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Preface and Acknowledgments

Much of the time of the average graduate student in economics is spent
learning a new language, that of mathematics. Although the investment does
eventually pay off in many ways, the learning process can be quite painful.
I know because I have been there. I remember the long nights spent puz-
zling over the mysteries of the Hamiltonian, the frustration of not under-
standing a single one of the papers in my second macroeconomics reading
list, the culture shock that came with the transition from the undergraduate
textbooks, with their familiar diagrams and intuitive explanations, into
Debreu's Theory of Value, and my despair before the terse and incredibly
dry prose of the mathematics texts where I sought enlightenment about the
arcane properties of contractions.

This book is an attempt to make the transition into graduate economics
somewhat less painful. Although some of my readers may never believe me,
I have tried to do a number of things that should make their lives a bit easier.
The first has been to collect in one place, with a homogeneous notation, most
of the mathematical concepts, results, and techniques that are required to
follow the standard first- and second-year theory courses. I have also tried
to organize this material into a logical sequence and have illustrated its
applications to some of the standard models. And last but not least, I have
attempted to provide rigorous proofs for most of the results as a way to get
the reader used to formal reasoning. Although a lot of effort has gone into
making the text as clear as possible, the result is still far from entertaining.
Most students without a good undergraduate background in mathematics
are likely to find the going a bit rough at times. They have all my sympathy
and the assurance that it does build character.

This book has been long in the making. It started out as a set of notes that
I wrote for myself during my first year at Penn. Those notes were then
refined for the benefit of my younger classmates when I became a teaching
assistant, and they finally grew into lecture notes when I had the misfortune
to graduate and was forced onto the other side of the lectern. Along the way,

XI

Downloaded from Cambridge Books Online by IP 152.2.176.242 on Thu Jun 27 09:42:14 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.001

Cambridge Books Online © Cambridge University Press, 2013



xii Preface and Acknowledgments

I have had a lot of help. Much of the core material can be traced back to
class lectures by Richard Kihlstrom, George Mailath, Beth Allen, David
Cass, Maurice Obstfeld, Allan Drazen, Costas Azariadis, and Randy Wright.
The first typed version of these notes was compiled jointly with Francis
Bloch over a long and sticky Philadelphia summer as a reference for an
introductory summer course for incoming students. Francis had the good
sense to jump ship right after that, but some of his material is still here in
one form or another. Several colleagues and friends have had the patience
to read through various portions of the manuscript and have made many
useful comments and suggestions. Among these, I would especially like to
thank David Perez and Maite Naranjo, who has also contributed a couple
of the more difficult proofs. Thanks are also due to several generations of
students at the Universidad Autonoma de Barcelona and various other
places, who, while sweating through successive versions of this manuscript,
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1
Review of Basic Concepts

This chapter reviews some basic concepts that will be used throughout the
text. One of its central themes is that relations and functions can be used to
introduce different types of "structures" in sets. Thus relations of a certain
type can be used to order sets according to criteria like precedence, size, or
goodness; algebraic operations are defined using functions, and a function
that formalizes the notion of distance between two elements of a set can be
used to define topological concepts like convergence and continuity. In addi-
tion, we also introduce some simple notions of logic and discuss several
methods of proof that will be used extensively later on.

1. Sets

A set is a collection of objects we call elements. We will denote sets by capital
letters, and elements by lowercase letters. If x is an element of a set X, we
write x e X, and x£ X otherwise. A set A is a subset of X if all elements of
A belong to X. This is written A c X (A is contained in X). Formally, we can
write

where the one-way arrow (=>) denotes implication, and the two-way arrow
(<=>) indicates equivalence. Two sets, A and B, are equal if they have the same
elements, that is, A = B if and only if A c B and B c A The symbol 0
denotes the empty set, a set with no elements. By convention, 0 is a subset
of any set X.

Given a set X, the power set of X, written P(X) or 2X, is the set consist-
ing of all the subsets A of X. A class or family of sets in X is a subset of
P(X), that is, a set whose elements are subsets of X. We will use "hollow"
capital letters to denote families of sets. For example,

A = {Ai;AiczXJ eI}
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Review of Basic Concepts

Figure 1.1. Union and intersection of two sets.

where / is some index set, such as the set of all natural numbers smaller than
some given number n.

In what follows we will take as given some set X (the universal set), and
assuming that "there is nothing" outside X, we will work with its subsets.
Given two subsets of X, A and B, we define their union, A u B, as the set

A u B = {x e X; x G A or x G B}

That is, A UB is the set of elements of X that belong to A or to B or to both.
Similarly, the intersection of A and 2?, denoted by A n JB, is the set whose
elements belong to both sets at the same time:

Ar\B = {xeX; xeA andxeB}

These concepts can be extended in a natural way to classes of more than
two sets. Given a family of subsets of X, A = [Ac / e /} , its union and inter-
section are given respectively by

u A = VieiAi = {x e X; 3/ G /s.th. x e At} and

n A = r\iElAt = {x e X; x e At \ / iG/}

where the existential quantifier "3" means "there exists some," the universal
quantifier "V" means "for all," and "s.th." means "such that." That is, x is
an element of the union u A if it belongs to at least one of the sets in the
family A, and it is an element of the intersection if it belongs to all sets in
the class.

The following theorem summarizes the basic properties of unions and
intersections of sets.

Theorem 1.1. Properties of unions and intersections of sets. Let A, B, and C
be three subsets o/X. Then the following properties hold:
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Sets

Figure 1.2. Distributive law.

(i) Commutative law: A u B = B u A and A n B = B n A.
(ii) Associative law: (A u B) u C = A u ( B u Q = A u B u C and (A n B) n C =

An(BnCj = A n B n C
(Hi) Distributive law: (AuB)nC = (AnC)u(BnC) and (AnB)uC =

( A u Q n f B u Q.

Two sets A and 5 are disjoint if they have no elements in common, that
is, if A n B = 0. More generally, given a family of sets, A = {A,; ie 1} inX,
we say that the elements of A are pairwise disjoint if

AinAj = 0 Vi*j

We will sometimes use the notation AuB to indicate the union of disjoint
sets. The expression uieIAi will denote the union of a family of pairwise-
disjoint sets.

A partition of X is a class of pairwise-disjoint sets in X whose union is X
itself; that is, A = {Af, ie 1} is a partition of Xif

V / # j , Ai n A i = 0 and ut At = X

Given two sets A and B in X, their difference A-B (or A - B or ̂ 4\2?) is
the set of elements of A that do not belong to B:

A- B = {x eX; x e A andx g B}

The complement of A (relative to X) is the set Ac or -A of elements of X
that do not belong to A:

Hence we have

~B = An(~B) and ~A = X~A
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Review of Basic Concepts

Figure 1.3. A ~ B = A n (~£).

Let A = {At\ i = 1,2,...} be a class of sets in X, and let C = {A% i = 1,
2,...} be the family formed by the complements of the elements of A. The
following result says that the complement of the union of A is equal to the
intersection of C, and the complement of the intersection of A is the union
of C.

Theorem 1.2. Duality principle or De Morgan's laws. Let A = {A^ ie 1} be
a family of sets in X; then

(0 ~(ui€lAi) = nieI(~Ai,),and
(ii) ~(nieIAi) = u iei(~Ai).

This result also holds when we consider complements relative to some set
that is not the universal set. Hence, if A = {At\ i € /} is a family of subsets of
some set Y, then

(i) Y ~ (ui€lAt
(ii) Y~(n

~ At)9 and

2. A Bit of Logic

In this section we introduce some basic notions of logic that are often used
in proofs.

(a) Properties and Quantifiers

Fix a set X, and let P be a property such that for each element x of X, the
statement "x has property P" is either true or false (but not both at once,
and not neither). If property P holds for x, we say that P(x) is true and write
P(x). With each such property P we can associate the set PT of elements of
X for which P(x) is true:

PT = {xeX;P(x)}
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A Bit of Logic

Figure 1.4. Sets associated with composite pro-
perties.

Similarly, with every subset A of X we can associate the property "being an
element of A" In this manner we can establish a correspondence between
sets and properties that will allow us to identify logical operations with set
operations.

Given a property P, its negation -uP ("not P") is another property such
that -IP(X) is true if and only if P(x) is false. Because for any x i n X pre-
cisely one of the two properties P and -iP will hold, the set associated with
—xP is the complement of PT:

(-LP)T ={xeX; -IP(JC) is true} = {xeX; P(x) is false} = ~PT

Therefore, PT and (-iP)r form a partition of X. That is, for any property P,

0 and (-nP)

The logical connectives "and" (A) and "or " (v) can be used to construct
composite properties. Given two properties P and Q, their conjunction P A
Q ("P and £T) is the property that holds if and only if both P and Q hold
at the same time. Hence, the set associated with P A Q is the intersection of
the sets associated with the two original properties. That is,

(P A Q)T = {xeX; P(x) and Q(x)} = {xe X; P(x)} n {x e X; Q(x)}

= PTnQT

In a similar way, we define the (nonexclusive) disjunction of P and g,
P v Q ("P or g"), as the property such that (P v Q)(x) is true whenever
P(x) or Q(x) or both hold. Hence, the set associated with the disjunction of
P and Q is the union of PT and QT:

(P v Q)T = {xeX; P(x) or Q(x)} = {xe X; P(x)}

= PTuQT

; Q(x)}

To construct the negation of a composite property, we can make use of
De Morgan's laws. From Theorem 1.2 we have

and ~(PT = (~PT)v(~QT)

from where
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Review of Basic Concepts

HFI) and - I (PAG)

That is, not having the property "P or Q" is equivalent to not having either
one, and not having the property UP and Q" is the same as lacking at least
one of them.

Quantifiers are often used to indicate that all or some of the elements of
a given set have a certain property. To say that all the elements of set A have
property P, we use the universal quantifier (V) and write

V x e A, P(x) (i.e., for all x in A, P(x) is true) (1)

To say that some elements of A have a given property, we use the existen-
tial quantifier (3):1

3xeA, s.th. P(x) (i.e., there is at least one element x of A
such that P(x) is true) (2)

Quantifiers can be seen as generalizations of logical connectives. Hence,
if A is a finite set of the form {x1? x2,..., xn), the statements (1) and (2) are
equivalent to

P(x1)AP(x2)A...AP(xn) and P(x1) vP(i2) v ...vP(xn)

respectively. The earlier notation, however, has the advantage of being more
compact and can also be used for infinite sets.

Expressions involving several quantifiers are commonly encountered. For
example, the statement

VxeA,ByeB s.th. P(x, y) (3)

means that "for all x in A, there exists an element y in B such that the
pair (x, y) has property P." In these cases, it is important to keep in
mind that the order in which quantifiers appear matters. Thus the
statement

3 y E B s.th. V X G A P(X, y) (4)

("there exists an element y in B such that for each x in A, the pair (x, y) has
property P") is different from (3): In the first case, the choice of y may
depend on the given value of x, whereas in (4) we are asserting the existence
of at least one y that will work for all possible values of x. If we let A and
B be the set of real numbers, and P the property that x + y = 0, for example,
statement (3) is true (with y = -x), but (4) is false.

We often want to negate statements involving quantifiers. If it is not true
that all the elements of a set A have property P, then clearly it must be the
case that some elements of A have property —P. Hence

-i[V x G A, P(x)] <=> 3 x € A s.th. -TP(JC)
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A Bit of Logic

Figure 1.5. Implication as set inclusion.

Similarly, if there exist no elements of A with property P, all elements of the
set must satisfy -iP. That is,

-.[3xeA, s.th.P(x)]<=>\/xeA, -.P(x)

Hence, to negate a statement that makes use of quantifiers, we replace the
V's with 3's, and vice versa, and negate the properties. The same principle
applies to statements involving several quantifiers. For example,

-,(Vx eA, 3yeB, s.th. P(x, y))& 3 x e A s.th. - i (3y eB s.th. P(x, y))

>3x€A s.th. VyeB, -iP(x, y)

That is, we begin with the statement "for all x in A, there exists an element
y in B such that the pair (jt, y) has property P." If that is not true, then there
must exist some x in A such that for all y in B the pair (x, y) does not have
property P.

(b) Implication

We often make statements of the type "property P implies property Q" -
meaning that all elements that have property P also satisfy Q. This state-
ment can be written "P => Q" - an expression that can also be read as

"if P then £>,"
"P is a sufficient condition for Q," or
"Q is a necessary condition for P."

In terms of the associated sets, "P =$ Q" means that

Using quantifiers, the statement P => Q can also be written

VxePT, Q(x)

That is, if all elements x with property P also satisfy Q, then PT must be con-
tained in the set QT, and vice versa.
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10 Review of Basic Concepts

Figure 1.6.

To express "P => Q" in terms of an equivalent property that will be useful
later, observe that

PT C QT if and only if (~PT )uQT=X

where X is the universal set. The proof of this equivalence is left as an exer-
cise, but the result should be intuitively clear, for if QT contains PT, all points
that lie outside QT will necessarily be outside PT. Hence the statement
P => Q is true if and only if

xe{~PT)vQTVxeX

or, equivalently, the property (—.P) v Q always holds. Figure 1.6 tries to
clarify this result.

The negation of P => g, written P =/> Q or —.(P => 0, is true whenever
there exists at least one x that satisfies P but not Q (that is, when 3 x e PT

s.th. —\Q(x)). Drawing on our previous discussion, this is equivalent to saying
that P =k Q is true when the negation of (-.P) v Q is true for some x in X.
Applying De Morgan's laws,

which implies that P =& Q is equivalent to

PTn(~QT)±0

This result is readily apparent using a Venn diagram: As illustrated in
Figure 1.6, if PT is not a subset of QT, then there must be elements of PT

outside QT\ hence the intersection of PT and ~QT cannot be empty, and vice
versa.

In addition to its negation, there are other statements related to the impli-
cation P =$ Q. They are

(i) its converse: Q=> P,
(ii) its inverse: - P => —1<2, and

(iii) its contrapositive statement: —\Q => —\P.
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A Bit of Logic 11

If both the implication P => Q and its converse Q=> P are true, we say that
P and Q are equivalent and write P o Q.

A statement and its contrapositive are equivalent, as is easily seen by
applying the equivalence

to the sets associated with the two properties. This observation is useful
because sometimes it is easier to prove the contrapositive than the original
statement.

(c) Methods of Proof

There are several methods that are often used to prove that a statement of
the form P => Q or P <=> Q is true. One of the most common is the deduc-
tive method, in which we start by assuming that P holds and use this infor-
mation to verify that Q is also true. Because it is difficult to be much more
specific at this level of generality, we shall consider a simple example. There
will be many others later.

Example 2.1. Proof of De Morgan's first law. Let A = \A{, i e 1} be a family
of sets in X. We want to prove that

That is, we want to show that any element of ~(uAd also belongs to n^-A,-),
and vice versa. For this, it suffices to verify that the definitions of the two
sets are equivalent:

x e ~(uf-At) <=>x£ utAi <=» -i(3 i e Is.th. xeA

which is what we wanted to show. In words:

(i) Take an arbitrary x in the complement of u*A/. By definition, x is not an element
of UiAt. Negating the definition of the union of a family of sets (x belongs to
UiAi if it is an element of any of the Afs), we obtain that

(ii) x does not belong to any of the Af
e this is the same as saying that for each i,

x belongs to the complement ofAh which in turn is equivalent to the statement
that

(iii) x is an element of the intersection of the complements of the At% r\(~A)«

(iv) Finally, because this is true for any x in KJTAH the set of all such x's (i.e., UiAt)
must be contained in n,(~A,).

Notice that the reasoning is also valid in the opposite direction. Hence we
have proved that
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12 Review of Basic Concepts

xe~(yjiAi)=*xer\i(~Ai); that is, ~(u;A;)cn;(~A;)

and

x e r)i(~Ai)=> x e ~(u, -A,-); that is, n^-Ai)^ ~(u,-A,-)

and we can conclude that the two sets are equal. •

Problem 2.2. Prove the following equivalence (X is the universal set):

Problem 2.3. Prove the second of De Morgan's laws: Let A = {A,; i e 1} be
a family of sets in X. Then -(ntAi) = u,-(~A;).

The following example shows the usefulness of the equivalence between
an implication and its contrapositive.

Theorem 2.4. Given two arbitrary real numbers a and b, we have

Ve>0, a<b+e=>a<b (P=>QJ

Proof. The contrapositive of this statement (—.0 => —J3) can be written

a>b=>3e>0,a>b + e

This is very easy to prove. Because a > b, a - b > 0, and there exist real
numbers e such that 0 < e < a - b (e.g., (a - 6)/2). For any such number we
have

b + e<b + (a-b) = a D

Another method that is often useful for establishing properties
associated with the set of natural numbers is based on the following
axiom.

Axiom 2.5. The principle of induction. Let P be a property that natural
numbers (or positive integers) may or may not have. If

(i) there exists some natural number no such that P(n0) holds, and
(ii) for any natural number, Pfn) => Pfn +1),

then P holds for all natural numbers larger than or equal to n#.

That is, to prove statements of the form "all natural numbers larger than
or equal to n0 have property P " it is enough to establish that the property
holds for nQ and that if it holds for n it will also do so for n + 1. Notice that
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A Bit of Logic 13

this is really a statement about the structure of the set of natural numbers.
It tells us that the set of natural numbers larger than or equal to n0 is the set
{/t0, n0 +1, (n0 +1) +1,. . .} (i.e., that this set can be constructed recursively
by adding 1 to the previous element, starting from n0). If we start from zero,
this property can be taken as a definition of the set N of natural numbers
and can therefore be seen as an axiom or basic assumption. It does, however,
provide a simple way to establish many useful results, as illustrated by the
following example.

Example 2.6. A proof by induction. We shall show that for any positive
integer k,

(where n takes on all integer values from 1 to k). The formula clearly holds
for 1, because then it simply says that

1(1 + 1)
2

Next we will assume that (1) holds for an arbitrary k and show that this
implies that it also holds for k + 1. For this, we add (k + 1) to both sides of
(1) and rearrange terms to get

,, ^ k(k+l) „ ^ fe1 ,. ,/„ k\ (k+lMk+2)(fc+i)= \ >+(k+l)=>Jn = (k+i)h+ M 5 '
\n=\ J ^ n=\

which completes the proof. •

An indirect strategy that is often useful is the proof by contradiction. To
show that P => Q, it is sufficient to show that its negation, P=/> Q, yields a
contradiction, that is, a statement of the form R A (—IL?), which can never be
true. Intuitively, the idea is that if a given premise leads to a contradiction,
then it cannot possibly be correct. Formally, if we can show that P =fr Q leads
to a contradiction, we will have shown that

(where we are making use of an equivalence derived earlier). But then the
contrapositive statement

will also be true. And because the first property is always true (for any x and
R, either R or -.i? will be true), the second (which, as we have seen, is equiv-
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14 Review of Basic Concepts

alent to P => Q) will always hold. As an example, we will prove the follow-
ing result.

Theorem 2.7. The well-ordering principle. Every nonempty set of positive
integers contains a least element.

Proof. Let P be a nonempty set of positive integers, and define S as the
set of all positive integers that are strictly smaller than all elements of P.
That is,

S = {neZ+; n<p\fpsP}

To prove the theorem, we first assume that P does not have a smallest
element and attempt to show that this implies that S is the entire set of pos-
itive integers. But that would be a contradiction, for then S would contain
the set P (which is nonempty by assumption), implying that for any number
p in P we would have p <p, which clearly is impossible.

Assuming that P has no smallest element, we will proceed by induction:

(i) We observe that 1, which is the smallest positive integer, must belong to S.
(ii) Next, let k be an arbitrary positive integer. We will show that if k belongs to 5,

then so does k + 1. We proceed by contradiction: Suppose k is strictly smaller
than any element of P, but k + 1 is not (i.e., k e S, but k + 1g S).

Then (k+1€ S implies that) there exists a number pt e P such that
k + 1 >pt. Moreover, because P has no least element, there exists some other
number p2 e P such thatp2 <p\. Combining these two inequalities,

p2<p1<k + l

^p2<k + l (1)

Now, because both p2 and k are integers, (1) implies

Pi<k
and we conclude that k is not strictly smaller than every element of P.
Hence, we have reached a contradiction, and we conclude that k e S implies
/c + l e S.

Given (i) and (ii), it follows by induction that S is the whole of Z+.
Because this leads to a contradiction, we conclude that P must have a least
element. •

Problem 2.8. The following modification of the induction principle is some-
times useful: Let P be a property that natural numbers (or positive integers)
may or may not have. If
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Relations 15

(i) P(0) holds and
(ii) if P holds for all integers & = 0,1,...,/i-1, then it also holds for n.

Then P holds for all natural numbers.

Complete the following proof of this result: Let S be the set of nonnega-
tive integers for which P(n) is false. We want to show that S is the empty set.
Suppose that S is not empty, and use the well-ordering principle and assump-
tions (i) and (ii) to reach a contradiction.

Problem 2.9. Use the modified induction principle to prove that any integer
larger than 1 is either a prime number (it has no integer divisors other than
1) or the product of prime numbers.

3. Relations

Given two sets X and Y, their Cartesian product X x Y is the set of all
ordered pairs formed by an element of X followed by one of Y. That is,

X x Y = {(x,y);xeX<mdyeY}

A (binary) relation from X to Y is a subset R of X x Y. In many cases we
work with relations defined on X x X. In this case, we speak of a relation
defined on X.

If (x, y) e R, we often write xRy or y e R(x) and say that y is an image of
x. The image set of x is given by

R(x) = {yeY;(x,y)eR}

If R is a relation from X to Y, its inverse relation, R~l, is a relation from
Y to X defined by

R-l={(y,x);(x,y)eR}

Let R be a relation from X to Y. If A is a subset of X, the image of A
under R is the subset of Y given by

R(A) = {y e Y; 3x<=A s.th. (JC, y)eR} = uxeAR(x)

If B is a subset of Y, the inverse image of B under R is its image set under
R1:

R1 (B) = {xeX;3yeB s.th. (JC, y)eR} = u ^ i T 1 (y)

The inverse image of Y (i.e., the set of points of X that each has at least
one image in Y) is the domain of the relation:
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16 Review of Basic Concepts

DR = R-1 (Y) = {x e X; R(x) * 0}

And the image of X under R is the range of R:

Given two relations R and S defined on the product set I x Y, we say that
S is a subrelation of R if £ ci? or, equivalently, if xSy => xi?y. We can also
say that S is a restriction of /?, or that R is an extension of S. For example,
weak vector dominance (>), defined by

is a binary relation defined on Rn x Rn. Strict vector dominance (>), defined
in a similar way, but with strict inequalities, is a subrelation of weak vector
dominance (>), because x > y implies x > y.

Let R be a relation from X to Y, and S a relation from Y to Z. Their com-
position, R o S is the relation from X to Z given by

/?o 5 = {(x, z); 3y e Ys.th. (x, y)e /? and (y, z)e S}

Intuitively, the concept of "relation" provides a way to formalize the idea
that two objects (typically two elements of the same set) stand in a certain
relationship to each other. For example, if x and y are real numbers, one may
be larger than the other. If x and y denote consumption bundles, a given
consumer may prefer one to the other. The notation xRy, interpreted as "x
stands in a certain relation to y" is therefore more suggestive than the nota-
tion (x, y) e R, although they are equivalent. However, the formal definition
of "relation as a set" is convenient from a mathematical point of view. It
allows us, for example, to think in terms of subsets of i?, or to decompose R
in smaller "factors."

As we will see, the notion of relation is a basic instrument that can be used
to define different types of structures on a set. In Section 4 we will intro-
duce the concept of "function" as a special type of relation. That, in turn,
will allow us to introduce an algebraic or topological structure in a set by
defining functions with convenient properties that we will call "operations"
or "metrics." Before getting into these subjects, the discussion in the rest of
this section will focus on two types of relations that can be used to impose
a certain "order" in a given set. An equivalence relation allows us to parti-
tion a set into a collection of subsets of "equivalent" elements, and an order
relation allows us to classify the elements of a set according to criteria of
preference and goodness or precedence and size. Because such relations are
defined in terms of certain properties that relations may have, we begin by
introducing these properties.
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Relations 17

Definition 3.1. Let R be a binary relation defined on X. We say that R is

reflexive if V x € X, xi?x,

symmetric if V x, y € X, xify <=> yJRx,
antisymmetric if V x, y e X, (xRy and yi?x) => x = 7, and
transitive ifVx,y,ze X, (xi?y and yRz) =» xRz.

(a) Equivalence Relations and Decomposition of a Set into Classes

Definition 3.2. Equivalence relation. A binary relation R defined on a set X
is an equivalence relation if it is reflexive, symmetric, and transitive.

Sometimes we are interested in decomposing a given set into a collection
of pairwise-disjoint sets whose union is equal to the original set (i.e., into a
partition). Such a partition of a set is called a decomposition of the set into
(equivalence) classes. A natural way to achieve such a partition is to specify
an equivalence relation R on X and then assign to each class all those ele-
ments that are related to each other under R.

Theorem 3.3. Partition of a set into classes. A set X can be partitioned into
classes by using an equivalence relation R as a criterion for assigning two
elements to the same class. Conversely, every partition of a set defines an
equivalence relation on it.

Proof. Let R be an equivalence relation on X. For each a in X, define the
set

Ca = {x G X\ xRa]

It is obvious that each element of X belongs to at least one such set, and
also that some of these sets may be equal. To prove that the relation defines
a partition, we must show that any two such sets, Ca and Cb, are either dis-
joint or identical (if aRb).

Suppose Ca and Cb have a common element, say c. By assumption, cRa
and cRb. By symmetry, aRc, and by transitivity,

(aRc and cRb) => aRb

Hence a and b are in the same class of elements, and we conclude that if
Ca and Cb have any common elements, they are the same set. That is, the
pairwise-disjoint sets of this type form a partition of X into equivalence
classes.

We observe that every partition of X into pairwise-disjoint classes deter-
mines a binary relation on X, where xRy means that x and y belong to the

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Thu Jun 27 09:27:34 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.002

Cambridge Books Online © Cambridge University Press, 2013



18 Review of Basic Concepts

same class. It is clear that this relation is reflexive, symmetric, and transitive
(i.e., is an equivalence relation). •

Definition 3.4. Quotient set. Let X be a set, and R an equivalence relation
on X that determines a partition of X into classes. The set of equivalence
classes under R is called the quotient set of X with respect to R.

(b) Order Relations and Ordered Sets

A class of binary relations of particular interest is the one that allows us to
formalize the idea that some elements of a set dominate (or are "larger
than") others. Such a relation is called an "order relation," and a set in which
an order relation has been defined is called an ordered set.

Let ">" be a binary relation on the set X. We interpret the expression
x > y as saying that, in some relevant way, x dominates y, is larger than y, or
comes after it. Equivalently, we can work with the inverse relation "<," where
x < y is equivalent to y > x and indicates that x is "smaller" than y or pre-
cedes it. We now define two common types of order relations.

Definition 3.5. Preordering. A binary relation ">" defined on a set X is a
partial preordering or quasiordering if it is reflexive and transitive, that is, if

V x, y, z e X, x>x and [(x > y and y > z) => x > z]

We say that X is partially preordered by ">." If, in addition, any pair of ele-
ments x and y of X are comparable under the relation, that is, if

V x, y, e X, x > y or y > x or both

then ">" is a complete or total preordering, and we say that X is totally pre-
ordered by ">."

Definition 3.6. Ordering. A binary relation ">" defined on a set X is a partial
ordering if it is reflexive, transitive, and antisymmetric, that is, if it is a partial
preordering and, moreover,

V x, y e X, (x > y and y > x) => x = y

We then say that X is partially ordered by ">." If, in addition, any pair of
elements of X art comparable under the relation, ">" is a complete or total
ordering, and we say that X is totally ordered by it.2

The standard order relation defined on the set of real numbers is a com-
plete ordering. This relation is antisymmetric, for given any two real numbers
a and /3,a>ft and /? > a imply a = /3.
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Relations 19

Notice that the only difference between a preordering and an ordering is
that the preordering need not be antisymmetric; that is, it is possible to have
x > y, y > x, and x * y. In this case, we write x ~ y and say that x and y are
equivalent.

A preordering can be decomposed into its symmetric and asymmetric
components by defining the following two subrelations:

x > y if and only if x > y and y db x

x - y if and only if x > y and y > x

(where y3ix means "not y > x"). In the context of the theory of preferences,
these relations would be called the strict preference and indifference
relations.

In an ordered set, the concept of the "best" or "largest" element makes
sense. Hence, we can talk of maximization with respect to an order relation.
We must be a bit careful, however, for if the order relation is not complete,
some elements of the set may not be comparable. In this case, we cannot
speak of a "maximum," but we can still define some closely related concepts.

Definition 3.7. Maximal and minimal elements. Let X be a set partially pre-
ordered by a relation ">." An element x of X is maximal (with respect to
">") if no other element of X dominates it strictly, that is, if

x > x => x ~ x (or x = x for an ordering)

Similarly, an element x of X is minimal if no other element strictly precedes
it, that is, if

x < x => x ~ x (or x = x for an ordering)

where "<" is the inverse relation of ">."

Definition 3.8. Largest and smallest elements. Let X be a set partially pre-
ordered by ">." An element z of X is a largest or last element of X if it dom-
inates every element of X (i.e., if V x G X, z ^ x). An element z of X is a least
or first element of X if it precedes every element of X (i.e., if V x e X,
z<x).

Notice that a largest element must be maximal, but a maximal element
may not be largest if the preordering is partial, for some elements of X may
not be comparable with it. If the preordering is complete, however, maximal
elements will also be largest. If the relation ">" is an ordering, the largest
element, when it exists, is unique and is called the maximum. This need not
be the case with a preordering, where we may find several largest elements
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20 Review of Basic Concepts

that are equivalent but are different from each other. With the appropriate
changes, all this is also true for minimal and smallest elements.

4. Functions

Among the most important types of relations are those we call functions.
Intuitively, a function from a set X to a set Y is a rule that assigns to each
element of X a unique element of Y. We say that y is the image of x under
/, and write y =f(x). Conversely, x is an element of the preimage or inverse
image of y, written x e f~l(y).

Definition 4.1. Function. Let X and Y be two sets. A function / from X to
Y, written / : X —> Y, is a relation from X to Y with the property that for
each x e X there exists a unique element y E Y such that (x, y) e /.

The image and preimage of a set under a given function, and the func-
tion's domain and range, are defined as for any relation. If / is a function
from X to Y, its domain is X, and its range is the set f(X). If A is a
subset of X, its image set is the subset of Y formed by the images of its
elements:

f(A) = {yeY; 3xeAs.th.y = f(x)} = vXGAf(x)

Given a subset B of Y, its inverse image is the set f~x(B) formed by those
elements of X with images in B:

If x is an element of X, and R is a relation, the image of x, R(x), may be
any subset of Y, including the empty set. If R is a function, however, R(x)
contains exactly one point of Y. Hence, a relation R is a function if and only
if its domain is the whole set X and, moreover,

9y2)eR=> y1 = y2

or, equivalently,

\fxeX, 3\ y eY s.th. y = f(x)

where "3!" means "there exists exactly one element."
Two functions / and g are equal if they are identical as sets, that is, if

fQg and g c /. This is the same as saying that / and g have the same domain
and range and, moreover, for every x in Df= Dg, we have f(x) = g(x).
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Figure 1.7. Composition of two functions.

If / is a function and, in addition, its range is the whole set Y, that is, if
f(X) = Y, or

VyeY, 3xeXs.th.y = f(x)

then we say that / is surjective or onto Y. We also say that / is injective or
one-to-one if it always assigns different images to different elements of X,
that is, if

i,x2eX,/(*!) = /(x2)=»JCI =x2

or, equivalently, if xt * x2 implies /(jCi) *• f(x2). Finally, the function / is bijec-
tive if it is both "one-to-one" and "onto," that is, if each element of Y has an
inverse image and that inverse image is unique.

Given a function /, its inverse relation f~l: y —> x e f~x(y) may or may
not be a function. If it is a function, f'1 is said to be the inverse function of
/. If / is one-to-one, each y in f(X) will have a unique inverse image in X,
and therefore/J will be a function of f(X) into X. If/is also "onto,"/'1 will
be a function from Y to X.

If / is a function of X into Y, and g is a function of Y into Z, their com-
position, g o / is the function of X into Z defined by (g o f)(x) = g[f(x)]. The
composition of two functions obeys the associative law, that is,

(h ° g) ° / = h o (g o / ) = h o g o /

but it is generally not commutative.
We will now review some elementary results concerning the properties of

the image sets and inverse-image sets under a function and introduce some
concepts that are defined in terms of functions.

Theorem 4.2. Let f: X —> Y be a function, and B = {Bv' i e 1} a family of
subsets ofY. Then

(i) t1(uielBi) = u i e lt
1(B i

(ii) r1(nieIBx) = niGlt
1(Bi
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22 Review of Basic Concepts

Proof

(i) x e t\uie,B^ &f(x) e Ufe/ft
<=» 3, e/s.th./(A:) e B,
<=> 3, e / s.th. x e / ^

(ii) x G /^(nte,S,) <=>/(x) G n
<=>Vie /,/( e Bi
« V i e I,x<Ef-\Bt)

Theorem 4.3. Let f: X —> Y be a function, and A = /A,; iG iy a family of
subsets ofX. Then

(i) f(uielA{) = uielf(Ai),
(ii) f(r\£lAO c n i

Proof

(i) y G f(uieIAt) & 3 x e u,E Ai s.th. /(x)=y
o3i€/s . th . / (x) = y
o y e vielf(A;).

(ii) y G /(n,e/J4i) <=> 3 x G nieIAt s.th./(x) = y
=> V i G / ,3 Xi G At s.th. /(x,) = y (e.g., xt = x V,-)
<=> V i € /, y e/(A)

•

Problem 4.4. Explain why inclusion works only in one direction in the
second part of Theorem 4.3, but in both directions in the first part.

(i) Give an example in which nieIf(Ai) is strictly larger than f(nieIAi).
(ii) Prove that if / is one-to-one, then nie//(A;) =/(nie/Al).

Problem 4.5. Given a function / : X —> Y9 two subsets of X, Ax and A2, and
two subsets of Y, Bx and U2, show that

(i)f-\~B1) = ~f-\B1),
(ii) r\Bx - ft) =/"1(B1) ~f~\B2), and
(iii) if/is bijective, then

and f(A~A2) = f(A)~f(A2)

What can we say if / i s not bijective?

Problem 4.6. Let / b e a function from X to Y, with A a subset of X, and B
a subset of Y. Then
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B and Aczf-l[f(A)]

When are the two sets not equal to each other?

Sequences

A particularly useful family of functions is that formed by functions whose
domain is the set of the natural numbers. Let X be an arbitrary set, and N
the set of natural numbers. A function siN —> X is said to be a sequence
in X. Intuitively, we can think of a sequence, or rather of its range, as an
ordered set of elements of X. In the usual notation, xt denotes the value of
the sequence at /, that is, s(i) = xh and {xn} is used to indicate that we are
talking about the sequence "as a whole."

It is sometimes useful to define a sequence recursively. That is, given a
function / of X into itself, and an element a of X, there exists a unique
sequence {xn} in X such that x0 = a and xn+1 =f(xn) for n = 1, 2 , . . . .

Occasionally we may want to work with a "subset" of a given sequence
(i.e., with a subsequence). Formally, let s: N —> X be a sequence, and con-
sider a strictly increasing function g:N —> N. The composite function
given by h(k) = s[g(k)] for any positive integer k is a subsequence of s. The
usual notation for a subsequence of [xn] is {xnk}, with two subindices. Intu-
itively, a subsequence is a sequence formed by deleting some terms from the
original one. For any k = 1, 2 , . . . , the increasing function g() selects some
positive integer nk > nk^, and we take the corresponding term of the origi-
nal sequence to form {xHk}. For example, the even-numbered terms of a
sequence form a subsequence.

Correspondences

A correspondence from X to Y is a function that to each element x of the
set X assigns a subset of the set Y Hence, a correspondence *F of X to Y,
denoted by *F:X ->-> Y, is a function X —> P(Y).

Alternatively, a relation *F of X to Y is a correspondence of X to Y if its
domain is X, that is, if for all x in X we have ^(x) * 0 . Hence, every
relation from X to Y is a correspondence defined on its domain DR. We can
also say that a function is a special case of correspondence in which the
image set of each element of X is a singleton (i.e., a set formed by a single
element).

Axiom of Choice

One of the basic assumptions of set theory is the so-called axiom of choice.
It says that given an arbitrary collection A of nonempty sets in X, there is
always a function/from P(X) to X itself such that f(At) € At for each At in
A. That is, we assume the existence of a "selection function" / that chooses

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Thu Jun 27 09:27:34 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.002

Cambridge Books Online © Cambridge University Press, 2013



24 Review of Basic Concepts

an element from each of the sets in A. It seems reasonable to assume that
this is always possible, but when we cannot give a specific selection criterion,
we have to resort to the axiom of choice. This assumption is often used (in
many cases implicitly) in proofs in which at some point we make a state-
ment of the form "we take an element xt from each of the sets At in a given
class A."

Finite, Infinite, and Countable Sets

When we count the number of elements of a set X, we associate with each
element a natural number. In other words, counting the elements of a set X
amounts to constructing a function from X to the set N of natural numbers.
The generalization of this idea takes us to the concept of cardinality (or car-
dinal number) of a set.

We say that two sets A and B are numerically equivalent if there exists a
bijective function of A onto B. If a set A is numerically equivalent to some
subset of the set of positive integers, Z+, we say that A is a countable set. If
this subset of Z+ is of the form {1, 2 , . . . , «} , the set is finite, and its cardinal
number is simply the number of its elements. The empty set is considered
finite, and its cardinal number is zero. If A is not numerically equivalent to
{1, 2 , . . . , n), we say that it is an infinite set.

Hence, a set A is countable if it is finite or if there exists a bijection from
A to the entire set Z+ of the positive integers. In the second case, A is an
infinite but countable set, and its cardinal number is called J% ("aleph-
zero"). There are also infinite sets that are not countable, such as the set R
of real numbers.

Generalization of the Cartesian Product

We have defined the Cartesian product of two sets X and Y as the set of
all ordered pairs of the form (x, y), where x e X and y e Y. Suppose now
that we are given a more general class of sets, A = {At; At cX,ie I}. If the
index set / is finite, say of the form / = {1,2, . . . , n], the Cartesian product
A = xieIAi is defined, as may be expected, as the set of all ordered w-tuples
x = (JCI, x2,..., xn) such that xt e At for each i = 1 , . . . , n. We say that XT is the
rth coordinate of x, and A the ith component of A. To generalize the concept
to an arbitrary family of sets A (possibly infinite and not countable), we use
the concept of function. Hence the Cartesian product xA is defined as the
set of all functions / : / —> uieIAi such that /(/) e At for each / e /.

5. Algebraic Structures

In most applications, we work with numerical spaces, that is, sets whose
elements are numbers, sequences of numbers, or numerical functions. It
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Algebraic Structures 25

seems natural to impose an algebraic structure on such sets by defining
operations.

In general terms, we can define an algebraic structure A = {(Xt)9 O] as a
collection formed by one or more sets Xt of (generally numeric) elements,
together with a second set O of operations defined on the sets Xh An
operation is simply a function defined on the Cartesian product of two
or more sets, and taking values in another set that may or may not be
one of the preceding sets. Given a set X, an n-ary operation in X is a
function * \Xn —> X. For example, a binary operation in X is a function * :X
x X —> X that assigns to each pair of elements (x, y) of X a unique element
z of X. We often write z = x * y. If "*" is a binary operation in X, we say that
X is closed with respect to the operation "*," or that "*" is a law of internal
composition.

We will now define some important algebraic structures. The different
structures are characterized by different properties of the operations.

(a) Groups and Fields

Let X be a set, and "*" a binary operation defined on it. We say that "*" is
an associative operation if

V x, y, z E X, (x * y) * z = x * (y * z)

If this property holds, we can write expressions like x * y * z without ambi-
guity. We say that "*" is commutative (or satisfies the commutative law) if
the order of composition does not alter the result, that is, if

V x, yG X, x *y = y * x

The operation "*" defined on Xhas an identity element if there exists an
element e of X such that

VXG X,x * e = x=e *x

Notice that the definition implies that the identity element, when it exists,
is unique. To see this, assume that e and e' are both identity elements. Then,
e * e' - ef and e * ef = e, from where e' = e * e' = e.

An element xs is the symmetric or inverse element of x with respect to "*"
if the composition of the two is the identity element, that is, if

x * x$ =xs * x = e

If the operation is associative, the inverse of x, when it exists, is unique, for
if xs and xl are both inverses of x, we have

xs = xs * e = xs * (x * xl) = (xs * x) * XL = e * xl = xl
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26 Review of Basic Concepts

Let "*" and "©" be two binary operations defined on a set X. We say that
"*" is a distributive law with respect to "©" if

Vx,y,zeX, x*(y® z) = (x*y)®(x*z) and (y®z)*x = (y*x)®(z*x)

If "*" is commutative, these two properties (distributivity on the left and on
the right) are equivalent.

Definition 5.1. Group and commutative group. Let G be a set, and "*" an
operation defined on it. We say that G = {G, *} is a group if G is closed under
"*" and this operation is an associative law, endowed with an identity and
with the property that every x e G has an inverse element with respect to
"*." If, in addition, "*" is commutative, we say that {G, *} is a commutative
group.

Let {G, *} be a group, and consider the restriction of "*" to some subset
S of G. If S is closed with respect to "*" and {5, *} satisfies the other condi-
tions in the definition of group, we say that {5, *} is a subgroup of {G, *}.
Clearly, {5, *} inherits the "manipulative" properties of {G, *} (i.e., the asso-
ciative and commutative laws); hence, in order to show that {5, *} is a sub-
group, it is sufficient to verify that S contains the identity e, and that for each
x in 5, its inverse is also in S.

Definition 5.2. Field. A field F={F, +, •} is an algebraic structure formed
by a set F together with two binary operations (+, •) defined on it, called
addition and multiplication, respectively, which have the following prop-
erties:

I. The set F together with the operation of addition is a commutative group. The
additive identity is called 0, and the symmetric element of each a e F is denoted
by (-a). That is, for every a, /3, ye F, the following properties hold:

1. Associative property: (a+ j8) + y= a+ (j8+ y)
2. Commutative property: a + f} = p+ a
3. Existence of the additive identity: 3! 0 e F s.th. a + 0 = 0 + a = a V a e F
4. Existence of inverse elements: V a e F, 3! (-a) e F s.th. a+ (-a) = (-a) + a

= 0

II. Multiplication is an associative and commutative operation, endowed with an
identity called 1 (* 0), and every element a of F different from zero has a mul-
tiplicative inverse, written a1 or IIa. That is, V a, j8, ye F, we have the
following:

1. Associative property: (a • ft) • y= a • (ft • y)
2. Commutative property: a • p = ft • a
3. Existence of a multiplicative identity: 3! 1 e Fs.th. a- 1 = 1 - a= a\f ae F
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Algebraic Structures 27

4. Existence of inverse elements: V a (* 0) e F, 3! of1 e X s.th. a • a"1 = a"1 • a
= 1

III. Multiplication is distributive with respect to addition:

V a, /J, y e F, a • (/J + y) = (a • /J) + (a • y) = a • /J + a • y

Let F = {F, +, •} be a field, and S a subset of F. We say that {5, +, •} is a sub-
field of Fif {S, +, •} is a field on its own right, that is, if S is closed under both
operations and the properties required in the definition hold. As before, if
S is a subset of F, it will inherit the manipulative properties of F (i.e., the
associative, commutative, and distributive properties will hold in S, because
they hold in the whole F). To verify that a subset S of F gives rise to a sub-
field of F, therefore, it is sufficient to verify the existence of inverse and
identity elements (with respect to addition and multiplication) and that S
is closed under both operations.

The most common examples of fields are the real and complex numbers,
with the standard definitions of addition and multiplication. In fact, the def-
inition of "field" is based directly on the algebraic properties of the set of
real numbers endowed with the standard operations.

All the basic properties of the operations of real numbers can be derived
from the field axioms. For example:

(i) V a G F, a • 0 = 0: Let p = a • 0; by the distributive law, we have

Hence, p + /5 = /?; adding the additive inverse of ft to both sides of this expres-
sion, we have

(ii) V aG F, (-1) • a = -cc Let y = (-1) • a; then, using the existence of a zero
element and the distributive law together with the previous result,

a + y = 1 • a + (-1) • a = a • (-1 +1) = a • 0 = 0

from which we conclude that y is the additive inverse of a.

Problem 5.3. Let "*" be a law of internal composition on X that satisfies the
associative property and is endowed with an identity element. Prove that if
x and y have symmetric elements Xs and /, then the symmetric element of
x * y is ys * Xs.

Problem 5.4. Let X be an arbitrary set, and {G, *} a group. Show that the
set of functions of X into G, endowed with the operation defined by the
composition of images, that is,
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28 Review of Basic Concepts

VxeX,{f*g)(x) = f(x)*g(x)

is a group.

Problem 5.5. Show that the intersection of subgroups of G is a subgroup
of G.

(&) Vector Spaces

Definition 5.6. Vector space. A vector or linear space V defined over a
field F is a set V of elements called vectors, together with a binary opera-
tion VxV —> V called vector addition, and an operation Fx V —>
V called multiplication by a scalar (an element of the field F). These oper-
ations have the following properties:

I. Vector addition is a law of internal composition in V (i.e., V is closed under it),
and {V, +} is a commutative group, that is, for all xj,ze V, we have the
following:

1. Associative property: x + (y + z) = (x + y) + z
2. Commutative property: x + y = y + x
3. Existence of the additive identity: 3! 0 e V:x + 0 = 0 + x = x
4. Existence of inverse elements: V x e V, 3! (-x): x + (-x) = (-x) + x = 0

II. For all x,y e V and for all a, fte F, we have the following:

5. Double-distributive property:

a(x + y) = ax + ay and (a + j5)x = ax + {}x

6. Associative law for scalars: a(px) = (a/5)x
7. Neutrality of the scalar multiplicative identity, 1: lx = x

We will normally work with vector spaces defined over the field of real
numbers. We will generally use Greek letters to denote scalars, and Latin
letters to indicate vectors. Notice that we use the same symbol for vector
addition and scalar addition; although they are different operations, this
should not be a problem. Notice also that the dot (•) is often omitted when
multiplying a vector by a scalar.

Most vector spaces we will encounter in applications are special cases of
the following space.

Theorem 5.7. Let Xbe a nonempty set, and F afield. The set of all functions
f; X —> F, with addition and multiplication by a scalar defined by

f(x)+g(x) and (af)(x) = af(x) V x e X

is a vector space over F.
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The Real Number System 29

It is obvious that most of the vector-space axioms hold given the proper-
ties of the field F. The zero element is the function z such that z(x) = 0 for
every x in X; moreover, given an arbitrary function /, its additive inverse
(-/) is given by (-/)(*) = -/(*).

If in Theorem 5.7 we take X to be the set of the first n positive integers
and F= R, we obtain the vector space Vn(R), which is simply the set of
vectors in Rn with vector addition and scalar multiplication defined com-
ponent by component:

z = x + y <=$ zl= xl + yl and y = ax <=$ y l = axl (V i = l , . . . , n)

If X is the set of natural numbers, and F is R, we obtain the space of infi-
nite real sequences, with vector addition and scalar multiplication defined
term by term. With X= {(*,/); / = 1 , . . . , mj = 1 , . . . , n\ we have the vector
space oi mxn matrices defined over a field F, with the usual definitions of
matrix addition and multiplication by a scalar, and so forth.

In what follows, we will often suppress the distinction between the vector
space V and the underlying set V (as we have already done in the case of
fields). Let V be a vector space over a field F. If a subset S of V is a vector
space under the same operations defined on V, we say that 5 is a vector sub-
space of V. Of course, S inherits the manipulative properties that hold on
the whole of V\ hence in order to establish that it is indeed a vector sub-
space, it is enough to verify that S is closed under addition and multiplica-
tion by a scalar, that the zero vector 0 is an element of 5, and that for each
x in 5, (-x) is also an element of X. In fact, it is even easier, as shown in the
following result, whose proof is left as an exercise.

Theorem 5.8. Let V be a vector space over a field F, and let S be a nonempty
subset of W. Then S is a vector subspace of V if and only if

V a, 3 e F and V x, y e S, we have ax + (3y e S.

Problem 5.9. Prove Theorem 5.8.

6. The Real Number System

Most of the spaces we will be working with are sets constructed in some
way starting from the set R of real numbers. Hence, it is important to review
the basic properties of this set. It is possible to construct R by starting with
the natural numbers as undefined concepts, defining next the operations
addition, multiplication, subtraction, and division, and introducing new
numbers as it becomes necessary to ensure that these operations do not
take us outside the set of "existing" numbers. In this manner we will arrive

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Thu Jun 27 09:27:34 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.002

Cambridge Books Online © Cambridge University Press, 2013



30 Review of Basic Concepts

at the set Q of the rational numbers. It is then observed that even though
each rational number can be represented as a point on a straight line, the
converse statement is not true, suggesting that the set Q has, to put it
informally, some holes in it. The problem also manifests itself through
the impossibility of finding rational solutions to some simple equations (e.g.,
x2 = 2). To "plug" these holes, we define the irrational numbers and then,
finally, the set of real numbers as the union of the rational and irrational
numbers.

It is also possible, although perhaps less instructive, to define R directly
as a set that satisfies a number of properties or axioms. That is the path we
will take here, because we will later make use of the properties of R rather
than the method of its construction. The set R appears, then, as a set in which
we have defined various structures: an algebraic structure that allows us to
perform the usual operations of addition and multiplication, and an order
structure, compatible with the cited operations, that permits us to say that
some numbers are larger than others. These two sets of properties (which
also hold for the rational numbers) are complemented by the so-called
axiom of completeness, which completes the list of defining properties of R.
Intuitively, this third axiom is what allows us to establish the existence of a
bijective function from R to the points of the line.

Problem 6.1. Show that there is no rational number a =p/q (where p and q
are integers with no common divisors) such that a2 = 2. (By contradiction:
Assume p2/q2 = 2, and show that this implies that both p and q are even,
which contradicts our assumption. At some point, you will have to use the
fact that the square of an odd integer is also odd. Prove it.)

(a) A Set of Axioms for the Real Number System

The set R can be defined as a complete ordered field, that is, a set that sat-
isfies the three properties or /axioms listed next. The existence of such a set
can be established starting from the set of natural numbers, in several ways
(e.g., Rudin, 1964, pp. 17ft; jBartle, 1976, pp. 49-50).

Axiom 6.2. Field axioms. The set R, endowed with the operations addition
and multiplication, is afield. That is, both addition and multiplication are laws
of internal composition (i.e., R is closed under these operations) that satisfy
the associative and commutative properties and are endowed with identity and
inverse elements (except for the zero element, the additive identity, which has
no multiplicative inverse). Moreover, the following distributive property
holds: For every a, $, y e R, (a + Pjy = ay + (3y.
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L a H R

Figure 1.8. The axiom of completeness.

Axiom 6.3. Order axioms. There exists a complete ordering3 "<" defined on
R that is compatible with addition and multiplication, in the following sense:

, yel, a<(3=>a + Y<p+y and (a < fi and 0 < y) => ay < $y

That is, inequality between two numbers is preserved if (i) we add an arbi-
trary real number to both sides or (ii) we multiply both of them by a non-
negative number. The zero element (0) is the additive identity.

Axiom 6.4. Axiom of completeness. Let L and H be nonempty sets of real
numbers, with the property that

V1 € L and V h e H, 1 < h

Then there exists a real number a such that

Problem 6.5. Let x9 y9 and z be arbitrary real numbers. Using the order
axioms, show that the following statements are true:

(i) (x < y and xf < / ) =» x + x' < y + /
(ii) x < y => -y < -x

(b) The Supremum Property

In this section we will explore some of the implications of the axiom of com-
pleteness. For this, we need to define some concepts that make use of the
order axioms.

Definition 6.6. A bounded set and the bound of a set. Let X be a set of real
numbers. If there exists a real number u (not necessarily in X) such that
x < u for all x in X, we say that u is an upper bound of X and that the set
X is bounded above. A lower bound / is defined in an analogous way,
except that now we require that x > I for all x e X.

Observe that if u is an upper bound of a set X, then any number b larger
than u is also an upper bound of X. Hence, if the set X is bounded above, it
will have an infinite number of upper bounds. The smallest of all upper
bounds of X is called the supremum (sup) of the set, written sup X.
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Definition 6.7. Supremum and infimum. Let X be a set of real numbers that
is bounded above. The number s is the supremum of X (s = sup X) if it is its
smallest upper bound, that is, if

(i) 5 is an upper bound for X: V x e X, x < s, and
(ii) no number smaller than s1 is an upper bound of X:

V y < 5, 3 x e X s.th. x > y

In the case of a set that is bounded below, the largest lower bound or
infimum (inf) of the set is defined in an analogous manner.

Notice that if s is the supremum of X, then any number larger than s is
not the least upper bound of X, and any number smaller than s is not an
upper bound. Hence X must contain numbers that are arbitrarily close to s.
It is also clear that if A e B, A ^ 0 , and B is bounded above, then A is also
bounded above, and sup B > sup A.

The definitions of the upper bound and supremum of a set X do not
require that these numbers belong to X. If X has a supremum s and s is an
element of X, we call s the maximum of X and write s = max X. For example,
the interval (0,1] has a maximum equal to 1, whereas (0,1) has no
maximum, although it does have a supremum (which is also 1).

We can now show that the axiom of completeness is equivalent to the
statement that every nonempty set of real numbers that is bounded above
has a supremum.

Theorem 6.8. The supremum property. Every nonempty set of real numbers
that is bounded above has a supremum. This supremum is a real number.

Observing that s = sup X is equivalent to -s = inf(-X), where -x G -X if
and only if x e X, we see also that every nonempty set of real numbers that
is bounded below has an infimum.

Proof. Let X be a nonempty set of real numbers with an upper bound, and
define U as the set of upper bounds of X. By assumption, U is not empty,
and by definition, x < u for every ue U and every x e X . B y the axiom of
completeness, there exists a real number a such that

%<a<wVxG X and V ue U

Because x< a for all x in X, a is an upper bound of X; moreover, because
a < u for all u in the set U of upper bounds of X, a is the supremum of
X. •
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The Real Number System 33

Hence, the axiom of completeness guarantees the existence of a supre-
mum for certain sets of real numbers. The following result shows that the
supremum property implies the axiom of completeness, thus establishing the
equivalence of the two properties.

Theorem 6.9. The supremum property implies the axiom of completeness.

Proof. Let L and H be nonempty sets of real numbers, with the property
that / < h for all I in L and all h in H. Then each h is an upper bound of L,
and it follows that L has a supremum, with sup L < h for all h in H. Next,
because sup L is a lower bound of H, H has an infimum that cannot be
smaller than sup L. Hence L has a supremum, H has an infimum, and

/ < sup L<infH<h for every / in L and every h in H

Putting a = sup L or inf H, or both when they coincide, we obtain the axiom
of completeness. •

The following results reveal two important implications of the axiom of
completeness. Theorem 6.12, in particular, establishes the existence of real
solutions to the equation x2 = 2.

Theorem 6.10. The Archimedean property. The set N of the natural numbers
is not bounded above (i.e., for any x € R, there exists a natural number n such
that n>x).

Problem 6.11. Prove Theorem 6.10. Use the method of contradiction: If
the result is false, then there exists a real number x that is an upper bound
of N. Use Theorem 6.9 and the definition of supremum to obtain a
contradiction.

Theorem 6.12. Existence of V2. There exists a real number x>0 such that
x2 = 2.

Proof Let Y= {y e R; 0 <y2 < 2}. The set Y is nonempty (because 0 e Y)
and is bounded above (e.g., by 2, because y > 2 implies y2 > 2). By the supre-
mum property, Y has a supremum that we will call x. We will prove that
x2 = 2 by showing that we can exclude the other possibilities: If x2 < 2, then
we can find a number larger than x that lies in Y, and if x2 > 2, we can find
a positive number smaller than x that is an upper bound for Y. Because both
of these statements contradict the fact that x is the least upper bound of Y,
the result follows.
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First, we will show that if x2 < 2, then x cannot be the supremum of Y.
Assume that sup Y = x and x2 < 2. Then 2 - x2 > 0 and (by the Archimedean
property) we can select a positive integer n > 1 such that

2x + l 2x + l „ 2

n>- -<=> <2-x2 (1)
2-x2 n

Then, using (1), we have

l V 2 2x 1 ^ 2 2x + l 2 ,„ 2\ -.
+ - = x 2 + —- + — - < x 2 + <x2 + (2-x2) = 2

n) nl nl n
Hence, 0 < (x + (I/ft))2 < 2, implying that x + l/n e Y. That is, we have found
an element of Y larger than x = sup Y, which is clearly impossible. Hence x2

cannot be strictly smaller than 2.
Similarly, assume that x2 > 2, and let m be a positive integer such that

2x (. 1 . 2x
and m> > d

x x - 2

1 , 2x ( . i AX 2 "\ , .
m>— a n d m>——— | i.e., je > — a n d — < x - 2 j (2)

Then

1 ^ 2 2X 1 2 2X 2 / 2 o\ 1
x - x l + —->x z >xz-(xz-2) = 2

m) mm m

Hence 0 < x - (1/ra), (x - (1/m))2 > 2, and therefore x - 1/ra > y for all y in Y
We have found a positive number smaller than x that is an upper bound of
Y Because this contradicts the fact that x is the supremum of Y, it cannot
be true that x2 > 2. This leaves us with only the possibility that x2 = 2. •

An extension of this argument can be used to establish the existence of
ftth roots of positive real numbers.

Problem 6.13. hot A and B be nonempty sets of real numbers, both of them
bounded above, and let C be the set

Show that C has a supremum that is given by

sup C = sup A + sup B

Problem 6.14. The semiopen interval (a, b] is the set of real numbers x such
that a < x < b. Other intervals, such as {a, b) and [a, Z>], are defined in an anal-
ogous manner. Show that a nonempty set S of real numbers is an interval if
and only if whenever x and y are in 5, any real number z such that x<z <y
lies also in S.
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Hint: Let S be a set with the desired property, and define a = inf S (or
a = -°o if 5 is not bounded below) and b = sup S (or b = °° if S is not
bounded above). Using the definitions of supremum and infimum, show that

(c) Absolute Value

An important function defined on R is the one that assigns to each
real number its absolute value. The function H:R —> R is defined by
Ixl = maxfx, -#} or

xifx>0
-x ifx<0

Among other things, the absolute-value function allows us to introduce the
notion of distance between two numbers, because \x - y\ corresponds to the
length of the real line segment that joins the points corresponding to x and
y. As we will see in Chapter 2, once we have defined a measure of distance
in a set, we can introduce a topological structure that will allow us to define
concepts like continuity and convergence.

Problem 6.15. Show that if a > 0, then Ixl < a if and only if -a < x < a.

We will now establish a very important inequality.

Theorem 6.16. Triangle inequality for real numbers. Let x and y be two real
numbers; then

|x + y|<|x| + |y|

Proof. By definition of absolute value, we have

-|x| < x < |x| and - \y\ < y < \y\

Adding up these two inequalities, side by side,

| + |y|=>|x + y|<|x| + |);| •

Problem 6.17. Given real numbers xh i = 1,2, . . . , n, show the following:

(i) 127=1*1-1 < £?=ii*/l (by induction using the triangle inequality),
(ii) \a-c\<\a-b\ + 16 - c\ (look for an adequate substitution in the triangle

inequality).
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36 Review of Basic Concepts

7. Complex Numbers

We have seen that one of the reasons that motivate the construction of R
is the desire for a number system in which the equation x2 = 2 has a solu-
tion. A similar reason motivates the construction of the set of imaginary
numbers. This set is a field that contains the square roots of negative
numbers, including the solution to the equation x2 = - l . In this section we
will briefly discuss a "larger" number system, that of the complex numbers,
which contains both the real numbers and the imaginary numbers. Because
we will make rather limited use of complex numbers later in this book, we
will simply introduce some basic notions, without proofs or much formal
discussion.

A complex number is a number of the form

where a and b are real numbers, and / is the imaginary unit, i = V-1. The
number a is the real part of c (Re c), and b is its imaginary part (Im c). A
complex vector x = (cl9 ..., cn) is simply a vector whose components are
complex numbers.

The conjugate of a complex number c = a + ib is the number c =a-ib,
with the sign of the imaginary part reversed. The conjugate of a complex
vector x = ( c u . . . , cn) is x = ( c u . . . , cn), the vector whose components are
the complex conjugates of the components of the original vector.

The modulus of a complex number is the norm of the vector that repre-
sents it in the complex plane. That is,

Observe that a complex number and its conjugate have the same modulus
and that the product of a complex number and its conjugate is the square
of their common modulus:

It is often convenient to represent a complex number as a point with coor-
dinates (a, b) in a plane (the complex plane) in which the vertical axis mea-
sures the imaginary component, and the horizontal axis the real component.
Let 6 be the angle formed by the vector representing a complex number c
and the horizontal axis of the complex plane, as illustrated in Figure 1.9. We
observe that

cos 9 = alr =>a = r cos 6 and sin 6=bir => b = rsin 6

Hence we can write the number c = a + ib in trigonometric form:
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Imaginary axis

b

-b

c = a + ib

a Real axis

c = a - ib

Figure 1.9. Graphical representation of a complex number.

c = a + ib = r cos O + ir sin B = r(cos 0 + / sin 0)

Using the MacLaurin series representation of the sine, cosine, and expo-
nential functions, we obtain Euler's formula:

e/0 = cos 0 + i sin 0

which allows us to write the complex number c in yet another equivalent
way:

c = a + ib = r(cos 6 + i sin 6) = reid

Observe that the norm of ew is Vcos20 + sin20 = 1; thus ew lies on the unit
circumference in the complex plane. As the angle 6 varies from 0 to 2n
radians, the number eld rotates around the origin at a constant distance equal
t o l .
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Notes

1 The symbol "3!" is used to indicate that there is a unique element with a certain
property. Thus, the expression 31 x e A s.th. P(x) means "there exists precisely one
element of A that has property P.

2 Some authors use the term "ordering" to refer to what we call a "complete preordering.'
Then their "preordering" would mean "partial preordering" in our terminology. In
applications to economic theory, usually there is no chance of confusion, because
orderings (in our sense) are not used in the theory of consumer preferences.

3 A complete ordering on X is a reflexive, transitive, and antisymmetric binary relation
with the property that any two elements of X are comparable under the relation. See
Section 3(b).
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The reader should be familiar with low-dimensional Euclidean spaces, par-
ticularly the real line and the Cartesian plane. Given two points, x and y, in
one of these spaces, the distance between them, d(x, y), is the length of the
straight line segment that connects them. If x and y are real numbers, this
corresponds to the absolute value of their difference, that is d{x, y) = \x- y\;
if x and y are points in the plane with coordinates (xu x2) and (yu y2), respec-
tively, the distance between them is given by the Euclidean norm of the dif-
ference vector:

d(x, y) = ||x - y\\E = V(xi - yif +(x2 - y2f

Equipped with a notion of distance, we can define two concepts of fun-
damental importance in mathematical analysis: continuity of a function, and
limit of a sequence. Recall, for example, that a sequence [xn) of real numbers
converges to a limit x if

V e > 0, 3 N s.th. n > N => \xn - x\ < e

that is, if, given an arbitrarily small number e > 0, there exists some positive
integer N such that all terms in the sequence of order higher than N are
contained within an open interval centered at x with radius £. In a similar
way, the definition of continuity also makes use of the concept of distance.
We say that a function / : R —> R is continuous at a point x if

Vs>0, 3<5>Os.th. |y-*|<5=H/(>0-/(jc)|<e

Intuitively, a continuous function maps points that are close to each
other into images that are also close by, and a sequence \xn) converges to
x if by taking n large enough we can force xn to be arbitrarily close to x.
What is essential in both definitions is the notion of distance, rather than
the specific formulas that define it. This observation suggests that if we
can define an appropriate measure of distance, we can generalize con-

39
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40 Metric and Normed Spaces

vergence, continuity, and other topological concepts to more complicated
sets without losing completely the geometric intuition we get from the study
of the plane. This takes us to the concept of metric space, which is simply a
set in which we have defined a useful notion of distance (i.e., one that pre-
serves those properties of the familiar Euclidean distance we really need to
get useful results). Experience has shown that these basic properties are the
following:

(i) The distance between two points is always nonnegative and is zero if and only
if the two points are in fact the same.

(ii) The distance from x to y is the same as the distance from y to x.
(iii) The shortest route between two points is the straight line. One way to say this

is as follows: Given any three points x, y, and z, it is always true that

d(x,z)<d(x,y) + d(y,z)

As we will see shortly, these three properties are sufficient to characterize a
distance function that will allow us to define all the important topological
concepts in a very general class of spaces.

1. Metric and Normed Spaces

Definition 1.1. Metric or distance function. A metric or distance function
defined on a set X is a real-valued, nonnegative function d : Xx X —> R+

such that for every x, y9 and z in X we have

(i) d(x, y) > 0, with equality if and only if x = y,
(ii) d(x,y) = d(y,x),
(iii) d(x, z) < d(x, y) + d(y, z) (triangle inequality).

Definition 1.2. Metric space. A metric space is a pair {X, d), where X is a
set, and d a metric defined on it.

Given a metric space (X, d) and a subset Y of X, it is clear that the restric-
tion of d to y, denoted d\Y, is a metric defined on Y. Hence the pair (Y, d\Y)
is also a metric space, or a metric subspace of (X, d).

We often work with sets endowed with both an algebraic structure
and a distance function. Such spaces are particularly useful because they
allow us to perform algebraic operations on their elements, in addition
to defining topological concepts like convergence or open sets. We now
introduce an important family of such sets, the so-called normed vector
spaces.

We begin by defining a norm on the set of points X underlying a vector
space V. A norm is a function that assigns to each vector in X a nonnega-
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Metric and Normed Spaces 41

tive real number that we interpret as its magnitude. It is therefore a gener-
alization of the absolute value of a real number or the length of a vector in
the plane.

Definition 1.3. Norm. Let V be a vector space, and X the underlying set of
points. A real-valued function ||-||:X —> R is called a norm if it satisfies the
following properties for all x and y in X and any scalar a.

(i) nonnegativity: ||x|| > 0
(ii) only the zero vector has zero norm: ||x|| = 0 <=> x = 0
(iii) triangle inequality: \\x + y\\ < \\x\\ + \\y\\
(iv) nodi = |a|||x||

Definition 1.4. Normed vector space. A normed vector space is a vector
space V equipped with a norm.

A normed space naturally becomes a metric space if we define the dis-
tance between two vectors as the norm of their difference, that is,

d(x,y) = \\x-y\\

Observe that the function rf(-, •) automatically satisfies the definition of
metric. We say that d() is the metric generated by the norm || • ||. When we
speak of topological properties in a normed vector space, it will always be
in terms of this metric.

The information that a certain set endowed with a distance function is a
metric space can be very useful, because it allows us to use a lot of results
that hold generally in metric spaces. Usually, verifying that such a pair is a
metric space is fairly easy, except possibly for the triangle inequality. We will
now consider some examples of useful metric spaces.

Example 1.5. n-dimensional Euclidean space. It is easy to go from the plane
or three-dimensional space to a Euclidean space of arbitrary (but finite)
dimension n. We shall denote this space by E" - (Rn, dE). That is, X is now
the set of n-dimensional vectors

and the metric is the Euclidean distance between two vectors, defined as the
Euclidean norm of their difference, x - y = x + (-y):

In order to show that (Rn , dE) is indeed a metric space, it is sufficient to
verify that \\-\\E is a norm. It is obvious that \Y\\E satifies the first two defining
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42 Metric and Normed Spaces

properties of a norm; verifying that the triangle inequality holds takes a bit
more work. We begin by proving a related result.

Theorem 1.6. Cauchy-Schwarz inequality. Let a{ and $b i = l,..., n, be real
numbers; then

Proof. For any real number A, we have

Now, putting A = ZUcCipi/XUPl we see that

Taking the square root on each side of the Cauchy-Schwarz inequality, we
obtain

Using this result, it is easy to verify that the triangle inequality holds in En.
Given any three vectors x, y, z € Rn, we have

=XL(̂ ' - y)2 + Yay-^

= , yf + [dE(y, z)f + 2dE(x, y)dE(y, z)

= [d(x,y)+d(y,z)f

which implies the desired result,

dE(x, z) < dE(x, y) + dE(y,z) •
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Metric and Normed Spaces 43

Problem 1.7. The Cauchy-Schwarz-Bunyakovsky inequality. Let / and g be
continuous functions [a, b] —> R. Adapt the preceding proof to establish
the following analogue of Theorem 1.6 for integrals:

( ) dx) < ([[f(x)f dxl[[g(x)f dx

A given set (vector space) may have several different metrics (norms)
defined on it. For example, an alternative to the Euclidean norm in Rn is
the sup norm, defined for any x e R n a s the absolute value of its largest
component:

Two norms ||-||i and ||-||2 defined on the same vector space are said to be
Lipschitz-equivalent if there exist positive real numbers m and M such that
for any vector x, we have

Lipschitz-equivalent metrics are defined in an analogous manner. Intuitively,
two metrics are Lipschitz-equivalent if they always agree on whether or not
two given points are close to each other. As we will see later, this implies
that equivalent metrics preserve such important properties as openness and
convergence.

Problem 1.8. Show that the sup norm, ||-||s:R
n —> R, as defined earlier, is

a norm.

Problem 1.9. Show that the sup norm ||-||5 and the Euclidean norm
\\-\\E are Lipschitz-equivalent norms by proving that for any n-vector x9

Example 1.10. Product spaces. Let (X, dx) and (Y, d2) be metric spaces. We
define the product space of these two spaces as the pair (Xx Y, dK) where
the product metric, dn:XxY —> R+, is defined by

d*[(x, y),(*', / ) ] = 4di(x,x')f+[d2(y,/)f (1)

(or, alternatively, by dJt=d1 + d2 or 4 = max{Ji, d2}). This definition can be
extended in the obvious way to the case of any finite number of metric
spaces. The following problem asks the reader to verify that (Xx Y, dK) is
itself a metric space.
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g(x)

f(x)

Figure 2.1.

Problem 1.11. Show that dn is a metric.

Example 1.12. Some function spaces. It is often convenient to define a
metric on a set of functions. For example, consider the set X of continuous
functions [a, b] —> R. Two useful metrics on this set are the sup metric,
defined for any / and g in X by

ds(f,g)= sup \f(x)-g(x)\
xe[a,b]

and the L2 metric, given by

f,g) = ([[f(x)-g(x)fdxf2

Notice that these two metrics capture rather different ideas about what it
means for two functions to be "close." According to the sup metric, ds(f, g)
will be small only if / and g are close for all values of x, whereas in the L2

metric it suffices that they be close on average over their domain. These two
metrics are not equivalent, for functions that are arbitrarily close on average
may be very far from each other over a small interval, as illustrated by
Figure 2.1.

In some applications we are interested in how similar functions are in
terms of both their values and their derivatives. If we let X be the set of
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Metric and Normed Spaces 45

functions [a, b] —> R that are r > 1 times continuously differentiable (see
Chapter 4), an appropriate metric can then be defined as follows. Given r,
the C metric on X is defined, for i < r, by

d^f, g) = sup (|/(x)-g(x)\,\f'(x)-g'(x)\,..., \f\x)-g«(x)|}
xe[a,Z>]

where/w is the rth derivative of/. •

We conclude this section with some additional definitions. Given a metric
space (X, d), the open ball with center at x and radius e is the set

Be(x) = {yeX;d(x,y)<e}

The closed ball Be[x] is defined in the same manner, but with a weak in-
equality. We will often write the e-ball with center at x. Unless it is other-
wise indicated, it will be understood that the ball is open.

A set 5 in a metric space is bounded if we can find a closed ball of finite
radius that contains it. Formally, given a metric space (X, d), we say that a
subset S of X is bounded if there exists some point x in X, and some real
number B, such that d(x, s)<B for all s e S.1 Equivalently, 5 is bounded if
it has a finite diameter, where

diam S = sup{d(s, s'); s, s' eS}

A function /from some set Z into (X, d) is bounded if f(Z) is bounded.
Given a metric, we can define, in addition to the distance between two

points, the distance between a point and a set or between two sets. Given
a metric space (X, d), let A be a subset of X, and x some point in X. The
distance from x to A is defined as

d(x, A) = infd(x, a)
aeA

If A and B are two subsets of X, the distance between them is given by

d(AB) = infd(B,a) = int{d(a,b); aeA, beB}

Problem 1.13. Prove that the union of any finite collection of bounded sets
is bounded. (Prove it for two sets; the result then follows by induction. Draw
a picture.)

Problem 1.14. Using the triangle inequality, show that for any x, y, and z in
a normed vector space, the following are true:

(i) ||x-y||>||x||-M and (ii) ||x-z||<||*-y||+|b-z||
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46 Metric and Normed Spaces

Problem 1.15. Show that the set of bounded real sequences is a metric space,
with the norm defined by d(x, y) = supjxn - yn\.

Problem 1.16. Let (X2, d2) be a metric space, Xx a set, and f\Xx —> X2 a
one-to-one function. Define a function dx{ ) by

d1{x,y) = d2[f(x)J{y)]\/x,yeX1

Show that (Xu dx) is a metric space.

Problem 1.17. Give an example of two sets A and B in a metric space such
that A n B = 0 , but d(A, 5) = 0.

Problem 1.18. Prove that the set C[a, b] of continuous real functions defined
on the interval [a, b] is a metric space when the distance between two
functions / and g is defined by

d(f,g)= sup \f(x)-g(x)\
xe[a,b]

Problem 1.19. Show that the following inequality holds for any x e Rn:

Hint: Prove it directly for n = 2, and then proceed by induction.

2. Convergence of Sequences in Metric Spaces

We have seen that a sequence in X is a function s: N —> X whose domain
is the set of natural numbers and whose range is a subset of X. If (X, d) is
a metric space, we can define convergence exactly as for sequences of real
numbers.

Definition 2.1. Convergence in metric spaces. Let (X, d) be a metric space,
and {xn} a sequence in X. We say that {xn} converges to x e X, or that the
sequence has limit x, if

Ve>0, 3N(e) s.th. n>N(e)=>d(xn,x)<e [or,xn EB £ (X) ]

If {xn} has limit x, we write {%„} - > x o r limn̂ «,A:n = x. A sequence that does
not converge is said to diverge.

That is, a sequence is convergent if its terms get closer and closer to some
point x, to the extent that, given an arbitrarily small number e > 0, we can
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Be(x) Be.(x')

Figure 2.2.

always find some positive integer N(e) (which will in general depend on
the chosen e) such that all terms of the sequence of order higher than N(e)
will lie within the £-ball centered at x. Equivalently, the sequence [xn] of
points of X has limit x if and only if the sequence of real numbers {d(xm x)}
converges to zero.

Problem 2.2. Using the formal definition of limit, show that

,. , ,. 1 n .... ,. 1 n ..... .. n2+2 1

W im2- = 0' <u) i 1 ™ ^ 0 ' (m) feS3^T4 = 3
Imagine you are given some arbitrarily small £. You must produce a posi-
tive integer N such that.. . .

Before we can speak of the limit of a sequence, we must show that it is
uniquely defined. This is done in the following result, which shows that if a
sequence has a limit, then it is unique.

Theorem 2.3. Uniqueness of the limit. A sequence {xnj in a metric space
(X, d) has at most one limit.

Proof We will prove the result by contradiction. Intuitively, \xn) cannot
approach two different limits. If it did, we would be able to find terms of the
sequence that would be, simultaneously, close to two "far-away" points.

Suppose [xn] had two different limits, x and x\ Then d(x, xf) > 0, and we
could construct two disjoint open balls, Be(x) and Be(x'), each centered
at a different limit, as illustrated in Figure 2.2.2 If both x and x' were
limits of {xn}, there would exist positive integers N(e) and N(e') such that
xn G Be{x) for all n > N(e) and xn e B£(x') for all n > N(e'). It would follow
that xn e B£(x) n Be(x') = 0 for all n > max{N(£), N(e% but that would be
impossible (we would have found an element of an empty set).

Problem 2.4. Let {xn} be a convergent sequence with limit x. Show that every
subsequence of {xn} converges to x.

Theorem 2.5. Every convergent sequence in a metric space is bounded.
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48 Metric and Normed Spaces

Proof. Assume {xn} -> x. Then there exists some N such that d(xm x)<1 for
all n> N. Define

m = max{l, d(x u x\...,, d(xN, x)}

which is finite and well defined, because we are taking the maximum of a
finite set of real numbers. By construction, d(xm x)<m for all n; hence the
bounded ball Bm(x) contains the whole sequence, and the distance between
any two terms of {xn} cannot exceed the ball's diameter; that is, for any
xt and xk,

d(xhxk)<d(xhx) + d(x,xk) = 2m<°° n

We now introduce a concept closely related to that of limit. It is possible
that a sequence may contain one or more convergent subsequences, even if
it does not converge itself. We call the limits of such subsequences cluster
points (of the original sequence).

Definition 2.6. Cluster point. Let {xn} be a sequence in a metric space (X, d),
and c a point in X. We say that c is a cluster point of {xn} if any open ball with
center at c contains infinitely many terms of the sequence. That is,

Ve>Oand ViV, 3n >Ns.th.xn eBe(c)

Note carefully the difference between the definitions of limit and cluster
point: If x is the limit of {xn}, any £-ball around x will contain all terms of
the sequence except for the first N(e). For a cluster point c, we require only
that any ball around c contain an infinite number of points of the sequence.
This is a weaker condition, for we may still have an infinite number of terms
outside the ball. Hence, the limit of a sequence is a cluster point, but
the converse statement need not be true. For example, the sequence defined
by

xn = 0 for n even and xn = 1 for n odd

has two cluster points but does not converge.
Let y be the limit of some subsequence [xnk] of {xn}. Then y is a cluster

point of {*„}, because any Be(y) will contain an infinite number of terms of
{xnjc} and hence of {xn}. In a metric space (but not necessarily in more general
topological spaces), the converse statement is true.

Theorem 2.4. Let fxnj be a sequence in a metric space (X, d). // c is a
cluster point of {xn}, then there exists some subsequence {xnkj of fxnj with
limit c.
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Sequences in R and Rm 49

The proof of this result is an example of a proof by construction. To show
that something exists, we show that we can construct it using the given
assumptions.

Proof. If c is a cluster point of {xn}, we have, by definition,

V£>0andViV, 3n>Ns.th.xn eB£{c) (1)

To construct a subsequence with limit c, consider a sequence of open balls
with center at c and radius Ilk, {Byk(c)}. It follows from (1) that for each k
there exists some nk such that xnjc e Byk(c) and that, moreover, it is possible
to choose nk > nk-\ for all k (so that {xnjc} is indeed a subsequence). As k
increases without bound, the radius of the balls goes to zero, implying that
{Xnk) -* c. •

3. Sequences in JR and Rm

Most spaces of interest in our applications are constructed starting from the
real numbers. We shall therefore find it useful to establish some important
properties of sequences in R.

A sequence of real numbers {xn} is increasing if xn+i > xn for all n, and
decreasing if xn+1 < xn. An increasing or decreasing sequence is said to be
monotonic. The following result says that every increasing sequence of real
numbers that is bounded above converges to its supremum. In the same way,
it can be shown that every decreasing real sequence that is bounded below
converges to its infimum. Hence, every monotonic bounded sequence of real
numbers converges.

Theorem 3.1. Every increasing sequence of real numbers that is bounded
above converges to its supremum.

If {xn) is increasing and has limit x, we often write {xn} T x.

Proof Let {xn} be an increasing real sequence, and assume that it is bounded
above. By the supremum property,3 {xn} has a supremum that we will call
s. We want to show that s is the limit of the sequence, that is, that for any
given e > 0 we can find some positive integer N such that xn e Be(s) for all
n>N.

Fix some arbitrary £ > 0. By the definition of supremum, xn < s for all n;
moreover, s - e is not an upper bound of {*„}, so there exists some term xN

of the sequence such that xN>s-e. Finally, because {xn} is increasing, we
have xn > s - e for all n>N. We have shown that for the given £, there exists
some N such that
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XN XN+1 ...

Figure 2.3. s-e

Finally, because e is arbitrary, we conclude that [xn) —4 s. •

A real sequence {xn} is bounded if it is bounded both above and below,
that is, if there exist real numbers / and u such that

l<xn<u f or all n e N

or, equivalently, if there exists some number B such that \xn\ < B for all n.
We have seen that every convergent sequence in a metric space is bounded.
In general, the converse is not true: There exist bounded divergent
sequences. However, for the case of R, it can be shown that every bounded
sequence contains at least one convergent subsequence. To prove this impor-
tant result, we will need the following theorem:

Theorem 3.2. Every sequence of real numbers contains either an increasing
subsequence or a decreasing subsequence, and possibly both.

Proof. Given an arbitrary sequence of real numbers {xn}, define the set

S = {,s E N ; xs > xn V n > s}

To put an intuitive interpretation on S, imagine an infinite number of people
seated in a very long line of seats in a movie theater, with the screen at the
right "end" of the line, and interpret xn as the height of the nth person in the
line. Then S is the set of people who can see the movie (i.e., the subset of
the audience consisting of individuals who are taller than all those in front
of them). Notice that there are only two possibilities: Either an infinite
number of people can see the movie, or only a finite number of them can.
We will show that in the first case we can construct a decreasing subsequence
of {xn}, and in the second an increasing one.

Observe that the set [xnk\ nk e S}, thought of as a (possibly finite) sequence,
is always decreasing, by the definition of 5, for if nk e 5, we must have
xnk > xnk+l. (Intuitively, the people who can see the screen must be arranged in
order of decreasing height.) Hence, if S is unbounded (i.e., if we can always
find another person farther down the line who can see the screen), we are
done, for [xnk; nk e S] is an (infinite) decreasing subsequence of {xn}.

The other possibility is that S is finite (i.e., bounded above). By the supre-
mum property, S then has a supremum that we call N (roughly, N is the last
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x = height

... Screen

1 2 3 4 5 6 7 8 9

Figure 2.4. Construction of a decreasing subsequence.

x = height

N N+l N+2

Figure 2.5. Construction of an increasing subsequence.

Screen

person who can see the screen). We will now construct an increasing
sequence starting with the (iV+ l)th person. Put kx = TV+1. Now, because
person kx can't see (kx € 5), there must exist a person farther down the line
who is taller (i.e., 3n>kx s.th. xn >xkl). Call the first such person k2. Now,
k2> N can't see either, so there must be an even taller person farther down,
and so on. In this manner we can construct an increasing subsequence {xkj\,
by starting with the first person who can't see and taking at each stage the
individual who is blocking the view of the previous one. •

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Thu Jun 27 18:16:12 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.003

Cambridge Books Online © Cambridge University Press, 2013



52 Metric and Normed Spaces

Now, let {xn} be a bounded sequence of real numbers. The preceding
theorem tells us that [xn] contains at least a monotonic subsequence. Clearly,
this subsequence must be bounded, so we can apply Theorem 3.1 (or its ana-
logue for decreasing sequences) to obtain the following result:

Theorem 3.3. Bolzano-Weierstrass. Every bounded real sequence contains at
least one convergent subsequence.

Problem 3.4. We want to show that every real sequence {xn} contained in
[a, b] has a subsequence that converges to a point x in the interval. Because
\xn) is bounded, the Bolzano-Weierstrass theorem ensures that it does
indeed have a convergent subsequence. Assume that the limit of this sub-
sequence lies outside [a, b] (e.g., x > b). Show that this leads to a contradic-
tion. (First, draw a picture.)

The following two results tell us that taking the limits of convergent
sequences "preserves" weak inequalities and algebraic operations.

Theorem 3.5. Let {xnj and fynj be convergent real sequences, with {xn} —» x,
and {ynj —> y. If xn < yn for all n, then x < y.

Proof. Fix some e > 0. Because {xn} —> x, and [yn] —> y, there exist positive
integers Nx(e/2) and Ny(e/2) such that

\xn -x\< e/2 for all n >Nx(e/2) and \yn - y\< e/2 for all n >Ny(e/2) (1)

Putting N=max[Nx(e/2)9Ny(e/2)}, both inequalities in (1) hold simul-
taneously. Hence, for n> N, we have

xn>x-e/2 and yn<y + e/2 (2)

and we can write

x-y = (x-xn) + (xn-yn) + (yn-y)<e (3)

because xn - yn < 0 by assumption. Finally, because x - y < e for any positive
£, it must be true that x - y < 0. •

In fact, the assumptions of the theorem can be weakened: All we need is
that there exist some N such that xn < yn for all n > N. Observe also that the
theorem does not hold for strict inequalities. (Can you construct an example
of two sequences that have the same limit even though xn < yn for all n?)

Theorem 3.6. Let fxnj and fynj be convergent real sequences, with {xnj —» x
and {yn} —> y. Then
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(i) fxn + yj -» x + y,
(ii) /xnyn; -> xy,
(iii) fxn/yn} —»x/yprovided y&O and yn*0 for all n.

Proof

(i) Using the triangle inequality, we can write

\(xn + yn)- (x + y)\ = \(xn -x) + (yn - y)| < \xn -x\ + \yn - y\ (1)

Now, fix an arbitrary e > 0. Because {xn} -» x and {yn} —» y, there exist positive
integers NX(SL2) and Ny(ef2) such that

\xn-x\<e/2\/n>Nx(e/2) and \yn -d<e Vn> Ny(e/2) (2)

Write N = max{Nx(e/2), Ny(el2)}. Then, for every n > , both inequalities in (2)
hold simultaneously, and we have, using (1):

\(xn + yn)-(x + y)\<\xn -x\ + \yn -y\<e/2 + e/2 = e

(ii) Proceeding in a similar fashion, we have

\xnyn - xy\ = \xnyn - xyn + xyn - xy\ = \(xn - x)yn + x(yn - y)\
<\xn-x\\yn\ + \x\\yn-y\ (3)

Fix some £ > 0. By assumption, {yn} is convergent and therefore bounded
(Theorem 3.3); hence, there exists some positive number B such that

\yn\<B for all n (4)

Next, because both sequences converge, we can find an integer Nx such that

\xn-x\<^Vn>Nx (5)

and, provided IJCI # 0, another Ny such that

b«-yl<^jVn>ATy (6)

Put iV = max{A ,̂ Ny) if IJCI & 0, and N = NX otherwise. Going back to (3), we have,
for any n> N:

\xnyn-xy\<\xn-x\\yn\ + \x\\yn-y\<—B +—\x\ = £

(if IJCI = 0, the second term after the strict inequality is zero),
(iii) To establish the last part of the theorem, it is sufficient to show that {Vyn} —>

1/y, provided y * 0 and no yn = 0, and then use (ii). We now write

\yn-y\ ( 7 )1 1
y y

yn-y
yny \y\\y\
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54 Metric and Normed Spaces

As before, we will now use the convergence of {yn} to put a bound on this
expression. By definition of limit, we can find some Ni such that

\ y n - y \ < j foralln>iV1 (8)

Using the triangle inequality,

\y\ = h - yn)+yn\^\y - yn\ + \y\=>\ - yn\

Using this expression and (8), we have that, for all n>N\,

Ivl
\yn\>M-\y-yn\>l{ (9)

Next, fix some s > 0. By the convergence of {yn}, we can find some iV2 > Ni such
that for all n>N2we have

Finally, substituting (9) and (10) into (7),

_1_ 1

y y

\yn-y\Jy\2e/2=£ ^
\yn\\y\ \yfli

Clearly, if we replace one of the sequences by a constant, the proofs
only become simpler. Hence, given any two real numbers a and /?, we
have

{axn}->ax, {a+xn}~^a+x, and

Moreover,

Notice also that the proofs make use of only some basic properties of the
absolute value that are shared by any other norm. Hence, it is easy to adapt
the foregoing arguments to show that the relevant parts of the last theorem
hold for any normed vector space.

We have seen that convergent sequences are necessarily bounded. Hence,
unbounded sequences do not have a limit in the proper sense, even if they
"tend to infinity," a concept we now define precisely.

Definition 3.7. A sequence of real numbers {xn} tends to infinity, written
{xn} -» 00, if for any number K there exists some integer N(K) such that
xn > K for all n > N(K).
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The following result is often helpful when we are trying to determine
whether or not a given sequence tends to infinity. The proof is left as an
exercise.

Theorem 3.8, Let fxnj be a sequence of positive real numbers. Then fxnj -»
oo if and only if fl/xnj -> ft

Problem 3.9. Prove Theorem 3.8.

In many applications we work with sequences in finite-dimensional
Euclidean spaces. The following theorem says that in such spaces, a sequence
of vectors converges if and only if each one of its coordinate sequences
converges. By "coordinate sequences" we mean the real sequences whose
terms are the components of each vector in the original sequence. This result
can be extended to finite-dimensional normed vector spaces and to product
spaces.

Theorem 3.10. A sequence {xnj in Em converges to a vector x = (x1, x2,...,
xm) if and only if each coordinate sequence {x\} converges to x\

Proof. Note that {xn} —» x if and only if {xn - x] —» 0. Hence, we can con-
sider the case in which the limit x is the zero vector without any loss of
generality.

• (—») First, assume {xn} —» 0, and fix some e > 0. By the convergence of {xn} to 0,
there exists some N such that dE{xn, 0) < e for all n> iV, that is,

./I

Now observe that for any j = 1 , . . . ,m, we have Ixil = V(jti)* < V£ E
i (4)2 . Hence

it is also true that for n > N, ws have \x}
n - 01 < e for all j = 1,... ,m; that is, each

of the coordinate sequences converges to the real number zero.
• (<—) Now assume that all the component sequences converge. Given some e > 0,

we can find positive integers Nt such that

for each i = 1,2,...,m, n > Nt=> \xl
n\ < e ^m (1)

If we now define N = maxtNh (1) holds for all the component sequences, provided
n> N. We have, then,

m = e for all n> N

Hence, {x'n} -> 0 for all i implies {xn} -> 0. O
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56 Metric and Normed Spaces

Problem 3.11. Convergence in product spaces. Let (X, dt) and (F, d2) be
metric spaces, and consider the product space (Z = IxY,4), with the
product metric dn defined by

d,(z, zO = d,[(x, y\{x\ / ) ] = 4di(x,x')f + [d2(y,y>)f (1)

Show that the sequence {zn} = {(xn, yn)} converges to z = (x, y) in (1x7,
dK) if and only if {xn) converges to x in (X, d) and {yn} converges to y in

Problem 3J2. Bolzano-Weierstrass in Em. Show that every bounded
sequence in Em contains at least one convergent subsequence.

To end this section, we consider the convergence properties of two com-
monly encountered families of real sequences.

Theorem 5.15. Let a be a real number, and consider the sequence fanj. As
n —> °o, we have the following:

(i) 7/lal < I then {tfj -> ft
(ii) Ifa>l,thenfanj-><*>.
(Hi) If a < -7, then /a"

/ diverges.

Problem 3.14. To prove this theorem, we need the following result, known
as the Bernoulli inequality: For each positive integer n and any x>-l,
(1 + x)n > 1 + nx. Prove that this is true by induction. Where in the proof do
you need the assumption that x > -1?

Problem 3.15. We can now prove Theorem 3.13. Hint: If \a\ < 1 (and a ̂  0),
we can write \a\ = 1/(1 + x) for some x > 0; if a > 1, then a = 1 + x for some
x > 0. Use the Bernoulli inequality.

Theorem 3.16. Let b be a real number, and consider the sequence fnbj. We
then have the following:

(i) Ifb<0,then{nb}-*0.
(ii) Ifb > 0, then fnbj -> <».

We will now show that when b > 0 and a > 1, the ratio anlnb tends to infinity
as n -> oo; that is, the "exponential" function a" grows faster than any power
of n. First, however, we need the following result.

Theorem 3.17. Let fxnj be a sequence of nonzero real numbers. If
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X+1

then {x} -» 0.

Proof. Fix some £ > 0, and choose some c e (L, 1). Because 0 < \xn+1/xn\ =
lxn+1l/lxnl —» L<c, there exists some N such that lxn+1l < c\xn\ for all n > N. By
induction, we can write

\xN+k|< c\xN+k.i\ < c2\xN+k.2\ < ...<ch\xNI ^

for any k > 0. Now, because ck —> 0 as k -> <», there exists some K such that
ck< el\xN\ for all k> K.Thus, for k>K,wc have

\x\

and {xn} -> 0. D

Theorem 3.18. Letb>0 and a > i; then /a7nb/ -> °o.

Proo/ Write xn = nblan. We will show that {xn} ~> 0. By Theorem 3.8, this
implies {llxn) = {an/nb} —> °°. Now,

^ x i 1
and therefore hm-iil i — = — < lx# an+1 nu a\ n )

By Theorem 3.17, we conclude that {xn} -» 0. •

Problem 3.19. Given a sequence of real numbers {xn}, the sequence
{SN}, defined by SN = 2%=oXn, is called the sequence of partial sums of the
infinite series £̂ =oxn. If {SN} converges to some (finite) limit S, then we write

Consider the sequence {an; n = 0,1,. . .}, where 0 < a < l , and define
SN as before. Verify that (l - a)SN = l - aN+

\ Use this to show that
IZUd1 = 1/(1 - a).

