangements that seem more natural to labor economists.

This change reorients attention away from the fraction of its members that a

representative family chooses to send to work at any moment, to career lengths

chosen by individual workers who self-insure by saving and dissaving. We find

that abandoning the employment lotteries coupled with complete consumption

insurance claims trading assumed within many real business cycle models and re-

placing them with individual workers who self-insure by trading a risk-free bond

does not by itself imperil that high aggregate labor supply elasticity championed

by Prescott. The labor supply elasticity depends on whether shocks and gov-

ernment financed social security retirement schemes leave most workers on or

off corners with respect to their retirement decisions, in a model of indivisible

labor.

– 1315 –



1316 Foundations of Aggregate Labor Supply

During the last half decade, macroeconomists have mostly abandoned em-

ployment lotteries in favor of ‘time-averaging’ and incomplete markets as an

‘aggregation’ theory for aggregate labor supply. This is undoubtedly a positive

development because now researchers who may differ about the size of the ag-

gregate labor supply elasticity can at least talk in terms of a common framework

and can focus on their disagreements about the proper quantitative settings for

a commonly agreed on set of parameters and constraints.

To convey these ideas, we build on an analysis of Ljungqvist and Sargent

(2007), who in a particular continuous time model showed that the very same

aggregate allocation and individual (expected) utilities that emerge from a

Rogerson-style complete-market economy with employment lotteries are also

attained in an incomplete-market economy without lotteries. In the Ljungqvist-

Sargent setting, instead of trading probabilities of working at any point in time,

agents choose fractions of their lifetimes to devote to work and use a credit mar-

ket to smooth consumption across episodes of work and times of retirement.1

This chapter studies how two camps of researchers, namely, those who cham-

pion high and low labor supply elasticities, respectively, both came to adopt the

same theoretical framework.2The first part of the chapter revisits equivalence

results between an employment lotteries model and a time-averaging model,

1 Larry Jones and Casey Mulligan anticipated aspects of this equivalence result. In the

context of indivisible consumption goods, in the original 1988 version of his paper, Jones

(2008) showed how timing could replace lotteries when there is no discounting. In the 2008

published version of his paper, he extended the analysis to cover the case of discounting. In

comparing an indivisible-labor complete-market model and a representative-agent model with

divisible labor, Mulligan (2001) suggested that the elimination of employment lotteries and

complete markets for consumption claims from the former model might not make much of

a quantitative difference; “The smallest labor supply decision has an infinitesimal effect on

lifetime consumption and the marginal utility of wealth in the [divisible-labor] model, and a

small-but-larger-than-infinitesimal effect on the marginal utility of wealth in the [indivisible-

labor] model – as long as the effect on lifetime consumption is a small fraction of lifetime

income or the marginal utility of wealth does not diminish too rapidly.” However, as we

shall learn later in this chapter, these qualifications vanish when time is continuous, as well

as for infinitely-lived agents in discrete time. As a discussant of Ljungqvist and Sargent

(2007), Prescott (2007) endorsed their incomplete markets, career length model as a model

of aggregate labor supply. In addition, he reduced his previous stress on the employment

lotteries model by adding a new section, “The life cycle and labor indivisibility,” to the final

version of his Nobel lecture published in America (Prescott 2006).
2 This is the theme of Ljungqvist and Sargent (2011).
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then pursues various extensions to the time-averaging setup as a model of ca-

reer length determination. The second half of the chapter retraces the steps that

led Chang and Kim’s (2007) to discover a high labor supply elasticity in simu-

lations of a Bewley with incomplete markets and indivisible labor. Chang and

Kim’s agents optimally alternate between periods of work and leisure (they ‘time

average’) to allocate consumption and leisure over their infinite lifespans. The

chapter concludes by studying how Ljungqvist and Sargent’s (2007) equivalence

result in continuous time with finitely-lived agents extends to a deterministic

version of Chang and Kim’s (2007) discrete-time growth model inhabited by

infinitely-lived agents.

31.2. Equivalent allocations

Following Ljungqvist and Sargent (2007), consider an agent who lives in contin-

uous time with a deterministic lifespan of unit length, and lifetime preferences

given by ∫ 1

0

e−ρt [u(ct)− v(nt)] dt , (31.2.1)

where ct ≥ 0 and nt ∈ {0, 1} are consumption and labor supply at time t ,

respectively, and ρ is his subjective discount rate. That nt ∈ {0, 1} asserts

that labor supply is indivisible. The instantaneous utility function over con-

sumption, u(c), is strictly increasing, strictly concave, and twice continuously

differentiable. Since labor is indivisible, we need to specify only two points for

the disutility of work v(n), so we normalize v(0) = 0 and let v(1) = B > 0.

Until section 31.8, we assume a given wage rate w and a given interest rate

r = ρ .
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31.2.1. Choosing career length

At each point in time, an agent can work at a wage rate w and can save or

dissave at an interest rate r . An agent’s asset holdings at time t are denoted by

at and its time derivative by ȧt . Initial assets are assumed to be zero, a0 = 0,

and the budget constraint at time t is

ȧt = rat + wnt − ct , (31.2.2)

with a terminal condition a1 ≥ 0. This is a no-Ponzi scheme condition.

To solve the agent’s optimization problem, we formulate the current-value

Hamiltonian

Ht = u(ct)−Bnt + λt [rat + wnt − ct] , (31.2.3)

where λt is the multiplier on constraint (31.2.2). It is called the costate variable

associated with the state variable at . First-order conditions with respect to ct

and nt , respectively, are:

u′(ct)− λt = 0 , (31.2.4a)

−B + λtw





< 0 if nt = 0;

= 0 if indifferent to nt ∈ {0, 1};
> 0 if nt = 1.

(31.2.4b)

Furthermore, the costate variable obeys the differential equation

λ̇t = λtρ−
∂Ht

∂at
= λt[ρ− r]. (31.2.5)

When r = ρ , Ljungqvist and Sargent (2007) show that the solution to this

optimization problem yields the same lifetime utility as if the agent had access to

employment lotteries and complete insurance markets (including consumption

claims that are contingent on lottery outcomes). First, we note from equation

(31.2.5) that when r = ρ the costate variable is constant over time and hence,

by equation (31.2.4a), the optimal consumption stream is constant over time,

ct = c̄ . Then after invoking optimality condition (31.2.4b), there are three

possible cases with respect to the agent’s lifetime labor supply,

−B + u′(c̄)w





< 0 Case 1: nt = 0 for all t;

= 0 Case 2: indifference to nt ∈ {0, 1} at any

particular instance in time;

> 0 Case 3: nt = 1 for all t.

(31.2.6)
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These three cases stand as analogues to the three cases in the section 29.5 static

model with employment lotteries. The agent finds it optimal never to work and

always to work in the first and third case, respectively. The interesting case is

the intermediate one in which the agent is indifferent between work and leisure

at any particular instance in time. At such an interior solution for lifetime

labor supply, optimality condition (31.2.6) at equality determines the optimal

constant consumption stream,

u′(c̄) =
B

w
. (31.2.7)

Evidently, this is the counterpart to the consumption outcome in the employ-

ment lottery model. When utility is logarithmic in consumption, the optimal

consumption level in expression (31.2.7) becomes

c̄ =
w

B
, if u(c) = log(c) . (31.2.8)

While the agent is indifferent between work and leisure at any particular

instance in time, he cares about the integral of his work over his lifetime. His

lifetime labor supply is determined by the agent’s present-value budget con-

straint at equality when financing the optimal constant consumption stream

in expression (31.2.7). The present-value budget constraint is obtained from

budget constraint (31.2.2), and the initial and terminal conditions for asset

holdings, a0 = a1 = 0:

w

∫ 1

0

e−rtnt dt = c̄

∫ 1

0

e−rt dt. (31.2.9)

Thus, the optimal plan has the agent working a fraction of his lifetime, where

the associated present value of labor income is given by expression (31.2.9).

Many streams of lifetime labor supply yield the same present value of labor

income in expression (31.2.9). The agent is indifferent among such alternative

lifetime labor profiles because constancy of the associated present value of labor

income implies constancy of the associated lifetime disutility of work in prefer-

ence specification (31.2.1) when ρ = r . Hence, the agent is indeed indifferent

about when he supplies his labor, as we also inferred from the second case of

(31.2.6).

In subsequent sections 31.3–31.7, we will assume that r = ρ = 0, i.e., no

discounting. Under that assumption, the optimal fraction of a lifetime devoted
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to work, as given by present-value budget constraint (31.2.9), is the same re-

gardless of when the agent supplies his labor,

T ≡
∫ 1

0

nt dt =
c̄

w
, (31.2.10)

where T denotes an agent’s choice of career length. When utility is logarithmic

in consumption, equations (31.2.8) and (31.2.10) determine the optimal career

length at an interior solution,

T =
1

B
, if u(c) = log(c) ; (31.2.11)

where for an interior solution we require that B ≥ 1.

Next, we confirm that a corresponding employment lottery model yields the

same (expected) lifetime utility to an agent and support the same set of ag-

gregate allocations, i.e., the introduction of lotteries and complete consumption

insurance does not matter in this economy.

31.2.2. Employment lotteries

Consider a continuum j ∈ [0, 1] of ex ante identical agents like those in sec-

tion 31.2.1. When markets are complete and there are employment lotteries to

overcome the nonconvexity in labor supply, a decentralized market equilibrium

is the solution to a planner problem, in which the planner weights are equal

across all the ex ante identical agents. The planner chooses a consumption and

employment allocation cjt ≥ 0, njt ∈ {0, 1} to maximize

∫ 1

0

∫ 1

0

e−ρt [u(cjt)−Bnjt] dt dj (31.2.12)

subject to ∫ 1

0

∫ 1

0

e−rt
[
wnjt − cjt

]
dt dj ≥ 0. (31.2.13)

Here the planner can borrow and lend at the rate r and send agents to work to

earn the wage w .

The strict concavity of the utility function u(·) and our assumption that

r = ρ imply that the planner sets a constant consumption level across agents
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and across time, cjt = c̄ for all j and t . The planner exposes each agent at

time t to a lottery that sends him to work with probability ψt ∈ [0, 1]. The

planner chooses c̄ and ψt to maximize

∫ 1

0

e−ρt [u(c̄)−Bψt] dt (31.2.14)

subject to ∫ 1

0

e−rt
[
wψt − c̄

]
dt ≥ 0 . (31.2.15)

This problem resembles the ‘time averaging’ problem of a single agent in section

31.2.1. At an interior solution, the optimal constant consumption stream is once

again given by equation (31.2.7), u′(c̄) = B/w . A multitude of employment

lotteries can satisfy present-value budget constraint (31.2.15) to finance the

optimal consumption choice. Agents would be indifferent among all of those

alternative lottery designs. As before, identical present values of labor income

for any two labor supply schemes imply identical (expected) lifetime disutilities

of work for those two schemes since ρ = r .3

This argument suffices to establish the equivalence of aggregate allocations

and expected utilities between the incomplete-market economy in section 31.2.1

and the employment-lotteries, complete-market economy of the present section.

An agent’s optimal consumption is uniquely determined and identical across the

two economies. For a given present-value of aggregate consumption, the same

aggregate present-value of labor income can be attained with a multitude of in-

tertemporal allocations for the aggregate measure of employed agents. Each of

those alternative aggregate allocations is associated with either an incomplete-

market economy where individual agents engage in time averaging or a complete-

market economy with one of a variety of appropriate lottery designs. Since an

agent’s expected disutility of work is the same under the alternative imple-

mentations, it follows that an agent’s expected utility is the same in the two

economies.

3 For example, at the beginnning of time, the planner can randomize over a constant fraction

of agents ψ̄ who are assigned to work for every t ∈ [0, 1] , and a fraction 1−ψ̄ who are asked to

specialize in leisure, where ψ̄ is chosen to satisfy the planner’s intertemporal budget constraint

(31.2.15). An alternative arrangement would be, at each time t ∈ [0, 1] , the planner runs a

lottery that sends a time invariant fraction ψ̄ to work and a fraction 1− ψ̄ to leisure. Agents

are indifferent between these alternative lottery designs since they yield the same expected

lifetime disutility of work.
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31.3. Taxation and social security

We study taxation and social security in a continuous-time overlapping genera-

tions model. At each instance in time, there is a constant measure of newborn

ex ante identical agents like those in section 31.2.1 entering the economy. Thus,

the economy’s population and age structure stay constant over time. Our focus

is not on the determination of intertemporal prices in this overlapping genera-

tions environment with its possible dynamic inefficiencies (see chapter 9), so we

retain our small open economy assumption of an exogenously given interest rate,

which also implies a given wage rate if the economy’s production technology is

constant returns to scale in labor and capital.4

We assume that utility is logarithmic in consumption, u(c) = log(c), and

that there is no discounting, r = ρ = 0. The assumption of no discounting is

inessential for most of our results, and where it matters we will take note. The

analytical convenience is that the optimal career length is uniquely determined

and does not depend on the timing of an agent’s lifetime labor supply, as shown

in expressions (31.2.10) and (31.2.11).

As emphasized by Prescott (2005), if labor income is taxed and tax revenues

are handed back lump sum to agents, a model with indivisible labor and em-

ployment lotteries exhibits a large labor supply elasticity. Under the equivalence

result in section 31.2, we follow Ljungqvist and Sargent (2007) and demonstrate

that the same high labor supply elasticity arises in the incomplete-market model

where career lengths rather than the odds of working in employment lotteries

are shortened in response to such a tax system.

In the spirit of Ljungqvist and Sargent (2012), we offer a qualification to

the high labor supply elasticity in a model of lifetime labor supply. When a

government program such as social security is associated with a large implicit

tax on working beyond an official retirement age, there might not be much of

an effect of taxation on career length for those agents who could be at a corner

solution, strictly preferring to retire at the official retirement age.

4 In the case of a constant-returns-to-scale Cobb-Douglas production function, equation

(31.8.5b) shows how the interest rate in international capital markets determines the capital-

labor ratio in a small open economy, which in turn determines the wage rate in (31.8.5a).
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31.3.1. Taxation

If labor income is taxed at rate τ ∈ [0, 1) and tax revenues are not returned

to agents as tranfers in any form, there would be no effect on labor supply, for

the same reason that equilibrium career length (31.2.11) does not depend on

the level of the wage w . The reason is that income and substitution effects

cancel with variations in the net-of-tax wage rate under the assumption that

preferences are consistent with balanced growth. But if instead all tax receipts

are rebated lump sum to agents, the labor supply elasticity will be large.

Let x be the present value of lump-sum transfers that each agent receives

over his lifetime, as determined by the government budget constraint

τwT ⋆ = x, (31.3.1)

where T ⋆ is the equilibrium career length. Note that given a zero interest rate

and a lifetime of unit length, x is the instant-by-instant per capita lump-sum

transfer that satisfies the government’s static budget constraint (31.3.1) as well

as the present value of total lump-sum transfers paid to an agent over his lifetime.

As in section 31.2.1, an agent again chooses a unique constant consumption c̄ ,

and is indifferent among alternative labor supply paths that yield the particular

present value of income that is required to finance his consumption choice. Under

the present assumption of no discounting, all of those alternative labor supply

paths have the same career length, i.e, the same fraction of an agent’s lifetime

devoted to work, T =
∫ 1

0 nt dt . Hence, an agent’s optimization problem becomes

max
c̄,T

{
log(c̄)−BT

}
(31.3.2)

subject to

c̄ ≤ (1− τ)wT + x, (31.3.3)

c̄ ≥ 0, T ∈ [0, 1].

Substitute budget constraint (31.3.3) into the objective function of (31.3.2),

then compute a first-order condition with respect to career length at an interior

solution,
(1− τ)w

(1− τ)wT + x
−B = 0. (31.3.4)
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Substituting (31.3.1) into first-order condition (31.3.4) shows that equilibrium

career length is

T ⋆(τ) ≡ 1− τ

B
. (31.3.5)

We conclude that lifetime labor supply is highly elastic when labor is indivisible.

According to expression (31.3.5), the elasticity of lifetime labor supply with

respect to the net-of-tax rate (1− τ ) is equal to one.

The reader can verify that a model with employment lotteries yield the same

equilibrium consumption and the same (expected) lifetime utility of an agent.

For example, we can adopt the first example of a lottery design in footnote

3, where the planner for each cohort of newborn agents, administers a lifetime

employment lottery once and for all at the beginning of life that assigns a fraction

ψ ∈ [0, 1] of agents to work always and a fraction 1−ψ always to enjoy leisure.

This planner problem is identical to the time averaging planning problem above,

provided that we replace the choice variable T by ψ .

31.3.2. Social security

Instead of returning tax receipts lump sum to agents as in section 31.3.1, we now

assume that all revenues are used to finance a social security system in which

agents are eligible to retire and collect benefits after an official retirement age

R . All labor earnings are subject to a flat rate social security tax τ ∈ (0, 1).

Benefits after the agent’s chosen retirement date T , which may or may not equal

R , equal a replacement rate ρ times a worker’s average earnings, i.e., ρ times

the wage rate w . Agents who choose to retire after R collect no benefits until

they actually retire.

To construct an equilibrium, we set the two parameters R and τ of the

social security system, and then solve residually for a replacement rate ρ that is

consistent with a balanced government budget. At an equilibrium career length

T̃ , the government budget constraint is

τwT̃ =
(
1−max{R, T̃}

)
ρw, (31.3.6)

where the left side is tax revenues and the right side is social security benefits.

The first (second) argument of the max operator presumes an equilibrium out-

come in which workers retire before (after) the official retirement age. Note that



Taxation and social security 1325

the unit length of a lifetime implies that an age interval corresponds both to a

fraction of an agent’s lifetime and also to a fraction of the population within

that age interval at any point in time. From budget constraint (31.3.6) we can

solve for the replacement rate,

ρ =
τT̃

1−max{R, T̃}
. (31.3.7)

An agent’s optimal career length solves

max
T∈[0,1]

{
log
[
(1− τ)wT + ρw min{1−R, 1− T }

]
−BT

}
, (31.3.8)

where we have substituted the agent’s budget constraint into the utility function,

and the arguments of the min operator appear in the same order as in the max

operator of (31.3.6), i.e., the first (second) argument refers to the case when the

agent chooses to work shorter (longer) than the official retirement age.

Case with T̃ ≤ R

In the case of an optimal career length T ≤ R , the first-order condition of

(31.3.8) at an interior solution (with respect to T ≤ R) becomes

(1− τ)w

(1− τ)wT + ρw(1 −R)
−B = 0. (31.3.9)

By government budget balance in (31.3.7), ρ = τT̃ /(1 − R), which can be

substituted into (31.3.9) to yield an expression for equilibrium career length,

T̃ =
1− τ

B
≡ T+(τ). (31.3.10)

Case with T̃ ≥ R

In the case of an optimal career length T ≥ R , the first-order condition of

(31.3.8) at an interior solution (with respect to T ≥ R) becomes

(1− τ)w − ρw

(1− τ)wT + ρw(1 − T )
−B ≥ 0, (31.3.11)
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which holds with equality except under a binding corner solution with T = 1.

However, such a corner solution can be ruled out as an equilibrium outcome be-

cause government budget balance in (31.3.7) would imply that the replacement

rate goes to infinity; hence, it must be optimal for a worker to retire prior to

the end of his lifetime. After substituting ρ = τT̃ /(1− T̃) into the denominator

of (31.3.11) at equality, we obtain an expression for equilibrium career length

T̃ =
1− τ − ρ

B
=

1− τ
1− T̃
B

, (31.3.12)

where the second equality follows when we also substitute out for the second

appearance of ρ .

Expression (31.3.12) can be rearranged to become

BT̃ 2 − (1 +B)T̃ + 1− τ = 0. (31.3.13)

The smaller root of this quadratic equation determines equilibrium career length:

T̃ =
1 +B −

√
(1 +B)2 − 4B(1− τ)

2B
≡ T−(τ), (31.3.14)

where T̃−(0) = 1/B ; T−(τ) decreases monotonically to zero as τ goes to one.5

From equation (31.3.10) that defines T+(τ) and from equation (31.3.12)

that implicitly defines T−(τ), it follows immediately that T+(τ) > T−(τ) for

τ ∈ (0, 1). We can now state a proposition that describes how the retirement

age T̃ chosen in equilibrium depends on the official social security retirement

age.

Proposition: Given an official retirement age R ∈ (0, 1) and a tax rate τ ∈
(0, 1), the equilibrium career length T̃ (R, τ) is unique and given by

5 After setting τ = 0 in quadratic equation (31.3.13), the two roots are

1 + B ±
√

1 + 2B +B2 − 4B

2B
=

1 + B ±
√

(1 −B)2

2B

=
1 + B ± |1− B|

2B
=

1 +B ± (B − 1)

2B
=

(
1,

1

B

)
.

where we have invoked our parameter restriction B ≥ 1 to evaluate the absolute value of

|1 − B| = B − 1. The smaller root constitutes the equilibrium career length since it agrees

with the agent’s choice in (31.2.11).
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i) if R ≤ T−(τ), then T̃ (R, τ) = T−(τ) (retire after the official retirement age);

ii) if R ≥ T+(τ), then T̃ (R, τ) = T+(τ) (retire before the official retirement

age);

iii) otherwise, T̃ (R, τ) = R (retire at the official retirement age).

Given R = 0.6, the solid curve in Figure 31.3.1 displays equilibrium career

length as a function of τ . Within a range of tax rates between 16–40 percent,

equilibrium career length does not respond to changes in the tax rate because

agents are at a corner solution and strictly prefer to retire at the official retire-

ment age R . Away from that corner, career length is highly sensitive to the

social security tax rate τ in Figure 31.3.1.

When an equilibrium has agents retiring before the official retirement age,

R > T̃ = T+(τ), equilibrium career length (31.3.10) is identical to outcome

(31.3.5) under the Prescott tax system. The reasons are that (a) under our

assumption that average earnings alone determine the replacement rate without

regard to career length, agents regard their social security contributions purely
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Figure 31.3.1: Social security. Solid curve depicts equilibrium

career length as a function of a social security tax rate τ , given an

official retirement age R = 0.6. At low (high) tax rates, τ < 0.16

(τ > 0.40), an agent retires after (before) the official retirement

age, where the actual retirement age lies along the curve T−(τ)

(T+(τ)), given a disutility of work B = 1.
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as a tax and perceive no extra benefits accruing to them from paying it, while

(b) the present value of future social security payments operates like a lump

sum transfer when optimal career length falls short of the official retirement

age. The sensitivity of career length to social security taxation is even larger in

an equilibrium that has agents retiring after the official retirement age, R < T̃ =

T−(τ), because the marginal decision about career length is then also distorted

by the loss of benefits incurred from working beyond the official retirement age,

as shown by the first equality in expression (31.3.12).

31.4. Earnings-experience profiles

The equivalence of outcomes across models of employment lotteries and time

averaging breaks down when human capital can be accumulated. A human

capital accumulation technology typically makes career choice in effect induce

another indivisibility that will be handled differently by our two types of models.

While an agent in a time averaging model will contemplate when to terminate

a career during which earnings have increased because of work experience or

investments in human capital, the ‘invisible hand’ in a complete-market economy

with employment lotteries will preside over a dual labor market in which some

agents specialize in work and others in leisure. Here we adopt a specification of

earnings-experience profiles of Ljungqvist and Sargent (2012).6 An agent with

past employment spells totaling ht =
∫ t
0
ns ds has the opportunity to earn

wt =W hφt , W > 0, φ ∈ [0, 1]. (31.4.1)

6 We defer an analysis of a Ben-Porath’s (1967) human capital technology to section 31.6.
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31.4.1. Time averaging

Under the assumption of no discounting, an agent is indifferent about the timing

of his labor supply, so we are free to assume that the agent frontloads work at

the beginning of life. The present value of labor income for someone who works

a fraction T of his lifetime is

∫ T

0

Wtφ d t =
W T φ+1

φ+ 1
. (31.4.2)

As before, since the subjective discount rate equals the market interest rate, an

agent chooses a constant consumption stream c̄ . Hence, an agent’s optimization

problem becomes

max
c̄,T

{
log(c̄)−BT

}
(31.4.3)

subject to

c̄ ≤ W T φ+1

φ+ 1
, (31.4.4)

c̄ ≥ 0, T ∈ [0, 1].

We substitute budget constraint (31.4.4) into the objective function of (31.4.3),

and compute a first-order condition with respect to career length at an interior

solution,

T =
φ+ 1

B
; (31.4.5)

where the implicit parameter restriction for an interior solution is that B ≥ φ+1.

Because preferences are consistent with balanced growth, the optimal career

length (31.4.5) does not depend on the earnings level parameter W . But evi-

dently, career length does increase with the elasticity parameter φ . The more

elastic the earnings profile is to accumulated working time, the longer is an

agent’s career.
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31.4.2. Employment lotteries

We make three modifications to the planner problem in section 31.2.2. Besides

our two specializations of zero discounting and that the instantaneous utility

function over consumption is logarithmic, there are now agent-specific wage

rates wjt with each agent’s earnings increasing in his past experience as given

by (31.4.1).

Because an agent’s earnings increase with his experience, it follows immedi-

ately that an optimal employment allocation has a fraction ψ of agents to work

always (njt = 1 for all t ∈ [0, 1] for these unlucky people) and a fraction 1− ψ

always to enjoy leisure (njt = 0 for all t ∈ [0, 1] for these lucky ones). Hence,

the indeterminacy in lottery designs is now gone. An agent who works through-

out his lifetime generates present-value labor income equal to W/(φ + 1), as

defined in (31.4.2).

As before, the planner chooses constant consumption c̄ across agents and

across time. The planner’s problem becomes

max
c̄,ψ

{
log(c̄)−Bψ

}
(31.4.6)

subject to

c̄ ≤ ψ
W

φ+ 1
, (31.4.7)

c̄ ≥ 0, ψ ∈ [0, 1].

We substitute budget constraint (31.4.7) into the objective function of (31.4.6),

and compute a first-order condition with respect to the fraction of the population

sent to work at an interior solution,

ψ =
1

B
. (31.4.8)

We conclude that agents in a complete-market economy with employment

lotteries on average work less than agents who are left alone to ‘time average’

in an incomplete-market economy, as characterized by (31.4.5). The latter

agents confront a difficult choice between enjoying leisure and earning additional

labor income at the peak of their lifetime earnings potential. This choice is not

faced by agents who follow the instructions of the planner who uses lotteries to

convexify the indivisibility brought by careers. Of course, in the special (φ = 0)
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case when work experience does not affect earnings, the aggregate labor supplies

as well as the expected lifetime utilities are exactly the same across the two

economies, as asserted in the equivalence result of section 31.2.

31.4.3. Prescott tax and transfer scheme

It is instructive to revisit Prescott’s tax analysis in section 31.3.1 for the present

environment with earnings-experience profiles. We invite the readers to verify

that the equilibrium career length in the time averaging economy is then

T ⋆ =
(1− τ)(φ + 1)

B
, (31.4.9)

and the employment-population ratio in the employment lotteries economy is

ψ⋆ =
(1− τ)

B
. (31.4.10)

While the labor supplies in (31.4.9) and (31.4.10) differ, we note that the elas-

ticity of the supply with respect to the net-of-tax rate (1 − τ ) is the same

and equal to one. This equality is another reflection of broad similarities that

typically prevail across incomplete-market and complete-market economies with

indivisible labor. We shall encounter another example in section 31.8 when we

compare the aggregate labor supply in a Bewley incomplete markets economy

with its complete-market counterpart.

31.4.4. No discounting now matters

Recall that under a flat earnings-experience profile (φ = 0) in section 31.2.1,

an agent is indifferent about the multitude of labor supply paths that yield the

same present-value of labor income in budget constraint (31.2.9). The reason

is that two alternative labor supply paths with the same present-value of labor

income imply the same lifetime disutility of work when ρ = r . Note that for

strictly positive discounting, ρ = r > 0, a labor supply path that is tilted toward

the future means that an agent will have to work for a longer period of time to

generate the same present-value of labor income as compared to a labor supply

path that is tilted toward the present. But that is acceptable to the agent since
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future disutilities of work are discounted at the same rate as labor earnings when

the subjective discount rate is equal to the market discount rate.

But if there is an upward-sloping earnings-experience profile (φ > 0), an

agent is no longer indifferent to the described variation in career length associ-

ated with the timing of lifetime labor supply. In particular, when ρ = r > 0, an

agent strictly prefers to shift his labor supply to the end of life because at a given

lifetime disutility of work, working later in life would mean spending more total

time working. That would push the worker further up the experience-earnings

profile and thereby increase the present value of lifetime earnings.

Features not present in our model would attenuate such a desire to postpone

labor supply to the end of life, e.g., borrowing constraints that force an agent to

finance consumption with current labor earnings, incomplete insurance markets

that compel an agent to resolve career uncertainties earlier, and forecast declines

in dexterity with advances in age.

31.5. Intensive margin

Prescott et al. (2009) extend the analysis of Ljungqvist and Sargent (2007) in

section 31.2 by introducing an intensive margin in labor supply, i.e., nt ∈ [0, 1]

is now a continuous rather than a discrete choice variable. However, to retain

the central force of indivisible labor, they postulate a nonlinear mapping from

nt to effective labor services, in particular, an increasing mapping that is first

convex and then concave. For expositional simplicity, we let the effective labor

services associated with nt be (nt − n) where n ∈ (0, 1). As noted by Prescott

et al. (2009) such a mapping can reflect costs associated with getting set up in

a job, learning about coworkers, and so on.

The preferences are the same as those of Ljungqvist and Sargent (2007) in

(31.2.1) but now with no discounting, ρ = r = 0. Under the present assumption

that nt is a continuous choice variable, we need to make additional assumptions

about the function v(·). The instantaneous disutility function over work, v(n),

is strictly increasing, strictly convex, and twice continuously differentiable.
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31.5.1. Employment lotteries

We begin by solving a complete-market economy with employment lotteries in

a static model. To compute an equilibrium allocation, we posit that a planner

chooses consumption and employment cj ≥ 0, nj ∈ [0, 1] for a continuum of

agents j ∈ [0, 1] to maximize

∫ 1

0

[u(cj)− v(nj)] dj (31.5.1)

subject to ∫ 1

0

cj dj ≤ w

∫ 1

0

[
nj − n

]
dj . (31.5.2)

Strict concavity of u(c) makes it optimal to assign the same consumption to

each agent, c̄ . Likewise, because of strict convexity of v(n), the planner asks

for the same labor supply from each agent who is sent to work, n̄ . Conditional

on working, the labor supply n̄ > n because it cannot be optimal to have agents

incurring disutility of work without earning any income. For an agent j who is

not working, nj = 0.