Problem 3.20. Given the function

define a sequence [xn] of rational numbers by

xi=1 and xn+1 = f(xn) foralln>1 (2)
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58 Metric and Normed Spaces

We have, then,

*2 = 1.5, x3 = 1.417 . . . (3)

(i) Prove that if {xn} converges, then its limit is x = V2. (Complete the follow-
ing expression: x = liran^^xn+1 = limn_,M/(xM) = ) We have seen in Chapter 1
(Problem 6.1) that V2~ is not a rational number. Hence {xn} does not converge
in Q. We will show, however, that the given sequence has a real limit.

(ii) Prove that for n > 2 we have xn > V2. (Show that f(x) > ^2 using a2 + b2> 2ab.
Why?)

(iii) Calculate the value of (xn+i - xn) as a function of xn and xn^. Use the resulting
expression to prove that for n > 2, {xn} is decreasing (by induction).

By the analogue of Theorem 3.1 for decreasing sequences bounded below,
{xn} converges to a real number. Hence, there is a real number x such that
x2 = 2.

4. Open and Closed Sets

Definition 4.1. Open and closed sets. Let (X, d) be a metric space. A set A
in X is open if for every x e A there exists an open ball centered at x that
is contained in A, that is,

A, 3e>0s . th .B £ (X)QA

A set C in X is closed if its complement (Cc or ~C) is open.

Intuitively, a set A is open if, starting from any point in it, any small move-
ment still leaves us inside the set.4 We will now establish some basic prop-
erties of open sets.

Theorem 4.2. Properties of open sets. Let (X, d) be a metric space. Then

(i) 0 and X are open in X,
(ii) the union of an arbitrary (possibly infinite) family of open sets is open,
(iii) the intersection of a finite collection of open sets is open.

Proof

(i) This should be understood as a convention. X and 0 are both open and closed

(ii) It is obvious: Let {At; At c X, i e /} be a family of open sets; then if x e utAh x
belongs to some particular Ab and because At is open, there exists some e > 0
such that Be(x) is contained in At and therefore in u A .

(iii) Let {Af9 Ai c X, i = l , . . . , n} be a finite family of open sets. We want to show
that A = n?=iAz is open. Take any point x in A; by definition, x belongs to each
and all of the At% and because these sets are all open, we can find open balls
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Bei(x) such that for each /, Bei{x) c At. Observe that the smallest such ball
is contained in all the A?s simultaneously, and hence in A. That is, if we put
£ = min/{$}, then

Be (x) c BB(x) c A, , V i = 1,..., n => Be (x) c n U A,, = A

which shows that A is open.
The condition that the family of sets be finite is important. If we had an

infinite number of sets, infif£*} might be zero (note that the minimum might not
exist). In that case, there might not be a ball small enough to do the job. For
example, if we take the intersection of the infinite family of open intervals

we end up with the set {0}, which is not open. •

Using De Morgan's laws6 and the previous result, it is easy to show that
closed sets have the following properties:

Theorem 4.3. Properties of closed sets.

(i) 0 and X are closed in X.
(ii) The intersection of an arbitrary collection of closed sets is closed.
(Hi) The union of a finite family of closed sets is closed.

Problem 4.4. Prove Theorem 4.3.

(a) Interior, Boundary, and Closure of a Set

Definition 4.5. Interior, exterior, boundary, and closure of a set. Let (X, d)
be a metric space, and A a set in X. We say the following:

(i) A point xt e X is an interior point ofA if there exists an open ball centered at
xh Be(xj), that is contained in A. The set of all interior points of A is called tfte
interior of A (intA).

xt G int A <=> 3e > 0 s.th. B£(xi) c A

(ii) A point xe e X is an exterior point of A if there exists some open ball around
xe that is contained in the complement of A (~A or Ac). The set of all exterior
points of A is called its exterior (ext A).

xe e ext A <=> 3e > 0 s.th. Be(xe) c (~ A)

(iii) A point xb e X is a boundary point of A if any open ball around it intersects
both A and its complement. The set of boundary points of A is called its bound-
ary, written bdy A or dA.

xb € dA <=> Ve > 0, Be(xb) n A * 0 and Be(xb) n (~ A)± 0
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(iv) A point xc € X is a closure point of A if any e-ball around it contains at least
one point in A. The set of closure points of a set is called its closure, written
cl A or A.

xc e cl A <=> Ve > 0, Be(xc)

It is clear from the definition that intA CZA: Because any interior point
of A lies inside a ball contained in A, it must itself be in A; in the same
manner, ext^l c :(~yl). Also, A cclA, for any open ball around a point
x G A contains at least one element of A, namely x itself. Hence,

intAcAcclA (1)

On the other hand, a boundary point of A may belong either to A or to its
complement, and the same is true of closure points.

It is also evident that the interior, exterior, and boundary of any set A in
X constitute a partition of X; that is, they are disjoint sets, and

int AvextAvdA = X (2)

Finally, we have

clA = int AudA (3)

and

ext A = int(~ A) (4)

Example 4.6. Let A be the closed ball Be[x] = {y e X; d(x, y) < e}. Then

intBe[x] = B£(x) = {yel; d(x,y) <e}9 extBe(x) = {ye Z; d(x,y)> e}9

bdyBe[x] = {ye X; d(x, y) = e}9 clB£[x] = Be[x] •

Problem 4.7. Prove that dA = cl A n cl(~A).

Using the concepts of the interior and closure of a set, we obtain the
following characterizations of open and closed sets:

Theorem 4.8

(i) int A is the largest open set contained in A.
(ii) A is open if and only ifA = int A.
(Hi) cl A is the smallest closed set that contains A.
(iv) A is closed if and only if A = cl A.
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Figure 2.6. Interior, exterior, boundary, and closure points.

Proof

(i) First we show that intA is open. By definition of "interior," for each point
xt G int A there exists some open ball Be(x) contained in A. To show that
int A is open, we have to go one step further and verify that Be(Xi) is contained
in int A. Because an open ball is open set, around any point y in Be(Xi) we can
construct another open ball contained in Be(Xi) and hence in A. It follows that
any point y e Be(x) is an interior point and Be(x) is indeed contained in A.

Next, we show that int A is the largest open subset of A. If B is any open
subset of A, then all its points are by definition interior points of A. Hence, for
any such set, B c int A.

(ii) If A = int A, then A is open, because int A is open. If A is open, then its largest
open subset is A itself, and hence A = int A. •

Problem 4.9. Prove parts (iii) and (iv) of Theorem 4.8.

(b) Limit Points and Characterization of Closed Sets in
Terms of Sequences

Definition 4.10. Limit points and derived set. Let (X, d) be a metric space,
and A a set in X. A point xL in X is said to be a limit (or cluster) point of A
if every open ball around it contains at least one point of A distinct from xL.
The set of all limit points of A is called its derived set, denoted by D{A):

, Be(xL)n(A\{xL})*0
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Notice that this is more restrictive than the definition of closure point,
because now the intersection of A and Be(xL) cannot be just the point xL

itself. Points for which this is the case are called isolated points. Hence,
closure points are either limit points or isolated points.

Theorem 4.11. Let (X, d) be a metric space, and A a set in X. A point
xL G X is a limit point of A // and only if there exists a sequence in A\fxLJ
that converges to xL.

Proof

• (->) Assume that there exists a sequence {an} in yi\{jt:L} (i.e., with an ̂  xL for all ri),
with {an} —» xL. Then for any given e > 0 there exists some positive integer Ne such
that

d(an,xL)<£ foralln>N£

But then we have B£(xL) n (A\{xL}) * 0 for the given e. Because this is true for
any £ > 0, xL is a limit point of A.

• (<r-) Assume that xL is a limit point of A, that is,

Vr>O,Br(xL)n(A\{xL})*0 (1)

We will show that we can construct a sequence with the desired properties. Put
ri = 1; by (1), there exists some ax e Bn{xL) n (A\{xL}). Next, put

and, again by (1), there exists some a2 e Br2(xL) n (v4\{xL}). Continuing in this way,
we can construct a sequence [an] in A\{XL] with the property that

0<d(an,xL)<

Because l/(2n~1) -> 0, so does d(an, xL), and therefore \an) -» xL. D

We will now obtain two useful, and closely related, characterizations of
closed sets.

Theorem 4.12. A set A in a metric space is closed if and only if it contains
all its limit points.

Proof

• (—>) Assume that A is closed (i.e., its complement Ac is open). Then for any
x e A\ there exists some e > 0 such that

Be(x) c Ac *=* B£(x) n A = 0
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Open and Closed Sets 63

Hence, no point of Ac can be a limit point of A, and it follows that all such points
must be contained in A.

• (V) To show that if A contains all its limits points then Ac is open, we prove the
contrapositive statement: If Ac is not open, then it contains some limit points
of A.

Suppose Ac is not open. Then, negating the definition of open set, there exist
points in Ac with the property that no open ball around them lies entirely in Ac.
Let x be one such point. For any e > 0, the ball Be(x) contains at least one point
in A - necessarily different from x, because XE AC. Hence, x is a limit point of A
lying in Ac. •

Using Theorem 4.11, we can rephrase this last characterization of closed-
ness in terms of sequences: A set A is closed if and only if every convergent
sequence in A has its limit in A. This suggests a method that is sometimes
convenient for showing that a given set A is closed: Consider an arbitrary
convergent sequence contained in A, and use the set's properties to show
that the limit is also contained in it.

Theorem 4.13. A set A in a metric space is closed if and only if every con-
vergent sequence fxnj contained in A has its limit in A; that is, ifxne A for
all n and {xnj —> x imply that x e A.

Proof. Assume that every convergent sequence {xn} contained in A has limit
x in A. Then, in particular, this holds for all such sequences with the prop-
erty that xn * x for all n. It follows that A contains all its limit points and is
therefore closed.

Conversely, assume that A is closed, and let {xn} be a convergent sequence
contained in A with limit x. \i xn * x for all n, then x is a limit point of A and
therefore belongs to A (because A is closed). Alternatively, x = xn for some
n, and because xn e A, we have x e A. •

Problem 4.14. Show that in a metric / space the closed ball Br[x] is a
closed set. (Take a limit point a of Br[x] and consider an arbitrary sequence
{xn} in Br[x] with limit a. Use the triangle inequality to show that a must be
in Br[x\.)

Problem 4.15. Let B be a nonempty set of real numbers bounded above.
Let s = sup B. Show that s e B. Notice that this implies that s e B if B is
closed.

Problem 4.16. Let A be a set in a metric space (X, d). Show that if A is closed
and x e A, then d{x, A) > 0.

Hint: Prove the contrapositive.

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Thu Jun 27 18:16:12 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.003

Cambridge Books Online © Cambridge University Press, 2013



64 Metric and Normed Spaces

5. Limits of Functions

We shall now define the limit of a function between two metric spaces and
show that it can be characterized in terms of the limits of sequences.

Definition 5.1. Limit of a function.7 Let (Xy d) and (Y, p) be two metric
spaces, with A a set in X,f& function A —> Y, and x° a (limit) point of A.
We say that / has a limit y° as x approaches x° if

\/e >0, 3S£ >0 s.th. 0<d(x, x°)<S£=> p[f(x\ y°]< e

We then write f(x) —> y° as x —» x°, or l i nwo f(x) = y°.

Intuitively, f(x) approaches / as x ~> x° if, by choosing x sufficiently close
to JC°, we can bring f(x) as close to y° as we want. Notice that nothing
has been said in the definition about the value of/at x°; in fact, x° may not
even be in the domain of/. We require, however, that x° be a limit point of
A so that we can always find points in the domain of / as close to x° as we
want.

The following result shows that the limit of a function can be character-
ized in terms of the convergence of sequences.

Theorem 5.2. Let (X, d) and (Y, p) be two metric spaces, with f a function
X —> Y, and x° a limit point ofX. Then f has limit y° as x —» x° if and only
if for every sequence fxnj that converges to x° in (X, d), with xn * x°, the
sequence fffxJJ converges to y° in (Y, p).

Proof

• (—») Assume that limx^xof(x) = y°, and let {xn} be a sequence in X, with xn * x° and
{xn} -> JC°. We want to show that {/(*„)} -> / , that is, that

Vs>0, 3N(e)s.th.p[f{xn\y°]<e for all n > N(e) (1)

Fix some arbitrary e > 0. By assumption, f(x) has limit y° as x —» JC°, so we can
bring f(x) arbitrarily close to y° by choosing x sufficiently close to x°; that is, for
the given £,

3Se > 0 s.th. p[f(x\ y°]<e for allx e Bde(x°)\{x°} (2)

Finally, the fact that {xn} —> x° guarantees that we can get xn sufficiently close to
x° by choosing n large enough. Formally, the convergence of {xn) implies that for
the 4 in (2),

3N(Se)s.th.xneB6e(x°) foralln>N(S£) (3)

Now, (2) and (3) together imply (1) (with N(s) = N(8e)), that is, {/(*„)} -> / .
• (<-) We now want to prove the following statement:
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Limits of Functions 65

[V {xn} with {xn} -> x° and xn * x°, we have {/(*„ )}->/]=> lim /(*) = /

It turns out to be easier to prove the contrapositive statement:

lim f(x)*f => [3{xn} with XN * x° and {*„} -> *°, s.th. {/(*„)} -» / ]
jr-«0

That is, if y° is not the limit of / as x —> x°, then there exist sequences with
{xn} —» JC° and xn * x° with the property that the image sequence {f(xn)} does not
converge to y°. Now, what does it mean to say that y° is not the limit of / as
x -> JC°? Take the definition of limit,

Ve > 0, 3d > 0 s.th. V i e ft(*°)\{*0} we have p[f(x), / ] < e

and negate it, obtaining

3e > 0 s.th. V<5 > 0, 3x e £5(jt°)\{x0} with p[/(x), /] > e (4)

We will now show that if y° is not the limit of /as x —> JC°, then it is possible to find
a sequence {xn} such that {jcn} ->x° and xn ^ X°, but {/(xn)} -^y°. Choose some e that
works in (4), and consider a sequence of open balls centered at JC° with radius
rn = lln. By (4), it is possible to pick for each n a point xn € B1/n(x°) such that

) , /] > £• By construction, {xn} -> x°, but {/(xn)} -ft / . D

This result allows us to obtain some important properties of the limits of
functions using earlier results about convergent sequences. We list some of
these properties, leaving the proofs as exercises.

Theorem 5.3. Uniqueness of the limit. Let (X, d) and (Y, p) be metric spaces,
with A a set in X, f a function A —> Y, and x° a limit point of A. Then
the limit of f as x —» x°, when it exists, is unique. That is, if i(x) -> y' and
f(x) —» y" as x -> x°, then y' = y".

Theorem 5.4. Algebra of limits. Let (X, d) be a metric sapce, with (Y, \\-\\) a
normed vector space, f and g functions X —> Y, and x° a limit point of
X. Assume that f(x) —» a and g(x) -> b as x —> x°. Then

(i) f(x) + g(x) —> a + b as x —> x and
(M) /or any scalar X, Xf(x) —> Xa as x -> x°.

/ / (Y, ||-|[) is R with the usual norm, then

(Hi) ffxjgfxj —> ab as x —> x°, anrf
(/vj ffxj/gfxj —> a/b as x —> JC°, provided b ^ ft

Theorem 5.5. Preservation of equalities and inequalities. Let (X, d) be a
metric space, with f and g functions X —> R, and x° a limit point of X.
Then
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66 Metric and Normed Spaces

(i) assume that there exists some e>0 such that i(x) = g(x) for all x e Be(x°)\fx°J
and that f(x) - > a a s x - > x°; then g(x) —> a as x —» x°, flnd

(7*) assume that f(x) —> a and gfo) -» b as x —» x°. If there exists some e>0 such that
f(x) < g(x) for all x e Be(x°)\{x0}, then a < b.

Problem 5.6. Use the definition of the limit of a function to show that if

lim f(x) = a and lim g(x) = b
X-*X° X->X°

then lhu^oj^x) + g(x)] = a + b. Prove the same result using the analogous
theorem for limits of sequences.

Limits at Infinity and Infinite Limits

Let / be a function R —> R. We say that f(x) —> y° as x —» <« if for every
e > 0 there exists some B > 0 such that l/(x) - _y°l < e for all x > B. The limit
of / as x —> -oo is defined in an analogous way.

The foregoing results concerning the preservation of inequalities and the
algebra of limits have direct analogues for limits at infinity.

Next, let (X, d) be a metric space, with / a function X —> R, and x° a
limit point of X. We say that f(x) -> oo as x -> x° if

V£>0, 35 >0s.th./(x)>JB for all xGB5(x°)\{x0}

In this case, we have to be more careful with the limits of sums, products,
and quotients of functions. In particular, let / and g be functions X —> R,
and x° a limit point of X. We have the following:

(i) If limx_«o/(x) = / and limx^xog(x) = °o? then limx^xo[f(x) + g(x)] = «>, but if linv^o
f(x) = -oo, the limit of the sum may be anything,

(ii) If limx^xo/(x) = y° > 0 and limx^xog(x) = °o? then limx_>xo[/(x)g(x)] = °°. However,
if limx^xof(x) = 0, nothing can be said without studying / and g further,

(iii) If limx^xof(x) = y° > 0, limx^xog(x) = 0, and g(x) ^ 0 in some open ball around JC°,
then x-*j>f(x)/g(x) = °°.

6. Continuity in Metric Spaces

The familiar concept of continuity for a function from R to R can be
extended in a natural way to functions mapping one metric space into
another. In this section, we define continuity for functions between metric
spaces, obtain some useful characterizations of continuous functions, and
prove some important results concerning the properties of continuous real
functions defined on an interval.

Definition 6.1. Continuous function. Let (X, d) and (Y, p) be metric spaces,
and / a function X —> Y. We say that / i s continuous at a point x° e X if
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BE(f(x°))

f(x°)

f(B5(x
0))

B5(x°)

Be(f(x
0))

f(x0)'

f(B8(x°))

f continuous at x°

Figure 2.7.

f discontinuous at x°

Vs > 0, 3S(x\ e) > 0 s.th. d(x, \ s ) ), f(x0)] < e

The function/is continuous on a subset s of X if it is continuous at all points
of A. If we speak simply of a continuous function, it is understood that the
function is continuous at all points in its domain.8

Intuitively, a continuous function maps nearby points into images that are
also close by. Hence, if / is continuous at jt°, a small change in x away from
x° will not change the value of the function too much. The notation <5(JC°, e)
emphasizes that the value of 8 that will work in each case will depend on
the value of e and on the point X°.

The geometric intuition behind the definition is most easily captured by
reformulating it in terms of open balls. Hence, a function / is continuous at
x°if

Ve >0, 3S>0 s.th. x e Bs(x°)=> f(x) e B£(f(x
0))

or, equivalently, if

Ve > 0, 3S > 0 $Xh. f(B5(x
°)) c :Be(f(x

0)) (1)

That is, given an open ball around f(x°) with arbitrarily small radius e, we
can always find another ball with center at x° and radius S whose image
under/is contained in the first ball, Be(f(x

0)). The first panel of Figure 2.7
illustrates that this is always possible at a point of continuity. The second
panel shows that if / i s discontinuous at x°, then it is impossible to find such
a 8 for any e smaller than the jump in the function at x°.
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68 Metric and Normed Spaces

Problem 6.2. Preservation of sign. Let / be a continuous function from a
metric space (X, d) to R, with the usual metric. Prove (directly) that the set
[x e X\ f(x) > 0} is open. Intuitively, this result says that a continuous func-
tion that is strictly positive (or negative) at a point will maintain its sign
within a sufficiently small ball around the original point.

Using the definition of the limit of a function and the characterization of
limits of functions in terms of limits of sequences, we obtain immediately
two useful characterizations of continuity. Loosely speaking, the first says
that a function is continuous at a point if its value coincides with its limit,
and the second says that a continuous function preserves convergence of
sequences.

Theorem 6.3. Let (X, d) and (Y, p) be metric spaces, and f a function X —>
Y. Then f is continuous at a point x° in X if and only if either of the follow-
ing (equivalent) statements is true:

(i) i(x°) is defined, and either x° is an isolated point or x° is a limit point of X and
lim^xoi(x)=f(x°).

(ii) For every sequence fxj convergent to x° in (X, d), the sequence ff(xn)j converges
to f(x°) in (Y, p).

Hence, a function / i s discontinuous at a limit point x° of X if the limit of
/ as x -> x° does not exist or if it exists but is not equal to the value of the
function at x°. For example, the function

JK ' x - 1

is discontinuous at x = 1 because it does not have a limit as x -» 1. The func-
tion defined by

g(x, y) = - / ^ for(jc, y) * (0,0) an /(0,0) = 0
JC +y

is discontinuous for the second reason. Notice that the sequence {(1/n, 1/n)}
converges to (0, 0), but the image sequence /(1/n, 1/n) does not approach 0.

Intuitively, a function is continuous except at points corresponding to
"breaks" in its graph. Intuition, however, may occasionally need some help,
as illustrated by the following example.

Example 6.4. Consider the function / : R — > R, defined by f(x) = 0 if
x is irrational, and by f(x) = IIq if x is the rational number plq, where p
and q are integers with no common factor and q > 0. We shall show that
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Continuity in Metric Spaces 69

/ is discontinuous at all rational numbers and continuous at all irrational
ones.

What does it mean that a function is not continuous at a point x°? Negat-
ing the definition of continuity, we obtain the following:

3e > 0 s.th. V<S > 0, 3x e Bs(x°) with the property that p[f(x\ f(x0)] > e

Hence, to establish discontinuity, we have to produce one such e.
Now, Let x° =p/q be a rational number, and choose e < II q. Then, for any

S> 0, the ball B^x°) = (x° - <5, x° + S) contains at least an irrational number
x\ For this number, l/(x°) - f t f ) \ = Uq > e.

Next, let x° be an irrational number, and fix some arbitrary e > 0. The
interval B§(x0) = (x° - 1, x° + 1) contains finitely many rational numbers with
denominator no greater than lie. Because x° is irrational and therefore
cannot be any of these numbers, the distance between x° and the closest such
number is a strictly positive number d. Hence, any x e Bg(x°) is either irra-
tional or a rational number plq with q > lie. In the first case, l/(x°) -f{x)\ =
0, and in the second, \f(x°) - f{x)\ = Vq <e. •

Problem 6.5. Let / : R —> R be the function defined by f(x) = 1 for x
rational and by f(x) = 0 for x irrational. Show that / is discontinuous
everywhere.

Hint: Recall that any interval in the real line contains both rational and
irrational numbers.

Problem 6.6. Given a function / : R —> R, define g: R —> R2 by g(x) =
(x,f(x)). Use the sequential characterization of continuity to show that if/
is continuous at some point x°y then so is g.

Problem 6.7. Consider the finite-dimensional Euclidean space En. For
any ke {1 ,2 , . . . , n}, the /rth projection mapping, pk:Rn —> R, is de-
fined for x = (j t i , . . . , xn) by Pk(x) =xk. Show that pk( ) is a continuous
function.

Problem 6.8. Show that in any normed vector space (X, ||-||) the norm is a
continuous function from X to R.

Problem 6.9. Prove that if / is a continuous function, then for any set A,
f(c\A)c:c\[f(A)].

Hint: Use the characterization of continuity in terms of inclusion relations
among open balls given in expression (1) right after Definition 6.1.
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70 Metric and Normed Spaces

Using the characterizations of continuity given in Theorem 6.3, it is very
easy to prove some important results.

Theorem 6.10. Composite-function theorem. Let (X, d), (Y, d'), and (Z, d")
be metric spaces. Given two Junctions f: X —> Y continuous at x° e X and
g: Y —> Z continuous at f(x°) e Y, the composite function g° f is continu-
ous at x°.

Proof We will use the sequential characterization of continuity. Let {xn} be
any sequence convergent to x° in (X, d). Because / is continuous at JC°, we
have {f(xn)} ->/(x°) for any such sequence. And because g is continuous
at /(x°), {g[f(xn)]} -> g[f(x0)] for any {xn} with {xn} -> x°. Hence, g ° / is con-
tinuous at X°. •

Problem 6.11. Let /and g be functions R —> R, and assume that / i s con-
tinuous at y° and that g(x) ->y° as % —» °o. Show that lim*^, /[g(*)] = /(};0)-

Using the characterization of continuity in terms of limits and Theorem
5.4 on the algebra of limits, we obtain the following:

Theorem 6.12. Let (X, d) be a metric space, and (Y, \\-\\) a normed vector
space. Given functions f and g, X —> Y, both continuous atx° e X, we have
the following:

(i) f + gis continuous at x°, and
(ii) for any scalar X, Xi is continuous at x°.

If (Y, 11*11) is R with the usual norm, then

(Hi) f-gis continuous at x°, and
(iv) f/g is continuous at x°, provided g(x)*0 in some open ball around x°.

So far, we have been talking about continuity in local terms. That is, we
defined the continuity of a function at a point and called the function con-
tinuous if it was continuous at all points in its domain. We shall now give a
direct characterization of "global" continuity.

Theorem 6.13. Let (X, d) and (Y, p) be metric spaces, and f a function
X —> Y. Then f is continuous if and only if for every set C closed in (Y, p)
the set t~*(C) is closed in (X, d).

That is, a function is continuous if and only if the inverse images of closed
sets are closed. We emphasize that this is true only for inverse images. A
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Figure 2.8.

continuous function does not necessarily map closed sets into closed sets,
and a function that does map closed sets into closed sets is not necessarily
continuous.

Proof

• (~>) /continuous on X=> for any C closed in Y,f~\C) is closed in X.
Let C be an arbitrary closed set in (Y, p). We will show that f~\C) is closed in

(X, d) by verifying that it contains all its limit points. Let x be an arbitrary limit
point of f~\C)\ then (by Theorem 4.11) there exists a sequence {xn} in f ~ \C) that
converges to X. Because / i s continuous, the sequence {f(xn)} converges to f(x).
By construction, f(xn) e C for all n, and by assumption, C is closed. Hence, by
Theorem 4.13, the limit f(x) must lie in C. Now, f(x) e C « x e f~\C), implying
that f"l(C) contains all its limit points and is therefore closed.

• (<—) For any C closed in YJ~
l(C) is closed in X=>f continuous on X.

We will prove the contrapositive statement:

/discontinuous at some point x° in X =s> 3 closed sets C in Y with

f~l{C) not closed

Let / be discontinuous at some point x°. Then (negating the characterization
of continuity in terms of sequences) there exist sequences {xn} H> X° in X with
if(xn)} -f>f{x°). That is, there exists some r > 0 such that

p[f(xn\f(x°)]>r for all n (1)

(or at least for all nk in some subsequence {xnfc} of {xn}, in which case the argument
goes through unchanged working with the subsequence).

We will use this fact to show that there exists a set with the desired properties.
In particular, let C be the closure of the image sequence:

C = d({f(xn)})
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(f(xn)}

f(x°)

J
r

Figure 2.9.

Being the closure of a set, C is closed. We will prove that / \C) is not closed by
showing that it does not contain all its limit points. In particular, we will show that
x° is a limit point of fl{C) but does not belong to this set. Note that because C
contains {/(*„)}> we have xn e f~l(C) for all n, and because {xn} -> X°, x° is a limit
point of f~\C). However,f(x°) £ C (i.e.,/(x°) is not a closure point of {/(*„)}), for
(1) implies B£(f(x

0)) n {/(*„)} = 0 for all e < r. Hence, x° € f~\C). •

Taking complements of the appropriate sets, it is easy to obtain an
equivalent characterization of continuity in terms of the inverse images of
open sets.

Theorem 6.14. Let (X, d) and (Y, p) be metric spaces, and f a function
X —> Y. Then f is continuous if and only if for every set A open in (Y, p)
the set i~2(A) is open in (X, d).

Problem 6.15. Using Theorem 6.13, prove Theorem 6.14.

Problem 6.16. Let (X, d) be a metric space, and (Y, ||-||) a normed vector
space with zero vector 0. Given a continuous function f:X —> Y, adapt the
proof of the characterization of continuity in terms of the inverse images of
closed sets to show that the set f~l(0) is closed.

These last characterizations of continuity are of particular interest
because they do not contain any explicit reference to a metric. In fact, when
we work in general topological spaces (of which metric spaces are a subset),
we begin with open (or closed) sets as a primitive concept and then define
continuity in terms of their inverse images.
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Uniform Continuity

A stronger concept of continuity that is sometimes useful is that of uni-
form continuity. We have seen that a function /between two metric spaces
(X, d) and (Y, p) is continuous on a subset A of X ii for all x and y in A we
have

Vs >0, 3<5(x, e) >0 s.th. rf(x, y) < <5(x, e) => p[f{x\ f(y)]< e (1)

In general, the value of 8 that satisfies (1) depends not only on the value
chosen for £, but also on the point x at which we are studying the function
- hence the notation S(x, e). If it is possible to find some S(e) that for any
given value of € will work for any x in A, we say that the function is
uniformly continuous on A. More formally, we have the following:

Definition 6.17. Uniformly continuous function. A function f:(X,d) —>
(Y, p) is uniformly continuous on a subset A of X if for all JC, y e A and
for any e > 0 there exists some number 5{e) > 0, independent of x, such
that

d(x,y)<S(e)=>p[f(x\f(y)]<e

It is clear that uniform continuity on a set implies continuity on the same
set, but the converse statement is not true.

Lipschitz Functions

We now introduce a stronger notion of continuity that will be useful in
Chapter 9.

Definition 6.18. Lipschitz and locally Lipschitz functions. Let X and Y be
normed vector spaces, and E a subset of X. A function f: X —> Y is said
to be Lipschitz on E if there exists a positive constant K such that for all
x and y in E we have

This condition is called a Lipschitz condition, and the constant K is a Lip-
schitz constant for/on E.

The function / i s said to be locally Lipschitz on the set E if for each point
x0 in E there exists some e > 0 and some KQ > 0 such that B£(x0) c E and if
for all x and y in Be(x0),

\\f(x)-f(y)\\<K0\\x-y\\
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74 Metric and Normed Spaces

Problem 6.19. Show that a Lipschitz function is uniformly continuous (and
therefore continuous).

Homeomorphisms

Definition 6.20. Homeomorphism. Let (X, d) and (Y, p) be metric spaces.
A function f:X —> Y is called a homeomorphism if it is one-to-one and
continuous and its inverse function is continuous onf(X).

That is, a homeomorphism is a continuous function with a continuous
inverse. The continuity of/implies that given two nearby points x' and x" in
X, their images / =/(x') and / ' = /CO will also be close by. Given an arbi-
trary continuous function, however, it is possible that points that are far from
each other will be mapped by the function into nearby points, or even into
a single point. If / is a homeomorphism, that is impossible, for the inverse
relation is also a continuous function. Hence, given two points in X, their
images under a homeomorphism are close to each other if and only if the
points themselves are not far away. Using the characterization of continuity
in terms of sequences and inverse images of open sets, we obtain the fol-
lowing characterization of homeomorphism:

Theorem 6.21. A one-to-one function i: (X, d) —> (Y, p) is a homeomor-
phism if and only if either of the following (equivalent) statements is true:

(i) For all x e X, the sequence fxnj converges to x in (X, d) if and only if the image
sequence ff(xn)J converges to f(x) in (Y, p).

(ii) Given any open set Ax in (X, d)} its image i(Ax) is open in (Y, p), and given
any set AY open in (Y, p), its inverse image f~7(AYj is open in (X, d).

Two metric spaces (X, d) and (Y, p) are homeomorphic if and only if there
exists some homeomorphism h from X onto Y- that is, Y = h(X) or h~x must
be defined on the whole set Y. The relation "being homeomorphic to" is an
equivalence relation on the set of all metric spaces. Intuitively, two homeo-
morphic metric spaces are identical except for a continuous change of co-
ordinates that preserves convergence and open sets. For many purposes,
two homeomorphic metric (or topological) spaces are in fact equivalent.
Properties of sets that are invariant under homeomorphisms are known as
topological properties.

Some Properties of Continuous Real Functions

We will now establish some important properties of continuous real func-
tions defined on an interval. In later sections we will see how they can be
partially generalized to continuous functions defined on more general spaces.
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In many applications, we are interested in finding the maximum (or
minimum) of a real-valued function over some given set. In principle,
however, a continuous function defined on an arbitrary set may not have a
maximum. For the case of a continuous function from R to R, we will show
that a sufficient condition for the existence of a maximum over a set is that
the set be a compact interval. We begin by showing that such a function must
be bounded.

Theorem 622. Let i: R —> R be defined and continuous on the closed and
bounded interval /a, b/. Then f is bounded on [&, b]; that is, there exists some
real number M such that Iffxjl < M for all x in the interval

Proof. We will show that if/is both continuous and unbounded on the inter-
val, we arrive at a contradiction. Suppose, for the sake of concreteness, that
/ is not bounded above on [a, b]. Then, for each positive integer n, there
exists a point xn e [a, b] such that f(xn) > n. By the Bolzano-Weierstrass
theorem, the bounded sequence \xn) has a convergent subsequence {xnk}
with limit x°. Because [a, b] is a closed set, moreover, we have x° e [a, b]9

by Theorem 4.13.
Now, by the continuity of /a t JC°,

hmf(xnk) = f(x°) (1)

On the other hand, {xn/c} is a subsequence of {xw}, and it must therefore be
true that for each k, f(xnk) >nk>k.Thus,

lim/(^) = oo (2)

and we have reached a contradiction. If / is continuous, it cannot be
unbounded. •

This result tells us that the set {/(x); x e [a, &]}, being a nonempty and
bounded set of real numbers, has a supremum (and an infimum). We will
now show that the function also attains its supremum and infimum on the
interval (i.e., it has both a maximum and a minimum on [a, b]).

Theorem 6.23. Extreme-value theorem. Let i be a continuous real-valued
function on the closed and bounded interval [a., b/. Then there exist points xM

and xm in /a, b] such that for all x e /a, b], f(xm) < f(x) < f(xM).

Proof We will prove the existence of a maximum. By Theorem 6.22 we
know that // = supXE[ab]f(x) exists. We will now show that this value is
achieved on the interval (i.e., 3xM£ [a, b] such that f(xM) = JJ).
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Observe that no number smaller than /a is an upper bound of {/(X);

x e [a, b]}. Hence, for each positive integer n, we can find some xn e [a, b]
such that

\f(xn)-ii\<l/n (1)

The sequence {xn} c [a, b] thus constructed is bounded and therefore has
a convergent subsequence {xnk} by the Bolzano-Weierstrass theorem. Call
the limit of this subsequence xM, and observe that because [a, b] is closed,
xM G [a, b] (Theorem 4.13). It remains to show that f(xM) = ji.

Now, because {xnjc} —> xM and/is continuous, we have {f(xnk)} —> /(xM), that
is,

Vs>0, 3Nes.th.nk>Ne=>\f(xnk)-f(xM)\<e (2)

Next, by the triangle inequality, we can write

for any nk. Now choose an arbitrary e > 0. Using (1) and (2), we have that
for all nk greater than some Ne,

0<\f(xM)-^\<\f(xM)-f(xnk)\+\f(xnk)-fj\<e + —
nk

Because this inequality must hold for all e > 0 and for arbitrarily large nk9

we conclude that f(xM) - \i. •

Theorem 624. Intermediate-value theorem. Let ibe a continuous real-valued
function on the closed and bounded interval [a, b]. Then for each number
y (strictly) between f (a) and f (b), there exists a point c e fa, b) such that

Proof. Assume, for concreteness, that/(a) < y<f(b), and let c be given by

c = snp{xe[a,blf(x)<y}

That is, c is roughly the largest number in the interval for which f(x) is
smaller than y. Notice that the set [X e [a, b];f(x) < y] is not empty, because
it contains at least a, and it is bounded above by b. Hence, c is well defined
by the supremum property. Notice also that, by construction, f(x) > y for
all x > c.

To establish that f(c) = y we will use the sign-preservation property of
continuous real-valued functions (Problem 6.2) to show that both f(c) > y
and/(c) < / lead to a contradiction. In particular, if f(c) < y then c is not an
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Figure 2.10. •

upper bound of [x e [a, b]; f(x) < y}, for there exists some S> 0 such that
/(c + 8) < y (Figure 2.10). Similarly, if f(c) > % then c cannot be the least
upper bound of the given set, for then there exists some 8' > 0 such that
f(x) > /for all xe (c - 8, c), and therefore c - 8' is a smaller upper bound
for {x G [a, b];f(x) < y) than c. Finally, because f(a) < /</(&), c is neither of
these points.

Problem 6.25. We will now give an alternative proof for the intermediate-
value theorem. Let / be a real function of one variable defined and contin-
uous on an interval [a, b]. Assume that f(a) < 0<f(b). To show that there
exists some point c in (a, b) such that /(c) = 0, we construct two sequences
{/„} and {un} in the following way:

1. Put h = a and U\ = b.
2. For each n, let mn = (ln + un)/2, and evaluate / at mn. Then

(a) iff(mn)>0,putln+1 = 4 and un+1 = m
(b) if f(mn) < 0, put tn+l = mn and un+1 = um and
(c) i f / « ) =

(Draw a picture. What are we doing?) Using what we have learned about
the limits of real sequences,

(i) prove that {/„} and {un} converge, and call their limits c' and c";
(ii) show that c' = e" (i.e., both sequences converge to the same limit).

Hint: Show that \un - Q -» 0. Call the common limit of the two sequences
c. We want to show that this is the point we want.
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(iii) Use the continuity of / and the theorem on the preservation of inequalities to
conclude that f(c) = 0. •

Theorem 6.26. Let ibea continuous real function on the closed and bounded
interval [a, b]. Then f([a, bj) is a closed interval.

Proof. By the extreme-value theorem, there exist points xM and xm in [a, b]
such that f(xM) >f(x) and f(xm) <f(x) for all x e [a, b]. Put M = f(xM) and
m =f(xm). Then both m and M belong to f([a, &]), and this set is contained
in [m, M]. Let y be any point in [m, M]; by the intermediate-value theorem,
there is some cy in (a, b) such that f(cy) = y. Hence, any such y is contained
in f([a, &]), and the result follows. •

Monotonic Functions

Let / : R —> R be defined on some interval I = (a, b). We say that /
is monotonically increasing if for any two points x and y in /, x > y implies
f(x) > /(y), and monotonically decreasing if the second inequality is reversed.
A function is monotonic in a given interval if it is either increasing or
decreasing in it.

We will show that monotonic functions have one-sided limits at all points
in the interior of their domain and are continuous almost everywhere.

Theorem 6.27. Let f be monotonically increasing on fa, b). Then the one-
sided limits

f(x+) = lim f(y) and f(x~) = lim f(y)
y—»x+ y—>x

exist at every point x of (a, b), and moreover,

sup{f(s); a < s< xj = f(x~)< i(x)< f(x+) = inf{f($); x< s< bj (1)

Furthermore, for any x and y in (&, b), with x < y, we have

f(x+)<f(x-) (2)

Proof. Observe that the set {f(s); a <s <x] is bounded above by f(x) and
therefore has a supremum that we will call ji. Clearly, ji<f{x). We want to
show that ji is the limit of/as we approach x from the left, that is, that given
any e> 0, there exists some S> 0 such that

\f(y)-/u\<e for all y e (x - S, x)

For this, fix an arbitrary e > 0. Because /LL is the least upper bound of {/($•);
a<s <x}, ji- e is not an upper bound, and therefore there exists some
z G (a, x) such that
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Because / i s increasing, moreover,

/j,-e< f(z)< f(y) <lu<iu+£ for every y e(z, x)

and it follows that

\f(y)-li\<£ forallye(z,x)

which is the first half of (1). The other half follows by the same reasoning.
Next, given two points x and y, with x < y, we have, by (1) and the monot-

onicity of the function, that

f(x+) = inf{f{s); x<s<b} = inf{f(s); x< s< y}

and

f(y-) = supf/(s); a < s < y} = sup{/(s); x < s < y}

Comparing these expressions, we conclude that f(x+) <f{y~). •

Theorem 6.28. Let f be monotonic on (a, b). Then the set of points of (a, b)
at which f is discontinuous is at most countable.

Proof Suppose, for concreteness, that / is increasing, and let D be the set
of points at which / is discontinuous. With each x e D we can associate a
rational number r(x) such that

f(x-)<r{x)<f{x+)

Because xt<x2 implies f(xt) </(xj), we have that r{xx)&r(x2) if XI^JC2.

Hence, we have established a one-to-one correspondence between the set
D and a subset of the rational numbers. Because the latter set is countable,
so is D. •

7. Complete Metric Spaces and the Contraction Mapping Theorem

Suppose we would like to know whether or not a given sequence {xn} in a
metric space converges. If we proceed by applying the definition of conver-
gence given in Section 2, we have to start by guessing what the limit of the
sequence is. This is often difficult and frequently inconvenient, for we may
want to define an object as the limit of a sequence, and we may be interested
in its properties under conditions that are too general to allow a specific limit
to be computed. Hence, it would be useful to develop convergence criteria
that would not require us to guess the limit.
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80 Metric and Normed Spaces

In this section we will show that in a certain class of spaces, known as com-
plete spaces, convergence can be established by studying the behavior of the
terms of a sequence, without specific reference to its limit. In these spaces,
moreover, we have available an important fixed-point theorem (the con-
traction mapping theorem) that is useful in establishing the existence and
uniqueness of solutions to certain types of equations that arise frequently in
applications.

(a) Cauchy Sequences and Complete Metric Spaces

Definition 7.1. Cauchy convergence. A sequence {xn} in a metric space
(X, d) is convergent in the sense of Cauchy (or is a Cauchy sequence, or,
simply, "is Cauchy") if

V£>0, 3N(e)s.th. \/m,n>N(e\ d(xm,xn)<£

That is, a sequence is Cauchy if its terms get closer and closer to each
other. Intuitively, it is obvious that if the terms of a sequence are getting
closer and closer to a limit, they will also be getting progressively closer to
each other. At first sight, it would seem that this should also work the other
way around, for if all the terms of a sequence beyond a certain order can be
made to fit inside a ball of arbitrarily small radius, then the sequence must
surely converge. However, the two concepts of convergence are not exactly
equivalent. Given a metric space (X, d), it is true that every convergent
sequence is Cauchy, but the converse statement is not true. Speaking loosely,
the reason is that a Cauchy sequence may approach a limit "outside X" if
this set has "holes" in it or does not contain its boundary. There is, however,
an important class of metric spaces in which the two notions of convergence
are equivalent. These are the so-called complete metric spaces. More for-
mally, we have the following:

Theorem 7.2. Every convergent sequence in a metric space is Cauchy.

Proof. Let (X, d) be a metric space, and {xn} a convergent sequence in X
with limit x e X. Fix some arbitrary e > 0; then, by the convergence of {xn},
there exists some integer N{el2) such that

Vn>N(e/2),d(xH,x)<e/2 (1)

Take any two terms of the sequence xp, xq with p, q > N(e/2); by the triangle
inequality and (1), we have

d(xp, xq)< d{xp, %) + d(x, xq)<£
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That is, given that {xn} converges to x, all terms of the sequence of a
sufficiently high order will be close to the limit x, and therefore not far from
each other. Hence the sequence is Cauchy. •

In general, the converse statement is false in an arbitrary metric space.
Spaces in which it does hold are said to be "complete."

Definition 7.3. Complete metric space and Banach space. A metric space
(X, d) is complete if every Cauchy sequence contained in X converges to
some point x in X.

A normed vector space that is complete (in its natural metric) is called a
Banach space.

Example 7.4. A sequence of rational numbers may have an irrational limit.
Hence, Q is not complete (see Problem 3.20).

Consider the metric space formed by X= (0,1] with the usual metric. The
sequence xn = \ln has limit 0, which is not in the interval. Hence, this space
is not complete. If we add the point {0} to obtain the closed interval [0,1],
however, the resulting metric space is complete. •

Theorem 7.5. Every Cauchy sequence is bounded.

Problem 7.6. Prove Theorem 7.5.

Problem 7.7. Prove that the sequence \xn) defined in Problem 3.20 is Cauchy.
(Use the results from parts (ii) and (iii) of problem 3.20. An argument similar
to the one used in the proof of the contraction mapping theorem in the next
section will work.) Notice that the sequence [xn] converges in R (we know
R is complete), but not in Q (which is not complete).

Theorem 7.8. Let fxnj be a Cauchy sequence in a metric space. If fxnJ has a
convergent subsequence with limit x°, then the sequence itself converges to x°.

Proof. Let {xn} be a Cauchy sequence in a metric space, and assume that {xn}
has a convergent subsequence {xnfc} with limit x°. We want to show that
{xn} -» x°. The intuition is very simple: Because {xn/c} —»x°, all terms of the
subsequence {xn/c} of sufficiently high order will be close to x°; but because
{xn} is Cauchy, all terms sufficiently far along in the sequence, even those not
in fxnj, cannot be very far from x°.

Fix an arbitrary e > 0; because \xn) is Cauchy, there is a positive integer
Nt(e/2) such that
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\fm9n>N1(e/2)9d(xm,xn)<e/2 (1)

and given that {xnjc} —» x°, for the same e/2 there exists some N2(s/2) such that

Vnk > N2(e/2% d(xnjc, x°) < e/2 (2)

Putting N = max{iVi, N2}, (1) and (2) hold simultaneously for any n> N, and
we have

Vm, nk >N, d{xm,xnk)<e/2 and d(xvx
°)< e/2 (3)

Using (3) and the triangle inequality, we have, for the given e and any
m> N,

d(xm,x°)< d(xm,xnk) + d(xnk,x°)<£

for any nk>N. This proves the theorem: Notice that xm is any term of
sufficiently higher order in {xn} and need not be a term of the subsequence
w •

Example 7.4 suggests that there may be a connection between complete
sets and closed sets. The following result establishes this connection.

Theorem 7.9. Let (X, d) be a complete metric space, and Y a subset ofX.
Then (Y, d) is complete if and only if it is closed.

Proof. Let {xn} be a Cauchy sequence in a closed subset Y of X. By
the assumption that (X, d) is complete, {xn} converges to a point x in X.
Because Y is closed and contains the sequence, it must also contain the limit
(Theorem 4.13). Hence Y is complete.

If Y is complete, every Cauchy sequence contained in Y converges to a
limit in Y. Being Cauchy (Theorem 7.2), every convergent sequence in Fhas
its limit in Y, which is therefore closed. •

We will now show that every finite-dimensional Euclidean space is com-
plete. The first step - establishing the completeness of R with the usual
metric - is immediate, given some previous results. The extension to Em then
follows easily by the equivalence between convergence in Em and conver-
gence of the coordinate sequences in R.

Theorem 7.10. The set R of the real numbers is complete with the usual
metric.
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Proof. We want to show that every Cauchy sequence {xn} in R converges to
a real limit. By Theorem 7.5, every such sequence is bounded. Hence, by the
Bolzano-Weierstrass theorem, {xn} has a convergent subsequence {xnk} with
limit x in R. By Theorem 7.8, "the whole sequence" converges to x9 and the
theorem follows. •

Theorem 7.11. Any finite-dimensional Euclidean space Em = (Rm, dE) is
complete.

Proof. Let {xk}, with xk = (x\, x\,..., xf) e Rm, be a Cauchy sequence. For
any e > 0, there exists some positive integer N(e) such that

> N(e), dE(xp, xq) = - (xj, - x \ f < e

It follows that for any / = 1 , . . . , m,

Hence, every component sequence {xi} is a Cauchy sequence in R.
By the completeness of R, each one of these sequences has a real limit,

say {x} k> x'. Define x as the vector whose components are the limits of these
m real sequences, x = (x1,..., xm). We have seen (Theorem 3.10) that con-
vergence in Em is equivalent to convergence component by component;
hence, x e Rm is the limit of the vector sequence {xk}. This shows that every
Cauchy sequence in Em converges to a point in Rm. •

Let C(X) be the space of bounded, continuous real-valued functions
defined on a set X in Rn. It is easy to show that this set, endowed with the
sup norm defined by

||/IL=sup{|/(*)|;x6X} (1)

is a normed vector space. The following theorem shows that this normed
space is complete. This result will be useful in Chapters 9 and 12.

Theorem 7.12. Given a set X in Rn, let C(X) be the set of bounded con-
tinuous functions f:X —> R, with the sup norm defined by (1). Then
[C(X), IHIJ is a complete normed vector space.

Proof We know already that [C(X), |H|5] is a normed vector space. To
prove completeness, we need to show that every Cauchy sequence {/„} of
bounded continuous functions converges in the sup norm. We will proceed
in three steps: First, we construct a "candidate" function /( ) for the limit of
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the sequence; second, we verify that this function is bounded and continu-
ous; third, we show that {/„} -> / in the sup norm.

• Given a Cauchy sequence of bounded continuous functions {/„}, take some x in
X and consider the sequence of real numbers {/„(*)}. Note that given any posi-
tive integers m and n, we have

\Ux) - fn(x)\ < suP{|/m(y)- fM; y * x) = \\U - M

Because {/„} is a Cauchy sequence, by choosing m and n high enough we can make
\fm(x) ~fn(x)\ arbitrarily small for any x. Hence, {/„(.*)} is a Cauchy sequence of
real numbers for any x, and because R is complete with the usual metric, {/„(*)}
converges to some (finite) real limit, say f(x).

We can therefore construct a function / that assigns to each x in X the limit
f{x) of the sequence of real numbers {/„(#)}. This function, which is bounded
by construction, will be our candidate for the limit of the sequence of functions

{/«}•
• To establish the continuity of /, fix an arbitrary point x in X and some e > 0.

Because {/„} —> / in the sup norm, there exists a positive integer Ni such that
Wf-fnWs < e/3 for all n > Nx. Hence,

\fn(x)- /Ml < supyI/GO- fM S | | / - / i < e/3 (1)

for any x and all n > Nx. Moreover, because fn is continuous, there is some 5i > 0
such that for the given x7

I/-(x) - fn (y)\ < el3 for all y such that ||x - y\\E < % (2)

where |H|£ is the Euclidean norm in Rn . Using (1), (2), and the triangle in-
equality, the continuity of / a t x follows: For any y e B5l(x), and choosing n> Nu

we have

\f(x) - f(y)\ < \f{x) - fn{x)\ + \fn(x) - fM+\fn(y) - f(yi

* 11/- M + \fn(x)- fn(y)\ +11/- U, < e

• Finally, we will show that | | / - /n||s ->0asn->°«. Fix some e > 0 and note that
because {/„} is Cauchy, there is some N2 such that

\\fn-fm\\s<e/2 forallm,n>N2 (3)

By (3) and the triangle inequality, given any x in X, we have

\fn(x)- f{x)\ < \fn{x)-Uxt + \fm(x)- f(xl < 11/, - f j + \fm(x)- fix)

for all m,n> N2. Moreover, because {fm(x)} —»/(*), we can choose m (separately
for each x if need be) so that \fm(x) -f(x)\ < e/2. Hence, ./V2 is such that given any
n>N,

!/„(*)-/(*)!<£ for allx in X

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Thu Jun 27 18:16:12 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.003

Cambridge Books Online © Cambridge University Press, 2013



Complete Metric Spaces, Contraction Mapping Theorem 85

Thus, for n sufficiently high, s is an upper bound for {\fn(x) ~f(x)\; x e X}, and
because \\fn -f\\s is the smallest such upper bound, we conclude that \\fn -f\\s < e
for all n > N2, that is, {/„} -> /. D

(b) Operators and the Contraction Mapping Theorem

A function T:X —> X from a metric space to itself is come times called an
operator. We say that an operator is a contraction if its application to any
two points of X brings them closer to each other. More formally, we have
the following definition:

Definition 7.13. Contraction. Let (X, d) be a metric space, and T:X —> X
an operator in it. We say that T is a contraction of modulus 8 if for some
6 e (0,1) we have this: V X J G X , d(Tx, Ty) <Bd{x,y). The notation Tx is
sometimes used instead of T(x).

Theorem 7.14. Every contraction is a continuous mapping.

Proof. Let T be a contraction on (X, d). We want to show that

\/s>0, 33>0s.th. d(x, y)<S=>d(Tx, Ty)<e

A s T i s a c o n t r a c t i o n , w e h a v e t h a t f o r a l l x , y e X a n d s o m e B E ( 0 , 1 ) ,

d(TxJTy)<Rd(x,y)

Given some £, choose 8 so that S < £/6; then the definition of continuity is
satisfied, because

d(Tx,Ty)<Bd(x,y)<B5<e D

Example 7.15. Let / : [a, b] —> [a, b] be a continuous function with
positive slope always smaller than 1. Then / is a contraction, because
(f(y) ~f(x)V(y -x)<B<1. Figure 2.11 suggests that no matter how we draw
it,/must cut the 45° line, that is, it must have at least one fixed point z such
that/(z) = z.

Take any point x0 in [a, b] and define a sequence (X«(X0)} recursively by

*\ = f(xo),*2 = f(xt), ..., xn+1 = f(xn)

Graphically, the sequence is constructed as follows: Given the initial
value je0, we use the graph of the function to find the value of xu then we
use the 45° line to project xt onto the horizontal axis, we go up again to
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Figure 2.11. A contraction mapping.

the graph of/to find x29 and so on. The figure suggests that no matter where
we choose the initial point x0 in [a, b], the sequence converges to the fixed
point z. •

The following theorem says that this result can be generalized to any con-
traction defined on a complete metric space.

Theorem 7.16. Contraction mapping theorem. Let (X, d) be a complete
metric space, and T :X —> X a contraction with modulus fi < 1. Then

(i) T has precisely one fixed point x* in X (i.e., 3! x* e X s.th. Tx* = x*), and
(ii) the sequence {xn(x0)}, defined by

X; = T X o , X2 = T X ; , . . . , Xn+7 = T x n

converges to x* for any starting point x0 in X.

Proof

• Existence: Take an arbitrary point x0 in X and define the sequence {xn(x0)} by

X\ = TXQ, X2 = Tx\,..., xn+i = Txn

We will first show that this sequence is Cauchy. Then, given that (X, d) is a com-
plete metric space, the sequence converges to a point x* in X. We will then show
that x* is a fixed point of T.
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Complete Metric Spaces, Contraction Mapping Theorem 87

By using the definition of contraction repeatedly, we see that the distance
between two successive terms of the sequence {xw(x0)} is bounded and decreasing
in n:

d(x,x) = d(Tx TxnA )

<...<Bnd(xuxQ) (1)

Next, consider the distance between two arbitrary terms of the sequence, xm

and xm with m<n. Using the triangle inequality,

d(xn,xm)<^".~ld(xi+1,xt) [by (1)]

<Bmd(xux0) Xr=0B' = ^

Because 8 < 1, 6m/(l - 8) —> 0 as m —> ©©. It follows that, given an arbitrary e > 0,
we can choose m and n sufficiently large that d(xm, xn) < e\ hence, {xn(x0)} is
Cauchy for any x0, and given that (X, d) is complete by assumption, every such
sequence will have a limit in X. Take one such point and call it jt*.

Next, we show that JC* is a fixed point of F. Being a contraction, T is continuous.
Hence we can "take the limit out of the function" and write

T(x*) = r (lim xn) = lim T(xn) = lim xn+1 = x *

• Uniqueness: Nothing we have said so far implies uniqueness. It remains to show
that JC* is independent of the choice of the initial point xQ or, equivalently, that
there is only one fixed point of T. We will prove that if T has two fixed points,
they must be equal.

Assume that x* and x" are both fixed points of T (i.e., 7V = x' and 2Y' =x").
Because T is a contraction, we have, for some 8 € (0,1),

d{x', x") = d(Tx\ Tx") < Bd(x\ x")

Because 8 < 1, this can hold only if d(x\ x") = 0 (i.e., if xf = JC"), for otherwise we
would arrive at

d(x\x")<d(x\x")

a contradication. D

The following exercise generalizes this result. It is not necessary
that T itself be a contraction; it is enough that its nth iteration (Tn) be a
contraction for T to have precisely one fixed point. Tn is defined recursively
by

T2x = T(Tx), T3x = T[T(Tx)] = T(T2x),..., Tn+1x = T(Tnx)
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88 Metric and Normed Spaces

Problem 7.17. Let (X, d) be a complete metric space, and T:X—> X a
function whose nth iteration Tn is a contraction. Show that T has a unique
fixed point.

The contraction mapping theorem is a very useful result. It can be used
to prove the existence and uniqueness of solutions to several types of
equations, including differential equations and some functional equations
that arise in connection with dynamic-optimization problems. Moreover,
the second part of the theorem suggests a method (the method of succes-
sive approximations) for calculating solutions to equations that can be
written in the form Tx = x, where T is a contraction: Beginning with a
convenient trial solution, we construct a sequence {xn} recursively with
xn+1 = Txn. If we can find the limit of the sequence, we will also have found
the solution to the equation. Otherwise, we can approximate the solution to
any desired degree of accuracy by computing sufficiently many terms of the
sequence.9

The following theorem says, loosely speaking, that if a continuity
condition holds, we can do comparative statics with fixed points of
contractions.

Theorem 7.18. Continuous dependence of the fixed point on parameters. Let
(X, d) and (Q, p) be two metric spaces, and T(x, a) a function X x Q —> X.
/ / (X, d) is complete, if f is continuous in a, and if for each a e Q the func-
tion Ta, defined by Ta(x) = T(x, a) for each x e X, is a contraction, then the
solution function z:Q —> X, with x* = z(a), which gives the fixed point as a
function of the parameters, is continuous.

Proof Consider a convergent sequence of parameter values, {oQ -» a. To
establish the continuity of z, it is sufficient to show that

d[z(an), z(a)]-> 0 as {an} -> a (1)

By definition, the function z satisfies the identity Taz(a) = z(a) for any a.
Using this expression in (1), we have

d[z(an), z(a)] = d[Tan z(an), Taz(a)] (by the triangle inequality)

< d[Tanz(an\ Tanz{a)]+d[Tanz{a\ Taz(a)]

< Rd[z(an\ z(a)]+d[Tanz(al Taz(a)]

where the second inequality uses the assumption that Tan is a contraction,
with modulus Rn<6e (0,1). Thus,

d[z{an\ z(a)]< Bd[z(an\ z(a)]+d[Tanz{a\ Taz(a)]
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Complete Metric Spaces, Contraction Mapping Theorem 89

from where

d[z(an\ z(a)]< j~d[Tanz(al Taz(a)]

Now, T is continuous in a, so the right-hand side of this expression goes to
zero as {oCn} —» a. Hence, (1) holds, and z() is continuous. •

Recall that given a complete metric space (X, d) and a closed subset C
of X, (C, d) is also a complete metric space (Theorem 7.9). Now suppose
that T:X —> X is a contraction and maps C into itself (i.e., if x e C, then
Tx e C). In that case, T is a contraction on C, and the unique fixed point of
T in X must lie in C Sometimes this observation allows us to establish
certain properties of a fixed point by applying the contraction mapping
theorem twice - first in a "large" space X to establish existence, and then
again in a closed subset of Xin order to show that the fixed point has certain
properties. For example, if (X, d) is the space of continuous real and
bounded functions with the sup norm (see Section 1), then the subset of X
formed by nondecreasing functions is closed. Hence, if a contraction T in
(X, d) maps nondecreasing functions into nondecreasing functions, the fixed
point of T will be a nondecreasing function.

It is not always easy to determine whether or not a given function is a
contraction. The following theorem, due to Blackwell, gives sufficient con-
ditions for an operator in a useful function space to be a contraction. The
advantage of this result is that in some economic applications, BlackwelPs
conditions are very easy to verify.

Theorem 7.19. Blackwell's sufficient conditions for a contraction. Let'.
R) be the set of bounded functions f:Rn —> R, with the sup norm. If an
operator T:B(Rn, R) —> B(Rn, R) satisfies the two conditions

(i) monotonicity: V f, g e B(Ra, R), f(x) < g(x) V x ^ Tffxj <Tgfx) Vx,
(ii) discounting: 3fis (0,1) sJh. Vfe B(RB, R), xe Rn, and a>0, we have

+ a]<T[f(x)]+Jia

then T is a contraction.

Proof For any fge £(Rn, R), we have

By assumptions (i) and (ii),
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90 Metric and Normed Spaces

Interchanging the roles of/and g, we obtain, by the same logic,

Tg< T(f+\\g-/||)< Tf+B\\g-f\\^Tf-Tg>-6||/-g\\

Combining the two inequalities, we obtain the desired result:

g|| •

8. Compactness and the Extreme-Value Theorem

Let / be a real-valued function defined on some set in a metric space. A
problem that frequently arises is that of finding the element of A that will
maximize or minimize /. In order to guarantee that such a point exists,
certain restrictions have to be placed on both the function and the set. For
example, we have seen that if / is a function from a set of real numbers A
to R, a sufficient condition for the existence of a maximum is t h a t / b e con-
tinuous and A be a closed and bounded interval. One of the purposes of this
section is to extend this result on continuous functions to more general sets.
This brings us to the study of compactness.

(a) Compactness and Some Characterizations

To introduce the notion of compactness, we need some terminology.

Definition 8.1. Cover and open cover. A collection of sets U = [Uf, i e 1} in
a metric space (X, d) is a cover of the set A if A is contained in its union,
that is, if A c u/G /£//. If all the sets Ut are open, the collection U is said to be
an open cover of A.

Definition 8.2. Compact set. A set A in a metric space is compact if every
open cover of A has a finite subcover. That is,yl is compact if given any open
cover U = {[/,; / e /} of it, we can find a finite subset of U, [Uu ..., £/„}, that
still covers A.

Notice that the definition does not say that a set is compact if it has a finite
open cover. In fact, every set in a metric space (X9 d) has a finite open cover,
for the universal set X is open and covers any set in the space.

Example 8.3. (0,1) is not compact. The collection of open intervals
(1/w, 1) for n > 2 is an open cover of (0,1) because given any x in (0,1),
there exists an integer n such that n > 1/x, and hence x e (1/n, 1). Thus,
(0,1) = u^=2(l/n, 1). However, no finite subcollection {(l/nu 1 ) , . . . ,
(l/nk, 1)} will suffice to cover (0,1), for the union of these sets is {UN, 1),
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Compactness and the Extreme-Value Theorem 91

where iV-maxi <,-<*«,•, and given any N there is some strictly positive real
number x with x < UN. •

A necessary prerequisite for the existence of a maximum of a function
over a set is that the function be bounded on the set. To motivate the
foregoing definition (i.e., to try to understand why sets with such strange
properties may be useful), consider how we might go about extending the
result given in Theorem 6.20 on the boundedness of a continuous function
defined over an interval [a, b] to a larger class of sets in an arbitrary metric
space.

We begin by observing that a continuous function is locally bounded. Let
/:AcX —> R. be continuous, and consider an arbitrary point a in A. Then,
by the definition of continuity (with £=1), there exists a positive real
number 8{a) (which depends both on the point chosen and on the particular
function/we are working with) such that \f{x) -f(a)\ < 1 for all x e B%a)(a).
Hence,/is bounded in B%a)(a) by Ka = \f(a)\ + 1.

Now consider what happens when we try to extend this local bounded-
ness property to the whole set A. The question is whether or not the
continuity of / is sufficient to guarantee the existence of a bound K that
will work for all x in A (for the given function). It is tempting to try to
define K as the maximum of the Ka's over all points a in A, but that will
not work in general, for there may be infinitely many such Ka% and the
set of such numbers may not have an upper bound. Notice, however,
that the collection of open balls {S5(a)(fl)} for all a e A is an open cover
of A. If A is a compact set, there is a finite collection of such balls,
{B^iay),..., j5^aj(fl«)}, that contains all points of A. In this case, the
maximum of the (finite) set formed by the corresponding local bounds
{Kav..., Kan} is well defined and provides a global bound for the function
on the set.

In conclusion, compactness allows us to replace an arbitrary open cover
with a finite one. In some cases this is enough of a substitute for finiteness
as to allow us to extend to infinite sets some properties that hold trivially in
finite ones.

It is not always easy to work directly with the definition of compactness.
In the remainder of this section we will develop some characterizations of
compactness that frequently are more useful than our original definition.
The first of these, known as sequential compactness, is valid in metric spaces,
but not necessarily in more general topological spaces.

Definition 8.4. Sequential compactness. A set A in a metric space is sequen-
tially compact if every sequence of elements of A has a convergent subse-
quence whose limit lies in A.
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92 Metric and Normed Spaces

We will now show that compactness and sequential compactness (which
is essentially the Bolzano-Weierstrass property) are equivalent in metric
spaces. The first half of the equivalence is easily established.

Theorem 8.5. A compact set in a metric space is sequentially compact.

Proof. We will prove the contrapositive statement (a set A in a metric space
that is not sequentially compact cannot be compact) by constructing an open
cover of A with no finite subcover. If A is not sequentially compact, there is
a sequence {xn} of points of A with the property that none of its subse-
quences converges to a point in A. Hence, no point of A is the limit of a sub-
sequence of [xn], and it follows that for every x in A there exists an open
ball Be(X)(x) that contains only a finite number of elements of {xn}.The family
B = {Be{x)(x)\ x e A} is an open cover of A. However, no finite subfamily of
B can cover {xn} (and therefore A), for any such family will contain only a
finite number of terms of {xn}. Hence, A is not compact. •

The converse result takes a bit more work. We begin with some definitions.

Definition 8.6. £-net and totally bounded set. Given some £>0 and a
set A in a metric space (X, d), an £-net for A is a set of points E in X such
that

A set A in (X, d) is totally bounded if it has a finite £-net for any e > 0.

That is, a set is totally bounded if it can be covered by a finite number of
balls of arbitrarily small radius. Clearly, a totally bounded set is necessarily
bounded, but the converse need not be true.

Definition 8.7. Lebesgue number for an open cover. Let A be a set in a
metric space, and let U be an open cover of A. We say that a fixed real
number e > 0 is a Lebesgue number for U if for every x in A there exists a
set U(x) in U such that Be(x) c U{x).

Hence, if U has a Lebesgue number, we can "replace" it with an
open cover formed by balls of constant radius, which is often more con-
venient. Notice that if this "ball cover" has a finite subcover, so does the
original one.

Example 8.8. Notice that an open cover may not have a Lebesgue number.
As in the previous example, put A = (0,1) and consider the open cover
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Compactness and the Extreme-Value Theorem 93

U = {(1/n, 1); n > 2}. For any given e > 0, choose x < e; then Be(x) = (0, x + £)
is not contained in (1/n, 1) for any n.

Theorem 8.9. A sequentially compact set in a metric space is totally
bounded.

Proof. We will show that if a set A is not totally bounded, then it cannot be
sequentially compact - that is, if for some e > 0 there is no finite £-net for A,
we can construct a sequence {xn} in A with no convergent subsequence.

Take any xt in A, and let Ut = Be(x1). By assumption, Bx does not cover A,
so there is some x2 e A, with x2 <£ Ut. Let U2 = Be(x2); then [Uu U2} is still not
a cover of A, and therefore there is some x3 e A, with x3 g£/ i u U2. Put
f/3 = Be(x3),..., and so forth. By continuing in this fashion, we can construct
a sequence {xn) with the property that d(xm xm) > e for all n and m, as each
new term of the sequence is chosen outside all the £-balls centered at the
previous terms. Clearly, this sequence has no Cauchy subsequences and
therefore no convergent subsequences either. •

Theorem 8.10. Any open cover of a sequentially compact set in a metric space
has a Lebesgue number.

Proof. Let A be a set in a metric space (X, d) with an open cover U. If U
has no Lebesgue number, then for every e > 0 there exists some point x in
A such that no set U in U contains Be(x). In particular, for each integer n,
we can find some point xn in A such that Byn(xn) is not contained in
any U e V . We will show that if A is sequentially compact, no sequence in
A can have this property. Hence, given sequential compactness of A, a
Lebesgue number must exist for any open cover of it (or else we have a
contradiction).

By the sequential compactness of A, any sequence {xn} of points in A con-
tains a convergent subsequence {xn/} with limit x e A. Because U covers A,
x e UO for some f/0 e U, and because Uo is open, there exists some integer
m such that B2/m(x) c Uo. We will show that Byn(xn) c Uo for some terms in
the sequence by exploiting the fact that we can bring {xnk} arbitrarily close
to x and make Bynk(xnk) arbitrarily small.

By the convergence of {xnk} to x, there is some iV such that

xnk e Bl/m (x) for all nk > N

Choose nk > max{iV, m}, and observe that for any point y in Bynk(xnk) we
have
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1 1 1 1 2
d(y,x)<d(y,xn) + d(xkkn x)<— +—<—+—=—

k nk m m m m
Hence, for nk sufficiently high, we have y e B2/m(x), but then

Bi/nk(xnk) c B2/m(x) c Uo

contradicting the nonexistence of a Lebesgue number. D

We can now prove that sequential compactness implies compactness in a
metric space.

Theorem 8.11. Any sequentially compact set in a metric space is compact.

Proof Let U be an arbitrary open cover of a sequentially compact set A in
a metric space. By Theorem 8.10, U has a Lebesgue number £, and by
Theorem 8.9 there exists a finite £-net (for the same e) {xu ..., xn) for A.
For each i = 1 , . . . , n there is some Ut e U such that B£(Xi) c Uh by the
definition of Lebesgue number. Because A c uf=1Be(Xi) c u?=1 £4 U has a
finite subcover {Uh ..., Un}. •

We will now provide an alternative characterization of compactness in
terms of a property of families of closed sets.

Definition 8.12. The finite-intersection property. A nonempty family of sets
A = {At\ i e 1} has the finite-intersection property if every (nonempty) finite
subfamily of A has a nonempty intersection.

Theorem 8.13. A set C in a metric (or topological) space (X, d) is com-
pact if and only if every family of closed subsets of X that has the finite-
intersection property has a nonempty intersection.

Proof

• Suppose C is compact. To show that any family of closed subsets that has the
finite-intersection property has a nonempty intersection, we will prove the
following equivalent (contrapositive) statement: Let A = {At; i e 1} be a family of
closed subsets of C with the property that n A = n/€/A, = 0 ; then there exists some
finite subfamily of A with an empty intersection - that is, there exists some finite
set / c / such that nieJAi = 0 .

For each i, let Ut - ~At be the complement of the closed set At. Then each Ut

is an open set, and we can write, using De Morgan's laws (Theorem 1.2 in
Chapter 1),
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Hence, {[/,; i e 1} is an open cover of C. Because C is compact, {£/,; iel] contains
a finite subcover of C. That is, there exists a finite set / c / such that

C c uieJUi

which implies that

nifJAl = ~(viejUi)z~C (1)

On the other hand, because each A is a subset of C, so is their intersection; hence,
we have

raejA, c C (2)

Combining (1) and (2), we conclude that nieJAi = 0 , which establishes the desired
result.

• For the converse, assume that C has the property that if the intersection of
any family of closed subsets of C is empty, then the intersection of some
finite subfamily of them is empty (we are using the contrapositive again). Let
U = {£/,-; / G /} be an arbitrary open cover of C, so that

Ccu, s /C/ ;

and observe that this implies that

~(u,-e/£/,-)c~C (1)

Next, let

Ai = Cn(~Ui)

for each L Using (1) and De Morgan's laws, we have

n H 4 = nieI(C n (-£/,-)) = Cn (n/€/(~t/t)) = Cn (~(u/e/ tff-)) c C n (~C) = 0

Hence, A = {Af; / e 1} is a family of closed subsets of C whose intersection is
empty. By assumption, there exists some finite subfamily of A with an empty inter-
section; that is, there exists some finite set / c / such that nieJAi = 0 , and it follows
that

nieJ At = nieJ (C n (-!/,. )) = Cn {nieJ (~U, ) = Cn (~(ui6/ U{ )) = 0

This implies that C is contained in ufe/£/,-. Hence, {f/,; / € /} is a finite subcover of
{t/,; i e /}, and we conclude that C is compact.

(6) Relationships with Other Topological Properties

In metric spaces, compactness is closely related to other topological prop-
erties, namely, closedness, completeness, and boundedness. In this section we
spell out some of the interconnections among these properties.

Theorem 8.14. Any closed subset of a compact space is compact.

Proof. Given a metric space (X, d), let X be compact, and consider a closed
subset C of X Let U = {Ut; i e 1} be an arbitrary open cover of C. Because C
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is closed, its complement Cc is open, and (I/); i e /} u Cc is an open cover of
X. As X is compact, this cover has a finite subcover {Uu • . . , £/«} u Cc. Then
{£/l9..., Un} is a finite subcover of C, which is therefore compact. •

Theorem 8.15. A compact set in a metric space is closed.

(This result may not hold in more general topological spaces.)

Proof. Let A be a compact set in a metric space (X, d). We will prove
that A is closed by showing that it contains all its limit points. Let xL be
an arbitrary limit point of A; by Theorem 4.11 there exists a sequence {xn}
of points of A with limit xL. By the (sequential) compactness of A, {xn} has
a convergent subsequence with limit in A. By the uniqueness of the limit
(see Problem 2.5), xL is the limit of the subsequence and must therefore
lie in A. •

Theorem 8.16. A set in a metric space is compact if and only if it is complete
and totally bounded.

Proof We have already seen that a compact set is totally bounded. The
proof that compactness implies completeness is left as an exercise. We now
prove the converse implication (i.e., that a complete and totally bounded set
in a metric space is compact).

Let C be complete and totally bounded. To establish (sequential) com-
pactness, we need to show that any sequence {xn) in C has a subsequence
converging to a point in C. And because we are assuming completeness, it
is enough to show that given any sequence in C, we can produce a Cauchy
subsequence, for completeness will then guarantee convergence.

Let {xn} be an arbitrary sequence in C. Because C is totally bounded, it
can be covered by a finite number of balls of radius 1 (a 1-net). Among these
balls, there must be one, say Bu that contains infinitely many terms of the
sequence. These infinitely many points of the original sequence form a new
sequence that we call {%*}. Next, we can cover Bx with a finite number of
balls of radius 1/2, and among these balls there must be one, say j?2, such
that Bx n B2 contains an infinite number of points of {xl}, forming a new
sequence {xl}. Continuing in this fashion, we obtain a sequence {5,} of balls
with radius Hi such that BtnB2n ... nBt contains infinitely many terms
of the original sequence, yielding a new sequence {xl

n}.
Consider now a "cross-sequence" fxf} formed by taking one element of

each of these sequences (i.e., the Mi term of {x|} is taken from {x*}). We
observe that, by construction,
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Compactness and the Extreme-Value Theorem 97

Xk G Bt n B2 n ... n Bk for each k

Hence, given any positive integers p and q, with p < q, the terms x£ and x\
of {xf} are contained in the ball Bp (of radius lip), and therefore

Hence, the subsequence {xhk} is Cauchy: By taking p high enough, we can
force all remaining terms of the sequence to fit inside a ball of arbitrarily
small radius. By completeness, {x&} converges to a point in C. Hence, we
have shown that an arbitrary sequence in C must contain a convergent
subsequence with limit in C, thus establishing the sequential compactness of
the set. •

Problem 8.17. Show that a compact set in a metric space is complete.

Problem 8.18. Let A be a compact set, and let [An] be a "decreasing
sequence" of nonempty closed subsets of A such that An+i c An. Show that
u~=i An is not empty.

From Theorems 8.9 and 8.15, we know that a compact set in a metric space
is closed and bounded. The following result tells us that the converse is true
for sets of real numbers, thereby establishing an important characterization
of compact sets in R as those that are closed and bounded.

Theorem 8.19. Heine-Borel. Any closed and bounded set of real numbers is
compact.

Proof. Note that any bounded set of real numbers must be contained in
a closed interval [a, b] with finite end points. Because we know that any
closed subset of a compact set is compact, we need only show that [a, b] is
compact. By the Bolzano-Weierstrass theorem, any sequence contained in
this (bounded) set contains a convergent subsequence, and because [a, b] is
closed, the subsequence converges to a point in the interval (Theorem 4.13),
establishing sequential compactness (see Problem 3.4). •

This result can be easily extended to any finite-dimensional Euclidean
space.

Theorem 8.20. Any closed and bounded subset of Rm is compact.

Proof. Let A be a closed and bounded set in Rm. Then there exists some
number M such that \\x\\E < M for all x in A. Hence, A is contained in the
cube of side M given by
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98 Metric and Normed Spaces

Cm = / x / x . . . x / , where/ = [-M, M]

As in the previous theorem, it is enough to show that Cm is compact, for the
closedness of A then guarantees its compactness.

To simplify notation, let m = 2 (i.e., we will be working in the plane R2),
and consider C2 = I x I = [-M, M] x [-M, M] and an arbitrary sequence {xn}
in this set, with xn = (jcj,, x2

n). Observe that {xi} and {x2
n} are bounded

sequences of real numbers contained in the compact set / = [-M, M], By the
Heine-Borel theorem, {xl

n} has a subsequence {xlnk} convergent to a limit
x1 in /, and the corresponding subsequence of {x2

n}, {xlk}, has a convergent
subsequence {x2nk} with limit x2 in /. Putting xnkj = {x\kj, xlk), it is clear that
(by the equivalence between convergence in E2 and coordinate-wise
convergence in R)

that is, {xn} has a convergent subsequence with limit in C2, which establishes
the sequential compactness of C2 and therefore of any closed and bounded
set in the plane. The argument can be easily extended to any finite-
dimensional Euclidean space. More generally, it can be shown that a finite
product of compact sets is compact (in the sup metric).

(c) Continuous Functions on Compact Sets

Theorem 8.21. Let (X, d) and (Y, p) be metric spaces, and f ;X —> Y a
continuous function. If C is a compact set in (X, d), its image f (Q is compact
in (Y, p).

Proof. Let {yn} be an arbitrary sequence in/(C), and consider a companion
sequence formed by points xn in C such that f(xn) = yn. By the sequential
compactness of C, {xn} has a convergent subsequence, say {xn/c}, with limit x
in C. Then, by the continuity of/,

Hence, {yn} has a subsequence {ynjc} that converges to a limit in /(C). This
establishes the sequential compactness of f(C). •

In the case of a real-valued function, the theorem says that the continu-
ous image of a compact set is a compact interval or a collection of them.
Because any such set of real numbers contains both its supremum and its
infimum, we have the following important corollary:
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Compactness and the Extreme-Value Theorem 99

Theorem 8.22. Extreme value (Weierstrass). Let C be a compact set in a
metric space, and f ;C —> R a continuous function. Then f is bounded in C
and attains both its maximum and its minimum in the set. That is, there exist
points xM and xm in C such that

/(%) = sup/(C) and /(xm) = inf/(C)

Proof. We will prove the existence of a maximum. By the previous theorem,
f(C) is a compact set of real numbers and therefore is closed and bounded.
Let p be its supremum. Then (5 is a limit point of/(C). (Why? p - Vn is not
an upper bound for /(C)). Because f(C) is closed, it follows that j8 is con-
tained in it, that is, there exists some point xM in C such that P = f(xM). •

Problem 8.23. Give an alternative proof for Theorem 8.21 using directly the
definition of compactness. (Let {Uf, i e 1} be an open cover of /(C).)

Theorem 8.24. Let (X, d) and (Y, p) be metric spaces, with f ;X —> Y a
continuous function, and C a compact set in (X, d). Then f is uniformly con-
tinuous on C.

Proof Let e > 0 be given. Because / i s continuous, for each point x in C we
can find a positive number S(x) such that

d(x, y) < 8(x) => p[f(x), f(y)] <e/2 (1)

For each x e C, let B(x) be the set of all points y in C for which d(x, y) <
S(x)/2. The collection of all such J3(X)'S (one for each point in C) is an open
cover of C, and because C is compact, there is a finite collection of points in
C, say {xu ..., xw}, such that

. . .uB(x) (2)

Put

s=min{8(x1),...,S(xn)}
2

and observe that S > 0 because this is a finite collection of positive numbers
(this is why we need compactness, it guarantees that we can find a finite sub-
cover; note that the infimum of an infinite collection of positive numbers
may be zero).

Let x and y be points in C such that d{x, y) < 8. By (2), there is some point
xm such that x G B(xm), and hence
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100 Metric and Normed Spaces

d(x,xm)<^ (3)

Moreover,

Hence, both x and y are sufficiently close to xm that we can use (1) to con-
clude that

p[f(y), f(x)]<p[f(y), f(xm)]+df(xm), f(x)]< £ n

A similar argument will yield the following result.

Theorem 8.25. Show that if a function is locally Lipschitz on a compact set,
then it is Lipschitz on the set (see Definition 6.18).

Problem 8.26. Compactness of the product space. Let (X, dt) and (Y, d2) be
metric spaces, and consider the product space (Z = XxY,dK), with the
product metric dK defined by

dn{z, z') = dn[{x, y), (*', / )] = M(x,x')f + [d2(y, y')f (1)

Show that the product space (Z = XxY, dK) is compact if and only if both
(X, di) and (Y, d2) are compact.

9. Connected Sets

A set is said to be connected if it consists of a single piece (i.e., if it is not
made up of two or more "separate components"). The following definition
makes this idea more precise.

Definition 9.1. Separated and connected sets. Two sets A and B in a metric
space are said to be separated if both A nB and An B are empty (i.e., if
neither set has a point lying in the closure of the other). A set C in a metric
space is said to be connected if it is not the union of two nonempty sepa-
rated sets.

Notice that the condition for two sets to be separated is stronger than dis-
jointedness but weaker than the requirement that the distance between
them be strictly positive. Thus, the intervals (-1, 0] and (0,1) are disjoint but
not separated, because 0 lies in one interval and in the closure of the other.
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Connected Sets 101

The intervals (-1,0) and (0,1), however, are separated, but the distance
between them is zero.

Connected sets on the real line have a particularly simple structure.
As shown in our next result, the connected sets in R are precisely the
intervals.

Theorem 9.2. A set S of real numbers is connected if and only if it is an
interval

Proof Recall that a set / of real numbers is an interval if whenever x and
v are in /, any real number z, with x < z <y, also lies in / (Problem 6.14 in
Chapter 1).

• We first show that a set of real numbers that is not an interval is not connected.
Let S be such a set. Then there exist real numbers x and y in 5 and z € S such
that x < z < y, and we can write S as the union of two components, as follows:

S = 5 , u S 2 s [ 5 n (-~, z)] u [S n (z, <*>)]

Notice that neither of these sets is empty, because Sx contains at least x, and S2

contains at least y. Moreover, Si and S2 are separated, because Si c (-<», z) and
52 c (z, °°), and these intervals are separated (neither of them contains the only
common boundary point, z). Hence S is not connected.

• To show that every interval is connected, we show that a nonconnected set cannot
be an interval. Let E be a nonconnected set of real numbers. Then there exist
nonempty separated sets A and B such that A u B = E. Pick ae A and b e B,
and assume (relabeling the sets if necessary) that a < b, as in Figure 2.12. To estab-
lish that E is not an interval, we will show that there is some real number x g E
with a<x<b.

We define

x = sup{y4 n [a, b]}

Then (see Problem 4.15) we have x e A and (because A and B are separated)
x £ B. Moreover, we have a<x<b.There are now two possibilities. If x € A, then
we have found the desired number, for then a<x<b and x £ E. If x e A, on
the other hand, we have x <£ B (because A and B are separated), and it follows
that x lies in the open set R ~ B. Hence, we can find some other point x' in this
set (and therefore not in B) such that a < x < x' < b. This establishes the desired
result.

A

Figure 2.12. •
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102 Metric and Normed Spaces

Our next result says that continuous functions preserve connectedness.
Hence, one way to establish the connectedness of a set is by showing that it
is the continuous image of another set that is known to be connected.

Theorem 9.3. Let f :X —> Y be a continuous mapping between two metric
spaces. If C is a connected subset o/ X, then i(Q) is connected.

Proof. We will prove the contrapositive statement: If /(C) is not connected,
then neither is C. Suppose /(C) is not connected. Then f(C) = P u Q, where
P and Q are nonempty, separated subsets of Y, that is,

Let

and notice that then

PnQ = 0 and QnP =

= Cnf~1(P) and B = Cr\f-\Q)

where neither A nor B is empty, and

f(A) = P and f(B) = Q

as illustrated in Figure 2.13.
Because P cP (where P is the closure of P), we have A c

f'l{P) czf~l{P). Because/is continuous and P is closed, fx(P) is closed, and
it follows that A af~l(P). (Recall that the closure of A is the smallest closed
set containing A) Then we have f(A) cf\f~\P)] c P (see Problem 4.6 in
Chapter 1).

Collecting our results so far, we have

Q and PnQ = 0

f(Q

Figure 2.13.
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Connected Sets 103

We can therefore write

0 = P nQ = P nf(B)z>f(A)nf(B)

Hence,f(A) nf(B) = 0 , and thisimplies that A n B = 0 , for if thelatter set
were not empty, any point z in A n B would have its image inf(A) n/(5),
which could not therefore be empty.

A similar argument yields that B nA = 0. Hence C = A u B is not con-
nected, and the result follows. •

Let / b e a continuous function from R to R, and / an interval in the real
line. By Theorem 9.3,/(/) is also an interval and therefore contains all points
lying between its end points. Thus the intermediate-value theorem (Theorem
6.22) is a special case of this result.

A concept closely related to connectedness, and often easier to check,
is that of arcwise connectedness. A set C in a metric space is said to
be arcwise-connected if any two points in it can be joined by a continuous
curve lying entirely within the set. More formally, we have the following
definition.

Definition 9.4. Arc and arcwise-connected set. A set A in a metric space is
an arc if it is the image of a closed interval of the real line under a homeo-
morphism (a continuous function with a continuous inverse). A set B in a
metric space is said to be arcwise-connected if given any two points x and
y in B there is an arc containing x and y that is contained entirely in the
setB.

Notice that an arc is connected, for it is the continous image of a con-
nected set.

Our preceding result shows that every arcwise-connected set is connected.
The converse statement, however, does not hold. As an example, consider
the set A u B, where A is the graph of the function y = sin 1/x for x > 0, and
B is the interval (-1,1) on the y axis of the Cartesian plane (Figure 2.14).
As x —> 0, the amplitude of the sine waves decreases, and given any point b
in 5, we can find points in A arbitrarily close to b. Hence, A u B is con-
nected. It can be shown, however, that A u B is not arcwise-connected
(Sutherland, 1993, pp. 99-101).

Theorem 9.5. An arcwise-connected set in a metric space is connected.

Proof. We will prove the contrapositive statement that a nonconnected set
in a metric space cannot be arcwise-connected.
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104 Metric and Normed Spaces

0.5
y = sin(l/x)

- 0 . 5

Figure 2.14.

Let D be a nonconnected set. Then there exist nonempty sets A and B
such that Au B=D and

AnB=0=AnB (1)

Let a and b be arbitrary points of A and 5, respectively, and let C be any
subset of D that contains both a and b. We will show that D is not connected
and cannot therefore be an arc.

Notice that CnA and CnB arc nonempty sets (one contains at least a,
and the other at least b), and

It remains to show that C nA and C nB are separated. For this, notice that
any closure point of Cn A is a closure point of both C and A. Hence,
c l (CnA)czCnA. We can now write

cl(C nA)n(C nB)^(C nA)n(C nB) = C n(AnB) = C n 0 = 0

By the same argument, (C nA) n cl(C n JB) = 0 , and we conclude that C is
not connected and cannot therefore be an arc. Hence, there is no arc con-
taining a and 6, and the set D is not arcwise-connected. •

10. Equivalent Metrics and Norms

We have already noted that it is possible (and often convenient) to define
several different metrics or norms in a given set. The question then arises as
to when alternative metrics can be considered equivalent. In Section 1 we
introduced the concept of Lipschitz equivalence for metrics and norms. We
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Equivalent Metrics and Norms 105

now introduce an alternative notion of equivalence (topological equiva-
lence) and explore the relationship between these two concepts.

We will say that two metrics or norms are topologically equivalent if they
preserve the basic topological properties of sets and functions. Formally, we
will define topological equivalence in terms of the preservation of conver-
gence and show that equivalent metrics also preserve continuity of functions
and openness of sets.

Definition 10.1. Topologically equivalent metrics and norms. Let X be a
nonempty set, and dt and d2 two metrics defined on it. We will say that dt

and d2 are topologically equivalent if they preserve the convergence of
sequences. That is, dx and d2 are topologically equivalent if and only if the
following condition holds: For any x e X and any sequence {xn} in X, {xn}
converges to x in (X, dt) if and only if it converges to x in (X, d2).

Given a vector space X, two norms U-HJ and ||-||2 defined on it are said to
be topologically equivalent if the metrics they generate are topologically
equivalent.

Theorem 10.2. Equivalent metrics preserve continuity. Let (Y, p) be a metric
space, with X a nonempty set, and d2 and d2 two metrics defined on it. Then
d ; and d2 are topologically equivalent if and only if given any two functions
f:X — > Y and g:Y —> X we have that

(i) f is (dh p)-continuous if and only if it is (d2, p)-continuous, and
(ii) g is (p, d2) -continuous if and only if it is (p, d2)-continuous.

Proof

• (->) Assume that dx and d2 are topologically equivalent metrics, and let
f:X—> Y be a (du p)-continuous function. We want to show that / is also
(d2, p)-continuous. By Theorem 6.3 (sequential characterization of continuity), the
(di, p)-continuity of / implies that given any sequence {xn} convergent to x° in
(X, dt), the sequence {fixn)} converges to fix°) in (F, p). By the equivalence of
the metrics, any such sequence {xn} also converges to x° in (X, d2), and because
the image sequence {fixn)} converges to/(*°) by assumption, the function/is con-
tinuous, again by Theorem 6.3. A similar argument can be made for functions
g.Y^X.

• (<—) Assume that condition (i) holds, and consider a di-convergent sequence
{xn} in X with limit x. We want to show that {xn} converges to x in (X, d2}. Let
I:X —> X, with I(x) = x, be the identity mapping in X Because this function is
clearly (du dO-continuous, condition (i) implies that it is also (du J2)-continuous.
Hence, by Theorem 6.3, the image sequence {I(xn)} = {xn} converges to I(x) = x in
(X, d2), which is the desired result. •
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106 Metric and Normed Spaces

Theorem 10.3. Equivalent metrics preserve open sets. Let X be a nonempty
set, and dj and d2 two metrics defined on it. Then a necessary and sufficient
condition for dj and d2 to be topologically equivalent is the following: A subset
A of X is dj-open if and only if it is d2-open.

Problem 10.4. Prove Theorem 10.3. Hint: Use Theorem 10.2.

These results show that convergence and continuity do not really depend
on the use of a specific metric per se, but rather on the topological equiva-
lence class of metrics we are using or, equivalently, on the open-set struc-
ture of the space. As we have already noted, this property allows a more
general treatment of many problems in a broad family of spaces (topologi-
cal spaces) in which open sets are essentially the only primitive structures.

The next two results describe the relationship between topological equiv-
alence and Lipschitz equivalence. The first theorem says that Lipschitz
equivalence implies topological equivalence. The converse of this result
does not hold in arbitrary metric spaces, but it does hold in normed vector
spaces.

Theorem 10.5. Lipschitz equivalence implies topological equivalence. Let X
be a nonempty set, and dj and d2 two metrics defined on it. If d, and d2 are
Lipschitz-equivalent, that is, if there exist positive real numbers m and M such
that

md; (x, y) < d2 (x, y) < Md7(x, yj for any xj y e X (1)

then dj and d2 are topologically equivalent.

Problem 10.6. Prove Theorem 10.5.

Theorem 10.7. Topological equivalence implies Lipschitz equivalence in
vector spaces. Let X be a vector space, and ||-||; and || • ||2 two norms defined
on it. If Ilib and ||-|b are topologically equivalent, then they are also
Lipschitz-equivalent; that is, there exist positive constants m and M such
that

m|x||;<||x||2<M||x||; forallxeX

Proof. We will prove the contrapositive statement: If || • ||i and || • ||2 are not
Lipschitz-equivalent, then they cannot be topologically equivalent - that is,
we can then find a sequence {xn} that will converge to some limit x in the
metric induced by Ij-jd and will not converge to x in the metric induced by

1Mb-
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Equivalent Metrics and Norms 107

Suppose there is no constant M such that ||x||2 < M||x||i for all x. Then for
each positive integer n we can find some xne X with the property that

IWI >«IWI (i)

Dividing both sides of (1) by ||xw||2 and using the defining properties of the
norm, we have

xn < — for all n
n

which implies that the sequence f*n/IW|2} converges to 0 in the metric
induced by Hid. On the other hand,

I W I
IM

= 1 for all n

So {xn/||xn||2} does not converge to Oin the metric induced by ||-||2.The same
argument will work with the roles of |H|i and ||-||2 reversed. D

Our next theorem says that all norms are equivalent in finite-dimensional
vector spaces. This result is often useful because it allows us to choose
whichever norm is more convenient for the problem at hand without having
to worry about the validity of the results.