Given this characterization of an optimal allocation, the planner’s optimiza-

tion problem becomes

max
c̄,n̄,ψ

{
u(c̄)− ψv(n̄)

}
(31.5.3)

subject to

c̄ ≤ w (n̄− n)ψ, (31.5.4)

c̄ ≥ 0, n̄ ∈ [0, 1], ψ ∈ [0, 1],

where ψ is the fraction of the population that the planner sends to work, the

same fraction ψ is also the probability of working in the employment lottery of

the decentralized market economy.

As emphasized by Prescott et al. (2009), the interesting case is the one where

the solutions for ψ and n̄ are both interior. In this case, after substituting

budget constraint (31.5.4) at equality into the objective function of (31.5.3), we

obtain the following first-order conditions with respect to ψ and n̄ , respectively,

u′
(
ψw (n̄− n)

)
w (n̄− n) = v(n̄), (31.5.5a)

u′
(
ψw (n̄− n)

)
wψ = ψ v′(n̄). (31.5.5b)
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Dividing these equations gives

v′(n̄) =
v(n̄)

n̄− n
. (31.5.6)

This condition for optimality states that the marginal cost to the planner to

supply additional effective labor services should be equalized across intensive and

extensive margins. The marginal disutility at the intensive margin is v′(n̄) when

employed agents are asked to increase their hours worked, while the marginal

cost at the extensive margin is v(n̄)/(n̄ − n), i.e., the average disutility per

effective hour of an agent who is asked to switch from not working to working.

Note that an employed agent’s optimal labor supply n̄ can be computed

from (31.5.6) and depends on neither c̄ nor ψ , except for the supposition of an

interior solution for ψ . Given a solution for n̄ , we can then use either (31.5.5a)

or (31.5.5b) to solve for ψ .

31.5.2. Time averaging

We now turn to a time averaging economy. An agent’s problem is similar to that

in section 31.2.1 but with the added intensive margin of Prescott et al. (2009)

(and no discounting). An agent chooses lifetime consumption and employment

ct ≥ 0, nt ∈ [0, 1] for t ∈ [0, 1] to maximize
∫ 1

0

[u(ct)− v(nt)] dt (31.5.7)

subject to ∫ 1

0

ct dt ≤ w

∫ 1

0

[
nt − n

]
dt . (31.5.8)

It is immediate that this problem is identical to the planner’s problem in the

static model of section 31.5.1, the only difference being that we now integrate

across time rather than across agents. Hence, we can reformulate the agent’s

optimization problem to become

max
c̄,n̄,T

{
u(c̄)− Tv(n̄)

}
(31.5.9)

subject to

c̄ ≤ w (n̄− n)T, (31.5.10)

c̄ ≥ 0, n̄ ∈ [0, 1], T ∈ [0, 1],
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where T is the fraction of an agent’s lifetime devoted to work, i.e., his career

length.

31.5.3. Prescott taxation

To examine effects of taxation where there are both intensive and extensive mar-

gins, we adapt the analysis in section 31.3.1. The government budget constraint

becomes

τ w (n̄− n)T ⋆ = x. (31.5.11)

Under the assumption that utility is logarithmic in consumption, an agent’s

optimization problem becomes

max
c̄,n̄,T

{
log(c̄)− Tv(n̄)

}
(31.5.12)

subject to

c̄ ≤ (1− τ)w (n̄− n)T + x, (31.5.13)

c̄ ≥ 0, n̄ ∈ [0, 1], T ∈ [0, 1].

Substitute budget constraint (31.5.13) into the objective function of (31.5.12),

and compute the first-order conditions at interior solutions with respect to T

and n̄ , respectively,

(1 − τ)w (n̄− n)

(1− τ)w (n̄− n)T + x
− v(n̄) = 0, (31.5.14a)

(1− τ)w T

(1− τ)w (n̄− n)T + x
− T v′(n̄) = 0. (31.5.14b)

Dividing these equations gives

v′(n̄) =
v(n̄)

n̄− n
. (31.5.15)

This condition is the same as expression (31.5.6) when there is no taxation and

hence the intensive margin is not affected by taxation. To compute the equilib-

rium career length, we substitute (31.5.11) into first-order condition (31.5.14a),

T ⋆ =
1− τ

v(n̄)
.
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Along with Prescott et al. (2009), we conclude that the effects of taxation are

the same as in Ljungqvist and Sargent (2007), i.e., all the adjustment of labor

supply takes place along the extensive margin, and the elasticity of aggregate

labor supply with respect to the net-of-tax rate (1 − τ ) is equal to one.

The reason that none of the adjustment takes place along the intensive mar-

gin is that any changes in labor when already working occur along an increasing

marginal disutility of work, while adjustment along the extensive margin are

made at a constant disutility of work by varying the fraction of one’s lifetime

devoted to work. The constancy of the latter terms of trade between working

and not working was the essential ingredient of the famous (or, depending on

your viewpoint, infamous) high labor supply elasticity in models of employment

lotteries when labor is indivisible.

Rogerson and Wallenius (2009) break the constancy of the terms of trade

between working and not working by adding a life cycle earnings profile to the

present framework, but in contrast to section 31.4, they take that earnings pro-

file as exogenously given rather than having it be determined as a function of an

agent’s past work experience. In the Rogerson and Wallenius setup, two results

follow immediately: (a) agents choose to work when their life cycle earnings

profile is highest, namely, when it exceeds an optimally chosen reservation level;

and (b) labor supply nt at a point in time varies positively with the exogenous

earnings level. Taxation in this augmented framework affects labor supply along

both the intensive and extensive margins. While an increasing marginal disutil-

ity of work continues to frustrate adjustment along the intensive margin, there

is now decreasing earnings when extending the career beyond the heights of the

exogenous life cycle earnings profile, which then also frustrates adjustment along

the extensive margin. The assumed curvatures of the disutility of work at the

intensive margin and that of the exogenous lifecycle earnings profile determine

how much adjustment occurs along the intensive and extensive margins.
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31.6. Ben-Porath human capital

We return to the assumption that labor is strictly indivisible, nt ∈ {0, 1} , and
add a Ben-Porath human capital accumulation technology to the framework of

section 31.2. We take note of Ben-Porath’s (1967, p. 361) observation that if

the technology were to exhibit exact constant returns to scale, the marginal cost

of additional units of human capital would be constant until all of the agent’s

current human capital is devoted to the effort of accumulating human capital

and hence, the optimal rate of investment at any point in time would be either

full specialization or no investment at all. Under our simplifying assumption of

no depreciation of human capital, it follows that an agent would specialize and

make all of his investment in human capital upfront. Acquiring human capital

can be thought of as formal education before starting to work.

To represent the notion of specializing in human capital investments in a

simple way, we assume that an agent has access to a technology that can instan-

taneously determine his human capital through the investment of m ≥ 0 units

of goods in himself, which produces a human capital level

h = mγ , γ ∈ (0, 1), (31.6.1)

and there is no depreciation of human capital. It follows trivially that it will

be optimal for an agent to use that technology once and for all before starting

to work. Under our assumption of a perfect credit market, an agent chooses in-

vestment goods m that maximize his present value labor income, in conjunction

with his choice of an optimal career length T .

Papers by Guvenen et al. (2011) and Manuelli et al. (2012) that incorporate

Ben-Porath human capital technologies in life cycle models inspire our analysis.

Those papers mainly focus on tax dynamics driven, not by the force in the

Prescott tax system in section 31.3.1, but instead by wedges that distort an

agent’s investment in human capital. Guvenen et al. (2011) postulate progressive

labor income taxation while Manuelli et al. (2012) assume that investments in

human capital are not fully tax-deductible. In both cases, the central force is

that the tax rate on returns to human capital is higher than the rate applied to

labor earnings foregone while investing in human capital, or the rate at which

goods input to human capital can be deducted from an agent’s tax liabilities.

Following Manuelli et al. (2012), we assume a flat-rate tax τ ∈ (0, 1) on

labor income and that only a fraction ǫ ∈ [0, 1] of goods input to human capital
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is tax-deductible. To isolate the key force at work in Manuelli et al. (2012)

as well as in Guvenen et al. (2011), we assume no lump sum transfers of tax

revenues to agents. However, at the end of the section, we will show how lump

sum handovers remain as potent in suppressing the aggregate labor supply.7

31.6.1. Time averaging

As mentioned, an agent will find it optimal to invest an amount m in the human

capital technology before starting to work. Equality between the subjective

discount rate and the market interest rate implies that the agent chooses a

constant consumption stream c̄ , and that he is indifferent to the timing of his

labor supply. Moreover, because we assume no discounting so that ρ = r = 0,

the optimal career length T is unique and does not depend on the timing of the

agent’s labor supply. Under the postulated human capital technology (31.6.1)

and described tax policy, an agent’s optimization problem becomes

max
c̄,m,T

{
log(c̄)−BT

}
(31.6.2)

subject to

c̄ ≤ (1− τ)wmγ T − (1− τǫ)m, (31.6.3)

c̄ ≥ 0, m ≥ 0, T ∈ [0, 1].

We substitute budget constraint (31.6.3) into the objective function (31.6.2),

and compute first-order conditions with respect to m and, at an interior solu-

tion, T . After some manipulations, these first-order conditions with respect to

m and T , respectively, become

m1−γ =
γ(1− τ)w

1− τǫ
T (31.6.4a)

T =
1

B
+

1− τǫ

1− τ

m1−γ

w
. (31.6.4b)

7 Given indivisible labor, Manuelli et al. (2012) disarm the potentially large effects of lump

sum transfers of tax revenues by modelling social security systems with implicit tax wedges

at an official retirement age, which gives rise to corner solutions in agents’ career decisions

as analyzed in section 31.3.2. In Guvenen et al.’s (2011) analysis of divisible labor as well as

in their exploration of indivisible labor in an earlier working paper, the sensitivity of career

length to lump sum transfers does not arise because they assume an exogenous retirement

age, a common assumption in much the overlapping generations literature.
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Substituting (31.6.4a) into (31.6.4b) yields

T =
1

(1− γ)B
, (31.6.5)

where the implicit parameter restriction for an interior solution is (1−γ)B ≥ 1.

The optimally chosen career length in (31.6.5) is invariant to taxation under

our assumption that no tax revenues are handed back lump sum to agents.

Any effect of taxation on the stock of human capital and hence the level of

labor earnings, do not affect an agent’s willingness to work since preferences

are consistent with balanced growth, i.e., income and subsitution effects cancel.

Given a constant career length in (31.6.5), it follows from expression (31.6.4a)

that human capital investments would also be invariant to taxation if all these

investments were tax-deductible, i.e., if ǫ = 1. But if ǫ < 1, we see that human

capital investments decline in the tax rate τ because human capital returns are

taxed at a higher rate than the rate at which rate the goods input to human

capital is tax-deductible.

The severity of the tax distortion depends on the curvature parameter γ of

the human capital technology. For example, when human capital investments

are not tax-deductible, ǫ = 0, we can solve for m from equation (31.6.4a), and

compute an agent’s human capital stock as given by (31.6.1):

h =
[
γ(1− τ)w T

] γ
1−γ

.

Thus, the elasticity of human capital, and for that matter, also labor earnings

whT , with respect to net-of-tax rate (1 − τ) is equal to γ/(1 − γ), which be-

comes arbitrarily large as γ approaches one. A high value of γ is associated

with strong output effects of taxation because of reasons similar to those in an

‘AK model’ (output is linear in a single input, capital). The single input in

our human capital technology (31.6.1) is reproducible, and exhibits weak di-

minishing returns when γ is close to one. Likewise, for a standard formulation

of the Ben-Porath technology, both the input of purchased goods and the input

of an agent’s current human capital services are de facto reproducible, so simi-

larities with an ‘AK model’ arise if the human capital technology exhibits close

to constant returns to scale (combined with the standard assumption of con-

stant returns to scale in the goods technology that employs human and physical

capital).
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31.6.2. Employment lotteries

As in the case of an earnings-experience profile in section 31.4, the planner will

optimally (and randomly) assign a fraction ψ of agents to work their entire lives

while a fraction 1−ψ will specialize in leisure. Needless to say, the planner will

invest only in human capital for agents who are sent work. Under the postu-

lated human capital technology (31.6.1) and described tax policy, the planner’s

problem becomes

max
c̄,m,ψ

{
log(c̄)−Bψ

}
(31.6.6)

subject to

c̄ ≤ (1− τ)wmγ ψ − (1− τǫ)mψ, (31.6.7)

c̄ ≥ 0, m ≥ 0, ψ ∈ [0, 1].

We substitute budget constraint (31.6.7) into the objective function (31.6.6),

and compute first-order conditions with respect to m and, at an interior solu-

tion, ψ . After some manipulations, these first-order conditions with respect to

m and ψ , respectively, become

m1−γ =
γ(1− τ)w

1− τǫ
, (31.6.8a)

ψ =
1

B
. (31.6.8b)

As in the case of an earnings-experience profile, agents in the employment

lotteries economy on average work less than do agents in the time-averaging

economy: compare expression (31.6.8b) to that of (31.6.5). Agents in the

time-averaging economy confront a difficult choice between enjoying leisure and

earning additional labor income derived from their past investment in human

capital. Once again, this difficult choice is not confronted by agents in the em-

ployment lotteries economy where the planner randomly assigns a fraction ψ of

the population to work their entire lives, and thereby ensures an efficient use

of all human capital. However, the difference in labor supply diminishes as γ

approaches zero. In the limit (γ = 0) when the technology can no longer be

used to augment an agent’s human capital, labor supplies are the same across

the two economies and we are back to our equivalence result in section 31.2.

Given that agents who are sent to work in the employment lotteries economy

work their entire lives, it is not surprising that the planner makes a larger human
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capital investment in each employed worker as compared to an agent’s invest-

ment decision in the time averaging economy: compare expression (31.6.8a) to

that of (31.6.4a). After solving for the planner’s choice of m from (31.6.8a) and

substituting into human capital technology (31.6.1), the human capital stock

per employed worker in the employment lotteries economy is

h =
[
γ(1− τ)w

] γ
1−γ

.

Thus, the elasticities of human capital and labor earnings whψ , with respect

to net-of-tax rate (1− τ) are the same as those in the time averaging economy

and equal to γ/(1− γ).

31.6.3. Prescott taxation

We now add Prescott’s assumption that tax revenues, net of any tax deductions

on human capital investments, are returned lump sum to agents. Such handouts

remain potent in suppressing the aggregate labor supply in the time averaging

economy as well as in the employment lotteries economy.

In the time averaging economy, we adapt the analysis of section 31.3.1 as

follows. The government budget constraint becomes

τ w h⋆ T ⋆ − τ ǫm⋆ = x, (31.6.9)

where T ⋆ , h⋆ and m⋆ are equilibrium values of career length, human capital

stock, and agents’ purchase of goods input to the human capital technology,

respectively. An agent’s budget constraint is augmented to include the lump

sum transfer x ,

c̄ ≤ (1− τ)wmγ T − (1− τǫ)m+ x. (31.6.10)

After substituting budget constraint (31.6.10) into the objective function (31.6.2),

we can compute and verify that our earlier first-order condition (31.6.4a) with

respect to m is unchanged, i.e.,

m1−γ =
γ(1− τ)w

1− τǫ
T. (31.6.11)

However, the career length T is no longer invariant to taxation. Specifically,

after substituting goverment budget constraint (31.6.9) into the agent’s first-

order condition with respect to T , at an interior solution, the result can be
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rearranged to read

T =
1− τ

B
+
m1−γ

w
, (31.6.12)

into which we substitute expression (31.6.11) to obtain

T ⋆ =
1− τ[

1− γ 1− τ
1− τǫ

]
B
. (31.6.13)

Since τ ∈ (0, 1) and ǫ ∈ [0, 1], the equilibrium career length is now shorter than

it was in expression (31.6.5) when tax revenues, net of any tax deductions on

human capital investments, were not handed back lump sum to agents.

For example, when investments in human capital are fully tax-deductible,

ǫ = 1, we disarm the key distortionary force that is the focus of Manuelli et

al. (2012), i.e., the choice of goods input in expression (31.6.13) is no longer

distorted by the differential tax treatment of investments into and returns from

human capital, but Prescott’s tax distortion, arising from the lump sum han-

dover of tax revenues to agents, is a forceful determinant of equilibrium career

length (31.6.13), evaluated at ǫ = 1,

T ⋆
∣∣∣
ǫ=1

=
1− τ

(1− γ)B
. (31.6.14)

Hence, career length is no longer invariant to taxation when the government

hands over tax revenues lump sum to agents; in particular, compare expression

(31.6.14) to that in (31.6.5). And once again, the elasticity of aggregate labor

supply with respect to the net-of-tax rate (1−τ) is equal to one. But now labor

income declines further because of depressed investments in human capital, as

determined by the goods input from expression (31.6.11) that varies positively

with career length.

We leave it as an exercise to readers to derive the corresponding equilibrium

outcomes in the employment lotteries model, by following the same steps as

above. It can be verified that the planner’s first-order condition with respect to

m remains the same as in expression (31.6.8a), while steps analogous to those

above, where government budget constraint is subtituted into the planner’s first-

order condition with respect to ψ , yield

ψ⋆ =
(1− τ)wmγ − (1− τǫ)m

(wmγ −m)B
<

1

B
. (31.6.15)
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The strict inequality is implied by τ ∈ (0, 1) and ǫ ∈ [0, 1], and hence, the

equilibrium fraction of population sent to work is smaller as compared to that

found in section 31.6.2, where tax revenues were not handed back lump sum to

agents, as given by (31.6.8b). It is again instructive to consider the case when

investments in human capital are fully tax-deductible, ǫ = 1,

ψ⋆
∣∣∣
ǫ=1

=
1− τ

B
, (31.6.16)

where the elasticity of aggregate labor supply with respect to the net-of-tax rate

(1− τ) is again equal to one.

31.7. Earnings shocks

Next we study how earnings shocks affect an agent’s choice of career length.

Following Ljungqvist and Sargent (2014), we study an unanticipated perma-

nent earnings shock, which will enable us to highlight forces that will also be at

work in richer environments. For additional analytical simplicity, we assume a

flat earnings profile, no discounting, and that utility is logarithmic in consump-

tion. The parameter restriction B > 1 guarantees a strictly interior solution to

lifetime labor supply (at least prior to the unanticipated earnings shock).

As in our basic setup in section 31.2.1, an agent can choose to work at the

wage rate w , and solves a deterministic lifetime labor supply problem. The

optimal solution at an interior solution is the constant consumption level in

expression (31.2.8), c̄ = w/B , and a career length that is given by expression

(31.2.11), 1/B . Since an agent is indifferent to the timing of his labor supply,

we are free to assume that he starts to work at time t0 ∈ (0, 1 − 1/B), and

continues to work his entire optimally chosen career length, i.e., the agent is

intent on retiring at age

R̄ = t0 + 1/B. (31.7.1)

An employed agent pays off debt and accumulates assets for retirement, with

asset holdings at time t ∈ [t0, R̄] as given by

A(t) =

∫ t0

0

−c̄ ds+
∫ t

t0

(w − c̄) ds = w(t− t0)−
w

B
t, (31.7.2)

where we have invoked the optimal consumption level, c̄ = w/B . Before starting

to work, an agent finances consumption by borrowing and hence, there is some
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date t̄ ∈ (t0, R̄) at which an employed has just repaid his debt, A(t̄) = 0, and

starts to accumulate assets for retirement, where

A(t̄) = w(t̄ − t0)−
w

B
t̄ = 0 =⇒ t̄ =

B

B − 1
t0. (31.7.3)

Consider an unanticipated mid-career earnings shock at time t̂ ∈ [t0, R̄] ,

when the wage rate unexpectedly jumps from w to ŵ for t ∈ [t̂, 1]. Subject to

the asset holdings A(t̂) that were accumulated under the old optimal plan, the

shock prompts the agent to maximize the remainder of his lifetime utility,

∫ 1

t̂

[
log(ĉt)−Bn̂t

]
dt

by choosing new values ĉt ≥ 0 and n̂t ∈ {0, 1} of consumption and labor supply,

respectively, for t ∈ [t̂, 1]. The agent’s revised optimal plan prescribes a constant

consumption path over the interval [t̂, 1] and a new retirement age R̂ ∈ [t̂, 1].

For the agent who after the unanticipated wage shock at t̂ chooses to work

until R ∈ [t̂, 1], the sum of the financial assets already accumulated at time t̂ ,

A(t̂), and the present value of future labor income becomes

A(t̂) +

∫ R

t̂

ŵ ds = w(t̂ − t0)−
w

B
t̂+ ŵ(R− t̂). (31.7.4)

This expression divided by 1 − t̂ is then the constant consumption rate over

the remaining lifetime 1 − t̂ , since the time t̂ present value of financial plus

nonfinancial wealth must equal the present value of consumption over the period

[t̂, 1].

The agent’s optimal retirement age thus solves

max
R∈[t̂,1]



(1− t̂) log



w(t̂ − t0)−

w

B
t̂+ ŵ(R− t̂)

1− t̂


−B(R − t̂)



 .

The first-order condition for R is

(1− t̂)ŵ

w(t̂− t0)−
w

B
t̂+ ŵ(R − t̂)

−B





< 0, corner solution R̂ = t̂;

= 0, interior solution R̂ ∈ [t̂, 1];

> 0, corner solution R̂ = 1;

(31.7.5)
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where R̂ is the optimal retirement age after the wage shock at time t̂ . At an

interior solution to R̂ , first-order condition (31.7.5) holds with equality,

(1− t̂)

B
=
w

ŵ
(t̂− t0)−

w

ŵ

1

B
t̂+ R̂− t̂.

After adding t0 to both sides of this equation, and using expression (31.7.1) for

the original retirement age, R̄ = t0 + 1/B , the post-shock retirement age R̂ at

an interior solution relates to the original retirement age R̄ as follows:

R̂ = R̄+
ŵ − w

ŵ

[
B − 1

B
t̂− t0

]
= R̄+

ŵ − w

ŵ
(t̂− t̄)

B − 1

B
, (31.7.6)

where the second equality is obtained by using expression (31.7.3) to substitute

out for t0 .

Evidently, the sign of the revision R̂ − R̄ to an unanticipated wage shock

depends (i) on whether ŵ > w or ŵ < w , and (ii) on whether t̂ is greater than

or smaller than t̄ , where t̄ defined in (31.7.3) is the point in time when the

asset holdings of an employed agent turns from being negative to being positive.

In response to a negative earnings shock, ŵ < w , the agent reduces (increases)

his lifetime labor supply if his time t̂ asset holdings are positive (negative), i.e.,

if A(t̂) > 0 (A(t̂) < 0), which means that the shock occurs at a time t̂ > t̄

( t̂ < t̄). In contrast, in response to a positive wage shock, ŵ > w , the agent

increases (decreases) her lifetime labor supply if her current asset holdings are

positive (negative).

These strong predictions based merely on the signs of the earnings shock

and an agent’s asset holdings, follow from the assumption that preferences are

consistent with balanced growth. Ljungqvist and Sargent (2012) generalize the

result to a larger class of such preferences and allow for the earnings-experience

profile in section 31.4.
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31.7.1. Interpretation of wealth and substitution effects

For an agent with positive asset holdings at t̂ , a negative wage shock means

that returns to working fall relative to the marginal value of his wealth. That

induces the agent to enjoy more leisure because doing that has now become

relatively less expensive. But with negative asset holdings at t̂ , a negative wage

shock compels the agent to supply more labor both to pay off time t̂ debt and

to moderate the adverse effect of the shock on his future consumption.

With a positive wage shock, leisure becomes more expensive, causing the

agent to substitute away from leisure and toward consumption. This force makes

lifetime labor supply increase for an agent with positive wealth. But why does

a positive wage shock lead to a reduction in life-time labor supply when time t̂

assets are negative?

In the case of a positive wage shock and negative time t̂ assets, consider

a hypothetical asset path that would have prevailed if the agent had enjoyed

the higher wage rate ŵ from the beginning starting at t = 0. Along that

hypothetical path, the agent would have been even further in debt at t̂ (since

the optimal constant consumption level would have been equal to ŵ/B , as given

by (31.2.8)). So at t̂ , the agent actually finds himself richer at t̂ than he would

have in our hypothetical scenario. Because there is less debt to be repaid at t̂ ,

the agent chooses to supply less labor than he would have in the hypothetical

scenario. In other words, it is not optimal to make up for what would have been

past underconsumption relative to our hypothetical path, so the agent chooses

instead to enjoy more leisure because he has relatively less debt at t̂ than he

would along the hypothetical path.
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31.8. Time averaging in a Bewley model

In a version of a Bewley model with incomplete markets (see chapter 18), Chang

and Kim (2007) demonstrate how indivisible labor is associated with a high labor

supply elasticity when the infinitely-lived agents engage in ‘time averaging,’ i.e.,

alternating between work and leisure. In such an incomplete-markets model,

agents accumulate assets not only because of the standard precautionary motive

to self-insure against productivity shocks, but also to finance planned spells of

leisure.

We abstract from aggregate productivity shocks, but otherwise postulate the

same neoclassical growth model (and its calibration) as that of Chang and Kim

(2007). The economy is populated by a continuum (measure one) of agents who

have identical preferences but experience different idiosyncratic productivity

shocks. An agent’s preference specification is similar to that of section 31.2

except that now time is discrete, agents live forever, and there is uncertainty;

E0

∞∑

t=0

βt [log(ct)−Bnt] , (31.8.1)

where Et is the expectation operator conditional on information at time t ,

and β ∈ (0, 1) is the agent’s subjective discount factor. An agent who works in

period t supplies zt efficiency units of labor where the idiosyncratic productivity

level zt varies exogenously according to a stochastic process with a transition

probability distribution function π(z′|z) = Prob(zt+1 ≤ z′|zt = z), which has a

unique unconditional stationary cumulative distribution function G(z).8

The aggregate production function is Cobb-Douglas and exhibits constant

returns to scale,

F (Lt,Kt) = LαtK
1−α
t ,

where Lt and Kt are the aggregates of efficiency units of labor and of physical

capital. Capital depreciates at rate δ each period.

8 As compared to Chang and Kim (2007), we let our parameter B in preference specification

(31.8.1) replace their composite of three parameters, Bh̄1+1/γ/(1 + 1/γ) , since the separate

identification of e.g. a curvature parameter γ has no significance under the assumption of

indivisible labor. Likewise, our normalization of time supplied when working, n = 1, as com-

pared to their separate parameter h̄ also lacks significance as long as our disutility parameter

B has the same value as their composite of three parameters, and so long as we properly scale

the productivity shocks so that the implied processes for an agent’s efficiency units of labor

are the same.
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31.8.1. Incomplete markets

A stationary equilibrium has a constant interest rate r and a constant wage

rate w per efficiency unit of labor. The state variables for an agent’s problem

are then his beginning-of-period assets a , before receiving interest earnings, and

his productivity z . The agent’s value function is

V (a, z) = max
n,c,a′

{
log(c)−Bn+ β

∫
V (a′, z′) dπ(z′|z)

}
, (31.8.2)

subject to

a′ = (1 + r)a+ wzn− c, (31.8.3)

n ∈ {0, 1}, c ≥ 0, a′ ≥ â,

where savings must satisfy a borrowing constraint, a′ ≥ â . The solution to this

problem includes a decision rule for labor supply, n(a, z), consumption, c(a, z),

and asset holdings, a′(a, z).

After substituting budget constraint (31.8.3) into the utility function in

(31.8.2), we take a first-order condition with respect to a′ and obtain an Euler

equation,

1

c(a, z)
= β

∫
V1(a

′, z′) dπ(z′|z) = β(1 + r)

∫
1

c(a′, z′)
dπ(z′|z), (31.8.4)

into which we have substituted the decision rule for consumption, c(a, z), and

applied the Benveniste-Scheinkman formula V1(a
′, z′) = (1 + r)u′(c(a′, z′)).

Firms’ profit maximization ensures that

w = F1(L,K) = (1 − α)

(
K

L

)α
, (31.8.5a)

r = F2(L,K)− δ = α

(
K

L

)α−1

− δ. (31.8.5b)

Associated with a stationary equilibrium is a time-invariant distribution of

agents across asset holdings and productivities, J(a, z). The invariant distribu-

tion satisfies

J(ao, zo) =

∫

a′≤ao,z′≤zo

{∫
I
(
a′ = a′(a, z)

)
dπ(z′|z) dJ(a, z)

}
da′ dz′,
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where I(·) is an indicator function that equals 1 if its argument is true and 0

otherwise.

Markets for labor, capital, and goods clear:

L =

∫
zn(a, z) dJ(a, z),

K =

∫
a dJ(a, z),

F (L,K) + (1 − δ)K =

∫ {
a′(a, z) + c(a, z)

}
dJ(a, z).

31.8.2. Complete markets

An allocation for an economy with complete markets solves an assignment prob-

lem that confronts a representative family with a continuum of family members.

The family tells each member what to consume and when to work. When prefer-

ences are additively separable in consumption and leisure, optimal consumption

is the same for everyone, regardless of work status. The family sends the most

productive members to work. In particular, the representative family sets a

reservation productivity z⋆ such that members with productivities greater than

or equal to z⋆ work while the others do not. The value function of the repre-

sentative family satisfies

V (a) = max
z⋆,c,a′

{
log(c)−B[1−G(z⋆)] + βV (a′)

}
, (31.8.6)

where the maximization is subject to

a′ = (1 + r)a+ w

∫ ∞

z⋆
z dG(z)− c, (31.8.7)

c ≥ 0, a′ ≥ â.