Theorem 10.8. Equivalence of all norms in Rn. Let N:J

norm. Then there exist constants m, M > 0 such that

m||x||E < N(x) < M||x||E for all x e l n

where ||i|E is the Euclidean norm in Rn.

be any

(1)

Proof Recall from Problem 6.8 that a norm is a continuous function. By the
extreme-value theorem (Theorem 8.24) it follows that N ( ) achieves both a
maximum M and a minimum m in the compact set

Now let x be an arbitrary vector in Rn. If x = 0, then N(Q) = \\Q\\E = 0, and (1)
holds trivially. If x * 0, then \\x\\E = a> 0, and, using the defining properties
of the norm, we can write

N(x) = N(aa-1x) = =

Now, because \\alx\\E = orl\\x\\E = ||x||E/||x||£ = 1, we have that alx e C and it
follows that
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108 Metric and Normed Spaces

m < N(a-lx) < M

from where

m<a~1N(x)<M

and, recalling that a= \\x\\E,

m\\x\\E<N(x)<M\\x\\E D

11. Continuity of Correspondences in En

We saw in Chapter 1 that a correspondence *F:X—>->Y is a set-valued
mapping, that is, a mapping that assigns to each point x in X a subset *F(x)
of Y. Suppose X and Y are metric spaces. Then a correspondence is said to
be closed-valued {compact-valued) at a point x if the image set *¥(x) is closed
(compact) in Y.

We would like to extend to the case of correspondences the standard
notion of continuity for a single-valued mapping in a way that will preserve
its intuitive interpretation. Hence, we would like to say that a corre-
spondence *F is continuous if a small change in the argument x does not
change the image set *F(%) very much. To see how we can go about this,
and to see the problems that arise, recall from Section 6 that a function is
continuous if the inverse image of an open set is open. If we focus on a
specific point in the domain of the function, this can be rephrased as follows:
A function/is continuous at a point x if whenever x lies in the inverse image
of an open set V, so does every point sufficiently close to it. If we try to apply
this definition to correspondences, we immediately run into a difficulty:
What is the inverse image of a set under a correspondence? Notice that there
are two natural possibilities: We can define ^ ( V ) as the set of all points
x whose image set is totally contained in V, {x e X; *F(#) c V], or as the set
of points whose image set is partially contained in F, {x € X; W(x) n V & 0}.
The first possibility is sometimes called the upper or strong inverse of V
under *F, and the second is the lower or weak inverse. Each of these con-
cepts of inverse gives rise to a different notion of (hemi-) continuity for
correspondences, and we reserve the term "continuous" for a set-valued
function that is hemicontinuous in both senses. Notice that both types of
hemicontinuity reduce to the standard notion of continuity if *F is a single-
valued mapping.

Definition ILL Continuity for correspondences.10 Let X and Y be finite-
dimensional Euclidean spaces, and let *F:Jf-»-» Y be a correspondence.
Then we say the following:
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(i) *F is upper-hemicontinuous (uhc) at a point x € X if for every open set V con-
taining *F(x) there exists a neighborhood U of x such that ¥(x') c V for every
x'e £/.

(ii) *F is lower-hemieontinuous (lhc) at a point x e l if for every open set V
in y with f ( j ) n F * 0 there exists a neighborhood £/ of x such that
¥(*;') n F * 0 for every x' G £/.

(iii) *¥ is continuous at x if it is both uhc and lhc at this point.

A correspondence is continuous (uhc, lhc) if it is continuous (uhc, lhc) at
each point in its domain.

Each type of hemicontinuity can be given a straightforward intuitive inter-
pretation in terms of the restrictions placed on the "size" of the set ¥(x) as
x changes. First, suppose that *F() is uhc at some point x, and fix an appro-
priate open set V containing *F(x). As we move from x to a nearby point x',
the set V gives us an "upper bound" on the size of ¥(*')> because we require
that *F(x') remain contained in V. Hence, upper hemicontinuity requires that
the image set *F(x) not "explode" (become suddenly much larger) with small
changes in the argument, but allows this set to become suddenly much
smaller. In the case of lower hemicontinuity, on the other hand, the set V
acts as a "lower bound" on *F(x'), because the intersection of the image set
with V cannot become empty. Hence, hemicontinuity rules out "implosions"
of the image set (but not explosions).

Figure 2.15 may help clarify the meaning of these definitions. The cor-
respondence *¥ is not uhc at x\ (but it is lhc). To see this, fix an open set
V 2 *F(xi) as in the figure, and notice that for any x[ smaller than X1 but
arbitrarily close to it, the image set Y(x[) is not contained in V. Hence,
*F(x) "explodes" as we move away from xx to the left. On the other hand,
(p is uhc at x2 but not lhc, because as we move from this point to the left, the
image set (p(x) suddenly becomes much smaller.

We now develop some alternative characterizations of upper and lower

<p(x2)

X 2

Figure 2.15. Failures of upper and lower hemicontinuity.
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110 Metric and Normed Spaces

hemicontinuity that often are more convenient in applications than
Definition 11.1. In all cases, the domain and range of the correspondence
(the sets X and Y) are assumed to be finite-dimensional Euclidean spaces.

Theorem 11.2. A sequential characterization of upper hemicontinuity.
A compact-valued correspondence f .X —»—> Y is uhc at x if and only if
for every sequence fxnj converging to x, every (icompanion sequence" fynj,
with yn G "FfXjJ for all n, has a convergent subsequence /y%/ with limit in

Proof

• Assume that *F is uhc at JC, and let {xn} be a sequence converging to x, and [yn],
with yn e ¥(*„) for each rc, an arbitrary companion sequence. We will first show
that {yn} is bounded. By Theorems 3.3 and 3.10, this implies that \yn) has a con-
vergent subsequence. We will then show that the limit of this subsequence lies in

By assumption, ¥(*) is a compact and therefore bounded set. Hence there is
a bounded and open set B that contains *F(jt). By the upper hemicontinuity of
VF( ), there exists a neighborhood U of x such that *F(z) c B for all z e U. Now,
because {xn} -» x, there exists an integer N such that xn e U for all n> N, and it
follows that ¥(*„) C B for n > N. Hence, any companion sequence [yn\ yn e *?(*„)}
is bounded and therefore contains a convergent subsequence. Call this subse-
quence {ynk\, and let y be its limit.

To show that y e *F(jt), we will assume that such is not the case and obtain a
contradiction. Suppose, then, that y <£ *F(JC). Because ¥(*) is (compact and there-
fore) closed, y cannot be a boundary point of ¥(*), and it follows that the dis-
tance between y and the set *F(JC) is strictly positive. Hence, we can construct a
closed £-ball around the set *F(x).

that does not contain y by choosing e such that

0<e< inf d(a,y)
aef(x)

Notice that the interior of S j ^ x ) ] is an open set that contains ¥(*).
Now, because *F is uhc at x9 and {xn} -> JC, ¥(*„) will be contained in BJftix)]

(actually, in its interior) for n sufficiently high. This, in turn, implies that the com-
panion sequence {yn;yn e vF(xn)} will be contained in Be\¥{x)\ for n high enough,
and therefore so will the convergent subsequence {ynjc}. Because BJp¥(x)] is
closed, it follows by Theorem 4.13 that y, which is the limit of {ynfc}, will also belong
to BJp¥(x)]. This contradicts the fact that y £ Be\

K¥(x)] by the construction of

• The second part of the theorem says that if a certain property concerning
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Continuity of Correspondences in En 111

sequences holds, then the correspondence is uhc. It will be convenient to estab-
lish the equivalent (contrapositive) assertion that if *F is not uhc at x, then this
property does not always hold.

For this, assume that *F is not uhc at x9 that is, that there exists an open set V
containing ¥(x) such that every neighborhood U of x contains a point zu with
*F(zM) not contained in V. Then we can choose a decreasing sequence of such
neighborhoods {[/„}, with Un+1 c Un (say Un = B1/n(x), an open ball with radius lln
and center at x), and for each of them there is some point zn with *¥(zn) not con-
tained in V. By construction, {zn} -> x, but we can choose a companion sequence
{yn}, with yn e ^(z,,), in such a way that yn £ V (i.e., yn e Vc for each n). Suppose
now that {yn} has a convergent subsequence \ynk], and call its limit y. Because {yn/c}
is contained in the closed set Vc, its limit y must also lie on this set (by Theorem
4.13). Hence, y € V, and because V contains *F(x), it follows that y € ¥(*). This
establishes the desired result, for we have constructed a sequence {zn} —» x and a
companion sequence [yw e *F(zw)} that can have no subsequence converging to a
point in *F(x). D

Theorem 11.3. A sequential characterization of lower hemicontinuity. A
correspondence IF.X ->—> Y w //zc af x if and only if for every sequence {xnj
converging to x and every point y e *F(x) there exists a companion sequence
fan}, with yn e *F(xn) for all n, that converges to y.

Proof

• Assume that *F is lhc at x; let {xn} be a sequence converging to Jt, and fix an arbi-
trary point in *F(jt), say y. For each integer k, let Byk(y) be the open ball with
radius Ilk and center at y. Clearly, Byk(y) n *¥(x) is nonempty, because it contains
at least the point y. Because T is lhc at x, for each k there exists a neighborhood
Uk of x such that for each Zk € £4 we have *¥(Zk) n BirtCy) * 0. Because
{xn} -> x, we can find, for each given k, an integer nk such that xn e Uk for all
n > nk. These numbers, moreover, can be assigned so that nk+1 > nk. Notice, more-
over, that with n>nkwe have xn e Uk, and this implies that ¥(*„) n Byk(y) is non-
empty. Hence, we can construct a companion sequence {yn}, with yn chosen from
the set ¥(*„) n B1/k(y), for each n with n t < «t+1. As k, and hence «, increases, the
radius of the balls BVk(y) shrinks down to zero, which implies that {yn} converges
toy.

• As in the preceding theorem, we prove the contrapositive of the desired
result. Assume that ¥ is not lhc at x, that is, that there exists an open set V, with
¥(x) nV>0, such that every neighborhood U of x contains a point zu, with
^(Zu) nV=0. Taking a sequence of such neighborhoods, Un = B1/n(x), and an
appropriate point xn in each of them, we obtain a sequence [xn] that converges to
x by construction and has the property that W(xn) n V= 0 for all n.

Hence, every companion sequence {>>„}, withyn e ¥(.*:„), is contained in the com-
plement of V, and if {yn} is convergent, the same must be true of its limit, because
the complement of V is a closed set. It follows that no companion sequence of
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112 Metric and Normed Spaces

{xn} can converge to a point in V. Hence, if we let y be a point in *¥(X) n V, no
convergent companion sequence can exist. •

We now introduce another concept of continuity for correspondences,
essentially by extending the sequential characterization of continuity for
functions (the image of a sequence under the function converges to the
image of the limit of the sequence). Before we state the definition, recall
that the graph of the correspondence *F is the set

Definition 11.4. A correspondence *F:^—*-* Y is said to be closed if its
graph Gy is closed inXxY; that *F is closed whenever

{xn}-> x

e*¥(xn)V

{yn}->y

Problem 11.5. Show that a closed correspondence is closed-valued.

Our next result shows that closedness is closely related to upper hemi-
continuity. Because closedness is also fairly easy to check in many cases, a
convenient way to show that a given correspondence is uhc is to establish
its closedness and then apply Theorem 11.6.

Theorem 11.6. Relationship between closedness and upper hemicontinuity.
Let f .X —»—> Y be a nonempty valued and closed correspondence. If for any
bounded set B in X the image set ¥(B) is bounded, then f is uhc.

Notice that if the range Y of the correspondence is a compact space, the
boundedness assumption is satisfied automatically.

Proof. Fix an arbitrary point x in X. Then ¥(*) is a closed set (by Problem
11.5) that is bounded (by assumption) and therefore compact. Hence, *F is
compact-valued. Consider now a sequence {xn} converging to x and an arbi-
trary companion sequence {yn}, with yn e ¥(*„) for each n. To establish the
desired result, we have to show that {yn} has a convergent subsequence with
limit in *¥(x).

Because {xn} -» x, there is a bounded set, say B, that contains both {xn} and
x (Theorem 2.5). The image set ¥(5) contains the companion sequence and,
by assumption, is bounded. Hence (by Theorems 3.3 and 3.10), {yn} has a
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convergent subsequence, say \ynk], with limit y. Then {(xnfc, ynk)} is a sequence
inGvpcZxY converging to (x, y), and it follows from the closedness of the
graph of ¥ that (JC, y) € GT (i.e., that y e ¥(*)). •

In the remainder of this section we list some useful properties of uhc
correspondences.

Theorem 11.7. Let the correspondence f .X —>—>Y be compact-valued and
uhc, let F:X —>— » Y be closed, and assume that W(x) n F(x) #0. Then the
intersection correspondence f o F, defined by (Yn F)(x) = *F(x) n F(x), is
compact-valued and uhc.

Problem 11.8. Prove Theorem 11.7. Notice that *¥(x) n T(x) is compact, by
Theorem 8.12.

Theorem 11.9. Let the correspondence W :X —>—> Y be compact-valued and
uhc. Then the image under f of a compact set Q

is compact.

Problem 11.10. Prove Theorem 11.9. Hint: Use the sequential characteriza-
tion of compactness and Theorem 11.2.

Theorem 11.11. Let the correspondences tFi.X —>—> Y, with i = 1,.. ., n, be
compact-valued and uhc at x. Then the sum correspondence % defined by
*F(x) = Z-l; fjfx) for each x, is compact-valued and uhc at x.

Problem 11.12. Prove Theorem 11.11.
Let YiX—>-> Y and F: Y->-> Z be two correspondences. We define their
composition, cp = T ° ¥ : X —>—> Z by

]= ur(y)

Theorem 11.13. Let Y:X ->-> Y and F:Y -»-> Z be uhc at x°. Then their
composition (p = f° *¥is also uhc at x°.

Proof. Let W be an open set containing (p(x°), and let

U = {xeX; (p(x)

To establish the upper hemicontinuity of q>, we need to show that U is an
open set. Let
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114 Metric and Norrned Spaces

Y

Figure 2.16. Composition of two correspondences.

V = {yeY;T(y)QW}

and observe that (p(x) = r[¥(x)] c W if and only if W(x) c V. Hence we have

U = {xeX; X¥(X)QV}

Now, because r is uhc, the openness of W implies the openness of V. Simi-
larly, because V is open and ¥ is uhc, it follows that U is open, which estab-
lishes the desired result. •

Theorem 11,14. Let P:X -»—» Y, with i =1,..., n, be compact-valued and
uhc correspondences. Then the product correspondence F( ) , with F(x) =
F2(x) x . . . x P(x) for each x in X, is compact-valued and uhc.

Problem 11.15. Prove Theorem 11.14.
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Notes

1 The choice of x is arbitrary: Notice that if S satisfies the definition of boundedness for
some x, it will also satisfy it for any other point x' in X, with B replaced by B + d(x, x'),
because d(s, x') < d(s, x) + d(x, x'). It should be noted that a given set may be bounded
or unbounded depending on what metric we are using.

2 To guarantee that Be(x) n B?(x') = 0 , it is enough to choose e,ef< d(x, x')/2.
3 Every nonempty set of real numbers that is bounded above has a least upper bound

(see Chapter 1).
4 Note that openness is defined relative to a given metric space (X, d). It may be

important to keep that in mind if X is itself embedded in a larger set. For example, let
A be an "open circle" in a plane X, which is itself a subset of three-dimensional space
Y. Then A is open in X, but not in Y, because any small movement in Y away from the
X plane would take us out of A. However, any sufficiently small movement along the
plane and away from a point in the circle will leave us inside A. If there is any
possibility of ambiguity, we should say that a set A is open (or not) in X.

5 Note that in fact both X and 0 satisfy the definition, but in a fairly strange way. It is
true that around any point in 0 we can construct an adequate open ball, or do anything
we want, for that matter, because there is no such point. The same is true for X, for
there is "nothing" outside it.

6 See Chapter 1.
7 Occasionally we may want to define the limit of/as x approaches x° through elements

of a given set A. Right-handed and left-handed limits for functions in R, for example,
are defined in this way by requiring x to approach x° either from above or from below.
More generally, we say that /tends to y° as x tends to x° for x e A if and only if x° is a
limit point of A, and

Ve>0, 3Se>0s.th.p[f(x),y°]<e VxeAs.th. d(x9x°)<8£

8 As for limits, we may occasionally want to define continuity relative to a given set. We
say that a function / is continuous with respect to a set A at a point x° if

V e>0, 3Se>0s.th.p[/(x),f(x°)]<e VxeAs.th.d(x,x°)<8e

Right continuity and left continuity for real functions, for example, are defined in this
way.

9 Given a contraction T with modulus 8, let y be an arbitrary trial solution to the
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116 Metric and Normed Spaces

equation Tx = x. If the true solution is JC*, it is easy to see by the argument used in the
existence proof that

10 The definition can be extended to the case of general metric spaces. Most of the results
in this section continue to hold in this setting, but the proofs become more
complicated. The interested reader is referred to Hildenbrand (1974) for a more
general treatment.
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3
Vector Spaces and Linear Transformations

The concept of a vector space was defined in Chapter 1. We begin this
chapter with a brief review of the structure of vector spaces, focusing on the
concept of basis. Thfen we turn to the study of linear functions.

1. Linear Independence and Bases

Let V b e a vector space defined over the field F. A family of vectors in V,
x = {xs e V\s e S}, is the range of a function/from an index set S to V such
that f(s) =xs.A subfamily of x is the range of the restriction of / to a subset
5" of S. If S' is a finite set, we speak of a finite subfamily of x.

Let x = {xu. . . , xn) be a finite family of vectors in V. A linear combina-
tion of xu ..., xn is a vector of the form

where au..., 0Cn are scalars, and at is called the coefficient of the
vector xt.

We say that a finite family of vectors x = {xu..., #„} is linearly dependent
if at least one of the vectors can be written as a linear combination of the
rest. Equivalently, we say that xu ... 9xn are linearly dependent if there exist
scalars au ...,an, not all zero, such that

For an infinite family x = {xs e V; s e S], we say that x is linearly de-
pendent if there exists at least one finite subfamily of x that is linearly
dependent.

A family of vectors x in V is linearly independent if it is not linearly depen-
dent; that is, if for every finite subfamily [xs e V;s e S'} of x we have that

asxs =0 => as =0\/seSf

111
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118 Vector Spaces and Linear Transformations

A subset W of V spans or generates V if every vector in V can be written
as a linear combination of a finite number of elements of W, that is, if for
every x e V there exist scalars OL ,.., (%, and vectors wu ... ,wninW such
that

We can now introduce a concept of "basis" that is valid for all vector
spaces, even those of infinite dimension.

Definition 1.1. Hamel basis. A Hamel basis for a vector space V is a linearly
independent family of vectors that spans V.

A Hamel basis is a useful concept because it allows us to write every
element of V in a unique way as a linear combination of elements of the
basis. Thus, once we have a basis, we "know" all the elements of V.

Theorem 1.2. Let b = /Vs e V; s e SJ be a Hamel basis for V. Then every
nonzero vector x € V has a unique representation as a linear combination,
with coefficients not all zero, of a finite number of vectors in h.

Proof. Let x be an arbitrary nonzero vector in V. Because (by definition of
Hamel basis) b spans V, we know that x has at least one representation of
the form

where Si is a finite subset of S, and as * 0 for s e Si. Let us assume that there
exists a second such representation

where S2 is another finite subset of S, and $ * 0 for s e S2. We will show that
these two representations must be equal.

Let S3 = Si u S2, and let as = 0 for s e S3 ~ Sx and ps = 0 for s e S3 - S2. We
can then write both representations in terms of the same finite subfamily of

from which
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Linear Independence and Bases 119

Because {vs e V;s e S3} is a finite subfamily of a Hamel basis, it is linearly
independent. Thus, the last expression implies that as - ps = 0 for all s. Hence,
as = J&, and the representation is unique. •

It can be shown that every nontrivial vector space (V* {Q}) has a Hamel
basis, and that all Hamel bases of V have the same cardinal number. This
cardinal number is therefore a property of the space V and is called its
dimension (written dim V). A finite-dimensional Hamel basis (i.e., one that
contains a finite number of vectors) is called a basis.

Although we will work mostly with finite-dimensional vector spaces,
it is important to observe that certain vector spaces of interest are infinite-
dimensional.

Example 1.3. Let F be a field, and consider the set

Put

Sik = 1 if i = k and S - 0 if i * k

and define the vectors

enP={Sip,...,8pp,...,8np) for p<n

(i.e., the n-vector en
p has 1 as its /?th component, and the others are zeros).

If n is finite, it is easy to show that Vn{F) is a vector space and the family
{en

p\p = 1 , . . . , n] is a basis (the canonical basis) for Vn{F). If we go to the
limit and put n = °°, we obtain the infinite-dimensional vector space of the
scalar sequences, V^(F). Observe that the infinite family {e~\ p = 1 , . . . , °o}
of sequences with a single 1 and all the rest zeros is not a Hamel basis of
Voo(F), for it is impossible to write a sequence with an infinite number
of terms different from zero as a linear combination of a finite number of
sequences of the form e~. It is possible to show, however, that there is an
extension of this family that is a Hamel basis for VJ(F). •

In the case of finite-dimensional vector spaces, bases have a very simple
structure. In particular, we shall show that if V has dimension n < <*>, any
collection of n linearly independent vectors in V is a basis for V.

Theorem 1.4. Let v = {vh ..., vnj be a basis ofV; then no set of more than
n vectors in V is linearly independent.

Proof. Let x = [xu ..., xn+1} be a collection of n + 1 vectors in V. We can
always find scalars fa,..., (3n+1 such that
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120 Vector Spaces and Linear Transformations

What we want to show is that there are (3ks that satisfy (1) and are not all
zero.

Now, v = {vl9..., vn) is a basis of V, and therefore each xk has a unique
representation as a linear combination of elements of v. That is, there exist
scalars aik, not all zero, such that for each k = l,... ,n + l,

Substituting (2) into (1), we see that the (5k's must satisfy the following
equality:

Because vu ... ,vn are linearly independent, (3) implies

0Vi = l,...,#i (4)

Observe that (4) is a system of n equations in n +1 unknowns (the /3ks).
As we will prove later (and the reader should already know), every
such system has nontrivial solutions. Hence, it is possible to find /3ks not
all zero that satisfy (1), and we conclude that xu ..., xn+1 are linearly
dependent. •

This theorem implies that every basis for a finite-dimensional vector
space has the same number of elements, for if this were not so, a basis
with more elements than another one could not be a linearly independent
family. Another almost immediate corollary of Theorem 1.4 is the following
result:

Theorem 1.5. Let V be a vector space of dimension n. Then any linearly
independent family ofn vectors in V, v = {\h . . . , vn}, is a basis for V.

Problem 1.6. Prove Theorem 1.5.

Example 1.7. Let F be a field. The set Fmxn of all matrices of dimension
mxn, A = [aik] (i = 1 , . . . , m; k = 1 , . . . , n), with matrix addition and
multiplication by a scalar defined component by component, is a vector
space. Moreover, the mn matrices Eik with a 1 in the position ik and
zeros in all other entries is a basis of Fmxn that therefore has dimension
mn.

Downloaded from Cambridge Books Online by IP 152.2.176.242 on Thu Jun 27 09:42:52 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.004

Cambridge Books Online © Cambridge University Press, 2013



Linear Independence and Bases 121

Problem 1.8. Prove the following result: Let X be a finite-dimensional
normed linear space over the real field with basis {vi,..., vm}. A sequence
{xn}, in X, with xn = X™iaf vt (<# real), converges to x = Z™iG&v,- if and only if
each coordinate sequence {(/•} converges to a{ for each i = 1,..., m. (It is
sufficient to consider the case where x = 0.)

(i) Show that if {af} -> 0 for all i, then {xn} -» 0.
(ii) To prove the converse implication, suppose {xn} -> 0, but for some k the coor-

dinate sequence {a%} does not converge to 0. Then there exists a subsequence
of {xn} (for convenience of notation, still referred to as {xn} and some r > 0 such
that \cfk\ > r for all n. For each n e N, write

Mn =max/flaf|; 1<i<m}

_ n

and consider the sequence {yn), with Jn - ~"Jj~. Show that n{yn} —» 0.
ivin

(iii) Use the Bolzano-Weierstrass theorem to show that from {yn} we can choose a
subsequence that converges coordinate-wise, but to a nonzero element. By the
first part of the theorem, we have a contradiction.

Problem 1.9. Using the foregoing result and the completeness of R, we will
show that every finite-dimensional normed vector space over R is complete.

(i) First, show that if {xn} is Cauchy, then every coordinate sequence {of} is Cauchy.
(Prove the contrapositive statement: If some coordinate sequence \al) is not
Cauchy, then neither is {xn}. Use the result in Problem 1.8.)

(ii) Using (i), Problem 1.8 again, and the completeness of R, show that the desired
result holds.

Affine Subspaces

Lex X be a vector space, and V a (vector) subspace of X. A set A of the form

A = x° + V = {x e X; x = x° + v, where x° e X and v e V}

is an affine subspace of X "parallel" to V.
If A = x° + V is an affine subspace of X, and au...,an are vectors in A,

then every linear combination of au ..., an is a vector of the form

where v, e F for all /. As V is a vector space, we have v = Zf=1a,v, € K If, in
addition, we have SJLiO;, = 1, then x - x° + v, and therefore x e A. That is, a
linear combination 2£i a*a,- of vectors in an affine subspace of A belongs to
A if and only if UUok = 1. A linear combination with this property is called
an affine combination.
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122 Vector Spaces and Linear Transformations

2. Linear Transformations

A function between two vector spaces is sometimes called a transformation.
We now introduce an important class of transformations that, loosely
speaking, preserve the algebraic structure of the set on which they are
defined.

Definition 2.1. Linear transformation. Let X and Y be two vector spaces
defined over the same field F. We say that a transformation T:X —> Y is
linear if for all xux2e X and any a, (i e F, we have

T(ax1 +/3x2) = aT(Xl) + pT{x2)

This implies, of course, that

T(xl+x2) = T(x1) + T(x2) and T{axl) = aT(xl)

That is, given any two vectors, the image of their sum under a linear func-
tion is equal to the sum of their images, and the image of the product of a
scalar and a vector is equal to the scalar times the image of the vector. It is
in this sense that we can say that a linear function preserves the algebraic
structure of the vector space on which it is defined.

Problem 2.2. Show that for any linear function T9 we have T(0) = 0.

We will denote by L(X, Y) the set of all linear transformations from X
to Y. This is a function space (i.e., a set whose elements are functions).
However, we can still think of each linear function as a vector when we
define addition and multiplication by a scalar in the usual way for functions.

Given two linear transformations Tu T2 e L(X, Y) and arbitrary scalars
7] and % the function T= (rjTt + yT2), defined by

T(x) = {7] TX + yT2)(x) = r]Ti(x) = yT2(x) for eachxeX

maps X into Y. Moreover, (77 7\ + yT2) is a linear transformation, for, given
any two scalars a and (5 and vectors xx and x2 in X, we have (using the
linearity of Tx and T2)

T{axx +px2) = (riT1+yT2)(ax1+px2) = riT1(ax1 +px2) + yT2{ax1 +fk2)

= Tt(x 2 )] + y[aT2(xt) + pT2(x2)]
= ofaTi (x,) + yT2 (x,)] + /9fa7I (x2) + yT2 (x2)]
= 0(7/71

It follows that if Tu T2 e L(X, F), then r| 7 \ + yT2 e L(X, Y). It is also obvious
that the rest of the vector-space axioms are satisfied by L(X, Y). For
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Linear Transformations 123

instance, the zero vector is the linear transformation that assigns to any x in
X the zero vector in Y. We have, then, the following theorem.

Theorem 2.3. Lex X and Y be two vector spaces defined over the same field.
The set L(X, Y) of linear transformations from X to Y is a vector space.

Hence, every linear combination of linear functions is a linear function. It is
also easy to see that the composition of linear functions is linear.

The composition of two linear functions is defined in the standard way.
Let R :X —> Y and S: Y —> Z be two linear transformations. Then the
composite mapping S ° R = T:X —> Z is defined, as for any two functions,
byT(x) = S[R(x)].

Problem 2.4. Show that the composition of two linear functions is linear.

(a) Image and Kernel of a Linear Function

Definition 2.5. Given a linear function T:X —> Y, its image (im) or range
is the subset of Y given by

im T = T(X) = {y e Y; y = T(x) for some xeX}

and its kernel or null space is the subset of X given by

ker T = JT1® = {X S X; T(X) = 0}

In other words, ker T is the set of solutions to the homogeneous linear
system T{x) = 0, and im T is the set of vectors ye Y for which the system T{x)
= y has at least one solution. We will now show that both im T and ker T are
vector spaces, and we will prove an important result that relates the dimen-
sion of these two spaces to that of the vector space X on which Tis defined.

Theorem 2.6. Given a linear transformation T :X —> Y, im T is a vector
subspace ofY.Ifx = fxh ... ,xnj is a basis for X, then{Tfa), ... ,T(xn)J spans
imT.

Proof. Let yt and y2 be vectors in T{X). We want to show that ccyx + f}y2 e
T(X) for any scalars a and j8. Because yu y2 e T(X), there exist xu x2 e X
such that T(xx) = yx and T(x2) = y2. As X is a vector space, axx + fix2 e X, and
by the linearity of T9

T{axx +/5x2) =

Hence, ocyx + px2 e T(X), and therefore T(X) is a vector subspace of Y.
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124 Vector Spaces and Linear Transformations

Consider an arbitrary vector y = T(x) in T(X), and let x = {xu..., xn]
be a basis for X. Then x e X has a unique representation of the form
x = HU<%Xi- Using the linearity of T, we have

Hence, any T(x) e im Tcan be written as a linear combination of the images
of the elements of a basis of X. •

The ranfc of a family of vectors v= {vi, ..., vn) in a vector space V is the
size of the largest independent family of vectors contained in v. If there are
r independent vectors in v, they span a vector space of dimension r. Hence,
the rank of {v i , . . . , vn} is also the dimension of the vector subspace formed
by all the linear combinations of the vectors in v.

Given a linear transformation T:X —> Y and a basis for X,[xu•••, *«},
the rank of T is the dimension of its image space, im T. By Theorem 2.6, the
rank of T is equal to the number of linearly independent vectors in [T(xi),
..., T(xn)}.

Theorem 2.7. Given a linear transformation T :X —> Y, kerT is a vector
subspace ofX.

Problem 2.8. Prove Theorem 2.7.

We conclude this section with a theorem which shows that there is a
simple relationship among the dimensions of im T, ker T9 and X (the space
on which T is defined). In a later section we will consider the implications
of this result for the dimension of the space of solutions to a system of linear
equations.

Theorem 2.9. Let Xbe a finite-dimensional vector space, and T : X —> Y a
linear transformation. Then dim X = dim(ker T) + rank T.

Proof. Put dim X=n, dim(ker T) = k, and rank T=dim(im T) =r. The
theorem says, then, that n=k + r. Let {wu..., wr) be a basis for im T,
and {u u . . . , uk] a basis for ker T (if the kernel is not equal to {0}). Now,
wt e T(X), and therefore for each wt there exists some v, e X such that
T(vt) = wt. We will show that

b = {vi,...,vr; uu...,uk}

is a basis for X, which establishes the theorem.
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First we show that b generates X. Let x be an arbitrary vector in X.
Because {wh..., nv} is a basis for T(X), there exist unique scalars au ..., ocr such
that

By the linearity of T,

and, again by linearity, subtracting the right- from the left-hand side in the pre-
ceding expression,

Thus, x - Yl^api e ker r, and because {uu ..., uk) is a. basis for ker T, there exist
scalars p t , . . . , fik such that

In conclusion, any x in X has a representation as a linear combination of elements
of b; hence b spans X.

• To prove that b is a basis for X, it remains to show that it is a linearly indepen-
dent family. Whether or not that is the case, there exist scalars % (i = 1 , . . . , r) and
rjm(m=1,... ,k) such that

What we want to show is that they must all be zero.
Applying T to both sides of (1), we have

Now, um e ker T, implying T(um) = Q for all m, leaving us with

Hj'Tiv^Hj^^O (3)

But the w/s are linearly independent by assumption, so # = 0 for all i, and (1)
reduces to

Finally, the um's are also linearly independent by assumption. Hence, r\m = 0 for
all m, and we conclude that b = {vi, ..., vr; wb .., w fc} is a linearly
independent family. •
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126 Vector Spaces and Linear Transformations

(b) Inverse of a Linear Transformation

Definition 2.10, Inverse of a linear mapping. Let T:X—> Y be a linear
mapping. We say that T is invertible if there exists a mapping S from Y to
X such that

VxeX, S[T(x)] = xt=>SoT = I and
VyeY,

where Ix and Iy are the identity mappings in X and Y, respectively (i.e.,
the functions that map each element in the corresponding space into
itself).

The transformation S is called the inverse of T and is denoted T~l. Clearly,
if T'1 is the inverse of T, then T is the inverse of T~x, and the relationships
in the definition can be written

T~1[T(x)] = x and

The following theorem shows that the inverse of a linear transformation is
also a linear transformation.

Theorem 2.11. Let T e L(X> Y) be an invertible linear function. Then the
inverse map T";: Y —> X is linear; that is, T"1 e L(Y, X).

Problem 2,12. Prove Theorem 2.11.

Recall that a transformation T:X—> Y is said to be injective or one-to-
one if it does not map distinct elements of X into the same vector in Y, that
is, T is one-to-one if

V x, x1 e X, x * xr => T{x) * T(xf)

T is said to be surjective or "onto" if T(X) = Y (i.e., if its range is the entire
set Y).

Clearly, a linear transformation T:X —> Y is invertible if and only if it
is both injective and surjective, for the inverse mapping is a well-defined
function if and only if for each y in Y there exists a unique x in X such that
T(x)=y.

We conclude with a useful necessary and sufficient condition for a linear
mapping to be one-to-one.

Theorem 2,13. A linear transformation T ;X —> Y is one-to-one if and only
if T(x) = 0 => x = 0J that is, if ker T = {
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Problem 2.14. Prove Theorem 2.13. Hint: Recall that for any linear mapping
T, we have T(0) = 0.

3. Isomorphisms

We will now show that two vector spaces of the same dimension are "equiv-
alent" from an algebraic point of view. Two particular cases of this result are
of special interest in practice:

(i) Every vector space of finite dimension n defined over a field F, is equivalent to
the space Vn(F) defined in Example 1.3.

(ii) If X and Y are vector spaces defined over a field F, of finite dimensions n
and m, respectively, the vector space of linear transformations from X to Y,
L(X, Y), is "equivalent" to the set of matrices of dimension m x n formed with
elements of F.

Before getting into details, we need to make precise the notion of
"equivalent" vector spaces.

Definition 3.1. Isomorphism and isomorphic vector spaces. Two vector
spaces X and Y are isomorphic if there exists an invertible linear function
(one-to-one and onto) from X to Y. A function with these properties is called
an isomorphism.

Two isomorphic vector spaces are practically the same for algebraic pur-
poses, for there exists an invertible function from X to Ythat preserves alge-
braic operations in both directions. In particular, if T is an isomorphism from
X onto Y, given any two vectors xx and x2 in X, there exist unique vectors
yx and y2 in Y such that yx = T(xx) and y2 = T(x2), and, vice versa, given any yu

y2 € Y, there exist unique elements of X, xx and x2, such that xx = T~l (yt) and
x2 = r~1(y2)« Because both T and T'1 are linear functions, we have, moreover,

+ py2T{axx + px2) = aT{xx) + pT(x2) = ay
1 (ay, + py2) = ocT1 {yx) + pT1 (y2) = ax,

and therefore x = axx + f3x2 if and only if T{x) = y = ayx + /3y2.
We begin with a preliminary result.

Theorem 3.2. Let X and Y be two vector spaces defined over the same
field F, and let x = {xs e X; S € SJ be a Hamel basis for X. Then a linear trans-
formation T:X —> Y is completely defined by its value on x, that is:

(i) Given an arbitrary family y = /ys e Y; s e SJ in Y with the same cardinal
number as x, there exists a linear transformation T : X —> Y such that T(xs) =
ys for each s.
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128 Vector Spaces and Linear Transformations

(ii) This transformation is unique. That is, if two linear transformations from X to Y,
T and R, coincide in x {i.e., T(xs) = R(xs) V s e Sj, then they coincide for all
xe X.

Proof

• Let x = {xs € X; s e S} be a Hamel basis for X, and y = {ys e Y; s e S) a family of
vectors in Y with the same cardinality as x. We define the function Tfrom x onto
yby

and extend it to the whole of X in the following way: Given an arbitrary x e X
with representation

x = XreS,a**s

(where the a/s are scalars and £' is a finite subset of 5), we define

The function T: X —> Y thus defined is linear. Given two vectors x,y e X, with
representations1

x=1LnS.a>x> and y=JL,esfi'x>
and any two scalars 5 and % we have

T(yx + 5y) = r(yX56S, a s x s + < 5 X se5,&*,) = r ( Z s e 5

= yT(x) + 8T(y)

Suppose R and T are two linear transformations such that

Given an arbitrary xe X, with representation x = Xs e yoycs, we have, using the lin-
earity of T and 5,

r W=Z S 6 S , « *r(* *) = XseS, <*>RM=RW •

Theorem 3.3. Two vector spaces X and Y defined over the same field are
isomorphic if and only if they have the same dimension.

Proof

• Assume Tis an isomorphism from X onto Y, and let x = {xs e X;s e S} be a Hamel
basis for X We will prove that X and Y have the same dimension by showing that
T(x) = {T(xs) e Y;XSE x} is a Hamel basis for Y.
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For any finite subset S' of S, we have

by the linearity of T, and given that T is invertible and therefore one-to-one and
that T(0) = 0, T(x) - Q implies x = 0; hence IseS-a,ji:s - 0, and by the assumption that
x is a linearly independent family,

implying that 7(x) = {T(xs) e Y;xs e x} is a linearly independent family of vectors
in Y.

Next, we show that T(x) spans Y. Let y be an arbitrary vector in Y. Because T
maps X onto Y, there exists some x e X such that T(JC) = y. The vector x has a
representation of the form

where 5' is a finite subset of S. By the linearity of T, we can write y as

y = T(x) = T(XMS, a,x,) = XseS, a,T(*,)

and it follows that every y e Y can be written as a linear combination of
a finite number of elements of T(x), which is therefore a Hamel basis
for Y.

• Conversely, suppose that X and Y have the same dimension, and let x = {xs e X\
s e S} and y = {ys e Y;se 5} be Hamel bases for the two spaces.2 Define the func-
tion T from x onto y by T(xs) = ys for each xs e x, and by T(x) = 'Lseg'CxsT(xs) for
an arbitrary x = X^yoyc, in X. By the preceding theorem, this function is linear,
so we only have to establish its invertibility.

Suppose two vectors x' = ZseS'(xsxs and x" = IsseS'Psxs have the same image
under T. Then

TV) = TV) => XseS,as7V) = XseS,ftTV) => XJ6S,(a, - A ) * = 0

from which as - (5S = 0 for all s e 5', by the linear independence of the family y.
Hence, T{x') = T(x?) implies xf - x", and T is one-to-one. Finally, we know that
T(X) is a vector subspace of Y spanned by T(x) (Theorem 2.6). Because T(x) =
y, which is a Hamel basis for Y, we have T(X) = Y, that is, T maps X onto Y. In
conclusion, T is an isomorphism. •

Let X be a vector space of finite dimension n defined over a field F. The
simplest n-dimensional vector space defined over F is VJJF). The preceding
result assures us that X and Vn(F) are isomorphic. We will now verify
directly that this is true. Along the way we will see what the isomorphism
looks like and introduce the concept of coordinates.
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130 Vector Spaces and Linear Transformations

If X is an rc-dimensional vector space, then it has a basis formed by n
vectors, v = {vi, . . . , vn}, and every x e X has a unique representation as a
linear combination of the elements of v; that is, there exist unique scalars
ax,...,0Cn such that

X =

We say that Ok is the rth coordinate of x in basis v. We can now define a func-
tion, crdv:X-» Vn{F), that assigns to each x e JSf its vector of coordinates in
basis v:

The function crdv is one-to-one because two vectors are equal if and
only if they have the same coordinates, and it is onto because, given any
ô  = (#i, ...,(Xn) in V»(F), the linear combination X?=i0t,v, is a vector in X.
Finally, crdv is a linear function because, given arbitrary vectors JC J G I, with
coordinates a and (3, respectively, and scalars / and % we have

and therefore

crdv (yx + rjy) = 7a + T]P = 7 crdv (X) + r\ cdrv (y)

We have proved the following theorem.

Theorem 3A. Every vector space of dimension n < °° defined over a field F £s
isomorphic to Vn(F).

Matrix Representation of a Linear Function

We have seen that the set L(X, F) of linear transformations between vector
spaces is itself a vector space. We have also seen that the space Fmm of
m x n matrices defined over a field F is also a vector space. It is easy to show
that if M is a matrix in Fmxn, the function LM:Vn(F) —> Vm(F), defined
for all x in Vn(F) by LM(x) = Mx, is linear. We will now prove the converse
result: With every linear transformation T between finite-dimensional vector
spaces we can associate a matrix that, given bases for X and Y, represents T
in a natural sense and is unique. We will also see that the function
MtXyrty:L(X9 Y) —> Fmxn that assigns to a linear transformation in L(X, Y)
its matrix representation, given bases v and w for X and Y, respectively, is an
isomorphism. This implies that, for many purposes, the theory of linear
mappings between finite-dimensional spaces reduces to the study of matrices.
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Let T: X —> Y be a linear transformation between finite-dimensional
vector spaces (dimX = n, dim Y = m) defined over a field F. We fix bases
v = {v1? ..., vn] for X and w = {wu..., wm} for Y and form the matrix MT,
with

coli(Mr) = crdw(71(v,-))

Let x be a vector in X, with crdv(x) = a. Using the linearity of crd( ) and T,
we have

Mrcrdv(jc) = !)),..., crdw(T(vn

«n

;=1a,v,)) = crdw(r(x))

Hence, the matrix MT is such that for each x in X,

That is, given bases for X and Y, the (coordinate vector in basis w of
the) image of x under T is simply the product of the matrix MT and (the
coordinate vector in basis v of) the vector x. Thus, we say that MT

is the matrix representation of T given bases v and w for X and Y,
respectively.

We now define a function Mtxw,v:L(X, Y) —> Fmxn by

MtxWfY(T) = MT s.th. col£-(Mr) = crdw(r(vf))

where v, is the rth element of v (a basis for X).
It is easy to see that MtxWY(T) is a linear function. Let S and T be two

linear transformations, and MT and Ms their matrix representations. For
each x e l we have, then,

crdw(r(x)) = Mrcrdv(jt) and crdw(S(x)) = Mscrdv(x) (1)

Using the linearity of crd() and (1),

crdw ((aT + pS)(x)) = crdw (aT(x) + ps(x)) = a crdw(T(x)) + p crdw (S(x))

= aMrcrdv (x) + (3Mscvdv (x) = (aMr + f3Ms )crdv (JC)

which shows that aMT + f3Ms is the matrix representation of aT + /3S for the
given bases; that is,

WiV (aT + (3S) = aMccw,v(r) + pMtxw,v(S)
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132 Vector Spaces and Linear Transformations

Two linear transformations S and Thave the same matrix representation if
and only if they coincide in v, that is, S(v) = T(vt) for all vt e v. But then S=T
(Theorem 3.2), so Mtxw,YT = Mtxw,YS implies S=T, and therefore Mtx is one-
to-one. Finally, given an arbitrary matrix M e Fmxn and bases v = {vl9 ..., vn]
for X and w = {wu..., wm) for Y, there exists a linear transformation LM from
X to Y such that crdw(LM(v/)) = col,(M) (Theorem 3.2). Hence, with each
matrix in Fmxn we can associate a linear function from X to Y; that is, Mtx
maps Fmxn onto L(X, Y). In conclusion, we have the following theorem.

Theorem 3.5. Let X and Y be vector spaces defined over the same field
F, with dimensions n and m, respectively (both finite). Then LfX, Y) is
isomorphic to Fmxn.

4. Linear Mappings between Normed Spaces

We now consider linear transformations between normed linear spaces. As
may be expected, the algebraic properties of linear maps simplify the study
of their continuity. Our first result says that a linear function is either always
continuous or always discontinuous. Hence, to check its global continuity,
it is sufficient to check local continuity at some convenient point, usually
the zero vector. The reason for this is that given a linear transformation
T.X —> Y and two points x and y e X, linearity implies that T(x) - T(y) =
T(x - y). It follows that if X and Y are normed spaces, the distance between
T(x) and T(y) depends only on the distance between x and y9 not on the
locations of these points.

Theorem 4.1. Let X and Y be normed vector spaces, and T a linear mapping
X —> Y. / / T is continuous at some point x" € X, then it is (uniformly)
continuous everywhere on X.

Proof. Suppose T is continuous at some x' e X, and fix some e > 0. By
continuity at x\ there exists some S> 0 such that

Now consider some other point x" I ' + A G X. Then / = / + A G BS(X") if
and only if y' e B&c') and

T(y") - T{x") = T(y+A) - T(x'+A) = T(y' - x') = T{y') - T(xf)

Hence, for any y" e B5(x") we have \\T(y") - T(x")\\ < e, and we conclude
that T is continuous at x".

Note that for give £, the same 8 will work everywhere. Hence, a continu-
ous linear function is uniformly continuous. •
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We shall now establish a useful characterization of continuity for linear
functions.

Definition 4.2. Bounded linear transformation. Let T be a linear trans-
formation between two normed linear spaces, X and Y. We say that T is
bounded if there exists some real number B such that

\fxeX,\\Tx\\<B\\x\\

that is, if T maps bounded sets in X into bounded sets in Y.

For linear functions, boundedness turns out to be equivalent to continuity.

Theorem 4.3. Let X and Y be normed vector spaces. A linear function T:X
—> Y is continuous if and only if it is bounded.

Proof

• First, we show that a bounded mapping is continuous at 0 and therefore every-
where. If T is bounded, then there exists some B > 0 such that ||7je|| <£||x|| for all
x e X. Fix an arbitrary e > 0, and put <5= e/B in the definition of continuity. Then,
for any x with ||JC|| < <5, we have

\\Tx\\<B\\x\\<B8=e

• To prove the second part of the theorem, we will show that if T is not bounded,
then it cannot be continuous. If T is not bounded, then for each n e N we can
find some xn e X such that

\\Txn\\>n\\xn\\

By the linearity of T and the defining properties of the norm, this implies

1 1

nxn

T xn >1

Now, the normalized vectors xn/||xw|| all have norm 1, implying that the sequence
{jen/(/i||xn||)} converges to 0. By the preceding expression, however, the sequence
{r(x«/(n||xM||))} does not converge to T(0) = 0,implying that Tis not continuous. •

The second part of the proof suggests a method for establishing that a
given linear function T is discontinuous: We can try to find a sequence {xn}
converging to 0, with {T(xn)} -hO.

Problem 4.4. We will prove the following theorem: Given normed linear
spaces X and Y and a linear function T:X —> Y, the inverse function T~x

Downloaded from Cambridge Books Online by IP 152.2.176.242 on Thu Jun 27 09:42:52 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.004

Cambridge Books Online © Cambridge University Press, 2013



134 Vector Spaces and Linear Transformations

exists and is a continuous linear mapping on T(X) if and only if there exists
some m > 0 such that m\\x\\ < \\Tx\\.

(i) Using Theorem 213, show that if there exists some m > 0 such that m||x|| < ||rx||,
then T is one-to-one (and therefore invertible on T(X)).

(ii) Use Theorem 4.3 to show that T~x is continuous on T(X).
(iii) Using Theorem 4.3, show that if T~l is continuous on T(X), then there exists

some m > 0 such that m\\x\\ < \\Tx\\.

Theorem 4.5. A linear function from a finite-dimensional normed vector
space into a normed vector space is continuous.

Proof. Let T be a linear function from a finite-dimensional normed vector
space X, with basis v = {vi, . . . , vm}, into a normed vector space Y. We will
prove that T is continuous at 0 by showing that given any sequence {xn} of
vectors in X with limit 0, the image sequence {Txn) converges to T(0) = 0 in
Y. Each xn has a representation of the form

where a? is a scalar. We know that in any finite-dimensional normed linear
space, convergence is equivalent to coordinate-wise convergence, that is,
{*„} -» Q if and only if {of} -» 0 for all i = 1 , . . . , m (see Problem 1.8). Now,
for each n we have y

And because |of| —> 0 for all i, we have \\T(xn)\\ -> 0 or, equivalently,
{Txn}->Q. D

(a) Linear Homeomorphisms

Given normed linear spaces X and Y, a linear mapping T: X —> Y is a topo-
logical isomorphism (or linear homeomorphism) if it is also a homeomor-
phism, that is, if it is continuous and invertible and has a continuous inverse.
If there exists such a mapping between X and Y, we say that these two spaces
are topologically isomorphic.

A linear homeomorphism is both a homeomorphism and an isomorphism.
Hence, topologically isomorphic spaces are "equivalent" both in a topologi-
cal sense and in an algebraic sense, because the mapping preserves closed
and open sets and the convergence of sequences, as well as algebraic oper-
ations in both directions.

Given an m-dimensional normed linear space X defined over R with basis
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Linear Mappings Between Normed Spaces 135

v, we have seen that the coordinate mapping crdv:X—-» Rm that assigns
to each x e X its vector of coordinates in basis ¥ is an isomorphism (i.e., a
linear and invertible function). Because X and Vn{F) are finite-dimensional
spaces, both the coordinate mapping and its inverse are continuous. It
follows that crdv is a linear homeomorphism, and we have the following
theorem.

Theorem 4.6, All m-dimensional normed linear spaces over R are topolog-
ically isomorphic to Em = (Rm, |H|E).

Hence, for most purposes, the study of finite-dimensional vector spaces
reduces to the study of Rm.

(b) The Norm of a Linear Mapping

Let X and Y be two vector spaces. We have seen that the set L(X, Y) of
linear transformations fromXto Yis a vector space. If Xand Yare normed
spaces, it seems natural to ask whether or not we can define a norm over
L(X, Y), that is, whether or not we can make L(X, Y) into a normed space.
While there is no "natural" way to define the "size" of a mapping, we can
try defining the norm of a linear transformation T in terms of what it does
to the norm of vectors. Thus, we write

\ (1)

Note that the symbol ||*|| has three different meanings in this expression: ||x||
is the norm of a vector in X, ||R(X)|) is the norm of a vector in Y, and ||r|| is
the "norm" (we still have to prove that it is really a norm) of a linear
mapping. Intuitively, the ratio ||R(X)||/||X|| tells us by how much the applica-
tion of T to a vector x will increase or decrease its length, and we define the
norm of T as the largest such ratio we can find.

To make sure that the supremum in (1) exists, we have to restrict ||-|| to a
subset of L(X, Y). Recall that a linear function T is bounded if there exists
some B > 0 such that ||7%i| < 5||x|| for all x. If T is bounded, the smallest such
B is its norm. Hence, we will define ||*|| on the set B(X, Y) of bounded (i.e.,
continuous) linear functions from X to Y.

From the definition of ||-|j, we see immediately that for any T in B(X, Y)
and any vector x in X, we have

(2)
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136 Vector Spaces and Linear Transformations

Theorem 4.7. Let T ; X — > Y be a bounded linear mapping, and x an
arbitrary vector in X. Then \\T(x)\\ < ||T|| ||x||.

Using the defining properties of the norm (in F) and the linearity of T,
we see that

Hence, we can write (note that x/\\x\\ has norm 1)

; xeX,x*0} = mp{\\Tx\\; x e X, \\x\\ = l

We want to show that (B(X, F), ||-||) is a normed vector space. The first
part of the proof is immediate: Because any linear combination of continu-
ous linear functions is linear and continuous, B(X, F) is a vector subspace
of L(X, F). It remains only to show that |H| is a norm in 2?(X, F). Clearly,
| |F | | > 0 for any T G B(X, F), because it is defined as the supremum of a set
of nonnegative numbers. Moreover, for any scalar a,

Next, we check that the triangle inequality holds. For any 7i and T2 in
B(X, Y),

+ T2(x)\\; \\x\\ =i +T2\\ =

Finally, suppose ||r|| = 0; by (2), we have

= 0 for anyx

+ t INI = 1}

and so T(x) = 0 for all x. Thus ||r|| = 0 only for the function To that maps
every x in X into the zero element of F - that is, for the zero vector in L(X,
F). With this, we have verified that ||*|| satisfies all the defining properties of
a norm, proving the following result:

Theorem 4.8. Let X and Y be normed vector spaces. Then the set B(X, Y) of
bounded linear mappings from X into Y, with the norm defined earlier, is a
normed vector space.
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Linear Mappings Between Normed Spaces 137

Given two finite-dimensional vector spaces X and Y over R, with bases
v and w, we have seen that L(X, Y) and B(Xy Y) coincide and that the
function Mtxw,Y: L(X, Y) —> Rmx« is an isomorphism. Next, we define a
norm on Rmxn by thinking of a matrix as an mn vector and using the Euclid-
ean norm; that is, for A = [aik] with i = 1 , . . . , m and k = 1 , . . . , n, we write

Then Theorem 4.5 implies that Mtx( ) is also a homeomorphism. Hence the
theory of linear transformations between finite-dimensional vector spaces
reduces, for most purposes, to the study of matrices.

(c) The Normed Vector Space L(Rm, Rm)

Because Rn and Rm (equipped with the Euclidean norm) are finite-
dimensional normed vector spaces, linear transformations in L(Rn, Rm) are
continuous (Theorem 4.5) and therefore bounded (Theorem 4.3). It follows
that L(Rn, Rm), equipped with the norm defined in the preceding section,
is a normed vector space. In the remainder of this section we will study some
properties of this space, concentrating on some results that will be needed
in connection with the development of differential calculus in the next
chapter.

In general, there is no practical way to compute the norm of a linear
mapping. The following result, however, gives us some useful bounds for
linear transformations in L(Rn, Rm).

Theorem 4.9. Let T e L(RB, Rm) be a linear mapping, with standard matrix
representation (i.e., relative to the canonical bases) A = [aik], with i = 1,..., m
and k = 1,..., n. Let |LI be the absolute value of the dominant element of A,

u = maxik{\aik\; l = . . . . m, k = i, ... n/ (1)

We have, then,

H < ||T|| < uVrrm

Proof

• Given the standard bases in Rn and Rm, T is represented by an m x n matrix,
-<4 = [aik\. The image of a vector x, T(x) € Rm, is the vector y =Ax whose ith
component is given by
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138 Vector Spaces and Linear Transformations

By the Cauchy-Schwarz inequality and the definition of JX in (1), we have

for each i. Then

Finally, using the definition of the norm of a linear mapping, we observe that
because ycimn is an upper bound of |ir(x)|| for any x with \\x\\ - 1, we have

||r|| = sup{\\T(xf, x e Rn , |M| = 1} < fi-yfim

To get the lower bound on ||7]|, we consider what T does to the standard coordi-
nate vectors in Rn. Let ek = (0, 0 , . . . , 1 , . . . , 0) be the kth unit vector (with a
single 1 in the kth component, and zeros elsewhere) and observe that (with A the
standard representation of T) we have

Hence ak is the norm of the vector corresponding to the kth column of A. Let

a-

be the norm of the largest column vector of A. Because ||r(x)|| = a for some unit
vector ek (with norm 1), it follows that

L«\ W = 1}>CT (3)

Moreover,

and therefore

a =

From this last inequality and (3), we obtain

Given two functions R s L(Rn, Rm) and S e L(Rm, Rp), their composi-
tion r = S o R is a linear function in L(Rn, Rp), by Problem 2.4. In terms
of their matrix representation, the composition of two linear mappings
translates into a product. (In fact, the product of two matrices is defined so
as to correspond to the composition of the corresponding linear operators.)
Let A, A, and A be the standard matrices associated with R, S, and T\ then
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Linear Mappings Between Normed Spaces 139

T(x) = S[R(xj\ = As (ARx) = (AS AR )x, so AT = ASAR

Using Theorem 4.7 we can get a bound on the norm of the composition
of two linear mappings in terms of their respective norms. Observe that

for any x. Hence, ||S|| ||i?|| is an upper bound for ||r(x)|| when ||x|| = 1, and it
follows that

We have proved the following result:

Theorem 4.10. Let R G L(Ra, Rm) and S e L(Rm, Rp). Then T= S ° R G
, HP), and

Linear Operators in Rn

A mapping from a space X into itself is often called an operator. In this
section we will study some properties of linear operators in Rn. The set of
all such operators will be denoted by L(Rn). Because L(Re) is just the
vector space L(Rn, Rn), earlier results apply. Certain additional properties
follow from the fact that the domain and range spaces are the same.

If a linear operator T e L(Rn) is invertible, then its inverse T~l is also an
element of L(Rn). Hence

ToT-1=T~1oT=In (1)

that is, each invertible operator commutes with its inverse, and their com-
position is the identity operator in Rn. Moreover, because ||/n|| = 1, (1) yields
(using Theorem 4.10)

so the norm of the inverse of a linear operator is (weakly) larger than the
inverse of the norm of the operator itself.

Each linear operator T in Re is associated with a square n-matrix A.
Hence the operator T is invertible if and only if the equation y = Ax can be
solved for a unique value of x for any given y. From elementary linear
algebra we know that this is true if and only if the determinant \A\ does not
vanish. In that case, the matrix A is nonsingular, and the solution of the
system is given by x = A~xy. Hence, invertible operators are those that are
represented by invertible matrices.
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140 Vector Spaces and Linear Transformations

If we let y be the zero vector in Rn (0w), the system Ax = 0n has always
the trivial solution x = 0n. If \A\ * 0, then the trivial solution is unique, but if
the determinant vanishes, then there are other solutions, and therefore T
cannot be invertible, because it maps distinct vectors into zero. Recall also
the relation

n = dim ker T + rank T

If T is invertible, then rank T = n, and therefore dim ker T must be zero; that
is, the kernel must be a subspace of dimension zero of Rn, and hence ker T
= {0w}. In conclusion, we have the following result:

Theorem 4.11. A necessary and sufficient condition for a linear operator
T; Ra —> Rn to be invertible is that T map only the zero vector into the zero
vector.

If S and T are linear operators in RR, their composition S ° T is also a
linear operator in Rn, by Theorem 2.11. Moreover, the composition of two
invertible operators is itself invertible. To show this is so, let T and S be
invertible operators, and x any vector in Rn other than the zero vector
0n. Because T is invertible and therefore one-to-one, x * 0n implies T(x) &
()„, by Theorem 2.13; and because S is invertible, this implies in turn that
S(Tx) * 0m and it follows that S o Tis invertible, by Theorem 4.11. Moreover,

so (S o r)"1 = T~l ° 5"1, that is, the inverse of the composition of two linear
operators is the composition of their inverses in reverse order. We have,
then, the following theorem.

Theorem 4.12. Let S and T be invertible operators in h(Rn). Then the
composition S ° T is also an invertible operator in L(Rn), and (S ° T)"1 =
T"; o S'1.

The set of all invertible operators in L(Rn) is denoted by O(Re). Because
L(Rn) is a normed space, the concepts of open and closed sets are defined,
as is the notion of continuity for functions mapping L(Rn) into itself. In
the remainder of this section we will show that O(Re) is an open subset of
L(Rn) and that the function that assigns its inverse to each invertible linear
operator in Rn is continuous. These results will be needed in Chapter 4 in the
proof of the inverse-function theorem. We begin with a preliminary result.

Lemma 4.13. Let T be an operator in L(Ra), and I the identity mapping in
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Linear Mappings Between Normed Spaces 141

(i) If\\T\\ < I then (I - T) is invertible, and \\(I - T ) i | < 1/(1 - \\T\\).
(ii) If | |I - T|| < I then T is invertible.

Proof

(i) Let X * 0 be an otherwise arbitrary vector in Rn. We will show that if ||r|| < 1,
then ( / - T){x) ± 0. By Theorem 4.11, this implies that ( / - T) is invertible.

First, note that for arbitrary vectors x and y,

\\x\\ - \\y\\ = IK* -y) + y\\ - Ibll < II* - >1I + IWI - IWI => II* - >1I > 11*11 - IWI

Also, recall that

Hence we have

- ||T|D > o

because | | r | |< l by assumption. Hence, ||(7- T)(X)\\ *0, and it follows that
(/-T) is invertible.

To get the bound on the norm of ( / - T)~\ replace x in (1) by (7 - T)x(y),
where y is an arbitrary vector in Rn. The left-hand side of this expression then
becomes

Hence, (1) yields

from which

[I-Ty\yi\<
i-imi

Hence, 1/(1 - \\T\\) is an upper bound of ||(7- T)"1^)!! for any y with \\y\\ = 1,
and it follows that

as was to be shown.
(ii) Put 5 = 7 - T. Because ||5|| = ||7 - T|| < 1, (7 - S) is invertible, by (i), but 7 - S =

I-(I-T) = T. •

Theorem 4.14. Let T and S be linear operators in Rn. 7/T is invertible and
S satisfies
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142 Vector Spaces and Linear Transformations

then S is also invertible. This implies that the set QfR11) is open in L(Rn).
Moreover,

Notice that the theorem says that if T is invertible, then every operator 5
within an open ball with center at T and radius l/HT"1!! is invertible. Hence
the set of invertible operators is open. Although the reader may find it
strange at first to think in these terms, the intuition should be clear. The
openness of £2(Rn) means that if T is invertible, then any other linear oper-
ator 5 that is sufficiently close to T, in the sense that \\S - T\\ is "small," is
also invertible. At this point, it may help to think in terms of the matrix rep-
resentations of 5 and T: T is invertible if and only if det MT * 0; because the
determinant is a continuous function of the entries of a matrix, any matrix
Ms sufficiently similar to MT has a nonzero determinant and is therefore
invertible.

Proof. Because T is invertible, we can write

By Theorem 4.10 and the assumptions of this theorem, we have

(1)

(2)

By Lemma 4.13, with T1 °(T-5) in place of T9 this implies that I - T~l °
(T-S) is invertible. But then (1) shows that 5 is the composition of two
invertible operators and therefore is invertible itself, by Theorem 4.12.

Moreover, from (1) we have, by Theorem 4.12,

->=[I-T-'o(T-S)]
- i

and hence

(3)

Using (2) and the inequality in part (i) of Lemma 4.13, with T 1 ° (T-S) in
place of r, we have

1
l-\\T^o(T-S)\\
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Linear Mappings Between Normed Spaces 143

Substituting this expression into (3), we obtain the desired result:

i !i v D

Thinking of an invertible operator as a point in the set Q(Rn), we
can construct a function ( )"1:Q(Rn) —> Q(Rn) that assigns to each T in
£2(Rn) its inverse T"1. The next theorem tells us that this function is contin-
uous; that is, for any £> 0 we can find some 5> 0 such that for S and T in
Q(Rn),

Intuitively, the continuity of the inversion mapping means that similar
operators have similar inverses.

Theorem 4.15. The function ( )-':Q(Ra) —> Q(Ra) that assigns to each
invertible operator T its inverse T~2 is continuous.

Proof. Fix some T in Q(Rn), and observe that if we pick S so that

then, by Theorem 4.14, S is invertible, and

- 5)|| (2)

If we strengthen (1) and require | | r - 5 | | < l/(2||r ^Q, then it can be seen
from the proof of the preceding theorem that \\T~lo(T- S)\\ < 1/2, so (2),
which still holds, becomes

<- IM!
• < 2IIT-1

(2')

Next, note that

and hence, by (2r),

|5-i _ r-i| = - s) ° s-'W < swws-1! <2| |r-1 | |2 | |r-5| | (3)

Finally, fix some arbitrary e > 0. If we choose
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144 Vector Spaces and Linear Transformations

then H5 - T\\ < 8 implies, using (3),

and we conclude that ( )-1 is continuous. •

5. Change of Basis and Similarity

Let T be a linear mapping from a finite-dimensional vector space V into
itself. We have seen that given a basis for V, the mapping T is represented
by a square matrix. A change of basis, of course, yields a different matrix
representation. In this section we investigate the relationships between dif-
ferent representations of a given linear mapping. This material will be useful
in applications, as it is often convenient to change basis so as to obtain a
simple representation of a given mapping.

We begin by exploring the effect of a change of basis on the coordinates
of a vector. Let

a. = {a1,...,an} and b = {b1,...,bn}

be two bases for an n-dimensional vector space V. Because a is a basis, we
can write each vector bt of b as a linear combination of the elements of a,
that is, there exist scalars qiU..., qin such that

Because this is true for each i = 1 , . . . , n, there exists a matrix Q = [qik] such
that

bn. Inn. an

Q

an

(1)

Next, let x be an arbitrary vector in V, with coordinate vector a =
(cc u . . . , On)7 in basis a, and P= (f5 u . . , pn)

T in basis b. Then

=(al9...,an)
01

. . .

a_

= aT
ax

_an_

Similarly, using (1),
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Change of Basis and Similarity 145

V
...
b

= PTQ
an

Because A = [al9 . . . , an]
T is an invertible matrix by the linear independence

of the elements of the basis, aTA = PTQA implies aTAA~l = pTQAA~l, and
therefore

PTQ = aT

Taking transposes of both sides of this expression, and letting QT = P, we see
that

a = Pp (2)

Hence, the effect of a change of basis on the coordinates of a vector is to
multiply the original coordinate vector by the transpose of the matrix Q that
summarizes the relationship between the two bases. The following problem
shows that the matrix P is invertible.

Problem 5.1. Show that the matrix P that represents a coordinate change is
invertible. Hint: By the same argument we have used, there is a matrix Z
such that ft=Za.

Now, let T: V —> V be a linear mapping with matrix representation Ma in
basis a and Mb in basis b. Then, given an arbitrary vector x in V, its image
T(x) has coordinates Maa in basis a and Mb(5 in basis b. By the previous
discussion, these two coordinate vectors are related by

Maa = PMbp

Substituting (2) in this expression,

and premultiplying both sides by P"1,

P'MaPp = P~lPMbp = Mbp

Because this expression must hold for all vectors /3, it follows that

P"1MaP = M, (3)

Hence, any two representations of the same linear mapping are related in a
simple way: We can write one of them as the result of premultiplying and
postmultiplying the other one by a matrix and its inverse.

Two matrices that satisfy relation (3) are said to be similar.
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146 Vector Spaces and Linear Transformations

Definition 5.2. Two matrices A and B are said to be similar if there exists
an invertible matrix P such that P~lAP = B.

Hence, a change of basis alters the matrix representation of a linear
mapping by a similarity transformation. In a later section we will see that it
is often possible to find invertible matrices P that yield particularly conve-
nient representations of a given linear mapping.

Problem 5.3. Show that similar matrices have the same determinant. (Recall
that the determinant of the product of two matrices is the product of their
determinants.)

6. Eigenvalues and Eigenvectors

Definition 6.1. Eigenvalues and eigenvectors. Let Abe annxn matrix, with
e a nonzero n-vector, and A a scalar (real or complex), such that

Ae = Xe (1)

We then say th#t X is an eigenvalue or characteristic root oiA, and e an eigen-
vector or characteristic vector of A corresponding (or belonging) to the
eigenvalue X.

Rearranging (1), we see that the pair (A, e) must satisfy the homogeneous
system of equations

(A-XI)e = 0 (2)

where / is the identity matrix. Notice that (2) is a homogeneous system of n
equations in n unknowns (the components of e) and will therefore have non-
trivial solutions only if X is such that the coefficient matrix of the system is
noninvertible, that is, if

|A - A/| = 0 (3)

for otherwise, e = {A - XI)~lQ_ = 0. Expanding the determinant \A - XI\ in
this expression, we obtain an nth-degree polynomial p(X), called the
characteristic polynomial of A. Equation (3) (the characteristic equation)
is therefore an nth-degree polynomial equation in A, and, as such, it has
n solutions, not necessarily all real or all distinct. Each of these solutions
(A», i = l , . . . , n) is an eigenvalue of A. If an eigenvalue is repeated m
times, we say that it has multiplicity m. The set of eigenvalues of A,
{A,; i = 1 , . . . ,n}, is sometimes called the spectrum of the matrix, denoted
by a(A).
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Eigenvalues and Eigenvectors 147

Having solved (3) for the eigenvalues of A, we can calculate the corre-
sponding eigenvectors by solving the system

Aet = A,e, o (A - Xtfyi = 0 (4)

for each / = 1 , . . . , n. Observe that the characteristic vectors of a matrix
are not uniquely defined. If et is an eigenvector of A associated with the
eigenvalue A,-, any vector of the form aeh where a is an arbitrary scalar,
will also be a characteristic vector of A, for if we multiply A by cceh we
obtain

Hence, if et is an eigenvector of A, so is aeh The space of solutions of (4)
corresponding to a given eigenvalue A* is called the eigenspace of A belong-
ing to A*.

Problem 6.2. Show that the eigenspace of A corresponding to an eigenvalue
A is a vector space.

Problem 6.3. Show that if A is an eigenvalue of A, then (i) Xn is an
eigenvalue of An, and (ii) X~l is an eigenvalue of A'1.

The case of a 2 x 2 matrix is particularly simple and often useful in appli-
cations. Given the matrix

its characteristic equation is

\A-XI\ =
a-i\ an — A

= Xa n M i - Xa22 + A2 - a12fl2i - A2 - (flu + a22)A + (ana22 - 0i2#2i)

= A2- (tr >1)A + det A = 0

- A)(a22 - A) - al2a2l

Using the quadratic formula, the eigenvalues of A are given by

. _tr±V(tr)2-4(det)
Ai, A2 - -

Given an eigenvalue A,-, we now seek the corresponding eigenvectors et.
To simplify things a bit, we can take advantage of the fact that eigenvectors
are defined, at most, up to a multiplicative constant to normalize the second
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148 Vector Spaces and Linear Transformations

component of et to 1 {ea = 1). Hence, we want a vector e{ = (eiU 1) such that
Aet = Xteh that is, a solution of the system

or

anen + an = Xte

en +#22 =A,-

Notice that there is only one unknown (etl). However, we know that the
system must be consistent; hence, both equations have the same solutions,
and we can solve whichever one is more convenient.

Problem 6.4. Find the eigenvalues and eigenvectors of the matrix

A =

"3 -2 0"
-2 3 0
0 0 5

The following theorems list some properties of eigenvalues and eigen-
vectors that will be useful in the study of linear dynamical systems.

Theorem 6.5. Let A be a square matrix with real entries. Then, complex
eigenvalues of A, if they exist, come in conjugate pairs. Moreover, the corre-
sponding eigenvectors also come in conjugate pairs.

Theorem 6.6. Let A = fa^J be an n x n matrix. Then

(i) the product of the eigenvalues of A is equal to its determinant, that is,

(ii) the sum of the eigenvalues of A is equal to its trace, that is,

(Hi) if A is a triangular matrix, then its eigenvalues are the coefficients in the princi-
pal diagonal of the matrix (i.e., ^ = a j .

Proof. Let A be an n x n matrix. Then its characteristic polynomial is an /?th-
degree polynomial,

cX A. + Co
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Eigenvalues and Eigenvectors 149

To prove (i) and (ii), we will write down two equivalent expressions for p(X)
and compare their coefficients.

(i) First, let A b . . . , K be the eigenvalues of A. Because these numbers are, by
definition, zeros of p(A), we can write

(1)

(2)
(3)

= a(Xi-A)(A-A)...(A,-A)

for some number a. Using this expression, we see that

Alternatively, we can also write

P{>i) = \A-XI\ =

...Xn

fn - X a12

a2i a22 - X a2n

ann-X.

(4)

from which

co=p(O) = detA (5)

Moreover, it can be shown by induction that this polynomial is of the form

p(X) = (an - A)(a22 - A)... (ann - A) + terms of order n - 2 or lower in A (6)

Inspection of this expression shows that

cn=(-l)n (7)

Comparing (2) and (7), we see that

« = l (8)

Equations (3) and (5) then imply, using (8), that

AiA2...K = detA (9)

(ii) Next, consider the coefficient of An~
\ cR_i. Comparing equations (1) and (6), we

see that both expansions of the polynomial should yield similar expressions
for cw_i, with Xt taking the role of au. Using (1) with a = 1, we will show by induc-
tion that cw_i = (-l)n~l(LU Xt). By the same argument, it can be shown that
C/i-i = (-l)w~1(22=i %). Hence, it follows that tr A = E-Li A*, as was to be shown.

For each k = 1 , . . . , n, let
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150 Vector Spaces and Linear Transformations

and observe that

pk+i(X) = pk(X)(Xk+1-X)

First, we verify that the desired result holds for k = 2. In this case, pk(X) is of
the form

p2 (A) = (Aj - A)(A2 - A) = AXA2 - XxA - AA2 + A2 - A2 - (h + A2 )A + X,A2

and cn_! = c1 (the coefficient of X) is indeed of the form

Next we will assume that this result holds for k and show that this implies that
it holds also for k + 1. Under our assumptions we have

Pk(X) = (-l)kXk + H )

Hence,

k+i - X)

= [(-1)* A* + ( - 1 ) " ( X ^ ' ) A W + C^A""2 • • • + CiA + co](Aw - A)

= (-if1 x™ + Xk+1(-l)k Xk + (-l

which shows that the coefficient of Xk is of the required form. This completes
the proof,

(iii) Notice that in this case the characteristic equation reduces to 112=1(a#• - K)
= 0. •

So far, we have talked about the eigenvalues and eigenvectors of a matrix,
but in fact these concepts can be defined directly in terms of the underlying
linear mapping. Let T be a linear function mapping an n-dimensional vector
space V into itself. Given two bases of V, a and b, let Ma and Mb be the
corresponding matrix representations of T. We have seen that Ma and Mb

are similar matrices; that is, there exists an invertible matrix P (which is the
transpose of the "change-of-basis" matrix) such that Mb = P~lMaP. Using
this expression, it is easy to show that the two matrices have the same
characteristic polynomial and therefore the same eigenvalues:

\Mb -Af| = \P'lMaP -XI\ = \P~l{Ma -XI)P\ = \P~x\\Ma - XI\\P\

Moreover, the eigenvectors of Ma and Mb represent the same element of V
in the two bases we are considering. To see this, let x and y be eigenvectors
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Eigenvalues and Eigenvectors 151

of Ma and Mb belonging to the same eigenvalue, A, that is, vectors such
that

= Xx and Mby = Xy

Then, because Mb = P~xMaP, we have

P~xMaPy = Xy and therefore MaPy = XPy

Hence, x = Py, and we conclude (see the previous section) that x and y rep-
resent the same vector under different bases.

Diagonalization of a Square Matrix

A matrix A is said to be diagonalizable if it is similar to a diagonal matrix,
that is, if there exists an invertible matrix P such that P~lAP is diagonal.

Theorem 6.7. Let A be an n x n matrix with n linearly independent eigen-
vectors. Then A is diagonalizable. Moreover, the diagonalizing matrix is
the matrix E = [ch ..., en/ whose columns are the eigenvectors of A, and the
resulting diagonal matrix is the matrix A = diag(kh ..., Xn), with the
eigenvalues of A in the principal diagonal, and zeros elsewhere. That is,
B-1 AE = A.

Proof Because the eigenvectors of A are linearly independent by assump-
tion, E=[eu..., en] is an invertible matrix, and therefore ErlAE = A is
equivalent to AE = EA. We now verify that this expression holds. Using the
definition of eigenvectors and eigenvalues,

AE = A[eu...,en] = [Aeu..., Aen] = [Xxeu...,, Xnen]

~XX ••• 0 "

= [eu...,en]

0 ••• Xn_

Theorem 6.8. Let A be an n x n matrix. If the n eigenvalues of A are all dis-
tinct, then its eigenvectors e2,. . ., en are linearly independent, and therefore
A is diagonalizable.

Proof Recall that a set of vectors eu ..., en is said to be linearly dependent
if there exist scalars ccu ..., (Xn not all zero, such that

and to be linearly independent if this expression holds only when all the
scalars are zero.
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152 Vector Spaces and Linear Transformations

For simplicity, let n = 2. There exist scalars ax and 052 (possibly both zero)
such that

axex + a2ez = Q (1)

Multiplying both sides of (1) by A,

axAei + cc2Ae2 = Q =* axXxex + al2X2e2 = Q (2)

where Ai and X2 are the corresponding eigenvalues. Next, we multiply both
sides of (1) by X2 and subtract the resulting equation from (2), obtaining

ctiXxex + a2X2e2 -ocxX2ex -a2X2e2 = ax(Xx -X2)ex=0

Because Xx & Xz by assumption, and ex * 0, we must have ax = 0. By the same
argument, <% is also zero. Hence, the eigenvectors ex and e2 belonging to dif-
ferent eigenvalues must be linearly independent.

A similar argument will work for any n: Assume that some linear combi-
nation of the n eigenvectors, eu..., em is equal to zero, multiply this com-
bination by A, and subtract Xn times the original linear combination from
the resulting expression. This will leave a linear combination of ex,..., en.x
that is equal to zero. By repeating the process, we end up with the result that
a multiple of ex is the zero vector, forcing ax = 0 and, eventually, at = 0 for all
i. Hence, eigenvectors associated with distinct eigenvalues must be linearly
independent. •

Appendix: Polynomial Equations

A polynomial of degree n in x is a real or complex-valued function

p(x) = aox
n + axx

n~l +... + an-ix + an (witha0 *0) (1)

where the coefficients at are real or complex numbers. An equation of the
form

p(x) = aox
n + axx

n~l +... + an^x + an=0 (2)

is called a polynomial or algebraic equation. The solutions or roots of the
equation p(x) = 0 are the zeros of the polynomial p(x).

Polynomial equations arise in the computation of the eigenvalues of a
matrix and in other applications. A first question that arises in connection
with such equations has to do with the existence of solutions to (2). It can
be shown that a polynomial equation of degree n will always have n solu-
tions, provided we allow for complex and repeated roots. In fact, complex
numbers were "invented" to make sure that algebraic equations always have
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Appendix: Polynomial Equations 153

a solution. If the coefficients of p(x) are real, moreover, any complex roots
will come in conjugate pairs.

The solutions of the second-degree algebraic equation

ax2 + bx + c = 0

can be obtained directly using the quadratic formula:

X\, X2
-b±^b2-4ac

2a (3)

For the case of the third-degree equation,

there is a similar result. Observe first that by letting z=x- (A/3), this equa-
tion can be written in the form

x3 + ax + b = 0

The roots of (4), then, must satisfy the Cardano formula:

(4)

X —

/ , \4a3 + 21b2

—b +
27

r 4a3+21b,2

27
(5)

/ \

Notice that there may be more than three numbers that satisfy this expres-
sion. Only three of them, however, will solve the original equation.

A more complicated formula exists for fourth-degree polynomial equa-
tions. For equations of a higher order, however, no explicit formulas are
available.

Integer roots of a polynomial with integer coefficients are relatively easy
to find. Observe that we can rewrite the equation

n = 0 (2)

in the form

n-1 + axx
n"2

= -an

Assume that the coefficients of p(x) are all integers and that x* is an integer
solution of (2). Then the expression inside the parentheses is an integer, and
x* must be a factor of the constant term an. It follows that in order to find
the integer solutions of (2) (if they exist), it suffices to find all the integer
factors of an. We can then insert each factor /„ in p(x) to check whether
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154 Vector Spaces and Linear Transformations

or not it is indeed a zero of the polynomial. If it is, we can use this fact to
simplify p(x) by dividing it by (x-fn). In this manner, we can rewrite the
original equation in the form

p(x) = q(x)(x-fn)

where q(x) is a polynomial of degree n-1. If p(x) = 0 has enough integer
roots, we may be able to write it as a product of a number of binomials
of the form (x-fn) and a second- or third-degree polynomial q(x). We
can then use the quadratic formula or the Cardano formula to solve the
equation q(x) = 0, thus finding the remaining solutions of the original
equation.

We conclude this section with an algorithm that simplifies the task of
dividing a polynomial p(x) by a binomial of the form (x - c). In general, the
division of p(x) by (x - c) yields a quotient polynomial q(x) of degree n-1
and a constant remainder r, according to the formula

p(x) = q(x)(x-c)+r

Given p(x) and c, we seek q(x) and r. To illustrate the algorithm, lct p(x) be
a third-degree polynomial. Then p and q are of the form

p(x) = aQx3 + axx2 + a2x
2 + a3 and q(x) = b0x

2 + bxx + b2

To compute the values of r and the coefficients of q(x), we construct the fol-
lowing table. The top row contains the coefficients of p. The first element of
the third row is a0. Then each element of the second row is obtained by mul-
tiplying the previous element of the third row by c. Each element of the third
row is the sum of the corresponding elements of the first and second rows.
The elements of the third row are the coefficients of q(x), except for the last
one, which is the remainder.

a\ a2 #3
a0 caQ cax + c2a0 ca2 + c2at + c3a0

OQ a,\ + cflo o2 + ccii + c2cio 03 + ca2 + c ai + c3«o

<-*bi) (=b2) (=r)
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Notes

1 We can assume, without loss of generality, that S' is the same set in both cases. If it were
not so, we would have

x = HeasXs and y = H PsXs

We could then define S' = Si u S2 and put as = 0 for s e S' ~ Sx and ft = 0 for s e S' ~ S2.
2 Because X and Y have the same dimension, we can assume that the index set is the

same for the Hamel bases of the two spaces.
3 Recall that for any scalar a, ||ca|| = |a| ||x||; hence \\T(ax)\\ = \a\ \\T(x)\\. If ||x|| < 1, we can

write x = ay, where \a\ < 1 and \\y\\ = 1 and therefore ||T(JC)|| < \\T(y)\\. This is why we can
replace the equality ||x|| = 1 by the inequality ||x|| < 1.
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4
Differential Calculus

This chapter introduces the concept of differentiability and discusses some
of its implications. After dealing briefly with the familiar case of univariate
real functions, we extend the concept of differentiability to functions of Re

into Rm . The key to the extension lies in the interpretation of differentia-
bility in terms of the existence of a "good" linear approximation to a func-
tion at a point. We also show that important aspects of the local behavior
of "sufficiently differentiable" functions are captured accurately by linear
or quadratic approximations. This material has important applications to
comparative statics and optimization.

1. Differentiable Univariate Real Functions

Let g be a univariate function, g:R —> R. We want to make precise the
notion of the slope of the function at a given point x. Given a second point
y in the domain of g, the difference quotient (g(y) - g(x))/(y - x) gives the
slope of the secant to the function through the points (x, g(x)) and (y, g()>)).
As we take points y closer and closer to x, the secant becomes a better
approximation to the tangent to the graph of g at the point (x, g(x)), and in
the limit the two coincide. Thus, we can define the derivative of g at x as the
limit

g\x) = \img{y)g{x) = hiimg(* + /*)g(*){h e
y-*x y-=x hi~*° n

 v g

whenever it exists, and we can interpret it as the slope of the function at this
point.

Definition 1.1. Derivative of a univariate function. Let g : R — > R be
defined on an open interval /. We say that g is differentiable at a point x in
/ if the following limit exists:

156
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Differentiable Univariate Real Functions 157

X Y3 Y2 Yi

Figure 4.1. The derivative as the limit of the secant.

[img(x + h)-g(x) {heR)

When it does, we say that the value of the limit is the derivative of g at x,
written g'(x). If g is differentiable at each point in its domain, we say that
the function is differentiable (on / ) .

Problem 1.2. Let / and g be functions R —> R, and assume that they are
both differentiable at some point x°. Using the elementary properties of
limits and the continuity of / and g at x, show that the product function /?,
defined by p(x) =/(x)g(x), is differentiable at x° and that

Hint:f(x)g(x) -f(x°)g(x°) =f(x)g(x) -f(x°)g(x) +f(x°)g(x) -f(x°)g(x°).

Problem 1.3. Let /(x) = x". Show by induction that f(x) = nx""1. (First, prove
it directly for n = 2.)

We will now establish some important properties of differentiable
functions.

Theorem 1.4. Let f be a function f:R D I —> R (I open). Iff is differen-
tiable at a point x e I, then it is continuous at x.

Proof. Given two points x and x + h in /, we can write
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158 Differential Calculus

f(x) h
h

Taking limits as h -» 0, and applying earlier results on the algebra of limits,
we have

lim/(jc + h)- f(x) = (lim f (x + h ) ~ f W ) o = /'(x)0 = 0

and therefore

\im f(x+h) = f(x)

which establishes the continuity of/at x. •

A point x° is a local maximizer of / if there exists some 8 > 0 such that
f(x°) >f(x) for all x e Bg(x0). The following result tells us that a zero deriv-
ative is a necessary condition for an interior maximum (minimum) of a dif-
ferentiable function. (Notice that we exclude the end points of the interval,
to avoid the possibility of corner maxima.)

Theorem 1.5. Necessary condition for an interior maximum. Let f be a
differentiable function fa, b) —> R, and x° a local maximizer (minimizer)
oft Thenf(x°) = 0.

Proof. Suppose, for concreteness, that/has a local maximum at x°. Then we
have

f(x° + h ) ~ f(x°)< 0 V h w i t h \h\ < 8

and therefore

h
>0 forhe(-8, 0)

Taking limits as h approaches zero from above and from below, we have

r /(JC° + * ) - / ( * ° 1 A . /

lim — '-———- < 0 and hm
h

0 and hm 0
h h-*<r n

Now, because the function is differentiable, the limit of the difference quo-
tient as h -> 0 exists and is given by the common value of the two one-sided
limits. Hence,

0 < //(x°) = lim f(X°+ ^ ~ - ^ < 0=> f'(x°) = 0 D
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Differentiable Univariate Real Functions 159

Theorem 1.6. Rolle's theorem. Let f;/a, b] —> R be continuous and
differentiable on fa, b). Assume ffa) = f(b) = 0; then there is some number
9 G fa, b) such that f(Q) = 0.

Proof Because / i s continuous on the compact set / = [a, b]9 it attains both
a maximum M and a minimum m on this interval. That is, there exist points
xm and xM in [a, b] with/(*m) = m andf(xM) = M. Iff(xm) =f(xM) = 0, then the
function is constant on the interval, and f(x) = 0 for all x in /. Otherwise,
either f(xm) < 0 for xm e (a, b) and/'(*m) = 0 (because xm is a local minimizer)
or f(xM) > 0 for xM e (a, b) and f(xM) = 0 (by Theorem 1.5), or both. Q

Using Rolle's theorem, it is easy to prove the following important result.

Theorem 1.7. Mean-value theorem. Letf:R —> R be a differentiable func-
tion. If a and b are two points in R, with a < b, then there is some number 6
e fa, b) such that f(%) = fffbj - i(a))l(b - a).

Proof Define the function (/>( ) by

0 W / W / ( f l ) ( x f l )
b — a

Because (j>( ) satisfies the assumptions of Rolle's theorem, there exists some
point 9 in (a, b) such that (jf(0) = 0, that is,

m = m _ 1HM=o => ne) = m~f{a) •
b—a b—a

The mean-value theorem gives us a way to relate the properties of
a function to those of its derivative. The following problem provides an
example of how this can be useful.

Problem 1.8. Let f: R —> R be a differentiable function on an interval /.
Show that

(i) if f(x) = 0 for each x e /, then / is constant on the interval. Hint: Let x and y,
with x < y, be two arbitrary points in /. Use the mean-value theorem to show
that/(*)=/(>>),

(ii) if /'(x) > 0 on (a, b), then/is strictly increasing on (a, b).

Figure 4.2 gives a geometrical interpretation of the mean-value theorem.
Putting b = a + h in the formula given in the statement of the theorem, and
rearranging terms, we have
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160 Differential Calculus

a e b

Figure 4.2. The mean-value theorem.

for some Ae (0,1). The following theorem may be seen as an extension of
this result.

Theorem 1.9. Taylor's formula for univariate functions. Letf: R —> R be
n times differentiate on an open interval I. For all x and x + h e I we have

(1)

where tw(x) is the kth derivative of f evaluated at x, and the remainder or
error term E is of the form

for some A e (0,1).

n/

That is, the remainder has the same form as the other terms, except that
the nth derivative is evaluated at some point between x and x + h.

Proof. Put y = x + h and define the function F(z) for z between x and y by

Then the theorem says that for some point x + My - x) between x and y,

F(x) =
n!

(y -x)
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First, observe that F(y) = 0 and that most terms in

161

-.n-2
)

f(n-i)(

cancel, leaving us with:

Next, define the function

t
) (4)

(5)

and observe that G is a continuous function on (x, y), with

G(y) = F(y) - 0 = 0 = F(x) - F(x) = G(x)

and

y-xJ y-x

By Rolle's theorem, there exists some X e (0,1) such that

(6)

Expanding that expression using (4) and (6),

= G'(x + A(y-x

f^Ky-
(n-l)!

/('°(x+A(y-

F\x+

% V iAA>

-x) =

n —1

= Kx)

"I
-x-A(y-xy

y-x

y-x
. . n -1 1 j - , .

y-x

rJ y

l
- X

1

- X

F(x)

F(x)

n\
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162 Differential Calculus

which is the desired result. •

Taylor's theorem gives us a formula for constructing a polynomial approx-
imation to a differentiable function. With n = 2, and omitting the remainder,
we get

f(x + h) s f(x) + f'(x)h (1)

The differentiability of/implies that the error term E2 will be small. Hence
the linear function in the right-hand side of (1) is guaranteed to be a decent
approximation to /( ) near x. Higher-order approximations that use several
derivatives will be even better.

Problem 1.10. A sufficient condition for a local maximum. L e t / : R —> R
be twice differentiable on some interval containing JC°. Assume, moreover,
that/O ;°) = 0,/"(*°) < 0, a n d / ' is continuous at x°. Use Problem 1.8 to show
that x° is a local maximizer of/.

Problem 1.11. Let / : R —> R be m + 1 times differentiable on an interval
around the point JC°. Assume that for some m > l,/(w)(x°) is the first nonzero
derivative o f / a t x°, that is,

//(X°) = f"(xo) = /(3)(JC0) = ... = flm-1)(xo) = 0 and /(W)(*°)*°

Use Taylor's theorem to show that

(i) if m is even and fm\x°) < 0, then /has a local maximum at x°,
(ii) if m is even and fm\x°) > 0, then/has a local minimum at x°,
(iii) if m is odd, then /has neither a local maximum nor a local minimum at x°.

Problem 1.12. Cauchy's mean-value theorem. Prove the following result:
Let / and g: [a, b] —* R be differentiable on (a, 6), and suppose that
g'(x) & 0 for all x in (a, b). Then there is a point z in (a, b) such that

f(b)-f(a) = f'(z)
g(b)-g(a) g'{z)

Hint: How do you have to modify the function 0( ) in the proof of
Theorem 1.7?

Problem 1.13. UHopitaPs rule. Suppose / and g are continuous real-valued
functions defined and differentiable on some open interval containing the
point a and such that /(a) = g(a) = 0. Show that iif{x)lg\x) tends to a limit
as x —» a, so does /(x)/g(x), and

f(x) ,. f'(x)
=(*) *-*a g (x)
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Hint: Use Cauchy's mean-value theorem (Problem 1.12).

163

2. Partial and Directional Derivatives

We now want to extend the concept of differentiability at a point x from
univariate functions to real-valued functions of n variables. One com-
plication we immediately run into is that we now have to specify the direc-
tion along which we are approaching x. The problem does not arise in the
real line because there we can approach x only from the left or from the
right, and the derivative of the univariate function g( ) at x is defined as
the common value of both one-sided limits whenever they coincide. In Rn,
however, we can approach a point from an infinite number of directions, and
therefore we have to specify which one we are considering. This observation
leads us to the concept of directional derivative, which we now define.

Let / be a function Rn —> R, and fix two vectors x° and u in Re with
||w|| = 1. We will interpret x° as a "point" in space, and u as a vector (an
"arrow") describing a direction of movement in n-space, as illustrated in
Figure 4.3. The set of points

L(x°,u) = {x(a)eRa;x(a) = x°+au, aeR}

corresponds to the straight line through x° with direction u. Because u has
norm 1, the parameter a measures the distance between a point x(a) in the
line and x°.

We will define the directional derivative of/at x° in the direction of u with
the help of an auxiliary univariate function g whose derivative at zero gives
us the slope of / as we move away from x° in the direction of u. We define

L(x°,u)

X +OCU

Figure 4.3.
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164 Differential Calculus

g(a) = f(x°+au)

When n = 2, the geometric interpretation is straightforward: The graph of /
is a three-dimensional surface that we suppose to be oriented in such a way
that the value of the function is measured vertically. The function g is the
restriction of / to the line L(x°, u), and its graph is the curve obtained by
cutting this surface with a vertical plane through x° and "parallel" to w. Then
g'(0) gives the slope of this curve at x° or, equivalently, the slope of the
surface {(xu x2, y)\ y =f(xu x2)} at the point (xl9 x2jf(xu x2)) when we move
in the direction of u.We say that g'(0) is the directional derivative of / a t the
point x° in the direction of u, and write Df(x°; u). More formally, we have
the following:

Definition 2.1. Directional derivative. The directional derivative of / : Rn

—> R in the direction of u at the point x° is defined by

Df(x°; u) = limM ' Jy ', where a e R and ||K|| = 1

whenever this limit exists.

Because the only function of the vector u is that of indicating the direc-
tion of motion, we can assume that its norm is 1. This is not necessary for
the definition per se, but it is a convenient way to normalize directional
derivatives.

Problem 2.2. Let f(xu x2) = x1x2y u = (3/5, 4/5), and *° = (1,2). Compute
Df(x°; u) directly by taking the appropriate limits, and verify that the result
is the same if you use the formula

(The definition of the gradient Vf(x°) follows after Problem 2.5.)