The representative family solves a deterministic problem because it has a con-

tinuum of members. The ex ante probability that a single member draws from

a particular interval of productivities equals the post fraction of the family’s

members drawing from that interval.
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First-order conditions with respect to c , a′ and z⋆ at interior solutions are:

1

c
− λ = 0, (31.8.8a)

− λ+ βV ′(a′) = 0, (31.8.8b)

BG′(z⋆) + λw[−z⋆G′(z⋆)] = 0. (31.8.8c)

In a steady state, consumption is constant over time. Application of the Benveniste-

Scheinkman formula gives V ′(a) = (1 + r)u′(c), so it follows from first-order

conditions (31.8.8a) and (31.8.8b) that

1 + r =
1

β
= 1− δ + α

(
K

L

)α−1

, (31.8.9)

where the second equality invokes profit-maximization condition (31.8.5b). The

optimal consumption level is obtained from conditions (31.8.8a) and (31.8.8c):

c =
wz⋆

B
. (31.8.10)

The equilibrium capital stock held by the representative family is K = a = a′ ,

which together with expressions (31.8.9) and (31.8.10) can be substituted into

budget constraint (31.8.7):

K =
1

β
K + w

∫ ∞

z⋆
z dG(z)− wz⋆

B
. (31.8.11)

After dividing expression (31.8.11) by the integral in that expression, i.e., by

the family’s supply of efficiency units of labor, which in equilibrium equals L ,

we obtain
K

L
=

1

β

K

L
+ w − wz⋆

B
∫∞

z⋆
z dG(z)

. (31.8.12)

We can now solve for a stationary equilibrium in three steps. First, we use the

second equality in expression (31.8.9) to determine the equilibrium capital-labor

ratio, K/L , in terms of parameters. Next, given the capital-labor ratio, we can

compute the wage rate from profit-maximization condition (31.8.5a). Finally,

with the capital-labor ratio and the wage rate in hand, expression (31.8.12)

becomes one equation to be solved for the equilibrium value of the reservation

productivity z⋆ .
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31.8.3. Simulations of Prescott taxation

We adopt the calibration of Chang and Kim (2007) except that we shut down

aggregate productivity shocks. To highlight differences and similarities across

our incomplete- and complete-market versions of the economy, we compute equi-

librium outcomes under Prescott’s tax and transfer scheme in section 31.3.1.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Asset holdings

P
ro

d
u

c
ti
v
it
y

τI
 = 0.70 τI

 = 0.30

τC
 = 0.70

τC
 = 0.30

Figure 31.8.1: Reservation productivity as a function of asset

holdings in the economy with incomplete markets (solid curves) and

complete markets (dashed curves), respectively, where the lower

(upper) curve refers to tax rate 0.30 (0.70).

For labor tax rates of 0.30 and 0.70, respectively, reservation productivities

as functions of asset holdings are displayed in Figure 31.8.1. In the incomplete-

market economy (solid curves), an agent’s reservation productivity increases in

his asset holdings. A high asset level means that, everything else equal, an agent

is poised to enjoy one of his intermittent spells of leisure, which will result in

asset decumulation and his ultimate return to work. For an agent with high

assets to postpone such a desired spell of leisure, the agent must experience a

relatively high productivity to be willing to continue to work for a while. As

one would expect, the reservation productivities for the higher tax rate 0.70 lie

well above those for the lower tax rate 0.30, since Prescott’s tax and transfer

scheme is very potent in suppressing agents’ labor supply and causing them to
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choose more leisure. In the complete-market economy, the single productivity

cutoff (dashed curve) is indicative of a privately efficient allocation. It is the

most productive agents who work at any point in time.
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Figure 31.8.2: Productivity distribution. The upper solid curve

is the population productivity distribution, while the other two

in descending order show the agents thereof who are employed in

the incomplete-market economy given tax rate 0.30 and 0.70, re-

spectively. The corresponding masses of employed agents in the

complete-market economy are the halves of the population distri-

bution to the right of a vertical dashed line, where the left (right)

dashed line refers to tax rate 0.30 (0.70).

The top solid curve in Figure 31.8.2 depicts the stationary distribution of

productivities in the population. A dashed vertical line is the productivity cutoff

in the complete-market economy, where the left (right) one refers to tax rate

0.30 (0.70), i.e., the same reservation productivity as the corresponding dashed

line in Figure 31.8.1. All agents with productivities to the right of the dashed

line work in the complete-market economy, and hence, the area under that

portion of the population distribution equals the employment-population ratio.

In the incomplete-market economy, the endogenous stationary distribution of

agents across both productivities and asset holdings, J(a, z), together with the

decision rule for whether or not to work, n(a, z), determine how many agents
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are at work at different productivity levels. Those employed workers in the

incomplete-market economy are depicted by the solid curves that lie weakly

below the top population curve, which in descending order refer to tax rates

0.30 and 0.70, respectively. As in the complete-market economy, virtually all

agents with high productivities are working in the incomplete-market economy.

But over a mid-range of productivities, there are significant differences between

the two economies. On the one hand, some agents in the incomplete-market do

not work but would have been working in the complete-market economy. The

reason is that because their asset holdings are relatively high, their shadow value

of additional wealth falls below the utility of leisure. On the other hand, other

agents in the incomplete-market economy work but would not have worked in

the complete-market economy. These agents have low asset holdings and so feel

compelled to work despite their low productivities.

The work and asset decisions of individual agents in the incomplete-market

economy determine the distribution of asset holdings, and the capital stock.

For labor tax rates 0.30 and 0.70, respectively, the solid curves in Figure 31.8.3

depict the cumulative distribution function for asset holdings in the incomplete-

market economy. At the high tax rate 0.70 (upper solid curve), asset holdings

become concentrated at lower levels. As in the case of the elevated reservation

productivities in Figure 31.8.1, taxation suppresses market activity in favor of

leisure. In the complete-market economy, tax rate 0.70 is associated with a

similar large decline in per capita asset holdings, as depicted by the vertical

dashed lines in Figure 31.8.3 where the left (right) one refers to tax rate 0.70

(0.30).

From a production perspective, what matters is the capital stock relative to

the aggregate supply of efficiency units of labor. In the complete-market econ-

omy, that capital-labor ratio is determined by steady-state relationship (31.8.9)

which does not depend on the labor tax rate (but would have depended on any

intertemporal tax wedge such as a tax on capital income). Since the wage rate is

a function of the capital-labor ratio in (31.8.5a), it follows in Figure 31.8.4 that

the wage rate in the complete-market economy (dashed curve) is invariant to

the labor tax rate. In contrast, the wage rate in the incomplete-market economy

(solid curve) falls with the labor tax rate and lies above the wage rate of the

complete-market economy. To understand the latter outcome, we recall that

in a Bewley model like ours with infinitely-lived agents, the interest rate must

fall below the subjective rate of discounting β−1 , which is the steady-state
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Figure 31.8.3: Asset distribution. The lower (upper) solid curve

is the cumulative distribution function for asset holdings in the

incomplete-market economy when the tax rate is 0.30 (0.70). The

right (left) vertical dashed line is the per capita asset holdings in

the complete-market economy when the tax rate is 0.30 (0.70).

interest rate in the complete-market economy. Since the equilibrium interest

rate is inversely related to the capital-labor ratio in expression (31.8.5b), it fol-

lows immediately that the capital-labor ratio is higher in the incomplete-market

economy, and therefore by expression (31.8.5a), so is the wage rate.

Figure 31.8.5 shows that the fraction of the population employed is higher in

the incomplete-market economy than in the complete-market economy. As seen

in Figure 31.8.2, there are those agents who work and those who do not work

in the incomplete-market economy, but who would have done the opposite if

they instead had lived in the complete-market economy. Evidently, the group of

agents who work in the incomplete-market economy but would not have worked

in the complete-market economy is larger. With no insurance markets, agents

on average work more in order to accumulate precautionary savings in the event

of low productivity in the future.9

9 Marcet et al. (2007) conduct an analysis similar to that of Chang and Kim (2007) but

where labor is divisible, nt ∈ [0, 1] , and the idiosyncratic productivity shock takes on only

two values, zt ∈ {0, 1} . In addition to the precautionary savings effect that tends to increase



Time averaging in a Bewley model 1355

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

W
a
g
e
 r

a
te

Labor tax rate

Incomplete markets

Complete markets

Figure 31.8.4: Wage rate per efficiency unit of labor in the econ-

omy with incomplete markets (solid curve) and complete markets

(dashed curve), as a function of the labor tax rate.
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Figure 31.8.5: Employment-population ratio in the economy

with incomplete markets (solid line) and complete markets (dashed

line), as a function of the labor tax rate. The dotted line represents

the former economy with a less persistent productivity process.

the capital stock under uncertainty, they identify an ex post wealth effect on labor supply that
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What makes the employment-population ratio to converge across the two

economies at higher tax rates in Figure 31.8.5? A key reason is that Prescott’s

tax and transfer scheme effectively insures the agents by collecting tax revenues

and then returning them lump sum as equal amounts to all agents. To explore

how precautionary savings drive the employment wedge between the incomplete-

and complete-market economies at low tax rates, consider the following per-

turbation of the idiosyncratic productivity process. Specifically, suppose that

agents face a transition probability distribution function

π̃(z′|z;λ) = (1− λ)π(z′|z) + λG(z′), (31.8.13)

where λ ∈ [0, 1]. For λ = 0, the productivity process is the same as that of

Chang and Kim (2007), while for λ = 1, productivities are independent and

identically distributed across agents and time, with realizations governed by the

stationary unconditional distribution of Chang and Kim’s process. Such per-

turbations do not affect equilibrium outcomes in the complete-market economy

because they do not affect the constraints of the representative family. But

agents in the incomplete-market are now ex ante relieved when they do not

have to bear as much of the risk associated with the persistence of Chang and

Kim’s productivity process. The dotted line in Figure 31.8.5 shows equilibrium

outcomes in the incomplete-market economy for λ = 0.1, where employment is

now closer to that of the complete-market economy.

A striking feature of Figure 31.8.5 is the high elasticity of aggregate labor

supply to taxation in the complete-market as well as in the incomplete-market

economy. This message is shared with the first part of this chapter when agents

were finitely lived and at interior solutions with respect to their choices of career

length.

can depress the aggregate hours of work as well as the capital stock in an incomplete-market

economy. (See section 17.8.)
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31.9. L and S equivalence meets C and K’s agents

Krusell et al. (2008) conjecture that the equivalence result of Ljungqvist and

Sargent (2007) in continuous time described in section 31.2 extends to a deter-

ministic version of Chang and Kim’s (2007) discrete-time framework in section

31.8. Remove the productivity shocks and normalize an agent’s efficiency units

of labor to one in the latter framework (zt = 1 for all t). Then Krusell et al.

(2008) show how agents choose the constant consumption stream in expression

(31.2.8), c̄ = w/B , when the steady-state interest rate is equal to the rate of

subjective discounting, 1+ r = 1/β . Krusell et al. (2008) indicate the existence

of stationary equilibrium in which agents support that constant consumption

stream by alternating between spells of working and enjoying leisure (‘time av-

eraging’). They argue that the aggregate allocation is the same as if markets

had been complete and there had been employment lotteries.

31.9.1. Guess the value function

Since we are removing the productivity shocks from the model of section 31.8,

an agent’s single state variable in a stationary equilibrium is his beginning-of-

period asset level a , before receiving interest earnings. We guess, and will then

verify, that an agent’s value funcion V (a) takes the form,

V (a) =





log

[
1− β

β
a+ w

]
−B

1− β
if a ≤ a;

1
1− β

(
log
[
w
B

]
− 1
)
+ B
βw

a if a ∈ (a, ā);

log

[
1− β

β
a

]

1− β
if a ≥ ā.

(31.9.1)

To appreciate what motivates our guess, we begin with some observations.

In a stationary equilibrium with 1+ r = 1/β and no uncertainty, an agent’s in-

tertemporal Euler equation (31.8.4) implies constant consumption over time.10

10 Because of the equality between the market interest rate 1 + r and the rate of subjec-

tive discounting 1/β , any consumption path that varies over time can be improved upon by
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Thus, any asset accumulation or decumulation by an agent can only be mo-

tivated by that agent’s desire to engage in time averaging with respect to his

labor supply. For an agent with assets in some range (a, ā), we shall show that

time averaging is indeed optimal because it enables him to finance an optimal

constant consumption level c̄ = w/B . But first we discuss our guess of the value

function outside of this asset range.

If an agent has too little (too much) assets, he will choose to work forever (to

never work) and to consume the highest affordable constant consumption level

associated with that labor supply plan. Consider an agent whose beginning-

of-period assets a ≤ a are so low that if he works forever and consumes the

highest affordable constant consumption, w + ra , that consumption level will

be less than or equal to c̄ = w/B . We can verify later that such a poor agent

will indeed choose to work forever and to consume w+ ra in each period. After

invoking r = (1/β)− 1, the critical asset limit a is

w +
1− β

β
a =

w

B
,

a =
βw

1− β
[B−1 − 1]. (31.9.2)

If nt = 1 and ct = w + ra for all t , preference specification (31.8.1) yields

lifetime utility given by the conjectured value function (31.9.1) when a ≤ a .11

Next, consider an agent whose beginning-of-period assets a ≥ ā are so high

that if he never works and consumes the highest affordable constant consump-

tion, ra , that consumption level will be greater than or equal to c̄ = w/B . We

can later verify that such a rich agent will indeed choose never to work and to

consume ra in each period. After invoking r = (1/β) − 1, the critical asset

limit ā is

1− β

β
ā =

w

B
,

ā =
βw

1− β
B−1. (31.9.3)

shifting consumption from periods of high to periods of low consumption. An agent’s employ-

ment status does not matter since preference specification (31.8.1) is additively separable in

consumption and leisure.
11 Under the implicit but necessary parameter restriction for an equilibrium with time aver-

aging, B > 1, note that asset limit a in (31.9.2) is negative, i.e., only agents who are initially

indebted, a < 0, could conceivably want to choose to work forever with constant consumption

equal to w + ra .
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If nt = 0 and ct = ra for all t , preference specification (31.8.1) does yield

lifetime utility given by the conjectured value function (31.9.1) when a ≥ ā .

To complete our guess about the value function, draw a straight line between

the end point V (a) and the starting point V (ā) for the segments with a ≤ a

and a ≥ ā , respectively. This guess is motivated by the insight from section

31.2 that time averaging can under some conditions replace employment lotteries

and attain linear combinations in the space of utilities when employment is a

discrete choice variable. The linear segment for the value function is expressed

in (31.9.1) when a ∈ (a, ā). Note that the slope with respect to assets, B/(βw),

is the same as the derivative at the end point of the preceding segment for the

value function (a ≤ a) as well as the derivative at the starting point of the

succeeding segment for the value function (a ≥ ā):

V ′(a)
∣∣∣
a↑a

=
β−1

1− β
β

a+ w
=

B

βw

V ′(a)
∣∣∣
a↓ā

=
1

(1 − β)ā
=

B

βw
,

where we have invoked expression (31.9.2) and (31.9.3) for a and ā , respec-

tively.

31.9.2. Verify optimality of time averaging

Without productivity shocks, Bellman equation (31.8.2) can be simplified to

V (a) = max

{
max
a′

{
log
(
(1 + r)a+ w − a′

)
−B + βV (a′)

}
,

max
a′

{
log
(
(1 + r)a− a′

)
+ βV (a′)

}}
, (31.9.4)

where the first max operator selects whether to work, and the budget constraints

are substituted into the utility functions. Given our conjectured value function

(31.9.1), we solve the optimization problem on the right side of (31.9.4) to

verify that our conjectured value function V (a) does indeed emerge on left side

of (31.9.4).
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Note that the conjectured value function (31.9.1) is (weakly) concave so that

the two inner optimization problems (one for working, another for not working)

on the right side of (31.9.4) are both concave programming problems. Moreover,

since the conjectured value function is continuous and differentiable everywhere,

we can solve each optimization problem (for working and for not working) one

by one, using first-order conditions, and compare the values. Let W (a, 1) and

W (a, 0) denote the value of working and not working, respectively, and hence,

V (a) = max{W (a, 1), W (a, 0)} .
We start by verifying the conjectured value function for a ∈ (a, ā) when

time averaging should be an optimal policy. First, conditional on working, take

a first-order condition with respect to a′ in the first inner optimization problem

on the right side of (31.9.4)

1

(1 + r)a+ w − a′
= βV ′(a′),

a′ =
1

β
a+ w − w

B
. (31.9.5)

Here we have invoked the conjectured steady-state interest rate, 1 + r = β−1 ,

and proceeded as if a′ also falls in the range (a, ā) where the conjectured value

function (31.9.1) has derivative V ′(a′) = B/(βw). Since a′ exceeds a , it follows

that a must fall below some upper bound a⋆ < ā in order for a′ ∈ (a, ā), where

that upper bound a⋆ is given by12

a⋆ = ā− βw < ā. (31.9.6)

Given the optimal choice of a′ in expression (31.9.5), we can compute from

the budget constraint that the implied consumption level is c = w/B . With

12 Using expression (31.9.5) for a′ , the upper bound a⋆ on asset level a that ensures a′ ≤ ā ,

can be solved from
1

β
a⋆ +w −

w

B
= ā.