Directional derivatives in the direction of the coordinate axes are of
special interest. The partial derivative of / with respect to its zth argument
is defined as Df(x; el), where el is a vector whose components are all zero
except for the fth one, which is 1.

Definition 2.3. Partial derivative. Let / be a multivariate function Rn —>
R. The partial derivative of / with respect to its ith argument, xh at a point
x = (xh jc_j), is the limit1

= 1.

whenever it exists.
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Partial and Directional Derivatives 165

There are several standard ways to write the partial derivative of / with
respect to xt. One of the most common notations uses subindices to indicate
the variable with respect to which we are differentiating: Dx.f(x), /*/*), or
fi(x). Another possibility is to write df(x)ldxi. In each case, we explicitly indi-
cate the argument vector x to emphasize that the partial derivative is also a
function of x. As it is not normally necessary to insist on this, the arguments
are often omitted, and we write Dx. fJXi, or dfidxh

Conceptually there is no difference between a partial derivative and the
ordinary derivative of a univariate function. For given values of the other
arguments AL,-, f(xh x_,) is a function of a single variable, xt. Fixing x_t at a
constant value x_?, and defining a new function g by g(xi) =f(xh %_;), we have
g'(xt) =fi(xhX-i). Hence the standard rules of differentiation for "normal"
derivatives apply, without change, to partial derivatives, treating the other
variables as constants. For example, if /(x, y) = 3x2y + Ay3, thenfx(x, y) = 6xy,
and fy(x, y) = 3x2 + 1 2 / .

Problem 2.4. Given the functions

x2), y = f (x u x 2 ) = x\x2 + x\

y = f(x u x2) = ln(x2 + exi x2)

calculate, for each of them, the partial derivatives dyidxx and dyldx2.

Problem 2.5. Find the points where all the partial derivatives of the
function

are zero.

If all the partial derivatives of / exist and are continuous in some
neighborhood of a point x°, then the directional derivative at x° exists for
all directions u and can be written as a linear combination of the partial
derivatives. To see this, let

g(a) = /(x° + aM) = /(x? + auu. ..,x°n + aun)

If the partial derivatives of /are continuous, then / i s differentiable at x°9 and
the chain rule yields

g'(a) = /i (x° + au)w! + ...+fn (x° + au)un = = / (x°

(see Theorems 3.4 and 3.5 in Section 3). Hence,

'(x°h (1)
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166 Differential Calculus

If we define the gradient vector of / at x by

then (1) can be written as the scalar product of the gradient and the direc-
tion vector:

Df(x°;u) = Vf(x)u (2)

Using expression (2), we see that the gradient is the vector that points in
the direction of steepest ascent or descent along the graph of the function.
Given (2), the Cauchy-Schwarz inequality implies (using the convention that
IN! = 1)

\Df(x; u)\ = \Vf(x)u\ < ||V/(*)|| |M| = ||V/(x)|| (3)

Hence, the absolute value of the directional derivative cannot exceed
the norm of the gradient. Moreover, if we consider the direction of the
gradient, given by the normalized vector g = V/(X)/||V/(X)||, we have

In this particular direction, therefore, the weak inequality in (3) holds as an
equality. Thus, the gradient of / a t x points in the direction in which the slope
of / a t x is largest in absolute value, and its norm is the absolute value of this
slope.

Higher-Order Partials

Let / b e a function Rn —> R; then each one of its partial derivatives /(x)
is also a real-valued function of n variables, and the partials of / ( ) can be
defined exactly as for /( ). The partials of the / ( )'s are the second partial
derivatives of/ and we write /*(*) or d2f{x)l dxidxk for dfi(x)ldxk.

In many cases of interest, symmetric cross-partials coincide, that is
fik(x) =fkt(x), so the order of differentiation does not matter. The following
result, a weak version of Schwarz's theorem, gives sufficient conditions for
this property to hold.

Theorem 2.6. Let f: Rn —> R be a function defined in an open neighbor-
hood of a point x°. Assume that the partial derivatives fifx), fkfx), fki(x),
and fikfxj are also defined in this neighborhood and that fki(x) and f&(x) are
continuous at x°. Then fik(x°) = fk[(x°).

Proof. Because we will consider only two partials at a time, we can assume,
with no loss of generality, that / i s a function of two variables, say f(x, y). We
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Partial and Directional Derivatives 167

will work on a square of side h contained in the neighborhood of (x°, y°)
mentioned in the statement of the theorem.

Consider the expression

To prove the theorem, we will use the mean-value theorem for univariate
functions to derive two equivalent expressions for D in terms of symmetric
cross-partials and conclude from their equality that fxy(x

°y y°) =fyx(x°, y°).

• If we define the function

we can write D in the form

D = 0(JCO + H)-(L)(X°) (1)

By assumption, 0 is differentiable in the region in which we are working, with

and applying the mean-value theorem for univariate functions, we have, for some
h e (0,1),

x(x° + Xxh,f +h)-fx(x° + hK
f)] (2)

Next, put

with derivative

g'(y) = U(x°+Aih,y)

and write (2) in the form

D = %(/ + /i)-g(/)] (3)

By the mean-value theorem, there is some Xi e (0,1) for which we have

D = hW + X2h) = h2fxy (x° + llh, / + A2h) (4)

• In a similar manner, if we define y( ) by

= f{x°+h,y)-f(x°,y)

we have D = y(y° + h) - ~y(y°), and by the same procedure used earlier we see that
there exist A3, A4 e (0,1) such that

D = h2fyx (x° + A3h, y° + X4h) (5)
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168 Differential Calculus

Hence,

h2fxy(x° +AiA, /+X2h) = D = :h2fyx(x°+X3h,yQ+X4h)

• Finally, we take limits for the preceding expression as h -» 0. Then the points at
which we are evaluating the partials both approach (JC°, y°), and because fxy{) and
fyx( ) are continuous by assumption, we have

Thus, symmetric cross-partials coincide at (x°, °y°)y°). D

Directional Derivatives and Continuity

We began this section emphasizing the conceptual similarity between
the directional derivatives of a multivariate function and the "normal" deriv-
atives of univariate functions. The similarities end, however, when it comes to
the connection between the existence of a derivative and continuity. We know
that a function from R to R that is differentiable at a point x° is also con-
tinuous at x°. For a function Rn —> R, however, the existence of all partial
derivatives, or even the existence of all directional derivatives at a point, is not
sufficient to guarantee continuity, as shown by the following example.

Example 2.7. Consider the function

x +y

= 0 for x = 0

For any u = (uu u2) in R2, the directional derivative of / at (0, 0) is given by

lim .—
a-»o a »*o«irm..) +{au2) ]

i + a u2
= «2

2 /ut

= 0 ifut=0

Hence, D/(0, 0; u) exists for all u. On the other hand, / has value j at all
points on the curve x = y2 except at the origin, where it is zero. Hence, / is
not continuous at (0,0). D

It is possible to guarantee the continuity of/at a point by imposing addi-
tional conditions on the directional derivatives. For example, it can be
shown, using an argument similar to that in the proof of Theorem 2.6, that
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Differentiability 169

a sufficient condition for the continuity of / at x° is that all its partial deriv-
atives exist and be bounded on a neighborhood of x. It follows easily from
this result that the continuity of the partial derivatives of / on some neigh-
borhood of x° is sufficient for / to be continuous at x°. Soon we will prove a
stronger result.

The foregoing discussion suggests that it might be interesting to define a
stronger concept of differentiability for multivariate functions. This will be
done in the following section. For the moment, we observe that the existence
of partial derivatives at a point JC°, or even of directional derivatives in all
directions, is not sufficient for us to say that the function is differentiable
at*°.

3. Differentiability

We now turn to the general case where /: Rn —> Rm is a ' . n
variables whose value is an m-vector. We can think of the mapping / as a
vector of component functions /', each of which is a real-valued function of
n variables:

f = (/*,...,/m)r, where f : R n — - > R for/ = l,...,m

We would like to define a concept of differentiability for functions
Rn —> Rm that can be seen as a natural generalization of the derivative
of a univariate function and that will preserve the implication of continuity
without additional assumptions. As we will see, the key lies in defining
differentiability in terms of the possibility of approximating the local
behavior of / through a "linear"2 function. We will then relate the
resulting concept of derivative to the partial derivatives of the components
of/

Let us return for a moment to the definition of the derivative for a
function g:R —> R and see if we can reinterpret it in a way that can
be naturally extended to the multivariate case. A univariate real-valued
function g is differentiable at a point x in its domain if the limit

8(x)
h~>0

exists, that is, if it is equal to some real number a. This condition may be
rephrased as follows: g is differentiable at x if there exists a real number a
such that
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170 Differential Calculus

Figure 4.4. The derivative as a linear approximation.

To interpret this expression, fix some x, and suppose that we want to
approximate the value of g(x + h) by an affine function. One possibility
is to use g(x) + ah = g(x) + g'(x)h to approximate g(x + /i), as shown in
Figure 4.4.

Expression (1) guarantees that the approximation will be good whenever
h is small. If we denote the approximation error by

then (1) can be written

lim : ' = 0 (2)

which tells us that the approximation error goes to zero with h. Indeed, Eg(h)
goes to zero "faster" than h itself, a fact we sometimes indicate by writing
Eg(h) = o(h) (which reads "Eg(h) is little-oh of h").

In summary, a function g is differentiable at x if for points close to x, g( )
admits a "good" approximation by an affine function or, equivalently, if the
difference g(x + h) — g(x) can be approximated by a linear function ah with
an error that is of a smaller order of magnitude than h as h —> 0.

There is no difficulty in extending this notion of differentiability to map-
pings from Rn to Rm. Before giving a formal definition, we want to empha-
size the importance of the concept of differentiability for our purposes.
Because differentiable functions admit good linear approximations, so do
differentiable models. This gives us a tractable way to analyze them: When
we use the calculus to study a nonlinear model, we are in fact constructing
a linear approximation to it in some neighborhood of an equilibrium. The
assumption that the behavioral functions in the model are differentiable
means that the approximation error is small. The obvious limitation of the
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Differentiability 171

method is that it generally yields only local results, valid only in some small
neighborhood of the initial solution.

Definition3J. Differentiability. A function/: Rn a X — > Rm, whereXis an
open set, is differentiable at a point x e Xii there exists a matrix Ax such that

| A I > 0 \\h\\ V '

where h e Rn and ||-|| is the Euclidean norm of a vector, ||JC||
/ is differentiable at every point in its domain, we say that/is differentiable
(onX).

There are two slightly different ways to think about the derivative of a
mapping. Perhaps the most natural one is as a function whose value at each
point is a matrix. If / is differentiable on X, we can define its derivative as
the function

n - f • "O n —\ V >̂  TCPUJ : JR 3 A > JKm xn

such that for each x e X, Df(x) = Ax, where Ax is the matrix that satisfies (3)
in Definition 3.1. In this interpretation, therefore, the derivative of a func-
tion at a point is a matrix, and Df is a function X —> RmXn-

As we know, every matrix defines a linear transformation. We refer to the
linear mapping defined by the derivative of / at x as the differential of / at
x, written dfx. Hence, the differential of / at x is the function

df:Rn—>Rm, with df(h) = Df(x)h = Ah

and its value at a point is a vector in Rm. Thus, we can also think of the deriv-
ative as a mapping that to each x in X assigns the linear transformation dfx,
represented by the matrix Df(x). In this interpretation, the derivative Df is
a mapping from X to the space L(Rn, Rm) of linear functions from Rn into
Rm, with x —> dfx

We can, as in the case of a univariate real function, interpret the differ-
ential as a linear approximation to the difference f(x + h) -f(x). Expression
(3) then guarantees that the approximation is good for "small" h. As before,
if we denote the approximation error by

-f(x)-dfx(h)

we can rewrite (3) in the form
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172 Differential Calculus

That is, the (norm of the) error vector approaches zero faster than (the norm
of)/*.

It is now easy to check that differentiability implies continuity. We have

Taking the limit of this expression as h —» 0, we have that E0) -» 0 by the
differentiability of/, and dfx(h) -» 0 by the continuity of the linear mapping
dfx and the fact that dfx(0) = 0. Hence,

and / i s continuous at x. We have, then, the following theorem.

Theorem 3.2. Differentiability implies continuity. Lett: R° 3 X -> Rm (X
open) be differentiable at a point x e X. Then f is continuous at x.

The following theorem relates the derivative of the mapping / to the
partial derivatives of its component functions /a, . . . , / " . An immediate
implication of the theorem is that the matrix Ax that appears in the definition
of differentiability is unique, and therefore the functions Dfand dfx are well
defined.

Theorem 3.3. Let i:Rn 3 X —> Rm, (X open) be a mapping, with com-
ponent functions f1, ..., P. Then f is differentiable at a point xe X if and
only if each of these component functions is differentiable at x. Moreover, if
f is differentiable at x, then the partial derivatives of the component functions
exist at x, and the derivative ofiatx is the matrix of first partial derivatives
of the component functions evaluated at x, that is,

Note carefully what this expression says. Each row of the matrix Df(x) is
the vector Df(x). This vector, thought of as a 1 x n matrix, is the derivative
of the function f : R" —> BL Moreover, the components of this vector are
the partial derivatives of/7'.

The matrix of first partial derivatives of the component functions of / is
known as the Jacobian of /4 The following symbols are sometimes used to
refer to this matrix:
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When we are interested in a submatrix of Df(x), we will use subindices to
indicate the variables with respect to which we are differentiating. For
example, if we partition x = (y, z), the matrix of partial derivatives o f / \ . . . ,
fm with respect to the components of z will be written D((y9 z) or J{(y, z).

Proof. Assume that/is differentiable at x. Then there exists a matrix Df(x)
such that

\\f(x + hyf(x)Df(x)h\\_0
0

\\h\\
Denote the entries of Df(x) by aik (i = 1 , . . . , m; k = 1 , . . . , n), and let
h = (/*!,..., hn). Then we have

Df(x)h =

and the rth component of the vector f(x + h) -f(x) - Df(x)h is given by

Observe that the absolute value of a component of a vector cannot exceed
the Euclidean norm of the vector. Hence, (1) implies

= 0 (2)

which is precisely the definition of differentiability for the function / ' :
Re —> R. Therefore, the component functions of/are differentiable.

To show that the coefficients aik of the matrix Df(x) are the correspond-
ing partial derivatives, we let h approach 0 along the sth coordinate axis (i.e.,
put hk = 0 for all k * s). Then (2) implies

/'(*+**)/<(*"^'W,'(*) (3)W,(*)
hs

To establish sufficiency, note that the same logic will work in reverse. If
all the component functions are differentiable, (2) holds, with ais =fi(x); then
(1) follows from (2) and from the observation that the Euclidean
norm of a vector cannot be larger than the sum of the absolute values of its
components.5 •

By Theorem 3.3, differentiability at a point implies the existence of all
partial derivatives at that point. As we have seen, the converse statement is
not true. However, the continuity of the partial derivatives is sufficient to
guarantee differentiability, as shown in the following theorem.
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174 Differential Calculus

Theorem 3.4. Let f:RB 3 X —> Rm, (X open) be a mapping with com-
ponent functions f1, ..., P. // the partial derivatives of the component func-
tions exist and are continuous on X, then f is differentiate on X.

Proof By the preceding theorem, a vector-valued function is differentiable
at a point x° if and only if all its component functions are differentiable at
x°. Hence, it is sufficient to prove the theorem for the case of a real-valued
function of n variables, / : RD D I —> JR.

Fix some arbitrary x in X and some e > 0. Because X is open and the par-
tials of/are continuous, we can find some r such that the open ball Br{x) is
contained in X and

(1)

for all x + h e Br(x) (or, equivalently, for all h such that \\h\\ < r).
Now, i f / is differentiable, its derivative at x will be the gradient vector

Hence, what we want to prove is that

M-v/(xW = 0

We will work with the expression in the numerator. Let h - (au ..., oQ
= ZSiOi-c1', where e' is the ith-unit coordinate vector in Re (a vector with all
zeros except for a 1 in the fth coordinate), and assume \\h\\ < r. Next, define
the n-vectors v 0 , . . . , vn by

v0 = 0 and vk =(a u . . . 9a k , 0,...,0) =

Then, we can write6

Because ||vt|| < |I/i|| < r for all r and Br(x) is a convex set, the segments with
end points x + vk all lie in Br(x), and therefore each partial / ( ) of / exists
and is continuous on the line segment connecting x + vt and x + vw. More-
over, because along this segment of length Ot only the fth argument of /
changes, we can use the one-dimensional mean-value theorem to conclude
that for each i = 1 , . . . , n, there exists some 6t e (0,1) such that

f(x + vt) - f(x + vw) = atfi{x + v,_! + dflcv,) (4)

Using (3), (4), and (1) in the numerator of (2), we have, for \\h\\ < r,
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iV') ~

Hence,

|/(x + /z)-/(x)-V/(x)/i| , .....
— -—J-±Y } x ' ' < e for ||ft|| < r

which is what we wanted to show. •

We conclude this section with some terminology and a few results for dif-
ferentiable functions.

Critical and Regular Points and Values of a Function

As we will see later, some important results require assumptions concern-
ing the rank of the Jacobian of a function, or, equivalently, that of its differ-
ential. In particular, it can be shown that if a function/: Rn —> Rm is
differentiable at a point x and has a derivative matrix Df(x) of rank m,
then its local behavior is (loosely speaking) fully determined by that of its
differential.

We now introduce some terms that will be useful later. Let/: R D D I —>
Rm (X open) be a differentiable function. A vector x e X is a regular point
of/if the differential of / a t x (i.e., the linear mapping dfx e L(Rn, Rm)), is
surjective (onto). If x is not a regular point of / (i.e., if dfx is not onto), then
x is a critical point off. A point y e Rm is a critical value of /if it is the image
of a critical point, and a regular value otherwise.

Recall that dfx is surjective (and therefore x is a regular point of / ) if
and only if the derivative Df(x) has rank m. Hence the set of critical points
of / : R n 2 X —> Rm is given by

Cf = {x e X\ rank Df(x) < m}

The set of critical values of /is/(C/), and the set of regular values is its com-
plement, Rm ~ /(C/). Note that if y is not the image of any point in X, then
y is by definition a regular value of/ because a regular value is any point that
is not a critical value, and y is a critical value of /if and only iff~l(y) contains
at least one critical point, which is impossible if /-1(y) is the empty set.

This definition generalizes the standard concept of critical point used in
the elementary calculus. If / is a multivariate real-valued function, the
definition we have just given is equivalent to the condition that the gradi-
ent V/(JC) be the zero vector, because this is the only case in which the com-
ponents of V/(x) do not generate R; if/is a univariate function, the condition
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reduces tof'(x) - 0. Note also that if/is a function from Rn into itself, then
Df(x) is a square matrix, and x is a critical point if \Df(x)\ = 0.

The Chain Rule

In many cases we are interested in the derivatives of composite functions.
The following result says that the composition of differentiable functions
is differentiable, and its derivative is the product of the derivatives of the
original functions.

Theorem 3.5. Let f and g be two functions, with

f:Rn=>X—> Rm and g :« f f lDY—> Rp

where X and Y are open sets, and Y 3 f (X). Let x° be a point in X, put
y° = f(x°), and define the composite function

F = g°f by F(x) = g[i(x)] for each x e X

Iff is differentiable at x°,and g at y°, then F = g ° f is differentiable at x°, and
its derivative is given by

Proof. We want to show that

lim l|£f(/t)l1 - lim \\n^ + h)F(x)Dg(f)Df(x)h\\^o
Who \\h\\ \W\^ \\h\\ K '

for if this expression holds, F is differentiable at JC°, and its derivative
is Dg(y°)Df(x°). The basic idea is to show that the error EF(h) is "small"
by relating it to the analogous terms for / and g, which are small by
assumption.

For arbitrary he Rn and k e Rm, define

Ef(h) = f{x° + h)- f(x°) - Df(x°)h (1)

k (2)

The vectors Ef(h) and Eg(h) are the errors committed when we approximate
/ and g by their respective differentials. Because / and g are by assumption
differentiable at x° and y°, respectively, we know that these terms are small
for h and k close to zero; in particular,

a s
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Differentiability 177

( ) M ^ 0 as||*||->0 (4)
Fll

Fix h and let

k = f(x° + h)-f(x°) = f(x° + h)-y° (5)
Then

= \\Ef (h)+Df(x° )h\\ (by the triangle inequality)

<\\Ef(h)\\ M \Df(x°)h\\ (by(3))?

<e(h)\\h\\ + \\Df(x°)\\\\h\\

= (e(h) + \\Df(x°)\\) (6)

Consider now the expression in the numerator of (0). We can write

EF (h) = F(x° + h) - F(x°)- Dg(y°)Df{x°)h

= g[f(x° + h)] -g[f(xo)]- Dg(yo)Df(x°)h (by (5))

k)-g(y°)-Dg(yf>)Df(x°)h (by (2))

Dg(y0)k-Dg{y0)Df(x°)h

g ) Df(x°)h} (by (5))

from which

EF(h) = Eg(k) + Dg(y°)Ef(h) (7)

This expression relates the approximation error for F to the analogous
terms for/and g. Because each of the latter is small, so will be EF(h), which
establishes the desired result. More formally, returning to (0) and using (7),
we have

\\Ef(h)\\jEg(k) + Dg(y°)Ef(h)\\

( b y ( 3 ) a n d ( 4 ) )

(by (6))

= n(k){e(h)+\\Df(x°)l}+e(h)\\Dg(y°)\\

Finally, suppose \\h\\ -> 0. Then e(h) -4 0, and, by (6), so does \\k\\, implying
r\(k) —> 0. Hence,
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178 Differential Calculus

which is what we wanted to show. •

Problem 3.6. Let w =/(x, y, z) = xy2z, with

Use the chain rule to calculate dw/dr, dwids, and dwldt.

The Mean-Value Theorem

Given a function g : R — > R differentiable on an open interval /, the
mean-value theorem says that for any x and y 'm l there exists some number
z between x and y such that

f(y) -f(x) =f'(z)(y-x) (1)

This formula continues to be valid for real functions of several variables, but
it may not hold for mappings from Rn into Rm. The following result tells us
how (1) has to be modified in this case.

We will use the notation L(x, y) to refer to the straight line segment that
joins points x and y. That is, if x, y G Rn, then

L(x,j) = {zeRD; z = Ax + (l-A)y, A€[0,1]}

Theorem 3.7. Mean-value theorem. Let f:Rn —> Rm be differentiable on
an open subset Xof Rn, and let x and y be two points in X such that L(x, y)
is contained in X. Then for each vector a in Rm there exists a vector z in L(x,
y) such that

a[f(y) - t(x)] = a[Di(z)(y - x)] (2)

Of course, ifX is a convex set, then X 3 Lfx, y) for all x, y in X.

Problem 3.8. Complete the following proof of Theorem 3.7. Put h =y -x.
As X is open and contains L(JC, y), there exists some <5>0 such that
x + Ahe X for A G (-S,1 + S). Fix an arbitrary vector a e Rm, and define a
real-valued function </)a on the interval (-5,1 + S) by

& (A)=«/(*+^)=£>/< (*+a/>)
By construction, 0fl( ) is differentiable on (-5,1 + 5). Compute its derivative,
and apply the mean-value theorem for univariate functions to conclude that
there exists some vector z=x+ 6h for which (2) holds. •

Theorem 3.9. Let f: Rn —> Rm be a differentiable function on an open
subset X of Rn, and let x and y be two points in X such that L(x, y) is con-
tained in X. Then there exists a vector z in L(x, y) such that
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Continuous Differentiability 179

||f (y) - f (x)|| < ||Df (z)(y - x)|| < ||Df (z)|| ||y - x|| (3)

Proof. If f(x)=f(y), the result holds trivially. Otherwise, the mean-value
theorem guarantees that for each vector a e Rm there exists some vector
z e L(x, y) such that

Taking the absolute value of each side of this expression and using the
Cauchy-Schwarz inequality, we have

Hf(y) ~ f(x))\ = \a(Df(z)(y - *))| < \\a\\ \\Df(z)(y - x)\\ (4)

Now, let a be the unit vector

a J
Jf(y)-f(*))T

\\f{y)-f(x)\

and observe that in this case

Hf(y) - f(x))\ = | | / (^ / ( x ) | | i( /(y) - f(x)f(f(y) - /(*))l

fJl/(y)-/(*)ll =
\\f(y)-f{x)\\

Using (4) and the preceding expression,

11/00 - /Wll = K/OO - f(x))\ < 1 \\Df(z)(y - x)|| < \\Df(z)\\ \\y - x

where we have made use of the fact that for any linear transformation A
and any vector JC, ||Ax;|| < ||A||||x|| (see Chapter 3). D

4 Continuous Differentiability

We now introduce a stronger concept of differentiability that will be useful
later. Let / be differentiable on an open region X - that is, we assume
that the derivative Df(x) exists at all points in X We then say that / is
continuously differentiable on X if its derivative is a continuous function. In
this statement, we think of the derivative of/as a function Df from X to the
set L(Rn, Rm) of linear transformations from Rn to Rm equipped with the
norm defined in Chapter 3.8 With this in mind, the definition of continuity
is the usual one: / is continuously differentiable if it is differentiable and
any two nearby points, x and y, in its domain have as differentials linear
transformations dfx and dfy, which are similar.
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180 Differential Calculus

Definition 4.1. Continuously differentiable function. The function / : Rn D
—> Rm (X open) is continuously differentiable on Xif it is differentiable on
Xand the derivative Df is a continuous function from X to L(Rn, Rm).That
is, given any x in X and an arbitrary e > 0, there exists some 8 > 0 such that

\\dfx-dfy\\<eVyeBs(x)

where the symbol ||-|| denotes the norm of a linear transformation.

This definition may appear a little strange, because it is difficult to visualize
what we mean by continuity for a function whose value at each point is a
linear mapping. The next definition and the theorem that follows it will give
us a characterization of continuous differentiability in more familiar terms.

Definition 4.2. Function of class Ck. The function/: R n a X - > R m (Zopen)
is (of class) C* in X, written fe Ck(X), if the first k partial derivatives of the
component functions of/exist and are continuous on X.

By convention, a continuous function is of class C°. Iffe Ck, where k>l,
we say that/is a smooth function, although this term is sometimes reserved
for functions of class C°°.

The following result tells us that the continuity of the first partial deriva-
tives of the components of/is a necessary and sufficient condition for/ to
be continuously differentiable. Intuitively, this equivalence should not be
surprising: A function is continuously differentiable if two nearby points, x
and y in X, have as differentials linear functions dfx and dfy that are "close,"
that is, represented by similar matrices Df{x) and Df(y). Because the
coefficients of these matrices are the partial derivatives of the components
of/and, provided/is C1, the partials are continuous functions, small changes
in x will result in small changes in each of these coefficients and will there-
fore yield similar differentials.

Theorem 4.3. The function f:Rn 3 X —> Rm (X open) is continuously
differentiable in X if and only if it is of class C1 in X.

Proof. Let x and x + h be two points in X. Under our assumptions, / is dif-
ferentiable in both parts of the theorem (by assumption for the necessity
part, and by Theorem 3.4 for the sufficiency implication), so dfx+h and dfx

exist, and their difference dfx+h - dfx is a linear transformation in L(Rn, Rm)
with matrix representation [aik] = Df(x + h)- Df(x), where

aik(h) = fl(x + h)-ft(x) (1)

Fix x and define
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Continuous Differentiability 181

K(K) = maxik\aik{h)\ = maxik\fk(x + h)- fk(x)\

By Theorem 4.9 in Chapter 3, we have

0< K(h) < \\dfx+h -dfx\\ < K(h)^nn (2)

from which we obtain the equivalence

[jc(/!) -» O as h -* O] if and only if [\\dfx+h -dfx\\->0 as/*->()]. (3)

If fe C1, the continuity of the partials implies that for each / and k,
aik{h) -» 0 as h -> 0 (see (1)). It follows that K(H) = mdLXik\aik{h)\ also goes to
zero, implying \\dfx+h - dfx\\ -» 0, and hence the continuity of the derivative
mapping. Conversely, the continuity of Df implies \\dfx+h - dfx\\ -» 0; then
K(K) —> 0, and because 0 < \aik(h)\ < K{K) for all aik, we have aik(h) —> 0 for all
i and A:, that is,

so the partial derivatives are indeed continuous. •

Taylor's Theorem

Taylor's formula can be generalized for the case of a real-valued function of
n variables. Because the notation gets rather messy, and we need only the
simplest case, we shall state the following theorem for the case of a first-
order approximation with a quadratic-form remainder. This result will be
useful later in connection with the characterization of concavity for smooth
functions and the derivation of necessary and sufficient conditions for local
maxima.

Theorem 4.4. Taylor's formula for multivariate functions with second-order
remainder. Let i:Rn —> R be a C2 function defined on an open and convex
set X. //x, x + h e X, then

f(x+h) = f(x) + Dffxjh + (l/2)hTD2f(x + Mijh (1)

for some X e (0,1).

Problem 4.5. Prove Theorem 4.4. Hint: Apply the univariate version of
Taylor's formula to the function g(a) =f(x + ah).

The Inverse-Function Theorem

Let/be a function from Rn to itself. Each vector x e Rn is mapped by/into
another vector y in Rn, that is

f(*) = y (i)
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182 Differential Calculus

We can also turn this expression around: Given a vector y, (1) is a system of
n equations in n unknowns (the components of x). We would like to know
under what conditions it is true that given a vector y, equation (1) can be
solved for a value of x that is, at least locally, unique.

If/is a linear operator, (1) is equivalent to a system of the form

Ax = y (2)

where A is a square matrix. Then A is invertible if and only if its determi-
nant is not zero, and therefore equation (2) has a unique solution x* = A~ly
for each given y whenever \A\ * 0 - that is, provided all the equations in the
system are linearly independent.

If/is not linear, the question of its invertibility is more complicated, but
in many cases it is possible to determine whether or not a function is locally
invertible simply by calculating the determinant of its derivative matrix.
Consider first the case of a function from R to R. If / is continuously dif-
ferentiable on some interval / and f(x) * 0 for all x e /, then the function is
monotonic and therefore one-to-one. It follows that the inverse relation f~l

is a well-defined function on /(/). Given any y in /(/), the equation f(x) = y
will have a unique solution, x* =f~x(y).

If / is not monotonic, the inverse relation f~l is not a function, and there
could be several solutions to the equation f(x) = y, as suggested in Figure
4.5. On the other hand, these solutions will be locally unique provided/is
strictly monotonic in some neighborhood of the solution. Hence, /'(**) * 0
and / e C1 in some open neighborhood of a solution x* are sufficient con-
ditions for the local invertibility of/close to x*. If we restrict ourselves to a
sufficiently small neighborhood of JC*, f'1 is a well-defined function under
these assumptions.
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Continuous Differentiability 183

We now ask if it is possible to extend this result for functions of Rn into
itself. For this purpose it will be convenient to reinterpret the preceding dis-
cussion in terms of the invertibility of the differential of /, rather than the
monotonicity of the function. Iff'(x) = a * 0, then dfx(h) = ah is an invertible
linear function. Hence, we can rephrase our earlier conclusion by saying that
a sufficient condition for a continuously differentiable function to be locally
invertible in a neighborhood of a point x is that its differential at x be invert-
ible.9 Because the differential of a function is the best linear approximation
to it, it seems reasonable to conjecture that the result is true in general,
and the following theorem confirms that this is indeed the case. We may
even suspect that the invertibility of its differential is necessary, as well as
sufficient, for the local invertibility of a function, but the second panel of
Figure 4.5 shows that this is not true: The function g is strictly monotonic
and therefore globally invertible, but its derivative at the inflection point x*
is zero, and therefore its differential is not invertible.

Theorem 4.6. Inverse-function theorem. Let i: 1 ° D X —> Rn (X open)
be a continuously differentiable function, and x° a point on its domain.
Assume that the determinant of the Jacobian off is not zero at x° (i.e., |Df (x°)\
^ 0). Then there exists an open neighborhood ofx°, U, such that

(i) f is one-to-one in U; hence the inverse relation f~]is a well-defined function from

(ii) V = f(U) is an open set containing y° = f(x°),
(Hi) the inverse function f'1 is of class C1, with derivative Dt2(y°) = [ D f f x 0 ) ]

'

(iv) iff is C \ with k>l,so is t>.

A diffeomorphism is an invertible smooth function (Ck with k > 1) with a
smooth inverse. The inverse-function theorem says that a sufficient condi-
tion for/to be locally a diffeomorphism near a point x°is that x°be a regular
point of/.

Proof. Before getting into the details, which are rather complicated, let us
sketch the logic of the proof. We begin by defining U as an open ball with
center at x° and sufficiently small radius. (What we mean by this will become
clear later.) To establish the local invertibility of/, we make use of an aux-
iliary function (/>y(x), defined for each vector y in Rn by

<t>y(x) = x + [Df(x0)Y1[y-f(x)]

Observe that by construction, y=f(x) if and only if x is a fixed point of
0y( ). Given a point x in U, let y be its image. Then it can be shown that
<f)y( ) is a contraction that maps a closed ball B with center at x into itself.
By the contraction mapping theorem, for each y e /(£/), </>y( ) has a unique
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184 Differential Calculus

fixed point in U that lies inside B. This implies that there is a unique point
in U with image y (x itself);/is therefore one-to-one in £/, and the restric-
tion of the inverse relation f~ho f(U) is a well-defined function.

The second step is to establish the differentiability of /"1. By assumption,
the differential of/at x° is an invertible linear operator in L(Rn).The radius
of U has been chosen small enough that dfx is invertible for all x in U. This
is possible because the set Q(Rn) of invertible linear operators on Rn is
open, as we saw in Chapter 3 (Theorem 4.14), and because/is continuously
differentiate.10

We know, therefore, that [Dftx)]'1 exists for all xe U. Inserting this matrix
into the expression that defines the derivative of the inverse function, we
verify that it works, thus establishing that for x = /

This expression shows also that Df1 is the composition of three continuous
functions and is therefore continuous; that is,/"1 is C1. Now for the details.

(i) / is one-to-one in U. Put Df(x°) = A (which is an invertible matrix by assump-
tion) and define A by

where, to avoid complicating the notation further, \\A\\ is the norm of the linear
operator associated with the matrix A.

Because X is open, there exists some 8 > 0 such that the open ball U = B^x°)
is contained in X. Further, by the continuous differentiability of/, D/ is a con-
tinuous function from X to L(Rn), so we can choose 8 in such a way that for
every xe U the derivative Df(x) is not very different from A; in particular,
there is some S > 0 such that

Bs(x°) (2)

With each y e Rn we associate a function 0y() defined for x in X by

x)] (3)

and observe that y =f(x) if and only if x is a fixed point of Qy( ) .
To show that / is one-to-one in £/, we have to prove that given a vector y,

there exists at most one x in U such that /(x) = y - or, equivalently, that for each
y, (/)y( ) has at most one fixed point in U. This will be true if <f)y() is a contrac-
tion in [7, as we now show.

The derivative of <j)y{) is

Expressions (1) and (2) and the properties of the norm in L(Rn) imply that for
any x e U,
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Continuous Differentiability 185

| y x ) | | = ||A-1[A-Z)/Wl|S||A-1||||A-JD/(*)l|<^-A = | (4)

from which we have (by Theorem 3.9) that for any x' and x" in £/,

||0,(x')-0,(x")l|<|||x'-x"|| (5)

establishing that the restriction of <j)y to U is a contraction. As U is not com-
plete, 0y may not have a fixed point in it, but it is still true that there can be no
more than one such point. Hence, given y, there is at most one x in U withf(x)
= y;/is one-to-one in U.

(ii) f(U) is an open set and contains y°=f(x°). Put V=f(U) and take an arbitrary
y' in V; then y' =/(x') for some x' e U. Let B = Br[x'] be a closed ball contained
in £/, with center at x' and radius r. (Observe that it is always possible to con-
struct such a ball, because U is open.) To show that V is open, we will prove
that \\y - / | | < Xr implies y e V.

Take some y such that \\y - y'\\ < Xr and observe that by (1), 2X \\A~l\\ = 1,

|^(*')-x1l = ||A-l(y-3'')l|^||A-l«|b-/||<||A-l||^ = r/2 (6)

For x e B we have, by the triangle inequality and using (5) and (6),

and therefore (j)y(x) e B for x e B and y close to /.
It follows that for an appropriate y, <j>y( ) is a contraction that maps B into

itself. Moreover, B, being a closed subset of Rn, is complete. By the contrac-
tion mapping theorem (see Chapter 3), <py( ) has a fixed point x* in B, For this
x* e B=Br[x'] c U, fix*) = yy implying y e f(B) cf(U) = V whenever \\y - / | | <
Xr. In words, given an arbitrary point y' in V, we can construct an open ball
around it that is still contained in V, that is, V is open.

(iii) The inverse function f~l is differentiable, with Df~\y°) = [DF(X°)] - \ Take two
points y and y + k in V=f(U). Then there exist vectors x and x + h in U such
that

y = f(x) and y + k = f{x + h)

With <j>z( ) defined as in (3), we have

0Z (x + h)- 0, (X) = h + A-'tfix) - f{x + h)] = h- A~lk

Because x, x + h e U, we have, by (5),

implying

\\h\\ - ||,4-i*|| < \\h - ^ 1 1 < (1/2) \\h\\ => H^/cfl > (1/2) ||4|
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186 Differential Calculus

and therefore, using (1),

1 - (l/X) \\k\\ (7)

Hence, if y and y + k are close in Vy then the distance between their preimages
x and x + h is also small. This expression directly implies the continuity of
the inverse function f~\ but we want to establish the stronger result that f'1

is differentiate.
Observe that (1) and (2) imply that for every x in U we have

\\Df(x)-A\\< 1

where A = Df(x°) is by assumption invertible. By Theorem 4.14 in Chapter 4,
Df(x) is also invertible for every x in (7; denote its inverse [Dflx)]'1 by T. To
show that f"1 is differentiable, we insert T in the expression that defines the
derivative of/"1 and verify that it holds. We have

f~1(y + k)-f-1(y)-Tk = (x + h)-x-Tk = hI-Tk
= hTDf(x)-T[(y + k)-y]
= -T[f(x + h)-f(x)-Df(x)h]

from which

ll/"1 iy+k)- tl{y) - Tk\\ < \T\\ \\f(x + h)- fix) - Df(x)h\

which, together with (7), implies

\\f(x + )-f(x)-Df(x)h\\
| | r |1 ( 8 )

Now, (7) implies that \\h\\ -» 0 as ||&|| H> 0. Because / i s differentiable at x and
(1/A)||71| is a constant, the right-hand side of the inequality goes to zero, and
therefore so does the middle term as p|| (and hence \\k\\) goes to zero. In con-
clusion,/is differentiable, and its derivative is given by

(9)

(iv) It remains to show that f~l is continuously differentiable, that is, that its
derivative

is a continuous function. By (9), we see that Df1 is the composition of the fol-
lowing three continuous functions:

• /~\ which is a differentiable and therefore continuous function from Vto U,
as we have just shown,

• Df( ), a continuous function (by assumption) from U to L(Rn), and in par-
ticular to the subset Q(Rn) of invertible operators in L(Rn) (because U is
defined in such a way that Df(x) is invertible for all x in £/), and
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Homogeneous Functions 187

• the inversion operator, (y1 : Q(Rn) —> Q(Rn), which assigns to each invert-
ible operator in L(Rn) its inverse. (This function is continuous by Theorem
4.15 in Chapter 3.)
Hence, the composite function Df'1: U —> Q(Rn) is continuous. •

Problem 4.7. Let /:RD D I —> Rn be a continuously differentiable func-
tion on the open set X. Show that/is locally Lipschitz on X. (See Section 6
in Chapter 2.)

5. Homogeneous Functions

A set X in Rn is called a cone if given any x e X the point he belongs to X
for any A > 0. A function defined on a cone is said to be homogeneous of
degree k if, when we multiply all its arguments by a positive real number A,
the value of the function increases in the proportion A*.

Definition 5.1. Homogeneous functions. A function / : R N D L — > R,
where X is a cone, is homogeneous of degree k in X if

Homogeneous functions often arise naturally in economics. For example,
consider the response of a consumer to an equiproportional increase in
income and the prices of all goods in the market. Because this change would
not change the budget set (i.e., the set of consumption bundles the agent can
afford), consumption choices should not be affected. Hence, the demand
function x(p, y) that gives the optimal consumption bundle as a function of
the vector of prices p and income y will be homogeneous of degree zero. In
production theory, it often makes sense to assume that a doubling of all
inputs will lead to a doubling in output. If this assumption, known as con-
stant returns to scale, holds, the production function will be linearly homo-
geneous (i.e., homogeneous of degree 1).

The following theorem provides a useful characterization of homoge-
neous functions with continuous partial derivatives.

Theorem 5.2. Eulefs theorem. Let i: Rn a X —> R be a function with con-
tinuous partial derivatives defined on an open cone X. Then f is homogeneous
of degree k in X if and only if

(1)

Proof

Assume that / i s homogeneous of degree k, and fix an arbitrary x in X. Then we
have
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for all X > 0. The continuity of the partial derivatives of / guarantees the differ-
entiability of the function. Hence, we can differentiate this expression with respect
to X. Using the chain rule, we have

Putting X= 1, we obtain (1).
• Conversely, suppose that (1) holds for all x. Fix an arbitrary x in X, and define

the function <j> for all X > 0 by

Then

and multiplying both sides of this expression by X,

Af W) = X"=1 ji itytei = kf(Ax) = ̂ W (2)

where the second equality follows by applying (1) to the point Xx.
Next, define the function F for X > 0 by

and observe that, using (2),

Hence, F is a constant function. Putting A= 1 in (3), we have F(l) = 0(1), and
therefore

Finally, recalling that 0(A) =/(AJC), we have

as was to be shown. •

Problem 5.3. Show that if / is homogeneous of degree k and "sufficiently
differentiate," then its first partial derivatives are homogeneous of degree
A:-1.

Problem 5.4

(i) Show that the Cobb-Douglas function
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Homogeneous Functions 189

Figure 4.6. Level sets of a homogeneous function.

n

f(x) = AY\x°;' is homogeneous of degree X!
Li a,

1=1

(ii) Show that the constant-elasticity-of-substitution (CES) function,

g(x) = Ayji^._ 8iXi /
 > where A > 0, v > 0, p > -1 and p * 0,

<5, > 0 for all i, and X*
=1 ft = 1

is homogeneous of degree v.

Homogeneous functions have some interesting geometric properties. Let
Xbe a cone in Rn, with/: X —> R a homogeneous function of degree k, and

L(a) = {xeX;f(x) = a}

the a-level set of /. Let xa be a point in L(a), and consider the point Xxa

(with X > 0) obtained by moving along the ray going through the origin and
xa. Then f(xa) = a and by the homogeneity of/( ), we have

Hence, Xxa e L(Xka) ii xa e L(a). Conversely, if y e L(Xka), then (VX)y lies
in L(a), by the same argument. Hence, the level sets of homogeneous func-
tions are radial expansions and contractions of each other, as illustrated in
Figure 4.6.

The tangent planes to the different level sets of a C1 homogeneous func-
tion, moreover, have constant slope along each ray from the origin. To see
this, let x0 and x\ = Xx0 be two points lying on the same ray through the origin,
and let / b e C1 and homogeneous of degree k. Using Problem 5.3, we have,
for any i and g,
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190 Differential Calculus

fjx,) = fi(teo) = Xk-lfi(x0) = fi(x0)
/ , ( * i ) f{*xo) V-'Mxo) f ( x )

If / is a utility function, for example, this expression says that the marginal
rate of substitution between any two goods, i and q, is constant along each
ray from the origin.

A function is said to be homothetic if it is an increasing transformation
of a homogeneous function. That is, g( ) is homothetic if it can be written
in the form g( ) = h\f{ )], where / is homogeneous of some degree and
h: R -> R is an increasing function. Notice that, because the family of
level sets of g( ) is the same as that of /( ), homothetic functions inherit
the geometric properties of homogeneous functions. In particular, their
level sets are radial expansions or contractions of each other, and the slope
of their level sets is the same along each ray from the origin.
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Notes

1 To avoid writing out all the components of a vector when we are interested in just one
of them, we will use the following notation. Let xt be an arbitrary component of the
vector x, and define the vector

X-i = ( x l 9 . . . , X i - 1 , X i + u . . . , X n )

which contains all the components of x except for xt. We can then write x = (xh #_,•).
2 As a matter of fact, we should say an affine function. A function is affine if it is the sum

of a linear function and a constant.
3 In fact, we could define differentiability directly in terms of the existence of a linear

mapping TV such that
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Notes 191

We know, however, that given bases for Rn and Rm, there exists a bijective linear
function between L(Rn, Rm) and Rmxn, so that, for all practical purposes, it makes little
difference which definition we use. The one we give in the text is probably easier to
visualize, but we will occasionally ask the reader to think of the derivative of/as a
function X —> L(Rn, Rm).

4 The term "Jacobian" is sometimes used to refer to the determinant of a matrix of
partial derivatives, rather than to the matrix itself. The meaning should be clear from
the context.

5 This is easily verified by induction.
6 Notice what we are doing. For n = 2, we have

f(x + h)~f(x) = / (* ! + ax,x2 + a2)-f(xx,x2)

= [/(*, +alL,x2 + a2)-f{x1 +al,x2)] + [f{x1 +ai,x2)-f(xl,x2)]

We decompose the change in /from xtox + h into the sum of n changes, each between
two points that differ only in one coordinate. This is done so that we can use the one-
dimensional mean-value theorem.

7 Here, ||D/(JC°)|| is the norm of the linear transformation associated with the matrix
Df(x°). Recall from Chapter 3 that if A is a linear transformation, and x a vector, then
\\Ax\\ < ||A|| ||x||.

8 Let T be a continuous linear transformation defined between two normed vector spaces
X and Y. As discussed in Section 4(b) of Chapter 3, its norm is defined by ||71| =

}
9 Another intuitive way to interpret this result is as follows. Suppose x° solves the system

f(x) = y for some value y° of y, and linearize the system around x° to get f(x) =/(x°) +
Df(x°)(x - x°) = y. If the equations of the linearized system are all linearly independent,
then f(x) = y has a locally unique solution for any y sufficiently close to y°.

10 The inverse image of an open set under a continuous function is open. Therefore,
(£)/)~1(Q(Rn)) is open, and given a point in this set there is an open ball around it that
is still contained in the set. We take U to be a subset of this ball
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5

Static Models and Comparative Statics

A great many economic models into which time does not enter explicitly
can be reduced to a parameterized system of equations of the form

F(x;a) = 0 (M)

where F is a function F : R n x R p D X x Q —> Rm and typically m = n. We
interpret a as a vector of parameters that summarizes the "environment" in
which the system described by the model is embedded, and x as the vector
of endogenous variables whose equilibrium values we seek. Many of the
questions we ask when we analyze such a model can be formulated in terms
of the properties of the solution correspondence,

S:Q -»-* X, where S(a) = {xeX; F(x; a) = 0}

which assigns to each vector of parameters the corresponding set of
equilibrium values of the endogenous variables. In this chapter we will
focus on two types of questions that arise naturally in connection with this
correspondence:

(i) For a given value of a, what does the solution set of the model look like? Is it
empty? If not, what is its dimension? Under this heading we have questions
concerning the existence and uniqueness (local and global) of equilibrium.

(ii) How does S(a) change with changes in the parameters? On a practical level,
we are interested in questions of comparative statics. That is, in what direction
does the equilibrium change as a result of a change in the "environment" or in
some control variable? Before we can begin to answer this question, we have
to deal with the previous issue of continuity: Under what conditions is it true
that the equilibrium moves in a continuous and therefore (at least in principle)
predictable manner with changes in parameter values?

We will begin with a review of linear models. If F( ) is a linear function,
then the questions we have just raised have rather simple answers in terms
of rank conditions and the values of certain determinants. If F() is not linear,

195
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196 Static Models and Comparative Statics

things are more complicated, but given some regularity conditions, we can
use the calculus to analyze the local behavior of the model by constructing
a linear approximation to it in a neighborhood of a known solution point.
The basic tool for this kind of analysis is the implicit-function theorem, which
will be discussed in depth in Section 2, building on the theory of dif-
ferentiability for functions from Rn into Rm developed in Chapter 4.
We conclude in Section 3 with a brief discussion of some results that are
often used to prove the existence of solutions to nonlinear models: the
intermediate-value theorem and various fixed-point theorems for functions
and correspondences.

1. Linear Models

Models that can be written as linear systems of equations are particularly
easy to solve and analyze. In this section we will apply some of the results
on linear functions obtained in Chapter 3 to the solution of linear systems
of equations.

Suppose we are given a model

T(x;a) = Ta(x) = 0 (M)

where T: Re x Rp D I x Q —> Rm is a linear function (and therefore so is
Ta). Given bases for Rm, Re, and Rp, we can write (M) in the form

Ax+Ba=0 (1)

where A and B are real matrices of dimensions mxn and mxp, respectively.
Putting y = -Ba, we can write (1) in the form

Ax = y (2)

which will be more convenient when we work with fixed parameter values.
We will interpret (2) as a system of m equations in n unknowns (the co-
ordinates of x). In what follows, we will freely use the equivalence (for given
bases) between matrices and linear mappings.

We saw in Chapter 3 that given a linear transformation T:X —> Y, the
sets

ker T = T'1 (0) = {xe X\ T(x) = 0} and
im T = T(X) = {yeY;y = T(x) for some xeX}

are vector subspaces of X and Y, respectively, and that their dimensions
satisfy the following equality:

dim(ker T) = dim X - dim(im T) = dim X - rank T (3)

Thus, the kernel of Tis the set of solutions to the homogeneous linear system
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Linear Models 197

T(x)=O (H)

or, equivalently,

Ax=0 (HO

Let 5H denote the set of solutions to (H). We know that SH always contains
the zero vector and is a linear subspace of X. Therefore, in order to con-
struct the "general solution" to (H) (i.e., to find all the elements of SH), it
suffices to find enough linearly independent solutions to construct a basis;
that is, we need m - rank A such solutions.

Next, we observe that because im T is a subspace of Rm, the dimension
of im T cannot exceed m. Hence, (3) implies

dim SH = n- rank A > n -m

That is, the dimension of the set of solutions to (H) is equal to the number
of unknowns (n) minus the number of linearly independent equations
(rank A); and because the second of these numbers cannot exceed the total
number of equations, we have dim Sn > n - m. Hence, if the system has more
unknowns than equations (n > m), we have 5H > 1, and it follows that (H)
has nontrivial solutions.

We now turn to the nonhomogeneous system of linear equations

T(x) = y (N)

or

Ax=y (NO

where y e Rm is a known vector. Let 5N denote the solution set of (N).
The following result says that SN is an affine subspace of Rn parallel to
SH.

Theorem 1,1. Given a linear transformation T ;X —> Y, let xpbe any {"par-
ticular") solution to the nonhomogeneous system of equations (N): T(x) = y.
Then the set SN of solutions to (N) is the set

SN = xp + SH = {xN e X; xN = x* + xH for some xH eSH}

Proof Let xn be an arbitrary solution of (H). We want to show (i) that all
vectors of the form xp + xH are solutions of (N) and (ii) that only vectors of
this form can solve (N), that is, every xN e SNcan be written xN = xp +xH or,
equivalently, that given any two solutions XN and xp to (N), their difference
is a solution to (H). Both statements are easy to verify:
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198 Static Models and Comparative Statics

(i) If xp e SN and xn e SH, then xp + xH solves (N), because

T(xp + xH) = T(*') + T(xH) = y + 0 = y

(ii) If x?
9 JCN € SN, then xp - JCN solves (H), as

T(xp - xN) = T(xp) - T(xN) = y - y = 0 D

Hence, if the nonhomogeneous system has a solution (and it may not), SN

has the same dimension as SH. Moreover, the first of these sets is easy to
construct once we know the second: It is sufficient to find any particular solu-
tion to (N) in order to know them all, once we have the solutions to (H).

Recall that im T is the set of vectors y in Rm for which the system T(x) =
y has a solution. We also know that im T is a vector subspace of Rm gener-
ated by the columns of the matrix representation of T, and therefore its
dimension (the rank of T) is equal to the rank of its associated matrix A,
that is, the number of linearly independent equations in the system.

It follows that for a given vector y9 the system T(x) = y will have a solu-
tion if and only if y e im T9 the space generated by the columns of the
coefficient matrix. In order to obtain a more "operational" condition,
observe that we can write (N) in the form

flu

+ . . . + * „

or

i col,(A) = y (4)

Looking at things this way, it is clear that a solution x* = (x% ..., x*n ) of
(N) exists if and only if it is possible to write y as a linear combination of
column vectors of the coefficient matrix A, that is, if y is in the column space
of A.

Next, consider the coefficient matrix A = [coli(A),..., colw(A)] and the
matrix formed by adding to A a new column equal to the vector y, Ay =
[COLX(A), . . . , colM(A), y \ Recall that the rank of a matrix is the number of
linearly independent columns (or rows) in it. Because Ay is A augmented by
a new column, the rank of A cannot exceed that of Ay. There are, then, only
two possibilities:

(i) rank A = rank Ay: When we add the new column y to A, the rank of the matrix
does not increase. This implies that y is a linear combination of the column
vectors of A9 and therefore the system has at least one solution.
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Linear Models 199

(ii) rank A < rank Ay: If the rank increases when we form the augmented matrix, y
must be linearly independent of the column vectors of A; that is, there are no
scalars x\,...,x* such that (4) holds.

The same logic will work in reverse. If there is a solution to the system,
then y can be written as a linear combination of the columns of A, and the
addition of y to the coefficient matrix will not increase its rank. Hence, we
have proved the following result:

Theorem 1.2. Existence of solutions for linear systems. The linear system Ax
= y has (at least) one solution if and only if rank A = rank Ay.

Assume that there exists a solution to (N). Given that dim(ker A) = n -
rank A, this solution will be unique (i.e., SN will have dimension zero) if and
only if rank A = n, that is, if we have as many linearly independent equations
as unknowns.1

Theorem 1.3. Uniqueness of solutions for linear systems. The system of m
equations in n unknowns, Ax = y (x e R11, y e Rm) has a unique solution if
and only if

rank A = n = rank Ay

Observe that we could have m > n, that is, more equations than unknowns,
but in that case not all the equations would be linearly independent. In
fact, m-n of them would be redundant and would add no information to
the others. Hence, we can ignore them and work with the n independent
equations. If we have as many equations as unknowns, A is a square matrix,
and a unique solution exists if and only if A is invertible or, equivalently, if
its determinant is different from zero. In this case, the unique solution to the
system is given by

and we can use Cramer's rule to obtain each of the components of the solu-
tion vector as the ratio of two determinants:

where At is the matrix obtained by replacing the /th column of A by the
vector y (the right-hand side of the system).

A nonhomogeneous system T(x) = y may have solutions for certain
vectors y and no solutions for others. Clearly, T{x) = y will have a solution
for every y e Rm if and only if im T= T(Rm) = Rn. For this, it is sufficient
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200 Static Models and Comparative Statics

that the rank of T be equal to m (it cannot be larger). If, on the other hand,
we have rank T<m, then the set of y's for which (N) has a solution is a
subspace of Rm of dimension less than m (e.g., a straight line on the plane,
or a plane in three-dimensional space). Hence, if we pick a vector y ran-
domly, the system Ax = y will have a solution only by chance, and if we start
with some y = -Bafor which there is a solution, almost any small change in
the parameters will leave the system with no solutions.

Let us now reintroduce the parameters a explicitly into the model.
Assume that the system

Ax+Ba=0 (L.I)

has n independent equations (that is, A is an n x n matrix and has full rank).
Then A is invertible, and we can solve (L.I) to obtain a solution that will be
unique for given parameter values:

x = -A1Ba

The solution function for the model is therefore

x* = x(a)Ccc, where C = -A'1 B

Given the matrices A and B, explicit solutions for the model can be com-
puted using Cramer's rule or, more efficiently, some algorithm for the inver-
sion of matrices. In any case, the solution of linear models does not pose
difficulties, at least in principle.

In this case, dealing with comparative statics is easy. Because we know the
solution function, we can differentiate it directly to obtain

<9x*
—— = cik (the ik element of C)
dak

We can also handle discrete parameter changes quite easily. Let a! and a"
be two different parameter vectors. The corresponding equilibrium values
of the endogenous variables will be given by

x"=Ca" and x' = Ca'

Hence the displacement of the equilibrium as a result of the parameter
change will be

x"-x' = Ca"- Ca' = C(a" - a') => Ax* = CAa

2. Comparative Statics and the Implicit-Function Theorem

Let us now return to nonlinear models. Let Fbe a function Rn+P D
—> Rm, with XxQ open, and consider the model
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Comparative Statics, the Implicit-Function Theorem 201

F(x;a) = 0 (M)

where a is a vector of parameters, and x is the vector of endogenous vari-
ables whose solution values we seek. For a given value of a, we define a func-
tion of x alone by fa(x) = F(x; a). Then x* is a solution of the model for the
given a if and only if it is a zero of /„. Hence, the equilibrium or solution
correspondence

: Ms D il > A C K.

that assigns to each parameter vector a the corresponding set S(a) of equi-
librium values of the endogenous variables is given by

S(a) = tf (0) = {x e X; fa (x) = 0}

As we have already indicated, we are interested in two types of questions:
(i) For a given value of a, what does the solution set S(a) look like? (ii) How
does it change if we change the parameters? We have seen that the answers
to these questions are straightforward in the case of linear models. For non-
linear models, things are more complicated, but if we are willing to assume
that F is differentiate, we can proceed by constructing a linear approxima-
tion to the model in a neighborhood of a solution point and then analyze
the resulting linear model. This approach yields a tractable method for doing
comparative statics and some valuable information on the local structure
and dimensionality of the solution set of the model.

In what follows, we will assume that F is a C1 function and focus on the
case in which m = n, that is, we assume that the model (M) has as many
equations as unknowns. The central result is the implicit-function theorem
(IFT). This theorem gives sufficient conditions for the solution corres-
pondence S(a) to be a well-defined and nicely behaved function in some
neighborhood of a known solution point. The IFT also provides a tractable
method for doing comparative statics, that is, for determining in what di-
rection the equilibrium moves as a result of changes in the parameters of
the system.

The IFT is a close relative of the inverse-function theorem. Assume that
the number of equations and the number of unknowns in (M) are the same;
then fa maps Rn into itself, and we can apply the inverse-function theorem.
Hence, if for a given value of the parameter vector a0 the pair (JC°, a0)
satisfies (M), F( ) (and therefore fa) is continuously differentiable, and the
Jacobian of/>, given by |D/XJC°)| = \DxF(x°, a% is not zero at x°, then / > is
one-to-one in some neighborhood of JC°, and therefore x° e / ~o (0) is a locally
unique solution of the system F(x; a0) = 0.

To see what the IFT adds to this, imagine that there are changes in the
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202 Static Models and Comparative Statics

parameters. For each a we obtain a new system of equations fa(x) = 0 and a
different solution set /^(O) (possibly empty). Now, if F is a continuously dif-
ferentiable function of the parameters and we restrict ourselves to a
sufficiently small neighborhood of a0, then all the /a's will be sufficiently
similar to fop that each one of the systems fa(x) = 0 will have a solution close
to x°. Moreover, because each of the /a 's is locally invertible, each of these
solutions will be locally unique.

(a) Derivatives of Implicit Functions and Comparative Statics

We will begin by deriving a very useful formula for doing comparative statics
in differentiable models. We will then specify under what conditions the use
of this formula is legitimate. Given a parameterized system of equations (M),
which we can write in more detailed notation as

F\xu ...,xn;au...,ap) = 0
1 (MO

Fn(x ...,*„;a..".,a) = 0

we would like to know in what direction the solution of the system x* = (xf,
. . . , x*) moves when there is a small change in the value of some parame-
ter, say ak. Suppose, for the time being, that the solution correspondence for
this model is a differentiable function, that is, that we can write the equilib-
rium value xf for each of the endogenous variables as a differentiable func-
tion of the form

xf=xJ(a) = xI(a1, ..., ap)

We would like to determine the sign of the partial derivatives dx*ldak. If
the model can be solved explicitly, the problem is simple. In general,
however, closed forms for the solution functions of (M) will not be avail-
able, so we will have to resort to less direct methods to "extract" the prop-
erties of Xt{a) from those of F( ). The most straightforward approach is the
following.

Substituting the solution function x( ) back into (M), we obtain the
identity

F[x(a), a] = 0 CO

or, in more detailed notation,

, ..., ap\ ... ,xn(au . . . ? ap); au ..., <xp] = 0
for each / = 1, . . . , n
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Comparative Statics, the Implicit-Function Theorem 203

We emphasize that (1) is an identity - in the sense that, unlike (M), it holds
for all values of a - and in fact (1) defines the function x(a). Hence we can
differentiate both sides of (1) with respect to any parameter and the equality
will continue to hold. Differentiating (1') with respect to ak, we have

da da-

for the ith equation. Repeating the operation for each equation, we obtain
the following expression for the whole system:

dx1

dak

dxn

dak

(2)

If the Jacobian matrix / = DxF(x; a) of first partial derivatives of F with
respect to the endogenous variables is invertible (i.e., if \J\ & 0), then (2) can
be solved for the partial derivatives of the solution functions, dx*/dak. Using
Cramer's rule, we have

dx* - |
_

dak \J\

(3)

where Jt is the matrix obtained by replacing the ith column of the Jacobian
J with the vector {Flak,..., F%f that appears on the right-hand side of
(2).

The same conclusion can be obtained in much more compact form using
vector notation. Differentiating (1) with respect to the parameter vector, we
obtain

DxF(x; a)Dx{a) + DaF(x; a) = 0

from where

- i
Dx(a) = -[DxF(x; a)]"1 DaF(x; a) (4)

Equation (3) then gives us the ith component of the vector Dx{d).
The formula we have just derived is an extremely useful tool for the

analysis of static, differentiable models. But we still have to see when it is
legitimate to use it. To obtain it, we have assumed that the solution cor-
respondence is a well-defined and differentiable function, which is not
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204 Static Models and Comparative Statics

necessarily true. In the following section we will derive sufficient conditions
for this to be locally true in some neighborhood of a known solution point.
In particular, it suffices that F be a C1 function and that its derivative with
respect to the vector of endogenous variables, evaluated at the solution of
the system, be invertible. The necessity of this second condition is apparent
from (4). Before turning to this problem, we pause to observe that the pro-
cedure described earlier is equivalent to working with the linearization of
(M) in some neighborhood of a given solution.

A Reinterpretation

Given a nonlinear model

F(x;a) = Q (M)

where Fis a smooth function, and x° a solution of the system for given values
oP of the parameters, we can construct a linear approximation to F in some
neighborhood of (*°, a0):

a-a0

(a-a0)

Hence, we can approximate (M) by the linear model

DxF(x\a0)(x-x0) = -DaF(x\a°)(a~a0) (L)

where DxF(x°, a0) and DaF(x°, a0) are "constant" matrices. We have, then, a
system of n linear equations in n unknowns (x), and if \DxF(x°, a°)\ & 0, we
can solve it to find the solution function for (L):

X*L = (j,(a) = x° -[DxF(x°, a0)]'1 DaF(x°,a°)(a-a°)

Alternatively, we can use the procedure described earlier to calculate the
derivative of the solution function for the original model, x(a). Construct-
ing a linear approximation to this function, and using (4), we find that, close
to*°,

x* = x° +Dx(a°)(a-a°) = x° ~[DxF(x \a0)]\DaF(x°, a°)(a-a°) = (j>(a)

Thus, the two approaches are equivalent: They yield the same linear approx-
imation to the solution function for (M).
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(b) The Implicit-Function Theorem

205

We begin the discussion of this important result by considering a simple case
in which we can rely on graphical intuition. Let F be a C1 function from R2

to R, and consider the "system" formed by a single equation in one unknown
and one parameter:

F(x;a) = (5)

Graphically, the graph of F corresponds to a surface in three-dimensional
space, with the values of the function measured along the vertical axis. The
set of pairs (x, a) that satisfy equation (5) (the zero level set of F) corre-
sponds to the intersection of this surface with the horizontal plane. If F
satisfies certain regularity conditions, this locus will describe a curve on the
plane, as illustrated in Figure 5.1.

The following question then arises: Can we interpret the curve F(x, a) =
0 as the graph of a function x(a) giving the solution to (5) as a function
of the parameter? We see that, in general, the answer is no: As the figure
suggests, there is no guarantee that for each value of a there will exist pre-
cisely one solution to the equation F(x, a) = 0. In the foregoing example,
x(a) is a function on the interval (-°o, a'), but not on the rest of the real line,
because equation (5) has two solutions in the interval (a\ a"), and none for
a > a".

On the other hand, the figure also suggests that in many cases x(a) will

Downloaded from Cambridge Books Online by IP 152.2.176.242 on Thu Jun 27 09:41:35 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.006

Cambridge Books Online © Cambridge University Press, 2013



206 Static Models and Comparative Statics

F(x,cc°)

Figure 5.2.

indeed be a function locally. If we restrict ourselves to a sufficiently small
rectangle R around a point (x°, a0) on the curve, it will be true that, for
almost all points, the restriction of the curve to the rectangle is the graph of
a function. The only exception in Figure 5.1 is the point (a", x"), at which
the curve is locally vertical (i.e., where Fx(x'\ a") = 0).2 No matter how small
we draw the rectangle around this point, it will always include some values
of a for which there are two solutions of the system, and others for which
there is none. Hence, in this case equation (5) does not define the solution
value of the endogenous variable x* as a function of the parameter a, even
locally. However, inspection of Figure 5.1 reveals that this is the only point
at which we run into this problem.

Consider now the same problem from a slightly different point of view. If
we fix the value of a at a0 and plot F as a function of x, the solutions of the
system correspond to the points at which the graph of F(x, a0) touches the
horizontal axis. Figure 5.2 suggests that two types of solutions are possible:
In one case (e.g.,x"), F( ) crosses the axis transversally, whereas in the other
(e.g., JC'), F() is only tangent to it. In the first case, the partial derivative of
F( ) with respect to x will be either strictly positive or strictly negative; in
the second case, we have Fx( ) = 0.

Intuitively, it is clear that the two types of equilibria will behave very dif-
ferently in response to a small change in the value of the parameter. "Trans-
versal" (or regular) equilibria will survive small perturbations and remain
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locally unique, whereas "tangency" (or critical) solutions will be fragile,
tending to disappear with some perturbations, or to unfold into two differ-
ent equilibria. Once more, we conclude that if Fx(x, a) * 0 at a solution of
the system, then the solution correspondence will be, at least locally, a well-
defined function. On the other hand, if Fx{x, a) = 0, we have a tangency equi-
librium, and strange things may happen.

The following result formalizes the preceding discussion: If we rule out
tangency equilibria, x(a) is locally a well-defined function and inherits the
differentiability of F.

Theorem 2.1. Implicit-function theorem (simplest case). Suppose F:R2 —>
R is C1 on an open neighborhood A of a point (x°, a0) such that F(x°, a0) =
0 and Fx(x°, a0) ± 0. Then there exist open intervals Ix and Ia centered at x°
and a0, respectively, such that the following hold:

(i) For each a c l a there exists a unique x ae Ix such that F(xa, a) = 0. That is,
the restriction of the zero-level curve of F to the rectangle Ix x Ia defines a
function

x: Ia —> Ix, with x(a) = xa

(ii) The function x( ) is differentiable, and its derivative is a continuous function
given by

Fx (x, a)

Although the simplest way to prove the implicit-function theorem is by
applying the inverse-function theorem, we will give a direct proof for this
special case of the theorem that probably will illustrate the logic of the result
better than will the general proof given later.

Proof

(i) x(a) is a well-defined function from Ia to Ix; that is, for each a in Ia there exists
a unique xa in Ix such that F(xa, a) = 0.

By assumption, Fx(x°, a0) * 0; for concreteness, suppose Fx(x°, a0) = a > 0.
Because Fx{x, a) is continuous on A, there exists an open rectangular neigh-
borhood R' of (JC°, a0) such that for all (x, a) in R\ Fx > a/2; that is, there exist
17, 8 > 0 such that

\/(x,a)ER' = B5(x
°)xBT1(a0l Fx(x,a)>a/2>0 (1)

(refer to Figure 5.3). That is, F is a strictly increasing function of x for given a
and (x, a) e R'. Moreover, because F has value zero at (JC°, a0), we have
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= x ° + 8

Figure 5.3.

F(x°+S,a°)>0 and F(x°-<5,o°)<0 (2)

Next, fix x = x° + <5; then F(x, a) is a continuous function of a, with F(x, a0) >
0. By continuity, this inequality continues to hold for a sufficiently close to a0;
that is, there exists some e e (0, rf) such that F(JC, a) > 0 for all a e Be(a°). Sim-
ilarly, if we fix x = JC° -5, F will be strictly negative for a sufficiently close to a0.
Hence, we can choose e in such a way that

F(jt° + <5,a)>0 and F(x°-S,a)<0 for all aeBe(a°) (3)

Fix some a in B£(a°). The function fa(x) s F(JC, a) is continuous in x, and, by
(3), we have

/«(x°+<5)>0 and /«(x°-<5)<0.

By the intermediate-value theorem, it follows that there exists some xae
( X ° - 5 , X ° + S ) such that

Moreover, this xa will be unique, for /«( ) is strictly increasing in Bs(x°) and
therefore can cut the horizontal axis only once in this interval, as suggested in
Figure 5.4.
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F(x,oc), aeBe(a°)

Figure 5.4.

In conclusion, we have shown that given any a in a sufficiently small neigh-
borhood of a°, there exists one, and only one, value of ^(namely xa) such
that (xa, a) satisfies the given equation. Hence, the solution correspondence
a -»-» x (a) = xa is a well-defined function from Be(a°) to B^x°).

(ii) The function x( ) : Be(a°) —> B^x°) is continuously differentiable.
Take two points a' and a" in Be(a°) and put x' = x(a') and x" = x(a"); by con-

struction, we have x\ x" e B^x°) and

F(x',a') = F(x",a") = (4)

By the mean-value theorem, there exists some point (xx, ax) on the straight line
segment connecting (x\ a') and (JC", a") (and therefore in R = Bg(x°) x Be(oP))
such that

0 = F(x',a')-F(x",a") =

Regrouping terms in (5),

(5)

(6)

and because (JCA, aA) € R', we have

Fx(x
l,ax)>a/2>0 (7)

by (1). Moreover, Fa(x, a) is a continuous function on the closure of R\ which
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is a compact set, and therefore attains a maximum on this set. Hence we can
write

Fa(x\ ax )<M = max{Fa(x, a); (x, a) e cl R'} (8)

Expressions (6), (7), and (8) imply that

\x{a')-x{a")\ =
-Fa{

x
\a

K)
Fx(x

\ax)
2Af,

(9)

where we see that x( ) is continuous, for x(a') -> x(a") as a' —> a".
In fact, x( ) is not only continuous but also differentiable. To see this,

recall that (xA, ax) lies on the straight line segment between (x\ a') and
(x", a"). As a' -> a", we have x(a') -> x(a"), by (9), and therefore (x\ a') ->
(x", a"). Because (x\ ax) lies between these two points, it follows also
that (xx, ax) —> (%", a"). Regrouping terms in (6), and taking the limits
of both sides as a' —> a", we have (making use of the differentiability of Fx and

lim 4 4 f
which establishes the differentiability of x( ) and the formula given for
its value in the theorem. Finally, because Fx( ) and Fa( ) are continuous
functions, so is x'{ ) at all points where Fx( ) * 0, and in particular in
B^x°). D

We now turn to the general case of this result. Given a parameterized
system of n equations in n unknowns,

F(x;a) = 0 (M)

the implicit-function theorem gives us sufficient conditions for (M) to im-
plicitly define a differentiable function that assigns to each a the cor-
responding equilibrium value of the vector of endogenous variables.

Theorem 2.2. Imp licit-function theorem (general case). Let ¥:Rn + p D X x Q
—> Rn be a continuously differentiable function on an open set Xx Q. Con-
sider the system of equations Ffx; a) =0, and assume that it has a solution x°
e X for given parameter values a0 e 12. If the determinant of the Jacobian of
endogenous variables is not zero at (x°; a0), that is, if

then we have the following:
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(i) There exist open sets U in Rn+P and Ua in Rp, with (x°, a0) c U and a0 c U«,
such that for each a in Ua there exists a unique xa such that

(xa , a ) e U and F(xa ;OL)=0

That is, the correspondence from Ua to X defined by x(a) =xais a well-defined
function when restricted to U.

(ii) The solution function x( ):Ua—> Ra is continuously differentiate, and its
derivative is given by DxfaJ = -/DxF(xa; a)/^DaF(xa; a).

isC\soisx( ) .

That is, given some parameter vector a0, suppose that x° solves the system
(M), and the remaining assumptions of the theorem hold. Then for every a
close to a0 there exists a solution x(a) close to x° that is locally unique.
Hence, x(a) is locally a well-defined function, and, moreover, it inherits the
differentiability of F.

Proof. We will apply the inverse-function theorem to the function G:Rn+p

—> Rn+P defined by

G(x;a) = [F(x;a),a]T (1)

that is,

G'(x; a) = F'O; a) for i = 1, . . . , n

Gn+*(x;a) = aj for/ = 1,...,p

Observe that

x
\a

°\a°]T = (0,a°)T (2)

and the Jacobian of G can be written

where / is the identity matrix, and 0 a matrix of zeros. Expanding the deter-
minant of DG(x°; a0) by cofactors, starting from the lower right-hand-side
corner, we find that

\DG(x°;o°)| = \DxF(x°;a°)\* 0

so we can apply the inverse-function theorem to G at (JC°; a°).
By the inverse-function theorem, there exist open sets U and V = G(U) in

Rn+P, with (x°, a0) e U, (0, a0) e V, and the property that G is a one-to-one
function from U onto V. Hence, G1: V —> U is a well-defined function.
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Because (0, a0) e Fand Fis open, we have (0, a) e F for all a sufficiently
close to a0, which we write a e Ua. Given that G is invertible, for each
ae Ua there exists a unique point (xa, d) e U such that

(xa,a) = G1(0,a)

which is equivalent to

and therefore implies, by definition of G,

F(xa,a) = 0

In fact, we can put

Ua={aeRa+p;(Q,a)eV}

where Ua is open (in Rp) because U is open (in Rn+P). In summary, for each
a e Ua there exists a unique solution xaoi the system such that (xa, a) e U.
It follows that the solution correspondence is locally a function, defined on
Uaby

x(a) = xa such that (xa,a)eU and F(xa,a) = 0

It remains to show that this function is C1. By the inverse function
theorem, G1: V —> U is C1, and because

G[x{a\ a] = (0, a)r« [x(a), a]r = G^O, a)

by definition, we have that x(a) is a component of a C1 function and there-
fore is itself C1 (or as smooth as G"1). •

Degrees of Freedom and the Regular-Value Theorem

In stating the implicit-function theorem, we have made an a priori distinc-
tion between endogenous variables and parameters. It is clear, however, that
the logic of the result does not depend in any way on whether or not we
choose to make this distinction. Let F, then, be a C1 function from Rn+P to
Rn, and consider the system of n equations in n +p variables, equations (M):
F(x) = 0. If the Jacobian DF(x) has rank n at a solution point JC°, then we
can always find at least one partition of x into two vectors, x = (y, z), with
y G R n and z e Rp, such that the square submatrix DyF(y, z) has a nonzero
determinant. By the implicit-function theorem, it follows that in some neigh-
borhood of x° it is possible to solve the system for the n variables y as func-
tions of the p variables z.
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In other words, the system has p degrees of freedom: We can freely assign
values to p of the variables, and the rest will then be determined by the con-
dition F(y, z) = 0. This gives us some information about the local dimen-
sionality of the set F~1(0) of solutions of the system.

If, in addition, 0 is a regular value of F, then every element x* of F~l(0)
is a regular point of F and therefore satisfies the assumptions of the implicit-
function theorem.3 Hence, the implicit-function theorem guarantees that the
solution set always has the "right" dimension (equal to the number of
unknowns minus the number of equations). The following theorem tells us
that in that case, F~\G) will be a geometric object with "nice" properties.
To state the theorem precisely, we need some definitions.

Recall that a diffeomorphism is a smooth homeomorphism, that is, an
invertible C* function with k > 1 and a Ck inverse. Two sets are diffeomor-
phic if there exists a diffeomorphism that maps one onto the other, that is,
if the sets are identical except for a smooth change of coordinates. A subset
M of Rn is a smooth manifold of dimension k if every point in M has a
neighborhood U (in Rn)such that Un Mis diffeomorphic to an open set in
) k 4

That is, a smooth manifold is an object that looks locally like an open set
in a Euclidean space. For example, a smooth surface in R3 is a manifold of
dimension 2, because it looks locally like a plane - in the sense that there is
a smooth change of coordinates that will map any region on the surface into
a neighborhood of a point on the plane (e.g., imagine that we project a neigh-
borhood of a point in the surface onto the horizontal plane). A manifold of
dimension zero is a set of isolated points. By convention, the empty set can
be considered a manifold of any dimension.

The following result tells us that the inverse image of a regular value is a
nice geometrical object of precisely the dimension we would expect.

Theorem 2.3. Regular-value theorem. Let i:Ra D X —> Rm, with X open,
be a C1 Junction. Ify is a regular value off, then t~'(y) is a smooth manifold
of dimension n - m (in the ambient space Rn).

Note that f~l(y) may be empty, as 0 may be considered a manifold of any
dimension. For a proof of the theorem, see Guillemin and Pollack (1974, pp.
20ff.) or Milnor (1965, p. 11). At any rate, this is an almost immediate impli-
cation of the implicit-function theorem.

Intuitively, the theorem tells us that the dimension of the solution set of
the system f(x) = y is equal to the number of unknowns minus the number
of equations in the system, provided these are linearly independent in some
neighborhood of each solution point. In fact, if m = ny we have as many equa-
tions as unknowns, and, as we may expect, the set of solutions is a manifold
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of dimension zero (i.e., a set of isolated points). Ifn>ra, we have more equa-
tions than unknowns, leaving us with n-m degrees of freedom and a solu-
tion set of dimension n-m.5

Regular and Critical Equilibria and

the Sard and Transversality-Density Theorems

An equilibrium of the model

F(x;a) = fa(x) = 0, where F:Rn+p D L X Q.-+ Rm (JxQopen) (M)

is a point x* e f~a(0). An equilibrium is critical if it is a critical point of/a,
and regular otherwise. If xa is a regular equilibrium for some a, then the
assumptions of the implicit-function theorem hold at (xa, a). Hence, regular
equilibria are locally isolated and robust to small perturbations, and they
change continuously with small parameter changes. Critical equilibria, on
the other hand, may not behave so nicely: They may not be locally unique,
and they have a tendency to disappear or unfold into several distinct equi-
libria with small parameter changes. The implicit-function theorem tells us
that the graphical intuition developed earlier around the distinction between
transversal and tangency equilibria remains valid for models with more than
one endogenous variable and several parameters.

We have seen that a full-rank condition on the Jacobian of F guarantees
that the solution of a system of equations has certain nice properties.
Because the equilibrium of a model is determined endogenously, however,
it is not legitimate simply to assume that we start out with a regular equi-
librium. This suggests the following question: Is it possible to say a priori
that the "probability" that we shall find ourselves at a critical equilibrium is
low in some well-defined sense?

The answer is yes. We will now review two results that, loosely speaking,
say that problematic (critical or tangency) equilibria are exceptions, rather
than the rule, so that, in general, differentiable models will be nicely
behaved. The first result, known as Sard's theorem, says that a sufficiently
smooth function can have only "a few" critical values, although it may have
any number of critical points. Hence, the property "being a regular point" is
typical or generic. In some sense, therefore, it may be expected that given a
system of equations fa(x) = 0, the zero vector will be a regular value of /«,
implying that the solution set/«*(()) will contain only regular, and thus nicely
behaved, equilibria. The second result (the transversality-density theorem)
reinforces this conclusion: If, by chance, the zero vector turns out to be a
critical value of fa, then, under reasonable assumptions, almost any small
change in any of the parameters will turn the zero vector into a regular value
of the new fa.
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T \ j
\f(x)

1

xa xb xc xd

Figure 5.5.

Both theorems make use of the concept of a set of measure zero. Let
A be a set in Rn; we say that A has Lebesgue measure zero if given an
arbitrarily small positive number £, we can always find a countable collec-
tion of closed cubes uu u2,... such that their union contains the set A, and
the sum of their volumes (the product of the lengths of their sides) is smaller
than e.

Figure 5.5 suggests that a function may have "many" critical points, but
only a few critical values. The function / has an infinite number of critical
points (two isolated ones at xa and **, and a continuum of them in the inter-
val [xc, xd]), but has only three critical values, because all points in [xc, xd]
have the same image (that is, /'(*) = 0 on an interval implies that the func-
tion is constant in it).

Sard's theorem tells us that the figure gives the correct intuition: The
property "being a regular value of a function" is generic.

Theorem 2.4. Sard's theorem. Let f:RnDX —> Rm (X open) be a O func-
tion with r > max{0, n - m/, and let Cf be the set of critical points of f. Then
i(Cf) has Lebesgue measure zero.

If n<m, then Cf=X (see note 5), and the theorem simply says that f(X)
has Lebesgue measure zero, implying that the equation f(x) = y has no
solutions for most of the vectors y in Rm. Note that the theorem requires
an assumption concerning the degree of smoothness of the function. In the

Downloaded from Cambridge Books Online by IP 152.2.176.242 on Thu Jun 27 09:41:35 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.006

Cambridge Books Online © Cambridge University Press, 2013



216 Static Models and Comparative Statics

F(x,oc°)

Figure 5.6.

case of greatest interest for us (m = n), however, it is sufficient to have

For parameterized functions, we have the following generalization of
Sard's theorem, sometimes called the transversality-density theorem.

Theorem 2.5. Let, F: Rn+p D X x Q —> Rm (X x Q open) be a C function
with r > max{0, n - m/. Ify e Rm is a regular value ofF, then the set of vectors
a G Rp such that y is a critical value for fa(x) = Ffx; a) has Lebesgue measure
zero.

In other words, if y is a regular value for the "whole F," then it is a regular
value of fa( ) for almost all values of a. Observe that because DF(x; a) =
[DxF(x; a), DaF(x; a)], the rank condition for a regular value is easier to
satisfy for the "whole F" - that is, it is easier to be a regular point of F than
one offa. In fact, if we have a sufficient number of parameters, it is possible
to have rank DaF(x; a) = m, which is sufficient to satisfy the assumptions of
the theorem.

Figure 5.6 tries to capture the intuition of the result. For a = a0, the func-
tion fcp ( ) has a critical value at zero. However, if F is sensitive to changes
in a (and this is the intuitive meaning of the assumption of the theorem),
any small perturbation will shift the graph of F in such a way that the tan-
gency point will disappear.
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In summary, because critical equilibria are problematic, we may wonder
if it is possible to find some reasonable excuse for ignoring them. The answer
is a qualified yes. Given some vector of parameters a, a model may have
any number of critical equilibria, any number of regular equilibria, and any
combination of the two. Graphical intuition, however, suggests that critical
equilibria are fragile in the sense that they tend to disappear with small per-
turbations to the parameters. The preceding two theorems make this intu-
ition precise: If 0 is a regular value of the "whole F," then it is also a regular
value offafor almost all a, and this implies that/^(0) contains only regular
equilibria. For most environments, therefore, many models will have no crit-
ical equilibria.6

Genericity

In many cases it is not possible to exclude completely the possibility of
pathological phenomena, but it is sometimes possible to show that they are
unlikely in a well-defined sense. Let X be a set, and consider some property
P that elements of X may or may not have. We say that P is a generic pro-
perty if it holds for almost all elements of this set.

There are two notions of genericity. The first, based on the concept of
measure, is the one we have used here: P is generic in X if it holds for all X
except possibly for a subset of measure zero. Sometimes, however, we cannot
use Lebesgue measure to make precise the idea that a given set is small. This
is the case, for example, in infinite-dimensional spaces. In such situations, we
can resort to another notion of genericity (not as satisfactory as the first one)
that is defined in topological terms.

In this second sense of the term, a property is generic in X if it holds in
a subset of X that is open and dense in X. A subset D of a metric space X
is dense in X if given any element x of X and an arbitrarily small number e
> 0, there exists some y e D such that d(x, y) < e. That is, D is dense in X if
given any point x in X there always exists some point in D arbitrarily close
to x. In other words, D is dense in X if any element of X may be well approx-
imated by some element of D.

Intuitively, a subset D of X that is both open and dense in X constitutes
most of X. By the density of Z>, any point in X is close to some point in D.
In principle, a dense subset could be a collection of isolated points (e.g., the
set of rational numbers in the real line), but the requirement that D also be
open eliminates that possibility. Openness also implies robustness or persis-
tence, because small perturbations must leave us inside D.

Finally, note that genericity defined in terms of measure implies topolog-
ical genericity (whenever both are defined), but the converse statement is
not generally true. In fact, an open and dense subset of a Euclidean space
could have arbitrarily small Lebesgue measure, although not zero.
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218 Static Models and Comparative Statics

Conclusion

The implicit-function theorem is a fundamental result for the analysis of non-
linear models. On a practical level, the theorem tells us when we can use
implicit differentiation to do comparative statics and gives us a formula for
computing the derivatives of the solution function given the partials of F with
respect to x and a. This is very helpful, because most of the models with which
we work in economic theory are not specified at a sufficient level of detail
to allow calculation of numerical solutions. Hence, the implicit-function
theorem gives us an indispensable tool for extracting qualitative information
about the solution function from qualitative assumptions incorporated into
the behavioral equations of the model.

On a more basic level, the implicit-function theorem gives us sufficient
conditions for the solution correspondence S(a) to be, at least locally, a dif-
ferentiable function. This takes care of the continuity problem: Under the
assumptions of the theorem, the equilibrium x* depends continuously on the
parameters, and therefore qualitative predictions concerning the effects of
small changes in a are possible, at least in principle. Moreover, the conclu-
sion that the solution correspondence is locally a continuous function also
provides partial answers to the existence and uniqueness questions. It is
important to emphasize, however, that such an answer has two important
limitations. First, it is a conditional answer, because the theorem assumes the
existence of a solution for some parameter vector a0. Second, it is a local
answer, as the conclusions hold only in a neighborhood of the value a0 of
the parameter vector for which a solution is known to exist. What the
theorem says, therefore, is that if a solution x° exists for a0 and the function
F satisfies certain regularity conditions at (x°9 a

0), then locally unique solu-
tions will also exist for parameter values close to a0. But note that nothing
is said about the existence of solutions per se.

3. Existence of Equilibrium

Nothing that we have seen thus far guarantees that the system F(JC; a) = 0
will have a solution for a given value of a. This section reviews some results
that are sometimes useful in establishing the existence of equilibrium in non-
linear models. The first method, based on the intermediate-value theorem,
can be used only in "small" models, with two endogenous variables at most.
On the other hand, it has the advantage that it is based on an obvious geo-
metric intuition: The graph of a continuous function whose value is positive
at some point and negative at another must cross the horizontal axis at some
intermediate point.

For models with more than two variables, graphical methods are not, in
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Existence of Equilibrium 219

general, very useful. In this case, fixed-point theorems are the most com-
monly used tools for dealing with existence problems. We will discuss a
number of such results. In Chapter 8 we will see how some of them can be
used to establish the existence of equilibrium in a number of important eco-
nomic applications.

(a) The Intermediate- Value Theorem

We saw in Chapter 2 that a continuous function of R into itself maps inter-
vals into intervals. Hence, if/takes on values y' and y" in /, it must also take
on all values in between these two numbers. The formal result, reproduced
here for convenience, is the following:

Theorem 3.1. Intermediate-value theorem. Let f:R —> R be a continuous
function on the interval I. Given two points in I, x' and x" with images y' and
y", for each number y between y/ and y" there exists some point x in 1, lying
between x' and x" such that f(x) = y.

It is easy to see how this result can be useful in establishing the existence
of solutions. Let / : R —> R be a continuous function, and consider
the equation f(x) = 0. If we can find two points x' and x" such that f(x') > 0
and f(x") < 0, then there will exist at least one point x* lying between x'
and x" such that f(x*) = 0. Figure 5.7 illustrates this geometrically obvious
fact.

In many economic models, appropriate points x' and x" can be found by
asking what agents would do in "extreme situations." It is difficult to be more

Figure 5.7. The intermediate-value theorem.
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220 Static Models and Comparative Statics

specific without a concrete example in mind, but some will turn up in the
problems posed later in this chapter.

This procedure can sometimes be used to establish uniqueness. For
example, if/is a strictly monotonic function, it is clear that it can cross the
horizontal axis at most once. In fact, it is not necessary that / be globally
monotonic. It is enough that the function be strictly monotonic in some
neighborhood of any solution to the equation. If/is differentiable, that can
at times be shown by evaluating /'(**), that is, by inspecting the expression
for the value of the function's derivative evaluated at an arbitrary solution
point. Even if x* is not explicitly known, the information that at such a point
/has value zero may be sufficient to determine the sign of /'(x*). If/'(**) >
0 (or < 0) at all solution points, then the solution is unique, for/can cut the
horizontal axis only in one direction.

For systems of two equations it is sometimes possible to use this approach
repeatedly to establish existence. Suppose we are given a system of the
form

F(x,y) = 0 and G(x,y) = 0 (1)

We first consider each equation separately and see if it is possible to solve
them for functions of the form

y = f(x) and y = g(x) (2)

The slopes of these functions can be calculated by implicit differentiation,
but we first have to establish existence. This can be done by the method dis-
cussed earlier. For example, if we fix x = x°, then

F(x°,y) = 0 (3)

is an equation in a single unknown, and we can use the intermediate-value
theorem to show that there is some y that solves (3) for the given x° (see
Figure 5.8). Note that we may have to restrict the domain of/( ), for (3) may
have solutions only for certain values of X°.TO prove that/is a well-defined
function, we have to show that the solution of (3) is unique for each given
x°. This will be true, for example, if Fy is always positive or always negative,
or if its sign is constant at any solution of (3).

If it is true that the two equations define functions of the form (2), the
original system can be reduced to a single equation:

f(x)-g(x) = 0 (4)

Graphically, we have two curves on the plane (x, y), as shown in the second
panel of Figure 5.8, and we can apply the intermediate-value theorem once
more. If one curve starts out above the other and ends up below, there must
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F(y,x°)

V
—--̂ —̂

.y=f(x)

— < y=g(x)

x*

Figure 5.8.

be some point at which the two curves cross. And if we can determine that
at an arbitrary intersection the slope of one is larger than that of the other,
there will be at most one solution of (4).

(b) Fixed-Point Theorems

For problems in more than two dimensions, where the geometry of the plane
is not very helpful, we have to resort to the more abstract methods of fixed-
point theory. Two of the results of this theory most commonly used in eco-
nomic analysis are the theorems due to Brouwer and KakutanL The first one
gives sufficient conditions for the existence of a fixed point of a function; the
second gives similar conditions for correspondences.

A function/has a fixed point at x* if the image of x* is x* itself, that is, if
/(x*)=x*. It is easy to see the connection between equilibria and fixed
points. Given a system of equations

(5)

define the function g by

Observe that if x* is a fixed point of g, then

Hence, x* solves the system (5) if and only if it is a fixed point of g.
Our first two results deal with the existence of fixed points for functions.

Theorem 32. Brouwer's fixed-point theorem. Let f:X —> X be a continu-
ous function mapping a compact and convex set X into itself. Then f has a
fixed point in X, that is, there exists at least one x* e X such that f (x*) = x*.
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,45°

a b
f not continuous

a b
X = [a, b), not closed

.45"

/

•

a a b e d
X = [a, o°), not bounded X = [a, b] u [c, d], not convex

Figure 5.9. Failure of the assumptions of Brouwer's theorem.

Figure 5.9 illustrates the situation and shows that/may not have a fixed
point if some of the assumptions of the theorem fail.

The standard proof of Brouwer's theorem, based on something called
"simplicial topology," is a real pain in the butt; see, for example, Border
(1985, ch. 2-6). For smooth functions, there exists an alternative and much
nicer proof, based, surprisingly enough, on Sard's theorem. This result can
then be extended to continuous functions using a theorem of Stone and
Weierstrass which says that any continuous function can be uniformly
approximated by a polynomial in a compact set. See Milnor (1965, pp. 13ff.)
or Guillemin and Pollack (1974, pp. 65-6).

For the special case of a univariate real function, Brouwer's theorem can
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Figure 5.10. Brouwer's theorem for uni-
variate functions.

be easily established using the intermediate-value theorem. In this case, the
theorem says that a continuous function / that maps a compact interval
[a, b] into itself has at least one fixed point in the interval.

Consider the function g defined on [a, b] by g(x) =f(x) -x (Figure 5.10).
Because /maps [a, b] into itself, we must have

g(a) = f(a)~a>0 and g(b) = f(b)-b<0

If any of these expressions holds with equality, the fixed point is one of the
end points of the interval. Otherwise, the intermediate-value theorem implies
the existence of an interior zero of g() (i.e., a fixed point of/). In some sense,
therefore, we can think of Brouwer's theorem as a generalization of the inter-
mediate-value theorem to spaces of dimension higher than 1.

A second fixed-point theorem for functions, due to Tarsky, dispenses with
the assumption of continuity, but requires that the function be nondecreasing.

Theorem 3.3. Tarsky's fixed-point theorem. Let ibea nondecreasing function
mapping the n-dimensional cube [0, l]n = [0,1] x . . . x [0,1] into itself. Then
f has a fixed point.
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Figure 5.11. Tarsky's theorem.

Figure 5.11 illustrates the intuition behind this result in the one-dimen-
sional case. Notice that if /(0) = 0, then 0 is a fixed point of /, and we are
done. Otherwise, /(0) > 0, and/() starts out above the 45° line. Because the
function must jump up at points of discontinuity, moreover, it cannot cross
the diagonal at such points. Finally, because/(I) < 1 by assumption, the graph
of/must at some point cross the diagonal.

We close this section with two fixed-point theorems for hemicontinuous
correspondences.7 For a proof and further results, the reader should refer to
Border (1985, ch. 15).

Theorem 3.4. Kakutani's fixed-point theorem. Consider a correspondence W
from asetXc: Rn to itself. Let X be compact and convex, and assume that W
is upper-hemicontinuous (or closed), as well as nonempty, compact, and
convex-valued for all x e X. Then *F has a fixed point in X, that is,

3x*eXs.th. x*e*F(x*)

Theorem 3.5. Let B c Rn be a compact and convex set, and let JLL:B —>—> B
be a lower-hemicontinuous correspondence with closed and convex values.
Then |U has a fixed point in B.

4. Problems

Problem 4.1. Given the IS-LM model

y=E0 + ocy- (3r+G

Ms/P = M0+yy-Sr

(A)

(B)

Downloaded from Cambridge Books Online by IP 152.2.176.242 on Thu Jun 27 09:41:35 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.006

Cambridge Books Online © Cambridge University Press, 2013



Problems 225

where y is national income, r is the interest rate, G is public expenditure,
MSIP is the money supply divided by a price index, and all the Greek letters
are positive parameters.

(i) Analyze graphically the effects of increases in (a) government spending and (b)
the price level on the equilibrium values of national income and the interest
rate.

(ii) Write the model in matrix form. Use Cramer's rule to solve the model, writing
the equilibrium values of (j, r) as functions of the parameters (G, Ms/P, Eo, and
Mo), and show that the result is compatible with the conclusions of the graphi-
cal analysis.

Problem 4.2. The seller of a product pays a proportional tax at a flat rate 9
e (0,1). Hence, the effective price received by the seller is (1 - 9)P, where
P is the market price for the good. Market supply and demand are given by
the differentiable functions

Qd = D{P\ with D'( ) < 0
Qs = S{{l - e)P\ with S'( ) > 0

and equilibrium requires market clearing, that is, Qs = Qd.
Analyze, graphically and analytically, the effects of a decrease in the tax

rate on the quantity transacted and the equilibrium price. (Use the implicit-
function theorem.)

Problem 4.3. A competitive firm chooses the quantity of labor L to be hired
in order to maximize profits, taking as given the salary w and the value of a
productivity parameter 9. That is, the firm solves

max(Gf(L) - wL)

Assume that the production function/( ) is twice continuously differentiable,
increasing, and strictly concave (i.e.,/ ' > 0 , / " < 0).

(i) Write the first-order condition for the firm's problem, and verify that the
second-order sufficient condition for a maximum holds,

(ii) Interpret the first-order condition as an equation that implicitly defines a labor
demand function of the form L* = L(w, 9). Show, using the implicit-function
theorem, that

dL*/dw<0 and dL*/d9>0

Problem 4.4. Consider an individual who lives for two periods and con-
sumes a single good ("output").The agent is endowed with y1 units of output
in youth, and y2 units in old age. There exists a perfectly competitive market
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226 Static Models and Comparative Statics

for output loans in which the agent may borrow or lend at an interest rate
r that he takes as given. Call ct and c2 his consumption levels during the
first and second periods of life, and let s denote his first-period savings,
s = yt — ci (note that s will be negative if the agent is a net borrower).

The agent's preferences are represented by a utility function of the form

where U is a strictly increasing and strictly concave C2 function that satisfies
the following "corner" conditions:

£/'(c)-»0 asc->°o and U'{c)-*<=° asc->0

Suppose also that

yuy2>0, /3e(0,l), and R = l + r>0

The individual solves the following problem:

max{J7(ci) + pU(c2) subjec t t o c1 = yi - s, c 2 = y2 + sR}
C1.C2

Substituting the constraints into the objective function, we obtain a maxi-
mization problem in a single decision variable, s.

(i) Write the first-order condition for this problem, and check that the second-
order sufficient condition for a maximum holds.

We will interpret the first-order condition as an equation that implicitly
defines a savings function of the form s* = s(yl9 y2, /?). We fix the values of (yu

y2) and study the behavior of s* as a function of R.
(ii) Show that for a given value of R, the first-order condition has a unique

solution s1*. (Use the intermediate-value theorem, and think of what will
happen in extreme cases, e.g., if the agent decides not to eat during one of the
periods.)

(iii) From (ii), we know that s(R) is a well-defined function for R > 0. The implicit-
function theorem guarantees that s(R) is also differentiable. (Why? Which of
our assumptions are we using here?) Substituting s(R) back into the first-order
condition, we have an identity. Hence, we can differentiate both sides of it with
respect to R, and the equality will continue to hold. Differentiate implicitly with
respect to R, and solve for s'(R) in the resulting expression.

What can we say about the sign ofs'(R)7 That is, does s1* increase or decrease
with the interest factor R? Does it matter whether or not the agent is a net
borrower? (It should. In one of the cases you should not be able to sign the
derivative. Why?)

(iv) Show that there exists some value of R (say R°) for which the agent neither
borrows nor lends, but consumes precisely his endowment each period. We say
that R° is the agent's autarkic interest factor.

Hint: Go back to the original formulation of the agent's decision problem
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and think in terms of indifference curves and budget constraints in the (cx, c2)
plane. Plot the indifference curve that goes through the endowment point (yu

y2). What value of R will make the agent "happy" eating precisely his endow-
ment each period?

(v) Show that on one side of R° the agent is always a net saver in youth, and on
the other always a net borrower. (What is the sign of s'(R°)? Note that this does
not imply that s( ) is always monotonic.)

Problem 4.5. Consider now an economy in which there are two different
types of agents who face the decision analyzed in Problem 4.4, but may have
different endowment streams, discount factors, or utility functions. To sim-
plify, assume that there is only one agent of each type, but they both behave
competitively (i.e., taking the value of R as given).

Let Si(R) and s2(R) be the savings functions for the two agents. In equi-
librium, the credit market must clear (i.e., if one is a net borrower, the other
must be a net lender), and aggregate savings must be zero. That is, we must
have

Z(R) = Sl(R)+s2(R) = 0 (1)

Show that under the assumptions of Problem 4.4 there exists at least one
competitive equilibrium, that is, a value of R for which (1) holds.

Hint: Let R" and i?°be the autarkic interest factors for the two agents.
Without loss of generality, we can assume that R? > R®. What happens when
R = /??, R2? Use the intermediate-value theorem.
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Notes

1 If the system had two solutions, say x' and x", then it would have an infinite number of
them, for every linear combination of the form (1 - X)x' + he" would also be a solution
(the reader should verify that this is true). But then we would have an affine subspace of
dimension at least 1.

2 Differentiating implicitly F[x(a), a] = 0, we see that Fx( )x'(a) + Fa( ) = 0, from where
x\a) = -Fa( )/Fx(). Hence, the curve x(a) will have infinite slope whenever Fx() = 0.

3 See Chapter 4 for a definition of the regular value of a function.
4 To simplify, we think of a manifold as embedded in a larger ambient space, Rn, but a

more general definition could be given in which this need not be the case.
5 The third possible case may seem a little strange at first sight. Recall that y is a regular

value of / if rank Df(x) = m for all x in f~x(y). Because Df(x) is an m x n matrix, its
maximum rank is min{ra, n). Hence, if m > n, every point inf~l(y) is a critical point, and
the only regular values are those points that are not in the range of the function. For
each of these po in t s , / ^ ) is the empty set. Because, as we will see later, "most" of the
values of / are regular, the theorem implies that the normal situation in this case is for
the system f(x) = y not to have any solutions. Because we have more equations than
unknowns, this is precisely what we should expect.

6 On the other hand, if we consider "paths" of possible environments, these paths typically
will cross values of a for which 0 is a critical value of fa. If the environment changes
slowly over time, we can imagine the equilibrium of the system x(a) changing along with
it. Most of the time, the change will be smooth, with small changes in the environment
yielding small displacements of the equilibrium. At some points, however, the system
may undergo drastic changes. Such phenomena are known as bifurcations or
catastrophes.

7 See Section 11 of Chapter 2 for the definitions of upper hemicontinuity and lower
hemicontinuity.
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6
Convex Sets and Concave Functions

Convexity conditions play a crucial role in optimization. In the context of
economic theory, moreover, convexity often appears as a sensible restriction
on preferences or technology. Thus the convexity of preferences can be inter-
preted as capturing consumers' preference for variety, and the convexity of
production sets is closely related to the existence of nonincreasing returns
to scale.

This chapter contains an introduction to the theory of convex sets and
concave and quasiconcave functions. Much of this material will be useful in
connection with the theory of optimization developed in Chapters 7 and 12.
In Chapter 8 we will discuss the roles that these concepts play in some basic
economic models.

1. Convex Sets and Separation Theorems in R n

Definition 1.1. Convex set. A set X in Rn (or, more generally, in a vector
space over the real field) is convex if given any two points x' and x" in X,
the point

xx=(l-X)x' + Xx"

is also in X for every X e [0,1].

A vector of the form xx = (1 - X)x' + Xx", with X e [0,1], is called a convex
combination of x' and x". The set of all convex combinations of x' and x" is
the straight line segment connecting these two points. This line segment is
sometimes denoted by L(x\ x") or [x\ *"], or by (x\ x"], for example, if we
want to exclude one of the end points. The points x' and x" are the end points
of the segment, and points x\ with 0 < X< 1, are said to be interior to the
segment. A set X is convex if given any two points x' and x" in it, X contains
the line segment that joins them.

A convex set with a nonempty interior is sometimes called a convex body.

229
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230 Convex Sets and Concave Functions

A strictly convex
B convex but not strictly so C not convex

Figure 6.1. Convex and nonconvex sets.

A convex body X is said to be strictly convex if the line segment connecting
any two points x' and x" in X lies in the interior of X, except possibly for its
end points, that is, if

Vx', x" e Xand V;i e(O, l), xx =(l-X)x' + Ax" e intX

We now list some useful results concerning convex sets.

Theorem 1.2. Any intersection of convex sets is convex.

Problem 1.3. Prove Theorem 1.2.

Theorem 1.4. Let X and Y be convex sets in Rn, and let a be a real number.
Then the sets

and

aX = {z e Ra; z = ax for some xeX}

X+Y = {zeRa; z = x+y for somex eX andy e Y}

are convex.

This result implies that any linear combination aX+ f5Y of convex sets is
convex. It is also easy to show by induction that sums or linear combinations
involving arbitrary numbers of convex sets are also convex.

Proof. We can prove both parts at the same time by showing that given any
convex sets X and Y in Rn (or, more generally, in a vector space over the
real field) and two arbitrary scalars a and /3, the set

Z = aX + pY = {z G Rn; z = ax + py for some xeXandycY}

is also convex.
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Convex Sets and Separation Theorems in Rn 231

Take two arbitrary points z' and z" in Z = aX + pY. By the definition of
Z there exist points x\ x" in X and /, y" in Y such that

z' = a>f + fy' and z"=axT + fif (1)

Using (1), an arbitrary convex combination of z' and z" can be written

zA = Az' + (1 - A)z" = A(cct' + jQy)+(1 - AXccc* + j3y")
(2)

By the convexity of X and Y, Ax' + (1 ~ A)JK" € X, and A/ + (1 - A)/ ' e Y.
Hence, zx e ccX+ /JF, which establishes the convexity of Z. •

(a) Convex Combinations and Convex Hull

The concept of convex combinations can be extended to sets of more than
two vectors.

Definition 1.5. Convex combination. A point y in Rn is said to be a convex
combination of the vectors xu ..., xm e Rn if it can be written in the form

with

A,G[0,1] for all i and £ ^ , = 1 (2)

Hence, a convex combination is an affine combination with the additional
requirement that A, > 0. (Notice that this, in turn, implies A, e [0,1], because
the sum of the A/s cannot exceed 1.)

We can now give an equivalent characterization of convexity in terms of
(generalized) convex combinations.

Theorem 1.6. A set X is convex if and only if every convex combination of
points ofX lies in X.

Problem 1.7. Prove Theorem 1.6. Hint: To establish necessity, use the mod-
ified induction principle discussed in Problem 2.8 of Chapter 1.

We are sometimes interested in extending a set X so that it becomes
convex by adding as few points to it as possible. The resulting set is called
the convex hull of X.

Definition 1.8. Convex hull. Let X be a set in Rn. The smallest convex set
that contains X is called the convex hull of X and is denoted by conv X.
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232 Convex Sets and Concave Functions

Clearly, there is at least one convex set that contains X, namely, Rn itself.
If there are more, convX is the intersection of all such sets. An alternative
characterization is given by the following result.

Theorem 1.9. The convex hull ofIK. is the set of all convex combinations of
elements ofX, that is,

conv X = /y = X™ Xfc; for some m,

with x, e X, Xi e [0, l]for all i, and £™7 h = 2j (*)

Proof. Let

Y = ly = ^ " XiXt\ for some m, with xt e X,

Xi e [0,1] for all i, and £™t A, = l}

Clearly Y contains X, for any x in X can be written as a trivial convex com-
bination with itself.

Next, we show that Y is a convex set. Let yx and y2,

yiXi! i^ X ; a n d J

with

Xh nk e [0,l] for all / and k A : ^ = 1 and =

be arbitrary points of Y, and take some ae [0,1]. Then

/ = (1 - a)yx + ay2 = (1 - oOfX,"

Notice that

(l - a)A< € [0,l] for each /, a\ik e [0,1] for each k

and

Thus, (2) shows that yx is a convex combination of points in X, and it follows
that yx e Y, which is therefore a convex set.

Hence Y is a convex set that contains X. Moreover, any convex set that
contains X must include all convex combinations of points in X (by Theorem
1.6) and must therefore contain Y. It follows that Y is the smallest convex
set containing X (i.e., Y = conv X). •

Theorem 1.9 tells us that any point in the convex hull of X can be written
as a convex combination of a finite number of points of X, but it does not
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Convex Sets and Separation Theorems in Rn 233

tell us how many such points are required. The following result says that if
X is a set in an n-dimensional vector space, this convex combination can be
constructed with, at most, n + 1 points of X.

Theorem 1.10. Caratheodory. Let X be a set in Rn. Ify is a convex combi-
nation of points ofX, then y is a convex combination ofn + 1 or fewer points
ofX.

Proof Let

with xt e X. Ai E [0,1] for all /, and IZiXt = 1. We will show that if m > n + 1,
then y can be written as a convex combination of m -1 points of X. By
applying this result repeatedly, the theorem follows.

If any Xt in (1) is zero, then y is a convex combination of m - 1 or fewer
points of X, and we are done. Otherwise, A* > 0 for all i.

Assume m > n + 1. Then m - 1 > n (the dimension of the vector space in
which we are working), and it follows that any collection of m - 1 vectors
is linearly dependent. In particular, the m - 1 vectors {x2-xl9x3 -xu • •.,
xm - Xi} are linearly dependent (see Chapter 3). Thus, there exist scalars {%,
. . . , Om, not all zero, such that

i > ( * . - - * i ) = Q (2)

Letting

we have

E>=° (3)
and

SZla i X i = -{IZ2 ai)Xl + S I 2
 a'Xi = X"2

 a^Xi - Xl) = Q (4)
By subtracting an appropriate multiple of (4) from (1), we can obtain y as
a convex combination of m - 1 or fewer points of X.

Define / a n d # by1

1 at ar „ ,Cv

— = max, — = — for some r (5)

r A,- xr

and

Pi = Xi-yai (6)
and observe that y= A/a < XJat for all /. It then follows that
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234 Convex Sets and Concave Functions

X
pi=Xi-yai=Xi—-a, £0 and # = 0 (7)

ccr

Using (7) and (6) we have

by (3), and

^ = L w ^ = Z*i# x ' + 7Li=l
aixi = A* r A

x<+0

by (4). Hence, y is a convex combination of m - 1 points of X This estab-
lishes the result. •

(b) Topological Properties of Convex Sets

Convexity implies some interesting topological properties. A convex set, for
example, is clearly arcwise-connected and therefore connected. In this
section we collect some less obvious results.

Theorem 1.11. Let X be a convex set in Rn (or, more generally, in a normed
vector space). Then both its closure and its interior are convex sets.

Proof. We prove only the second part of the theorem, leaving the first as an
exercise. Given two interior points of X, x and y, let z = (1 - X)x + Xy for
some X e (0,1). We will show that z is an interior point of X

Given some S> 0, let z' be an arbitrary point in B^z). Then zf = z + h,
where \\h\\ < 5, and we can write

z' = z + h =(1- X)x + Xy + (1-X)h + Xh=(l- X)(x + h) + X(y + h)

where x + h-e B^(x) and y + he B^y). Hence, for any S we have

Bs{z)c(l-X)Bs(x) + XBs(y) (1)

Now, because x and y are interior points of X, there exists some e > 0 such
that Be(x) and Be{y) are both contained in X. Then, by (1) and the convex-
ity of X, we have

Be(z)cz(l-X)Be(x) + XBe(y)c:X

because any point in B£(z) is a linear combination of two points in X,
one in Be(x) and the other in Be(y). This shows that z is an interior point
ofX •

Problem 1.12. Show that the closure of a convex set is convex.
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Convex Sets and Separation Theorems in 235

Figure 6.2.

Theorem 1.13. Let Xbea convex set with a nonempty interior, with x' an inte-
rior point ofX and x" any closure point ofX. Then every point of the segment
fx', x'7, except possibly for x" is an interior point of X.

Proof. Because x' is an interior point of X, there exists some e > 0 such that
Be(x') c X. Consider an arbitrary point xx = (1 - X)x' + AJC", with X e [0,1).
To show that xx is an interior point of X, we shall verify that the open ball
with center at x' and radius (1 - X)e is contained in X. In particular, let y be
an arbitrary point in B(X^)e(x

x); we will prove that y belongs to X by showing
that it can be written as a convex combination of two points in X, one close
to x\ and the other close to x".

Because y e B(1.X)s(x
x),

\\y-x>\\<(l-X)e (1)

and because x" is a closure point of X (i.e., any open ball around x" contains
at least one point of X), there is a point z eX sufficiently close to x" that
the segment [z, x'] passes close to y. In particular, we can choose z eXsuch
that

x{ (2)

Hence, by the triangle inequality and (2),

\\y - [(1 -X)x' + Xz}\ = \\y - [(1 - X)x' + Xz + Xx" - Xx"J\

= \ly-xx) + X(x"-z)\\<\\y-xx\\ + X\\x"-z\\

<\\y-x^\+((l-X)e-\\y-xx\\) = (l-X)e (3)

Next, consider the line segment through z and y, and let us extend it
toward x'. If we want y to be of the form y = (l - X)a + Az, then a must be
the point
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236 Convex Sets and Concave Functions

Dividing both sides of (3) by (1 - X), we obtain

1

1-A
{y-Xz)-x> = \\a-x"\\<e (4)

This expression shows that the "new" end point of the segment through
z and y lies inside Be(x') and is therefore a point of X, as is z. Hence,
y = (1 - X)a + Xz is a convex combination of points in X, and by the con-
vexity of this set, we conclude that y e Z, which proves the theorem, for y is
an arbitrary point in B^X)e(.xx). •

Problem 1.14. Using Theorem 1.13, show that given a convex set X and an
interior point x of X, any ray emanating from x contains at most one bound-
ary point of X. •

Theorem 1.15. Let X be a convex set with a nonempty interior. Then clX =
cl(intX).

Proof. Because int X c X, it follows immediately that cl(int X) c cl X. Con-
versely, let x be an interior point of X. Then for any closure point c of X,
with c * x,2 the line segment [x, c) is contained in int X, by Theorem 1.13.
Hence, there are points in int X arbitrarily close to c, and it follows that
c eel(intX). Because c was an arbitrary closure point of X, moreover, we
haveclXccl(intX). •

Theorem 1.16. Let X be a convex set with a nonempty interior. Then
bdy(clX) = bdyX.

Proof

(i) bdy X c bdy(cl X). Let a be a boundary point (and therefore a closure point)
of X, and suppose that a is not a boundary point of cl X. Then, because a e
cl X, a must be an interior point of cl X, and it follows that there exists some
e > 0 such that B£(a) c cl X. Because int Xis nonempty by assumption, Theorem
1.15 implies that cl X= cl(int X), and we have

It follows that B£(a) contains at least one interior point of X, say b.
Let c=2a-b. Then c-a=a-b and \\c-a\\ = \\a-b\\ <£, implying that c

B£(a) c cl X. Moreover, notice that
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Convex Sets and Separation Theorems in Rn 237

1 . 1a=-b+-c

so a lies on the line segment [6, c), where b is an interior point of X and c is a
closure point of the same set. Because X is convex, it follows, by Theorem 1.13,
that a must be an interior point of X, which contradicts the assumption that a
is a boundary point of this set.

(ii) bdy(cl X) c bdy X. Let a be a boundary point of cl X. Then for each e > 0, Be(a)
contains a point not in the closure of X and therefore not in X. Similarly, Be(a)
contains at least a closure point of X, say b, and because b must have points of
X arbitrarily close, Be(a) also contains a point of X. Formally, let

Then B^b) c Be(a), and because b is a closure point of X, B^b) must contain
a point of X that also lies in Be(a). Hence, we conclude that a is a boundary
point of X. (Notice that we did not need convexity or a nonempty interior to
establish this part of the theorem.) •

Problem 1.17. Let X be a convex set with a nonempty interior. Show that

(c) Relative Interior and Boundary of a Convex Set

A circle in R3 is an example of a convex set with an empty interior. If we
restrict ourselves to the plane that contains it, however, the same circle now
has a nonempty interior. More generally, we may want to consider the rel-
ative interior of a convex set X in Rn, defined as its interior relative to the
smallest affine subspace of Rn that contains X. We begin by showing that
such a subspace always exists. But first we need to introduce the concept of
"hyperplane."

Definition 1.18. Hyperplane. A hyperplane in Rn is the (n - l)-dimensional
affine subspace3 of Rn formed by all the n-vectors that satisfy a linear equa-
tion in n unknowns. A vector p ± 0 in Rn and a scalar a define the hyper-
plane H(p, a) given by

H(p, a) = {x - (x\..., xn) e Rn; px = ^ Pix' = a)

Given any two vectors x' and x" in H(p, a),px' = a = px". It follows that
for any scalar A (not necessarily between 0 and 1), we have

a (1)
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238 Convex Sets and Concave Functions

H(p,a)

Figure 6.3. A hyperplane and its normal.

If we restrict ourselves to values of X between 0 and 1, this expression shows
that H(p, a) is a convex set. More generally, (1) establishes that H(p, a) is
an affine subspace of Rn, that is, a set of the form H(p, a) = x° + L, where x°
is an arbitrary vector in Rn, and L is a linear subspace of Rn. We define the
dimension of a hyperplane //(/?, a), or, more generally, of an affine subspace
H, to be the dimension of the vector subspace L "parallel" to H.

Notice that any two vectors x' and x" in H(p, a) satisfy p(x' - x") = 0.
Hence,p is orthogonal to any line segment in H(p, a).The vector/? is some-
times called the normal to the hyperplane //(/?, a).

We can now show that a convex set in Rn is contained in a hyperplane if
and only if it has an empty interior.

Theorem 1.19. Let X be a convex set in Rn. Then there exists a hyperplane
H that contains X if and only if int X = 0.

Proof

(i) A convex set with an empty interior is contained in a hyperplane. We will prove
the contrapositive statement: If no such hyperplane exists, then X has a non-
empty interior.

Assume that X does not lie on a hyperplane. Then we can find n +1 points
of X, say x0, xu ..., xm that are contained in no hyperplane. We will now show
that the vectors

}>i = xt — XQ for / = 1 , . . . , n
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Convex Sets and Separation Theorems in Rn 239

are linearly independent. (Again, we prove the contrapositive.) Suppose
yu ... ,yn are linearly dependent. Then there exist scalars pu • • • ,pn, not all
zero, such that

that is, there exists a vector p = (pl9.. .,pn) * 0 such that

Hence, all vectors xo,xu... ,xn solve the equation px - p (with p = px0) and
therefore lie on a hyperplane. Because that is not the case by assumption, it
follows that yu... ,yn are linearly independent and therefore span Rn.

Now, because X is a convex set, every point z of the form

z = X"=oA,x,, withA; e[0,1] for each i = 0,...,n and X"_oA, = 1 (1)

lies in X Notice that we can rewrite (1) as follows:

z = Ao*o + 5 ,̂XjXi = (A0 + ^"=1 A,jx0 + Xa^^ X i -xo) = xo+ XHJhyi

Hence, every point z of the form

z = Xo + X"=1 A/y/, with Xt e [0,1] for each i = 1,...,n and XJ=1 ̂ / - 1 (2)

lies in X Fix one such point,

z = x0 + X"=1 hyi € X, with A, G [0,1] for each / = 1,...,n and X"=1 ̂ / K 1

Next, consider points z near t Because yi, ..., yn is a basis for Rn, every such
point has a representation of the form

with each # close to Xt. Hence, for all such points sufficiently close to z, we have
ft e [0,1) for each i, and 2"=iA < 1, a n d it follows that zeX. This shows that X
contains a ball with center at z and sufficiently small radius. Hence, z is an inte-
rior point of X, and int X * 0, as was to be shown.

(ii) We will show that a set X in Rn with a nonempty interior is not contained in
any hyperplane of Rn. Let x be an interior point of X Then there exists some
number 2e > 0 such that B2e(x) c X In particular, the n points of the form x +
eeh where et = ( 0 , . . . , 1, 0 , . . . , 0) is the ith unit vector, lie in X Now consider
a hyperplane //(/?, a) going through x (i.e., such that px = a). If this hyperplane
contains all the points x + eeh we have

p(x + eei) = px + epet = a + £pt = a

and therefore pt = 0 for all /, and p =0.It follows that there is no hyperplane in
W that contains B2e(x), and hence no hyperplane containing X •

Because Rn is itself an affine space (of dimension ft), the theorem shows
that every convex set X in Rn can be contained in an affine space. If X has
an empty interior, this space is a hyperplane of dimension at most n - 1, but
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240 Convex Sets and Concave Functions

it may be of a smaller dimension. Because the intersection of affine sub-
spaces of Rn is itself an affine subspace, we can define the affine hull of a
set X in Rn as the intersection of all the affine subspaces of Rn that contain
X. The dimension of the set X is then defined as the dimension of its affine
hull.

It is clear that the affine hull of X, aff X, is the smallest affine subspace of
Rn that contains X. It can be shown that aff X is the set of all affine combi-
nations of elements of X For the case where X is a circle in R3, for example,
aff X is formed by taking all lines going through two points in X and extend-
ing them outside the set, so as to recover the plane on which the circle lies.

We can now define the relative interior of a convex set X, rint X, as its
interior relative to its affine hull.

Definition 1.20. Relative interior point and relative interior of a set. Let X
be a set in Rn. A point x is a relative interior point of X if there exists some
e > 0 such that Be(x) n aff X c X. The set of all relative interior points of X
is called the relative interior of X, denoted by rint X.

It can be shown that the relative interior of a nonempty convex set is never
empty.4 Hence, the relative interior of a convex set is generally larger than
its interior. If int X ^ 0 , however, we have aff X = Rn, and it follows that rint
X = int X. Hence, we have rint X = int X if and only if int X * 0 .

It must be noted that the relative interior of a set does not inherit the
usual properties of the interior of a set. For example, AcB implies int A c
int B, but the analogous expression need not hold for their relative interi-
ors. As an illustration, consider a triangle in R3 and one of its sides. Then
the affine hull of the triangle is a plane that contains it, and that of its side
is a straight line. The relative interiors of these two sets (the interior of the
triangle relative to the plane, and an open interval in the line) are disjoint.

Because aff X is a closed set (its complement is open), the closure of X is
contained in aff X, and it follows that the "relative closure" of X is simply
the closure of X The set rbdy X= cl X~ rint X is called the relative bound-
ary of X. Because the closure of X is also its relative closure, rbdy X is actu-
ally the boundary of X relative to aff X.

If we confine ourselves to the affine hull of a convex set, the proofs of
many of the results in the preceding section can be easily adapted to the
case of the relative interior. We have, in particular, the following theorem.
See Bronsted (1983) or Bazaraa and Shetty (1976) for details.

Theorem 1.21. Let X be a convex set in Rn. Then

(i) for any x{ e rint X and any xc € cl X (with x{ ^ xc), the half-open line segment
[xh xc) lies in rint X,
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(ii) rint X is convex,
(Hi) clX = cl(rintX),
(iv) rint X = rint(cl X),
(v) rbdy X = rbdy(cl X) = rbdy(rint X)

Problem 1.22. Show that a point xt in a convex set X is a relative interior
point of X if and only if either of the two following (equivalent) conditions
holds:

(i) For any line L in aff X, with xt e L, there exist points x' and x" in L n aff X such
that xt e (x\ x").

(ii) For any point x' e X, with x' £ xh there is a point x" e X such that xt e (x\ x").
That is, the segment [x\ y] in X can be extended beyond xt without leaving the
set.

Problem 1.23. Let X be a convex set in Rn, with int(cl X) ± 0 . Show that
intX is nonempty. Hint: Consider the affine hull of X, and prove the
contrapositive.

(d) Separation Theorems

A hyperplane H(p, a) divides Rn into two regions, with all points z "on one
side" of H(p, a) satisfying pz > oc, and all those on the other satisfying the
reverse inequality. We say that two sets X and Y are separated by a hyper-
plane H(p, a) if they lie on different sides of H(p, a). More formally, we say
that a hyperplane H{p, a) separates two sets X and Y in Rn if for all x in X
and all y in Y we have px < a < py. If this expression holds with strict inequal-
ities, we say that X and Y are strictly separated by H(p, a).

A hyperplane H(p, a) is a supporting hyperplane for a set X if it contains
a point on the boundary of X and the whole set lies on the same side of H(p,
a). Equivalently, H(p, a) supports X if either

a = inf {px; x e X} or a = swp{px; x e X}

Intuition suggests that a convex set in Rn will have a supporting hyper-
plane through each point on its boundary. It also suggests that given two dis-
joint convex sets in Rn, we should be able to find a hyperplane that separates
them. The following theorems establish that both statements are true.

Theorem 1.24. Let X be a nonempty closed and convex subset of Rn, and
z g X a point outside X.

(i) There exists a point x° in X and a hyperplane Hfp, a) through x° that supports
X and separates it from {z}. That is, Hfp, a) is such that
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H

Figure 6.4. Supporting and separating hyperplanes.

Figure 6.5.

pz< a = px° = infipx; xeX}

(ii) There exists a second hyperplane H(p, |3) that separates X and z strictly. That is,

pz < p < px V x G X

Proof. We begin by showing that there is a point x° in X that minimizes the
distance between z and X. Pick any point x' in X, and define the set

B = {xeX;d(z,x)<d(z,x')}

where d() is the Euclidean metric. Because B = Bd{zX)[z\ nXisa closed and
bounded set in Rn and rf(% z) is a continuous function, the extreme-value
theorem guarantees the existence of a solution for the problem

min{d(x, z); xeB}

Call x° the point in B (and hence in X) that solves this problem.
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Convex Sets and Separation Theorems in Rn 243

(i) To prove the first part of the theorem, let

p = x°-z and a=px°

Then H(p, a) is the hyperplane through x° that is orthogonal to the line segment
connecting x° and z. We claim that this is the desired hyperplane, that is, that

pz<oc = px° = inf{px; x eX}

First, we have

pz = px° + pz- px° = px° + p(z-x°) = px° ~ pp = a-\\pf < a

so z lies below H(p, a).
To show that X lies above the hyperplane, we proceed by contradiction.

Suppose there is a point y in X such that py < a, and let

xx = (1 - X)x° + Xy for A e (0,1)

Then xx e X, by the convexity of X, and a straightforward computation yields6

(1)

Now, by construction a=px°, and by assumption py<a, implying that
p(y - X°) < 0. This last inequality and (1) imply that

for small A > 0. Hence, some xx e X is strictly closer to z than x° - which is im-
possible, because x° is defined as the element of X that minimizes the distance
d{x, z) = ||z - x||. Hence, we have a contradiction.

(ii) The proof of the second part is almost identical (with the same p), except that
we now choose f5 so that H(p, ft) goes through the midpoint of the segment con-
necting z and JC°. •

The next theorem dispenses with the condition that X be closed.

Theorem 1.25. Let Xbe a nonempty and convex (but not necessarily closed)
set in Rn. v

(i) If z e X is a point outside of this set, then there exists a hyperplane H(p, a)
through z that separates fz} and X, that is, pz = a < px for all x e X.

(ii) If x° is a boundary point of X, then there exists at least one supporting hyper-
plane for X that goes through x° (supporting-hyperplane theorem).

Proof

(i) We consider two cases: If z £ cl X, then we can apply the preceding theorem,
because the closure of X is a closed convex set that contains X. The other pos-
sibility is that z belongs to the closure of X, but not to X itself. Then z is a bound-
ary point of X and either an interior point or a boundary point of cl X.
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244 Convex Sets and Concave Functions

We will show that the first possibility leads to a contradiction. Suppose z is
an interior point of c lX Then int(clX) is not empty, and by Problem 1.23,
neither is int X. But then we have, by Theorem 1.16, that bdy(cl X) = bdy X.
Hence, because z is a boundary point of X, it is also a boundary point of cl X,
contradicting our assumption that z e int(cl X).

Hence z is a boundary point of cl X, and it follows that because any open
ball around z contains at least one point in (cl X)c, we can find a sequence {zn)
with zn e cl X and {zn} -» z.

Now, because zn £ cl X, and cl X is a closed convex set (by Theorem 1.11), we
can find (by Theorem 1.24), a sequence of vectors {qn} such that for each n,

qnzn<qnxVxe clX (1)

Next, define

1
Pn ~ ,. i, In

kn\\

and observe that this normalization does not affect the inequality in (1). Thus,
we have, for each n,

pnzn<PnXVxe d X (2)

Because \\pn\\ < 1, the sequence \pn) is bounded and therefore has a convergent
subsequence {/?n J, by the Bolzano-Weierstrass theorem. Call p the limit of this
subsequence. Taking limits as k -> <*>, (2) yields

pz<pxV x e cl X

and therefore for all x in X. Hence, H(p,pz) is the desired hyperplane.
(ii) Let x° be a boundary point of X. If JC° g X, then (i) applies. But even if x° e X,

the proof is identical, once we observe that, by the same argument as in (i), a
boundary point of X is also a boundary point of cl X. Hence, any open ball
around x° contains points of (cl X)c, and we can construct a sequence {zn} as
before. •

Theorem 1.26. Separating-hyperplane theorem (Minkowski). Let X and Y
be disjoint and nonempty convex sets in W. Then there exists a hyperplane
H(p, a) that separates X and Y.

Proof. By Theorem 1.4, the set

is convex. Moreover, because X nY=0,we have 0 g Z. (Because X and Y
have no common elements, for any x e X and any y e Y we have x#y, and
therefore z = x - y * 0 for any z in Z.)

By the preceding theorem, there is a vector p in Re that separates Z and
{0}, that is, such that
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Concave Functions 245

pO = 0 < pz for every z in Z

Equivalently, for any x e X and any y e Y, we have

0</?z = /?(*- y)

The set of real numbers of the form {py; y e Y} is bounded above (by any
px) and therefore has a supremum, which we call a. By the properties of the
supremum,

py < a<px

for x € X and y E Y. Thus, #(/?, a) separates X and Y. •

2. Concave Functions

Concavity and quasiconcavity are important concepts in mathematical pro-
gramming. As a preview, the reader should recall the conditions for a local
maximum of a univariate real function. The first-order condition f'(x) = 0 is
necessary but not sufficient for a local maximum. It tells us that the tangent
to/must be horizontal at x, which is certainly true at a local maximum, but
also at a local minimum. To separate maxima from minima we use a second
set of (sufficient) conditions that are often stated in terms of second deriv-
atives. For a univariate function, f'(x) < 0 tells us that/is concave in a neigh-
borhood of x. Intuitively, the curvature of the function is such that a
horizontal tangent must signal a "peak" rather than a "valley." Moreover, if
/ is globally concave, then there can be only one "peak" and no "valleys."
Hence, once we find an x* such that f ix*) = 0, we have found the global
maximum of the function.

In short, the second-order conditions for unconstrained maximization
amount to checking the concavity of / in the neighborhood of a critical
point. And if the function is globally concave, a local maximum is a global
maximum. A similar situation arises in connection with more complicated
programming problems, except that then we also have to worry about the
curvature of the constraint functions.

In what follows, we consider functions of the form / : R n I D X — > R,
where X is a convex set in Rn. Given any two points *' and x" in X, any
convex combination xx of x' and *" will also lie in the domain of the func-
tion. We can therefore compare fix1) with the corresponding convex com-
bination of fix') and /(*"), (1 - A)/(x') + XftxT), which traces out the chord
through the points (*', /(*')) and (x", fixT)) on the graph of /. If the chord
lies always below the function, we say that/is concave. If it lies always above
the function, / is convex.
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f(x")

f concave f convex

Figure 6.6. Concave and convex functions.

Definition 2.1. Concave function. The function / : RB D I —> R, where X
is a convex set, is concave if given any two points x' and x" in X we have

(1 - A)/(x') + Xf(x") < /[(I - A)x' + Ax"] s f(x
 x) V A e [0,1]

and it is strictly concave if the inequality holds strictly for AG (0,1), that is,
if

Vx \ x" e X and X e (0,1), (1 - X)f(x') + Xf(x") < /[(I - X)x' + Ac"] = f(xx)

Reversing the direction of the inequalities, we obtain the definitions of
convexity and strict convexity.

(a) Some Characterizations

Given a function / : RQ D I —> R, its hypograph is the set of points (y, x)
lying on or below the graph of the function:

hyp / = {(y,x) E Rn+1; x e Xandy < /(*)}

Similarly, the epigraph of/is defined as

epi / = {(y, x) € Rn+1; x e X and y > /(*)}

The following result gives a characterization of concave functions in terms
of the convexity of their hypographs. A similar characterization of convex
functions can be given in terms of the epigraph.
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hypf
hypf

epif

f concave

Figure 6.7.

f convex

Theorem 2.2. The function f: Rn D X —> R is concave if and only if its
hypograph is a convex set. The function f is convex if and only if its epigraph
is convex.

Proof

• /concave => hyp/convex
Let / be a concave function, and take two arbitrary points (*', y') and {x", y")

in hyp/. Then /<f(x ' ) and y" <f(x'), and for any A e [0,1],

/ = (1 - A) / + A/' < (1 - A)/(x') + A/(x") < /[(I - X)x' + Ax"] = f(x") (1)

where the second inequality holds by the concavity of/. From (1),yx < f(xx), imply-
ing that the point

(*\ / ) = [(1 - X)x' + hc
\ (1 - X)y' + A/'] = (1 - AX*', / ) + A(x", y")

lies in hyp/ Because (x\y') and (x/
r ,/') are arbitrary points of hyp / this set is

convex. Figure 6.8 illustrates the argument.
• hyp / convex => / concave

Given any two points x' and x" in the domain of/ the points {x',f{x')) and (x",
/(JC")) lie in hyp / By the convexity of this set, so does the point

(1 - AX*', fix')) + X(x", f{x")) = ((1 - X)x' + Xx", (1 - A)/(*0 + Xf(x"))

Hence,

(1 - A)/(x') + A/(x") < /[(I - A)x' + AJC"]

and because x' and x" are arbitrary, we conclude that /is concave. •

Definition 2.3. Superdifferential. Let / : Rn D I — > R be a function, and
x° a point in its domain. If there exists a vector q° in Rn such that
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248 Convex Sets and Concave Functions

Figure 6.8.

f(x)<f(x°)+q«(x-x°) (1)

for all x in X, we say that / i s superdifferentiable at x° and call the vector q°
a supergradient of / The set of all supergradients of / at x° is called the
superdifferential of/at x°, denoted by df(x°).

If / is a concave function defined on a convex set in Rn, then hyp / is a
convex set in Rn+1, and (x,f(x)) is a point on its boundary. By Theorem 1.25,
hyp /has a supporting hyperplane through each point on the graph of/ and
the function itself lies below the supporting hyperplane. Hence, concave
functions are superdifferentiable.

The following theorem shows that the result we have just anticipated and
its converse are both true, giving us another characterization of concavity.
Notice that the supergradient of a concave function need not be unique: If
the function has a kink, it will have several supporting hyperplanes, as shown
in Figure 6.9.

Theorem 2.4. Let ibe a real-valued function defined on an open and convex
set X in Rn. Then f is concave if and only if it is superdifferentiable every-
where in its domain, that is, if given any x° in X, there exists a vector q° in R
such that

f(x)<f(x°)+q°(x-x0) (1)

for all x in X.

Proof

(i) / concave on an open set => / superdifferentiable
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Figure 6.9. Supergradients of a concave function.

Let/be a concave function defined on an open and convex set Xin Re.Then
hyp/is a convex set in Re+1, and for any given x° in X, (f(x°), x°) is a point on
the boundary of this set. By Theorem 1.25, hyp/has a supporting hyperplane
H[(po,p), a] through (/(%°), jt°). That is, there exists a nonzero vector (po,p) e
Rn+1 (with po e R znd p e Rn) such that

(1)pof(x°) + px°=a

and hyp / lies entirely on one side of H. For concreteness, suppose that

pQy + px<aV(y,x)ehyp/ (2)

(If the reverse inequality holds, the proof goes through with the obvious
changes.) Combining (1) and (2),

po[y- p{x)] + - x° )< 0 V (y, x) z hyV f (3)

We begin by determining the sign of p0. The point (f(x°) - % x°) lies in hyp/
for any y > 0. By (3),

so po is a nonnegative number. Next, we show that in fact p0 must be strictly
positive. We proceed by contradiction: Suppose p0 = 0, then (3) implies that

p(x-x°)<0\fxeX (4)

If /?o = 0, at least one of the components of/?, saypk, must be different from zero.
Consider a point x\ with
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250 Convex Sets and Concave Functions

x'k = x°k + epk and x- = xf for i * k

Because X is an open set, we can choose e > 0 small enough that x' lies in X.
By (4), it follows that

p(x'-xo) = pk(xl+epk -x°k) + 2JlkPi(xi-Xi) = £Pl * 0

which is impossible, because e > 0. Hence, we conclude that p0 > 0.
Finally, given an arbitrary point xsX, the point (f(x),x) lies in hyp/.

By (3),

Po[f(x)-f(x°)] + p(x-x°)<O

Dividing through by p0 > 0 and rearranging,

/(*)</(x°) + — p(x-xQ)
Po

Putting q° = (-l/po)p, we obtain the desired result,
(ii) / superdifferentiable on X=>f concave

Fix two arbitrary points x and x° in X, and let xx - (1 - A)JC° + he for some
A e (0,1). Because X is a convex set, xA G X, and, by assumption, there exists
a vector #A e Rn such that

f{x)<f{xl) + ql{x-xx) (5)

/(*°)<./V) + <7V-^) (6)
Multiplying these two inequalities by A and (1 — X) > 0, respectively, and adding
them,

(7)
A(x - xx) + (1 - A)(JC° - xx)]

Now consider the expression inside brackets; we have

X(x-xx) + (l-X)(x° -x = hc + x ) = 0

Hence, (7) reduces to

which shows that / is concave. •

Given a function / : R n 2 X —> R and two points in its domain, x' and
x", we define the univariate function 0:R —> R by

= /[(I - A)x' + Ax"] = /[x' + Afr" - * 0 ]

for fixed xr and x". Our next theorem says that / is concave if and only if 0
is always concave. Because working with a univariate function is often easier,
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Concave Functions 251

this result often provides a convenient way to establish the concavity of a
multivariate function.

Theorem 2.5. The function f:Rn D X —> R, where X is a convex set, is
concave if and only if the function ty(k) = t[(l - A)x' + Xx"] is concave for any
two points x' and x" in the domain oft

Problem 2.6. Prove Theorem 2.5.

(b) Properties of Concave Functions

We now establish some useful properties of concave functions.

Theorem 2.7. Let f:RB D X —> R be a concave function. For any a e R,
the upper contour set off,

Ua={xeX;f(x)>a}

is either empty or convex. Similarly, if f is convex, then the lower contour
set,

La = {xeX;f(x)<a}

is convex whenever it is not empty.

The converse statement is not true. As we will see, the weaker property
of quasiconcavity is sufficient to guarantee the convexity of the upper
contour sets.

Proof Let x' and x" be any two points in Um that is, with f(x') > a and f(x")
> a. By the concavity off

f(x")>{l-X)f{x')+Xf{x")>a

for any X e [0,1]. Hence,

xx=(l-X)x' + Ax"eUa for any Ae [0,l]

and Ua is therefore a convex set, as illustrated in Figure 6.10. •

The results that follow show that certain transformations of concave func-
tions are also concave.

Theorem 2.8. Let f:Rn 3 X —> R be a concave function and g:R —> R
an increasing and concave function defined on an interval I containing
Then the function g[f(x)] is concave.
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252 Convex Sets and Concave Functions

Figure 6.10. Concavity implies convexity of the upper contour sets.

Problem 2.9. Prove Theorem 2.8.

Theorem 2.10. Let f and g be concave functions Rn FD X —> R. Given arbi-
trary scalars a and P>0, the function h = ocf + pg is concave.

Problem 2.11. Prove Theorem 2.10.

Theorem 2.12. Let {f; s e SJ be a (possibly infinite) family of concave func-
tions Rn 3 X —> R, all of which are bounded below. Then the function f
defined on X by

f(x)=inf{V(x);seS}

is concave.

Problem 2.13. Prove Theorem 2.12. Hint: Use Theorem 2.2.

Figure 6.11 illustrates the intuition behind Theorem 2.12.
An interesting property of a concave function is that it is continuous

everywhere in the interior of its domain.

Theorem 2.14. Let ibe a concave function defined on an open set X in Rn.
Then f is continuous on X.

Figure 6.12 illustrates why this is true. Concavity requires that the chord
through any two points on the graph of the function lie below the function
itself. If the domain of the function is open, this will be impossible if the
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Inf s f

Figure 6.11.

Figure 6.12.

function is discontinuous. If X is not open, discontinuities are possible, but
only at points on the boundary of X

Proof. Pick some x° in X. Because X is open, there is some <5>0 small
enough that the cube with side 25,

C = {xeRn; xf-5<xt<xf+ 5}

is still contained in X. Let V be the set of the 2n vertices of C, and put

a = min{/(%); xeV}
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254 Convex Sets and Concave Functions

The set Ua= {x eX;f(x) > a} is convex, by Theorem 2.7. Moreover, V c l / a

by construction, and because C is the convex hull of V (i.e., the smallest
convex set containing V), we also have C c Ua, that is,

f ( x )>aVxeC (1)

Let x be an arbitrary point in the ball B^x0) (which is contained in C),
and let x° + u and x° - u be the points where the line through x and x° inter-
sects the boundary of B^x°), as shown in Figure 6.13. We can write x as a
convex combination of x° and x° + w, and x° as a convex combination of x
and x° - w. Because x lies on the straight line through x° and x° + w, we have
x = x° + Xu for some /L, and in particular,

x-x° =Xu x-xu x-x"

Now,

and

from where

(2)

(3)

1 A
-x + -i+x l+r

(4)

f(x) = a

28

Figure 6.13.
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Concave Functions 255

Using (3) and (4), the concavity of/on X, and the fact that (1) holds for
all points in these expressions, we have

(3)=> f(x)>Af(x° + u)+(l-X)f(x°)>Xa+(l-A)f(x°)
implying

f(x)-f(x°)>-X[f(x°)-a} (5)
and

from where

Combining (5) and (6) and using (2), we have

\f(x) - f(x°)\ < X[f(x°) - a] = t y % * ° ) - a]

Given any e > 0, we have I/(JC) -f(x°)\ < e for all x close enough to x°. In par-
ticular, it is enough to choose x so that

" " f(x°)-a
In other words, / is continuous at x°, and because this is just an arbitrary
point of X, f is continuous on X. •

Let / : R N D L —> R be a concave function. Fix a point x in its domain
and a direction vector h in Rn, and consider moving away from x in the direc-
tion of h, as illustrated in Figure 6.14 (i.e., we consider points of the form
x + ah). The following result says that the slope of the chord through the
points (jt,/(x)) and (x + ah, f(x + ah)) decreases as we move to the right.

Theorem 2.15. Let f:Rn D X —> R be a concave function defined on an
open and convex set X. Then the ratio (f(x + ah) - f (x))/a, where h e Rn is
a (weakly) decreasing function of a.

Proof. Fix x e X, and let h be an arbitrary vector in Rn. Consider first the
case where a > 0. Because X is open, x + ah e X for sufficiently small but
strictly positive a. We will establish the desired result by showing that

a n
for any positive number \x smaller than or equal to a.
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x + taxh

Figure 6.14.

Put ii = Xa for X e (0,1), and observe that we can write

x+fjh = x + Xah = x + Xx-Xx + Xah = (l - X)x + X(x + ah)

Now, the concavity of/implies that

f{x+/uh) = /[(I - X)x + X(x + ah)] > (1 - X)f(x)+Xf(x + ah)

and, upon rearranging,

f(x+vh)- f(x)>X[f(x + ah)- f(x)]

Finally, because X = ju/a > 0, we obtain the desired result:

If a < 0, then the last inequality is reversed, but then JA > a, so the function
is still increasing. •

This result has some interesting implications. Notice that the limit of the
difference quotient (f(x + ah) -f(x))/a as a approaches zero from above is
the one-sided directional derivative of / a t x in the direction of h: Df(x\ h+)
(or Df(x; h~) if a —» 0 from below.) As we know from Chapter 2 (Section 6),
monotonic functions defined on an open interval always have one-sided
limits. Hence, concave functions have one-sided directional derivatives (and,
in particular, one-sided partial derivatives) at all interior points of their
domains.
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Concave Functions 257

The supergradients of a concave function can be related to its one-sided
partial derivatives. Let / be a concave function defined on an open set X,
and consider moving away from a point x e J in the direction h. If q is a
supergradient o f / a t x, then

for any a such that x + ah e X. Rearranging this expression,

- < qh for a > 0

> qh for a < 0

a
f(x + ah)-f(x)

a

Taking the limits of these expressions as a goes to zero from above and from
below, we obtain

Df(x;h+)<qh<Df(x;h-)

Finally, taking h to be the fth coordinate vector in Rn, e\ we arrive at

f(x+) < qt < fi(x~) for each i = 1,...,n

Hence, the components of the supergradient of / at x are bounded by the
function's left- and right-hand partial derivatives. If / is differentiable, the
two one-sided partials coincide, and the unique supergradient is the deriva-
tive o f / a t x. Conversely, it can be shown that i f /has a unique supergradi-
ent at a point x, then it is differentiable at x.

Furthermore, it can be shown that a concave function is differentiable
(and in fact continuously differentiable) almost everywhere in the interior
of its domain (i.e., at all points except possibly for a set of measure zero)
(Rockafellar, 1970, p. 246).

We are sometimes interested in determining whether or not a given
concave function is differentiable at a specific point. The following result,
due to Benveniste and Scheinkman (1982), is sometimes useful in this
situation.

Theorem 2.16. Let Xbe a convex subset ofRn, and V: X —> R a concave
function. Let x° e intX, and suppose there exists some E>0 and a concave
and differentiable function W: X —> R such that

W(x) < V (x) V x e Be (x°) and W(x°) = V (x°) (1)

Then V is differentiable at x°, and
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258 Convex Sets and Concave Functions

Proof. Because V is concave, it is superdifferentiable, and any supergradi-
ent q of V at x° satisfies

V(x)<V{x°)+q(x-x°)

for any x in Be(x°). Rearranging this expression and using (1),

W(x) - W(x°) < V(x) - V(x°) < q(x - x°)

so q is also a super gradient of W at x°. Because W is differentiable, more-
over, q is unique, and because any concave function with a unique super-
gradient at an interior point of its domain is differentiable, Vis differentiable
at x°, with DV(x°) = q = DW(x°). •

(c) Concavity for Smooth Functions

We will now establish some characterizations of concavity for C1 and C2

functions that will be useful in our development of nonlinear programming
in the following chapter. In this section we will assume that / is a smooth,
real-valued function defined on an open and convex set X in Rn. Openness
is required so that we can assume that/is differentiable at all points in X.

If / is a smooth concave function, its graph lies everywhere below the
tangent hyperplane defined by its derivative, and vice versa, a C1 function
that lies everywhere below its tangent hyperplane is concave. The following
theorem shows that a slight strengthening of this statement yields a charac-
terization of strictly concave C1 functions.

Theorem 2.17. Let f:Rn D X —> R be a C1 function defined on an open
and convex set X. Then f is concave if and only if given any two points x° and
x in X, we have

f(x)<f(x°)+Df(x°)(x-x0)

Moreover, f is strictly concave if and only if the inequality holds strictly, that
is, if and only if

f(x)<f(x°)+Df(x°)(x-x°)

for all pairs of distinct points x° and x in X.

Proof

• / concave => f(x) < f(x°) + Df(x°)(x - x°) V x, x° e X
Fix x and x° in X and write

xx = (1 - X)x° + Xx - x° + X{x - x°)

with A G (0,1). By the concavity off we have:
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Concave Functions 259

Figure 6.15. A C1 concave function.

X)f(x°) + Xf(x) < f[x° + Mx - x°)]

from where, rearranging,

f{x)-f(x°)<

(i)

(2)

When we take the limit of this expression as X —> 0, the inequality is preserved.
Moreover, the limit of the right-hand side is precisely the directional derivative
of / in the direction x - x°. Because / is C1, the limit exists and is equal to Df(x°)
(x - x°) (see Chapter 4). Hence, (2) implies

f(x)-f(x°)<Df(x°)(x-x0)

Next, suppose / is strictly concave. Then (2) holds with strict inequality, that is,

f(x)-f(x°)<
X X

for A e (0,1). Moreover, the concavity of/implies, as we have just shown, that

f(x")-f(xa)<Df(x°)(x"-x0)

Substituting this expression into (3) and observing that

(3)

we obtain the desired result:

X X

For the sufficiency part of the theorem, a straightforward adaptation of the proof
of Theorem 2.3 will work. •
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260 Convex Sets and Concave Functions

Theorem 2.18. Let i: Rn D X —> R be a C2 function defined on an open
and convex set X. Then f is concave if and only if the Hessian matrix of second
partial derivatives D2f (x) is negative semidefinite for any x in X; that is,

\/xeXand\/heRn, hTD2f(x)h<0

Moreover, if the Hessian is negative definite (i.e., if hTD2ffx)h< 0 for all
x E X and allh^O in Rn), then f is strictly concave.

Note that the negative definiteness of the Hessian is sufficient but not nec-
essary for the strict concavity of /

Proof

• f concave => D2f(x) negative semidefinite for all x e X
Fix some point x in X and an arbitrary direction vector h e Rn. Because X is

open, there exists some 8> 0 such that x + ahe X for all a e I = (- <5, 8). Define
a function g from / to R by

g(a) = f{x + ah)-f(x)-aDf(x)h (1)

Observe that g is C2, with g(0) = 0, and that, by the preceding theorem and the
concavity of /,

f(x + ah)<f(x) + Df(x)(ah) for any a e l

which implies that g(a) < 0 for all a in /. Hence, g is a C2 univariate function with
an interior maximum at 0 and must therefore satisfy the necessary conditions
g'(0) = 0 and g"(0) < 0. Differentiating (1) with respect to a,

g\a) = Df(x + ah)h - Df(x)h
g"{a) = hTD2f{ + ah)h

Thus, g"(0) < 0 becomes

Because h is an arbitrary vector in Rn, we conclude that D2f(x) is negative semi-
definite for any x in X.

• D2f(x) negative semidefinite for all x e X => f concave
Because / i s C2, it is C\ and, by Theorem 2.17, it is enough to show that

hTD2f(x)h<0 foranyxinXandal lhsR e (1)

h (2)

Assume that (1) holds, and pick two points x and x + h in X. By Taylor's theorem,
we have, for some a e (0,1),

f(x + h)- fix) - Dfix)h = | hTD2fix + ah)h (3)
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Quasiconcave Functions 261

where x + ahe (x, x + h) c X. Now, D2f(x + ah) is negative semidefinite by
assumption, implying that the right-hand side of the preceding expression is non-
positive and therefore that

h)<f(x) + Df{x)h (4)
which is the desired result.

• If D2f(x) is negative definite for all x, then (4) holds with strict inequality, and /
is strictly concave, by Theorem 2.17. •

The negative definiteness or semidefiniteness of the Hessian can be
checked using the appropriate principal-minors test (see the appendix to this
chapter). Hence, D2f(x) is negative definite, and / i s strictly concave if the
leading principal minors alternate in sign, with fn < 0, that is, if

(-1)'
fn /,,

fn fn

>0

and strictly convex if D2f(x) is positive definite, which requires that all
leading principal minors be positive, that is,

fn fu

U fn

> 0 for r =1, 2,..., n

3. Quasiconcave Functions

Definition 3.1. Quasiconcavity. Let / :R n 3 X —> R be a real-valued func-
tion defined on a convex set X. We say that / is quasiconcave if for all x' and
x" in X and all X e [0,1] we have

/[(I -X)x' + Ax"] > min{/(x'), f(x")}

We say that / is strictly quasiconcave if for all xf and x" in X and all A e
(0,1) we have

/[(I -X)x' + Xx"] > m in{ / (n /(*")}

Given two points x' and x" in X, suppose that f(x') >f(x"). Then quasi-
concavity requires that as we move along the line segment from the "low
point," x", to the "high point," x\ the value of/never falls below f(x"). Figure
6.16 shows an example of a quasiconcave function.

The following result shows that quasiconcavity is equivalent to the con-
vexity of the upper contour sets. The proof is left as an exercise.
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262 Convex Sets and Concave Functions

f(x")

Figure 6.16. A quasiconcave function.

Theorem 3.2. Let f be a real-valued function defined on a convex set X c
Rn. Then f is quasiconcave if and only if the upper contour sets off are all
convex, that is, if for any a e K the set

Ua={xeX;f(x)>a}

is convex.

Problem 3.3. Prove Theorem 3.2.

A direct implication of this result is that concavity implies quasiconcav-
ity. It is also easy to show that strict concavity implies strict quasiconcavity,
but the converse statements are not true. Hence, quasiconcavity is a weaker
property than concavity, and quasiconcave functions need not inherit some
of the useful properties of concave functions. For example, a quasiconcave
function, unlike a concave one, may have discontinuities at interior points
of its domain, and a nonnegative linear combination of quasiconcave func-
tions may not be quasiconcave. The following theorem shows, however, that
quasiconcavity is preserved under increasing (and not necessarily concave)
transformations.

Theorem 3.4. Let f be a quasiconcave function defined on a convex set X c
Rn, and let g:R —> R be a weakly increasing function defined on an inter-
val I that contains f (X). Then the composite function g[f(x)J is quasiconcave
inX.

Problem 3.5. Prove Theorem 3.4.
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Quasiconcave Functions 263

Problem 3.6. Show that the Cobb-Douglas function

n

f(x) = A\\ x?, where a, : > 0 V i
1=1

is quasiconcave for x » 0. Hint: Consider ln/(x), and use Theorems 2.18 and
3.4.

We will now obtain a characterization of quasiconcavity for C1 functions
that resembles its analogue for smooth concave functions.

Theorem 3.7. Let f be a real-valued C1 function defined on an open and
convex set X c Rn. Then f is quasiconcave in X if and only if for every x' and
x" in X we have

i(x")< f(x) => Df(x")(x - x") > 0

If moreover,

x '*x" and f(x")<f(x)=>Df(x")(x-x")>0

then f is strictly quasiconcave, but the converse statement is not necessarily
true.

Proof Given x' and x" in X and X e [0,1], define

g{X) = f[x"+X{x'-x")}

Because / i s C1, g is differentiable, and

g\X) = Df[x" + X{x'-x")\x'-x")

(i) Assume that / i s quasiconcave and f{x') >f(x"). Then

g(X) = /[*" + X(x'-x")] > f{x") = g(0) V A e [0,1] (1)

Hence, g is weakly increasing at zero, with

g'(0) = £>/(*")(*'-*")>0

If / is strictly quasiconcave, (1) holds with strict inequality, and g is strictly
increasing at zero - but note that this does not imply g'(0) > 0 (e.g.,/(x) =x3 is
strictly increasing at 0, even though f'(0) = 0).

(ii) Assume that f(xf)>f(x") implies Df(x")(x' - JC") > 0 for any x' and x" in X.
We want to show that this implies the quasiconcavity of /, that is,

g(X) = f[x" + A(*'- *")] > /(*") = g(0) V A G [0,1]

Assume that this is not true. That is, suppose that there exists some X° e (0,1)
such that g(X°) < g(0). Because g(l) =f(x') >f(x") = g(0), we can choose X° such
that g'(A°) > 0 (if g\X) < 0 for all X such that g(X) < g(0), then we cannot have
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264 Convex Sets and Concave Functions

Figure 6.17.

g(l) > g(0) as suggested in Figure 6.17). We will show that the existence of such
a A0 leads to a contradiction.

Put x° = x" + A°(x' - x"). Because

and x° is in X, we have, by assumption,

Df(x°)(x" -x°) = D/(*°X-A°X*' - x") > 0

and hence

Df(x°Xx'-x")<0

On the other hand,

by assumption, which contradicts the foregoing expression. Hence, there can be
no A° e (0,1) such that g(A°) < g(0), and we conclude that/is quasiconcave. The
same logic will work for the case of strict quasiconcavity. •

Let/be a C1 quasiconcave function, and x' and x" two points in its domain,
with/(xr/) </(*').The preceding theorem says that the directional derivative
of/at the "lower" point, x", in the direction of the "higher" point, x\ is non-
negative. Roughly speaking, the derivative gives us the correct signal about
the direction of change of the function, which is quite helpful when looking
for a maximum. Notice, however, that plain quasiconcavity is compatible
with a zero directional derivative at x" even if /(x") </(*'). Hence, a zero
gradient could send the wrong signal that x" is a candidate for a maximum.
Strict quasiconcavity rules out this possibility, as does pseudoconcavity•, a
concept we now define.
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Quasiconcave Functions 265

X X X

f strictly quasiconcave, Df(x")(x'-x") > 0
X X X

f quasiconcave but not strictly so, Df(x")(x'-x") = 0

Figure 6.18.

Definition 3.8. Pseudoconcavity. A C1 function / is pseudoconcave in a set
X if given any two points x' and x" in X we have that

f{x')>f{x")=>Df{x"\x'-x")>0

Note that strict quasiconcavity implies pseudoconcavity, but quasiconcav-
ity does not, as illustrated in Figure 6.18. The following problem shows that
nonstationarity is also sufficient to guarantee the pseudoconcavity of a qua-
siconcave function.

Problem 3.9. A C1 function that has no critical points (i.e., such that Df(x)
* 0 for all x) is said to be nonstationary. Show that a nonstationary C1 qua-
siconcave function is pseudoconcave.

Hint: Let x' and x" be any two points in the domain of / such that f(x') >
f(x"). Define the point x by xx = x[ - £, and xt = x\ for i = 2 , . . . , n, and show
that for s > 0 and sufficiently small, Df(x"){x- x") < 0, which contradicts the
quasiconcavity of /.

Problem 3.10. Suppose /:R++ —> R is C1, homogeneous of degree 1, and
positive-valued. Show that / is concave if and only if it is quasiconcave.

Hint: Concavity always implies quasiconcavity. To prove the other part
of the theorem, let x' and x" be two points in R++. Because / > 0, we can
define X by X=/(x/)//(x//) and X > 0. Because / i s homogeneous of degree 1,
we have

— AJ\X ) = JyX ) yl)

and quasiconcavity therefore implies that
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266 Convex Sets and Concave Functions

Df(Ax")(x'-Ax")>0 (2)

Exploiting the properties of homogeneous functions, show that (1) implies
Df(x")(x' - x") > f(x') - fix") and therefore the concavity of /. •

The following theorem gives some useful second-derivative characteriza-
tions of quasiconcavity. For a proof and further results, see Arrow and
Enthoven (1961) and Crouzeix and Ferland (1982).

Theorem 3.11. Let f:Rn D X —> R be a C2 function defined on an open
and convex set X c Rn, and let Hr be the leading principal minor of the bor-
dered Hessian ofi, given by

Hr =

0 f, ••• fr

i, in-iir

(i) A necessary condition for the quasiconcavity of f is that

(ii) A sufficient condition for f to be quasiconcave is that

(Hi) / / X c R++, iff is monotonically increasing, and if

(-ifHr>0Vr = I ...,nand\fxeX

then f is strictly quasiconcave.

The following problem asks the reader to give a direct proof for a special
case of Theorem 3.11.

Problem 3.12. Let / :R2 D ! — > R be a C2 function defined on an open
and convex set X c Rn, with fx(x, y) > 0 and fy(x, y) > 0 for all (JC, y) in X.
Show that /(x, y) is quasiconcave in X if and only if

0 / , / ,
Jx Jxx Jxy

Ty Jxy Jyy

> 0 V x e I

Hint: Use the characterization of quasiconcavity in terms of the convex-
ity of upper contour sets (Theorem 3.2). Apply the implicit-function theorem
to an arbitrary level set of /(x, y) to define a function y = g(x), compute the
second derivative of this function, and use Theorem 2.2.
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Quasiconcave Functions 267

Concavifiable functions

As we will see in Chapter 7, the solutions of maximization problems involv-
ing concave (objective and constraint) functions are particularly easy to
characterize. These nice results can be easily extended to a larger class of
functions by observing that a monotonically increasing tranformation pre-
serves the set of maximizers and, more generally, the family of upper contour
sets of a given function. It follows that whenever the function of interest can
be transformed into a concave function by a monotonically increasing trans-
formation, we are back, effectively, to the relatively simple problem of max-
imizing a concave function. Functions that have this convenient property are
said to be concavifiable.

Definition 3.13. Concavifiable function. L e t / : R N 3 X —> R be a function
defined on a convex set X c Rn. We say that / is concavifiable in X if there
exists a C1 and strictly increasing function h:~R^A —> R defined on a set
A that contains f(X) such that g(x) = h[f(x)] is a concave function.

Because concave functions have convex upper contour sets, and increas-
ing transformations preserve the family of such sets, a necessary condition
for concavifiability is that the given function be quasiconcave. This is not
sufficient, however, as shown in Problem 3.15. The following result shows
that a sufficient condition for a smooth quasiconcave function to be con-
cavifiable in a compact set is that its partial derivatives be strictly positive
in the set.

Theorem 3.14. A sufficient condition for concavifiability. Letf:Rn D X — >
R be a C2 quasiconcave function defined on an open and convex set X c
Rn. Suppose f{(x) >0 for all x in X. Then the restriction ofito any compact
and convex subset C o f X is concavifiable. In particular, there exists some
number p > 0 such that the function g; X 3 C —> R defined by g(x) = -e~pw

is concave.

Proof We shall prove the result for the case of a univariate function. The
idea is the same in the general case, but checking the sign (definiteness) of
the second derivative is a bit more complicated.

Differentiating the function g(x) = -e~Pf{x\ we see that

and
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268 Convex Sets and Concave Functions

Let C be a convex and compact subset of X. Because / i s C2,f\x)/[f(x)]2)
is a continuous function, and therefore it attains a maximum in C, by the
extreme-value theorem. Call this maximum ji. If we choose (5 to be positive
and larger than ji, then we have g"(x) < 0 for all x in C, and it follows that
g() is concave, by Theorem 2.18. •

Problem 3.15. Show that the function f(x) = x3 cannot be concavified in any
set that has zero as an interior point. Hint: Use Theorem 2.17.

Appendix: Quadratic Forms

Definition A.I. Quadratic form. A quadratic form is a function Q: W" —>
R of the form

Q(x) = xTAx = £"=1 ^l^OikXtXk

where A = [aik] is a symmetric square matrix with real entries, x e Rn is a
column vector, and xT is its transpose.

Definition A.2. Definite quadratic form. A quadratic form Q(x) = xTAx (or
its associated matrix A) is

• positive definite if Q{x) = xTAx > 0 for all x e Rn other than the zero vector,
• positive semidefinite if Q(x) = xTAx > 0 for all x e Rn,
• negative definite if Q(x) = xTAx < 0 for all x e Rn, with x * 0,
• negative semidefinite if Q(x) = xTAx < 0 for all x e Rn,
• indefinite if it is neither positive nor negative semidefinite, that is, if there exist

vectors x and z in Rn such that xTAx < 0 and zTAz > 0.

The next theorem gives necessary and sufficient conditions for the posi-
tive or negative definiteness of a matrix in terms of its eigenvalues.

Theorem A3. Given a quadratic form Q(x) =xTAx, let \h ..., Xn be the
eigenvalues of A (which will be real numbers, because A is symmetric). Then
Q(x) is

• positive definite if and only if all eigenvalues of A are strictly positive (i.e., \i>0
Vi),

• positive semidefinite if and only ifXl>0\/i = 1,...,n,
• negative definite if and only ifki<0\fi = l,...,n,
• negative semidefinite if and only ifX[<0\/i = l,...,n.

Proof. We show only that Q(x) is positive definite if and only if A< > 0 V
i = 1,...,n. The rest of the theorem follows by exactly the same logic.
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Appendix: Quadratic Forms 269

• Necessity: [xTAx > 0 V x e Rn, x * 0] => [X> 0 V / = 1 , . . . , n]
Let xt be the normalized eigenvector of A (i.e., with norm 1) associated with

the eigenvalue A*. By definition,

Axi =X-Ki (1)

Premultiplying (1) by xf, we have

0 < xjAXi = Xtxjxi = Xt (2)

where the inequality holds by the assumption that A is positive definite, and the
last equality holds because xfxt = \\XI\\E = 1 by assumption.

• Sufficiency: [X>, > 0 V i = 1 , . . . , n] => [xTAx > 0 V x e Rn, x # 0]
Because .A is a symmetric real matrix, it has a full set of linearly independent

(actually orthogonal) eigenvectors. Hence the matrix E9 with the normalized
eigenvectors as columns, is invertible and satisfies7

ETAE = A

where A is the diagonal matrix with the eigenvalues of A (A,) along its principal
diagonal.

Putting y = E~lx, we can write Q( ) in the form

Q(x) = XTAX = fETAEy = / Ay = Yt=M )

Hence, a quadratic form can always be written as the weighted sum of squares of
a transformed vector y, with the eigenvalues of A as weights.

From (3) it is clear that if all the eigenvalues are positive, Q(x) is positive, what-
ever the value of x (or y), as long as x * 0 (=> y * 0). •

An alternative test of sign definiteness for quadratic forms uses the con-
cepts of principal minor and leading principal minor of a matrix. If A is an
n x n matrix, and we eliminate n-k rows and the corresponding columns of
A, we obtain a submatrix of dimension k x k. The determinant of this sub-
matrix is called a principal minor of order k of A. The leading principal
minors of A are the principal minors obtained by keeping the first k rows
and columns of A. Hence, the leading principal minor of order k of the
matrix A, denoted dk, is the determinant of the square k x k matrix Ak,
formed by the first k columns and rows of A:

dk = det Ak =
ak\ akk

Theorem A.4. The quadratic form Q(x) = xTAx is positive definite if and only
if all the leading principal minors of A (di/ i = 2,.. ., n) are positive, and neg-
ative definite if and only if (iff) their signs alternate with d; < 0. That is,
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270 Convex Sets and Concave Functions

• Q(x) is positive definite iffd1>0,d2>0,...,dn= IAI > 0,
• Q(x) is negative definite iff &!<(), d2>0,d3<0,

Moreover, Q is positive semidefinite if and only //all the principal minors of
A are nonnegative.

Note that we can determine whether a quadratic form is positive or neg-
ative definite by checking the signs of only the leading principal minors, but
we have to check all the principal minors to see if it is positive semidefinite.
To test for negative semidefiniteness, observe that A is negative semidefinite
if and only if -A is positive semidefinite.

Proof We prove only the necessity of the leading-principal-minor condition
for sign definiteness.

• Consider first the case of positive definiteness. We want to show that

[xTAx>0\/xe~Rn,x*0]=*[di>0\/i = l,...,n]

If A is positive definite, then xTAx > 0 for any x * 0. Consider vectors whose
first elements are nonzero and whose last n-r elements are all zero: x - (xn 0).
The corresponding quadratic form is

Q(x) = xTAx = [*„ 0 ] [^ ^ y x?Arxr > 0 (1)

where the "*" terms represent the last n-r columns and rows of A, which will be
wiped out by the zero subvector of x. Because the original form is assumed to be
positive definite, we have xTrAyXr > 0, and this new "smaller" form is also positive
definite. By Theorem A.3, this implies that the eigenvalues of the matrix Ar are
all positive, and hence its determinant L4rl = dr (which is the leading principal
minor of order r of A) is also positive.8 If A is positive definite, regardless of how
many zeros we put in x, Q(x) > 0, so \Ar\ > 0 for all r = 1,...,n. Positive definite-
ness requires that all leading principal minors be positive.

• To derive conditions for negative definiteness, note that

[ x T A x > 0 V x e R \ x * 0]<=>[-xTAx = xT{-A)x < 0V x eR\, x*0]

so A is positive definite if and only if -A is negative definite, and vice versa.
Moreover,

\ - A \ = (-l)n|A| (where n is the order of the square matrix A)

Hence, A will be negative semidefinite if and only if -A is positive definite,
requiring

n\ n d, <0,d2 >0,d3 < O , . . . .

For a proof of the sufficiency part of the theorem, see Hadley (1973,
p. 261). •
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A useful property of positive definite (semidefinite) matrices is that their
diagonal elements must be positive (nonnegative). To see this, consider the
vector e, = ( 0 , . . . , 0,1, 0 , . . . , 0)r, whose components are all zero except the
ith, which is a 1. Note that the quadratic form

£>(<?,) = e- Aet = 2,;=1 2 , M
 atkxixk = au

gives us back the /th diagonal element of the A matrix. Hence, if Q(x) > 0
for all x, we must have, in particular, Q(ei) = au > 0. Clearly, a similar prop-
erty holds for negative definite or semidefinite matrices.

A quadratic form is positive definite if its value exceeds zero when eval-
uated at any nonzero vector x e Rn. In some cases we are interested only in
whether a given quadratic form is positive or negative when evaluated at a
particular set of vectors, for example, those that satisfy a certain system of
linear equations.

Consider a quadratic form Q(x) = xTAx, with x e Rn, and a system of m
linear equations Bx = 0, where B is an mxn matrix (with m < n) of rank m
(i.e., we assume that all equations are linearly independent, otherwise we
eliminate the redundant ones). We form the bordered matrix

—r mxm

and consider its leading principal minor of order r:

Bmr Ar _

where Ar is the square matrix formed by the first r columns and rows of A9

and Bmr is the mxr matrix formed by keeping all the m rows of B and its
first r columns. The following result gives us necessary and sufficient condi-
tions for the positive or negative definiteness of A subject to the constraints
Bx = 0 in terms of the signs of the determinants \Ar\.

Theorem A.5. Sign definiteness under constraints. The quadratic form Q(x)
= xTAx is positive definite under the constraints Bx = 0_, if and only if the last
n - m leading principal minors of the bordered matrix A are all of the same
sign as (-l)m. That is, ifm is even (odd), then all the last n - m leading prin-
cipal minors are positive (negative). This can be written

Moreover, Q is negative definite if and only if the last n - m leading prin-
cipal minors of the bordered matrix A alternate in sign, with the first equal to
(-l)m+1. That is,
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272 Convex Sets and Concave Functions

Notice that as the number of constraints increases, we have to evaluate
fewer determinants. This is not surprising, because an increase in the number
of constraints reduces the size of the set of vectors for which we have to
determine the sign of Q.
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Notes

1 Recall that Xt > 0, but there is no guarantee that a, > 0 for all L
2 If X has no closure points different from x, then cl X= {x} e int X, and because int

X c cl X, we have int X = cl X, a contradiction, except if X = Rn.
3 See Section 1 of Chapter 3.
4 If X consists of a single point, x, then its affine hull consists also of a single point (has

dimension zero), and intX = x. See Bazaraa and Shetty (1976) or Bronsted (1983) for a
proof of these results.
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5 The direction of the inequalities in the statement of the theorem does not matter. Notice
that in order to reverse them, it suffices to take H(-p, -a),

6 Note that

{z-x*) = z-[(l-Vx°+ Xy] = z-[x° + X{y-x°)] = -p-X(y-x°) and (z-x°) = -p
Hence,

and

7 See the discussion of eigenvalues, eigenvectors, and diagonalization of a square matrix in
Chapter 4.

8 The product of the eigenvalues of a matrix is equal to its determinant.
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7
Static Optimization

One purpose in using economic models is to make predictions concerning
the behavior of individuals and groups in certain situations of interest.
Clearly, this is possible only if their behavior exhibits some sort of regular-
ity. In economic theory, it is typically assumed that the source of such regu-
larity is the rationality of the agents involved - an axiom that is generally
understood to mean that

(i) economic agents have well-specified and consistent preferences over the set of
possible results of their actions, and,

(ii) given those preferences, they choose their actions so as to obtain the best result
among those available.

The postulate of rationality naturally leads us to model the behavior of
economic agents as the outcome of a constrained optimization problem. This
approach imposes a unifying structure on any model of the behavior of a
single agent and provides us a method for reducing situations of economic
interest to tractable mathematical problems. This chapter deals with the
"technology" for analyzing such problems (i.e., the theory of nonlinear pro-
gramming or constrained optimization).

1. Nonlinear Programming

The term "mathematical programming" or "nonlinear programming" (NLP)
refers to a set of mathematical methods for characterizing the solutions to
constrained optimization problems. In general terms, the basic programming
problem can be written

max{/(jc;a);xeC(a)} (P)
X

That is, given some value of a, we seek the value of x that will maximize the
function/(•; a) within the set C(a). In this expression,

274
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• x - (JCI,..., xn) e I c Rn is a vector of decision variables or choice variables,
• a = ( a1 ? . . . , 00 e O c Rp is a vector of parameters whose values we take as given,
• C(a) c X, the constraint set or feasible set, is the set of all feasible values of x for

given values of the parameters a, and
• / is a real-valued function / : En+p 3 I x O —> R, known as the objective

function.

For our purposes, the following interpretation will often be appropriate.
Let Q be the set of all possible "environments" in which an agent may find
himself, each described by a value of the parameter vector a, and let X be
the set of all actions that may conceivably be available to him. Given a value
of a, the agent will find his choices restricted to some subset C of X (e.g.,
the budget set, in consumer theory). Changes in the parameters will result
in changes in the feasible set, as described by the constraint correspondence,
C:Q->->X.

The function / : X x O —> R is the agent's objective function; f(x; a) gives
his payoff when he faces environment a and chooses action x. A rational
agent will choose an optimal plan, defined as one that will maximize the
value of the objective function over the constraint set for the given value of
the parameter vector. The set of optimal actions is described by the decision
rule or best-response correspondence S(a),

S:Q -»-» X, where S(a) = argmax{/(x; a); x e C(a)}
X

That is, S(a) is the set whose elements x* are the optimal solutions of (P).
If the solution to (P) is unique for each value of a, the best-response corre-
spondence becomes a function, and we write x* =x(a).

The payoff accruing to an optimizing agent is given by the (maximum-)
value function, V:Q —> R, defined by

V(a) = max{/(x; a); x e C(a)} = f(x*9 a), where x * € S(a)
X

Given a value of the parameter vector, V( ) yields the highest attainable
payoff. Clearly, V( ) is identically equal to the value of the objective func-
tion / ( ) evaluated at an optimal solution x* for the given a.

In most economic applications we are interested in the comparative statics
and other properties of the decision rule S(a) = arg maxx{/(x; a); x e C(a)}.
That is, we would like to know how the behavior of an agent varies in
response to changes in his environment (the prices he faces, his income, etc.).
Mathematically, the question is how the solution to the problem (P) changes
with the parameters a. The problem should be familiar from an earlier
chapter, but the "form" of the model looks different. The main task of this
section is to show how, given certain differentiability assumptions, (P) can
be reduced to an equivalent system of equations that can be analyzed by the
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methods developed in Chapter 5. This is what "characterizing the solution
to (P)" means.

We will consider three versions of the programming problem that differ
in terms of the way in which the feasible set is described:

• Convex constraint set. C is a convex subset of Rn; as special cases, we have the
case of unconstrained maximization, where C is the whole of Rn, and maximiza-
tion subject to nonnegativity constraints, where the feasible set is the nonnega-
tive orthant of Rn.

• Lagrange problem. The constraint set is defined by a set of equality constraints:

• Kuhn-Tucker problem. The constraint set is defined by a set of inequality
constraints:

C(a) = {xeX;g(x;a)>0}

We will start with the simplest case and then proceed by manipulating
each new problem in order to reduce it to one we already know how to
handle. For the most part, we will assume that the objective and constraint
functions are either once or twice continuously differentiate. This will allow
us to use the calculus and obtain results stated in terms of first and second
derivatives.

The results we seek in this section are necessary and sufficient conditions
for a solution to the constrained optimization problem (P). First-order nec-
essary conditions allow us to identify potential maximizers as the solutions
of a system of equations involving first derivatives. These equations are
obtained from the observation that, starting from an optimal solution **,
any sufficiently small movement that keeps us inside the feasible set cannot
increase the value of the objective function. If the relevant functions are
sufficiently smooth, this translates into some generalization of the zero-
derivative rule for a local maximum of a univariate real-valued function.
Sufficient conditions are then used to identify the true optimal solutions
within the set of candidates, or to ensure that this set cannot contain mini-
mizers or other "false signals." Essentially, sufficient conditions tell us that
if the function has a certain curvature (either locally or globally) around a
point that satisfies the necessary conditions, then this point must be a (local
or global) solution to the programming problem.

Once we have characterized the solutions of (P) in terms of a system of
necessary conditions, the comparative-statics problem can be approached
using the techniques of Chapter 5. Moreover, the fact that the system we
shall be working with comes from an optimization problem will allow us to
be more specific about the properties of the solution functions than we could
be earlier. This will be discussed in detail in a later section.
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(a) Convex Constraint Set

max{/(x);

277

(P.C)

where C is a convex set in Re, and/: R n 2 I —> R is a C2 function. We are
omitting the parameters, because for the time being we are interested only
in the solution to (P.C) for a fixed value of a.

We are familiar with a special case of this problem. If C = Rn, then a nec-
essary condition for x* to be a maximizer of / is that Df(x*) = 0. In the more
general case, however, this condition is neither necessary nor sufficient for
a maximum. Figure 7.1 shows an example. Notice that f(b) =f'(c) = 0, but
neither b nor c maximizes / on C = [a, b]. On the other hand, / achieves its
maximum on this interval at the point a, but f(a) * 0.

The figure suggests that if the solution to the programming problem
happens to be on the boundary of the feasible set, then one or more of the
partial derivatives of the objective function may not be zero at the optimum.
On the other hand, it must be true that as we move away from an optimum
in a feasible direction, the value of the function will decrease. Hence, direc-
tional derivatives in feasible directions must be nonpositive. We now state
this result formally.

f(x)

a b c d x

Figure 7.1. A zero derivative is neither necessary nor sufficient for a maximum.
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278 Static Optimization

Definition 1.1. Feasible direction. Consider the problem (P.C): maxx{/(x);
x E C}, where C is a convex set. Take a point x in C and a direction vector
h in Rn. We say that h is a feasible direction from x if there exists some <5>
0 such that

that is, if any sufficiently small movement away from x in the direction of h
leaves us inside the feasible set.

Theorem 1.2. First-order necessary conditions for a maximum. Assume that
f is C1, and let x* be an optimal solution of (EC); then

Df(x*)h<0

for every direction vector h e Rn feasible from x*.

Proof. Let x* be an optimal solution of (P.C), and h an arbitrary direction
vector feasible from x*. Then there exists some S> 0 (which may depend on
h) such that x* + ah e C for all a e (0, 8). Because any feasible movement
away from x* reduces the value of the function, we have

f(x*+ah)<f(x*)

for all a such that x* + ah e C. Rearranging and dividing by a > 0,

f(x* + ah)-f(x*)^Q

and taking the limit of this expression as a -» 0,

; h)=Df{x*)h - °
That is, the limit of the ratio on the left-hand side of (1) is the (one-sided)
directional derivative of/in the direction of h evaluated at x*. Because / i s
C1, the directional derivative exists and can be written as the scalar product
of the derivative and the direction vector (see Chapter 4). •

If C is an open set, all its points are by definition interior, and given
any x in C, all directions are feasible from it. In this case the inequality
Df(x*)h < 0 can hold for all h only if all first partial derivatives of / are
zero at x*. Otherwise, it is possible to increase the value of the function by
moving in the direction of (or opposite to) the coordinate vector cor-
responding to the nonzero partial. For example, suppose /*(**) > 0 and
/(x*) = 0 for all i & k, and choose a direction vector h, with hk > 0 and ht = 0
for all / * k. Then

Df(x*)h = Y i Ji (x*)h = f* (**)hk > 0
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Nonlinear Programming 279

which contradicts Theorem 1.2. Hence, all partials must be zero at an
optimum, and we have the following.

Corollary 1.3. Maximization in an open set. Assume that f is a C1 function
and the constraint set C is open, and let x* be an optimal solution to (P C).
Then

Df(x*)h = 0 {i.e., df(x*)/d x{ = 0 V i = 1,..., n)

Another special case of the convex-constraint-set problem is that in which
C= R!J (i.e., where we maximize /subject to the constraint that the choice
variables be nonnegative). An argument similar to that used to establish
Corollary 1.3 yields the following result.

Corollary 1.4. Maximization with nonnegativity constraints. If C = R+ and
x* is an optimal solution of (PC), then for each i = 1,..., n we have

d f (x*)
./ < 0 with equality ifx* > 0
dX

x? > 0 with equality if df^'0^ < o
OX;

Problem 1.5. Second-order necessary conditions. Let / : W —> R be a C2

function. Show that if/achieves a local maximum at x*9 then the Hessian of
/ at x* is negative semidefinite, that is,

hTD2f(x*)h <0VheRn

The following theorem shows that if/satisfies certain concavity condi-
tions, a point that satisfies the first-order necessary conditions (FONCs) is
indeed an optimal solution.

Theorem 1.6. Sufficient conditions for a global maximum. Let f be a C1

pseudoconcave function. If x* G Q and for every direction h e Rn feasible
from x* we have Df(x*)h < 0, then x* is an optimal solution of (PC).

Proof. We will prove the contrapositive statement. Assume that C is convex
and / is pseudoconcave, and fix some point x° e C. We will show that if x° is
not an optimal solution to (P.C), then it does not satisfy the first-order con-
dition Df(x°)h < 0 for all feasible directions h e Rn.

Suppose x° is not optimal. Then there exists some point x e C such that
/(x) >/(x°). By the pseudoconcavity of ff(x) >f(x°) implies

Df(x°)(x-x°)>0
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280 Static Optimization

Figure 7.2. A false signal.

where (x - x°) is a feasible direction vector from x°, by the convexity of C.
Hence, x° does not satisfy the first-order conditions. •

Recall that both concavity and strict quasiconcavity (or quasiconcavity
and nonstationarity) imply pseudoconcavity. Hence, any of these conditions
will be sufficient for a point that satisfies the necessary conditions to be an
optimal solution. On the other hand, quasiconcavity alone will not do. As
we mentioned in Chapter 6, quasiconcavity allows "false signals." Figure 7.2
illustrates the problem: / i s quasiconcave, and the point x° satisfies the first-
order condition, but does not maximize / in C.

The following problems provide alternative sufficient conditions for
global maxima.

Problem 1.7. Let / : Rn —> R be a C1 concave function. Show that if x* is a
critical point of / then it is a global maximizer of /.

Problem 1.8. Let / : Rn —> R be a concave function. Show that if x* is a
local maximizer of / then it is also a global maximizer. Hint: Proceed by
contradiction.

The following theorem gives sufficient conditions for a stationary point x*
of/ to be a strict local maximizer in an open set. That is,/(x*) >/(x) for all
x in some open ball with center at x*. Notice that what the theorem requires
is essentially the strict concavity of / in some neighborhood of x*.1 A point
that satisfies the conditions of this theorem is said to be a regular maximizer
of/in C.
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Nonlinear Programming 281

Theorem 1.9. Sufficient conditions for a strict local maximum. Let f be a
C2 function, with C an open and convex set, and x* a point in C such that
Df(x*j = 0. If the Hessian matrix at x*, D2f(x*j, is negative definite, then f
achieves a strict local maximum at x*.

Proof Let h be an arbitrary direction vector in Rn. By the convexity
and openness of C there exists some 8 > 0 such that x* + ahe C for all
a G (0, S). Fixing some a in this interval, both x* and x* + ah lie in C, and
we can use Taylor's formula to write

fix* + ah)-/(**) = Df(x*)(ah) + -(ah)TD2f(x* + Xaah)(ah) (1)

for some A« e (0,1). Moreover, because x* is by assumption a stationary
point, we have Df(x*) = 0, and (1) reduces to

f(x* + ah) - f(x*) = — hTD2f(x* + kaah)h (2)

Now, for the given h the quadratic form on the right-hand side of (2) can be
shown to be a continuous function of a, say Q(a), at a = 0 (see Problem
1.10). By assumption, moreover, D2f(x*) is negative definite, implying that

Q(0) = hTD2f(x*)h<0

Hence, it follows by continuity that Q( ) will preserve its sign for sufficiently
small or, that is, there exists some y> 0 such that

0 (3)

for all a < y. Finally, (2) and (3) imply that

/(**) > f(x* + ah) V a<y

Because h is arbitrary, any sufficiently small movement away from x*
reduces the value of the objective function. Hence, / has a strict local
maximum at x*. •

We saw in the appendix to Chapter 6 that a matrix A is negative definite
if and only if its leading principal minors alternate in sign, with the first one
negative. As we will see later, this information will be very useful when we
turn to the comparative statics of optimization models.

Problem 1.10. Let A = [aik] be an n x n matrix, and consider the quadratic
form hTAh - I<iLkhiaikhk. Using the Cauchy-Schwarz inequality, show that
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282 Static Optimization

where || • || is the Euclidean norm. Using this result, verify that the function
Q(a) in the proof of Theorem 1.9 is continuous at zero (provided/is C2) by
showing that \Q(a) - Q(0)\ -> 0 as a -> 0.

Notice that whereas Theorem 1.9 implies the local uniqueness of the max-
imizer, Theorem 1.6 allows for the existence of multiple optimal solutions.
We close this section with a sufficient condition for the global uniqueness of
the optimal solution to (EC).

Theorem 1.11. Global uniqueness. Let x* be an optimal solution of (EC),
with C convex. Iff is strictly quasiconcave, then x* is the unique optimal solu-
tion to the problem.

Proof By contradiction. Suppose that there exist two optimal solutions x'
and x" in C. Then f(x') =f(x") = M, and by the strict quasiconcavity of/, we
have, for any X e (0,1),

/[(I - X)x' + Ax"] > min{/(x'), /(*")} = M

where xx = (1 - X)xf + Xx" is a feasible point, by the convexity of C. Because
f(xx) >f(x') =/(x"), neither x' nor x" can be an optimal solution to begin
with. •

Problem 1.12. Derivation of factor demand functions. Consider a competi-
tive firm that produces a single output y using two inputs xx and x2. The firm's
production technology is described by a Cobb-Douglas function

y = f(xux2) - Xix$, where /? + a < 1 , p>0, and a > 0

Taking as given the price of its output p and input prices wx and w2, the
firm maximizes its profits, given by

, x 2) = px"x^ - w^i - w2x2

Write the first-order conditions for the firm's problem, and check that
sufficient conditions for a maximum are satisfied. Using the first-order con-
ditions, solve for the firm's factor demands, giving the optimal input levels
xf as functions of input and output prices.

(b) Equality Constraints: The Lagrange Problem

Consider the problem

max{/(x)s.t.g(x) = 0} (P.L)
x

where /:R" 2 1 — . R and g:R" 3 1 — > c are C2 functions, and "s.t."
means "subject to." We will refer to the components of g = (g 1 , . . . , gc)T as
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the constraint functions and assume that c < n (i.e., that we have fewer con-
straints than choice variables).