Multiplying both sides by β , and subtracting and adding ā on the right side, yield

a⋆ + βw −
βw

B
= βā− ā+ ā.

After invoking expression (31.9.3) for ā , we find that the last term on the left side is equal to

the first two terms on the right side, and hence, we have arrived at the equality in (31.9.6).
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choices of both a′ and c in hand, we can compute the value of working,

W (a, 1) = log(c)−B + βV (a′)

= log
(w
B

)
−B + β

{
1

1− β

[
log
(w
B

)
− 1
]
+

B

βw

[
1

β
a+ w − w

B

]}

=
1

1− β

[
log
(w
B

)
− 1
]
+

B

βw
a = V (a),

and hence, we have confirmed that working yields a value equal to our conjec-

tured value function when a ∈ (a, a⋆), where the upper bound a⋆ ensures that

a′ ∈ (a, ā).

Next, conditional on not working, the first-order condition with respect to

a′ in the second inner optimization problem on the right side of (31.9.4) is

1

(1 + r)a− a′
= βV ′(a′),

a′ =
1

β
a− w

B
, (31.9.7)

where we have invoked the conjectured steady-state interest rate, 1 + r = β−1 ,

and proceeded as if a′ also falls in the range (a, ā) where the conjectured value

function (31.9.1) has the derivative V ′(a′) = B/(βw). Since a′ falls below a ,

it follows that a must exceed some lower bound a⋆ > a in order for a′ ∈ (a, ā),

where that lower bound a⋆ is given by13

a⋆ = a+ βw > a. (31.9.8)

Given the optimal choice of a′ in expression (31.9.7), we can compute from

the budget constraint that the implied consumption level is c = w/B . With

13 Using expression (31.9.7) for a′ , the lower bound a⋆ on asset level a that ensures a′ ≥ a ,

can be solved from
1

β
a⋆ −

w

B
= a.

Multiplying both sides by β , and subtracting and adding a on the right side, yield

a⋆ −
βw

B
= βa− a+ a.

After invoking expression (31.9.2) for a , we find that the first two terms on the right side is

greater than the last term on the left side by an amount βw , and hence, we have arrived at

the equality in (31.9.8).
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choices of both a′ and c in hand, we can compute the value of not working

W (a, 0) = log(c) + βV (a′)

= log
(w
B

)
+ β

{
1

1− β

[
log
(w
B

)
− 1
]
+

B

βw

[
1

β
a− w

B

]}

=
1

1− β

[
log
(w
B

)
− 1
]
+

B

βw
a = V (a),

and hence, we have confirmed that not working yields a value equal to our

conjectured value function when a ∈ (a⋆, ā), where the lower bound a⋆ ensures

that a′ ∈ (a, ā).

Following steps similar to above, we leave as an exercise for the reader to

complete the verification of conjectured value function (31.9.1) (or consult the

appendix of Krusell et al. (2008)). In particular, we can show that an agent

with assets a ∈ (a, a⋆) (a ∈ (a⋆, ā)) strictly prefers to work (not to work) so

that his next period’s assets a′ do not fall outside of the asset range (a, ā).

Thus, we conclude that agents with assets a ∈ (a, ā) find it optimal to engage

in time averaging, i.e., to alternate between work and leisure, to finance an

optimal consumption level c̄ = w/B with asset holdings fluctuating within the

range a ∈ (a, ā). Also, we can verify that an agent with assets a ≤ a (a ≥ ā)

strictly prefers to work forever (never to work) and choose the highest affordable

constant consumption of c = w + ra (c = ra).

Krusell et al. (2008) assume that β > 0.5, which is required for a⋆ < a⋆ .14

Together with expressions (31.9.6) and (31.9.8), it then follows that a < a⋆ <

a⋆ < ā . Another implicit assumption of Krusell et al. (2008) is that the pref-

erence parameter for the disutility of work is high enough so that there exist

interior solutions to an agent’s lifetime labor supply problem. In our formula-

tion, that parameter restriction is B > 1.

14 To derive a parameter restriction that ensures a⋆ < a⋆ , we substitute expression (31.9.2)

and (31.9.3) for a and ā , respectively, into expression (31.9.8) and (31.9.6) for a⋆ and a⋆ ,

respectively,

a⋆ = a+ βw =
βw

1− β
[B−1 − 1] + βw <

βw

1− β
B−1 − βw = ā− βw = a⋆,

which simplifies to β > 0.5.
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31.9.3. Equivalence of time averaging and lotteries

Krusell et al. (2008) argue that there exists a stationary equilibrium for the

incomplete-market economy where all agents engage in time averaging with

assets in the range (a, ā), and the aggregate values of K and L are the same

as in a corresponding complete-market economy with employment lotteries.

We have already studied equilibrium outcomes in a more general version of

the complete-market economy in section 31.8.2. Under our present assumption

that all agents have a constant productivity level that is normalized to one, equa-

tion (31.8.10) shows that the optimal consumption level is c = w/B , and the

aggregate labor supply is given by the appropriate version of equation (31.8.12):

K

L
=

1

β

K

L
+ w − w

BL
, (31.9.9)

where once again the capital-labor ratio K/L and the wage w are determined

by equations (31.8.9) and (31.8.5a). Hence, we can solve for the aggregate labor

supply L from equation (31.9.9).

In the stationary equilibrium of the incomplete-market economy with time

averaging, agents are indifferent to alternative lifetime labor supply paths that

yield equal present values of labor income. In a competitive equilibrium, an

‘invisible hand’ arranges agents’ labor and savings decisions so that at every

point in time, the aggregate labor supply and aggregate asset holdings equal the

same constant aggregates L and K as those in the complete-markets economy.

An equilibrium interest equal to 1 + r = 1/β makes a constant consumption

c̄ = w/B be the optimal choice for the worker-consumer.
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31.10. Two pillars for high elasticity at extensive margin

The high labor supply elasticity at an interior solution for career length rests

on two pillars – indivisibilities in labor supply and time separable preferences.

Labor supply indivisibilities cause workers to divide their lifetimes into parts

working and not working. Time-separable preferences make the choice between

those two parts occur at a constant per-period disutility of work, generating

that high elasticity of labor supply at an interior solution for career length, i.e.,

at an extensive margin.

The labor-supply-indivisibility pillar is typically justified by the observation

that workers’ hours of work are mostly bunched at a few common values with

the ‘full-time’ value predominating. Alternative assumptions about technologies

and preferences can generate that outcome. Simple examples include a setup

cost at work and a fixed disutility of work. The time-separable-preferences pillar

is typically justified as doing a good job of approximating workers’ wishes to

rest and refresh between periods.

31.11. No pillars at intensive margin

No pillars have yet been discovered that would imply a high labor supply elas-

ticity at an intensive margin. Examples of utility functions that generate a high

elasticity at an intensive margin have been constructed, but they are very spe-

cial and seem to rest on no general principles about preferences. We illustrate

the absence of pillars by studying reasoning behind a claim by Rogerson and

Wallenius (2013, hereafter RW) that “based on existing estimates of the size of

nonconvexities and measures of full-time work prior to retirement, it is hard to

rationalize values of the IES [intertemporal elasticity of substitution for labor

at the intensive margin] that are less than 0.75 [at the full-time work option].”
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After documenting that typical retirements seem to be abrupt transitions

from full-time work nf to not working, RW argue that it is reasonable to assume

that workers have an option to work part-time at np . They argue that because

few workers are observed to exercise that option, the claim in quotes that we have

just cited follows. Thus, they write: “In particular, consider the case in which

there is one part-time option available, characterized by hours np = 0.5nf , and

that the wage per unit of time for this option” relative to the full-time option

is wp/wf ≈ 0.75. RW assume that the disutility of work is given by

vRW(n) =
1

1− 1
γ

[
1− (1− n)1−

1
γ

]
, (31.11.1)

which exhibits a constant IES γ for leisure, and an IES for labor of γ (1−n)/n .
We can show that RW would have derived an even higher lower bound of 2.4 for

the IES at the intensive margin if they had instead assumed the same functional

form with a constant IES φ for labor that they used in Prescott et al. (2009),

namely,

vP(n) = n1+ 1
φ . (31.11.2)

Since it seems that (31.11.1) and (31.11.2) both can work as disutility of work

functions that reinforce RW’s claim, it is tempting to hope that there is a pillar

for a high elasticity at the intensive margin operating here. Unfortunately, that

hope would be misplaced because it is easy to demonstrate that RW’s claim is

brittle and won’t survive with other reasonable disutility of work functions. To

establish this, by simply blending the two RW disutility functions (31.11.1) and

(31.11.2) we can show that RW’s analysis would instead show that the IES at

the intensive margin can be made arbitrarily low.
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31.11.1. Special example of high elasticity at intensive margin

In a time-averaging model with two work options, full-time work is preferred

over part-time work if the lower average utility per unit of time under the latter

is not sufficient to compensate for the lower part-time wage rate:

vi(ǫn nf )

ǫn nf

/
vi(nf )

nf
≥ ǫwwf

wf
, (31.11.3)

where ǫn and ǫw are the part-time fractions of the full-time hours of work

(ǫn = np/nf ) and wage rate (ǫw = wp/wf ), respectively.

For preference specification (31.11.2), condition (31.11.3) becomes

φ ≥ log(ǫn)

log(ǫw)

and hence, under RW’s values ǫn = 0.5 and ǫw = 0.75, the worker prefers

the full-time option over the part-time option whenever the IES φ for labor is

greater than 2.4. RW do not assume these preferences. Instead, they assume

(31.11.1), for which condition (31.11.3) yields a lower bound of 0.77 on the IES

for labor at full-time work nf , which supports RW’s claim quoted above.15 We

depict that parameterization of (31.11.1) as the solid line in Figure 31.11.1; the

figure normalizes the disutility of work to be one at full-time work nf .

15 While it is inconsequential for preference specification (31.11.2), the specific value of

nf ∈ (0, 1) is central to RW’s preference specification (31.11.1). RW set nf = 0.385, which

they justify by observing that full-time work on an annual basis constitutes 2,000 hours out

of an assumed total discretionary time of 5,200 hours.
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Figure 31.11.1: Disutility of work where the solid line depicts

vRW(·) with IES for labor equal to 0.77 at nf ; and the dashed

lines represent alternative parameterizations of vLS(·) with an IES

at nf of around 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7, respectively,

when moving from left to right at the top of the figure.

31.11.2. Fragility of the special example

RW’s finding that the IES for labor must be high to match observations depends

sensitively on assuming utility function (31.11.1) or (31.11.2). Ljungqvist and

Sargent (2018) establish that sensitivity by blending those two utility functions

to get an alternative one:

vLS(n) = µ1v
RW(n) + µ2v

P(max{0, n− np}). (31.11.4)

The utility function (31.11.4) augments the RW disutility of work, vRW(n),

with extra disutility for hours of work above np measured by the Prescott

et al. (2009) disutility vP(max{0, n − np}). Specifically, to parameterize the

dashed-line utility functions in Figure 31.11.1, we can proceed as follows. We

set a common preference parameter γ in vRW(·) to be larger than the value

deduced in the preceding subsection and select a weight µ1 that assures that

vLS(np) = 0.5·0.75. Each dashed line in the figure is constructed using a different



1368 Foundations of Aggregate Labor Supply

value of φ in vP(·) and an appropriately adjusted weight µ2 that assures that

vLS(nf ) = 1.16

The utility functions in Figure 31.11.1 are normalized to be one at nf ; by

construction, they attain the value 0.5 · 0.75 at np . Hence, a worker with any

of those preferences would be indifferent between working full time or part time

at an interior solution to career length. RW use that indifference to establish

a lower bound on the IES for labor, given utility function vRW(·). Without

relying on any other nonconvexity than the one used by RW, our alternative

utility functions vLS(·) in Figure 31.11.1 demonstrate fragility of RW’s conclu-

sion that “it is hard to rationalize values of the IES that are less than 0.75.”

To the contrary, Ljungqvist and Sargent (2018) showed that it is easy by sim-

ply blending preferences that were actually used by RW themselves in closely

related contexts.17

While utility functions (31.11.1) and (31.11.2) are often used to estimate

labor supply elasticities at intensive margins, the parametric specifications are

best thought of as local approximations of the curvature at some observed hours

16 By setting γ and µ1 as described in the text, we are assured that µ1v
RW(nf ) < 1,

which leaves room for a positive quantity µ2v
P(nf − np) > 0 to be part of vLS(nf ) = 1.

The weights µ1 and µ2 then satisfy

µ1 =
0.5 · 0.75

vRW(np)
and µ2 =

1− µ1v
RW(nf )

vP(nf − np)
.

For the record, but without any particular significance, the dashed lines in Figure 31.11.1 are

drawn for a parameter γ that is twice as large as the one for the solid line (0.96 instead of

0.48), and the values of the parameter φ are set equal to 0.14, 0.24, 0.33, 0.43, 0.53, 0.63 and

0.73, respectively, when moving across the dashed lines from left to right at the top of the

figure.
17 The reasoning behind our parameterization of the two components in vLS is as follows.

Regarding (31.11.1) with a constant IES γ for leisure, we note that the IES for work, as given

by γ (1 − n)/n , asymptotes to infinity when hours of work goes to zero. Therefore, for some

initial range of hours of work, the IES for labor will necessarily be high, and that heightened

willingness to substitute intertemporally means that the disutility of work increases almost

linearly over an initial range of hours of work. Thus, with a relatively high γ , our utility

function (31.11.4) relies on an initial extended nearly linear segment of vRW that serves

to suppress the attraction of the part-time work option. In specification (31.11.2) with a

constant IES φ for work, a lower value of φ means an accelerated growth in disutility because

at any level of supplied hours, less willingness to substitute intertemporally necessarily shows

up as a relatively larger increase in the disutility of work, i.e., in a more convex shape. Thus,

with a low value of φ , our utility function (31.11.4) unleashes that strong growth component

vP closer to nf , eventually coming to dominate the curvature of our utility function; so the

IES for labor at the full-time work option is close to the assumed small value of φ .
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of work. Instead, RW chose to draw dramatic conclusions from the assumption of

a globally constant IES for leisure. (They would have drawn even more dramatic

ones if they had assumed a globally constant IES for labor). In our judgement,

drawing sweeping conclusions about the labor supply elasticity at the intensive

margin from such a shaky extrapolation from a reasonable local property of a

utility function to a global one falls far short of providing the general economic

forces provided by the two pillars that support a high elasticity at the extensive

margin.