We will start by giving an intuitive interpretation of the method of
Lagrange multipliers. Consider a simple version of (P.L) with only two deci-
sion variables and one constraint:

max{/(xi,x2); g(xx,x2) = c] (P.L')

Instead of directly forcing the agent to respect the constraint, imagine that
we allow him to choose the values of the instruments xx and x2 freely, but
make him pay a fine A "per unit violation" of the restriction. The agent's
payoff, net of the penalty, is given by the Lagrangian function:

, x2,A) = /(*!,x2) - X[c - g(xt, x2)] (1)

The agent then maximizes (1), taking A as given. The first-order conditions
for this problem are

x2,X)= df dg = Q _df(x*) , dg(x*)
-— 1-/1— - U = > — --A—

dx\ dxx dxi dxi dxi

d£(xux2,X)_ df dg _ df(x*)__ dg(x*)
- _ — r A— - - U = > - --A -
ax2 ox2 ax2 dx2 ox2

Given an arbitrary A, there is no guarantee that the solutions of this system
of equations will be optimal solutions of the original problem. But if we pick
the correct penalty A*, the agent will choose to respect the constraint even
if in principle he is free not to, and then the artificial problem we have
constructed will give us the correct answers. Thus, A* must be such that the
constraint holds. Hence, in addition to (L.I) and (L.2), the optimal solution
(xf, x$, A*) must satisfy the feasibility condition, which can be conveniently
written in the form

, X2, X) { \ r\ /t^\

^ >- = g(xux2)-c = 0 (F)

We have, then, a system of three equations that can be solved for the
optimal values of the instruments (xf, x2) and the Lagrange multiplier A*.
Notice that these equations are the conditions that define a stationary point
of the Lagrangian. The optimal solution (xf, x2, A*), however, is likely to be
a saddle point rather than a maximizer of £( ): Whereas x* does maximize
£(x, A*), it will not be true in general that A* maximizes £(x*, A).

Although a formal discussion of the topic will have to wait until we estab-
lish the envelope theorem, it should be noted that A* often contains useful
information about the effect of the constraint. In a possible economic inter-
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f(x)=m

Figure 7.3. Optimal solution of a Lagrange problem.

pretation, c denotes the available stock of a certain resource, and the objec-
tive function measures something like the profit obtained through an activ-
ity that uses the resource as an input. Then the multiplier gives the maximum
increase in profit that could be obtained if we had one more unit of the input
- and hence the maximum amount that a rational decision-maker would be
willing to pay for one additional unit of it. This is clearly a good measure of
the marginal value of the resource, and it justifies the interpretation of the
multiplier as a "shadow price."

Graphically, the feasible set of (P.L') is a curve on the (xu x2) plane, and
the optimal solution to the problem is the point x* on this curve that lies on
the highest possible level set of /. Given certain convexity assumptions, x*
will be a tangency point of the two level curves, as shown in Figure 7.3. The
existence of a common tangent to both curves implies that the gradients of
/and g (both perpendicular to the tangent) lie on the same straight Hne. This
allows us to write one of them as the product of the other and a scalar. That
is, there exists a number -A* such that

) = -X*Dg(x*)
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Nonlinear Programming 285

which is another way of writing (L.I) and (L.2). Clearly, x* also satisfies the
constraint g(xu x2) = c. Hence, the graphical argument also suggests that the
constrained maximizer of/will be characterized by the conditions discussed
earlier.

The necessary conditions for the general Lagrange problem

;g(*) = 0} (EL)
X

can be obtained in a similar way. Introducing a column vector of Lagrange
multipliers A = (Xu ..., Ac)

r, one for each constraint, we write the Lagrangian

Differentiating £( ) with respect to x and A, we obtain the first-order
conditions

Dx£(x,A) = />/(*) + XTDg(x) = 0 (L)

Dx£(x,X) = g(x) = 0 (F)

This is a system of m + c equations in the m + c unknowns (x, A) whose solu-
tion set contains the optimal solution to the programming problem, JC*, and
the "correct" values of the multipliers, A*. The c equations in (F) are simply
the constraints of the original problem, and (L) tells us that the gradient
of the objective function/can be written as a linear combination of the gra-
dients of the constraint functions, all evaluated at an optimal solution.

Theorem 1.13. Lagrange. Let x* be an optimal solution of

max{f(x);g(x)=0} (EL)
X

where f and g are C1 functions, and rank Dgfx*j = c < n. Then there exist
unique Lagrange multipliers X* e Rc such that

Df(x*)+A*TDg(x*) = 0

The logic of the proof is very simple, even though the notation gets
messy. We want to show that given certain assumptions, there is some vector
A* G Rc with certain properties, so we go ahead and construct such an object.
A simple way to illustrate what we are doing is to consider the simplest
possible case. Assume that we have n constraints, and rank Dg(x*) = n. Then
Dg{x*) is an invertible square matrix, and finding a vector A* e Rn that
satisfies the Lagrange condition

*) + XTDg(x*) = 0 (L)

is easy: We can solve (L) explicitly to get
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Under these assumptions, however, the maximization problem is trivial,
because the feasible set reduces, at least locally, to a unique point that is
therefore also optimal.

In the general case, the invertibility of Dg(x*) is not guaranteed, but we
will show that it contains an invertible submatrix that can be used in exactly
the same way. We begin by partitioning the vector x into two components:

x = (xa,xp)9 with xa=(xu...9xc) and xp=(xc+u...,xn)

In this notation, we can write the constraints g(xa, xp) = 0 and partition the
derivative of the constraint function in the corresponding manner, with

Dg(x*) = [Dag(x*),Dpg(x*)]

Now, by the assumption that rank Dg(x*) = c, Dg(x*) has c linearly inde-
pendent columns. Without loss of generality, we can relabel the X/S in such
a way that the square submatrix Dcg(x*) has full rank and is therefore invert-
ible. Partitioning the relevant vectors and matrices appropriately, (L) can be
written

n*TDag(x*)-

x*T Dfig(x*)j

Because Dag(x*) is invertible, we can solve the first c equations of the system
for a unique value of A*:

Daf(x*) + X*TDag(x*) = 0

=>X*T=-Dag{x*)[Dag{x*)]-x (1)

It only remains to show that the vector A* also satisfies the remaining equa-
tions of the system:

Dpf(x*) + X*TDpg(x*) = 0 (2)

To establish that (2) holds, we start from the observation that if JC* is an
optimal solution of (P.L), then any small feasible movement away from it
will reduce the value of the objective function. The complication, relative to
the simpler problems we have considered so far, is that we now have to make
sure that we consider only movements that do not violate the constraint
equations. One way to do this is to apply the implicit-function theorem (IFT)
to "solve" the system of constraint equations, g(xa9 xp) = 0, for some of the
choice variables as a function of the rest. Then we substitute this function
into / t o "eliminate" the constraints. This procedure allows us to transform
the Lagrange problem into an equivalent problem of maximization in an
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open set. Direct computation using the first-order conditions for this
modified problem shows that condition (2) holds.

Proof

(i) We apply the IFT to the system of constraint equations. Let x* = (x% xf) be an
optimal solution of (P.L). Because x* is feasible by definition, g(x%, xf) = 0 and
\Dag{x%, xf)\ & 0 by the rank assumption. Hence, x* satisfies the conditions of
the IFT, and it follows that for any given value of Xp in some neighborhood of
Xp, there exists a unique value of xa close to xj and locally unique such that
g(xa, xp) = 0. Formally, there exists a C1 function,

h : Up > Ua, with h(xp) = xa s.th. g(xa, Xp) = 0

where Ua and Up are open balls centered at x% and xf The derivative of h can
be easily calculated by implicit differentiation:

g[h(xp ),xp] = 0=> Dag(x)Dh(xp) + Dpg(x) = 0

=> Dh(xp) = -[DagWY1 Dpg(x) (3)

The usefulness of the function h( ) lies in the fact that it allows us to avoid
explicit consideration of the constraints. Given a value of xp,h( ) gives us a value
of xa such that (xay Xp) is feasible.

(ii) We now use h( ) to transform (P.L) into an equivalent problem of maximiza-
tion in an open and convex set. Define the function F: Up —> R by

Now, if x* = (x% xf) is an optimal solution of (P.L), then xf will be a solution of

max{F(xp);xpeUp} (PU)

-t/3

and therefore will satisfy the first-order condition

DF(x$) = 0 (4)

Using (l)-(4), we can now establish the desired result by direct computation:

0 = DF(x$) = Df[h(x*p\ xf] = Daf(x*)Dh(x*p) + Dpf(x$) [by (3)]

- -Daf{x*tDag{x*)Yl Dpg{x*) + Dp f{x*) [by (1)]

Hence, equation (2) holds, which proves the theorem. •

One of the assumptions of the Lagrange theorem is that the rank of the
matrix of first partial derivatives of the constraint functions, evaluated at the
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DgV)

Figure 7.4. Failure of the constraint qualification.

optimal solution, is equal to the number of constraints, c. This condition is
sometimes called a constraint qualification. To understand its role, observe
that the Lagrange condition can be written

Df(x*) = -XTDg(x*) = - (L)

Thus, (L) requires that we be able to write the gradient of / a s a linear com-
bination of the gradients of the constraint functions. If the constraint
qualification fails, we may find that we do not have enough linearly inde-
pendent constraint gradients for (L) to hold.

Figure 7.4 illustrates the geometry of the problem for a couple of trivial
examples. In each case, JC* clearly maximizes / subject to g(x) = 0, because
it is the only point in the feasible set. However, the Lagrange condition
Df{x*) + XTDg(x*) = 0 does not hold in either case. In the first panel of the
figure we have Df(x*) > 0 and Dg(x*) = 0, so there is no number such that
Df(x*) = -XDg(x*). In the second, the zero level curves of the two con-
straints are tangent at the optimum. As a result, the gradients of the con-
straint functions lie on the same straight line and therefore do not span the
(xu x2) plane. Hence, Df(x*) cannot be written as a linear combination of
Dg*(x*) and Dg\x*), unless, by chance, it lies on the same straight line.

The following theorem gives sufficient conditions for a point that satisfies
the Lagrange condition to be an optimal solution of (P.L). Before stating
the result, we should observe that there is no loss of generality in assuming
that the Lagrange multipliers are nonnegative, because we can always
reverse their signs by rewriting one or more of the constraints in the form
-gj(x) = 0. For example, assume that all multipliers are nonnegative, except
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for one, A;<0. When we multiply the corresponding constraint by - 1 , we
reverse the signs of the partial derivatives of the constraint function and
therefore the sign of the determinant of the matrix J = Dag(x).2 Now, the
Lagrange multipliers are the solution to

and, by Cramer's rule, Ay is given by

where /y is the matrix obtained by replacing the ;'th column of /, given by
Dagj(x*), with the right-hand-side vector, -Daf(x*). Hence, multiplication of
the constraint by -1 reverses the sign of the corresponding multiplier.

With this in mind, the theorem says that if there is some way to write the
Lagrangian so that the restrictions are quasiconcave and the multipliers are
nonnegative, then a feasible point that satisfies the Lagrange condition is an
optimum.

Theorem 1.14. Sufficient conditions for a global maximum. Let f be pseudo-
concave, and all g*(x) quasiconcave. If(x*, X*) satisfy the Lagrange condition,
Dffx*J + X*TDgfx*j = Q with x* feasible and X*>(9, then x* is an optimal solu-
tion to the Lagrange problem (PL).

Problem 1.15. Prove Theorem 1.14. Hint: Follow the proof of Theorem
1.6.

We now give a second set of sufficient conditions that, although only local
in character, often are quite useful in economic applications. A point that
satisfies the conditions of the theorem is said to be a regular maximizer of /
subject to the constraints.

Theorem 1.16. Sufficient conditions for a strict local maximum. Let x* be a
feasible point satisfying the Lagrange condition for some X*. Assume that the
matrix of second partial derivatives of the Lagrangian function with respect
to the choice variables x, evaluated at (x*, X*),

T>l£(x*,X*) = D2i(

is negative definite subject to the constraints Dgfx*jh = Q that is,

hTD2£(x*X*)h<0\/heRn s.th. Dg(x*)h = 0

Then x* is a strict local maximizer of f subject to g(x) = 0.
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Proof. Let h be a direction vector in Rn, and consider a feasible point
x* + ah, where a > 0. Using Taylor's formula, we can write

£(x* + ah, X*) - £(**, X*) = £>, £(**, X*){ah)+—hTD2
x £(x* + 6aah, X*)h

/Lt

(i)

for some 6a G (0,1). Writing out (1) in more detail, we have

/(x* + ah)+/l*rg(x* + o/i)- /(x*) - A*rg(x*)

= [Df{x*)+X*TDg{x*)\ah)+~ a2h TD2
x £{x* + 6aah)h (2)

Observing that

• by assumption both x* and x* + ah are feasible, that is, g(x*) = g(x* + ah) = 0, and
• x* satisfies the Lagrange condition, Df(x*) + A*TDg(x*) = 0,

equation (2) reduces to

f(x* + ah) - f(x*) = — hTD2
x £(x* + daah)h (3)

We will show that if x* is not a strict local maximizer, then D2£(x*, A*)
cannot be negative definite subject to Dg{x*)h = 0.

Suppose x* is not a strict local maximizer, and consider a decreasing
sequence of real numbers Sk > 0 convergent to zero. For each Sk there exists
a feasible point x5k e B8k(x*) such that/(x5*) >/(x*). We can write the vectors
xSk in the form

where hk is a normalized direction vector (with unit norm). Now, [xSk] -»x*
by construction, implying that {ak} -> 0. Applying the Bolzano-Weierstrass
theorem component by component to the bounded sequence {hk}, we see
that this sequence has a convergent subsequence (see Problem 3.12 in
Chapter 2). For simplicity of notation, assume that {hk} itself converges to
some h. Then we have, for each x* + akh

k, the following:

By feasibility, we have

—[g{x* + akh
k )-g(x*)] = 0

and taking the limit of this expression as k —» °°?

Dg(x*)h = 0 (4)

Using (3) and the assumption that f{x5k) >/(x*),
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^-hkTD2
x£{x* + dkakh)hk = f(x* + akh

k)- f(x*) > 0

Dividing by a\ and taking the limit of the resulting expression as k —» «>, the
inequality is preserved. Hence, there exists a vector h, with Dg(x*)h = 0, and such
that

hTD2x£{x*,X*)h>0 (5)

It follows that D2X£{ ) is negative definite subject to the linearized constraints, and
this establishes the desired result. •

Problem 1.17. Solve the problem

*^ 2x-2y + z s.t. x2 + y2 + z2 = 9

by the method of Lagrange multipliers. Use the sufficient second-order con-
ditions for a strict maximum to determine which of the two solutions to the
system of first-order conditions yields a maximum. Verify that this is correct
by comparing the values of the objective function in both cases.

(c) Inequality Constraints: The Kuhn-Tucker Problem

In this section we consider problems of the form

max{/(x);g(x)>0} (P.K-T)
x

where /:Rn 2 I — > R and g:RE 3 Z — > W are C2 functions. The only
difference from the Lagrange problem is that the constraints are now written
as weak inequalities, rather than equalities.

An inequality constraint, gj(x) > 0, is binding or active at a feasible point
x° if it holds with equality (gy(x°) = 0), and not binding or inactive if it holds
with strict inequality. Intuitively, it is clear that only active constraints matter
and that inactive ones have no effect on the local properties of an optimal
solution. Hence, if we knew from the beginning which restrictions would
be binding at an optimum, the Kuhn-Tucker problem would reduce to a
Lagrange problem in which we would take the active constraints as equali-
ties and ignore the rest.

As in the Lagrange case, a good recipe for remembering the first-order
conditions consists in introducing a vector X of multipliers, one for each con-
straint, and writing the Lagrangian

Next, we proceed as if we wanted to maximize £(x, X) with respect to x
(without constraints) and minimize it with respect to X subject to the non-
negativity constraints X > 0. This yields the following conditions:
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Dx £(x, X) = Df{x) + XTDg{x) = 0 (L)

DXj£(x,X) = gj(x)>0 and gj(x) = 0 if X} >0

Xj>0 and A =0 ifg ;(x)>0 (C-S)

or, equivalently,

Xj>0, g>(x)>0, and Xjg
j(x) = 0 for each; = 1,..., c (C-S')

That is, either the constraint is binding (g7(x) = 0) or the associated multi-
plier is zero, or both. Moreover, if the multiplier is strictly positive, the con-
straint must be binding, and if the constraint is not binding, the multiplier
must be zero.

The complementary slackness conditions (C-S) have a very intuitive eco-
nomic interpretation. Let us return to our informal interpretation of the mul-
tipliers as shadow prices that measure the implicit cost, in terms of forgone
profit, of resource-availability constraints. In this context, it is clear that if a
constraint is not binding (we have more than we need of the resource), a
further increase in the available quantity will not increase profit. On the
other hand, if the multiplier is positive, an increase in the stock will increase
profit. Clearly, this can be the case only if we did not have enough of the
resource to begin with, that is, if the constraint is binding. In short, if we
already have too much of something, any additional amount will be useless.
And if we do not have enough, we should be willing to pay a positive price
in order to get a bit more.

In what follows, we will adopt the following notational convention. We
will renumber the constraint functions, g;(x),; = 1 , . . . , c, in such a way that
the binding constraints come first. That is, if x* is a feasible point, we arrange
the constraints so that

gj(x*) = 0 for ; = 1,2,..., B (binding constraints)

gj(x*) > 0 for ; = B +1 , . . . , c (nonbinding constraints)

and define

gb(x*) = [g1(x*),..., gB(x*)] = vector of constraints active atx*

gn(x*) = [gB+1(x*), ...,gc(x*)] = vector of constraints inactive atx*

We can therefore partition the vector of constraints as

[gn(x*)\

and partition the vector of multipliers in a corresponding way

X =(Xb,Xn)

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:26:52 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.008

Cambridge Books Online © Cambridge University Press, 2013



Nonlinear Programming 293

Using this notation, the Lagrange condition

can be written

(J^^j [6 x) = 0 (1)

With this in mind, the condition

rank Dgb(x) = B

can be interpreted almost exactly as in the Lagrange case, except that it now
applies only to the constraints that are binding at an optimal solution of the
problem.

Theorem 1.18. Kuhn-Tucker. Let x* be an optimal solution to the Kuhn-
Tucker problem

max{f(x); g(x)>0} (P.K-T)
X

where f and g are C\ and rank Dgb(x*J = B < n. Then there exist nonnegative
Lagrange multipliers X* e R+ such that (x*, X*) satisfy the following
conditions:

Df (x*) + \*T Dgfx*) = 0 (L)

Vj = 7,...,c, gYx)>0 and gj(xj=0 ifX}>0 (C-S)

and

Xi>0 and X}=0 ifg](x)>0

Proof. We partition the vector of choice variables,

x = (xa,xp), withxa=(x1,...,xB) and xp=(xB+u...Jxn)

and the matrix Dgb(x) correspondingly,

Dgb(x)=[Dag
b(x),Dpg

b(x)]

Relabeling the JC,-'S, if necessary, so that the B xB matrix Dag
b(x) will have

rank B (and therefore will be invertible), we can write the Lagrange condi-
tion (1) in the form

Daf(x)-] \XT
hDag

b{x)
(2)
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294 Static Optimization

We now define the multipliers as follows. First, we set to zero the multi-
pliers associated with the inactive constraints,

Then the first B equations of (2) reduce to

Daf(x*) + Xr
bDag

b(x*) = 0

which we solve for

X%r =-Daf{x*)[Dag
h{x*)}-1 (3)

It remains to show that the remaining equations in (2) hold for these
values of the multipliers and that the multipliers are all nonnegative, that is,

Dpf{x*) + %TDpg
b(x*) = Q and 4 > 0 (4)

The proof proceeds, as in the case of the Lagrange theorem, by showing that
an optimal solution of the original problem will also solve a related but
simpler maximization. Using the first-order conditions for this problem, we
will establish (4).

(i) To eliminate the inequality constraints, we introduce a vector of slack variables,
one for each constraint:

Z = (Z\,...,Zc) =(Zb,Zn)

where zb e RB and zn e R c B are the vectors of slack variables associated
respectively with the binding and nonbinding constraints.

The original constraints, g(x) > 0, can then be written

g(x)-z = 0 and z>0

Moreover, if we restrict the value of x to a sufficiently small neighborhood of
x*, the continuity of the constraint functions implies that those constraints that
are not binding at x* will continue to be inactive in this region. That is, there
exists some £ > 0 such that for all x e Be(x*) we have

gj (x) > 0 V j = B +1 , . . . , c (or, equivalently, zn » 0)

As long as we stay in this region, therefore, we can ignore the inactive con-
straints and focus on the active ones. These can be rewritten in the form

G(x,zb) = gb(x)-Izb = 0 and Zb>0 (5)

where / i s the bxb identity matrix.
Now, if x* solves the Kuhn-Tucker problem

max{/(x);g(x)>0} (P.K-T)
X

the preceding discussion implies that it will also solve the problem
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/ (x ) ; G(x, zb) = 0,zb>0,xe B£(x*)} (P')

(ii) Next, we apply the implicit-function theorem (IFT) to (5) in order to eliminate
the binding constraints. We know that x* = (x*, xf) satisfies (5) with zt = Q (that
is, there is no slack for the active constraints at the optimum). Differentiating
G( ) with respect to xm we have

DaG{**, zt) = DaG(x*9 Q) = Dag
b(x*)

By the rank assumption (constraint qualification), this is an invertible matrix.
Hence, the assumptions of the IFT hold at (x*, zf) = (x%, x$ 0) and the system
(5) of active constraints implicitly defines xa as a function h( ) of (xp, Zb)- That
is, there exists a function

h:UpyZ->Ua, withh(xpyzb) = xa s.th. G[h{xp,zb),Xp 9zb] = Q

where Ua and C/ftz are open balls centered respectively at x% and (JC|, Q). The
function h() assigns to each pair (x& zb) the value of xa that satisfies the con-
straints of (P').
Implicit differentiation of the identity

G[h(xh zb\ xp, zb] = gb[h(xp, zb\ xp] -Izb = 0

gives

Dag
h(x*)Dph(xl

from where

Dph(x$, 0) = -[Dag
b{x*)]~lDpg

b(x*) (6)

and

implying

Dzh(xh® = [Dag
b(x*)]~1 (7)

We now define the function F: UptZ —> R by

and observe that the pair (JC|, z?) - {*% 0) will be an optimal solution to the
problem

meLx{F(xp, zb); zb >0, (xfi,zb)eUPx} (P")

xp,Zb

and therefore will satisfy the first-order conditions

DpF{xlzZ) = 0 and DzF{xlzt)<0 (8)
That is, for each / = 1,...,B,
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DZiF(x$,zf)<0 and = O ifz, ->0

z, >0 and =0 if DZiF{x$,z$)<0

Using (8), we have

0 = DfiF(x*, zt) = Dpf[h(xl TS), X$] = Daf(x*)Dfih{xl zt)

= -Daf{x*\Dag
»{x*)YlDpg

b(x*) + Dpfix*) [by (6)]

= XtTD0g»{x*) + Dpf(x*) = 0 [by (3)]

which is one of the things we wanted to show.
Finally, the condition DzF(x%, zf) < Q will guarantee the nonnegativity of the

multipliers. Using the second part of (8),

0 > DzF(x$9 £) = DJ[h(xt ztl x$] = Daf(x*)Dzh(xl £ )

= Daftx+iDag
bix*)]-1 = -Af [by (7)]

that is, XtT>Q. •

Theorem 1.19. Sufficient conditions for a global maximum. Given the
problem (RK-T), assume that the objective function i() is pseudoconcave and
that the constraint functions gY ) are all quasiconcave. Let (x* X*) be a pair
of vectors that satisfy the necessary conditions given in the Kuhn-Tucker
theorem (i.e., the Lagrange and complementary slackness conditions). Then
x* is an optimal solution of (RK-T).

The proof is the same as that for the corresponding theorem for the
Lagrange problem, after observing that X^Tgn(x*) = 0 by construction.

Theorem 1.20. Uniqueness. Let x* be an optimal solution of (RK-T). Iff is
strictly quasiconcave and the constraint functions gjf ) are all quasiconcave,
then x* is the only optimal solution of (RK-T).

Proof This result follows from Theorem 1.11 (uniqueness for the convex-
constraint-set problem), after observing that the feasible set {x; g{x) > 0} is
(the intersection of convex sets and therefore) convex by the quasiconcav-
ity of the constraint functions. •

Problem 1.21. Integral objective and constraint functions. Let/:Rn + 1 —> R
and g: Rn+1 —> R be C1 functions, and consider the problem

max f {ff[x(sl s] ds s.t. fg[x(s\ s] ds > o} (El)
x(s),s£[a,b\\Ja Ja J

This problem differs from the ones we have considered so far in that
instead of choosing a finite set of decision variables, we must now choose an
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infinite number of them. In other words, the object of choice is no longer a
vector in Rn but a continuum of them, as described by a function x{s) :
[a, b] —> Rn, which, for each possible value of the state variable 5, gives us
the choice of the instruments x.

Using earlier results, we will derive necessary and sufficient conditions for
an optimal solution of (P.I) that will closely resemble those applicable to a
standard Kuhn-Tucker problem.

(i) The argument used to derive the first-order conditions for an optimum should
be familiar by now. Let x*(s) be an optimal solution function for (P.I), and let
us consider a feasible variation from this function. In particular, we will con-
sider a two-parameter family of functions of the form

x(s) = x* (s) + ay(s) + /te(s)

where y(s) and z(s) are arbitrary functions from R to Re, and the parameters
a and p will be chosen so that, given y{ ) and z() , the constraint holds.
Now, consider the problem

max{F(a, p)} = f f[x(s\ s] ds s.t. G(a, /?) = f g[x(s\ s] ds > 0 (RF)
afi Ji> Ja

This problem is clearly related to the original one. Because x*(s) is optimal for
(P.I), we know that the solution of the transformed problem involves setting a
and P equal to zero. The reformulation is useful, however, in that we can use
already familiar techniques to obtain necessary conditions for an optimum.

In particular, introduce a multiplier A, define the function

£(a, j8, A) = f£,[x(s), A, s] ds = ff[x(s), s] + Ag[x(s), s] ds

and use the Kuhn-Tucker theorem to derive the following first-order conditions:

Dx £s [x*(s\A, K s] = Dxf[x* (s\ s] + XDxg[x*(s\ s] = 0 (K-T)

\bg[x*(s),s]ds>0, and f g[x*(s),s]ds = O, ifA>0

X>0, and A = 0 if f" g[x* (s), s] ds > 0 (C-S)

Notice that (K-T) must hold separately for each s e [a, b]. On the other hand,
there is a unique multiplier A that does not depend on s.

(ii) Assume that /(x, s) and g(x, s) are concave in x for each 5, and let x*(s) be a
choice function that satisfies the first-order conditions for the problem. Show
that x*(s) solves (P.I).

(d) Concave Programming without Differentiability

Although the differentiability of the objective and constraint functions is a
convenient assumption, the essence of many of the previous results goes
through without it, as shown in the following theorems.
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298 Static Optimization

Theorem 1.22. Let x* be an optimal solution for the problem

max{f(x); g(x) >0} (RK-T)
x

where f:Rn 2 X —> R and each of the components of g, gj: R f l 2 X —>
R, j = 1,...y c, are concave functions. Suppose further that there exists a point
x' G Rn such that g(x') » 0. Then there exists a vector of nonnegative multi-
pliers A* G R+ such that

(x*) >f(x) + l*T g(x) V x

\*g'(x*) = 0 for each j = 1,..., c

The assumption that there exists a point x' in Rn such that gf(x') > 0
for all / is known as Slater's constraint qualification, or Slater's condition,
and it requires that the constraint set have a nonempty interior. The first
necessary condition says that x* maximizes the Lagrangian function
£(x, A*) =f(x) + A*Tg(x) given the "correct" value of the multipliers. When
/ and g are C1, this reduces to the usual Lagrange condition.

Proof. Let x* be an optimal solution of (P.K-T), and assume that the con-
straint qualification holds. We shall show that there exist nonnegative mul-
tipliers Xu..., Ac with the required properties.

Define the set Y by

Y = {y = (y0, yn•••,yc)e Rc+1; y, < f(x) andyj <gJ(x) for somex] (1)

(i) Claim: Y is a convex set. Given two arbitrary points y' and y" in Y, let x'
and x" be points that "work" for y' and y" in the sense that they satisfy the
inequalities in (1). To establish the convexity of Y, we will show that for any
A e (0,1), the point xA - (1 - A)x' + he" works for / = (1 - A)/ + A/'.

By the concavity of / and each of the components of g, we have

y$ - (1 -X)y'o + Xy'o'<(1 -X)f(x') + Xf(x") <f(x")

y?=(l-X)y'j+Xy?<(l-X)gi(x') + Xg!(x")<gi(x>-) for each/= l , . . . , c

Hence, yA6 Y, as we have found an x that works for it.
(ii) Claim: y* = (/(*:*), Q) G dY. That is, the vector formed by the maximum value

of the objective function arid the zero vector in Re belongs to the boundary of
the set Y.

We proceed by contradiction. Suppose y* is not a boundary point of Y. Then
(because it does belong to the set) y* must be an interior point of Y. Hence,
there exists some e > 0 such that B£(y*) c Y. That is, starting from y* = (/(x*),
0), we can move a bit in any direction without leaving Y. In particular, we can
increase the first component of y* a little and still remain in Y. Hence, there
exists some vector \i e 5e(y*) c Y such that
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Uo >/(**) and

But then, because jie Y, there exists some vector x that "works" for it, that is,
such that

/(x)>//0>/(**) and gi&UUjZ O Vj

Notice that x is a feasible point, with the property that /(x) > /(x*). Because x*
maximizes /, this is impossible, and we have arrived at a contradiction,

(iii) By the supporting-hyperplane theorem (Theorem 1.25 in Chapter 6), Y has a
supporting hyperplane through the point y*, that is, there exists a vector p ^ 0
in Rc+1 such that

py* = Pof(x*) + ̂  pj 0<p0y0+ ^ ' j /w for every y in Y (2)

(iv) Claim: p; < 0 for all / = 0 , . . . , c. Notice that if y e Y, then any point of the
form y-c, where c is a vector with nonnegative components, belongs to Y. To
establish the claim, we proceed by contradiction. Suppose p7 > 0 for some /,
and choose q so that pj - c, is a large negative number. Clearly, we can always
choose Cj large enough that

Pof(x*)<po(y0~co)

does not hold,
(v) Clearly, {fix), g(x)) e Y for any x. Hence, (2) implies

Po/(x*)<Po/(x) + X;=1P;£J(*) for any* (3)

(vi) Claim: p0 < 0. By contradiction with the Slater condition. Suppose p0 = 0 (we
already know it cannot be strictly positive). Then, by (3),

X; i j P /g'(x)>0Vx (4)

We will now show that this contradicts the Slater condition. Notice that
because p; < 0 for all /, and not all the p/s can be zero, there is at least one k
such that pk < 0. Next, let x' be a point such that gj(x') > 0 for all / (this point
exists by the Slater condition). Then (4) cannot hold for X' (because Pkgk(x') <
0 and^^(.t;') < 0 for ally ^ k, the sum of these terms must be strictly negative),

(vii) Define A* by

4 = 1 and X*j=^->Q for/ = l , . . . ,c
Po

Then, dividing both sides of (3) by p0 < 0 (which reverses the inequality), we
obtain

/(x*)>/« + Yj=1^g'(x) for any x (5)

Moreover, with x = JC*, (5) implies that
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and in fact

because g;(x*) > 0 and Xf > 0 for all /. For the same reason, each one of the
terms of this sum must be nonnegative (i.e., XJg(x*) > 0 \/ /) , but if any of them
is strictly positive, the equality in (6) cannot hold. Hence, it must be that

Using (5) and (6), we can now write

£(**, A*) = f(x*)+A*Tg(x*) > f(x)+A*r gix) = £(x, A*)

for any x. That is, x* maximizes £(x, A*). •

Theorem 1.23. Consider the problem (RK-T): maxx{f(x); g(x) > 0J. Assume
that there exist vectors x* e Rn and X* e R+ such that x* is feasible (i.e.,
g(x*) > 0), and

f(x*) + X*Tg(x*)Zf(x) + X*Tg(x)Vx (1)

)*g(x*)=0 for each j = 2,...,c (2)

Then x* is an optimal solution to (P.K-T).

Notice that nothing is said about the concavity of the objective and con-
straint functions, or about a constraint qualification.

Proof We want to show that x* maximizes / subject to the constraints
g(x) > 0. By assumption, x* is feasible. By (1),

for all x, but because A*rg(x*) = 0, by (2), we have

f(x*)>f(x)+X*Tg(x)

for any x. Finally, because g(x) > 0 for all feasible points and A* > 0, we have
A*rg(x) > 0 for all feasible x, and therefore

for all x with g(x) > 0; that is, x* solves (P.K-T). •

2. Comparative Statics and Value Functions

Let us now reintroduce the parameters into the analysis and consider the
following family of nonlinear programming problems:
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max/(*, «) (P. a)
xeC(a)

For given values of the parameters a0, we can solve (P. a) for the optimal
values x* of the choice variables (assuming a solution exists). A change in
a can then be expected to lead to a new optimal solution. Solving the
problem for each value of the parameters, we construct its solution
correspondence,

S(a) = arg max /(a, x)
xsC(a)

and substituting S( ) into the objective function, we obtain the problem's
value function:

V(cc) = max /(a, x) = /(A;*, OC\ where x* e S(a)
xeC(a)

Notice that V() is always a well-defined function (i.e., it is single-valued even
if S(a) is not) because all maximizers x in S(a) yield the same value of
the objective function by definition. In fact, S( ) and V() are related by the
following expression:

S{a) = arg max /(a, x) = {x e C{a)\ f{x9 a) = V{a)}
xeC(a)

In the first part of this section we will establish an important theorem that
gives sufficient conditions for the solution of (P.a) to change continuously
with the parameters. We will then strengthen these conditions in order to
ensure that the solution correspondence S(a) is (at least locally) a well-
defined and smooth function x* =x(a), and we shall develop a method for
analyzing the comparative-statics properties of this function. In the remain-
der of the section, we will review some useful results on value functions.

(a) The Theorem of the Maximum

Theorem 2.1. Berge's theorem of the maximum. Given sets X c Mn and
QCRP

\ let f;XxQ —>R be a continuous function, and C:£2—>—>X a
compact-valued and continuous correspondence, and consider the parame-
terized maximization problem

Then the value function

maxf(x,a)
xeC(a)

V(a) = max f(x, a) (1)

is continuous, and the solution correspondence S:i2 —>—» X,
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302 Static Optimization

S(bcj = argmax = fx e Cfoc); f(x, a) = V(a)} (2)
xeCfo)

is nonempty, compact-valued, and upper-hemicontinuous (uhc).

Proof. Fix some ae O. By assumption, the set C(a) is nonempty and
compact, and/(-, a) is continuous. By the extreme-value theorem (Theorem
8.22 in Chapter 2), /( ) achieves a maximum in the set C(a), and S(a) is
nonempty. Moreover, because S(a) is a subset of the compact set C(a), it is
bounded. We will now show that it is also closed and therefore compact itself
(by Theorem 8.14 in Chapter 2).

Consider a convergent sequence of maximizers for the given a, {xn}, with
xn e S(a), and let x be the limit of this sequence. We want to show that
x e S(a), that is, that S(a) is closed (see Theorem 4.13 in Chapter 2). Now,
because C(a) is closed by assumption, and {xn} is contained in it, it follows
that x e C(a) (i.e., that x is feasible). Notice also that V(a) =f(xm a) for
all xm because all xn are maximizers. Because /( ) is continuous, it follows
that f(x, a) = limn_^ f(xn, a) = V(a) (i.e., that x is also a maximizer). Hence,
x e 5(a), as was to be shown, and we conclude that S(a) is compact.

Next, we show that S is upper-hemicontinuous (uhc). Because S has just
been shown to be compact-valued, we can use the sequential characteriza-
tion of upper hemicontinuity (Theorem 11.2 in Chapter 2). Fix a, let {«„} be
an arbitrary sequence with limit a, and choose a companion sequence {xn}
with xn e S(an) c C(cî ) for each n. To establish that S is uhc, we have to
show that {xn} has a convergent subsequence with limit in S(a).

Because C() is uhc, there exists a subsequence \xnk e S((Xnk) c C(Onk)} con-
verging to some point x e C(a). Next, let z be an arbitrary point in C(a).
Because C( ) is also lhc, {<4j has a companion sequence fz%; zHk e C(ank)}
that converges to z (by Theorem 11.3 in Chapter 2). Now, because xnk is
optimal for ank, whereas znk is only assured to be feasible, we have f(xnk ,(Xnk
^•f(Znk, ttnk) for each k. Taking limits of both sides of this inequality, the con-
tinuity of/( ) implies that/(x, a) >/(z, a). Because z was an arbitrary feasi-
ble point, it follows that x is a maximizer of / in C(a) (i.e., that x e S(a)).
Hence, 5( ) is uhc.

Finally, we show that the value function is continuous. For this, we can use
the fact that the composition of two uhc correspondences is uhc (Theorem
11.13 in Chapter 2). Notice that V( ) can be written in the form

V(a) = max /(*, a) = f(S(a\ a)

where S(a) is the set of maximizers for a. Hence, V( ) is the composition of
a continuous function /( ) and a uhc correspondence S( ) . Because a con-
tinuous function can be considered a uhc (single-valued) correspondence, it

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:26:52 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.008

Cambridge Books Online © Cambridge University Press, 2013



Comparative Statics and Value Functions 303

follows that V( ) is uhc. But we also know that V( ) is single-valued, and this
implies that it is a continuous function. •

The maximum theorem says that the set of maximizers and the value of
the problem change continuously with the parameters provided the objec-
tive function is continuous and the constraint correspondence is compact-
valued and continuous. Of these conditions, the one most difficult to check
is the last. Our next result shows that the constraint correspondence in stan-
dard Kuhn-Tucker problems is continuous under certain assumptions. The
strategy of the proof can be adapted to establish the continuity of corre-
spondences in some other cases of interest.

Theorem 2.2. Given sets XczRnand £2czRp, where X is convex, let
g(x, a) :x Q —> R be a continuous function that is concave in x for given a
for all i = 1,. . ., c, and define the correspondence C:Q —»— » X by

C(a) = {XE X; gl(x,a)>0\/i = l,...,c}

Let C(<x°) be compact, and assume that there exists some point x' e C(o?) such
that g(x', a°) > 0 for all i; then C( ) is continuous at a0.

In the proof of Theorem 2.2 we will make use of the following two lemmas.
We will prove both of them under the assumption that there is a single con-
straint (c = 1) and leave the extension to the general case as an exercise.

Lemma 2.3. Under the assumptions of Theorem 2.2, the set

C£(a°) = {xeX; g1(x,a°) +z>O for i = l,... ,c}

is compact for all £>0.

Proof. Assume there is a single constraint of the form g(x, a) > 0, and fix
some arbitrary e > 0. Then C£(a°) is a closed set because it is the inverse
image of the closed set [-£, °°) under the continuous function g(% a0). To
show that C£(a°) is bounded (and therefore compact), we will proceed by
contradiction.

Suppose Ce(a°) is unbounded. Then there exists a sequence {*„}, with
xn e Ce(a°) for all n (i.e., with g(xn, a

0) > -e), such that {\\xn\\} -> <*>. We know
that there exists some x' e C(a°) such that g(x\ a°) = m > 0. Observe that
there exists some A e (0,1) such that

( l - A ) m - t e > 0 (1)

(it is enough to choose 0 < X < ml(m + e) < 1). We will use this X together
with x' and {xn} to construct a sequence {yn} of points in C(a°) that diverges
to infinity in norm, contradicting the assumed boundedness of C(a°).
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Let

Then, by the concavity of g( ) in x, and using (1), we have

g(yn,a
0) = g{(l-X)x' + Xxn,a

0)>(l-X)g(x',a°)+Xg{xn,a
0)

>(l-A)ra-A£>0

Hence yn e C(oP) for all n. On the other hand,

because {\\xn\\} —> °°. This establishes that C(a°) is unbounded, contradicting
our assumptions. •

Lemma 2.4. Under the assumptions of Theorem 2.2, for every e>0 there
exists some h > 0 such that C(oc) c Ce(a°) for all a e B8(a°).

Proof. By contradiction. Suppose the result does not hold; then there exists
some e > 0, a parameter sequence {(4} —>a°, and a companion sequence {xw},
with XN e C{oCn) and XN g Ce(a°) for all n. We have, then,

£(*„,<*„)>0 (1)

and

g{xn,a°)<-e (2)

for all n. On the other hand, we know that there exists some point x' such
that

g(x\a°)>0 (3)

and this implies, by the continuity of g(x, •) and the fact that {an} —» oP, that
there exists some N such that

g(x',an)>0Vn>N (4)

Using the continuity of g(-, a0), (2) and (3) imply that for each n there
exists some point yn of the form

yn=(l-Xn)x' + Xnxn9 with An e(0,1) (5)

such that

g(yn,a°) = -e (6)

Hence yn e Ce(a°) for all n. Moreover, the concavity of g{ ) in x implies that

g(ymccn) = g((l - K )x'+Xnxn, an) > (1 - Xn )g(x\ an)+Xng{xn ,an)>0 (7)

for all n> N, and it follows that
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yn eC(an)\/n >N

Now, because {yn} is contained in Ce(a°) and this set is compact by Lemma
2.3, it follows (by Theorem 8.5 in Chapter 2) that this sequence has a con-
vergent subsequence [ywj, with limit y in Ce(oP).

Finally, consider the limit of this subsequence. By (6) and the continuity
of g( ), we have

g(y, a°) = lim g(ynk, a
0) = -e

k—>°°

On the other hand, (7) implies that

v,a°) = limg(ynt,a)>0

which contradicts the previous statement. •

Proof of Theorem 22

• Upper hemicontinuity: Fix some e > 0. By Lemmas 2.3 and 2.4 there exists some
8> 0 such that C(a) is contained in the compact set Ce(a°) for all a e B$(a°).Thus,
C(a) is bounded for all ae B^oP). Moreover, these sets are all closed, because
they are inverse images of the closed set [0, «>) x . . . x [0, <») under a continuous
function. Hence, C(a) is compact for each ae Bs (a°).

Because the correspondence C( ) is compact-valued in B^a°), to establish its
upper hemicontinuity at a0 it suffices (by Theorem 11.2 in Chapter 2) to show
that given any sequence {oCn} in #5(a°) converging to a0, every companion
sequence {xn}, with xn e C(an) for each n, has a convergent subsequence with limit
in C(a°).

Let {an} —> a0 be contained in B^a°), and consider an arbitrary companion
sequence {xn}, with xn e C(an) for each n (i.e., g*(jt a,,) > 0 for all i and n). Because
C(an) e Ce(a°) for all n, \xn) is contained in the compact set C£(a°) and therefore
contains a convergent subsequence {;tnj, with limit x in Ce(a°). Hence f(xnfc, 0̂ )̂}
—> (x, a0), and by the continuity of g( ) it follows that

gl(x,a°) = \img\xnk,ank)>0
k-

for all /. This implies that x e C(o°), as was to be shown.

Lower hemicontinuity..We will prove the result under the assumption that
there is a single constraint (i.e., c = l).The extension to the general case is straight-
forward.

Let {an} —» a0, and consider an arbitrary point x e C(a°). We want to show that
there exists a companion sequence {xn; xn e C(an)} that converges to x. Notice that
because we are concerned only with the limit of this sequence, we can define a
finite number of its initial terms arbitrarily.

We will consider two cases in turn.
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• Case (i): g(x, a0) > 0. Because g( ) is continuous, there exists some e > 0 such
that

g(y,a)>0\f(y,a)eBe(x,a°) (1)

Consider the sequence {(x, an)}. Because {(x, an)} -» (x, a0), there exists some N
such that (x, an) e Be(x, a0) for all n > N. By (1), this implies that

g(x, aM) > 0 V n > N

(i.e., that x e C(an) for all n > N). Hence, we can construct the sequence {xn} as
follows:

fx if n>N
an arbitraryyn eC(an) ifn<N

Notice that by construction {xw} —» x and xn € C(an) for all n, as we wanted to
show.

• Case (ii):g(x, a0) = 0.We know that there exists some x' such that g(x', a0)>0 and
that g() is concave in x for given a.

Hence, the set

C(a°) = {xsX;g(x,a°)>0}

is convex, and it follows that the line segment [x, x'] is contained in C(a°). More-
over, for any point in (x, x7),

xx =(l-X)x + Ax\ with X e (0,1) (1)

the concavity of g(-, oP) implies that

g(x\a°) > (1 - X)g{x,a°) + Xg(x\ a0) > 0 (2)

Consider a sequence of points of the form (1), {yk} c (x, x'), such that

\\yk-x\\<l/k

for each positive integer k. (To obtain such a sequence, it is enough to choose 0
< Xk < l/(fc||x' - x||) in (1).) Observe that by construction {yk} —> x and that g(yk,
cP) > 0, by (2). This last expression implies (by the continuity of g(yk, •) and the
fact that {oCn} —> 0) that for each given k there exists some positive integer nk such
that

g(yk,an)>0\/n>nk (3)

Notice, moreover, that we can choose nk as large as we want and that, in particu-
lar, we can choose it so that nk > nk_x for all k.

We will now construct the desired sequence {xn} as follows: For n < nu let xn be
some arbitrary point in C(an); for nt < n < n2, put xn = yu and, in general, for nk <
n < nk+i let xn = yk. Because xn e C{(Xn) by construction (see (3)), it only remains
to show that fx n )
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Fix some arbitrary e > 0. Then there exists some integer M such that IIM < e.
We will show that for all n>nM we have lbtn-xll<£. Let n>nM; then n lies
between nk and nk+1 for some k> M.
Hence,

xn = yk and \\xn - x\\ = \\yk - x\\ < l/k < l/M < e

which establishes the theorem. •

Problem 2.5. Extend the proof of Lemmas 2.3 and 2.4 to the case of several
constraints.

Problem 2.6. We will give an alternative proof of the lower hemicontinuity
of C( ) under the assumptions of Theorem 2.2.

(i) Assume first that there is a single constraint. We will construct a sequence {xn}
of the form

= (x ifx eC(an\ i.e., if g(x,an)>0
\xneC{an)s.th.g(xn,an) = 0 ifg{x,an)<0

for n larger than some JV, and set xn equal to an arbitrary point in C(an) for n
< N. To set N, recall that by assumption there exists a point x' e C(a) such that
g(a, x') > 0. Because {«„} -> a and g{ ) is continuous in a for given x, there is
some N such that g(x\ an)>0 for all n> N. Use the continuity of g(% On) to
show that for n>N we can choose xn=(1-X^)x + X^c' for some Xn e (0,1)
whenever g(x, an) < 0.

(ii) To complete the proof we have to show that {xn} —* x. Suppose first that there
exists some integer M such that g(x, On)>0 for all n> M. Then, according to
(1), we have xn = x for all n > M, and the sequence clearly converges to the
desired point. If this is not the case, then {a,,} must have a subsequence {ani}
with the property that g(x, an/) < 0 for all nk, and because g() is continuous and
{anj -> a, we have:

lim g(x, ank) = g(x, a) < 0

Because x e C(a) implies g(x, a) > 0, moreover, it must be the case that

g(x,a) = 0 (2)

To show that [xn = (1 - K)x + X^c'\ -> JC, consider the sequence {/y, and
notice that {xn} ->xif and only if {/y -> 0. Assume that {Â j -/> 0, and use the
concavity of g( ) in x to obtain a contradiction,

(iii) Extend the proof to the case of several constraint functions. •
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The following problems show that the upper hemicontinuity of C(a) can
be established under other sets of assumptions.

Problem 2.7. Given sets I c Rn and i] c Rp, let g'(x, a):Ix Q —> R be
a continuous function for all / = 1 , . . . , c, and define the correspondence

; \\x\\<B andgi(x,a)>0\/i = l,...,c}

Show that C() is uhc at each a.

One of the crucial steps in the proof that the correspondence defined in
Problem 2.7 is uhc is establishing that given an arbitrary sequence of para-
meters {On} —» a, any companion sequence of feasible choices {*„}, with
xn e C(an) for each n, has a convergent subsequence. The desired result then
follows easily by the continuity of the constraint functions gl(). In the pre-
ceding problem, the existence of such a convergent subsequence was guar-
anteed by the assumption that the constraint set was contained within a
"fixed" bounded set for all parameter values. The following problem shows
how this assumption can be relaxed, at the expense of introducing additional
assumptions on the constraint functions.

Problem 2.8. Given sets I c R " and £2 c Rp, with X x Q convex, let
gl(x, a):XxQ —> R be a continuous and concave function (in (x, a)) for
all i = 1 , . . . , c, and define the correspondence C:Q —»— » X by

C(a) = {xeX; g'(x,a)>0\/i = l,...,c}

Fix a value a0 of the parameter vector and assume that C(oP) is bounded.
Let {oQ be an arbitrary sequence converging to a0, and consider a compan-
ion sequence {xn} with xn e C{oC) for each n. Show that {xn} is bounded.

Hint: By contradiction. Suppose {xn} is unbounded. Then it has a sub-
sequence that diverges to infinity in norm. To simplify the notation,
assume that the sequence itself diverges in norm (i.e., that {\\xn\\} —> °o). Con-
sider the sequence {Xn} = {{xm oQ]. Because {\\xn\\} -» °°, it follows that
{\\Xn\\} - » oo.

Construct a new sequence {Yn} by "projecting" {Xn} onto the boundary of
a ball i n Z x l i whose interior contains the set C(o°) x {a0}. The resulting
sequence will be bounded and will therefore have a convergent subse-
quence. Take the limit of this subsequence and seek a contradiction.

Problem 2.9. For each a and each e> 0, define the set Ce(a) by

C£(a) = {xeX;gi(x,a)-e>OVi=:l,...,c}
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Show that, under the assumptions of Theorem 2.2, for every e > 0 there exists
some 5> 0 such that C(a) 2 C£(a°) for all ae Bs(a°).

Notice that if e is sufficiently large, Ce(a) will be empty, but the result still
holds, because the empty set is a subset of every set by convention.

(b) Comparative Statics of Smooth Optimization Problems

We are often interested in determining how the behavior of an agent will
vary in response to changes in some of the parameters that describe his
"environment." For example, how would a change in the price of a certain
good affect its demand by an optimizing consumer? Mathematically the
problem reduces to that of determining the signs of the partial derivatives
of the decision function,

x(a) = argmaxfix,a)
xeC(a)

with respect to the parameters dxf/dak).
In this section we discuss the traditional method of approaching this

problem. Our assumptions will ensure that x{ ) is a differentiable function
defined implicitly as the solution to a system of equations - the first-order
necessary conditions (FONCs) for the problem. Hence, the method dis-
cussed in Chapter 5 can be applied. After checking that the conditions of
the implicit-function theorem (IFT) hold, we differentiate the first-order
conditions implicitly with respect to the parameters, solve for the partials of
interest, and try to sign them with the help of the sufficient conditions for
an optimum.

In order for this method to be applicable, we need to impose the follow-
ing assumptions on the optimization problem:

(i) /( ) and g( ) are C2 functions. Because we need to differentiate the FONCs,
which involve first derivatives of/and g, these functions must be C2 for x{) to
beC1.

(ii) The solution to the programming problem is a regular maximum (i.e., it satisfies
the sufficient conditions for a strict local maximum). This assumption ensures
that the matrix obtained by differentiating the system of FONCs with respect
to the choice variables x will be invertible, thus allowing us to use the IFT, and
it will also be helpful when it comes to signing the comparative-statics partials.

Consider the unconstrained maximization problem

max/(x, a) (P)
X

where / is a C2 function of n variables, and fix the vector of parameters at
a0. Then the first-order condition for a maximum,
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Dxf{x,a°) = 0 (1)

is a system of n equations in the unknown optimal values of the n instru-
ments. Assume that x° is a regular maximizer of / for a0, that is, a solution
of (1) such that the Hessian matrix of/evaluated at (JC°, a°),H = D2f(x\ a0),
is negative definite. Then

DJ(x\a°) = 0 and \H\ = \

That is, the conditions of the IFT hold at (x°, a0).3 Hence, the solution
mapping for the maximization problem, x* = x(a), is locally a well-defined
and smooth function. Substituting x( ) into the first-order conditions, we
obtain the identity

DJ[x(ala] = 0 (2)

Differentiating with respect to a,

D2
xf{x\a°)Dx(a°)+Dxaf(x

0,a°) = 0

and solving for Dx(a°),

Dx(a°) = -[Dlf{x\ aQ)\lDxaf{x\ a0)

Finally, using Cramer's rule,

dxf = \Ht\
dak \H\

where \Ht\ is the determinant of the matrix obtained by replacing the ith
column of the Hessian with the kth column of Dxaf(x°, a0), that is, the par-
tials of the form (c?f(x°, cP)/dXjdak) for ; = 1,...,n. Notice that the sign of
\H\ will be determined by the assumption that the Hessian is negative
definite, so we only have to worry about the sign of I//J.

4

A similar procedure will work for the parameterized Lagrange
problem

max{/(x, a); g(x, a) = 0} (RL)
X

where /and g are C2 functions. When a = a0, the Lagrangian for this problem
is

£(x,X;a°) = f(x,a°)+XTg(x,a0)

The first-order conditions for a maximum give us a system of n + c equations
in the unknowns (x, X):

(1)
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Assume that x° is a regular maximum off(x, a0) subject to g(x, a0) = 0. Then
(1) holds at x°, and

hTD2x£{x\ A°; a°)h < 0 V h e Rn s.th. Dxg(x°, a°)h = 0

implying that

D2£(x°,X°;a0) Dxg(x°,a°)T „
\H\ =

Dxg(x\a°) 0

Now, the bordered Hessian \H\ is the same as the Jacobian of endogenous
variables of the system (1). We can therefore apply the IFT to the system of
first-order conditions to obtain

dxf
dak \H\

where the sign of \H\ is known.
For the Kuhn-Tucker problem, we have one additional complication. At

an optimal solution for a0, some of the constraints will be active, and others
inactive. Now, if a small change in a does not change the set of binding con-
straints, we can proceed as in the Lagrange case, working with the active
constraints and ignoring the inactive ones. At certain points, however, a small
perturbation of the constraints may cause some previously active constraint
to become inactive, or vice versa, giving rise to a "change of regime." At
such transition points, the solution mapping x(a) may not be differentiable.
Hence, we have to be a bit more careful and consider all the possibilities
that may arise in different regimes.

Problem 2.10. An agent consumes two goods, xx and x2, with prices px and
p2? respectively. Her utility function is of the form U(xu x2) = a(xf + jcf), with
a < 1. Verify that U( ) is strictly concave. Derive the demand function of the
agent. In what direction does the demand for good 1 change if there is an
increase in the price of good 2?

Problem 2.11. A competitive firm maximizes profits, U(x) = pf(x) - H>X,
taking as given the price of its output p and the vector w e Rn of factor
prices. Assume that the production function/is C2 and strictly concave, with
positive but diminishing marginal products (ft > 0,fu < 0, i = 1,. . . , n).

Write the first-order conditions for the firm's problem, and apply the IFT
to the resulting system to show that the demand for each factor is a decreas-
ing function of its price (i.e., that dxfldwt < 0).
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(c) Value Functions and Envelope Theorems

The value function V:£l —> JR. for a maximization problem gives the
maximum attainable value of the objective function for each value of the
parameters:

V(a) = max{/(x; a); x e C(a)} = /(x*, a\ where x* e S(a)
X

As an illustration, consider the value function for an unconstrained maxi-
mization problem and refer to Figure 7.5. For each particular value of x, we
can plot/as a function of the parameters alone. This yields a family of curves,
some of which are shown in Figure 7.5. Graphically, the maximum-value
function corresponds to the upper "envelope" of this family of curves.

Functions of this type are commonly found in economic theory. In general
terms, it is clear that the maximum payoff available to a rational agent is a
function of the "environment" she faces, as summarized by the vector of
parameters a. An example of a maximum-value function that we will
encounter later is the indirect utility function

Y(p, y) = max{£/(x) s.t. px < y} = U[x(p9 y)]
X

which gives the maximum utility attainable by a consumer as a function of
the prices (p) she faces and her income (y). Clearly, this is the utility obtained
by consuming the optimal bundle, as given by the demand function x(p, y).

In this section we will review some properties of value or envelope func-
tions that play an important role in microeconomic theory. Then we will

f(xi,a)

f(x,a)

f(x3/a)

Figure 7.5. A maximum-value function.
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establish some results that will allow us to relate the derivatives of the value
function to those of the underlying objective and constraint functions. These
so-called envelope theorems provide a convenient way to establish some
important relationships in microeconomic theory (e.g., Roy's identity, Shep-
hard's lemma). These results, in turn, can be used to derive some basic
comparative-statics results concering demand and supply functions from the
curvature properties of the value function. Somewhat surprisingly, this
rather roundabout approach to comparative statics often turns out to be
more convenient than the traditional route via the IFT and implicit differ-
entiation of the first-order conditions.

We begin with two results that provide sufficient conditions for the con-
cavity or convexity of the value function.

Theorem 2.12. Concavity of the value function. Consider the following
problem and the associated value function:

V(a) = max{f(x;a); g(x;a)>0}
x

Suppose the objective function f is concave in (x, a), (i.e., in both parameters
and decision variables) and that all the constraint functions gjf ) , j =1,• • •, c,
are quasiconcave. Then Vf ) is concave.

Proof Take two arbitrary values of the parameter vector, a' and a", and
let xf - x(a') and x" = x(a") be the corresponding optimal choices of x. To
establish the concavity of V( ) we need to show that

(1 - X)V(a')+XV(a") < V[(l - X)a'+Xa"\

for any X e (0,1).
Consider now the pair (xx, ax) defined by

xx =(l-X)x' + Xx" and ax = ( 1 - X)a' + Xa"

and observe that, in principle, xx ^ x(ax), that is, xx is not necessarily optimal
for a \

We begin by showing that xx is feasible for ax. Because x' and x" are
(optimal and therefore necessarily) feasible for a' and a", we have, for
each /,

gj{x\a')>Q and g'{x",a")>Q (1)

By the quasiconcavity of gj and (1), we have

gi(xx, ax) > min {g'{x\ a% g*{x"9 a")} >0

so xx is feasible for ax.
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314 Static Optimization

Next, consider the following chain of inequalities:

V(ak) = f[x{ax
\ ax]> f(x\<z A) >(1 - X)f[x(a% a'}+ Xf[x{a"\ a"]

= (l-X)V(a')+XV(a")

The first inequality holds by the observation that xl is not necessarily optimal
for a\ and the second holds by the concavity of/.The equalities are all true
by definition. •

Unfortunately, the objective and constraint functions we find in consumer
and producer theory are typically not concave jointly in decision variables
and parameters. The next theorem, requiring weaker assumptions, will be
more useful in applications.

Theorem 2.13. Convexity of the value function. Consider the following
problem and the associated value function:

V(a) = max{f(x;a);g(x)>0}

where a e Q a convex set. (Note that the parameters do not enter the con-
straint function.) If the objective function is convex in the parameters a for
any given x, then V( ) is convex.

Problem 2.14. Prove Theorem 2.13.

We now consider the effect of a parameter change on the maximum payoff
attainable by an optimizing agent. For a start, assume that the agent maxi-
mizes f(x\ a0) with no constraints, and suppose that the assumptions of the
preceding section hold. Then the decision rule for the problem is a well-
defined and differentiable function x(a) in some neighborhood of a0, and
substituting this function into /( ), we obtain the value function

Differentiating with respect to a,

That is, a small change in the value of the parameter vector will affect the
value of / in two ways: directly, because / is a function of a, and indirectly,
through the induced change in the optimal values of the choice variables.
On the other hand, the first-order conditions for the problem, Dxf(x°; a0) =
0, ensure that the marginal gain from small changes in the values of the
instruments will be zero when we start from an optimum. Hence, (1) reduces
to
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(a°) = Daf(x°,a°)

that is, we need consider only the direct effect. We have proved the follow-
ing result.

Theorem 2.15. Envelope theorem for unconstrained maximization. Let
f(x, a) be a C2 function, and let x°be regular maximum of f for a0. Then

V(a) = max i(x; a) = f [x(a), a]
X

is differentiate at a0, and D V « ) = Daf(x°, a0).

We now show that a similar result holds for the Lagrange problem. The
only difference is that in order to take into account the effect on the con-
straints of the parameter change, we have to differentiate the Lagrangian,
rather than just the objective function, with respect to the parameters.

Theorem 2.16. Envelope theorem for the Lagrange problem. Let

V(a) = max {f(x; a); g(x, a) = 0}
X

where f and g are C2. If x° is a regular solution of this problem for a0 (i.e.,
satisfies the sufficient second-order conditions for a strict local maximum),
then V is differentiable at a0, and

DV(bc°j =D«£(x°, a0) =D«f(x°, a°) + A?TDag(x°, a0)

Proof Differentiating the Lagrangian function

£(x\ao) = f(xo,a0)+XTg(x°,a°) (1)

we obtain the first-order conditions for the problem:

Dx£(x, a°) = DJ(x, a°) + XTDxg(x, a°) = q (2)

Dx£(x,a°) = g{x,a°) = q (3)

Under the assumptions of the theorem, the decision rule for the problem
is a well-defined and differentiable function. Substituting it into the objec-
tive function, we recover the value function

V(a) = f[x(a),a]

Differentiating V( ) with respect to the parameters, and using (2),

DV(a°) = Daf(x°, a°)+Dxf{x°; a°)Dx(a°)

= Daf(x°, a0) - XTDxg(x°, a°)Dx(a°) (4)

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:26:52 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.008

Cambridge Books Online © Cambridge University Press, 2013
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Substituting the decision rule into (3) and differentiating with respect to a,

Dxg{x\aP)Dx{a») + Dag{x°9a0) = 0 (5)

Using this expression, (4) reduces to

(a°) = DJ(x
\a°)+XTDaf{x°,a0) •

As noted in the preceding section, the decision rule for a Kuhn-Tucker
problem may not be differentiable at points at which a regime change takes
place. The same is true of the value function.

To conclude this section, we will use the envelope theorem to provide a
rigorous basis for the intuitive interpretation of the Lagrange multipliers
as shadow prices of the constraints advanced in Section l(b). Consider a
version of the Lagrange problem in which the constraints are of the form
g'(x) + # = 0for;=l,...,c.

V(y) = max{/(x); g(x) + y = 0} (Ey)
X

By the envelope theorem, we have DV{f^) = A0, where A° is the vector of
Lagrange multipliers for the problem. Thus the Lagrange multiplier Xj tells
us how the maximum value of the program (given by the value function V)
changes with the corresponding constraint constant y,-. In other words, the
multipliers measure the "sensitivity" of the value function to changes in the
constraint constants.

3. Problems and Applications

Problem 3.1. An agent lives for two periods and has an endowment of one
unit of a homogeneous consumption good in the first period, and /units in
the second period. His utility function is given by

In ct + In c2

where ct is consumption in period L The agent can store any feasible quan-
tity of his first-period endowment for consumption at a later time and can
get an interest-free loan of up to [5 units of the good (i.e., s > -/?, and R = 1).

(i) Calculate the agent's saving function, ignoring the constraint s > -/?.
(ii) For what combinations of parameter values will the constraint be binding? In

what regions of the (/?, y) plane will we have an interior solution and a corner
solution? Write the agent's savings function, taking into account the constraint.

(iii) Write the maximum-value function for the problem as a function of % V{y).
Verify that V(y) is continuous at the point at which there is a regime change
(i.e., as we go from an interior solution to one in which the constraint is
binding). Is the value function differentiable at this point?

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:26:52 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.008

Cambridge Books Online © Cambridge University Press, 2013



Problems and Applications 317

(a) Profit Maximization by a Competitive Firm

Consider the problem faced by a competitive firm that produces a single
output y using a vector of inputs x. The firm takes as given input and output
prices (w, p) and maximizes profits, py - wx, subject to the feasibility con-
straint y </(x), where / i s a concave production function that describes the
firm's technology. We will require, moreover, that input and output be non-
negative and assume that the input vector x is bounded (e.g., by the overall
factor supplies available in the economy). Hence, ||x||<£ for some real
number B (or, if you prefer, x < e, where e is the vector of factor endow-
ments). Finally, we will assume that p > 0 and w > 0 (i.e., input prices are non-
negative, and at least some of them are strictly positive).

The firm's problem can be written

n;(p, W) = max{py - wx s.t. y < f(x\ (x, y) > 0, and ||x|| < B} (P)
x.y

and the problem's value function, /r(p, w), is the firm's profit function. To
simplify notation, let z = (y, -x) and q = (/?, w). Then profit is simply qz.

Under our assumptions, qz is a continuous function defined on a compact
set. Hence, (P) always has a solution. We will now study some properties of
the solution and value functions for the firm's problem under some addi-
tional assumptions.

Problem 3.2. Show that if / is strictly concave, then (P) has a unique solu-
tion for a given price vector q.

Hint: By contradiction, assume that there are two distinct optimal pro-
duction plans, z' and z'\ and show that we can construct a feasible plan that
will yield a strictly larger profit.

Problem 3.3. Under the assumptions of Problem 3.2, the firm's production
plans (i.e., its output level and factor demands) are well-defined functions
of the price vector q. We will show that these functions are continuous.

Fix a vector q° of prices, and consider a sequence of price vectors \qn)
convergent to q° and the corresponding sequence of optimal production
plans {zn}, with zn = z(qn) for each n. We want to show that {zn} converges to
z(q°) = z'.To establish this result, we will proceed by contradiction. Suppose
that {zn} does not converge to z'.

(i) Then {zn} has a convergent subsequence {znk}, with limit z° different from z'.
Explain why this is true,

(ii) Let {qnk} be the price subsequence corresponding to {znj. We have that

{qnk}->q° and {zBt}-*z° *z'=z(q°)
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Show that we arrive at the following contradiction: Given any price vector
qnk sufficiently close to q°9 z' is strictly better than the optimal plan {znj. Hint:
Use the fact that qz is a continuous function.

Under assumptions that guarantee the differentiability of the solution
function for the firm's problem, we have shown in Problem 2.10 that the
supply is increasing in output price, and the demand for each factor is
decreasing in its price. The following problem shows that comparative-
statics results can sometimes be obtained without differentiability
assumptions.

Problem 3.4. Consider two price vectors qx and q0 and the corresponding
optimal production plans z\ and Zo Because z\ is feasible but not necessar-
ily optimal for q0, it must yield a lower profit than Zo at this price vector.
Using this observation, show that for any i, Aqt Az/ > 0 (e.g., for the first com-
ponent of these vectors we have ApAy > 0, i.e., an increase in the price of
output must yield an increase in supply).

Problem 3.5. Show that the profit function 7t(q) is convex. Can you give an
economic interpretation of this property?

Problem 3.6. If the profit function is differentiable, the envelope theorem
implies that Dn(q) = z(g), that is, the derivative of the profit function at a
point is simply the optimal production plan (this is Hotelling's lemma). We
will show that the profit function is differentiable whenever /( ) is strictly
concave.

Fix a price vector q, and consider the behavior of the profit function as
we move away from this point. Using the fact that 7t(q) = qz(q), show that
for any change h in the price vector,

) (1)

h) (2)

Using (1) and (2), show that

h[z{q + h)- z(q)] >n(q + h)-n{q)- hz{q) > 0 (3)

Using this expression, show that n is differentiable at q and Dn(q) =
Z(q).

The next problem illustrates how the envelope theorem and the pro-
perties of the value function can sometimes be used to obtain comparative-
statics results.
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Problem 37. Suppose the profit function is C2. Using the convexity of 7t(q)
and the fact that Dn(q) = z(q), show once more that factor demand func-
tions are downward-sloping.

(b) Implicit Contracts

Consider the situation faced by a firm and a large number of workers who
are "associated" with it. The firm's production technology is of the form

y = xf(L)

where L is the level of labor input, and x is an exogenous productivity shock.
We will assume that the production function /( ) is strictly increasing and
strictly concave and that the productivity shock may be either high or low
(x e {xH, xL), where xH > xL), with probabilities qH, qL (qH + qL = 1).

For simplicity, we will assume that there is a continuum of unit measure
of identical workers, that is, an infinite number of workers, each of them rep-
resented by a point in the interval (0,1). Each worker is endowed with a
unit of divisible time that he can spend at work or in leisure. His utility is
given by

W(c,l-h) = U(c)+V(l-h)

where c is consumption (= income), 1 - h is leisure, and the functions U( )
and V( ) are strictly increasing and strictly concave.

Before the productivity shock is realized, the firm and its workers nego-
tiate a contract. Notice that there is no reason that the contract should
specify wage and employment levels that are independent of the value of x.
In fact, both workers and firms will find it advantageous to build some flexi-
bility into the contract (to allow them to take advantage of good production
opportunities or to share risks optimally among them), and they can do so
by conditioning payments and labor hours on contingencies observable by
all parties involved. Hence, if the realization of the productivity shock is
freely observable by both workers and firms, a contract will be a state-
contingent schedule C(x) specifying, for each possible state of nature x, the
fraction of the labor force that will be employed (n), the number of "hours"
each employed individual will work (/*), and the compensation to be paid to
each employed worker (ce) and laid-off worker (cM). Hence,

C(xi) = [ce(xi\h(xi),n(xilc
u(xi)] for i = H,L

(To simplify the notation, we will use h(xt) = hh etc.) We will further assume
that if layoffs are called for (i.e., if nt < 1 in some state), the workers to be
fired will be selected by lot, so that, ex ante, each worker faces the same
probability 1 - nt of being laid off in state /.
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It seems reasonable to assume that rational firms and workers should
agree on a Pareto-efficient contract (i.e., that they would not settle for a con-
tract if there were some feasible alternative that would make one of the
parties better off without making the other worse off). Assuming that the
firm is risk-neutral, that is, cares only about expected profits (e.g., because it
is owned by well-diversified investors), any such contract can be character-
ized as the solution to the following problem:

max En = ^fli xifi rtfo) - ntcf - (1 - nt )ct ] (P)

subject to

for some given Wo. That is, we maximize expected profits subject to the con-
straint that workers' expected utility not fall below some given level. (If
there is a competitive market in the background, we can interpret Wo, the
reservation utility of the representative worker, as the utility level guaran-
teed by the equilibrium contract available in the market, and we can think
of (P) as the problem faced by a manager who wants to maximize expected
profit subject to the constraint that his contract offer must be acceptable to
workers who would otherwise go elsewhere.) Alternatively, we could maxi-
mize workers' expected utility subject to the constraint that expected profits
not fall below some minimum level, and we would get exactly the same
results.

Problem 3.8. Show that the optimal contract involves no layoffs (i.e., nt = 1
for all 0-

Hint: Suppose we have a contract that specifies some layoffs in certain
states of nature. Then workers face a lottery between working and being laid
off in each of these states, and, being risk-averse, they do not like it. Show
that it is possible to construct another contract with no layoffs that will yield
the same profit in each state and will be strictly preferred by workers. A con-
tract featuring slightly lower pay will be acceptable to workers and strictly
preferred by firms. Does the argument rely in any way on the firm's risk
neutrality?

The preceding result allows us to simplify the optimal-contract problem.
Because workers are employed in all states with probability 1, there is no
loss of generality in specifying a contract simply as C(x) = [c(x), h(x)]. The
optimal-contract problem, then, can be written

max En = X ^ M ) " c«] (P')
subject to EW = Xiqi{U(ci) + V(l - h)} > Wo.
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Problem 3.9. We will now investigate some properties of the optimal con-
tract.

(i) Write the first-order conditions for (P'), and show that they imply the follow-
ing conditions:

cH = cL (efficient risk-sharing)

Xjf'(hj) = ~ ' for each i = H,L (efficient hours)
U (c,)

Interpret these two conditions,
(ii) Show that hH > hL (i.e., more hours are worked when productivity is high). Hint:

Suppose that hL > hH, and seek a contradiction using the first-order conditions,
(iii) Show that hH > hL. (By contradiction again, suppose hH - hL.)

So far, we have assumed that the realization of the productivity shock can
be freely observed by both parties. If this is not so, the contract design
problem becomes more complicated, and the need to provide incentives
to avoid cheating by the party with private information generates distor-
tions that prevent implementation of the first-best contract we have just
characterized.

For example, suppose that the shock x can be observed only by the firm.
(This may reflect, for example, the fact that firms have better information
about market conditions than their workers.) Then, hours and compensation
cannot be made contingent directly on the realization of x, but only on the
firm's announcement of the state (xa). In this situation, however, the firm
may find it advantageous to lie in some states. To prevent this, the contract
problem will have to incorporate additional constraints designed to force
the firm to tell the truth.

We will now explore the form these constraints must take. Given a con-
tract C(x) = [c(Xi), h{x)\ i = H, L], let U(xa I xt) be the firm's profit when the
true state is xt and xa is announced (so ha and ca are implemented). Then

U(xa\xi) = xif(ha)-ca

and the optimal strategy for the firm is to announce the state xa that will
maximize Tl(xa I xt). Notice that, given an arbitrary contract, there is no guar-
antee that the optimal announcement is the true state.

Problem 3.10. Show that under the first-best contract characterized in
Problem 3.9, the firm has an incentive to lie in one of the states. Which one?
Why?

This result implies that the first-best contract is not implementable when
there is private information. The second-best-contract problem (which char-
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acterizes the best feasible contract under the circumstances) must incorpo-
rate additional constraints to prevent cheating by the firm. This is achieved
by making truth-telling the profit-maximizing strategy in all states. Hence,
we require

niX i lx JZIIiX a lxjVi and \fa

This type of constraint is often called an incentive compatibility (or truth-
telling) constraint, for it ensures that the party with private information will
have an incentive to reveal it truthfully in all states.

The optimal-contract problem with imperfect information can be written

c] (P")
c,h

subject to

U(xL \xL) = xLf(hL)-cL> xLf(hH)-cH = U(xH | xL)

= xHf(hH )-cH> xHf(hL )-cL= Tl(xL | x) H)

The following problems explore the implications of the additional con-
straints and the nature of the distortions they induce. Notice that in our case
the incentive compatibility constraints must make it unprofitable for the firm
to announce a high state when productivity is actually low. To achieve this,
such a strategy must be penalized in some way. One obvious way to do this
is to force the firm to pay a higher wage when it announces the high state.
This, however, involves an efficiency cost, for full insurance can no longer
be offered. As we will see, however, this is not the only inefficiency implied
by the incentive constraints.

Problem 3.11. Show that the incentive compatibility constraints, by them-
selves, imply that cH > cL and hH > hL. Hint: Rearrange, and add the two
incentive compatibility constraints.

Problem 3.12. Write the first-order conditions for (P"). Use them and the
preceding results in the following:

(i) Show that cH > cL and hH > hL Hint: Suppose not. Then two of the first-order
conditions imply XL = XH\ use this and the other first-order conditions to obtain
a contradiction, xL > xH.

(ii) Show that both incentive constraints cannot be binding at the same time. (If
they are, hH - hL, contradicting the previous result.)

Hence, precisely one incentive compatibility constraint must be binding.
Why?
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(iii) Show that the active incentive compatibility constraint is the one correspond-
ing to the low-productivity state.

Notice that, by (i), we have cH > cL, so the second-best contract does
not provide complete insurance for workers.

(iv) Show that the employment level is also distorted, but only in one state, (That
is, for the given ch compare the employment level in each state with the one
that would be implied by the efficient-hours condition, xtf{h) = V'(l -
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Notes

1 In fact, it is a bit stronger. Recall that negative definiteness of the Hessian is sufficient
but not necessary for concavity.

2 It can be shown that when we multiply a row of a matrix by a constant, the determinant
of the resulting matrix is equal to the constant times the determinant of the original
matrix.

3 Notice that the Jacobian of endogenous variables of the system of first-order conditions,
Dlf(x°, a0) is precisely the determinant of the Hessian whose negative definiteness we
are assuming. From the appendix to Chapter 6, the negative definiteness of this matrix
implies that its determinant will not be zero. In particular, we have that (-1)" \H\ > 0,
where n is the dimension of the Hessian matrix.

4 Notice that, in principle, there is no guarantee that dxfldak will have a "constant sign"
for all values of the parameters. Clearly, restrictions on the sign of the cross-partials
Dxaf(x, a) can be used to guarantee "monotone comparative statics." More general
conditions, not requiring differentiability, have been established for programming
problems in lattices. The interested reader is referred to the discussion of
supermodularity by Vives (1996, ch. 2).
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Some Applications to Microeconomics

The first part of this book has covered most of the mathematical tools
required for analysis of static economic models. In this chapter we will
discuss some applications of this material to a number of microeconomic
models. Our goal will not be to provide a comprehensive treatment of a set
of topics generally covered in the standard first-year graduate sequence in
microeconomics, but only to illustrate the usefulness of the techniques we
have developed and to introduce the reader to the general logic of model-
building in economic theory.

We began Chapter 7 with the observation that the "postulate of ration-
ality" - the assumption that individuals have well-defined and consistent
preferences and act accordingly - is central in (neoclassical) economics
as a source of regularity in individual behavior that makes prediction
possible, at least in principle. We then claimed that this postulate led
naturally to the modeling of individual decision-making as the outcome of
a constrained optimization problem, and we devoted a fair amount of time
to studying the "technology" required for solving such problems. Section 1
of this chapter backtracks a little. We consider a standard consumer and
discuss how his preferences can be represented by a binary relation and
how this relation can be used to construct a utility function. Section 2 then
analyzes the behavior of this consumer when he faces market-determined
prices for the commodities he wants to purchase with his (exogenously
given) income.

The first half of the chapter focuses on modeling the behavior of a single
agent under a set of restrictions imposed on him by his environment. To
understand the determination of most economic magnitudes, however, we
have to go one step beyond such single-agent models and ask what will come
out of the interactions of a number of (rational) decision-makers. This takes
us to the concept of equilibrium. Given an "economic game" played by a set
of agents, many outcomes are possible in principle. The heart of an economic
theory is a concept of equilibrium, a criterion that allows us to select a subset
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of these outcomes that can be considered to be more plausible, in some
reasonable sense.

"Equilibrium" literally means "equal weight," from the condition for bal-
ancing a bar on a pivot. The etymology of the word, then, suggests a balance
of forces inside the system that results in a state of rest unless some outside
force prompts a change. This interpretation carries over to economic models,
where an equilibrium typically corresponds to a situation in which no agent
has an incentive to change his behavior. The other key idea associated with
economic equilibrium is that of the compatibility of the actions of individ-
ually optimizing agents.

These two basic strands of the notion of equilibrium can be made opera-
tional in many different ways and with varying degrees of "strength." In this
chapter we will review some of the standard concepts of equilibrium in eco-
nomic theory. In Section 3 we consider an exchange economy populated
by a large number of price-taking rational consumers who interact with each
other through competitive markets, and we establish the existence and some
welfare properties of a Walrasian equilibrium in this setting. In Section 4 we
introduce some of the basic notions of the theory of games and discuss the
concept of Nash equilibrium. Finally, Section 5 will ask the reader to work
through some useful models of imperfect competition.

In all cases, our approach will be the same. Given an economic system
composed of a set of agents who interact with each other in a specified way
(a "game," for short), we will characterize the set of likely outcomes by con-
sidering two "subproblems" in turn:

(i) The individual decision problem. Assume that we have a game with well-
defined rules, and consider an individual player. Given the particular game,
there will be things that the agent controls and things he does not control.
As we have already argued, it seems natural to model the behavior of a ratio-
nal player as a constrained optimization problem. Hence, we will assume that
each agent behaves as if he maximizes his objective or payoff function by his
choices of the variables he controls, subject to whatever constraints are imposed
on him by the rules of the game, and taking as given the things he cannot
control. This problem yields as a solution a decision rule specifying the best
action for the agent as a function (correspondence) of the things he takes as
parameters.

(ii) The equilibrium problem. We still have to check that the optimal responses of
the different players are consistent with each other and the overall resources
of the system. Whereas the requirement of feasibility is generally straightfor-
ward, we have a considerable amount of latitude in specifying what degree of
consistency we require among the actions of the players. For example, in a com-
petitive equilibrium, "consistency" translates into market clearing, the require-
ment that each agent be able to sell or buy as much as he wants of each good
at the market price. An alternative notion of equilibrium, however, would allow
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for the possibility of rationing (i.e., for the existence of quantity constraints that
might prevent agents from buying or selling their desired quantities).

It is important to emphasize that these two "problems" are very closely
interrelated. Until we know what kind of game is being played, we cannot
say which behaviors are rational, nor can we even write down the individ-
ual's problem, because we do not know what he controls, what he must take
as given, and what constraints he faces. Similarly, unless we know how
individual players are behaving, it is impossible to write down a meaningful
equilibrium condition. Hence, the two problems must be written down and
solved simultaneously. On the other hand, thinking in terms of these two
separate problems is often a useful way to approach the question of what
will come out of the interactions of a group of rational individuals.

1. Consumer Preferences and Utility

This section discusses the representation of preferences by binary relations
and numerical functions. The reader may want to refer to Chapter 1 for some
background material on binary relations and ordered sets. Section (a) intro-
duces the concept of preference relation and discusses some properties that
such relations are commonly assumed to possess. In particular, the "consis-
tent preferences" half of the postulate of rationality is typically embodied
in the assumption that a preference relation is a complete preordering. The
other half ("consistent behavior") translates into the assumption that agents
choose undominated elements of the set of feasible alternatives. Additional
assumptions commonly made concerning preference relations capture ideas
like the desirability of commodities and the taste for diversification, or they
may be imposed for technical convenience.

Section (b) shows that a preference preorder can be conveniently repre-
sented by a numerical function, provided that certain regularity conditions
are satisfied. In Section (c) we strengthen these conditions to obtain a dif-
ferentiable utility function. The resulting model of individual behavior can
be analyzed using the methods developed in Chapter 7. This will be the
subject of Section 2.

(a) Preference Relations

Let X be a set, and consider an agent who must choose one of its elements.
The most natural way to represent her preferences over such objects is prob-
ably in terms of a binary relation. Intuitively, we can imagine selecting two
elements at a time from the given set and asking the agent which one she
prefers. Such a questionnaire would yield a pairwise ranking of alternatives
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that could be used, under certain assumptions, to construct an exhaustive list
of possible options ranked by their desirability. We can then imagine her as
figuring out which elements are feasible and then choosing the one that is
closest to the top of the list.

More formally, our experiment of repeatedly confronting the agent with
a choice between two elements of X can be used to construct a binary rela-
tion " > " i n Z x X. This relation will be the set of all pairs (x, y) of elements
of X such that x is weakly preferred to y by the agent (written x > y). A rela-
tion of this kind is called a preference relation.

In principle, then, there is no problem in representing preferences over
elements of an arbitrary set by a binary relation ">". The next question is
what kinds of properties we may reasonably assume ">" to possess. This
section reviews a number of assumptions commonly made about prefer-
ences and explores their meaning. Roughly, such assumptions come in two
different types. Some are meant to capture the idea of rational behavior, and
the rest are technical assumptions made so that it is possible to construct
models that can be analyzed using standard mathematical techniques. In
particular, it is convenient to make assumptions that will ensure that pref-
erences can be represented by a continuous or differentiable quasiconcave
numerical function. We shall see in the next section how such a representa-
tion can be constructed.

Returning to the preference relation, it is clear that "> " will be reflexive,
as any agent should be indifferent between x and itself (i.e., x > x). Next, if
the agent is "rational," we may expect that her preferences will be "consis-
tent." One way to formalize this is to assume transitivity, that is, if x is pre-
ferred to y, and y to z? then x is preferred to z. Notice that if this were not
true, the agent might be unable to make up her mind about which element
of the set she preferred (she could "cycle" from x to y, from y to z, and then
back to x), and the decision problem would not have a solution.1 Hence, the
"consistent preferences" part of the postulate of rationality will be formal-
ized by requiring that "> " be reflexive and transitive - that is, the preference
relation will always be assumed to be a preordering.

Like any preordering, a preference relation can be decomposed into
its symmetric and asymmetric components by defining the following two
subrelations:

x > y if and only if x > y and y i x

x ~ y if and only if x > y and y > x

(where y2 x means "not y > x"). We shall refer to "> " as the strict preference
relation (x > y means that x is strictly preferred to y), and to "~ " as the indif-
ference relation (x ~ y means that the agent is indifferent between x and y).
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A further assumption that is often made is that the preference preorder-
ing is complete, that is, that given any two elements x and y of X, the agent
can compare them and know whether she strictly prefers one of the ele-
ments or is indifferent between them. This looks innocuous enough, but it
implicitly requires some strong assumptions about the information available
to the agent. In particular, it presupposes that she knows exactly what alter-
natives are open to her - and that her knowledge of what each alternative
entails is precise enough that she can always tell which is better.

These assumptions have been criticized as being too strong, and weaker
alternatives do exist in the literature. For many purposes, however, they
seem reasonable enough. We will take the following axiom as the first half
of the postulate of rationality and see where it takes us.

Axiom 1.1. The preference relation ">" defined on the choice set X is a
complete preordering. This requires

(i) reflexivity: V x e X, x > x,
(ii) transitivity: V x, y, z G X, [x > y and y > z] => x > z, and
(iii) completeness: V x, y e X, either x > y or y > x or both.

Intuitively, if this axiom holds, we can picture the agent as having a com-
plete listing of the elements of X ranked by their desirability. If we restrict
her choices to some subset of X, all she has to do is choose the element of
this subset that is closest to the top of the list. That she behaves in this way
will complete our description of what we mean by rationality. We formalize
this as follows:

Axiom 1.2. Let X be the choice set, and C the subset ofX that contains the
alternatives available to an agent with a complete preference preordering
<ct" defined over X. The agent chooses a largest element x* ofC. That is, ifx*
is chosen, there is no y e C such that y > x*.

So far we have made no assumptions about the choice set X. It is conve-
nient, however, to impose additional structure on this set. For many pur-
poses, assuming that X is a normed vector space is sufficient. This allows us
to say, for example, that two alternatives, x and y, are similar or close to each
other. Once a notion of distance (a metric or, more generally, a topology) is
defined on X, it seems reasonable to require that similar alternatives not be
too far from each other in the consumer's preference ranking. This leads to
the following regularity condition.

Definition 1.3. Continuity. Let (X, d) be a metric space. We say that the pref-
erences represented by the preorder "> " are continuous if for any x in X,
the sets
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B(x) = {yeX:y>x} and W(x) = {yeX: y<x}

are closed in (X, d).

Here B(x) is the set of points of X that are weakly preferred to x by the
agent, and W(x) is the set of points that are weakly worse than x given the
consumer's preferences. Requiring them to be closed means, for example,
that if we consider a convergent sequence \yn) —> y of points all of which
are weakly better than x, then the limit of the sequence, y, is also weakly
better than x. It is easy to see that this condition is equivalent to the require-
ment that the set ">" be closed in X x X. Alternatively, the complement of
W(x), that is, the set of alternatives that are strictly preferred to x, is open.
Hence, if y is strictly preferred to x, any other alternative y' that is suffi-
ciently close to y (in terms of the distance function d( )) will also be strictly
preferred to x.

It is apparent that at this level of generality, the axioms of rationality
do not buy us much. Our two axioms amount to the assumptions (i) that
agents have consistent preferences over all available choices and (ii) that
they act accordingly. That is, people do what they like best - provided they
can. To get any predictions out of this structure, we clearly have to be more
specific about agents' preferences and about the constraints they face. In
general this can be done only with a more specific situation in mind, but we
can list two further assumptions that are useful in many situations. The first
one is that people prefer more to less. Hence, we introduce a new concept
that roughly captures the "greediness" that economists often assume of their
"agents."

Definition 1.4. (Strong) monotonicity. Let the choice space X be a subset of
Rn. Preferences are said to be (strongly) monotonic if

x>y =>x> y

In the context of standard consumer theory this means that given two
bundles x and y that are identical except for the fact that x has more of some
good, the consumer always prefers x. To some extent this is a matter of
definition: If a good is undesirable (a "bad"), we may consider the negative
of its quantity as a good, and the axiom holds. Weaker versions of monoto-
nicity are often used and suffice for most purposes. The idea, however, is the
same: Assumptions of this type often capture the view that agents pursue
their own self-interest. This may be thought of as specializing rationality to
selfish behavior, but it need not be so: There is nothing in the model that
rules out altruistic preferences.

Given continuity and some sort of monotonicity (possibly weaker than we
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are assuming), there is an interesting connection between the topological
and order properties of X. In particular, the indifference subrelation

I = {(x,y)eXxX;x~y]

turns out to be the topological boundary of ">," thought of as a subset of
XxX. The strict preference relation ">" is therefore the interior of ">".
This result will be useful later in connection with the concept of smooth
preferences.

Problem 1.5. Let ">" be a continuous and monotonic preference preorder
defined on a subset X of Rn. Show that d> = I = {(*, y) s X x X; x ~ y).

The last assumption we introduce is that preferences are convex, in the
sense that convex combinations of alternatives are preferred to "pure"
choices. In many cases this can be interpreted as capturing a taste for variety
or diversification.

Definition 1.6. Convexity. Let the choice space X be a convex subset of Rn.
Preferences are said to be convex if

x>y=* Xx+(l-X)y>yV Ae(0,l)

A stronger version of this property (strict convexity) requires that

x > y and JK*V=>AJC + ( 1 - X) y > y V X e (0,1)

Notice that in the definitions of monotonicity and convexity we have
required X to be a subset of a finite-dimensional Euclidean space. Although
more general choice spaces are often used, this is quite adequate for our
purposes in this section.

Problem 1.7. Let ">" be a convex preference preorder defined on a convex
set X. Show that the better-than sets induced by these preferences,

B(y) = {xeX;x>y}

are convex.

We close this section with a theorem which shows that it is possible to
obtain some results working directly with preference preorderings. On the
other hand, this probably is not the easiest way to proceed. The following
section will show that it is possible to represent a preference preordering by
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a real-valued function. Once this is done, we can use more standard mathe-
matical techniques to analyze models of individual choice.

Theorem 1.8. Let X be a subset of Rn. Let Q the feasible subset of X, be
compact and nonempty. Suppose the preference relation ">" is a complete
and continuous preorder. Then the set of largest elements

x(>,C)={xeC: x>yVy€C}

is nonempty. / / " > " is strictly convex and C is a convex set, then x(>, C)
contains a single element.

Proof. For each x, let B(x, C) = B(x) n C = {y e C: y > x] be the set con-
taining all feasible alternatives that are weakly better than x. Because B(x,
C) is the intersection of two closed sets, it is closed itself. Let xu ..., xn be
a finite collection of elements of C. Without loss of generality we can assume
that x\ S> Xi for all / = 2 , . . . , n. Hence, x1 e nf=1B(xh C), and it follows that
the collection of sets {B(x, C); x e C] has the finite-intersection property
(i.e., any finite subcollection has a nonempty intersection). By assumption,
C is compact, so every collection of closed sets with the finite-intersection
property has a nonempty intersection (by Theorem 8.13 in Chapter 2). In
particular, nX€CB(x, C) *• 0 , and because this set must be contained in x(>,
C), the latter is nonempty.

Finally, assume that preferences are strictly convex, and suppose we have
two distinct maximizers, x and x\ Then x - x\ and by the assumption that
preferences are strictly convex, any convex combination Xx + (1 - X)x\ with
X e (0,1), is preferred to both x and x'. If C is convex, moreover, such com-
binations are feasible. But then x and x' cannot be maximizers, and we have
reached a contradiction. •

(b) Representation by a Utility Function

Definition 1.9. A real-valued function Ul: X1 —> R is said to represent a
preference preordering {>,} defined on the choice set X1 of agent i if

Vx, v eX', x >, y<^> Ul(x) >f/'(y)

That is, Ul represents {>,} if and only if, given any two alternatives, the
function Ul( ) assigns a larger value to the one that is preferred by the agent.
We refer to the function U'( ) as the payoff, objective, or utility function for
agent L The subindex i is used in the definition to emphasize that different
agents typically will have different preferences, even over a common set of
alternatives; from here on, it will be omitted.
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A utility function provides a convenient tool for modeling the behavior
of a rational agent. Its advantage over the more primitive representation of
preferences discussed in the preceding section stems primarily from the fact
that functions are generally easier to manipulate than preorders. In par-
ticular, there is a well-developed theory of maximization for real-valued
functions that can be applied to choice problems once preferences are rep-
resented by utility functions.

It is clear that given a numerical function U defined on X we can work
back to a preference preorder. The converse statement is harder to prove
and requires some restrictions on X and ">,." A number of representation
theorems are available in the literature. We will state without proof a fairly
general theorem due to Debreu and then prove a weaker result using
monotonicity to simplify the proof.

Theorem 1.10. Representation of preferences by a numerical function (1), A
continuous preference preorder {>} defined on a convex subset Xofa sepa-
rable normed vector space can be represented by a continuous real-valued
function.

In fact, the theorem holds for separable topological spaces. A topological
space Y is separable if it contains a countable subset C whose closure is Y
itself (i.e., C = Y). Any Euclidean space E is separable, for example, because
the set of vectors with rational coordinates is countable and dense in E. Con-
vexity of X can be replaced with connectedness. The assumption of con-
nectedness, in turn, can be dispensed with if we assume that X is a perfectly
separable topological space (i.e., if it contains a countable class O of open
sets such that every open set in X is the union of sets in the class O). A
separable metric space is perfectly separable. For proofs and further dis-
cussion of these results, see Debreu (1983b, pp. 105ff.).

It is easy to see that the utility function that represents a preference pre-
order is not uniquely defined. Any monotonically increasing transformation
q>( ) of U( ) will represent exactly the same preferences, because with (p( )
strictly increasing, we have

U(x)>U(y) if and only if (p[U(x)] >cp[U(y)]

for all x,ye X. Hence, we say that U( ) is an ordinal (as opposed to cardi-
nal) utility function. That is, the sign of the difference U(x) - U(y) is impor-
tant because it tells us which outcome is preferred - but the value of this
difference is meaningless, as it will change with any nontrivial increasing
transformation q>( ).
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D

xk

Figure 8.1. A well-behaved indifference map.

Theorem 1.11. Representation theorem (2). Let X = i ; = /xe Rn; x{>0V
i = 1, . . . , nj, and assume that the preference relation "> " defined on X is
a complete preordering, continuous and strictly monotone. Then "> " can be
represented by a real-valued, continuous, and increasing payoff function
U: X —> R. If preferences are convex, U is quasiconcave.

To see how a utility function can be constructed, it is useful to think of
representing the preference preorder ">" in terms of its indifference sets.
We have seen that a preference preordering can be decomposed into a sym-
metric part and an asymmetric part. The symmetric part is the indifference
relation {~}. It is easy to see that {~} is an equivalence relation. It follows
that the indifference sets

I(x) = {yeX;y~x}

form a partition of X. That is, each x in X belongs to precisely one such set.
If preferences are continuous and monotonic, we get a picture familiar from
basic courses in microeconomics: The indifference sets are indeed indif-
ference "curves" (i.e., connected sets), and each such curve is the common
boundary between the (closed) better-than and worse-than sets, B(x) and
W(x).

If the picture is "correct," then we can construct a utility function by
assigning a number to each indifference curve. For example, if each indif-
ference curve intersects the 45° line (labeled D in Figure 8.1) exactly once,
we can assign to all the x's on a given indifference curve the distance from
their intersection with the diagonal to the origin (we will do something like
that later). Intuitively speaking, for this approach to work we need to have
the "right number" of "nice" indifference curves. The proof of the following
lemma should clarify what we mean by this.
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D

Lemma 1.12. Let ">" be a continuous and strictly monotone preorder
defined onX = R+. Then, given any z e X , the indifference set \{z) = {xe X;
x ~ z} intersects the udiagonal line" D = (XG R+; xx = ... = xnj precisely once.

Proof. The set D of bundles with the same amounts of each commodity (the
"diagonal line") can be described by

D = {x e R+; x = ye for some y e R+}

where e = 1 = ( 1 , 1 , . . . , 1). Hence, there is a one-to-one correspondence
between D and R+. Fix some arbitrary bundle z in X, and consider the
subsets of R+ corresponding to bundles in D that are respectively weakly
better and weakly worse than z:

rfl = {yeR+ ; ye>z} and Tw ={y eR+ ; ye< z}

(refer to Figure 8.2). By strong monotonicity, both of these sets are non-
empty. (For example, all /such that y> max.z, are in F5, and all those with
y< miniZi are in Tw). Moreover, the assumed completeness of the preference
preorder implies that TB and Tw must add up to R+ (i.e., R+ = TB u rw)9 for
any bundle ye must satisfy either ye > z or ye < z (or both).

Next, we show that continuity implies that both TB and Tw are closed sets.
Let {yn} be a convergent sequence of nonnegative real numbers with limit y
and assume that yn e TB for all n. Then {xn; xn = yne) is a sequence of bundles
contained in B(z) that converges to ye. Because the set B(z) is closed, by
the continuity of preferences, the limit of {xn} lies in 5(z). That is, ye> z e
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B(z), which implies that ye TB and therefore the closedness of TB. A similar
argument will work for Tw.

Finally, because R+ = (0,«>) is connected (i.e., has no "holes"),2 and we
have R+ = TB u rw, with both TB and Tw closed, it follows that these sets must
have at least one point in common (otherwise they would be separated,
and that would contradict the connectedness of R+). Hence, there exists
some yz such that yze ~ z. By strong monotonicity, this point of intersection
between I(z) and D is unique, for ye > yze implies ye > yze ~ z, and y< yz

implies ye < z. •

With this result, the proof of the representation theorem is easy. Given some
x in X, we look for the point where the indifference surface I(x) intersects
the diagonal line D = {x e Rn; x - ye, with ye R} and assign to x the number
yx corresponding to this point. Because we have just shown that this number
exists and is unique, we have in fact defined a function U: Rn —> R, with
U(x) = Yxi where yx is such that yxe ~ x.

We will now show that U( ) does represent the given preferences and is
increasing. Take two bundles x and y, with x > y. By construction, we have

U(x) = yx, where yxe - x and U (y )= yy, where yye - y

Hence,

yxe - x > y - yye

and by monotonicity U(x) = yx>yy= U(y) (for otherwise yxe would be
dominated by yye and could not be preferred to it). Hence, U( ) does
represent ">." Moreover, U( ) is an increasing function, for if x>y,
then x > y by monotonicity, and we have just shown that this implies that
U(x) > U(y).

Next, we shall show that U is continuous. For this, it is sufficient to show
that the inverse image of any closed interval is closed. But note that given
any two positive real numbers yy and yz,

U-i[yy,yz] = {xeR-; U(yye)< U(x)<U(%e)}

= {xeRn; yye<x<yze}=B(yye)nW(yze)

Hence, U~x[yx, yy] is the intersection of two sets, a better-than set and a worse-
than set, that are closed, by the continuity of preferences. It follows that
U~x[yx, yy] is closed, which establishes the continuity of U( ) . Finally, if
preferences are convex, the upper contour sets of this function, {x e X;
U(x) > a}, are convex sets, because

{xeX; U(x)>a} = {xeX; x>ae} = B(ae)
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D

Figure 8.3. Continuity of the utility function.

and the better-than set B(ae) is convex, by Problem 1.7. This implies that
[/( ) is quasiconcave (by Theorem 3.2 in Chapter 6). D

The following problem shows that under our assumptions, indifference
sets are indeed nicely behaved indifference curves, with no holes in them.

Problem 1.13, Let ">" be a continuous and strictly monotone preference
preorder defined o n X = R+, and let z be an arbitrary point in X We will
show that the indifference set I(z) is connected.

A standard way to show that a set A is connected is by showing that the
set is homeomorphic to another one B that is known to be connected - that
is, by establishing that there exists an invertible continuous function h( ) with
a continuous inverse that maps A onto 5. Then A = h~l(B) is the continuous
image of a connected set and therefore is connected itself (by Theorem 9.3
in Chapter 2).

In this case, let B be the open unit simplex

where e = 1 and RJ+. = {xe Rn; x, > 0 V / = 1 , . . . , n}. Given an indifference
set /(z), we "project" it onto A by following a ray through the origin from
each point x in / until it intersects the simplex (Figure 8.4). Hence, the func-
tion h( ) is of the form

h(x) = —x =

Show that h() is a homeomorphism.
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Figure 8.4.

Hint: The only potentially difficult part is establishing the continuity of
hr\ ). Use the sequential characterization of continuity and seek a contra-
diction. In particular, fix some arbitrary y° in A and assume that {yn} —> y°9

but {xn = h~1(yn)} does not converge to x° = h~1(y°). Notice that because y
and x = h~1(y) lie on the same ray through the origin for any y in A, we can
write

and x° = h~1 = A°y°°) = A°y

for some positive real numbers Xn and X°. Observe that {Xn} is a sequence of
real numbers bounded below by zero. Consider two possibilities in turn:
(i) {Xn} is bounded above, and (ii) {A,,} is not bounded above. Then seek a
contradiction.

(c) Smooth Preferences

This short section shows that, given some additional conditions, a preference
relation "> " can be represented by a twice continuously differentiable utility
function. This is a very convenient result, because it allows us to use calcu-
lus techniques both to characterize the solutions to the optimization prob-
lems that agents are supposed to solve and to do comparative statics.

Intuitively, differentiability is obtained by strengthening the continuity
assumption with the requirement that the indifferent sets be smooth sur-
faces in X or, more formally, that the indifference relation be a smooth
manifold in I x X.

Definition 1.14. Smooth preferences. Let X be an open subset of Rn.
A monotone preference relation "> " defined on X is said to be of class Ck
(k > 0) if the indifference subrelation
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I = {(x,y)eXxX;x~y}

is a Ck manifold.

Recall that a manifold is a set that is locally diffeomorphic to an open set
in a Euclidean space. If the diffeomorphism in the definition is of class C*,
we have a Ck manifold. If k > 1, we speak of smooth manifolds and smooth
preferences. (A function is of class C° if it is continuous.)

Theorem 1.15, Let X be an open subset of Rn. A strictly monotone prefer-
ence preorder "> " defined on X can be represented by a Ck utility function
with no critical points if and only if it is itself of class Ck (i.e., if the indiffer-
ence relation I is a Ck manifold).

Proof. We prove only the easy part: If "> " can be represented by a smooth
utility function U with no critical points, then / must be a smooth manifold.
To see this, define v.Xx X —> R by

By assumption, U( ) has no critical points, so DU(x) ^0 , and this in turn
implies Dv(x, y) = [DU(x), - DU(y)] ^ 0. Hence v( ) has no critical points,
and therefore the set

I = v-1 (0) = {(x, y) e X x X; U(x) = U(y)}

is the inverse image of a regular value of v. By the regular-value theorem
(Theorem 2.3 in Chapter 5), / is a smooth manifold.

The converse can be found in Mas-Colell (1985, pp. 64-6). In fact, he
proves a more general result: The theorem holds for locally nonsatiated
preferences with connected indifferent sets. Because strong monotonicity
trivially implies local nonsatiation and, by Problem 1.13, connectedness of
the indifference sets, the theorem follows as stated. •

We conclude with the observation that given an appropriate topology on
the space of continuous preference relations, the set of smooth preference
relations is dense in this space. Intuitively, this means that any continuous
preference relation can be approximated "fairly well" by a smooth one - and
hence that the assumption of a differentiable utility function is not unrea-
sonable, at least as a first approximation.

2. Consumer Theory

Consider an agent (whom we will call the consumer) who has preferences
defined over the set R? of possible consumption bundles, x = (x\ ..., xG),
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where we interpret xl > 0 as the amount of good i consumed by the agent.
We assume that these preferences can be represented by a continuous,
increasing, and quasiconcave utility function U: R+ —> R. Given income y
and a vector of commodity prices p e R+, the set of feasible consumption
bundles is described by the budget correspondence,

which gives, for each price-income pair, the set of bundles whose cost
px = Z2i PiXt does not exceed the available income, y > 0. The consumer will
be assumed to maximize utility subject to the constraint imposed by the
budget correspondence.

(a) Utility Maximization and Ordinary Demand Functions

Under the preceding assumptions, the problem faced by the consumer can
be written

V(p,y)= max U(x) (C.U)
xsB(p,y)

where B(p, y) = {x e R?; y -px > 0}. The maximum-value function for the
consumer's problem, V(p, y), called the indirect utility function, gives the
maximum utility attainable by a consumer who faces income y and prices /?.
The solution of the problem is given by a Marshallian or ordinary demand
correspondence,

*(p, y) = arg max U(x)
xeB(p,y)

which gives for each pair (/?, y) the set of optimal consumption bundles. If
this correspondence is single-valued, we speak of a demand function. Notice
that the indirect utility function and the demand correspondence are related
by the expression

V(p,y) = U(x(p,y))

because the maximum attainable utility is the utility provided by any optimal
consumption bundle.

In this section we will analyze the properties of the demand correspon-
dence and the indirect utility function. We start with a result that gives suf-
ficient conditions for the continuity of the budget correspondence3 (i.e., for
the set of feasible options to change continuously with changes in the para-
meters p and y).
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Theorem 2.1. Continuity of the budget correspondence. Let B: R^1 —>—> R^
be defined by B(p, y) = fxe R+; px < y}. Then B is continuous at any point
(p, y), with p » 0 and y > 0.

Proof. Notice that the constraint function is linear and therefore concave
in x for given p and y. Hence, we can apply Theorem 2.2 in Chapter 7, and
it suffices to show that B(p, y) is compact and contains an interior point,
which is clearly the case under the given assumptions. •

Problem 2.2. Give a direct proof of the continuity of the budget corre-
spondence. Hint: Use the sequential characterizations of upper hemi-
continuity and lower hemicontinuity. For upper hemicontinuity, consider
a sequence xn e B(pn, yn) converging to a point (/?, y) » 0. Show that it is
bounded, and apply the Bolzano-Weierstrass theorem. For lower hemicon-
tinuity, construct the sequence as in Problem 2.6 in Chapter 7.

Given the preceding result, we can now use the theorem of the maximum
to guarantee the upper hemicontinuity of the demand correspondence and
the continuity of the indirect utility function. In addition to these two results,
the following theorem establishes some other useful properties of these
mappings.

Theorem 2.3. Properties of the demand correspondence and the indirect
utility function. Let the utility function U:R® —> R be continuous, increas-
ing, and quasiconcave. Then for each price-income pair (p, y), with p » 0 and
y>0, there exists at least one solution to the consumer problem (C. U). More-
over, the demand correspondence x(p, y) is uhc and homogeneous of degree
zero, in the sense that ifze x(p, y), then z e x(\ip, \xy) for any \i>0. The indi-
rect utility function Vfp, y) is continuous, quasiconvex, homogeneous of
degree zero in (p, y), increasing in income, and decreasing in prices.

If, in addition, U( ) is strictly increasing, then the budget constraint holds
with equality, that is, px = y for any x e x(p, y) (the "adding-up" property).
If \J( ) is strictly quasiconcave, then x(p, y) is a (single-valued) function
and continuous.

Proof

• Existence of a solution and uniqueness, given strict quasiconcavity. If p » 0 and
y > 0, the budget set B(p, y) = {x e W^;px < y] is a nonempty compact and convex
set. Hence the existence of a solution to the consumer problem follows by the
extreme-value theorem (Theorem 8.22 in Chapter 2). Given strict quasiconcav-
ity, the solution will be unique, by Theorem 1.11 in Chapter 7.
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• Continuity of V{p, y) and x(p, y). Because B{p, y) is compact-valued and con-
tinuous for any (p, y), with p » 0 and y > 0, the theorem of the maximum
(Theorem 2.1 in Chapter 7) guarantees the continuity of V(p, y) and the upper
hemicontinuity of x(p, y). Because a uhc single-valued correspondence is a con-
tinuous function (see Section 11 of Chapter 2), moreover, x{p, y) is a continuous
function whenever U is strictly quasiconcave.

• Adding up. We will now show that any optimal consumption bundle exhausts the
available income when U() is strictly increasing. Suppose this is not the case, that
is, that there exists some bundle z e x(p, y) with pz < y. Then there is some con-
sumption bundle that dominates z and is still feasible (i.e., there exists a point
i' > z such that pz' < y). Because U( ) is strictly increasing by assumption, we
then have U(z') > U(z), which contradicts the assumption that z is a maximizer.

• Homogeneity of x(p, y) and V(p, y). Notice that any equiproportionate changes
in prices and income do not change the budget set. That is, if px < y, then (np)x =
in(px) < ny for any JI > 0. Hence, B(p, y) = B(jjp, fly) for any \i > 0, and the fea-

sible set does not change with ji. Because prices and income do not enter the
objective function U(), the consumption choice will not be affected when we mul-
tiply all prices and income by the same positive factor, and neither will utility be
affected. Hence, this property extends also to the indirect utility function. Notice
that V(p, y) = U(x(p, y)), where x{p, y) is any optimal consumption bundle. Thus,
we can write

V(/jp, }iy) = U[x{fjp, /iy)] = U[x(p, y)] = V(p, y) for any n > 0

• V( ) is increasing in y and nonincreasing in prices. Take y' and y", with y" > y'.
Then clearly

B(p,y")ziB(p,y')

That is, the budget set is (strictly) larger with the higher income. Let x' e x(p, y')
be an optimal consumption bundle for income y'. Then x' is still feasible, but not
necessarily optimal for income y", so certainly V(p, y") > V(p, y'). In fact, the
inequality is strict when U( ) is strictly increasing, for thenpx' =y'< y", so we can
find some point x" > x' that is feasible for income y". Then V(p, y") > U(x") >
U(x') = V(p, /). Thus, we conclude that V() is strictly increasing in income when
U( ) is strictly increasing. A similar argument will establish monotonicity in prices.

• Quasiconvexity of V(p, y). Given a real number v, the lower contour set of V( )
is the set

Lv = {(p,y);V(p,y)<v}

To establish the quasiconvexity of V( ), we have to show that Lv is a convex set
for any given v. Let (p\ y') and (p", y") be two arbitrary points in Lv, that is, with
V(p\ / ) < v and V(p'\ y") < v, and let

(p\ yl) = ((1 - X)p'+ Xp", (1 - X)y'+ Xy") for X e (0, 1)
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We want to show that (p\ yx) e Lv, that is, that V(px, yk) < v. Notice that it is
sufficient to show that for any point x that is feasible for (p\ yx) (i.e., such that
pxx < yx), we have U(x) < v, because V(px, yx) is the value of one such point.

First, notice that pxx < yx implies

pxx = [(1-X)p' + Xp"]x = {l-X)p'x + Xp"x < (1 - X)y'+Xy" = yA

Now, because

(1 - X)p'x + Xp"x < (1 - X)y' + Xy"

it must be true that either p'x < y' or p"x < y" or both. If the first inequality holds,
then x is feasible, but not necessarily optimal for (//, y'), and we have U(x) < V(p\

y') < v. Otherwise, p"x < y" implies U(x) < V(p", y") < v, by the same argument. In
either case, U{x) < v, and the result follows. •

Problem 2.4. Show that if U( ) is homothetic, then demand is linear in
income, that is, x(p, y) = yx(p, 1).

Hint: Recall that a function is said to be homothetic if it is a monotoni-
cally increasing transformation of a homogeneous function.

Let us now strengthen our continuity assumptions and require that U( )
be a twice continuously diff erentiable function. In this case, both the demand
and indirect utility mappings are differentiable functions, and we can obtain
some further results. In particular, we assume that U( ) is a C2, strictly qua-
siconcave, and strictly increasing function that satisfies the second-order suf-
ficient condition for strict quasiconcavity in terms of the bordered Hessian
given in Theorem 3.11 in Chapter 6. These assumptions will allow us to
use the techniques developed in Chapter 5 and apply the implicit-function
theorem to analyze the comparative-statics properties of the ordinary
demand functions.

Because we know that the budget constraint will hold as an equality when
£/() is strictly increasing, we can rewrite (C.U) as a Lagrange problem:

max{C/(x) s.t. y - px = 0} (C.U')
X

where we are implicitly assuming that we have identified a priori those G
goods that will be consumed in positive amounts, and we exclude the rest.
Differentiating the Lagrangian for the problem,

£(x, X; p, y) = U(x) + X(y - px)

yields the first-order conditions
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d£ dU
dxt

. n . Ui(x) w . 1 _
- - Xp,••= 0 => X = — — V i = 1 , . . . , G

dX = y-px =

(1)

(2)

where Ut() denotes the partial derivative of U( ) with respect to its zth argu-
ment. Given our assumptions, these conditions will characterize a unique
optimal solution x*. Notice that optimality requires

II, (x) II (x) n U(x*)

Pk Pi pk Uk(x*)

This is the familiar condition requiring that the marginal utility of the last
dollar spent on each good must be the same for all of them or, equivalently,
that the marginal rate of substitution between any two goods i and k must
be equal to the ratio of their prices.

Equations (1) and (2) constitute a system of G +1 equations in G +1
unknowns that we would like to solve for the ordinary demand functions,
xf = Xi(p, y) for i = 1 , . . . , G, and the multiplier, A* = A(/?, y). In some simple
cases it is possible to solve (1) and (2) explicitly for x* and A*. In general,
however, such closed-form solutions are not available, and we have to resort
to the implicit-function theorem (IFT) to do comparative statics. To apply
this theorem, rewrite the first-order conditions in the form

Fi(x, X; p) = Ui(x) -Xpi=O for each i = l,..., G (3)

(4)

and observe that the Jacobian of endogenous variables of this system is given
by

\ = \D(xMF(x,X;p)\ =

u11 UlG -px

ci ••• UQG ~PC

~P\ ••• ~Pc 0

Using the first-order conditions (f// = A/?/), and factoring things out, this
determinant can be written in terms of the bordered Hessian of the utility
function,

n ••• UlG U,

2n

U 0
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which is nonzero by our assumptions on f/( ). Hence, the sufficient condi-
tions for a strict local maximum hold (see Theorem 1.16 in Chapter 7),
and the solution to the system of first-order conditions is a regular solution
of the consumer's problem. This guarantees that we can use the IFT to
compute the partial derivatives of the ordinary demand functions. In par-
ticular, we have

dXj{p,y) ̂ \Jik\
dpk \J\

where Jik is the matrix obtained by replacing the ith column of the Jacobian
/ with the vector (DPkF(x, h p))T.

Unfortunately, it turns out that the sign of \Jik\ cannot be determined
unambiguously even when i - k. Hence, it is not necessarily true that
demands are decreasing in their own price or increasing in income. The one
restriction on individual behavior we get from utility maximization is the
one given in the following result.

Theorem 2.5. Slutsky. Assume that XJ( ) is C2 and satisfies the sufficient
second-order conditions for a local maximum. Then the Slutsky matrix [sik],
with

is symmetric and negative semidefinite.

A proof of this theorem (which can also be established by direct compu-
tation using the IFT) and a discussion of its meaning will be given later.
For the time being, we just note that the symmetry of the Slutsky matrix
requires that

dy
(6)

and its negative definiteness implies that the elements in its principal diag-
onal will be nonpositive, that is,

Su = d ^ dx^^Q

dpi dy

This last property can be used to establish what Samuelson calls the "fun-
damental theorem of demand theory": If a good is not inferior, its ordinary
demand curve is downward-sloping. This follows immediately from (7) and
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the definition of inferior good. If a good is not inferior, then the income
effect is positive, that is, dxt(p, y)ldy > 0, and (7) implies

X L ( P , Y ) 0
d Pi dy

On the other hand, inferior goods may have upward-sloping demands (these
are the so-called Giffen goods) if the income effect is negative and strong
enough to outweigh the substitution effect.

These results completely exhaust the implications of demand theory. It
can be shown that given a set of homogeneous demand functions that add
up to income and satisfy the Slutsky conditions, it is possible to "integrate"
the demands back to a well-behaved utility function. Hence, we can go not
only from utility to demand, but from demand to utility as well. The two sets
of properties (those of U() and those of x()) are fully equivalent, and this
implies that there are no more implications to be had from utility maxi-
mization. Note that our results are rather weak: Maximization of a quasi-
concave utility function does not impose too many restrictions on ordinary
demand functions.

The following problem asks the reader to verify that there exists a simple
relationship between the indirect utility function and Marshallian demand.
In applied demand analysis it is sometimes more convenient to start out with
some specification of the indirect utility function that has reasonable prop-
erties and then derive the demand functions from it - rather than starting
with the direct utility function.

Problem 2.6. Roy's identity. Assume that the indirect utility function is dif-
ferentiable. Show that then

™" dV(p,y)/dy

Problem 2.7. Consider the following indirect utility function:

Use Roy's identity to find the ordinary demand functions.

(b) Expenditure Minimization and Compensated Demand

In this section we approach the consumer's decision problem from a slightly
different perspective. Rather than taking income as given, we fix an arbitrary
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utility level u (i.e., an indifference curve) and solve for the consumption
bundle x* that will minimize the expenditure (cost) needed to put the con-
sumer on this particular indifference curve. That is, we will solve the problem

min{px; U(x)>u) (C.E)
X

If we write the solution to this expenditure-minimization problem as a func-
tion of the parameters, we obtain the optimal consumption bundle as a func-
tion h(p, u) of prices and the required utility level

h(p, u) = arg mm{px; U(x) > u}

The resulting mapping (with u rather than y as an argument) is known as a
compensated or Hicksian demand function or correspondence, because it
allows us, by holding utility constant, to abstract from income effects, thus
isolating the pure substitution effect of price changes on consumption
behavior. The (minimum) value function for the expenditure-minimization
problem,

E(p, u) = min{px; U(x) >u} = ph(p, u)
X

is known as the expenditure function and gives the minimum expenditure
necessary to achieve a desired level of utility u. As usual, we can recover
E(p, u) by substituting the optimal solution of the problem (i.e., the
Hicksian demands, h( )) back into the objective function.

In this section we investigate the properties of the compensated demands
and the expenditure function. In the next section we will discuss the rela-
tionship between the two formulations of the consumer problem and relate
the properties of compensated and ordinary demands to each other, proving,
in particular, the Slutsky theorem.

Theorem 2.8. Properties of the compensated demand correspondence and the
expenditure function. Let the utility function U: R% —> R be continuous,
strictly increasing, and quasiconcave, and consider the problem

E(p, u)min fpx; UfxJ > uj (C.E)

Let u = U (0) and (u) = sup{U(x); x e R+J < <*>. Then for each p » 0 and u
e (u, u), there exists at least one solution to the consumer problem (C.E), and
h(p, n) is uhc in this set. Moreover, the compensated demand correspondence
h(p, u) is homogeneous of degree 0 in p (in the sense that hfp, u) = h(|Hp, (iy)
for any \i > 0), and the solution of the problem leaves no excess utility,
meaning that for any x e h(p, u) we have V(x) = u. IfV() is strictly quasi-
concave, then h(p, u) is a (single-valued) function and is continuous.
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The expenditure function E(p, u) is a continuous function, concave and
increasing in prices, strictly increasing in u, and homogeneous of degree 1 in
prices.

Proof

• Existence of solutions and uniqueness, given strict quasiconcavity. The feasible
set T(u) = {x e R?; U(x) >u} = lTl[u, «>) is closed, by the continuity of U( ), but
is unbounded and therefore not compact. It is not difficult, however, to "com-
pactify" it. Given p » 0 and u e (w, u), choose a bundle x such that U(x) > u. Such
a bundle exists, by the assumption that u e (w, u). Then x is feasible for w, but not
necessarily optimal, and this implies that for any x e h(p, u) we have px <px.
Hence the solution to (C.E) will lie in the compact set

T(p9 u) = {x e RG+; U(x) > u and px < px]

Because U( ) is continuous, the extreme-value theorem guarantees the existence
of a solution to (C.E). Moreover, because U( ) is quasiconcave, T(p, u) is the inter-
section of two convex sets and therefore is convex itself. If U( ) is strictly quasi-
concave, it follows (by Theorem 1.11 in Chapter 7) that the solution is unique.

• e(p, u) is strictly increasing in u. By contradiction. Suppose e(p, u) =ph(p, u) is
not strictly increasing in u. Then there exist utility levels u' and u", with u" > u' >
[7(0, and corresponding optimal consumption bundles x' and x", with x' € h(p,
uf) and x? e h(p, u"), such that 0 < px" <px\ By the no-excess-utility property,
moreover, we have U(x") = u" > u' = U(x'). Consider now a consumption bundle
of the form z = Xxf

\ with X € (0,1). By the continuity of U( ), we can choose X
close enough to unity that U(Xx") > uf - t/(jc'), and because X < 1 we have p(Xx")
=X(px")<px"< px'. This contradicts the assumption that x' solves (C.E) with
required utility u\ for we have found a bundle Xx" that is strictly cheaper than xr

and yields greater utility.
• e(p, u) is increasing in p. Fix some w, let p' and p" be arbitrary price vectors, with

p" >p\ and let x" be optimal for (/?", u). Then x" is feasible for (/?', u) because
U(x") > w, but it does not necessarily minimize expenditure; hence,

e{p'\u)=p"x">p'x">e(p\u)

• Continuity. First we will show that h(p, u) is compact-valued. As we have shown,
h(p, u) is contained in the compact set f(p, u) and therefore is bounded. To see
that it is closed, let m = e(p, u)=px= P(x) for some x. Then \m) is a closed set
in R, and h(p, u) = P~l{{m}) n U~x\u, <») is the intersection of two closed sets, by
the continuity of the utility function and the inner product P( ). Hence, h( ) is
compact-valued, and we can use the sequential characterization of upper hemi-
continuity given in Theorem 11.2 in Chapter 2.

Thus, we have to show that given any sequence {(pM, un)} converging to (p, u),
with p^> 0 and u e (u, u), every companion sequence of demands {xn}9 with
xn e h(pm un) has a convergent subsequence with limit in h{p, u).
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We will show that the sequence {xn} is bounded. Let z » Q be such that U(z) > u.
Because {un} -» w, we can assume that (possibly after deleting some initial terms
of the sequence)

U(z)>unVn (1)

Then z is feasible, but not necessarily optimal for all (unjpn), and we have

pnz>e(pn,un) = pnxn

where the last equality holds because xn e h(pm un). Hence, expenditure in the ith
good is bounded by pnz (i.e., pl

nx
l
n <pnz). Because {pn} —>p (which implies that

{Pn} -*pl for all /), moreover, we will have

pi
n>plll and pnz<pz+l

for n sufficiently large. Hence,

., ,PnZ PZ + 1
Pn P'/2

for all i and sufficiently large n.
Because \xn) is bounded, it contains a convergent subsequence, say fxnj, with

limit x. Because xHk e h(pnk, un), we have U(xn) > unk for all fc, and the continuity
of U( ) implies that U(x) > u. Hence x is feasible for (p, u).

To establish that x is also optimal, that is, that x e h(p, u), we proceed by con-
tradiction. Suppose x $ h(p, u)\ then there exists some feasible x that costs less
than x. That is, there exists some x such that

px<px (2)

U(x)>u (3)

Next, we construct a sequence {zwj as follows:

fx if unk < u
7 ~ <

[znk € [z, x] s.th. U(znk) = unk otherwise

Notice that the required zHk e [z, x], with U(zn) = w%, exists whenever uHk > u, by
the continuity of U( ) and the fact that U(z) >unk>u= U(x). Observe also that
Znk is feasible for (pnk, un), by construction, but not necessarily optimal. Hence

pnkZnk £ e(pnk 9 Z n k ) = Pnk*nk ( 4 )

because xnke h(pnk,unk). On the other hand, it can be shown that {zn

(see Problem 2.10). Hence, taking limits of both sides of (4), and recalling that
{xnk} -» x, we have
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px>px (5)

which contradicts (2). This establishes the desired result. •

Problem 2.9. To complete the proof of Theorem 2.8, show that under the
given assumptions, we have the following:

(i) Compensated demand is homogeneous of degree 0 in prices, and the expendi-
ture function is homogeneous of degree 1 in p.

(ii) The solution to the expenditure-minimization problem yields no excess utility.
Hint: By contradiction. Show that if the result does not hold, then we can con-
struct a bundle that will yield the required level of utility and will cost less than
the optimum.

(iii) The expenditure function is concave in prices. Give an intuitive interpretation
of this fact.

Problem 2.10. Show that the sequence {znk} constructed in the last part of
the proof of Theorem 2.8 converges to x.

Hint: Notice that we can choose z so that z » x, use the strict monoto-
nicity of the utility function and the fact that U(x) > u, and seek a
contradiction.

If we assume that U( ) is C2 and strictly quasiconcave, then h(p, u) is a
differentiable function, and we can apply the implicit-function theorem to
the first-order conditions of the expenditure-minimization problem to study
the comparative statics of compensated demands. In this particular case,
however, an indirect approach turns out to be much more convenient. The
first step is based on the observation that by the linearity of the objective
function there is a simple relationship between the expenditure function and
the compensated demands.

Theorem 2.11. Shephard's lemma. Assume that U( ) is C1. Then the expendi-
ture function is differentiable, and

J i.e., f h i f p , u j V i
op;

Proof. By the no-excess-utility property, (C.E) can be written as a
standard Lagrange problem (with a single equality constraint). Shephard's
lemma then follows immediately by the envelope theorem (Theorem 2.16
in Chapter 7). The Lagrangian for the expenditure-minimization problem
is
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£(*, X; p, u) = ^ PiXi + X[U(x) - u]

Hence the envelope theorem yields

Using this result, it is easy to derive some important properties of the com-
pensated demand functions from the concavity of the expenditure function.
The crucial observation is that by Shephard's lemma, the second partials
of the expenditure function are the first partials of the Hicksian demands.
That is,

d2E(p,u)_dhi(p,u)
dpk

whenever E() is twice differentiable.

Theorem 2.12, Comparative statics of compensated demand. Assume that the
expenditure function is C2. Then

(i) the compensated demand functions are decreasing in their own price, that is,
3hi(p, uj/3pi < 0 for all i, and

(ii) they satisfy the condition 3hi(p, uj/9pk = 9hk(p, u)/dpi for all i and k.

Proof

• By the concavity of the expenditure function in prices, the Hessian matrix of
second derivatives of E( ) with respect to prices is negative semidefinite (by
Theorem 2.18 in Chapter 6). Because all diagonal elements of a negative semi-
definite matrix must be nonnegative (see the appendix to Chapter 6), we have, by
Shephard's lemma,

J
dpt~ dp]

If E{p, u) is C2, we have, by Young's (Schwarz's) theorem (Theorem 2.6 in Chapter
4), that the matrix of second partials is symmetric (the order of differentiation
does not matter); hence,

d2E(p,u) d2E(p,u)

and by Shephard's lemma this implies
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dhi(p,u) dhk{p,u)
dpk dpi •

The first part of the theorem says that the compensated demand functions
are "downward-sloping." The reason for this should be intuitively clear. The
sign of the derivative dht(p, u)ldpi tells us how a consumer will adjust his pur-
chases of good / in response to an increase in its price when he also receives
an income transfer that allows him to stay on the original indifference curve.
By holding utility constant, the compensated demand function isolates the
pure substitution effect of a price change. Barring income effects, an increase
in the price of a good can only make it less attractive relative to other goods,
thereby reducing its consumption. The condition given in the second part of
the theorem is equivalent, as we will soon see, to the Slutsky symmetry con-
dition asserted in Theorem 2.5.

(c) Relationship between Compensated and Ordinary Demands:
The Slutsky Equation

We have analyzed the consumer's decision problem from two slightly
different perspectives. In Section (a) we fixed the allowable expenditure
and looked for the highest attainable indifference curve. In Section (b)
we selected an arbitrary indifference curve and looked for the lowest iso-
expenditure line compatible with it. It is intuitively clear that, provided we
are careful to identify the correct indifference curve and expenditure levels,
the two problems yield the same optimal bundle (Figure 8.5). The following
result makes this equivalence more precise.

x k

*
x k

\ \

x k

\ " V ^ ^> Xk

\ ^ ^ u*

^^^px = y*

\

\

\

Utility Maximization Expenditure Minimization

Figure 8.5. Equivalence between utility maximization and expenditure minimiza-
tion.
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Theorem 2.13. Equivalence between utility maximization and expenditure
minimization. LetU: K+—>R be a strictly increasing and continuous utility
function, and fix some p » 0.

(i) Ifxu solves (C.U) when income is y>0, then xu solves (C.E) when the required
utility is U(xJ. Moreover, the minimized expenditure level for the latter problem
is y.

(ii) Ifxe solves (C.E) when the required utility level is u e fu, u), then xesolves (C U)
when income is pxe. Moreover, the maximized utility level in the second problem
is u.

Problem 2.14. Prove Theorem 2.13. Hint: By contradiction. Assume that x
solves one of the problems, but not the other, and show that then it cannot
solve the first one either.

Theorem 2.13 allows us to write the following identity:

h(j>,u) = x* = x(j>9y) (8)

where y is the minimum level of expenditure needed to reach the indiffer-
ence curve indexed by u - and u is the maximum utility attainable with
expenditure y. More explicitly, we have

h[p,V(p,y)] = x(p,y) (9)

x[p,E(p,u)] = h(p,u) (10)

Focusing on the ith component of (10),

)] (100

and differentiating this expression with respect to an arbitrary price pk, we
have

dhjjp, u) = dxjjp, y) | dxjjp, y) dE(p9 u) ^
dpk dpk dy dpk

By Shephard's lemma and (8), moreover,

dE(p,u) . , v , vvy ' J=hk(p,u) = xk(p,y)
dpk

Substituting this expression into (11), we obtain an equation that relates the
partial derivatives of the compensated and ordinary demand functions:

dhj(p9u) = dxj(p,y) [ , ,
dpk dpk

 k ' dy

This identity is known as the Slutsky equation.
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Comparing (12) with equation (5) in Section (a), we see that the Slutsky
terms sik are in fact the partial derivatives of compensated demand with
respect to prices. By Theorem 2.11 we know that

dhj(p,u) _dhk(p,u)
sik = Z Z k Ski

oPk —opt

and

_dhi(p,u)
opt

— u

as asserted in Theorem 2.5. Hence, the properties we attributed in Section
(a) to the Slutsky matrix have been derived in Section (b) from the con-
cavity in prices of the expenditure function, using Shephard's lemma.

The Slutsky equation allows us to decompose the effect on demand of a
price change into a substitution effect and an income effect. Solving (12) for
d*i 0, y)®Pk, we get

dxt (p, y) _ dh (p, u) , dxt (p, y) (13)

dpk dpk dy

which we can interpret as follows:

total effect of _ substitution income effect, weighted by the importance
a price change effect of the good whose price has changed

It seems natural to weight the income effect by the consumption of the good
whose price has changed. If the expenditure on this particular good is small
(e.g., salt), even a large price change will have little effect on the consumer's
real income. Finally, consider the decomposition of the effect of a change in
a good's own price on its demand:

dxi(p,y)_dhi(p,u) , ,dXi(p,y)
T -> xi\P-> / ) -,

dpi dpi dy

By Theorem 2.12, the substitution effect is negative. If the good is normal,
dxt{ )/dy is positive, and the income and substitution effects work in the same
direction, implying that dxt( )/dpi<0. This is the "fundamental law of
demand."

3. Walrasian General Equilibrium in a Pure Exchange Economy

In this section we develop the standard theory of general competitive equi-
librium in the context of a pure exchange economy. The adjective "general"
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indicates that we explicitly model the interdependence among the different
sectors in the economy, as opposed to a partial-equilibrium analysis, where
we might focus on a specific market in isolation. The words "competitive"
and "Walrasian"4 indicate reliance on a specific concept of equilibrium
which assumes that markets are "perfectly competitive" in a sense to be
made precise later.

The economy we study will be populated by a large number of consumers
characterized by a well-behaved utility function and endowed with an initial
vector of commodity holdings. Each of these consumers will take prices as
given and will trade with other agents through a complete set of competitive
markets. However, there will be no firms. Ignoring production will simplify
matters considerably, while still allowing us to study the basic problem of how
markets coordinate the actions of individual economic agents.

We assume that

(i) consumers are rational agents who maximize their utility, taking prices as exoge-
nously given, and constrained only by the requirement that the market value
of one's consumption bundle not exceed that of one's endowment, and

(ii) these individuals interact with each other only through a complete set of com-
petitive markets in which prices are determined in such a way that supply always
equals demand.

That is, in the Walrasian view, the consistency requirement that we have
to impose on individual actions in order to speak of an equilibrium takes
the form of market clearing. Notice that individuals are constrained only by
prices precisely because markets clear (otherwise some sort of rationing
would arise). Individual agents do not feel constrained by the actions of
others in any specific way, because they can sell or buy any quantity of any
good at the market price. This allows us to formulate and solve the individ-
ual's optimization problem as if he were free to choose independently of all
other agents. On the other hand, this is not strictly true, as it is the interac-
tion of all agents that determines market prices.

Before we can begin to investigate how prices are determined, we need
to define some basic concepts.

Definition 3.1. Exchange economy and allocation. An exchange economy is
a couple

where U* is a function R? —> R, and el = (ej,..., eh) is a vector in Rf. We
interpret U\ ) as the utility function of agent i, and el as his endowment
vector (i.e., as his initial holdings of commodities).

An allocation x = (JC1,..., xn) e R+G is a vector that describes the amount
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of each commodity consumed by each of the n agents in the economy. An
allocation is feasible if the total consumption of each commodity does not
exceed its total endowment (i.e., if Zf=1x'< Z?=1e').

Definition 3.2. Competitive or Walrasian equilibrium. A Walrasian equilib-
rium is a price-allocation pair (/?*, x*) such that when all agents maximize
utility, taking p* as given, markets clear and agents receive the (feasible)
allocation x* = (x1*,.. . , x"*).

This definition suggests the following procedure for finding an equilib-
rium. First, we derive the individual demand functions or correspondences
as the solution mappings for the optimization problems faced by the indi-
vidual traders. Then we aggregate over agents to obtain the total demand
for the economy. Finally, we impose market clearing; that is, we require that
supply equal demand in the markets for all goods.

This procedure yields a system of G equations (the market-clearing con-
ditions) in G unknowns (the equilibrium prices of the goods). We can exploit
the fact that we know how the system is constructed (from individual opti-
mization and an overall equilibrium condition) to establish certain proper-
ties of the equilibrium mapping. The basic questions are still the ones we
discussed in Chapter 5: First, we need to establish that a solution to the
system (i.e., a competitive equilibrium) exists under certain conditions. Then
we can ask whether or not the solution is unique, how it varies with changes
in the parameters of the model (endowments), and whether or not it has any
desirable welfare properties.

Some of these issues will be discussed in detail in the remainder of this
section. Section (a) derives some properties of aggregate demand, making
use of earlier results on consumer behavior. In Section (b), we provide suf-
ficient conditions for the existence of equilibrium. Finally, Section (c) inves-
tigates the welfare properties of competitive equilibrium.

(a) Aggregate Demand

The optimization problem faced by the traders in our exchange economy is
almost identical with the one analyzed in Section 2. The only difference is
that income is now given by the market value of the endowment vector el.
Hence, the demand correspondence for agent i is now given by

jt'(p, pel) = arg max{(£/'(x') s.t. pxl < pe1)}

It is easy to check that this change does not alter the properties of individ-
ual demand correspondences. The following theorem lists some of these
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properties and derives an additional one (the unboundedness of demand as
some prices go to zero).

Theorem 3.3. Properties of the demand correspondence. Let the utility func-
tion U'. J?+ —> R be continuous, strictly increasing, and quasiconcave. Then

(i) the demand correspondence xl(p, pe'), is uhc in p for any p » Q
(ii) compact- and convex-valued for any p » 0, and
(Hi) homogeneous of degree 0, in the sense that ifxe xfp, pe1)' then x G x((ip, iipe1)

for all \i>0.
(iv) The budget constraint holds with equality, that is, pz1 = pe1 for any z1 e x*(p, pe1)

(the uadding-upy) property),
(v) If U( ) is strictly quasiconcave, then xx(p, pe1) is a (single-valued) function of

prices and is continuous,
(vi) Let fpnj be a convergent price sequence, with pn » 0 for all n, and assume that

its limit p has some zero component (i.e., pg = 0 for some good g) and satisfies
pe1 > 0. Then the corresponding sequence of demand vectors tends to infinity, in
the following sense. Let

mn = inf{\x\; x e x1 (pn, pn£
1)}

then ftnnj —» °° as n —> ©©.

Proof. The results follow immediately from Theorem 2.3, except for (ii) and
(vi). To see that x?(p, pe?) is a convex and compact set, notice that

x'{p,pe') = B(p,pei)n\zeR?; U'(z)>ut= max Ul{x)
{ eB(p,pel)

= B(p,pei)nU?[ui,°°] (1)

is the intersection of two convex sets, the budget set B(p, pel) and an upper
contour set of the quasiconcave function [/(•), and therefore it is convex
itself. Similarly, the last expression in (1) shows that x\p,pel) is a closed
subset of the compact set B(p, pe1) and therefore is compact itself (by
Theorem 8.14 in Chapter 2). Hence, xl(p,pel) is a convex- and compact-
valued correspondence.

To establish the boundary property (vi), we proceed by contradiction. Fix
somep, with some componentpg = 0, and consider a sequence {pn} —»p, with
/?„ » 0 for all n. First, observe that the consumer's problem has no solution
when some price is zero. Because utility is strictly increasing in all goods,
there can be no best consumption bundle, because given any bundle, an
alternative that includes more of the free good will be strictly preferred and
will always be feasible. Hence, xl(p,pel) = 0 .

Suppose now that the desired result is not true. Then there is a bounded
set 5 c R+ and a subsequence {pn} of \pn) such that
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xi{pnk,pnie
i)nB*0

for all nk. Let zk e x\pnk, pn/) n B for each k. Then the sequence {zk} is
bounded and therefore contains a convergent subsequence, say {zkq}>
with limit z. We will show that z e x\p,pe[). This contradicts the fact that
x\p,peis) = 0 and establishes the result.

To conclude the proof, we need to show that z e x\p,pel), that is, that for
every y in B(p,pei) we have U(z) > U(y). First, notice that because zkq e
x\pnkq, pnk e

% we have Pnkzkq <pUk
ffor all q.Taking limits of this expression,

we see that pz ^pe\ that is, z e B(p,pel). Hence z is feasible for (p, el).
We now consider two cases:

(i) Assume that y is such that py<pe\ Then we have pnky <pnke
l for kq large

enough. Hence y is feasible for {pnk,e
l) and because zkq^x'{pnk,pnke

l) is
optimal, it follows that U(zk) > U(y) for all sufficiently large kq. Taking limits
of this inequality, it follows, by the continuity of U(), that U(z) > U(y).

(ii) Alternatively, y is such that py -pel > 0. Then we can find a sequence {yk} con-
verging to y such that pyk <pe\ By case (i) we have U(z) > U(yk) for all k, which
implies, by the continuity of U(), that U(z) > U{y). This concludes the proof of
the theorem. •

Once we have derived the individual demand functions, the next step is
to aggregate them to obtain the "global" demand for all agents. Because all
consumers face the same prices, the total quantity of each commodity
demanded or supplied at a given price vector is simply the sum of the quan-
tities each individual wants to buy or sell at that price. Hence, we define the
aggregate demand correspondence by summing over the n agents,

and the aggregate excess-demand correspondence by

Zle' (2)
where e is the nG vector e = (e 1 , . . . , en). Notice that, in general, both x{ )
and Z() will depend not only on total resources but also on the distribution
of wealth in the economy.

The aggregate demand correspondence inherits some (but not all) of the
properties of individual demand. By Theorem 11.11 in Chapter 2 and
Theorem 1.4 in Chapter 6, x( ) and Z( ) inherit the upper hemicontinuity
and compact- and convex-valuedness of individual demands. It is clear that
the unboundedness of individual demand as some price converges to zero
carries over to the aggregate. It is also easy to see that aggregation preserves
the homogeneity of degree 0 in prices. We know that for each agent /,
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xl(tip9 jipe1) = xl(p, pei)\/iu>0

Summing over agents, we have

x(j*p, e) = X"=1 x
l {up, fipe') =£"=1 x'(p, pe') = x(p, e)

for all |j, > 0, so x{) is homogeneous of degree 0. Similarly, we know that all
the individual budget constraints hold with equality. Hence,

pxi(p,pei) = pei

for each i, and, summing over all consumers,

This expression implies that the value of the aggregate excess-demand
vector must be zero, that is,

an equality often referred to as Walras's law. We summarize these results in
the following theorem.

Theorem 3.4. Properties of aggregate demand. Suppose \T :R+ —> R is
quasiconcave, strictly increasing, and continuous for all agents. Then the
aggregate excess-demand correspondence

is homogeneous of degree 0 in prices, nonempty, compact- and convex-valued,
and uhc in prices for given e>0 and p » 0, and it satisfies Walras's law:

pZ(p,e) = 0 (W)

Moreover, given any sequence {pj, with pn » 0 for all n, that converges to a
price vector p, with pe1 > 0 for some i and some component equal to zero, the
sequence fZ(pn, c)J is unbounded. Finally, if\Jl() is strictly quasiconcave for
all agents, then Z( ) is a continuous (single-valued) function.

Two implications of this result will be useful later. First, notice that
Walras's law implies that if all markets except one clear, then the last one
must necessarily clear as well. Hence, we need to worry about market clear-
ing for only G -1 goods. Second, the homogeneity of degree 0 of Z( ) in
prices means that only relative prices matter. Formally, this allows us to
normalize prices and worry about only G - 1 of them. Among all the possi-
ble normalizations, two are very commonly used:
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(i) Set the price of one of the goods (called the "numeraire") to l.The price vector
is then of the form p = (pu p2,.. • ,PG-U !)•

(ii) Assume that the price vector belongs to the unit simplex in R? (i.e., that prices
satisfy the relation ZUiPg = 1).

It should be noted that our results concerning the properties of the Slutsky
matrix for individual demand functions do not, in general, survive aggrega-
tion. Because these conditions (together with the properties that aggregate
demand does inherit) are, as we have seen, equivalent to utility maximiza-
tion, it follows that the aggregate demand function is not, generally speak-
ing, utility-generated. That is, most economies do not behave as if we had
a single "representative agent" making all consumption decisions. On the
other hand, the aggregate excess-demand function will share the properties
of individual demands in some special cases. It can be shown that a neces-
sary and sufficient condition for the aggregate excess-demand function to
be utility-generated, and hence independent of the distribution of wealth, is
that preferences be homothetic and identical for all agents in the economy.
The sufficiency part of this result is easily established using the result given
in Problem 2.4. With identical and constant marginal propensities to
consume in each good, any redistribution of resources will have no effect on
aggregate spending patterns. Hence, the aggregate demand function does
not depend on the distribution of wealth.

(b) Existence of Competitive Equilibrium

We have defined a competitive equilibrium as a price-allocation pair (p*,
x*) such that when all agents optimize, taking /?* as given, the markets for
all goods clear, and agents receive the allocation x*. Because the aggregate
demand mapping already embodies the assumption that consumers opti-
mize, taking prices as given, to establish the existence of an equilibrium it is
sufficient to show that there exists some price vector p* >0 that generates
a zero aggregate excess demand. If aggregate demand is single-valued, this
condition reduces to a system of equations of the form

Z( p9
 e) = 0 (W.E)

which can (hopefully) be solved for p*9 the equilibrium price vector, for a
given vector of endowments. We can then determine the equilibrium allo-
cation by using the individual demand functions to see how much of each
commodity will be consumed by each trader at equilibrium prices /?*, that
is, x* =*(/?*, e).5 If aggregate demand is not single-valued, equilibrium will
require the existence of some price vector such that the resulting aggregate
excess-demand set will contain the zero vector. That is, the equilibrium con-
dition will be of the form
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OeZ{p,e) (W.E)

We will focus for the time being on the simpler case in which Z( ) is a
single-valued function. Verifying that a solution of the system (W.E) does
exist, at least under some circumstances, is an important test of the consis-
tency of the model we have developed in this section. The mathematical
problem we face is that of determining whether or not a given system of
equations has a solution. The economic question behind it is whether or not
there exist prices that will clear all markets simultaneously, or, to put it
slightly differently, whether or not it is possible for all the agents in the
model to optimize simultaneously without "running into each other."

As a first check, we start by counting equations and unknowns. We have
G of each (G unknown prices and as many equations, one for each market),
so things seem to be O.K. at first sight. On closer inspection, two complica-
tions arise, but they just happen to cancel out. The first one is that we have
a redundant price. By the homogeneity of degree 0 of the excess-demand
function, only relative prices matter, so there are only G - 1 prices to be
determined. Fortunately, we also have a redundant equation, because
Walras's law implies that if G - 1 markets clear, the Gth market will auto-
matically clear as well. Hence, the equality of equations and unknowns has
been preserved, but this is neither a necessary condition nor a sufficient con-
dition for the system to have a solution.

To proceed further we will analyze a simple example in some detail. We
will consider a two-good economy described by an aggregate excess-demand
function, with the properties given in Theorem 3.4, and establish the exis-
tence of equilibrium for such an economy in two slightly different ways. The
first will be more natural, but the second will turn out to be easier to extend
to the general case.

Let us normalize the price vector p = (pu p2) so that prices lie on the unit
simplex (i.e., so that pt+p2 = 1). Abusing notation, we can write the aggre-
gate excess-demand function in the form

Walras's law then requires that

p 1 ) + (l-pi)Z2(/h) = 0 (1)

for allpx. By the unboundedness of excess demand as prices go to zero, we
know that

>0 and Z2(pi)->°° asp2 = l~Pi -»0 (2)

Fix some B > 0, and observe that, by (2), there exist numbers e and 8 in the
interval (0,1), with e < 1 - <5, such that
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Z1(p1)>B>OVp1e(O,e) (3)

Z2(Pl)>BVPle (l-8,l) (4)

Using Walras's law and (4), we have

from where

Z1(l-5)<^|<0 (5)

Using (3) and (5), the intermediate-value theorem implies that there exists
some price p*e (£, 1-5) such that Zx(pf) = 0. Hence, p*Z1(p*) = 0, and
Walras's law implies that

Hence, there exists an equilibrium for this economy, that is, a price vector
p* = {p*,P*)~ (Pu 1 ~pT)> 0 that clears both markets simultaneously.

The main problem in extending this argument to the general case is that
we cannot rely on the intermediate-value theorem when we work with an
arbitrary number of commodities. A strategy that avoids this difficulty
involves transforming the problem in such a way that we can use either the
Brouwer or the Kakutani fixed-point theorem (see Section 3(b) in Chapter
5). Both of these theorems, however, apply to continuous functions (or hemi-
continuous correspondences) that map a compact and convex set into itself.
Hence, it will be difficult to work with the aggregate excess-demand corre-
spondence, because Z : A -»—» R+Gmaps the open unit simplex

into an unbounded set; recall that Z() is not defined when one of the prices
is zero, and it becomes unbounded as we approach such a point. There is,
however, a workable alternative that involves constructing an appropriate
mapping of the price simplex into itself and then invoking a fixed-point
theorem.

Let us see how this can be done in our simple example, where it is easy
to sidestep some of the difficulties that arise in the general case. The idea
will be to construct a continuous function F: A —> A that can be loosely
interpreted as a set of instructions for a hypothetical auctioneer to adjust
prices iteratively until an equilibrium is attained. We can then picture the
auctioneer calling out price vectors and asking each agent how much of
each commodity he is willing to purchase/sell at those prices, adding up the
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quantities over agents, and determining the excess demand in each case. The
price-adjustment function will be constructed so that excess demand will
lead to an increase in the good's price, and excess supply to a reduction.
Clearly, a fixed point of this mapping will be an equilibrium price vector, for
a price vector requiring no further adjustment will be one that makes supply
equal to demand in all markets.

This description may be misleading, in that it invites us to picture a process
of adjustment over time, eventually converging to equilibrium as eager
consumers bid up the prices of scarce commodities and suppliers lower the
prices of those goods they cannot sell. In fact, nothing of this sort is implied.
We are not claiming that the tdtonnement process described by the function
F( ) will eventually converge to an equilibrium, but only that there exists
some p* such that if it is, by chance, called out by the auctioneer, no further
adjustment will be needed.

One price-adjustment rule that will work in our example is the following.
We define the function F: A—>A by

^ 1V™ Pi+max{0,Z \(p \)} + (1-p i ) + max{0,Z2(pi)}

-p( l_p( \ p2 + max{0, Z2(p1)}
Px + max{0, Z\ (pi)} + p2 + max{0, Z2 (px)} (6)

Notice that F() maps a price vector/? = (pu p2) in the open unit simplex into
another vector q in the same set. The numerator of each fraction in (6)
instructs us to form each new price as follows. First, set

pg=pg + max[0,Zg(p)]

That is, if excess demand is negative (i.e., if there is an excess supply) or zero,
we leave the price as it is, and if there is an excess demand for good g, we
increase its price by adding the excess demand to the old price. Division by
the expression in the denominator (which is the sum of all the adjusted
prices) then renormalizes these prices to "bring them back" into the unit
simplex.

Figure 8.6 illustrates the functioning of the price-adjustment scheme. We
start with an arbitrary price vector p and suppose that it yields an excess
demand for good 1, Zx(p) > 0; then, by Walras's law, Z2(p) < 0. The auction-
eer's rule, F( ), tells us to add Z\(p) to px and leave p2 as it is. This gives us
a new price vector //, with p{ =pt+ Zt(p). However, pf is not in the unit
simplex. The normalization in F{p) amounts to selecting point q in the figure,
which does lie on the unit simplex. The net effect, when we consider the final
change in normalized prices (p —» q), is to decrease p2 in response to the
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?2 =

Pi

original situation of excess supply and to increase px in response to the
excess demand for good 1.

It is easy to show (see Problem 3.5) that a fixed point of F() is an equi-
librium price vector for our two-good economy. Hence, proving the existence
of equilibrium for our economy reduce to the problem of showing that the
function F( ) has a fixed point. Notice that F() maps the open unit simplex
A into itself (i.e., we are requiring both prices to be strictly positive, because
Z( ) is not defined otherwise). Because A is not a compact set, we cannot
use Brouwer's fixed-point theorem. It is easy, however, to establish the exis-
tence of a fixed point using the intermediate-value theorem.

Observe that Fi(p{) will have a fixed point if and only if the equation
Fi(Pi) ~Pi = 0 has a solution. The function Ft( ) is continuous on the inter-
val (0,1), because the continuity of each Zg() implies that of max{0, Zg(p)},
and the denominator of F±( ) never vanishes. Using (3) and (4), we have,
moreover,

£+max{0, Zi
£ + max{0, Z (e)} + (1-e) + max{0, Z 2 (e)}

-£

- - £ = •

1 + Z,(£)
>0

and

max{0, Zt(l- d)}
(1-8) + max{0, Z (1 - 8)} + 8 + max{0, Z (1-8)}

C-g) -(i-axo
l + Z(l-8) v '

-(1-8)
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By the intermediate-value theorem, there exists some point p*e (e, 1 - 5)
such that p*x = Fx{pf). This, in turn, implies that

so p* = (p*,p*) is a fixed point of F( ) and therefore a competitive-
equilibrium price vector for our two-good economy.

Problem 3.5. Define a mapping F: A —> A by

, x A + max[0> zi (/?)] + --- + PG+ max[0,Z(p)]
F(p) =

where Z(p) = Zi(p),..., ZG(p) is an aggregate-excess-demand function
satisfying Walras's law, pZ(p) = 0 for all p. Show that any fixed point of
F() is a competitive-equilibrium price vector. That is, if/?* = F(/?*) > 0, then

Zg(p*)<0Vg and Zg{p*) = 0 whenever/?* >O

Notice that we allow for the possibility of free goods. A good may be in
excess supply in equilibrium (Zg(/?*) < 0), but then its price must be zero.

If we are willing to assume that the excess-demand function Z(p) is
continuous on the closed price simplex, the preceding argument can be
extended to establish the existence of competitive equilibrium in economies
with strictly convex preferences. Unfortunately, this assumption is not rea-
sonable in view of the fact that aggregate demand becomes unbounded in
the boundary of this set (i.e., for price vectors with some component equal
to zero). We will now prove an existence theorem that does not require such
an unreasonable assumption. The idea behind the proof is essentially the
same as before, but we have to be careful to avoid "boundary problems."
The first step involves defining a correspondence /I( ) that does essentially
the same thing as the function F( ) we introduced earlier and using
Kakutani's fixed-point theorem to establish the following result.

Lemma 3.6. Let S be a closed and convex subset of the open unit simplex,

Let f:S—> RG be a continuous function with the property that

pf(p)<0\/peS

Then there exists some p*e S such that
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pf(p*,)<0VpeS

Proof. Define the correspondence ju:S —>—» S by6

(1)
qeS

Because /( ) is a continuous function, and S a compact set, /( ) is bounded
in the set. It follows that for given p, qf(p) is a continuous function of q, and
it attains a maximum in the compact set S. Hence ju(p) is nonempty. More-
over, fi( ) is convex-valued, because //(/?) is the set of maximizers of a qua-
siconcave function, and it is compact-valued and uhc by the theorem of the
maximum, because qf(p) is continuous and the constraint set is compact and
"constant" and therefore a trivially continuous correspondence.

Thus, we see that the correspondence ji{ ) satisfies the conditions of
Kakutani's fixed-point theorem (Theorem 3.4 in Chapter 5). Therefore,
there exists some point p* e S such that

p* e n(p*) = arg maxqf(p*)
qeS

This implies that

p*f{p*) >pf(p*)

for any p e S. But because pf(p) < 0 for all p e 5, we have p*f(p*) ^ 0, and
it follows that p* is such that

pf{p*) <0VpeS •

Notice that in a pure exchange economy with strictly convex preferences
(and the other properties we have assumed), the excess-demand mapping
will be a function that satisfies the conditions of Lemma 3.6 for any compact
subset of the open unit simplex. To establish the existence of equilibrium for
such an economy, we apply Lemma 3.6 to a sequence {Sn} of sets converg-
ing to the closed unit simplex and show that the limit of the resulting
sequence {/?*} clears all markets.

Theorem 3.7. Existence of competitive equilibrium in an economy with
strictly convex preferences. Let Z( ) be the excess-demand function charac-
terizing a pure exchange economy with strictly convex preferences. Assume
that Zf ) is continuous for all p » 0 , that it satisfies Walras's law,

pZ(p) = 0 (W)

and that we have the following boundary condition: Given any sequence {pn},
with pn » 0 for all n, that converges to a price vector p, with pe1 > Ofor some
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i, and some component equal to zero, the sequence /Z(pn, e)J is unbounded.
Then there exists a price vector p* e A, with p* » 0, such that Z(p*) = 0.

Proof. Consider the increasing sequence of sets {Sn}, with

Sn={peA;pg>l/nVg = l,...,G}

for n>G, and notice that unSn=A. Because the excess-demand function
Z( ) is continuous in each Sn and satisfies Walras's law, Lemma 3.6 implies
that for each n there exists some vector p* such that

PZ(p*n)<0VpeSn (1)

Because the sequence {p*} is contained in the compact set A, it has a con-
vergent subsequence with limit in A. To simplify the notation, suppose that
{p*} itself converges, and let p* e A be its limit. Next, consider the sequence
{Z(p*)}. This sequence will be bounded, because (i) fZ(p*)} is bounded
below (e.g., by Z£i e

l) because excess supply cannot be unbounded, and (ii)
pZ(p*) < 0 for all n and an arbitrary p » 0 in some Sm by (1), which implies
that Z(/?*) is also bounded above. Hence, {Z(p*)} will also have a conver-
gent subsequence, and we can assume without loss of generality that the
sequence itself converges to some point z*.The boundedness of |Z(p*)} also
implies that p* :» 0, for if {p*} converged to a price vector with some com-
ponent equal to zero, [Z(pf)} would be unbounded, by the boundary con-
dition. Using this fact and the continuity of Z( ) in the interior of the price
simplex, we conclude that

z* = limZ(pJ) = Z(p*) (2)

Next, we show that pz* < 0 for all p e A. Ifp lies in the interior of A (i.e.,
if p » 0), then p e Sn for all sufficiently large n, and (1) implies pZ(p*) < 0
for all such n. Taking limits of this expression as n —> <*>, we conclude that
pz* < 0. If p is a boundary point of A, we can find a sequence \qn) —¥p, with
qn e Sn. By (1), qnZ(pf) < 0, and, taking limits, pz* < 0 also in this case.

Now, pZ(p*) =pz* < 0 for all p e A implies that Z(p*) < 0 (e.g., letting p
= (1 ,0 , . . . , 0), we see that Zi{p*) < 0, and so on). By Walras's law, more-
over, we have p*Z(p*) = 0, with p* » 0. From this we conclude that Z(p*)
= 0, for if Z(p*) has any strictly negative components, then p*Z(p*) = S ^
p*Zg(p*) < 0, contradicting Walras's law. •

The foregoing result can be easily extended to the case in which pre-
ferences are convex, but not strictly so. Problem 3.8 asks the reader to
extend Lemma 3.6 to the case of a bounded and uhc correspondence. Given
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this result, the proof of the existence theorem goes through essentially
unchanged when Z( ) is a uhc correspondence.

Problem 3.8. Let S be a closed and convex subset of the open unit simplex
in RG, and (f>\S -»-> RG a uhc and convex-valued correspondence with the
following properties:

(i) 0( ) is bounded i.e., there exists a bounded set B in RG such that §(p) c B for
allp € 5), and

(ii) for all p e S we have pz < 0 for every z e

Show that there exists some p* e S and z* e 0(p*) such that

Hint: Adapt the proof of Lemma 3.6. Define the correspondence fi( ) on
B, and consider the product correspondence ji{z) x

(c) Welfare Properties of Competitive Equilibrium

Having established the existence of competitive equilibrium, we can now
investigate its welfare properties. After introducing an appropriate concept
of social optimality, known as Pareto efficiency, we will prove two important
results on the relationship between Pareto efficiency and competitive
equilibrium.

Consider the problem of a hypothetical social planner who must decide
between two feasible allocations. Early approaches to this problem assumed
that individual utilities could be added to obtain a meaningful measure of
social welfare. The planner's problem was then reduced to the maximization
of social utility. On the other hand, we have seen that in modern consumer
theory, utility is an ordinal concept and cannot be meaningfully added across
agents. This makes social-welfare comparisons difficult, for given any two
feasible allocations, it is very likely that at least some agents will disagree
about which is better. If individual preferences cannot be quantified and
weighted somehow, there is no way of answering the question of which state
is to be preferred.

In this context, the efficiency criterion proposed by Pareto provides not
so much a solution as a way to sidestep the problem. Given two allocations
x and y, we say that x is Paretosuperior to y if and only if nobody prefers y
to x and at least one agent strictly prefers x to y. An allocation x is said to
be Pareto-efficient {-optimal) if there is no other feasible allocation that is
Pareto-superior to it. In this way, we avoid the need to make interpersonal
utility comparisons. The catch, of course, is that we can make welfare judg-
ments only in cases in which there is no disagreement. To see how restric-
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tive this is, observe that if there is a single dissenting individual who prefers
y to x against the unanimous opinion of all others, then x and y are not
comparable in the Pareto sense. Notice also that an allocation that gives all
resources in the economy to a single agent is Pareto-optimal, because pre-
sumably he would object to any attempt to confiscate his wealth.

More formally, we have the following definitions.

Definition 3.9. Pareto dominance and Pareto optimality.

(i) An allocation x = (x1,..., xn) Pareto-dominates another allocation y = (y1,...,
y)if

V i = 1, . . . , w, x l> iy and 3 k s.th. xk >ky
k

(ii) A feasible allocation x = (jt1,..., xn) is Pareto-optimal if there exists no fea-
sible allocation y that Pareto-dominates it.

That is, an allocation is Pareto-optimal if the available resources cannot be
redistributed in a way that would make some agents better off without
making others worse off.

The following theorems establish that there is a close connection between
competitive equilibrium and Pareto optimality.

Theorem 3.10. First welfare theorem. Consider a competitive exchange eco-
nomy with strictly monotonic preferences. Then any competitive-equilibrium
allocation is Pareto-optimal.

Strict monotonicity can be replaced by a weaker non-satiation assump-
tion. On the other hand, some of the implicit assumptions of the theorem
should perhaps be made explicit. They include the absence of externalities,
asymmetric information, and market power, and the existence of a complete
set of markets. Notice that the theorem does not require convexity of pref-
erences. Equilibrium may not exist without convexity, but if it does, it is
Pareto-optimal.

A superficial reading of the theorem may skip over the implicit assump-
tions and conclude that competitive markets are "superior" and that
government intervention can only create inefficiencies. A more careful con-
clusion is that in the absence of some quite common complications, we can
expect competitive markets (if they work as they are supposed to) to yield
outcomes that are efficient in Pareto's (rather restrictive) sense of the word.
The set of (implicit) assumptions of the theorem, moreover, gives us a con-
venient list of where to look for possible inefficiencies.
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Proof. The proof proceeds by contradiction. Let x = (x1 ..., xn) e x(p, e)
be an allocation corresponding to the equilibrium price vector /?, and let
z = (z\ . . ., zn) be a feasible allocation that Pareto-dominates x, that is, such
that (i) z' >;xl for all agents /, and (ii) there exists at least one agent k such
that zk >k xk

- Because z is feasible by assumption, we have

where el is the endowment vector of the ith agent.
We will show that z cannot be a feasible allocation. By definition, the equi-

librium allocation x maximizes the utility of each agent subject to the budget
constraint. By the strict monotonicity of preferences (or some weaker non-
satiation assumption), the budget constraint will hold with equality for each
agent (i.c.,pxl -pel for all i). Next, observe that if zl was preferred, but xl was
chosen, it must be that zl was "too expensive." Moreover, because for some
agents zk was strictly preferred to xk, it must be that the first bundle was
strictly too expensive. That is,

pzl>pelV/ and pzk>pek for some k (2)

Adding up over all agents, we obtain

Because p » 0, this implies that

which contradicts (1). Hence, any allocation that is weakly preferred to a
competitive equilibrium by all agents and is strictly preferred by some
cannot be feasible. •

Our second result says that if preferences are convex, any Pareto-optimal
allocation can be supported as a competitive equilibrium given an appro-
priate redistribution of endowments. The implicit assumptions are the same
as for the previous theorem.

Theorem 3.11. Second welfare theorem. Let XG R+G be a Pareto-optimal
allocation for a pure exchange economy. Assume that preferences are con-
vex, continuous, and strictly monotonic. Then there exists a price vector p e
R+ such that (p, x) is a competitive equilibrium for the economy, with initial
endowments e1 = x1 for all i.7
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Proof.

(i) We observe that if x* is Pareto optimal, then there is no way to redistribute
initial resources so as to make everybody better off.

Given the Pareto-optimal allocation x = (x1 ,.., xM), define for each agent /
the set

of bundles that are strictly preferred to x\ Summing over all consumers, we
obtain the set

of total-resource vectors that would allow us to make all agents strictly better
off than under the allocation x. Let

(where the equality follows by the monotonicity of preferences)8 denote the
total resources of the economy (the aggregate-endowment vector). Because x
is Pareto-optimal, there is no redistribution of E that would make all the agents
better off. Hence, E £ P(x).

(ii) We shall use a separating-hyperplane theorem to establish the existence of a
vector p that will be a candidate for an equilibrium price vector.

Each Piix*) is a convex set, by the convexity of preferences. This implies that
P(x) is convex, because it is the sum of convex sets (Theorem 1.4 in Chapter
6). Because E e P(x), we can apply a separating-hyperplane theorem
(Theorem 1.25 in Chapter 6) to conclude that there is a nonzero vector p in
RG such that

pE<pzVzeP(x) (2)

Interpretingp as a price vector, (2) says that the value of the resources needed
to make all agents better off (weakly) exceeds the value of the resources avail-
able in this economy, both valued at prices p.

We still have to show that p can be interpreted as a price vector and that it
will support the allocation x as a competitive equilibrium.

(iii) We will show that p > 0, that is, that p can be interpreted as a vector of (non-
negative) prices.

Let ug be the gth unit vector in RG (i.e., ug has a 1 in the gth coordinate,
and 0's in all others). By monotonicity, adding one unit to the total available
amount of any commodity will allow us to make all agents better off (e.g.,
by assigning each agents Vn extra unit of the good). Hence, E + uge P(x)
for all g, and it follows by (2) that the value of E + ug exceeds that of E.
That is,
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Figure 8.7.

from where

=pg >0V g

(iv) We will show that any bundle strictly preferred to xl costs strictly more than xl

at prices p (i.e., that i >i x
l implies pzl > pxl). This proves the theorem, because

it means that any bundle i strictly preferred to xl would not be affordable for
the agent at prices p. In an economy with endowments e[ - x\ no trade would
take place at those prices, and we would have an autarkic equilibrium, with
each agent consuming his endowment.

Let k be an arbitrary agent, and zk a consumption bundle such that
zk>kx

k. Then the allocation (*\..., x k ' \ zk, x k +
\ . . . , xn) differs from

x only in agent A:'s consumption, but contains enough resources to allow
us to make all agents better off than under x. Starting from this alloca-
tion, we will construct a new allocation x by taking a little bit of each
good away from agent k and allocating it to the other agents in equal shares.
That is,

xk =zk - s i

n-V

where 1 is a vector of l's, and £ is a positive real number. Because z k
the continuity of preferences implies that we can choose s small enough
that agent k still will prefer his new bundle to xk. Notice also that for
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any e > 0, the rest of the agents will always prefer the new allocation
to x\ by the strict monotonicity of preferences. Hence, there is some £ > 0 such
that

p

x k = zk - e l >k* k a n d x l = xl H + 1 > , xl V i ^ k
n - 1

Because x is strictly preferred to x by all agents (by construction), we
have 2£i x' e P(x). By (1) and (2), this implies that

Expanding this expression and canceling out identical terms,

p{zk - 4 + X^[* ' + (e/n -1)1]) > p(** + 2**
*0 => pzfc > p**

Because /: was arbitrary, a similar result holds for all agents, that is,

i (3)

Finally, we show that the inequality in (3) is a strict inequality. We proceed
by contradiction. Suppose zl >i x' and pzi = pxl. By the continuity of prefer-
ences, we can find some scalar A < 1 such that Xzl >/ x

l. Because Xzl has strictly
less of all commodities than z\ it is cheaper than z\ and we have Xpz1 <pzl =
px\ This, however, contradicts (3), for Xzl is strictly preferred to xl and strictly
cheaper. •

This theorem has been used to argue that efficiency and fairness can be
separated. The market mechanism guarantees efficient outcomes, but it
is "ethically neutral." To achieve fairness, however we may want to define
it, all we have to do is redistribute (in a lump-sum manner) wealth in some
equitable way and then let the market operate freely. This version of the
idea that we can have our cake and eat it too has sometimes been called
market socialism.

One implication of the second welfare theorem that can sometimes be
of practical interest is that competitive equilibria can be characterized as
the solutions of appropriate planning problems. In many cases it is easier to
solve these problems than to find the equilibrium allocations by equating
supply and demand. In a two-agent economy, for example, we can trace out
the contract curve (the set of Pareto-efficient allocations) by solving the
problem

max Ui (*i) subject to U2 (x2 )>u2

and an appropriate feasibility condition, where we treat u2 as a parameter.
By assigning different values to w2, we trace out the entire contract curve.
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The first-order conditions for the problem give us a characterization of the
set of Pareto-efficient allocations. Because the equilibrium allocations will
be in this set, we may be able to infer some of their qualitative properties
without actually solving for them. If we have more than two agents, the fol-
lowing generalization of the foregoing problem will work:

) s.t. feasibility and Y.1, =l}

That is, we maximize a weighted average of the utilities of the agents. By
changing the weights Xh we can trace out the multidimensional analogue of
the contract curve.

Problem 3.12. Consider an island economy populated by a representative
individual who lives for two periods and has preferences described by the
utility function

£7(c,jt) = lnc + plnx (1)

where c and x are first- and second-period consumptions. In period 1,
the individual has an endowment of e units of a homogeneous consump-
tion/capital good. He consumes part of it and uses the rest (A:) as input for
a production technology of the form y=ka, with a<l. Hence, the con-
sumption-possibilities schedule for the economy is of the form

x<ka=(e-cf (2)

(i) Draw the consumption-possibilities frontier and indifference curves on the (JC,
c) plane. Where is the optimum? Solve the planning problem

maxjhie + p lnx subject to (e - cf - x > o} (Rl)

Write the first-order conditions. Is the constraint binding? Why? Or why not?
Solve for the optimal values of c and k=e~c. (Don't worry about the second-
order conditions. They hold.)

(ii) Next, consider a competitive version of the same economy. The agent now owns
all the shares of a competitive firm that has access to the same technology as
before, and he can lend part of his endowment to the firm, which maximizes
profits, taking as given the market interest factor R = 1 + r (capital depreciates
completely upon use), and then distributes its profits to the shareholder.
We shall verify that the competitive allocation coincides with the planning
optimum.

Solve the firm's profit-maximization problem,

max n=ka -Rk (RF)

and write the firm's maximized profit as a function of k.

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:29:30 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.009

Cambridge Books Online © Cambridge University Press, 2013



Games in Normal Form and Nash Equilibrium 375

Next, write the first-order conditions for the household's utility-
maximization problem,

max v{s) = ln(e - s) + /3ln(sR + n) (RH)

(the agent takes as given both the market interest rate and the firm's profits), and
solve for the optimal levels of saving and consumption.
Finally, in equilibrium the desired savings of the household must be the same as
the desired level of capital input by the firm (i.e., s = k). Solve for the equilibrium
values of saving/investment and consumption. They should be the same as in the
first part of the problem. •

4. Games in Normal Form and Nash Equilibrium

The model analyzed in the preceding section assumed that the actions taken
by each of our competitive consumers affected other agents only through
the impersonal channel of market prices, which determined each agent's
consumption opportunities. In many situations of interest, the interde-
pendence between the agents involved is much more direct, with individual
actions having a perceptible effect on others' payoffs. In this section we will
develop a rather general framework for analysis of games involving a set of
rational agents and an appropriate concept of equilibrium due to Nash. Our
main purpose is not to provide a systematic introduction to game theory,
but to introduce a rather general conceptual framework that will be appro-
priate for thinking about the "equilibrium problem" in models in which
agents interact strategically.

The word "game" evokes a situation in which a number of players engage
in some sort of competition, behaving in accordance with certain rules. The
actions of the players (along with an element of chance, in most cases) jointly
determine the outcome of the game, from which the players derive some
sort of payoff, monetary or otherwise. To describe such a game, we need to
specify the actions or strategies available to each player and his preferences
concerning the outcome of the game. Formally, we have the following
definition:

Definition 4.1. Game in normal form. A game in normal form is an n-tuple
of the form

where At is a nonempty set, known as the action space or strategy space for
player /, and Ut is a real-valued function, Ui'.A1 x A2x ... xAn—> R,
known as the payoff function for agent i.
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That is, we have a set N = {1,..., n} of players; each one of them is
described by his preferences, represented by a payoff function Ut{), and by
his set A, -of available actions. We typically identify the set At of actions avail-
able to the rth agent with a subset of Rm. An element at of At is called an
action or strategy for agent I The Cartesian product A = Ax x A2 x . . . x An

is the action space of the game. An element a of A, called an action or strat-
egy profile, is a vector a = (al9 ...9 an) in Rmn that specifies the strategies
chosen by the different players. The actions of all players jointly determine
the result of the game and the payoff to each agent, f/,-(a) = Ui(au . . . , #«),
which depends not only on his actions but also on those of all the other
agents. For convenience, we will sometimes partition an action profile into
two components:

a = (at;«_,-), where a_t=(au...9at_uai+u...,an)

Thus, a_, provides us a compact way to refer to "everybody else's" actions.
We now introduce a concept of equilibrium for games in normal form

that requires both individual rationality and mutual compatibility among the
choices of the different agents.

Definition 4.2. Nash equilibrium. An action profile a* - {a%,..., a*) is a
Nash equilibrium if it is feasible (i.e., ae A) and if each player's action is a
best response to the joint actions of all the other players. That is,

a* earg maxf/.fa,; a*)Vi = 1,..., n (N)
at tAi

That is, given that other agents play a*h there is no incentive for the ith player
to deviate unilaterally from the equilibrium profile a*.

Notice that this definition subsumes both the individual-decision problem
and the equilibrium problem. We require that each player / behave as if he
is solving a constrained optimization problem, given by (N), in which the
actions of the other agents are taken as given. But (N) says more than
that: It tells us that this must be true for all agents simultaneously, or that
the actions of all the agents are mutually best responses to one another.
Loosely, in equilibrium, all agents optimize at the same time.

To establish the existence of Nash equilibrium, it will be convenient to
"separate" the two subproblems. We will first describe the behavior of each
individual agent through a best-response mapping and then impose a con-
sistency requirement on their joint choices. In this manner, establishing the
existence of Nash equilibrium will be reduced to the familiar mathematical
problem of showing that a given correspondence has a fixed point.

An action a*is said to be a best response by player i to actions fl_, by the
other players if it maximizes agent fs payoff, given a_,. By considering an
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agent's best response to all possible combinations of actions of his rivals, we
can construct his best-response mapping, # ; : A_; —»—» Ah with

% (a- t) = arg max Ut {at; a_t)
me At

Notice that ¥,-( ) is analogous to a demand correspondence, except that
we now get the set of optimal choices for agent / as a function of the other
agents' actions, rather than prices.

Taking the Cartesian product of the best-response mappings for the
individual players, we obtain the best-response mapping for the game,
W:A->->A, defined by

We can now redefine a Nash equilibrium as a fixed point of the corre-
spondence *F(). Notice that if a* e *¥(a*), then we have

a* e %(a*) = arg max U,(at; a *) or U(a*; a *) > U(ai; a * ) V a , e i ,

and for all i = 1,2,...,n. Hence, a* is indeed a Nash equilibrium (i.e., an
action profile such that each player's action is a best response to the actions
of the other players).

The proof of the following theorem is now straightforward. It suffices to
verify that the best-response mapping for the game satisfies the conditions
of Kakutani's fixed-point theorem.

Theorem 4.3. Existence of Nash equilibrium. Let T = {(\J{, A\),i - 1,... ,n}
be a game in normal form, and assume that

(i) the action space for each player A{ is a nonempty, compact, and convex subset of
Rm, and

(ii) the payoff functions Uj: A —> R are continuous and quasiconcave in a, for
given a.-j.

Then the game T has at least one Nash equilibrium. That is, there exists some
a* G A such that a* e *F(a*).

Proof We have seen that we can define a Nash equilibrium as a fixed point
of the best-response correspondence for the game, *F( ). Hence, all we
have to do is show that *F( ) satisfies the conditions for Kakutani's theorem,
namely, that VF( ) is uhc, nonempty, and compact- and convex-valued, and
that A is compact and convex.

First, notice that A = A1 x A2 x . . . x An is compact and convex because it
is the Cartesian product of compact and convex sets. Next, consider the best-
response correspondence for agent /,
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*¥i (a.i) = arg max Ut (at; a.t)

Because At is a compact set, and Ut( ) a continuous function, ¥,(«_,) is non-
empty by the extreme-value theorem. Moreover,

*¥t (a_, ) = Ain\bi;Ui (k; «_, )> max Ufa; «_,

is the intersection of two convex sets, At and an upper contour set of the
quasiconcave function [/,(•; #_,), and is therefore convex itself. Hence, *F,-( )
is convex-valued. Finally, ¥,-( ) is uhc and compact-valued, by the theorem
of the maximum (because the constraint correspondence is compact-valued
and "constant" and therefore continuous).

The correspondence *¥(a) is defined as the Cartesian product of the indi-
vidual best-response mappings and therefore inherits the required proper-
ties from them. Hence, the conditions of Kakutani's theorem are satisfied,
and it follows that *F() has/a fixed point a* in A. •

Debreu (1983a) has proved an extension of Nash's theorem for the case
in which the action space for each player is given by a continuous and
convex-valued correspondence At = r,-(a_,-) of the actions of the other
players. This result can be used to establish the existence of competitive equi-
librium in an economy like the one analyzed in Section 3. For this, we con-
sider a game played by n +1 agents: our n price-taking consumers and a
fictional agent we will call the Walrasian auctioneer. Traders choose con-
sumption bundles in order to maximize their utility within their budget sets,
taking prices as given. The auctioneer is assumed to set prices so as to max-
imize the value of excess demand pZ, taking the actions of all traders (i.e.,
the vector Z) as given. It is easy to show that the equilibrium for this game
is a competitive equilibrium in the sense defined in Section 3.

Problem 4.4. Cournot duopoly. Two firms compete in the market for a
homogeneous good. The inverse demand function, which gives the price that
consumers are willing to pay as a function of the total output of the good,
is of the form

P(qi+q2) = e-qi-q2 (1)

where 0 > 0 is a given parameter, and qt is the level of output of the ith firm.
Each firm maximizes its profits, taking as given the function (1) and the

output level of its competitor. For example, firm 1 solves

max P(q1 + q2 )q1 - cxqx (2)

where c\ is its (constant) marginal cost, treating q2 as a given constant.
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(i) Solve firm l's problem for its reaction function, that is, a function of the form
qx = 0i{q2\ C\, 6) that will give the optimal level of output as a function of its
rival's output and the parameters (cu 0).

(ii) Firm 2's reaction function will have the same form as the one you have just
derived. In a Nash equilibrium, each firm maximizes its profit, taking as given
the other's output level. To find the equilibrium, we solve the system

gi* = 0i(g*;ci,0), q* = <h(q*\c2,0) (3)

Draw the two reaction functions (their intersection corresponds to the
equilibrium). Solve (3) explicitly to obtain the solution mapping for the
model,

What conditions must be imposed on the parameters for the system to
have an interior solution (i.e., one in which both firms produce)? Analyze,
graphically and analytically, the effect of changes in 0 and cx on equilibrium
output levels.

(iii) Compute the equilibrium price and industry output and the equilibrium profit
of each firm.

Problem 4.5. Stackelberg duopoly. We will now analyze a market much
like the one described in the preceding problem, but in which the timing of
actions is slightly different. Instead of assuming that both firms move simul-
taneously, we now assume that firm 1 moves first. This gives firm 1 a strate-
gic advantage: Because it knows how its rival will behave, it can maximize
its own profits, taking as given firm 2's reaction function. Firm 2 then
observes firm l's output choice and behaves accordingly. Solve for the equi-
librium of this game, and compare it to the Cournot equilibrium analyzed
in Problem 4.4.

5. Some Useful Models of Imperfect Competition

In this section we ask the reader to work through the details of two simple
models of general equilibrium with imperfect competition. The first model,
which builds on the work of Dixit and Stiglitz (1977) and Ethier (1982), for-
malizes the idea that increasing specialization, as measured by the number
of differentiated intermediate goods available, yields efficiency gains that
appear as external economies to firms. Different versions of this model
have been used by Romer (1987) and Grossman and Helpman (1991),
among other authors, as building blocks for models in which growth is fueled
by endogenous investment in research-and-development (R&D) activities
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that lead to the development of new product varieties. In Chapter 13 we will
analyze one such endogenous growth model.

The second model, based on the work of Dixit and Norman (1980, ch. 9),
analyzes a two-good economy in which one sector is imperfectly competi-
tive because of the existence of fixed entry costs. The equilibrium involves
two sources of inefficiency: Excess entry leads to the duplication of produc-
tion facilities and high unit costs, and the existence of market power in one
sector distorts relative prices and hence consumer choices. Because in this
context an increase in market size will mitigate both types of distortions,
the model can be used to illustrate some of the potential advantages of eco-
nomic integration.

(a) Increasing Returns to Specialization in a Dixit-Stiglitz
Model of Monopolistic Competition

Economists have long argued that an increase in the degree of specializa-
tion can increase efficiency.This idea, which goes back to Smith (1961), Mar-
shall (1961), and Young (1928), has recently been revived in both the trade
and growth literatures. To formalize it, we shall now develop a version of the
Dixit-Stiglitz-Ethier model of monopolistic competition in which there are
fixed setup costs in the production of (differentiated) intermediate goods.

Consider an economy in which there are two types of goods, a homoge-
neous consumption good and a continuum of measure n of differentiated
intermediate products x(s), with 0 < s < n. The final good (Y) is produced in
a competitive industry by assembling intermediate inputs using a constant-
elasticity-of-substitution production function,9

, where 0 < a < l (1)

and the differentiated components are produced by identical monopolisti-
cally competitive firms using labor (L) as an input and a production tech-
nology that involves constant marginal costs and decreasing average costs
due to a fixed setup cost (c) measured in labor units:

Ls = xs + c (2)

where Ls is the amount of labor required to produce xs units of any inter-
mediate good.

Let us start by observing that the foregoing specification of technology
captures Smith's idea that there are increasing returns to specialization. To
see this, let Lx be the total amount of "variable labor" employed in the pro-
duction of components. Because all components enter symmetrically in the
production function for final goods and are themselves produced using the
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same technology, final output will be produced using the same quantity of
each input, given by x = LJn. Substituting this expression into (1), final
output is given by

1 Y = f[ oxads) a = n1/ax = n{1/ahlLx (3)

Hence, if the elasticity of substitution among components is low enough
(in particular, if a< 1), final output will be an increasing function of the
number of component varieties for a given amount of (variable) labor
input.

It remains to determine the equilibrium number of product varieties.
In this section we assume that entry is limited by a fixed setup cost, but in
a later chapter we will want to allow n to grow over time as a result of R&D
investment. Hence, it will be convenient to start by characterizing a "pseu-
doequilibrium" in which the number of product varieties (n) and the total
"variable labor" (Lx) are taken as given. Profit levels and wage rates in such
a situation will then give us an indication of the incentive either to directly
set up production of a new component or, in a more dynamic context, to
invest in R&D.

Problems 5.1 and 5.2 ask the reader to characterize the optimal behaviors
of component producers and final-goods producers.

Problem 5.1. Consider first the behavior of final-goods producers. Although
firm size is indeterminate with constant returns and perfect competition,
each firm minimizes the cost of producing its desired level of output y, taking
as given the prices p = {p{s)\ 0 < s < n) of the different inputs x{s). That is,
each firm solves

min psxs ds s.t. y = xf ds
I/a

Using the first-order conditions for this problem, derive the conditional
demand for intermediate goods as a function of final output and input prices
and the firm's unit-cost function (see Problem 1.21 in Chapter 7). Verify that
after aggregating over all final producers, the market demand function is of
the form

-*?

xs (p, Y) = fo-e, where <j) =

and Y is the aggregate output of final goods, with unit costs being given by

(5)
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Problem 5.2. Taking the market demand schedule (4), the wage rate (w),
and the prices set by its competitors as given, each component producer
maximizes operating profits, given by

n , =psxs- wxs = <j>(p]-e - wp;e) (6)

Solve this problem for the firm's optimal output level and the implied level
of profits.

To characterize the equilibrium, let us take as given, for the moment, the
number of component varieties n and the total amount of "variable labor"
employed in the intermediate sector, Lx, and consider a symmetric equilib-
rium in which all component producers set the same price (p) and produce
the same output (x). Problem 5.3 asks the reader to solve for profits and
wages in such a "pseudoequilibrium."

Problem 5.3. In equilibrium, free entry will ensure that profits will be zero
in the perfectly competitive final-goods sector. Hence, the price of final
output, which we will normalize to 1, must be equal to its unit cost. Using
this condition, together with previous results, show that equilibrium wages
and profits are given by

( l -a )Y . aY ._.
n = - — and w = — (7)

n nlx

where lx = LJn is "variable employment" in a representative component
producer. Hence, output is divided between wages and profits. Profits per
firm decrease with the number of competitors n and with the difficulty of
substituting one input for another, measured by a.

We can now solve for the equilibrium number of product varieties in a
free-entry equilibrium.

Problem 5.4. We have assumed that anybody willing to pay a fixed cost
of c units of labor can set up shop and start producing a new com-
ponent variety. Compute the total demand for labor, and set it equal
to the fixed labor supply L. Using this condition and the assumption of
free entry into the sector, solve for the equilibrium number of firms w* as
a function of L and c, and use (3) to derive a reduced-form aggregate-
production function giving output per capita as a function of the same
variables. Verify that this function exhibits increasing returns to labor when
a<\.
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(b) Fixed Costs, Market Power, and Excess Entry
in a Cournot Model

Consider an economy populated by L identical individuals, with preferences
over two consumption goods described by a utility function of the form

U(c,x) = aIn* + (1-a)Iny (1)

We take good y as the numeraire and normalize its price to 1. Agents are
endowed with a unit of labor time each, and they own shares in firms. They
maximize (1) subject to the budget constraint

px + y = I (2)

where / denotes total (wage plus other) income, and p is the price of good
x. It is easily shown that the assumed preferences imply constant expendi-
ture shares equal to each good's (normalized) weight in the utility function.
Hence, consumer optimization implies

px = cd and y = (l- a)/ (3)

We assume that labor is the only factor of production and that the produc-
tion technologies for x and y are of the form

Lx = x + c and Ly = y (4)

where Lx denotes the amount of labor required to produce x units of
the good, and c is a fixed setup cost (in labor units). Hence, marginal costs
are constant and equal for the two commodities, but good x is produced at
decreasing average cost.

The planning optimum for this economy is easily characterized. To mini-
mize fixed costs, all production of good x should take place in a single plant.
The remaining labor (L - c) should be allocated to the production of the
two goods in proportion to their weights in the utility function. The first-best
per-capita consumption-and-production bundle (FB) corresponds, as shown
in Figure 8.8, to a point of tangency between an indifference curve of the
representative consumer and a per-capita production-possibilities frontier
(PPF) with unit slope (because the marginal costs of both goods are the same).

This allocation, however, will not be attained in equilibrium. Notice that
the existence of fixed costs implies that the x sector cannot be competitive.
We will assume that firms in this sector compete in a Cournot fashion, taking
as given the quantities produced by their rivals, and that free entry drives
equilibrium profits to zero. Noncompetitive producers will charge prices in
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Figure 8.8. Optimal allocation.

excess of marginal costs, implying that equilibrium x production will be sub-
optimally low. Free entry will, of course, limit the equilibrium markup, but
it also will generate a second inefficiency, as any increase in the number of
firms will involve a fixed cost that will reduce overall production possi-
bilities. Problem 5.5 asks the reader to solve for a symmetric free-entry
equilibrium. Problem 5.6 then compares this equilibrium with the planning
optimum characterized earlier and analyzes the effect of an increase in
market size.