31.12. Concluding remarks

A high aggregate labor supply elasticity hinges on a substantial fraction of agents

being at an interior solution with respect to their lifetime labor supplies. This

finding emerges from models with finitely-lived agents who choose career length

and also in Chang and Kim’s (2007) model of infinitely-lived agents who engage

in time averaging across periods of work and leisure.

When agents are finitely lived, two forces can lower the labor supply elas-

ticity: (1) government financed social security retirement schemes that leave

agents at a corner solution with respect to their choices of career lengths, and

(2) large adverse labor market shocks towards the end of working lives that

prematurely terminate careers by pushing the shadow value of additional labor

earnings below the utility of leisure in early retirement.

It is an occasion to celebrate that two camps of researchers, namely, those

who have championed high and low labor supply elasticities, have come together

in adopting the same theoretical framework. Nevertheless, the serious division

between the two camps about quantitative magnitudes of labor supply elastic-

ities persists. But we see the emergence of agreement over a basic theoretical

framework as genuine progress relative to the earlier stalemate when proponents

of employment lotteries used macroeconomic observations to build support for

their aggregation theory, while opponents brought a different set of microeco-

nomic observations to refute the employment lotteries allocation mechanism.18

18 It would be a mistake to regard the abandonment of a stand-in household with its employ-

ment lotteries as unconditional surrender to the other tradition in macroeconomics of over-

lapping generations models that has commonly postulated incomplete markets. The reason is

that earlier work in the overlapping generations tradition has often postulated an exogenous
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To illustrate how far we have come, we revisit our own section 29.6 reason-

ing, where we are concerned about an asymmetry between idle firms and idle

workers in a particular model. While idle firms are truly indifferent about their

operating status because operating firms are just breaking even without mak-

ing any profits, “the aggregation theory behind the stand-in household has an

additional aspect that is not present in the theory that aggregates over firms,

namely, it says how consumption and leisure are smoothed across households

with the help of an extensive set of contingent claim markets. This market

arrangement and randomization device stands at the center of the employment

lottery model. To us, it seems that they make the aggregation theory behind

the stand-in household fundamentally different than the well-known aggregation

theory for the firm side.” Well, we now also can assert that this difference is not

important for those households who, being at an interior solution for lifetime

labor supply, are about to choose whether to supply more of their indivisible

labor by extending their careers before retiring.

Having a diverse group of researchers focus on a common set of observations

on lifetime labor supply within a common theoretical framework bodes well for

the eventual arrival of what we hope will be the “labor supply elasticity accord”

foretold by Ljungqvist and Sargent (2011).

retirement age, shutting down the key choice focused on in time-averaging models of career

choice. It is the possibility of interior solutions to lifetime labor supply in combination with

indivisible labor that have led real business cycle researchers like Prescott (2006) to embrace

lifecycle models of labor supply.
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Appendix A.
Functional Analysis

This appendix provides an introduction to the analysis of functional equations

(functional analysis). It describes the contraction mapping theorem, a workhorse

for studying dynamic programs.

A.1. Metric spaces and operators

We begin with the definition of a metric space, which is a pair of objects, a set

X , and a function d .1

Definition A.1.1. A metric space is a set X and a function d called a metric,

d : X ×X → R . The metric d(x, y) satisfies the following four properties:

M1. Positivity: d(x, y) ≥ 0 for all x, y ∈ X .

M2. Strict positivity: d(x, y) = 0 if and only if x = y .

M3. Symmetry: d(x, y) = d(y, x) for all x, y ∈ X .

M4. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y , and z ∈ X .

We give some examples of the metric spaces with which we will be working:

Example A.1. lp[0,∞). We say that X = lp[0,∞) is the set of all sequences

of complex numbers {xt}∞t=0 for which
∑∞

t=0 |xt|p converges, where 1 ≤ p <∞ .

The function dp(x, y) = (
∑∞

t=0 |xt−yt|p)1/p is a metric. Often, we will say that

p = 2 and will work in l2[0,∞).

Example A.2. l∞[0,∞). The set X = l∞[0,∞) is the set of bounded

sequences {xt}∞t=0 of real or complex numbers. The metric is d∞(x, y) =

supt|xt − yt| .
Example A.3. lp(−∞,∞) is the set of “two-sided” sequences {xt}∞t=−∞

such that
∑∞
t=−∞ |xt|p < +∞ , where 1 ≤ p < ∞ . The associated metric

is dp(x, y) = (
∑∞

t=−∞ |xt − yt|p)1/p .

1 General references on the mathematics described in this appendix are Luenberger (1969)

and Naylor and Sell (1982).

– 1373 –



1374 Functional Analysis

Example A.4. l∞(−∞,∞) is the set of bounded sequences {xt}∞t=−∞ with

metric d∞(x, y) = sup|xt − yt| .

Example A.5. Let X = C[0, T ] be the set of all continuous functions mapping

the interval [0, T ] into R . We consider the metric

dp(x, y) =

[∫ T

0

|x(t) − y(t)|pdt
]1/p

,

where the integration is in the Riemann sense.

Example A.6. Let X = C[0, T ] be the set of all continuous functions mapping

the interval [0, T ] into R . We consider the metric

d∞(x, y) = sup
0≤t≤T

|x(t)− y(t)|.

We now have the following important definition:

Definition A.1.2. A sequence {xn} in a metric space (X, d) is said to be

a Cauchy sequence if for each ǫ > 0 there exists an N(ǫ) such that d(xn, xm) < ǫ

for any n,m ≥ N(ǫ) . Thus a sequence {xn} is said to be Cauchy if limn,m→∞ d(xn, xm) =

0 .

We also have the following definition of convergence:

Definition A.1.3. A sequence {xn} in a metric space (X, d) is said to

converge to a limit x0 ∈ X if for every ǫ > 0 there exists an N(ǫ) such that

d(xn, x0) < ǫ for n ≥ N(ǫ) .

The following lemma asserts that every convergent sequence in (X, d) is a

Cauchy sequence:

Lemma A.1.1. Let {xn} be a convergent sequence in a metric space (X, d) .

Then {xn} is a Cauchy sequence.

Proof. Fix any ǫ > 0. Let x0 ∈ X be the limit of {xn} . Then for all m,n one

has

d(xn, xm) ≤ d(xn, x0) + d(xm, x0)

by virtue of the triangle inequality. Because x0 is the limit of {xn} , there

exists an N such that d(xn, x0) < ǫ/2 for n ≥ N . Together with the preceding
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inequality, this statement implies that d(xn, xm) < ǫ for n,m ≥ N . Therefore,

{xn} is a Cauchy sequence.

We now consider two examples of sequences in metric spaces. The examples

are designed to illustrate aspects of the concept of a Cauchy sequence. We first

consider the metric space {C[0, 1], d2(x, y)} . We let {xn} be the sequence of

continuous functions xn(t) = tn . Evidently this sequence converges pointwise

to the function

x0(t) =

{
0, 0 ≤ t < 1

1, t = 1.

Now, in {C[0, 1], d2(x, y)} , the sequence xn(t) is a Cauchy sequence. To verify

this claim, calculate

d2(t
m, tn)2 =

∫ 1

0

(tn − tm)2dt =
1

2n+ 1
+

1

2m+ 1
− 2

m+ n+ 1
.

Clearly, for any ǫ > 0, it is possible to choose an N(ǫ) that makes the square

root of the right side less than ǫ whenever m and n both exceed N . Thus

xn(t) is a Cauchy sequence. Notice, however, that the limit point x0(t) does

not belong to {C[0, T ], d2(x, y)} because it is not a continuous function.

As our second example, we consider the space {C[0, T ], d∞(x, y)} . We con-

sider the sequence xn(t) = tn . In (C[0, 1], d∞), the sequence xn(t) is not a

Cauchy sequence. To verify this claim, it is sufficient to establish that, for any

fixed m > 0, there is a δ > 0 such that

sup
n>0

sup
0≤t≤1

|tn − tm| > δ.

Direct calculations show that, for fixed m ,

sup
n

sup
0≤t≤1

|tn − tm| = 1.

Parenthetically we may note that

sup
n>0

sup
0≤t≤1

|tn − tm| = sup
0≤t≤1

sup
n>0

|tn − tm| = sup
0≤t≤1

lim
n→∞

|tn − tm|

= sup
0≤t≤1

lim
n→∞

tm|tn−m − 1| = sup
0≤t≤1

tm = 1.

Therefore, {tn} is not a Cauchy sequence in (C[0, 1], d∞).
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These examples illustrate the fact that whether a given sequence is Cauchy

depends on the metric space within which it is embedded, in particular on the

metric that is being used. The sequence {tn} is Cauchy in (C[0, 1], d2), and

more generally in (C[0, 1], dp) for 1 ≤ p < ∞ . The sequence {tn} , however, is
not Cauchy in the metric space (C[0, 1], d∞). The first example also illustrates

the fact that a Cauchy sequence in (X, d) need not converge to a limit point x0

belonging to the metric space. The property that Cauchy sequences converge

to points lying in the metric space is desirable in many applications. We give

this property a name.

Definition A.1.4. A metric space (X, d) is said to be complete if each Cauchy

sequence in (X, d) is a convergent sequence in (X, d) . That is, in a complete

metric space, each Cauchy sequence converges to a point belonging to the metric

space.

The following metric spaces are complete:

(lp[0,∞), dp), 1 ≤ p <∞
(l∞[0,∞), d∞)

(C[0, T ], d∞).

The following metric spaces are not complete:

(C[0, T ], dp), 1 ≤ p <∞.

Proofs that (lp[0,∞), dp) for 1 ≤ p ≤ ∞ and (C[0, T ], d∞) are complete

are contained in Naylor and Sell (1982, chap. 3). In effect, we have already

shown by counterexample that the space (C[0, 1], d2) is not complete, because

we displayed a Cauchy sequence that did not converge to a point in the metric

space. A definition may now be stated:

Definition A.1.5. A function f mapping a metric space (X, d) into itself is

called an operator.

We need a notion of continuity of an operator.

Definition A.1.6. Let f : X → X be an operator on a metric space (X, d) .

The operator f is said to be continuous at a point x0 ∈ X if for every ǫ > 0
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there exists a δ > 0 such that d[f(x), f(x0)] < ǫ whenever d(x, x0) < δ . The

operator f is said to be continuous if it is continuous at each point x ∈ X .

We shall be studying an operator with a particular property, the application

of which to any two distinct points x, y ∈ X brings them closer together.

Definition A.1.7. Let (X, d) be a metric space and let f : X → X . We

say that f is a contraction or contraction mapping if there is a real number

k, 0 ≤ k < 1 , such that

d[f(x), f(y)] ≤ kd(x, y) for all x, y ∈ X.

It follows directly from the definition that a contraction mapping is a continuous

operator.

We now state the following theorem:

Theorem A.1.1. Contraction Mapping

Let (X, d) be a complete metric space and let f : X → X be a contraction.

Then there is a unique point x0 ∈ X such that f(x0) = x0 . Furthermore, if x

is any point in X and {xn} is defined inductively according to x1 = f(x), x2 =

f(x1), . . . , xn+1 = f(xn) , then {xn} converges to x0 .

Proof. Let x be any point in X . Define x1 = f(x), x2 = f(x1), . . . . Express

this as xn = fn(x). To show that the sequence xn is Cauchy, first assume that

n > m . Then

d(xn, xm) = d[fn(x), fm(x)] = d[fm(xn−m), fm(x)]

≤ kd[fm−1(xn−m), fm−1(x)]

By induction, we get

(∗) d(xn, xm) ≤ kmd(xn−m, x).

When we repeatedly use the triangle inequality, the preceding inequality implies

that

d(xn, xm) ≤ km[d(xn−m, xn−m−1) + . . .+ d(x2, x1) + d(x1, x)].

Applying (∗) gives

d(xn, xm) ≤ km(kn−m−1 + . . .+ k + 1)d(x1, x).
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Because 0 ≤ k < 1, we have

(†) d(xn, xm) ≤ km
∞∑

i=0

kid(xt, x) =
km

1− k
d(x1, x).

The right side of (†) can be made arbitrarily small by choosing m sufficiently

large. Therefore, d(xn, xm) → 0 as n,m → ∞ . Thus {xn} is a Cauchy

sequence. Because (X, d) is complete, {xn} converges to an element of (X, d).

The limit point x0 of {xn} = {fn(x)} is a fixed point of f . Because f is

continuous, limn→∞ f(xn) = f(limn→∞ xn). Now f(limn→∞ xn) = f(x0) and

limn→∞ f(xn) = limn→∞ xn+1 = x0 . Therefore x0 = f(x0).

To show that the fixed point x0 is unique, assume the contrary. Assume

that x0 and y0 , x0 6= y0 , are two fixed points of f . But then

0 < d(x0, y0) = d[f(x0), f(y0)] ≤ kd(x0, y0) < d(x0, y0),

which is a contradiction. Therefore f has a unique fixed point.

We now restrict ourselves to sets X whose elements are functions. The

spaces C[0, T ] and lp[0,∞) for 1 ≤ p ≤ ∞ are examples of spaces of functions.

Let us define the notion of inequality of two functions.

Definition A.1.8. Let X be a space of functions, and let x, y ∈ X . Then

x ≥ y if and only if x(t) ≥ y(t) for every t in the domain of the functions.

Let X be a space of functions. We use the d∞ metric, defined as d∞(x, y) =

supt |x(t) − y(t)| , where the supremum is over the domain of definition of the

function.

A pair of conditions that are sufficient for an operator T : (X, d∞) → (X, d∞)

to be a contraction appear in the following theorem:2

Theorem A.1.2. Blackwell’s Sufficient Conditions for T to be a Contraction

Let T be an operator on a metric space (X, d∞) , where X is a space of func-

tions. Assume that T has the following two properties:

(a) Monotonicity: For any x, y ∈ X , x ≥ y implies T (x) ≥ T (y) .

(b) Discounting: Let c denote a function that is constant at the real value c for

2 See Blackwell’s (1965) Theorem 5. This theorem is used extensively by Stokey and Lucas

with Prescott (1989).
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all points in the domain of definition of the functions in X . For any positive

real c and every x ∈ X , T (x+c) ≤ T (x)+βc for some β satisfying 0 ≤ β < 1 .

Then T is a contraction mapping with modulus β .

Proof. For all x, y ∈ X , x ≤ y + d(x, y). Applying properties (a) and (b) to

this inequality gives

T (x) ≤ T (y + d(x, y)) ≤ T (y) + βd(x, y).

Exchanging the roles of x and y and using the same logic implies

T (y) ≤ T (x) + βd(x, y).

Combining these two inequalities gives |T (x)− T (y)| ≤ βd(x, y) or

d(T (x), T (y)) ≤ βd(x, y).

A.2. Discounted dynamic programming

We study the functional equation associated with a discounted dynamic pro-

gramming problem:

v(x) = max
u∈Rk

{r(x, u) + βv(x′)}, x′ ≤ g(x, u), 0 < β < 1. (A.2.1)

We assume that r(x, u) is real valued, continuous, concave, and bounded and

that the set [x′, x, u : x′ ≤ g(x, u), u ∈ Rk] is convex and compact.

We define the operator

Tv = max
u∈Rk

{r(x, u) + βv(x′)}, x′ ≤ g(x, u), x ∈ X.

We work with the space of continuous bounded functions mapping X into the

real line. We use the metric d∞(v, w) = supx∈X |v(x)−w(x)|. This metric space

is complete.

The operator T maps a continuous bounded function v into a continuous

bounded function Tv . (For a proof, see Stokey and Lucas with Prescott, 1989.)3

3 The assertions in the preceding two paragraphs are the most difficult pieces of the argument

to prove.
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We now establish that T is a contraction by verifying Blackwell’s pair of

sufficient conditions. First, suppose that v(x) ≥ w(x) for all x ∈ X . Then

Tv = max
u∈Rk

{r(x, u) + βv(x′)}, x′ ≤ g(x, u)

≥ max
u∈Rk

{r(x, u) + βw(x′)}, x′ ≤ g(x, u)

= Tw.

Thus, T is monotone. Next, notice that for any positive constant c ,

T (v + c) = max
u∈Rk

{r(x, u) + β[v(x′) + c]}, x′ ≤ g(x, u)

= max
u∈Rk

{r(x, u) + βv(x′) + βc}, x′ ≤ g(x, u)

= Tv + βc.

Thus, T discounts. Therefore, T satisfies both of Blackwell’s conditions. It

follows that T is a contraction on a complete metric space. Therefore the

functional equation (A.2.1), which can be expressed as v = Tv , has a unique

fixed point in the space of bounded continuous functions. This fixed point is

approached in the limit in the d∞ metric by iterations vn = T n(v0) starting

from any bounded and continuous v0 . Convergence in the d∞ metric implies

uniform convergence of the functions vn .

Stokey and Lucas with Prescott (1989) show that T maps concave functions

into concave functions. It follows that the solution of v = Tv is a concave

function.

A.2.1. Policy improvement algorithm

For ease of exposition, in this section we shall assume that the constraint x′ ≤
g(x, u) holds with equality. For the purposes of describing an alternative way

to solve dynamic programming problems, we introduce a new operator. We use

one step of iterating on the Bellman equation to define the new operator Tµ as

follows:

Tµ(v) = T (v)

or

Tµ(v) = r[x, µ(x)] + βv{g[x, µ(x)]} ,
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where µ(x) is the policy function that attains T (v)(x). For a fixed µ(x), Tµ is

an operator that maps bounded continuous functions into bounded continuous

functions. Denote by C the space of bounded continuous functions mapping X

into X .

For any admissible policy function µ(x), the operator Tµ is a contraction

mapping. This fact can be established by verifying Blackwell’s pair of sufficient

conditions:

1. Tµ is monotone. Suppose that v(x) ≥ w(x). Then

Tµv = r[x, µ(x)] + βv{g[x, µ(x)]}
≥ r[x, µ(x)] + βw{g[x, µ(x)]} = Tµw .

2. Tµ discounts. For any positive constant c

Tµ(v + c) = r(x, µ) + β (v{g[x, µ(x)] + c})
= Tµv + βc .

Because Tµ is a contraction operator, the functional equation

vµ(x) = Tµ[vµ(x)]

has a unique solution in the space of bounded continuous functions. This solu-

tion can be computed as a limit of iterations on Tµ starting from any bounded

continuous function v0(x) ∈ C ,

vµ(x) = lim
k→∞

T kµ (v0) (x) .

The function vµ(x) is the value of the objective function that would be attained

by using the stationary policy µ(x) each period.

The following proposition describes the policy iteration or Howard improve-

ment algorithm.

Theorem A.2.1. Let vµ(x) = Tµ[vµ(x)] . Define a new policy µ̄ and an

associated operator Tµ̄ by

Tµ̄[vµ(x)] = T [vµ(x)] ;

that is, µ̄ is the policy that solves a one-period problem with vµ(x) as the

terminal value function. Compute the fixed point

vµ̄(x) = Tµ̄[vµ̄(x)] .

Then vµ̄(x) ≥ vµ(x) . If µ(x) is not optimal, then vµ̄(x) > vµ(x) for at least

one x ∈ X .
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Proof. From the definition of µ̄ and Tµ̄ , we have

Tµ̄[vµ(x)] = r[x, µ̄(x)] + βvµ{g[x, µ̄(x)]} =

T (vµ)(x) ≥ r[x, µ(x)] + βvµ{g[x, µ(x)]}
= Tµ[vµ(x)] = vµ(x)

or

Tµ̄[vµ(x)] ≥ vµ(x) .

Apply Tµ̄ repeatedly to this inequality and use the monotonicity of Tµ̄ to con-

clude

vµ̄(x) = lim
n→∞

T nµ̄ [vµ(x)] ≥ vµ(x) .

This establishes the asserted inequality vµ̄(x) ≥ vµ(x). If vµ̄(x) = vµ(x) for all

x ∈ X , then
vµ(x) = Tµ̄[vµ(x)]

= T [vµ(x)] ,

where the first equality follows because Tµ̄[vµ̄(x)] = vµ̄(x), and the second

equality follows from the definitions of Tµ̄ and µ̄ . Because vµ(x) = T [vµ(x)] ,

the Bellman equation is satisfied by vµ(x).

The policy improvement algorithm starts from an arbitrary feasible policy

and iterates to convergence on the two following steps:4

Step 1. For a feasible policy µ(x), compute vµ = Tµ(vµ).

Step 2. Find µ̄ by computing T (vµ). Use µ̄ as the policy in step 1.

In many applications, this algorithm proves to be much faster than iterating on

the Bellman equation.

4 A policy µ(x) is said to be unimprovable if it is optimal to follow it for the first period,

given a terminal value function v(x) . In effect, the policy improvement algorithm starts with

an arbitrary value function, then by solving a one-period problem, it generates an improved

policy and an improved value function. The proposition states that optimality is characterized

by the features, first, that there is no incentive to deviate from the policy during the first

period, and second, that the terminal value function is the one associated with continuing the

policy.



Discounted dynamic programming 1383

A.2.2. A search problem

We now study the functional equation associated with a search problem of chap-

ter 6. The functional equation is

v(w) = max

{
w

1− β
, β

∫
v(w′)dF (w′)

}
, 0 < β < 1. (A.2.2)

Here, the wage offer drawn at t is wt . Successive offers wt are independently

and identically distributed random variables. We assume that wt has cumulative

distribution function prob{wt ≤ w} = F (w), where F (0) = 0 and F (w̄) = 1

for some w̄ < ∞ . In equation (A.2.2), v(w) is the optimal value function for

a currently unemployed worker who has offer w in hand. We seek a solution of

the functional equation (A.2.2).

We work in the space of bounded continuous functions C[0, w̄] and use the

d∞ metric

d∞(x, y) = sup
0≤w≤w̄

|x(w) − y(w)|.

The metric space (C[0, w̄], d∞) is complete.

We consider the operator

T (z) = max
{ w

1− β
, β

∫
z(w′)dF (w′)

}
. (A.2.3)

Evidently the operator T maps functions z in C[0, w̄] into functions T (z) in

C[0, w̄] . We now assert that the operator T defined by equation (A.2.3) is a

contraction. To prove this assertion, we verify Blackwell’s sufficient conditions.

First, assume that f(w) ≥ g(w) for all w ∈ [0, w̄] . Then note that

Tg = max

{
w

1− β
, β

∫
g(w′)dF (w′)

}

≤ max

{
w

1− β
, β

∫
f(w′)dF (w′)

}

= Tf.
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Thus, T is monotone. Next, note that for any positive constant c ,

T (f + c) = max

{
w

1− β
, β

∫
[f(w′) + c]dF (w′)

}

= max

{
w

1− β
, β

∫
f(w′)dF (w′) + βc

}

≤ max

{
w

1− β
, β

∫
f(w′)dF (w′)

}
+ βc

= Tf + βc.

Thus, T satisfies the discounting property and is therefore a contraction.

Application of the contraction mapping theorem, then, establishes that the

functional equation Tv = v has a unique solution in C[0, w̄] , which is ap-

proached in the limit as n → ∞ by T n(v0) = vn , where v0 is any point in

C[0, w̄] . Because the convergence in the space C[0, w̄] is in terms of the metric

d∞ , the convergence is uniform.



Appendix B.
Linear Projections and HiddenMarkovModels

B.1. Linear projections

For reference we state the following theorems about linear least-squares pro-

jections. We let Y be an (n × 1) vector of random variables and X be an

(h × 1) vector of random variables. We assume that the following first and

second moments exist:

EY = µY , EX = µX ,

EXX ′ = SXX , EY Y
′ = SY Y , EY X

′ = SYX .

Letting x = X − EX and y = Y − EY , we define the following covariance

matrices

Exx′ = Σxx, E
′
yy = Σyy, Eyx

′ = Σyx.

We are concerned with estimating Y as a linear function of X . The estimator

of Y that is a linear function of X and that minimizes the mean squared error

between each component Y and its estimate is called the linear projection of Y

on X .

Definition B.1.1. The linear projection of Y on X is the affine function

Ŷ = AX+a0 that minimizes E trace {(Y −Ŷ ) (Y −Ŷ )′} over all affine functions

a0 +AX of X . We denote this linear projection as Ê[Y | X ] , or sometimes as

Ê [Y | x, 1] to emphasize that a constant is included in the “information set.”

The linear projection of Y on X , Ê [Y | X ] is also sometimes called the wide

sense expectation of Y conditional on X . We have the following theorems:

Theorem B.1.1.

Ê [Y | X ] = µy +ΣyxΣ
−1
xx (X − µx). (B.1.1)

– 1385 –
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Proof. The theorem follows immediately by writing out E trace (Y − Ŷ )(Y − Ŷ )′

and completing the square, or else by writing out E trace(Y − Ŷ )(Y − Ŷ )′

and obtaining first-order necessary conditions (“normal equations”) and solving

them.

Theorem B.1.2.

Ê

[(
Y − Ê[Y | x]

)
| X ′

]
= 0.

This equation states that the errors from the projection are orthogonal to each

variable included in X .

Proof. Immediate from the normal equations.

Theorem B.1.3. (Orthogonality principle)

E
[
[Y − Ê (Y | x)]x′

]
= 0.

Proof. Follows from Theorem 21.3.

Theorem B.1.4. (Orthogonal regressors)

Suppose that

X ′ = (X1, X2, . . . , Xh)
′, EX ′ = µ′ = (µx1, . . . , µxh)

′ , and E(Xi − µxi) (Xj −
µxj) = 0 for i 6= j . Then

Ê [Y | x1, . . . , xn, 1] = Ê [Y | x1] + Ê [Y | x2] + . . .+ Ê [Y | xn]− (n− 1)µy.

(B.1.2)

Proof. Note that from the hypothesis of orthogonal regressors, the matrix Σxx

is diagonal. Applying equation (B.1.1) then gives equation (B.1.2).



Hidden Markov models 1387

B.2. Hidden Markov models

This section gives a brief introduction to hidden Markov models, a tool that is

useful to study a variety of nonlinear filtering problems in finance and economics.

We display a solution to a nonlinear filtering problem that a reader might want

to compare to the linear filtering problem described earlier.

Consider an N -state Markov chain. We can represent the state space in

terms of the unit vectors Sx = {e1, . . . , eN} , where ei is the ith N -dimensional

unit vector. Let the N ×N transition matrix be P , with (i, j) element

Pij = Prob(xt+1 = ej | xt = ei).

With these definitions, we have

Ext+1 | xt = P ′xt.

Define the “residual”

vt+1 = xt+1 − P ′xt,

which implies the linear “state-space” representation

xt+1 = P ′xt + vt+1.

Notice how it follows that E vt+1 | xt = 0, which qualifies vt+1 as a “martingale

difference process adapted to xt .”

We want to append a “measurement equation.” Suppose that xt is not

observed, but that yt , a noisy function of xt , is observed. Assume that yt lives

in the M -dimensional space Sy , which we represent in terms of M unit vectors:

Sy = {f1, . . . , fM} , where fi is the ith M -dimensional unit vector. To specify a

linear measurement equation yt = C(xt, ut), where ut is a measurement noise,

we begin by defining the N ×M matrix Q with

Prob (yt = fj | xt = ei) = Qij .

It follows that

E (yt | xt) = Q′xt.

Define the residual

ut ≡ yt − E yt | xt,
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which suggests the “observer equation”

yt = Q′xt + ut.

It follows from the definition of ut that E ut | xt = 0. Thus, we have the linear

state-space system

xt+1 = P ′xt + vt+1

yt = Q′xt + ut.

Using the definitions, it is straightforward to calculate the conditional second

moments of the error processes vt+1, ut .
1

B.3. Nonlinear filtering

We seek a recursive formula for computing the conditional distribution of the

hidden state:

ρi(t) = Prob{xt = i | y1 = η1, . . . , yt = ηt}.

Denote the history of observed yt ’s up to t as ηt = col (η1, . . . , ηt). Define the

conditional probabilities

p(ξt, η1, . . . , ηt) = Prob (xt = ξt, y1 = η1, . . . , yt = ηt),

1 Notice that

xt+1x
′
t+1 = P ′xt(P

′xt)
′ + P ′xtv

′
t+1

+ vt+1(P
′xt)

′ + vt+1v
′
t+1

Substituting into this equation the facts that xt+1x
′
t+1 = diag xt+1 = diag (P ′xt)+diag vt+1

gives

vt+1v
′
t+1 = diag (P ′xt) + diag (vt+1)− P ′diag xtP

− P ′xtv
′
t+1(P

′xt)
′.

It follows that

E [vt+1v
′
t+1 | xt] = diag (P ′xt) − P ′diag xtP.

Similarly,

E [ut u
′
t | xt] = diag (Q′xt)−Q′diag xtQ.
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and assume p(η1, . . . , ηt) 6= 0. Then apply the calculus of conditional expecta-

tions to compute2

p(ξt | ηt) =
p(ξt, ηt | ηt−1)

p(ηt | ηt−1)

=

∑
ξt−1

p(ηt | ξt) p(ξt | ξt−1)p(ξt−1 | ηt−1)
∑

ξt

∑
ξt−1

p(ηt | ξt)p(ξt | ξt−1)p(ξt−1 | ηt−1)
.

This result can be written

ρi(t+ 1) =

∑
sQijPsiρs(t)∑

s

∑
iQijPsiρs(t)

,

where ηt+1 = j is the value of y at t+ 1 We can represent this recursively as

ρ̃(t+ 1) = diag (Qj)P
′ρ(t)

ρ(t+ 1) =
ρ̃(t+ 1)

< ρ̃(t+ 1), 1 >
.

where Qj is the j th column of Q , and diag(Qj) is a diagonal matrix with Qij

as the ith diagonal element; here < ·, · > denotes the inner product of two

vectors, and 1 is the unit vector.

2 Notice that

p(ξt, ηt | η
t−1) =

∑

ξt−1

p(ξt, ηt, ξt−1 | ηt−1)

=
∑

ξt−1

p(ξt, ηt | ξt−1, η
t−1)p(ξt−1 | ηt−1)

p(ξt, ηt | ξt−1, η
t−1) = p(ξt | ξt−1, η

t−1)p(ηt | ξt, ξt−1, η
t−1)

= p(ξt | ξt−1)p(ηt | ξt).

Combining these results gives the formula in the text.
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Ŕıos-Rull, Vı́ctor José. 1995. “Models with Heterogeneous Agents.” In Thomas F. Cooley

(ed.), Frontiers of Business Cycle Research. Princeton, N.J.: Princeton Univer-

sity Press, pp. 98–125.
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