Problem 5.5. Consider a free-entry equilibrium in which sector y is com-
petitive, and x producers compete a la Cournot. Zero profits in the com-
petitive sector imply that the salary will be equal to the price of y, which we
have normalized to 1. Let us focus on the market for x and characterize a
symmetric Cournot equilibrium. Aggregating over consumers, the total
demand for x can be written

X =
aQ

where Q = LI is aggregate income. Inverting this function, and assuming that
there are n +1 producers in this sector, we can write the inverse demand
schedule perceived by a representative producer i in the form

P{Xi) =
aQ

nx-i + Xi /r\

where xt denotes his own output level, and x_, that of an arbitrary
competitor.

Producer i maximizes profits,
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11, = p(Xi)xt -Xi-C = i
nx-i + xt

taking as given the salary (w = 1), aggregate income Q, and the outputs of
his n competitors (*_,-). Using the first-order conditions for this problem,
derive a reaction function giving optimal output for the fth producer as a
function of those of his rivals. In a symmetric equilibrium, all firms will
choose the same output level. Set xt = x_,- = x, and find (i) the equilibrium
level of output, (ii) the equilibrium price of good JC, and (iii) the equilibrium
level of firm profits - all written as functions of aggregate income and the
number of firms in the sector.

Now, in a free-entry equilibrium profits are zero, and it follows that aggre-
gate income is given by

Q = Lw = L (10)

Using this last expression and setting #=0, find (i) the equilibrium number
of x producers (ignoring integer constraints), (ii) the equilibrium price of
good x, (iii) total x output, (iv) total fixed costs, and (v) total y output - all
written as functions of "market size," measured by ah, and the fixed cost c.

Problem 5.6. Using a diagram similar to Figure 8.8, compare the equilib-
rium per-capita allocation and the social optimum, illustrating the two
sources of inefficiency we have identified. Using your results from Problem
5.5, discuss how things change as "market size" (measured by L) increases.
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Notes

1 For many purposes, we can make do with a weaker property, called acyclicity. This
requires that the strict preference relation contain no cycles, i.e., that there exist no
collection x u . . . , xn of alternatives such that xx > x2 > . . . > xn and xn > xx. This is both
necessary and sufficient for the existence of a nonempty set of undominated alternatives
in any finite collection of objects.

2 See Section 9 of Chapter 2 for a discussion of connectedness and some useful results.
3 The reader should refer to Section 11 of Chapter 2 and Section 2(a) of Chapter 7 for a

discussion of the continuity of correspondences and the theorem of the maximum.
4 After Leon Walras, the first author who tried to develop a rigorous theory of general

equilibrium for a competitive economy.
5 In fact, this has to be generalized a bit. We observe that some goods (e.g., air) are free

(pg = 0), and this is compatible with their being in excess supply. To account for this, we
can write the equilibrium condition as

p>0, Zg(p)<0 and Zg(p) = 0 ifpg>0 (W.E')

We will ignore this complication from now on.
6 Notice that if we interpret f(p) as an excess-demand function, the adjustment rule ju()

instructs us to find a price vector q that will maximize the value of the excess-demand
vector /(/?). This involves setting pg = 0 for all g, such that fs(p) < 0 and it entails "high"
prices for those goods with a positive excess demand. Notice that if f(p) = 0, then any
price vector q will do, because then qf(p) = 0 for all q. Hence, if f(p) = 0, we have p e
fi(p), and p will be a fixed point of /x().

7 This may sound a bit funny, particularly after you look at the proof and see that no trade
takes place in equilibrium. Notice, however, that we could replace the condition that the
endowment itself be xl by the assumption that the endowment vector for agent i has the
same value as xl at equilibrium prices and that these endowment vectors are collectively
feasible. The equilibrium would then generally involve some exchange.

8 If the sum of individual consumptions were strictly less than the total endowment of
resources, we could increase the consumption of all agents, making them strictly better
off.

9 The additive functional in (1) was introduced by Dixit and Stiglitz (1977) as a utility
function. Ethier (1982) reinterpreted it as a production function.
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Dynamical Systems. I: Basic Concepts and
Scalar Systems

In many applications in economics and other disciplines we are interested
in the evolution of certain systems over time. Suppose the state of the system
of interest at a given point in time can be described by a dated vector of real
numbers, xt e Rn, which we call the state vector. To give a precise description
of the evolution of xh we introduce a vector-valued function

n+1+P DIXRXQ >Rn, withxt = 0(xo,t\a)

that gives the value of the state vector at time r as a function of its initial
value, x0 e R e and a vector of parameters a e R p that describes the envi-
ronment in which the system is embedded. Such a function is called a tran-
sition function or flow. Notice that (j>( ) fully describes the behavior of the
system: For given initial conditions x0 and fixed parameter values a, we
obtain the time path of the system by giving values to t\ and by changing xQ

and a we can determine how this path varies with changes in initial condi-
tions or parameters.

In most cases the flow of a dynamical system is not given to us directly.
Instead, we start from a parameterized system of difference or differential
equations and must "solve it" to construct its flow. In this chapter and those
that follow we will review some of the basic elements of the theory of dif-
ference and differential equations and some applications to economics. To
abbreviate, we will refer to dynamical systems described by systems of dif-
ferential equations as "continuous" or "continuous-time" systems (CS), and
to those described by systems of difference equations as "discrete" or
"discrete-time" systems (DS). When it is not necessary to distinguish
between them, we will speak simply of dynamical systems (S).

1. Difference and Differential Equations: Basic Concepts

An ordinary differential equation is an equation of the form

XM(t) = F[t, x(t), x(t), x(t),..., x^(t); a] (1)

391
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392 /: Basic Concepts and Scalar Systems

where x(t) = [xt(t), x2(t),..., xn{i)] is a vector-valued function of a real vari-
a b l e t h a t w e will i n t e r p r e t as t i m e ; x(t) = (dxx{t)ldt, dx2(t)ldt,..., dxn(t)ldt)

is the first derivative of x(t) with respect to time, with x(t) its second deriv-
ative and x{m) its rath derivative; a e Q c R p i s a vector of parameters; and
F( ) is a function R1+n(m-D+p—>Rn that we will typically assume to be at
least C\

Observe that (1) is a functional equation, that is, an equation in which the
unknown is a function x(r), rather than a number or a vector. Solving (1)
means finding those functions x(t) that, together with their derivatives
i,..., x(m), will satisfy the equation for given values of the parameters.

In a system of differential equations, time is a continuous variable, that is,
t can take any real value. In many cases, however, it is convenient to restrict
t to integer values that correspond to some natural period (e.g., a year). In
this case, we work with difference equations, that is, equations of the form

%t+m = *-M/> xt, xt+i, xt+2,..., xt+m^\; cc\ (2)

where xs e Rn denotes the state of the system in period s. Like (1), equation
(2) is a functional equation, because the unknown is once more a function
of t that must satisfy certain properties. On the other hand, given that Ms a
discrete variable, the solution to (2) will be a sequence rather than a differ-
entiable function of t.

A differential equation is linear if F{ ) is linear in x{t) and its derivatives,
but not necessarily in t or a. Similarly, a difference equation is linear if
G( ) is a linear function of xhxt+uxt+2,... ,xt+m-\. A dynamical system is
autonomous if t does not appear as an independent argument of F( ) or
G( ), but enters only through x(t). As we will see later, linear systems are
much easier to analyze than nonlinear ones. Because explicit solutions for
nonlinear systems cannot be found, except in special cases, we have to settle
for qualitative results or numerical solutions for specific functional forms. In
the case of autonomous systems of one or two dimensions, qualitative results
are easily obtained by graphical methods. For higher-dimensional systems,
we have to rely on linear approximations to obtain local results for non-
linear systems.

The order of a differential equation is the order of the highest derivative
of x(t) that appears in it; the order of a difference equation is equal to the
difference between the highest and lowest time subscripts that appear in the
equation. Hence, both (1) and (2) are of order ra.

It is easy to see that any system of difference or differential equations can
be reduced to an equivalent first-order system by introducing additional
equations and variables. For example, given the second-order differential
equation

x = ax + bx
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Difference and Differential Equations 393

we can define a new variable y = x and rewrite the equation in the form of
a system of two first-order equations:

x = y and y = ay + bx

Hence, we can restrict ourselves, with no loss of generality, to the study of
first-order systems of the form

x = f(x,t;a) (CS(r,a))

or

xt+1=g(xtj;a) (DS(f, a))

where we indicate in parentheses the arguments of/( ) or g( ) other than x.

(a) Geometrical Interpretation

In order to visualize the kind of information contained in a system of equa-
tions of the form (CS) or (DS) and to understand what it means to solve
such a system, it will be convenient to think of the equations (CS) and (DS)
as descriptions of the motion of a particle in n-dimensional space. If we inter-
pret xt as the position of the particle at time £, the difference equation xt+1 =
g(xh t; a) tells us that a particle that is in position xt at time t will be at the
point xt+i one period later. Subtracting xt from both sides of the equation,
we obtain the vector

Axt = xt+1 ~xt= g(xt , t ; a ) - xt

Graphically, Axt can be represented as an arrow that takes us from the
current position of the particle to its next position, as shown in Figure 9.1.
Once in xt+u we can construct a new arrow, Axt+1 =g(xt+u t+ 1) -xt+u follow
it to xr+2, and so on.

In summary, a difference equation describes the motion of a particle step
by step. If we specify an initial time and position and follow the arrows of
motion, we can reconstruct the trajectory or orbit of the system, obtaining a
sequence {xt} that is a particular solution to the system. Of course, if we
choose a different initial time or position, or if we change the values of the
parameters, the same system will generate a different trajectory in the state
space X. Hence, the difference equation (DS(f, a)) will in general have an
infinite number of solutions, indexed by the system's initial time and posi-
tion and by the parameter vector.

Although it is perhaps easier to visualize the behavior of a discrete-time
system, it is often more convenient or more natural to work in continuous
time. The analogy with the motion of a particle in space remains valid for
systems of differential equations, the only difference being that the particle
now moves smoothly rather than in discrete jumps. In fact, a differential
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X

Figure 9.1. Solution trajectories of a discrete system.

equation is simply the limiting case of a difference equation as the length of
the period between jumps goes to zero. In the preceding discussion we arbi-
trarily set the length of the period to 1, but more generally, we can set it
to h. Then the change in x between two consecutive periods is given by
Axt - xt+h - xt. Dividing Axt by h and taking the limit as h —> 0, we obtain the
time derivative x(t), which can be interpreted as a velocity vector.

Hence, the system (CS(/, a)), x=f(x, t\ a), assigns to each point x e Z an
arrow (which we imagine "attached" to x) whose direction is the instanta-
neous direction of motion (i.e., the tangent to the body's trajectory at the
given point) and whose length is proportional to the speed of movement. In
this context,/(or g) is sometimes referred to as a vector field.

Solving the differential equation (CS) means reconstructing the set of
functions (p(f) that describe trajectories in state space that are compatible
with the given set of velocity vectors. The idea is the same as in the discrete
case, with the difference that the orbits of the system will now be smooth
curves (differentiable functions of time) rather than discrete sets of points
(sequences). Like (DS(f, a)), the continuous system (CS(f, a)) will in general
have an infinite number of solutions, for the particle's trajectory will depend
on its initial position and the time at which it is set in motion, as well as on
the values of the parameters.

(b) Initial- and Boundary-Value Problems

As already indicated, a dynamical system (S(t)) will in general have an
infinite number of solutions, corresponding to the different trajectories that
the state vector may follow in state space depending on its initial position
and the time at which the system is set in motion. The set of all such "par-
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Difference and Differential Equations 395

Figure 9.2. Solution trajectories of a continuous system.

ticular" solutions of the system, <f>(t, x°, tQ), is sometimes called its general
solution. In certain cases it is relatively easy to first construct the general
solution and then select the particular solution in which we are interested.
This process is referred to as definitizing the solution of the system. One way
to choose an appropriate particular solution is by imposing an initial condi-
tion, that is, a condition of the form

x(0) = x° °, 0))

requiring that the system start out at time zero from some given position x°.
A system of difference or differential equations and an initial condition
together define an initial-value problem, and the solution to this problem is
a particular solution of the system.

Imposing an initial condition (in the strict sense of the word) is not the
only way to definitize the solution of a dynamical system. More generally,
we can use side or boundary conditions of the type

x° (C(x°,t0))
to specify that the state vector x must take on a given value x° at some point
in time tQ e [0, + °°] that need not be equal to zero. We will denote the
boundary-value problem defined by a dynamical system (S(t, a)), and the
side condition (C(x°, t0)) by (P(x°, t0, a)). We will show later that although
the dynamical system (S(f, a)) will in general have an infinite number of
solutions, the boundary-value problem (P(x°, t0, a)) will have precisely
one solution, provided the function /( ) or g( ) satisfies certain reasonable
conditions.
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In the mathematical literature on dynamical systems, the distinction
between initial and boundary conditions is seldom made. To return to our
interpretation of a dynamical system as the law of motion of a particle in
space, the trajectory of the particle is fully determined once we specify that
it must go through some point x° at a given time t0. For this purpose, it is
irrelevant whether x° is the initial position of the particle when it is set in
motion "at the beginning of time," its final destination, or any other point in
the trajectory.

In many economic applications, however, the difference between initial
conditions per se and other types of boundary conditions is important. We
often have natural initial conditions associated with variables like the capital
stock whose initial values (today) are predetermined by what has happened
in the past. On the other hand, there are economic variables, such as asset
prices, that are able to "jump" instantaneously and for which there are no
obvious initial conditions. In such cases, the choice of an appropriate bound-
ary condition must be made on economic grounds rather than mathemati-
cal grounds, and often it will reflect important assumptions concerning the
formation of expectations and the choice of equilibrium concept. We will
return to this question in Chapter 11 and deal with it in the context of a
specific example that will allow for a more precise discussion.

(c) Some Definitions

In this section we will formalize some of the concepts we have just intro-
duced. Consider, for concreteness, a continuous-time system

x = f(x,a,t) (CS(*,a))

where the function /( ) maps some set X x Q x / in Rn+p+1 into X c Rn, and
/ is an interval in the real line.

A {particular) solution of (CS(Y, a)) is a differentiable function cp(f):
/9 —> X, defined on some interval / , c / called its interval of definition, and
taking values in X, that together with its derivative satisfies the differential
equation (CS(f, a)) in /9, that is, such that

It is important to distinguish between a solution function q>(t) and the
trajectory it describes in state space. Given a solution <p(t) of the differen-
tial equation (CS) defined on the interval /<p, we define the orbit of (CS)
induced by 9 as the set

7(9) = (p(Jv) = {xeX;x = (p(f) for some teJ^,}

Given a solution (p(£) of (CS(f, a)), fix some to e Jv, and let x° = cp(f0). It is
then clear that (p(f) is a solution of the boundary-value problem
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Difference and Differential Equations 397

x = /(x, a, t), x(tQ) = x° (PC(x°, t0, a))

Conversely, we will show later that under appropriate assumptions on /( ),
the problem (PC(x°, t0, a)) has precisely one solution defined on a maximal
interval /m(x°, t0, a) that depends on the initial data of the problem and the
parameter vector. Clearly, this solution is also a solution of the differential
equation (CS(r, a)). Hence, we can identify the set of solutions of (CS(J, a))
with the solutions of the family of boundary-value problems (PC(x°, r0, a)),
where we now regard x°, f0, and a as "variables." Because any change in these
data will generally yield a different solution of (CS(/, a)), we can define a
mapping 0(f; x°, t0, a) by setting, for each t in /m(x°, t0, a),

<p(t;x°,to,a) = <?(t)

where <p( ) is the unique maximal solution of the differential equation (CS
(f, a)) satisfying the boundary condition (p(t0) = x°. The resulting function,
(p(r; x°, fOj <*)> is called the flow of the system (CS(r, a)), or the flow of the
vector field /(x, a, £).

By the uniqueness of solutions to boundary-value problems, we can define
the orbit of the system (CS(f, a)) through the point (JC°, f0) as the orbit
induced by the corresponding solution function, <p(t) = (f>(t; x°, t0, a). Hence,

7{x\ t0) = y[(l)(f, *°? tQ, «)] = cp(/m(x°, t09 a))

= {% G X\ x = <p(f) for some r e /m (x°, r0, a)}

It will be convenient at times to distinguish between the positive and nega-
tive orbits through a point. Given a point (x°, fo)> let /m(x°, f0, a) = (a, 6) be
the maximal interval of definition of the solution through (x°9 10), given by
the function q>(t) = (j)(t; x°, t0, a). Then t0 e Jm(x°9 10, «), and we define the pos-
itive orbit through (x°, t0) by

7+(x°, t0) = <p([f0, b)) = {xeX\x = q>(*) for some f G [r0, 6) c /m(x°, r0, a)}

and the negative orbit through the same point by

Y~(x°, t0) = q>((a, t0]) = {x e X; x = cp(f) for some re(a,t0]c /m(x°, r0, a)}

Similar concepts can be defined in an analogous way for the discrete
system

xt+1=g(xt,t;a) (DS(f, a))

where the function g( ) maps some set I x / x O in JRn+1+p into X c Re. We
now assume that / is a set of consecutive integers (we will sometimes refer
to such a set as an "interval" for short). A solution of (DS(f, a)) is a sequence
(i.e., a function <p(t):Jy—> X) defined on some "interval" of integers
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398 I: Basic Concepts and Scalar Systems

/TP c / called its "interval" or set of definition. This function takes values in
X and satisfies the difference equation (DS(£, a)) in /<p, that is,

As in the continuous case, each solution of the difference equation (DS(t,
a)) can be identified with the solution of an appropriate boundary-value
problem, and the flow of the system can be defined in the same way as before
(at least for all t > t0, as discussed later). The orbits of the system through
any given point (x°, t0) are also defined in a similar way. Notice, however,
that orbits will now be discrete sets of points, rather than differentiable
curves in state space.

(d) Existence, Uniqueness, and Other Properties of Solutions

We will now establish the existence, uniqueness, and other important prop-
erties of the solutions to discrete-time boundary-value problems of the form
(PD(x°, r0, a)). We will also state a theorem that gives similar results for con-
tinuous-time systems. The proof of this result, which requires a lot more
work than its discrete-time analogue, will be left for Section 6, where we will
analyze in some detail the properties of solutions of differential equations.

Consider the boundary-value problem

xt+1 = g(xt, t; a\ x(t0) = x° (PD(x°, r0, a))

where the function g( ) maps some set Xx Ix Q in R»+1+P into I c R 1 1 , / i s
an "interval" containing t0, and x° is a point in X. For convenience, we set
t0 = 0 in the following, but the same procedure could be followed for an arbi-
trary value of t0.

The construction of the solution to this problem poses no conceptual
difficulty. Intuitively, to recover the system's trajectory it is enough to "follow
the arrows" starting from the initial position. Analytically, we can construct
the solution sequence q>(f) = (pf(x°, t0, a) iteratively by setting 9(0) = x° and
then using g( ) to define <p(t) recursively by cp(r + 1) = g[<p(0> t; a]. That is>

<l>0(x
0,0,a) = x0

h{x\0, a) = g{x\ a, 0) = g[(/>0{x°, 0, a), 0, a]

<t>(x\ 0, a) = g[<Mx°, °> a\t-l, a] (1)

If g( ) is continuous (or Ck), the function 0r(x°, r0, a) constructed in (1) is
defined as the composition of continuous (Ck) functions and is therefore
continuous (Ck) itself in (JC°, a).
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Difference and Differential Equations 399

Notice that if g(-, a) is defined in the whole space Re+1, this process can
be continued indefinitely, and a solution exists for each t > t0 = 0. If X x I is
not the entire space, on the other hand, the solution may cease to exist at
some point if g(%a) maps (xht) into some point (xt+ut+1) outside the
domain of g(*, a). Hence, the solution sequence cp(f) = §t{xQ, 0, a) will in
general be defined on some maximal set of consecutive integers /f c / con-
taining zero.

We observe also that the solution sequence <p(t) is uniquely defined for
t > 0 (for given x° and a) provided that g(-, a) is a well-defined function.
Under this assumption, any other solution sequence *¥(t) starting from x° at
time zero will adopt exactly the same values and can be continued to the
same interval as q>(t). Uniqueness does not necessarily survive, however,
when we try to extend the solution sequence to negative values of t (or, more
generally, for t < t0).

To construct such an extension, we define the functions ht{) by ht(x) = g(x,
t; a) for t < 0 and construct the sequence 0r(*°5 0, a) recursively by starting
with (j>o(x°, 0, a) = x° and then setting

for each f = -1, - 2 , . . . . As before, 0,(-) may fail to exist after some point.
There is no guarantee, moreover, that ht{ ) will be invertible for all t, so the
inverse mapping hj\) may well be a correspondence. In this case, the solu-
tion to (PD(;e0, 0, a)) will not be unique for t < 0. On the other hand, if ht{ )
is a homeomorphism for all t (i.e., a continuous function with a continuous
inverse), then the solution sequence will be unique, and (j>t( ) will be a con-
tinuous function of (x°, a) also for t < 0.

We summarize the discussion in the following theorem.

Theorem 1.1. Existence and uniqueness of solutions for discrete systems and
dependence on initial conditions and parameters. Let g:X x I x Q 2 RB+P+1

—> Rn be a well-defined function, and I a set of consecutive integers. Then
the boundary-value problem

Xt+/ = g(xt, a, t;, x(t0) = x° (PD(sP, U, a))

has a solution sequence (p(t) = §t(x°, t0, a) for each (x°, tft aj G XxIxQ. This
solution is defined on a maximal set Jm(x°, t0, a) c I containing t0 that depends
on the initial data and the parameters of the problem. Moreover, the solution
is unique for all t > to, in the sense that if *F(t) is a solution sequence of(PD(x°,
to, a)) defined on some set J« then JV c Jm(x°, to, a), and *F(t) = (p(t) for all
t €JVwith t > to.
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Moreover, ifg() is continuous (Ck) in (xt, a), then for each t e Jm(x°, to, a),
with t > tft the function §t(x°, t0, a) is continuous (Ck) in (x°, a). If in addition,
ht(x) = gfx, t; a) is invertible and has a continuous (Ck) inverse for all t, then
the solution is unique in all ofJm(x°, t0, a) and §t(x°, % a) is continuous (Ck)
in (x°, a) for all t in Jm(x°, t0, a).

With continuous-time systems, things are not so simple. However, it is still
possible to obtain similar results with slightly stronger assumptions. In
Section 6 we will prove a version of the following result.

Theorem 1.2. Existence and uniqueness of solutions for continuous-time
systems and dependence on initial conditions and parameters. Let f:X x I x
Q 3 Rn+P+i _ > Rn be QI Qn fhe setXx!xQ, where X and Q are open sets,
and I is an open interval in the real line. Then the boundary-value problem

x = f(x, a, t), x(to)= x° (PC(x°, U a))

has a unique solution (p(t) = §(t, x°, t0, a) for each (x°, to, a) e X x I x Q
defined on a maximal open interval Jm(x°, to, a) c I containing t0 that depends
on the initial data and parameters of the problem. That is, if *F(t) is a solution
of (PC(x°, to, a)) defined on some interval J« then JV c Jm(x°, t0, a) and ¥(t)
= q>(t) for all t € JV. Moreover, the flow of the system, §(t, x°, to, a), is C

One convenient implication of the uniqueness of solutions for boundary-
value problems is that the solutions of differential or difference equations
cannot cross, in the sense that two different solution trajectories cannot go
through the same point at the same time and then "separate." The follow-
ing result makes this precise.

Theorem 13. Let f be C1 on the set X x l, where X is an open set, and I an
open interval in the real line. Let §(t, tft x°) be the flow of the system fCSftj),
x= ffx, t). Then for each (x°, t0) e X x l and every s e Jm(x°, t0) we have
Jm/<Ks, ^ x°), sj = Jm(x°, t0), and

<b(t,to,x°) = <b[t,s,$(s,to,x0)] (2)

for all t € Jmfx°, to).

Let q>(r) = 0(>, t0, x°) and ¥(r) = $/, s, xs) be two solutions of the system
(SC(r)) indexed by two arbitrary points in their graphs (f0, x°) and (s, xs).The
theorem says that if the two graphs have a point in common, that is, if (p(t)
goes through JC5 at the same time that *F(f) does, then the two solutions are
the same in the sense that their maximal intervals of definition coincide, and
so do their values for any t in this interval. Equivalently, the result says that
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if we follow the solution 0(r, f0, *°) to some point (s, xs = $>, £0, JC0)) and then
stop, and then solve the boundary-value problem with initial data (s, Xs) and
follow its solution, then we stay on the same path we would follow if we did
not stop.

A similar result holds for discrete systems whenever the flow is a well-
defined function. In particular, equation (2) will hold for all f, s e Jm(x°, t0)
and greater than t09 implying that solutions that at some point come together
cannot separate later on. Notice that equation (2) may not hold for s,t< tOi

for it is possible that g( ) may map two distinct points into the same one.
Hence, different solution sequences may "converge" at some point if g( ) is
not invertible, but they can never "diverge" once they have coincided.

Proof. Let <p(t) = 0(£, t0, x°) be the unique maximal solution of (CS(f)) going
through the point (t0, x°). Fix some arbitrary s in Jm(x°, t0) and let

Clearly, cp(f) is a solution of the boundary-value problem (PC(s, Xs)). Let

be the maximal solution of this problem defined on the maximal interval
Jm(s, Xs). Then, by the uniqueness of solutions (Theorem 1.2), we have Jm(x°,
tQ)<^Jm(s,x') and

Moreover, because *¥(t) is defined at t0, we have

so XF() also goes through the point (f<>, x°). Because <p() is the maximal solu-
tion through this point, Theorem 1.2 implies that Jm(s9 X

s) c/m(x°, f0), so in
fact Jm(s, Xs) =Jm(x\ t0).

Using (1) and the definition of Xs, we now have

<j)(t, to,x°) = <p(f) = *¥(t) = <p(t, s,xs) = <t{t, s, (f)(s, t0, x
0)]

for all t in Jm{x\t 0) = /m(s, Xs). •

2. Autonomous Systems

A dynamical system is said to be autonomous if time does not enter the
function /( ) or g( ) as a separate argument, that is, if the system is of the
form

x = f(x) (CS)
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402 /.* Basic Concepts and Scalar Systems

or

xt+1=g(xt) (DS)

In this section we will analyze some important properties of autonomous
systems and introduce some concepts that will play important roles in the
rest of the chapter.

(a) The Flow of an Autonomous System

We have seen that the uniqueness of solutions for boundary-value problems
implies that the solutions of differential or difference equations cannot cross,
in the sense that two different solution trajectories cannot go through the
same point at the same time and then separate. It is still possible, however,
that different solutions may cross a given point at different times and then
follow different trajectories. The reason, of course, is that in the general
specification of a dynamical system,

x = f(x,t) (CS(0)

or

xt+1=g(xt9t) (DS(0)

the vector field/or g can be a function of t. Graphically, the arrow of motion
x or Ax associated with a point x in the state space can change with time.
Hence, the direction of motion of the system depends not only on its current
position but also on time.

In the case of the autonomous system

* = /(*) (CS)
or

xt+1=g(xt) (DS)

however, each point x in X has attached to it a unique, time-invariant arrow,
and therefore all particles that at some time reach point x follow exactly the
same trajectory in X (from then on, in the case of a discrete system; always,
in the case of a continuous system) whenever the assumptions of the corre-
sponding existence and uniqueness theorem are satisfied.

That is, given an autonomous system (S), the solutions satisfying the
boundary conditions

x(t0) = xQ and x(tt) = x°, witht0*tx

have the same orbit if (S) is a continuous system, and the same positive orbit
if (S) is discrete. Hence, solution trajectories never cross. If Xis some subset
of the real line or the plane, the set of all trajectories can be shown in a figure
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Non-autonomous system: several trajectories may go
through the same point (at different times).

Autonomous system: only one solution
trajectory can go through each point in X.

Figure 9.3. Autonomous versus nonautonomous systems.

called a phase diagram, using arrows to indicate the directions of motion.
This device is a very useful tool for analysis of the dynamics of low-
dimensional autonomous systems (Figure 9.3).

In the remainder of this section we will formally establish this no-
crossing property and investigate some other properties of the flow of
autonomous systems that are closely related to it.

We start with the discrete case,

xt+1
=g(xt) (DS)

Analytically, the flow of (DS) can be obtained by the repeated composition
of the time map g( ) with itself. Letting 0b(jc°) = x° indicate the position of
the system at time zero, we define <j>t(xQ) recursively by

where g*() denotes the nth iteration of g( ) (and not its nth power). Hence,
the flow of (DS) can be written

k ( ) g ( )

and, by the associativity of the composition of functions, we obtain gt+s(x°) =
g'(gV)) <*

)] (2)

for all integers t, s > 0 whenever s, t, and t + s lie on the maximal interval of
definition of the solution through x°9Jm(x°). If g( ) is invertible, the same pro-
cedure will work backward, with g~n( ) now denoting the n-fold composition
of the inverse function g~x( ) with itself, and then equation (1) holds also for
nonpositive integers.
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404 / : Basic Concepts and Scalar Systems

Using equation (2), we can now establish the no-crossing property. Given
a point z in X, let (f>t(x°) and (j)t(y°) be two solutions of (DS) going through z
at different times, say s and r > 0. Then

*.(*") = z = *(y°)

and for any t > 0 in Jm(z) we have, using (2),

Hence, we have that s + f and r + f e Jm(z), and

M*°) = M/) (3)

for all r > 0 in /m(z). If two solutions 0f(jc°) and 0,(y°) go through a common
point z, then they coincide thereafter. Equivalently, we can say that the posi-
tion of a particle that goes through a given point z depends only on the time
spanned since it reached this point, not on the time at which it attained it.

We will now show that a similar property holds for the flows of the
continuous-time autonomous system

x = /(*) (CS)

Lemma 2.1. Let cp(t) be a solution of the autonomous system (CS) defined
on the maximal interval Jp. Then cp(t + r) is also a solution of (CS) for any
constant r and any t + r e Jr

To understand this deceptively simple result, it is probably best to see why
it fails to hold in the case of a nonautonomous system. Let (p( ) be a solu-
tion of the nonautonomous system

x = f(x,t) (CS(0)

Then, by definition,

for all 5 in /(p = (a, b). Given some fixed constant r, define a new function

for all t such that t + reJ(p = (a, b), that is, for t in /9 - r = (a - r, b - r) = /¥.
Then

¥ ' ( 0 = <P'C + r) = /[<p(f + r),t + r] = f[W(t\ t + r] (4)

so, in general, *¥(t) is not a solution of (CS(f)) except when r = 0. In the
special case of the autonomous system (CS), however, time is not an argu-
ment of/( ), and (4) becomes
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so *F(f) = fp(t + r) is indeed a solution of (CS) under the assumptions of the
lemma.

Notice that (p(f) and W(t) are different solutions of (CS), but they describe
the same orbit or solution curve in state space.

Theorem 2.2. Assume that f is C1 in some open set X c Rn, and let §(t, tft x°)
be the flow of the autonomous system (CS). Then, for each (t0, x°) in X x R
we have Jm(x°, 0) = Jm(x°, t0) -10 and

§(t,to,x°)=<b(t~to,O,x0) (5)

for every t € Jm(x°, t0), or} equivalently, for every t - 1 0 e Jm(x°, 0).

Proof Let 9(5) = §(s, fa x°) be the maximal solution of the boundary-value
problem (PS(r0, x

0)) defined on the maximal interval Jm(x°7 10) = (a, b), and
*¥(s) = (j)(s, 0, x°) the maximal solution of (PS(0, x0)) defined on the maximal
interval /m(jc°, 0) = (c, d).

Define the function %{s) on {a -to, b-10)= Jm(x°, t0) -10 by

<p0(s) = <?(s + to) = (l)(s + to,to,x°) (1)

(notice that if s e Jm(x°, t0) -10, then a -to < s < b - 0 , and therefore a < s +10

< b, so s + tQ e Jm(x°, t0); because (p(s +10) is defined for s + 10e Jm(x°, t0), q>o(s)
is defined on Jm(x°9 10) -10). By Lemma 2.1, <po(s) = 9(5 +r0) is a solution of
the autonomous system (CS). Moreover,

so (po(s) is a solution of the boundary-value problem (PS(0, x0)), just like
T(s). Because ¥(5) is the maximal solution of this problem, Theorem 1.2
implies that (a -to,b-10) = {/m(x°, tQ) -10) c /m(x°, 0) and

0(s) = *¥(s) = $(sAx °) (2)

for all s e (a-fab-10) c Jm(x°, 0).
Similarly, define YoC?) on (c +10, d +10) = {Jm(x°, 0) +10} by

q>0(s) = y(s-t0) = <l>(s-to,0,x0) (3)

and observe that YoC?) is a solution of (FC(tQ, x0)), because

Because <p(s) is the maximal solution for this problem, it follows by Theorem
1.2 that (c + fa d +r0) = [Jm(A 0) + r0} c Jm(x°, fe) and

for all s e (c + fad +10) c Jm(x°, t0).
Notice that we have shown that
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Jm{xO,to)-to=Jm{xO,O)

Using (1) and (2), we have

<j){s +10, t0, x°) = cpo (s) = V(s) = (j)(s, 0, x°) ( 5 )

for all s e {Jm(x°, t0) -10} = /m(x°, 0). Letting t = s +f0, we have, finally,

0(t,to,x°) = <l>(t-to,O,x0)

for all t / m(x°, r0). •

Theorem 2.2 says that the position at time t of an autonomous system
depends only on its initial position and the time spanned since the system
was set in motion, not on the initial time itself. One convenient implication
of the theorem is that we can "normalize" tQ to zero and omit the second
argument of the flow. When we do this, of course, we have to normalize the
maximal interval of existence accordingly. Hence, letting s = t -10, we can
rewrite the flow in terms of the normalized time, s, as

0(r, t0,x°) = <t)(t-t0,0,x0) = 0(5,0,JC°) (6)

and then 0(5, 0, x°) is defined for all s in /m(x°, 0) = Jm(x°, t0) -10 (i.e., for all
t = s +10 in Jm(x°, tQ)). In most of what follows we will take advantage of this
normalization. Except when we need to make explicit reference to the initial
time, we will assume that it is equal to zero and write the flow of an
autonomous system in the form 0(r, x°), denoting the maximal interval of
definition of the solution starting (at time zero) from x° by Jm(x°).

Theorem 2.3. Assume that f is C1 in some open set X c Rn, and let §(t, x°)
be the flow of the autonomous system (CS). Let s € Jm(x°). Then

and

$(T + S,X
0)=tfT,tfs>X°)] 0 )

for any r E Jm/(|)fs, x°)], or, equivalently, for any r + S G Jm(V)-

Proof. Reverting to our former notation for the flow, equation (7) means

0(r + 5,O,x°) = 4r,O,0(5,O,x0)] (1)

But notice that

tir, 0,0(5, 0, x°)) = 0[r + 5, 5, 0(5, 0, x°)] = 0(r + 5, 0, x°) (2)
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where the first equality follows by Theorem 2.2 (use the formula (j)(t -f0, 0,
x°) = 0(f, t0, JC°), with to = s, £ = r + s, and x° = 0(s, 0, x0)), and the second
follows from Theorem 1.3 (use the formula 0[f, s, 0(s, £0? x0)] = 0(£, f05 A:0), with
t=r + s and £0 = 0). Hence, (1) holds, and, eliminating the zero arguments,
this equality reduces to the desired expression.

Observe also that Theorems 1.3 and 2.2 guarantee that each side is defined
if the other is defined. We have, in particular, that if s e Jm(x°), then

/m[0(s, 0, x°), 0] = /m[0(s, 0, JC°), s]-s = Jm(x\ 0)-s (3)

where, as before, the first equality follows by Theorem 2.2 (using Jm(x°9 0) =
Jm(x°, t0) - 1 0 , with to = s and x° = (j)(s, 0, x0)), and the second follows from
Theorem 1.3 (using /m[0(s, t0, x°)9 s] = Jm(x°, t0), with t0 = 0). Assume that the
right-hand side of (1) is defined, that is, that s e Jm(x°) and r e /m[0(s, 0, JC°),
0]. Then we have, by (3), that

reJm[<l>(s,0,x0),0] = Jm(x0,0)-s

so

s + reJm(x°,0)

and the left-hand side of (1) is defined. Conversely, if s, s + r e /m(x°, 0), then,
by (3),

so the right-hand side of (1) is defined. •

It is now easy to show that any two solutions of an autonomous system
that cross the same point in phase space (possibly at different times) define
the same orbit. The argument is the same as in the discrete case. Let z be a
point in X, and 0(r, x°) and 0(/, y°) two solutions of (CS) going through z at
different times, say

Then, for any t in Jm(z) = Jm[<Ks, *0)] = Jm(x°) -s = Jm(x°) - r we have

<t>(s +1, x°) = 0[f, <l>(s, x°)] = 0(?, z) a n d <j>(r +1, y°) = fit, (p(r, y°)] = tft, z)

Hence,

) (8)

for all t with $ + t,r + te /m(z). Notice that we do not require t to be a pos-
itive number. Hence, if the orbits of the two solutions 0(£, JC°) and 0(£, y°)
have a point in common, the two orbits are the same.
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(b) Asymptotic Behavior

Given a dynamical system, we are often interested in determining what
happens to its solution as t —> «> (provided, of course, the solution is defined
for all / > 0). If the solution trajectory approaches some simple configuration
(e.g., a single point or a closed curve), we can think of this point or set of
points as a long-run equilibrium.

For studying the asymptotic behavior of dynamical systems, we need some
definitions. In what follows, (j)(t, x°) is the flow of a (continuous or discrete)
dynamical system.

Definition 2.4. Positive or 0) limit point and limit set. A point y e X is an
co limit point of the orbit y(x°) if there exists a sequence of real numbers
{tn} —> °° such that {(f)(tn, x

0)} —> y as n —> <*>. That is, y is a positive limit point
of y(x°) if, given any e > 0, there exists some positive integer ne such that

The set of all positive limit points of y(x°) is the positive limit set of the
orbit, denoted by co(x°). The concepts of negative (or a) limit set and limit
point can be defined in the same way by reversing the direction of time.

Intuitively, the positive limit set of an orbit is the set of points to which
the orbit tends as t —> «>. For example, a closed orbit or cycle is its own pos-
itive limit set, and also that of any other orbit that approaches it asympto-
tically. This example shows why the definition of limit point must be
formulated in terms of a sequence of fs even if we work in continuous time.
Assume that the solution (j)(t,x°) describes a spiral trajectory y(x°) that
approaches a closed orbit F, as illustrated in Figure 9.4. Because the solu-
tion keeps circling around, we cannot say that any one point y e F is the
limit of 0(f, x°) as t —» «>. However, the figure shows that it is possible to
choose a sequence {tn} of points in time such that {(/>(tn, x

0)} —» y as n —» ©o.
Some subsets of the state space X have the property that any orbit that

enters them never leaves (with time running forward, backward, or both).
Such a set is said to be invariant under the flow of the system.

Definition 2.5. Invariant set. A set 5 in X is positively invariant under the
flow of a system if, given any x° in S, the positive orbit through x°, 7+(x°), is
contained in S. Equivalently, S is positively invariant if for all f > 0 we have
(j)(t, S) c S. Similarly, S is negatively invariant if 0(r, S) c S for t < 0, and
invariant if it is both positively and negatively invariant.

Intuitively, a set S is (i) positively invariant if any trajectory that enters
the set remains in it, (ii) negatively invariant if any orbit that contains a point
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Figure 9.4. A limit cycle.

of S must have started in S, and (iii) invariant if both things are true at the
same time.

(c) Steady States and Stability

Consider a discrete-time autonomous system

xt+1=g(xt) (DS)

where g is a continuous function, and let {xt} be a solution sequence for the
system. If {xt} converges to a point x* as t —» <*>, the continuity of g( ) implies
that JC* itself must be a solution of (DS); that is, if g() is a continuous func-
tion, we have

x* = lim xt+1 = lim g(xt) = g(lim xt) = g(x*)

Hence, constant solutions play a special role in analyses of the asymptotic
behavior of autonomous systems.

Problem 2.6. Show that this is true also for the continuous-time system (CS),
x=/(jc).Thatis,if

then JC* must be a constant solution of (CS) (i.e., f(x*) = 0.) Hint: Use
Theorem 2.3.
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Definition 2.7. Steady or stationary state (fixed point, rest point, or equilib-
rium). A stationary state of a dynamical system is a constant solution of
the system. In the case of a discrete system, xt+1 =g(xt), a point x e X i s a
steady state if it is a fixed point of g( ), that is, if x= g(x). For the continuous
system x=/(x), a steady state is a point xeX such that f(x) = 0 (i.e., a zero
of/()•

A steady state or equilibrium of a dynamical system is a rest point of the
system, a value x of the state vector that, if ever reached, will be preserved
forever unless the system is disturbed in some way. In economic applications,
a steady state often can be interpreted as a long-run equilibrium.

Given a steady state x, the question of its stability naturally arises. Consider
a system that is initially at rest at an equilibrium point x, and imagine that it
suffers some shock that causes a small deviation from the rest point. What
will happen to the system? Will it return to the equilibrium point, or at least
remain close to it, or will it get farther and farther away from it over time?

Definition 2.8. Stability. Let x be an isolated steady state of the system (CS),
x = /(x). We say that xis a stable equilibrium of (CS) if, given any e > 0, there
exists some real number <5 e (0, e] such that

\\x(t0) - x\\ < 5 for some t0 => \\x(t) - x\\ < e V t > t0

That is, take a ball of arbitrarily small radius e centered at x If x is stable,
we can find some 8 (possibly smaller than e) such that any solution x(t) that
at some point enters the ball of radius 8 around x remains within the ball of
radius e. Figure 9.5 illustrates the definition.

Definition 2.9. Asymptotic stability, A steady state xis asymptotically stable
if it is stable, and, moreover, 8 can be chosen (in the preceding definition)
in such a way that for any solution x{i) that enters B$ (x) at some point we
have limr̂ M x(t) = x

That is, trajectories that get sufficiently close to x not only remain nearby
but also converge to x as t —> <*>. (Observe that x(t) cannot reach x in finite
time, only asymptotically. Otherwise, the uniqueness of solutions would be
violated.)

The largest region such that any solution that enters it converges to x is
called the basin of attraction of x If the basin of attraction is the whole of
the state space, that is, if x(t) —> x for every initial position x°, we say that x
is globally asymptotically stable.

An equilibrium that is not stable is unstable. In particular, there exists
some e > 0 and some solution that, while passing arbitrarily close to the
steady state, does not remain within the ball of radius s centered at x
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Be(x)

Figure 9.5. A stable steady state.

3. Autonomous Differential Equations

In this section and the next we will study autonomous systems in one dimen-
sion, that is, dynamical systems defined by a single autonomous difference
or differential equation. For the case of linear systems, we will show how to
compute explicit solutions. For nonlinear systems, we will introduce a simple
graphical device that can be used to study the qualitative properties of solu-
tions and establish some results that relate the local behavior of a nonlin-
ear system near a steady state x to that of the linear system defined by its
derivative at x In this section we deal with continuous-time systems, leaving
the discrete-time case for Section 4.

Consider the first-order differential equation (CS), i = /(x), where / : R 3
X —> R is a C1 function. In the first part of this section we will show how
to construct the general solution of this equation when /( ) is a linear (affine)
function. Part (b) deals with nonlinear equations.

(a) Linear Equations with Constant Coefficients

To construct the general solution of the first-order linear equation with con-
stant coefficients, we start with the simplest case, that of the homogeneous
equation

x=ax (CH)

where a is a real number, and x( ) a function from R to itself. This equation
can be solved analytically by the method of separation of variables. Rear-
ranging terms in (CH), we can write
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dx dx
— = ax=> — = a dt
dt x

and integrating both sides of this expression,

f— = f a dt => In x = at + ciJ x J

where cx is an arbitrary constant of integration. Taking antilogs, we arrive at

x{t) = ce« (1)

where c - eCl is also an arbitrary constant. This shows that the solution of
(CH) must be a function of the form (1). Moreover, any function of this form
is a solution of (CH), as we see by differentiating the function given in (1):

x(t) = caeat = ax(t)

Hence, we have found the general solution of (CH), a family of exponential
functions parameterized by an arbitrary constant c:

xh(t,c) = ce« (2)

We now turn to the more general case of the nonhomogeneous equation

x=ax + b (CN)

where b is a constant. We will solve (CN) by reducing it to a homogeneous
equation through a simple change of variables. We define a new variable, y,
as the deviation of the state variable, x, from its steady-state value, x- -bla}

Because x is a constant and y = x - x, we have y = x. The original system can
then be rewritten in terms of y and y:

( b\x = ax + b=>y-ax + b = a\ x + — =a(x-x) = ay
V a)

Notice that by rewriting the equation in terms of deviations from the steady
state we have reduced it to the homogeneous equation y = ay, with solution
y{t, c) = ceat. It is now easy to recover the general solution of the original
system; because x(t) = y(t) + x, we have

xs(t,c) = x + ceat (G.S)

Let us rewrite the general solution of (CN) in a slightly different way that
may throw some light on the meaning of the arbitrary constant c. Evaluat-
ing the general solution at time zero, we have

x(0) = x + cea0 => c = x(0) - x

Thus, c corresponds to the initial deviation of the state variable from its
steady-state value. Substituting this expression back into (G.S), we can write
the general solution in the form

x(t,x°) = x+[JC(O)-x]eat (G.S')
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which gives the value of x at time t as a function of time and the system's
initial position. It is clear from this expression that specifying a value of c is
equivalent to choosing an initial position for the system. Notice, however,
that the value of x(0) remains unknown until we specify a boundary
condition.2

The conditions for the stability or instability of the steady state can be
easily determined using either form of the general solution. Rearranging
(G.S'), for example, we can write

x(t,x°)-x = [x(0)-x]eat

This expression shows that the stability of x depends on the value of the
coefficient a. If a is positive, any initial deviation from the steady state will
grow over time and approach infinity as t —> °°. Hence, the system displays
explosive behavior, except when it happens to start out at the steady state
(c = 0 or X(0) = x). On the other hand, if a < 0, the deviation shrinks over time
and goes to zero as t —» ©°. Thus, the steady state of the system is asymptot-
ically stable. Figure 9.6 shows the system's trajectory in each case.

We summarize the results of this section in the following theorem.

Theorem 3.1. The first-order linear equation (CN), x= ax + b (a ** 0), has a
unique steady state x = -b/a that is asymptotically stable ifa<0, and unstable
ifdi>0. The general solution of (CN) is of the form xg(t, c) = x + ceat, where c
is an arbitrary constant to be definitized by choice of an appropriate bound-
ary condition.

Problem 3.2. When a = 0, the nonhomogeneous system is of the form x= b.
Using the method of separation of variables, find the general solution of this
equation.

stable system: a < 0 unstable system: a > 0

Figure 9.6. Solution trajectories of stable and unstable linear systems.
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Problem 3.3. There is no particular reason that we should choose to index
the solutions of a system by their values at time zero. Rewrite the general
solution of the system (CN) as a function of x(s), the value of x at some arbi-
trary time s.

(b) Nonlinear Autonomous Equations

When we drop the assumption of linearity, closed-form solutions of differ-
ential equations are no longer available, except in special cases. When the
system is of dimension 1, however, it is easy to study the qualitative prop-
erties of its solutions with the help of a simple graphical device. To construct
the phase diagram of the nonlinear equation

x = /(*) (CS)

we begin by plotting the function /( ) that gives the time derivative x as a
function of x. The graph of this function is sometimes called the phase line.
Notice that the intersections of the phase line with the horizontal axis cor-
respond to the steady states of the system. The steady states, moreover,
divide the horizontal axis into a number of intervals. The next step involves
checking whether the function /( ) lies above or below the axis in each of
these regions. If x=f(x) > 0 in a given interval (i.e., if the phase line lies above
the axis), then x increases over time in this interval - a fact that can conve-
niently be indicated by an "arrow of motion" pointing to the right (Figure
9.7). Similarly, if /( ) lies below the axis, the derivative of x with respect to
time is negative. Hence, the variable decreases over time, and the arrow that
describes the motion of x points to the left.

Once we have constructed the phase diagram, it is easy to determine the
system's trajectory from any given initial point x(0). The idea is simply to
follow the arrows of motion from x(0) to the closest steady state, provided
there is one in the direction of motion of x. Otherwise, x is always increas-
ing or always decreasing. For example, in Figure 9.7 we have the following:

(i) Any trajectory that starts from an initial point below xu or lying on the inter-
val between x\ and x2, converges to \ as t goes to infinity,

(ii) If the starting value of x is larger than x2, the solution converges to x3.

The phase diagram can also be used to determine whether or not each of
the steady states is stable. If the phase line cuts the horizontal axis from
above at x, then x is a stable equilibrium, for the arrows of motion of the
system point toward the steady state from both sides. That is, if for all x in
some neighborhood of a steady state x we have

x < x => x > 0 and x > x => x < 0
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Figure 9.7. Phase diagram for a scalar continuous system.

then x is asymptotically stable: If x(t) < x, then x(t) > 0, and therefore x
increases over time, getting closer to x. Moreover, because x is strictly posi-
tive as long as x < x, the trajectory cannot stop before reaching the station-
ary point. Similarly, if for all x in some open neighborhood of a stationary
point x we have

x < x => i: < 0 or X> x => x > 0

then x is unstable, for trajectories that start close to the steady state tend to
move away from it, at least from one side. Thus, if the phase line cuts the
horizontal axis from below, the steady state is unstable, as suggested by
Figure 9.7 (compare x\ and 3c2).

In summary, we have the following lemma.

Lemma 3.4. A stationary state x of the scalar equation x= f(x) is stable if and
only if there exists some 6 >0 such that for all x e B8(x) we have

(x-x)f(x)<0

and unstable if there exists some b > 0 such that

(x-x)f(x)>0

for all x in (x - 5, x) or (x, x + 8).

Using this result, it is easy to obtain sufficient conditions for the asymp-
totic stability or instability of a stationary state x of a nonlinear equation in

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:27:47 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.010

Cambridge Books Online © Cambridge University Press, 2013



416 /: Basic Concepts and Scalar Systems

terms of the derivative of/( ) at x Notice that in order to determine whether
or not x is stable, it is enough to know in what direction / cuts the horizon-
tal axis at this point. If the phase line cuts the horizontal axis transversally,
the derivative will tell us. On the other hand, because a zero derivative at
the steady state gives no information about the direction of the crossing,
nothing can be said about the stability of the system without additional
information. We have, then, the following theorem.

Theorem 3.5. Local stability by linearization. Assume that f is C1, and let x
be a stationary solution of the equation (CS), x=f(x), with f(x) ^0. Then x
is asymptotically stable iff'(x) < 0, and unstable iff'(x) > 0.

Proof. We start by rewriting the original system (1), x=/(x), in deviations
from the steady state. Putting h = x -x, equation (1) yields (2), h = x=f(x+
h). Next, let cp(/z) be the error committed when we approximate /( ) by its
differential at x, that is,

<p(fc) = f{x + h)- f'(x)h, with V'(h) = f\x + h)- fix)

and observe that cp(O) = 0 and (p'(0) - 0 and that (p( ) inherits the continuous
differentiability of/( ). Thus, we can write (2) in the form

that is, as the sum of a linear system and a perturbation term that, by the
differentiability of/( ), will be "small" close to x

Fix some positive e such that e< \f(x)\. By the continuous differentiabil-
ity of/( ), there exists some S> 0 such that \q>'(s)\ = \f(x + s) -f'(x)\ < e for
all s eBd(0). Using the identity

we have

ds\ s)| ds < e\h\ < \f'{x)h\

for all h, with \h\ < 8. It follows from this expression and from (3) that for h
sufficiently close to zero, the sign of h (and hence that of x) is determined by
the linear term f(x)h =/'(x)(x - x) and does not depend on the signs of the
higher-order terms in the Taylor-series expansion of / ( ) , which are captured
by the remainder (p(/i).

Using Lemma 3.2, we see that (2), and hence (1), are stable if and only if
f(x) < 0. Notice that f(x) < 0 implies that h and h (and hence x) have oppo-
site signs. For example, if h is positive (x is above its steady-state value), then
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Figure 9.8. Nonhyperbolic steady states.

x is negative (x decreases with time). Hence, a strictly negative derivative
implies local stability, and by a similar argument, a strictly positive deriva-
tive implies that the steady state is unstable.

In conclusion, under the assumptions of the theorem, the original system
and its linearization yield the same sign for x in some neighborhood of a
given stationary point. Hence, we can infer the local stability properties of
the original system from those of its linear approximation. •

A stationary state xis said to be hyperbolic if f(x) * 0, and nonhyperbolic
if fix) = 0. The theorem says that linearization (i.e., the approximation of a
nonlinear system by the linear system given by its derivative at a steady
state) works well around hyperbolic equilibria. Figure 9.8 shows why hyper-
bolicity is needed: A zero derivative gives no information concerning the
way in which the phase line crosses the horizontal axis, and therefore no
information concerning stability.
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(c) A Note on Comparative Dynamics

Consider a parameterized dynamical system

x = f(x,a) (CS(a))

where /( ) is a C1 function. As we will show in Section 6, a solution x(t9 a)
of this system is a differentiable function of t and a. In this section we will
show how to compute the partial derivative of the solution function x(t, a)
with respect to the parameter a.

The procedure is similar to the one we followed in Chapter 5 to analyze
the comparative statics of the solutions to parameterized systems of static
equations. Notice that the solution function x(t, a) satisfies identically the
original system, that is,

x(t9a) = f[x(t,a),a] (1)

Because this is an identity, we can differentiate both sides of (1) with respect
to the parameter vector, a, obtaining

da
 • = fx[x(t, a), a]xa +fa[x(t9 a\ a] (2)

Assume further that the order of differentiation can be inverted in the
expression on the left-hand side of (2), so that

dx(t,a) _ d2x(t,a) _ d2x(t,a) _ .
da dtda dadt

Then equation (2) yields the differential equation

xa=fx{)xa+U) (3)

where fx( ) and fa( ) are evaluated along the solution trajectory, x(t, a).
Hence, the derivative of interest, xa, satisfies a linear differential equation.
The solution of this equation will give us the trajectory of xa(t), that is, the
derivative of x with respect to the parameter at each point in the solution
trajectory.

In general, it is difficult to solve (3) along an arbitrary solution trajectory,
but there is a special case that can be easily handled. This is the case in which
we are initially in a steady state, for then (3) is evaluated along a constant
trajectory and is therefore an autonomous linear equation. In this case, the
general solution of (3) is of the form

*a(0 = *a(~) + [*«(0)-M~)]e*' =xa(O)efx'+XaH(l-efxt) (4)

where fx is a constant and xa(<*>) is the solution of
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-/«( ) _ dxxK=O=>xa(°°) =
/,( ) da

Notice that xa{°°) is also the comparative-statics partial derivative of x across
steady states and can therefore be interpreted as the long-run effect of the
parameter change when the system converges to a new steady state. Hence,
equation (4) tells us that the impact of the parameter change at time t can
be written as a weighted average of its immediate or impact effect, xa(0),
and its long-run effect, xa(°°).

It remains to determine the appropriate initial condition for equation (4),
and this typically requires thinking about the economics of the problem. For
example, if x is a predetermined variable, the impact effect will be zero. If x
is a free variable, however, in some cases we can jump directly to the new
steady state, that is, xa(0) = xa(°°). (The reader should refer to Chapter 11 for
a discussion of some of these issues in the context of a specific model.)

4. Autonomous Difference Equations

We now turn to the scalar system in discrete time (DS), xt+1 = g(xt), where
g : R 2 l —> R is a C1 function. The discussion closely parallels that of the
preceding section. We will first show how the solution can be obtained in the
linear case. We shall then discuss two methods, one of them graphical and
the other analytic, that can be used to obtain information about the quali-
tative properties of the solutions of nonlinear equations.

(a) Linear Equations with Constant Coefficients

The homogeneous equation

xt+x = axt (DH)

where a, x e R, can be solved by iteration. Because (DH) holds for all
periods, we have

and so on. Starting at time t, and substituting recursively, we have

xt = ax t -i = a(axt-2) = a2x,^2 = a2 (axt_3) = a 3xt_3 =... = afxQ

Because the initial value of the state variable, JC0, remains undetermined in
the absence of a boundary condition, what this expression says is that all
solutions of (DH) must be functions of the form xt = ca\ where c is an arbi-
trary constant. Moreover, it is easy to see that any function of the form
xt = cd (where t is an integer) satisfies (DH):
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xt = cd = a(cd~1) = axt-

Thus, we have identified the general solution of the homogeneous equation
(DH), which we write

x?(c) = ca'

As in the continuous-time case, the general solution of the nonhomoge-
neous equation,

xt+i =axt+b (DN)

is readily obtained through a change of variable that reduces (DN) to a
homogeneous equation in deviations from the steady state, x=b/(l-a).3

Subtracting s from both sides of (DN),

- - h b _ ba , _ _ ,
l-a 1-a

Thinking of x, - x as a single variable, we now have a homogeneous equa-
tion whose solution is given by

xt~x- ca!

Rearranging terms, the general solution of the nonhomogeneous equation
can be written

=x + x>' c) (GS)

where xht(c) = cd (the so-called complementary function) is the general solu-
tion of the homogeneous equation xt+1 = axt.

Evaluating (GS) at time zero, we can solve for c as a function of the initial
value of the state variable:4

XQ=x + ca° =» c = x0 -x

Substituting this expression into (GS), we get an alternative form of the
general solution:

x?(xo) = x + (xo-x)at (GS')

This expression says that the deviation of x from its steady-state value x at
time t depends on the initial deviation, the time spanned since the system
was set in motion, and the value of a. If xt starts out at the steady state (x0

= x), the term (xo - x)af is always zero, and the system remains at the rest
point forever.

If, on the other hand, x0 # x, then the system is not initially at rest. What
happens then will depend on the absolute value of a. If Id < l9 the term (x0

- x)d approaches zero: The initial deviation decreases over time, and the
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system gradually returns to its stationary state, which is therefore asymp-
totically stable. If \a\ > 1, we have |(JC0 - x)cf\ —> ±°° as t —» °o? and the steady
state is unstable. Hence the stability of the unique steady state of the system
depends on the absolute value of the coefficient a.

Finally, the sign of a determines whether the path of the system is
monotonic or oscillatory. If a > 0, the term cal has the same sign for all t,
and the system converges or diverges monotonically. If a < 0, on the other
hand, a1 is positive or negative as t is even or odd, and the system jumps from
one side of x to the other each period. We summarize in the following
theorem.

Theorem 4.1. The first-order linear equation (DN), xt+1 = axt + b (a ^ 1), has
a unique steady state x - b/(l - a) that is asymptotically stable if lal < 1, and
unstable if ial > 1. The general solution of (N) is of the form x? (c) = x + ea1,
where c is an arbitrary constant to be definitized by choice of an appropriate
boundary condition.

(b) Nonlinear Equations

We now consider the case of the nonlinear equation

xt+1=g(xt) (DS)

where g : E 3 J — > R. The first part of this section deals with the con-
struction of the phase diagram of (DS), and the second introduces the
method of linearization.

(i) Phase Diagrams

To analyze the behavior of difference equations in a single variable we can
use a graphical procedure very similar to the one we discussed in the pre-
ceding section for the case of differential equations. To construct the phase
diagram of the discrete-time system (DS), we plot the function g( ) in the
(xr, xt+1) plane along with a 45° line going through the origin. The phase line
(the graph of g( ) ) now gives us next period's value of x as a function of its
current value, and the 45° line can be used to project the value of x from
one axis to the other. Combining the two lines, it is easy to reconstruct the
time path of x. Given an initial value x0, we use the graph of g( ) to obtain
the value of x at time 1 (xt+1 =x1= g(x0)). Using the 45° line, we then project
jti to the horizontal axis, use g() again to find the next value of x, and so on,
as illustrated in Figure 9.9.

The steady states of the system now correspond to the intersections of the
phase line and the 45° line. At any such point we have xt+x = g(xt) = xt9 imply-
ing that x remains constant over time (Ax, = xt+1 - xt = 0). To determine the
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g(*t)

x : x2 x "to 1 2

Figure 9.9. Phase diagram for a discrete-time system.

direction of the arrows of motion, observe that in those regions in which the
phase line lies above the 45° line we have

xt+i = g(xt )>xt or Axt = xt+1 -xt= g(xt) - xt > 0

Hence, xt increases over time, and the arrows of motion along the horizon-
tal axis point to the right. When the phase line lies below the 45° line, on the
other hand, we have xt+1 = g(xt) < xt9 so xt decreases over time, and the arrows
of motion point to the left.

The procedure is very similar to the one we used in the case of a differ-
ential equation, but there are some differences between the two types of
systems. In particular, the fact that the variable x now moves in discrete
jumps makes it necessary to be a bit careful when it comes to analyzing the
stability of the steady states and allows the emergence of some phenomena,
such as cyclical behavior patterns, that cannot arise in the case of differen-
tial equations in a single variable.

The notion of stability of a steady state is the same as for continuous-time
systems. A steady state xof (DS) is stable if any solution trajectory that starts
sufficiently close to x converges to this point, and unstable if there exist tra-
jectories that start arbitrarily close to x and eventually get far from it. The
only problem is that in the case of a discrete-time system, it is not always
possible to determine whether or not a given steady state is stable by check-
ing the direction of the arrows of motion in a neighborhood of this point. In
particular, when the phase line is downward-sloping over some interval, x
can "jump" from one side of the steady state to the other, and it is possible
for a steady state to be unstable even though all the arrows of motion point
toward it.
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This problem does not arise when the phase line is always upward-sloping.
To see this, assume that g() is differentiable. By the mean-value theorem,
we can write

g(xt+l) = g(xt) + g'(x° )(xt+1 - xt)

where x° is some point lying on the line segment that joins xt and xt+1. Sub-
tracting xM from both sides of this expression, and recalling that xt+1 = g(xt),
we have

g(xt+1)-xt+l = g(xt) + g'(x°)(xt+1 - x t ) - x t + 1 = g'(x°)[g(xt)-xt]

If g( ) is always increasing, we have g'(x°) > 0 for any t, and it follows that
the terms [g(xt+1) - xt+1] and [g(xt) - xt] must have the same sign. That is, g(xt)
> xt implies g(xt+1) > xt+u and g(xt) < xt implies g(xt+1) < xt+1. Hence, if the phase
line is above the 45° line at time t, it will also lie above it at t + 1. This implies
that the trajectories of x cannot "cross" a steady state. Thus, the problems
mentioned earlier cannot arise when g( ) is always increasing.

In conclusion, when the function g( ) is increasing, we can determine the
stability of the steady states by checking the directions of the arrows of
motion, just as in the case of a continuous-time system. When this is not the
case, we need to be more careful. As an illustration, Figure 9.10 shows the
different situations that can arise in the case of a linear equation of the form
xt+1 =axt + b.

(ii) Linearization

Given the nonlinear equation

xt+i = g(xt) (DS)

where g is a C1 function, we can use Taylor's formula to construct a linear
approximation to (DS) in some neighborhood of a fixed point x:

xt+1=g(x) + g'(x)(xt-x) (L)

Intuitively, it may be expected that the linear equation (L), called the lin-
earization of (DS), will be a "good approximation" to the nonlinear equa-
tion (DS) whenever x is close to x. As we will soon see, this is true in most
cases. As a result, the method of linearization allows us to obtain informa-
tion concerning the local behavior of a nonlinear system by studying the
linear approximation given by its derivative at the steady state.

The following result says, in particular, that provided \g'(x)\ * 1, the non-
linear system (DS) is (locally) stable if and only if its linearization is stable.

Theorem 4.2. Local stability by linearization. Let g be a C1 function. A fixed
point x of the equation (DS), xt+1 = g(xt), is asymptotically stable if\g'(x)\ < 1,
and unstable if\g'(x)\>1.
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xt+i

0 1 2 3

Case 1: a e (0, 1), Monotone convergence to a stable fixed point

45°

Case 2: a E (-1, 0), Oscillatory convergence to a stable fixed point

Case 3: a > 1, Unstable fixed point, monotone divergence

Figure 9.10. Phase diagrams and trajectories of x for linear equations.
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0 1 2 3 4

Case 4: a < -1, Unstable fixed point, oscillatory divergence

45°

A A
V\

1 2 3 4

Case 5: a = -1, orbits are two - period cycles

Figure 9.10. Continued

Proof. We can assume, with no loss of generality, that the fixed point x is at
the origin, that is, g(0) = 0. (Otherwise, we simply translate the origin to the
point (x, g(x)) by an appropriate coordinate change.) For any given e > 0, we
define me and Me by

me = '(x)|; |JC| < e} and M£ = max{|g'(x)|; |x| < e}

To prove each part of the theorem we will make use of the following
identity:

>'(s) ds (1)
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(i) Condition for local stability. Assume that \g'(0)\ < 1. By the continuity of g'{ ),
we can find some e > 0 such that M£ < 1. Fix such an e, and let x be an arbitrary
point in B£(0). Then we have \g'(x)\ < M£< 1. We will use this fact to show
that the positive orbit through x converges to the steady state x=0 (i.e., that
ffix) —» 0 as n -> °°).

Using the identity (1), we have

(2)\g{x)\ = | J OY(s) ds\ < £ \g'(s)\ ds < M£ \x\ < \x

(because IXL < e). Hence g(x) also lies in Be(0). Next, consider the second iter-
ation of g, g1(x) = g[g(x)]. By the chain rule, we have

dg2(x)

dx
= g'[g{x)]g'{x)<MEM£=,

where the inequality follows from the fact that both x and g(x) lie in BE(0).
By the same argument, we see that

)ds

and so on, yielding

ds

\gn{x)\<Mn
e\x

Finally, because Me < 1, M" —>0 as n -» °°. it follows that for every x e Be(0),
g"{x) —> 0 as n —> oo. That is, the fixed point x - 0 is asymptotically stable when

(ii) Condition for local instability. Given any e > 0 and any x in Bt(0), observe that5

Assume that \g\fy\ > 1. Then we can choose £ > 0 and arbitrarily small in such
a way that m£ > 1 + 7 where y> 0. Fix some e > 0 with this property, and let x be
any point of #e(0), with x & 0 (i.e., any point different from the steady state). To
show that the positive orbit through x must eventually leave B£(0), we will
proceed by contradiction. Assume that gn(x) z B£(0) for all n. Then we have

and

dg\x)

dx

f
Jo

= g'{g{x)}g\x)>m2
e

>ml\x\>{l + yf

By the same argument, we obtain
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whenever g" 1(x) eBe(O). Because (1 + y)n\x\ —> °° as n —» °° (as x * 0), and e is a
fixed number, we arrive at a contradiction, for if lg"(x)l —> °°, then it cannot stay
within B£(0) for all time. Hence the origin is an unstable fixed point, as the orbit
through a point x arbitrarily close to it must eventually leave BE(0), although it
could remain within a larger ball. •

Notice that the theorem says nothing about the stability or instability of
those fixed points at which the derivative g'{x) is equal to 1 in absolute value.
Such steady states are said to be nonhyperbolic, and all the rest are hyper-
bolic. As in the case of differential equations, the derivative does not give
us sufficient information to determine whether or not a nonhyperbolic equi-
librium is stable. Figure 9.11 illustrates the point: Both systems have deriv-
ative 1 at the steady state, but each of them is stable from a different side,
and unstable from the other.

Problem 4.3. Comparative dynamics for discrete systems. Let x(t, a) be
the solution function of the parameterized discrete system (DS(a)),
xt+1 =g(xh a), where g( ) is a C1 function. Proceeding as in Section 3(c),
show that the partial derivative of the solution function with respect to the
parameter

, ,. dx(t, a)xa(t,a)= I' '
da

satisfies a linear difference equation. Write the solution of this equation for
the special case where x(t, a) is a steady-state solution of (DS(a)).

Figure 9.11. Nonhyperbolic steady states of a discrete system.
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5. Solution of Nonautonomous Linear Equations

We want to compute the solution of the first-order, nonautonomous linear
equation

x(t) = a(t)x(t) + b(t) (1)

where the coefficients a and b are continuous functions of time.
Rewrite (1) in the form

x(t)-a(t)x(t) = b(t) (2)

and consider the function

e~a{t\ with a(t) = jt()a(s)ds (3)

where

(4)

Multiplying both sides of (2) by e~a{t
\

e-a{t)[x(t) - a(t)x(t)] = b{t)e~a{t) (5)

Notice that we have defined e~ait) in such a way that the left-hand side of (5)
is the derivative of the product e~a(t)x(t), for

-(e-a{t)x(t)) = e~a{t)x(t) - x(t)a(t)e-a(t)

Hence, we can write (5) in the form

ji(e^x(t)) = b(t)e-^ (6)

We will use this expression to derive two (equivalent) forms of the general
solution of equation (1). To derive the first form, we integrate both sides of
(6) "backward" between zero and s, obtaining

—(e-a(t)x(t)) dt = j o b{ty~a{t) dt => e-a{t)x(t)\l = JQ b(t)e~a(t) dt

=> e - a ( s )x{s) - 1 * ( 0 ) = jS
Qb(t)e-a{t) dt

=> x(s) = x(0)ea{s) + [ b(t)ea{s)-a{t) dt (7)

This expression, sometimes called the backward solution of equation (1),
gives us the value of x(s) in terms of its initial value x(0) and a weighted
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sum of the past values of the forcing term, b{t). This form of the solution
is particularly convenient when the system has a natural initial condition,
that is, when x(0) is a predetermined constant. Otherwise the second
form of the general solution (the so-called forward solution) may be more
useful.

To derive the forward solution, we integrate both sides of (6) forward
between s and infinity,

(t
obtaining

\~—(x(t)e-a{l))dt= [b(t)e~a{t) dt
Js At Js

or

\im x{t)e-a{t) -x{s)e-a(s) = \°°b{t)e-a(t) dt

x(s) = ea(s) Urn x{t)e'a{<) - V b{t)ea(s)-a{l) dt (8)
f_>oo JS

provided the required limits exist.
Define the fundamental solution of (1), denoted by F(s), by

F(s) = -[b(t)ea{s)-a{t) dt (9)

and assume that this integral converges for all s. Using the backward solu-
tion (7), and taking limits as t —> <*>, we have

e-a{u) du = x(0)+ j~b(uya{u) du
JO

Hence, this limit exists by the assumption that F( ) converges, and substi-
tuting (9) and (10) into (8) we can write the forward solution in the form

x(s) = [x(0)-F(0)]ea{s) + F(s) (11)

We sometimes refer to the first term on the right-hand side of (11) as the
bubble term of the forward solution of (I).6

The following problem asks the reader to work out the forward and back-
ward solutions of a discrete-time system.

Problem 5.1. Consider the first-order difference equation

xt =axt-1+bt-.1 (1)
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Iterating (1) backward and forward, derive the discrete-time analogues of
equations (7) and (11).

6. Solutions of Continuous-Time Systems

In Section l(d) we stated a theorem on the existence, uniqueness, and other
properties of the solutions of continuous-time systems. In this section we will
prove this result. As the reader will soon discover, things are considerably
more complicated than in the discrete-time case.

Let/( ) be a function mapping some subset Z ) = Z x l i x / o f Rn+p+1 [nio

Rn. We will investigate the existence, uniqueness, and other properties of the
solution to the continuous-time boundary-value problem

x = f{x, a, t\ x(t0) = x° (PC(x°, to, a))

We will start in Section (a) by establishing the local existence and unique-
ness of solutions to (PC) under suitable conditions on the function /( ) and
its domain. Section (b) will show that under essentially the same assump-
tions, unique "global" solutions of (PC) can be constructed by pasting
together local solutions. Finally, in Section (c) we will investigate the con-
tinuity of the flow (j)(t, x°9 10, a) in initial conditions and parameters.

A few technical comments probably are in order before we start. Notice
that under our assumptions, both the vector field f(x, t) and any of its solu-
tions 0(r) are vector-valued functions,

f{x,t) = (r(x,t),...,f"(x,t)) and

Hence, the integral of/() should be understood to be a vector of the form

In a similar way, we could allow /( ) and 0( ) to be matrix-valued, and then
the integral in (1) would be interpreted as a matrix in which each entry
would be an ordinary integral.

To aid intuition and to simplify the exposition somewhat, most of the
proofs in this section will be written for the special case of a one-
dimensional system with a single parameter (i.e., under the additional
assumption that x and a are real numbers). In many of these proofs we will
make use of the important inequality

\[g(s)dS\<[\g(S)\ds (2)

where g( ): [a, b] —> R is a real-valued function of one variable. This
inequality is derived by taking the limit of a similar "discrete" inequality for
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Solutions of Continuous-Time Systems 431

Riemann sums. We will also make use of the concepts of Lipschitz function
and the norm of a linear operator, which were introduced in Chapters 2 and
3, respectively.

The extension of the proofs to the general case of a vector-valued func-
tion is generally straightforward. For such an extension it is sometimes useful
to keep in mind that all norms in Rn are equivalent (see Section 10 of
Chapter 2). Hence, we can choose the most convenient norm, and in many
cases this turns out to be not the Euclidean norm, but the ||-[|a norm, defined
for each x e Rn by

where \xt\ is the absolute value of the rth component of x. If g(s) is now a
vector-valued function, we have, using (2) and omitting the subscript of the
norm symbol,

[g(s) ds\\ = X|jV(s) ds\ < ±(fjg'(s)\ ds) = [ (±\g'(s)\) ds = \b
a\\g{s)\ ds

1=1 ! 1 V i=l J

Hence, inequality (2) will now be replaced by

\fg(s)ds\\<f\\g(s)\\ds (3)
| Ja || Ja

(a) Local Existence and Uniqueness

In this section and the next we will establish some properties of the solu-
tions of (PC) for given parameter values. Hence, we suppress the parame-
ter vector a and consider a boundary-value problem of the form

x = f(x,t), x(to) = x° (PC(jtVo))

where /( ) is a function mapping a set in Rn+1into Rn. We will make various
assumptions about the properties of/( ) in some set of the form D =XxI,
where / is some interval of the real line, but allow for the possibility that
/( ) may be defined on a larger set where it may not satisfy the required
properties. We say that a differentiate function (j>(t) defined on some inter-
val / c / containing tQ is a solution of (PC(JC°, t0)) in D if

(i)
(ii) the graph of <p(f) is contained in D, that is,

and
(iii) f(0
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where the derivative in (iii) will be understood to be the appropriate one-
sided derivative if t is an end point of /.

To investigate the existence of local solutions to (PC(x°, to))y we start with
the observation that the given boundary-value problem can be transformed
into an equivalent integral equation that turns out to be easier to work with.
This equivalence result will later be used repeatedly.

Lemma 6.1. Let ffx, t) be continuous m D = X x l The function §: J —> Rn

(where J C L W an interval containing t0) is a solution of the boundary-value
problem (PC(x°, t0)) if and only if it is a continuous solution of the integral
equation

= x° + f ff[tfs), sjds V t G J (PI(x°, t0))

The proof of the lemma is very simple. If 0() is a solution of (PC(x°, t0))
defined in /, then it satisfies

Integrating both sides of this expression from t0 to an arbitrary t in /, we
biobtain

s] ds = jj'(s) ds = <t>(t)-<t>ih)

by the fundamental theorem of calculus. Imposing the initial condition
= x°, we see that 0( ) satisfies the integral equation (PI(x°, t0)).

On the other hand, if (f>( ) is a continuous solution of (PI(x°, t0)), then it is
also differentiable, because the function under the integral is continuous.
Differentiating both sides of (PI(x°, t0)) with respect to t7 we obtain, by
Leibniz's rule, (see p. 654)

for any t in /. Moreover, putting t = t0 in (PI(x°9 10)), we see that 0(ro) = x°.
Hence, (f)(t) is indeed a solution of the boundary-value problem (PC(x°, r0)).
Notice, incidentally, that because /( ) is continuous, this last expression
implies that (j)(t) is C1, because <jf(t) is the composition of two continuous
functions.

We can now return to the question of the local existence and uniqueness
of solutions to (PC(x°, t0)). By Lemma 6.1, the problem reduces to that of
establishing the existence and uniqueness of a continuous solution to the
integral equation (PI(x°, £0))- We will exploit this equivalence to construct a
sequence of increasingly better approximations to the solution of (PI(JC°, t0))
following Picard's method of successive approximations. Then we will apply
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the contraction mapping theorem to conclude that this sequence converges
to a function that is the unique solution of the problem.

We start out with what is probably a very poor approximation to 0( ): We
guess that the solution function is constant at its only known value, that is,

<j>0(t) = x° for all t in some subinterval/ of / containing t0.

Next, we insert this function on the right-hand side of the integral equation
and use the result as a second, and hopefully better, approximation to the
solution:

0! (t) = JC° + f /[0O (4 s] ds for each t e /
Jto

(Refer to Figure 9.12) Repeating this procedure, we construct recursively a
sequence of functions {$„}, with

(/)n+1 (t) = x° +£ f[(j)n ( 4 s] ds for each t eJ
Jto

Intuitively, each new term of the sequence {(j)n} should be a better approxi-
mation to the solution of (PI(x°, t0)) than the previous term. Hence, it can
be expected that the sequence will converge to the exact solution for some
appropriate interval / . We will now see that this is indeed the case.

Theorem 6.2. Local existence and uniqueness of solutions (Picard). Let
f(x, t) be a continuous function defined on the closed box

B(x°,to) = Bxo Xlo = {(x,t); \ t-to \<a, \\x-x°\\<b}

Assume that ffx, t) is Lipschitz in x on B, that is, that there exists a positive
constant K such that

\\i(xl,t)-f(x2,t)i\<~K.\\K,-x2\\\/(xl>t)and(x2,t)mB(xo,to)

Then there exists some number r =£ a such that the boundary-value problem

± = f(x,t), x(to)=x° (PC(x°,t0))

has a unique solution §(t) defined on the interval J = [t0 - r, t0 + r/, with
(])(%) e Bxo for all t e J.

Observe that the theorem requires continuity and a Lipschitz condition.
If/ is C1, it is continuous and locally Lipschitz (Problem 4.7 in Chapter 4),
so it is always possible to find a sufficiently small region B around (x°, t0) in
which the assumptions of the theorem hold.

The proof makes use of the fact that the space C(J) of continuous real-
valued functions g( ) defined on a compact interval / is a complete metric
space, with the sup metric defined for geC(J) by Hg|| = supfig(f)l; teJ}.
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Figure 9.12. Successive approximations to the solution function.

(Notice that because g( ) is continuous and / is compact, g( ) is bounded on
/. The completeness of C(J) then follows by Theorem 7.12 in Chapter 2.)

Proof. As noted earlier, we will prove the result for the scalar case. Hence,
Bxo is a compact interval in the real line, and the norms can be replaced by
absolute values in the Lipschitz condition.

Because / ( ) is continuous on the compact set B = B(x°, t0), it is bounded;
that is, there exists some M > 0 such that

Choose r so that

\f(x,t)\<M\/(x,t)eB

' KM —

(1)

(2)

We have to verify that this r will work.
Consider the space C(J) of continuous real-valued functions defined on

the interval /=[t0- r, t0 + r], and define the operator T: C(J) —> C(J) by

= x° j't + s] ds for t e J = [t0 ~rj° + r] (3)

Using this operator, the successive approximations of Picard are given by
the sequence of functions {0n} in C(J) defined for each t e J by

a n d for/i =

Observe that a function 0 is a solution of the integral equation (PI(x°, £0))
in Lemma 6.1 if and only if it is a fixed point of T (i.e., if it solves T(f)= 0).
To establish the existence and uniqueness of such a function, we will show
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that T is a contraction that maps a complete space into itself. Given this
result, the contraction mapping theorem (Theorem 7.16 in Chapter 2)
ensures that T has a unique fixed point <j> that is a continuous solution of the
integral equation (PI(x°, t0)) and therefore of the initial-value problem
(PC(x°, t0)), by Lemma 6.1. Moreover, the sequence of approximations {<j)n}
converges to 0, so iteration of T can be used to approximate the solution to
any desired level of accuracy. To prove this result, we rely on the complete-
ness of C(J) and on the fact that a closed subset of a complete metric space
is itself complete (Theorem 7.9 in Chapter 2).

• Claim (i): The set of continuous real-valued functions cp defined on /, with the
property that lq>(f) - $>(f)l < Mr for all t € J = [t0 -r,t0 + r], is complete.

Observe that this subset of C(J) corresponds to the closed ball BMr[<j)o] in C(J)
equipped with the sup norm. Because a closed subset of a complete metric space
is complete, Z?Mr[0o] is complete.

Notice that if <p(f) s BMr[(fc\, then we have l<p(f) - x°\ <Mr< MbIM - b, by (2).
Hence, (p(t) eBxo for all t in / , and ((p(f), 0 lies inside the box B(x°, t0) for all
teJ. This allows us to apply the Lipschitz condition to f(<p(t), 0-

• Claim (ii): T maps 5Wr[0o] into itself.
That is, given any suitable function q> "close to" #,, T yields another function

7q> that also is not far from <fa. To show that this is true, note that for each t in /
= [/o -r,tQ + r] we have, using the boundedness of /( ),

\Ttff) - 0O (f)| = x° + J* /[cp(s), s] ds - x°

= f Ms), s] ds < f \f[<ds), s]\ ds < M\t-to\ < Mr

Hence, Mr is an upper bound of \Ty(t) - $>(f)l in /, implying that

IJTVp - <M = sup{|T(p(r) - 0o (01; t e J} < Mr

that is, Tq> eBMr[<t>o\.
• Claim (iii): T is a contraction on C(/), that is, for all <p1; cp2 € C(/), ||Tq>i - Tcp2|| <

llf 1 - cpzll.
Given any two functions %( ) and q>2( ) in C(/), we have, for any given tin / =

[t0-r,tQ + r]

\T% (t) - T<?2 (r)| = \j'o (/[eft (s), s] - /[(p2 (s), s]) ds\

(by the Lipschitz

< K\ sup|q>1(5)- (p2(5)| ds = K\ \\% - q>2|| ds
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because with t in [t0 - /*, t0 + r] we have \t - to\<r and, by (2), Kr < 1. Now, this
inequality holds for all t in the interval of interest, so | |cpi - (p2|| is an upper bound
of \T<$\{t) - T(f2(t)\ for any £ in / , and it follows that the sup remum over teJ
cannot exceed ||cpx - (p2||, implying ||7Vpi - r<p2|| < ||<pi ~ (p2||.

Hence, T is a contraction from a complete space of continuous functions to
itself. By the contraction mapping theorem, T has a unique fixed point in BMr[(j)o]
that we will call <j).This function is continuous and solves T(j) = 0, the integral equa-
tion from which we started, and therefore the initial-value problem (PC(x°, t0)).
Because <p eBMr[<l>o], moreover, <j>(J) is contained in Bx% as established in (i). D

Example 6.3 and Problem 6.4 will show that the solution may not be
unique when / ( ) is not a Lipschitz function.

Example 63. Consider the initial-value problem

x = f(x) = 3x2' \ x(0) = 0 (P)

We will solve the differential equation by the method of separation of vari-
ables and then impose the initial condition. Notice that (making improper
but convenient use of the notation) we can rewrite the equation x= 3xm in
the form

dt

and, rearranging terms,

dt = —dx
3

Integrating both sides of the preceding expression, we have

I*-I j r2 / 3

-dx => c +1 = x1/3
3

where c is an arbitrary constant of integration. Hence, the functions of the
form

x(t) = (c + t)3 (S)

are solutions of the given differential equation (as can be easily checked by
differentiating (S)). To select the member of this family that solves (P), we
impose the initial condition JC(O) = 0. When t = 0 and x = 0, we have

Substituting this expression in (S), one solution of the initial-value problem
(P) is the function
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Notice, however, that the function y(t) = 0 for all t is also a solution of the
initial-value problem, for y(0) = 0, and y(t) satisfies the differential equation,
as

0 = f = 3tff =0

Notice that the function /(x) = 3x2/3 is not differentiable at zero, because
fix) = 2/(x1/3) -> - as x -» 0. D

Problem 6.4. Show that the function/(x) = 3x2/3 is not Lipschitz in any neigh-
borhood of zero.

Problem 6.5. Continuous dependence on initial conditions and parameters.
Let /(x, a, i) be a continuous function defined on the set B = BxxBaxI9

where Bx, Bm and / = [-a, a] are closed intervals in the real line. Assume
further that/( ) is Lipschitz in (x, a) on 5, that is, that there exists some posi-
tive constant K such that

, fi, t) - fix, a, r)| < K\\{y, p) - (x, a)\ V (y, £ r) and (X, a, t) in 5 (L)

Show the following:

(i) For each (x°, a) in the interior of Bx x Ba, the initial-value problem

x = /(x, a, r), x(0) = x° (PC(x°, 0, a))

has a unique solution defined on a closed interval /(x°) c / containing zero,
(ii) The function </>,(x°, a) that gives the solution to (PC(x°, 0, a)) as a function of

initial conditions and parameters is continuous. Hint: Restrict yourself to a
sufficiently small region around (x°, a), and use Theorem 7.18 in Chapter 2.

(b) Maximal Solutions

Assume that /(x, t) is continuous and locally Lipschitz in some open region
D =Xx I in Rn+1 containing (x°, t0), and consider the initial-value problem

x = /(x,0, x(0) = x°

By Theorem 6.2 we know that (PC(x°, 0)) has a unique solution defined on
some (possibly small) closed interval around zero, /0 = [-r(x°), r(x0)]. In this
section we will show that this solution can be uniquely extended in D to
some maximal interval of existence /m(x°, D), and we shall investigate the
properties of the resulting maximal or global solution as it approaches the
end points of its interval of definition. The global solution will be constructed
by pasting together local solutions of appropriate boundary problems. We
will use the uniqueness of the local solutions to establish the uniqueness of
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the global solution and show that this "collation" process can be continued
until the graph of the global solution approaches the boundary of the set D.

Throughout most of the remainder of this section we will make the fol-
lowing assumption.

Assumption 6.6. The function /(x, t) is continuous and locally Lipschitz in x
on some region D = X x / in Re+1, where X is an open set in Rn, and / is an
open interval on the real line.

Notice that if /( ) is C1 on D, then this assumption holds. Hence, all our
results extend automatically to the case where/is C1.

The first step will be to establish that any two solutions of the boundary-
value problem (PC(x°, t0)) coincide in the intersection of their domains.
Figure 9.13 illustrates the intuition behind this result: If two solutions of
(PC(x°, t0)), say (j)(t) and q>(r), "separate" at some point (x1, *i), then the
uniqueness of the solutions of (PC(JC

\ t\)) is violated.

Lemma 6.7. Assume that f(x, t) satisfies Assumption 6.6 in the open region
D = X x I in Rn+1, and consider the initial-value problem

± = f(x,t), x(to)=x°, with (x°,to)el> (PC(x°, t0))

Let §(t) and (p(t) be solutions of (PC(x°, t0)) defined on subintervals Ĵ  and
}9 of I, respectively, with the property that §(t) e X for all teJ^ and q>(t) e X
for all t € Jr Then §(t) and (p(t) coincide in the intersection of their domains,
that is, <|>(t) = (p(X) for all t e J = J<j> n J

Problem 6.8. Prove Lemma 6.7. Hint: By the local-existence and uniqueness
theorem (Theorem 6.2) we know that (j)(t) and (p(r) coincide over some inter-
val containing t0. Let Jm be the largest subinterval of / over which the two
solutions coincide. To show that Jm = /, assume that Jm is strictly contained
in /, and seek a contradiction.

We can now return to the problem posed at the beginning of this section.
Assume that /(x, t) is continuous and locally Lipschitz in some open region
D = X x / in Rn+1 containing (X°, t0). Then we can find some closed box 2?(x°,
to) c D around (x°, t0) such that/( ) is bounded and Lipschitz in J5(x°, f0), and
it follows by the local existence and uniqueness theorem (Theorem 6.2) that
there exists some r0 = r(x°) > 0 such that the initial-value problem (PC(x°,
fo)) has a unique solution f(t) defined on an interval /0 = [t0 - r0, £0 + ?o], with
the property that its graph, (/0, /(/o)), is contained in j?(x°, tQ) c D.

We will now see how this solution can be extended to the right. (A similar
argument will yield the continuation of the solution to the left.) Let h = to +
r0 and x1 = </P(ti), and consider the initial-value problem

x = /(*,*), x(t1) = x1
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Lo H t

Figure 9.13. Local uniqueness implies global uniqueness.

Because (x\ h) - (0°(/i)> h) eZ), and D is open, the conditions of the local
existence and uniqueness theorem are again satisfied in a suitable box
around (x1, tx), and it follows that there exists some positive rt such that
(PQx1, £1)) has a unique solution <ft(t) defined on the interval Jx = [tr - r
h + n].

Now, because 0°(r) is also a solution of (PC(JC\ ti)), it follows by Lemma
6.7 that (jP(t) = (p(t) for t e Jon Ji. Define now the function <p(t) on Jo u Jx by

forte Jo

Notice that (j)(t) is a continuous function, because both (f(t) and <ft(i) are
continuous, and they coincide over their intersection. Moreover, 0(/) is a
solution of (PC(x°, £0)) because it satisfies the integral equation (PI(x°, r0))
in Lemma 6.1. This is certainly the case in /0 = [0, rj, but also in Jx ~ Jo =
(tu h + rx], because for any / in this interval we have

= x°+\'1f(<l)\s),S)dS+\tf(<t>\s),s)ds

= x° + f/(0(s), s) ds + f f(4(s), s) ds = x°+ f ), x° ds

where we have made use of the fact that <j)°(t) is a solution of (PC(x°, t0)) in
/0, and <j>l(t) is a solution of (PC(X\ tt)) in Jx. Hence, we have extended the
solution to (PC(JC°, t0)) beyond its original domain Jo. The extension is also
unique in the set JOU Ju because Lemma 6.7 implies that any other solution
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defined over any subset of JQ u J\ must coincide with (f>(t) over the intersec-
tion of their domains.

Notice that because the right end point of the graph of the extended solu-
tion ((^(t] + ri), t\ + rx) still lies in the open set D, the continuation process
can be repeated in a similar way starting from this point. In fact, because the
extended solution obtained in this manner never leaves the open set D, the
continuation process can be repeated an infinite number of times. Hence,
the maximal solution 0( ) obtained as the limit of this process will be defined
in the union of an infinite number of partially overlapping closed intervals
Jn constructed as illustrated earlier. The resulting set,

is called the maximal interval of existence of the solution to (PC(x°, t0)) in
D, because it is the largest interval of definition of a solution of (PC(X°, t0))
whose graph is contained in D. Notice that the infinite union of partially
overlapping closed intervals will itself be an interval, but not necessarily a
closed one. In fact, Jm(x°9 10) must be an open interval, for if Jm(x°, t0) = [a, b]y

then (0(6), b) lies in the open set D, and it follows by an already familiar
argument that the solution 0( ) can be extended within D to a larger inter-
val [a, b + r], thereby contradicting the fact that [a, b] is the maximal inter-
val of existence.

We summarize the preceding discussion in the following theorem.

Theorem 6.9. Let f(x, t) satisfy Assumption 6.6 (continuity and existence of
a local Lipschitz constant) in the open region D = X x I in Ra+1 containing
(x°, t0). Then the boundary-value problem (PC(x°, t0)) has a unique maximal
solution §(t) in D defined on the open maximal interval Jm(x°, t0) — fa, b) c
I. That is, if cp(t) is any solution of (PC(x°, t0)) in D defined on some interval
J9, then Jy c lm(x°, t0) and (p(t) = §(t) for all t e J r

We will now investigate the behavior of solutions as they approach the
end points of their intervals of definition. The following example shows that
the maximal interval of existence depends, in general, on the initial condi-
tions of the problem and need not be the entire real line, even when /( ) is
nicely behaved in the whole of Re+1.

Example 6.10. Consider the initial-value problem

x = x\ x(0) = JC° (P)

As in Example 6.3, we will solve the differential equation by the method of
separation of variables and then impose the initial condition. Rearranging
terms in the equation dxldt = x2, we have
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dt = x'2 dx

Integrating both sides of this expression,

~ 2 dx=>-x~x = c + t

where c is an arbitrary constant of integration. Hence, the solutions of the
equation are of the form

To select the member of this family that solves (P), we impose the initial
condition x(0) = X°. When t = 0 and x = x°, we have

c + 0
Substituting this condition into (S), the solution of the initial-value problem
is given by the function

1
X^~ (l/x°)-t

Notice that x(t) —> «> as r —> l/x°. Hence, the solution to (P) is defined on
(-00, 1/X°). •

The example also illustrates how solutions to (PC(x°, t0)) may fail to exist
for finite t. When the conditions of the local existence and uniqueness
theorem are satisfied, a solution <p{t) cannot mysteriously "evaporate." It
may, however, "explode" in finite time. If the set D in which /( ) is well
behaved is not the whole of Rn+1, the solution can also fail to exist by leaving
this set. The following theorems give some more precise results about the
limiting behavior of the maximal solutions of (PC(x°, t0)).

Lemma 6.11. Assume that f(x, t) is bounded in some region D = X x I in
Rn+1, and consider the initial-value problem

x = f(x,t), x(to) = x\ with (x°,to)eD (PC(x°, t0))

Let §(t) be a solution of (PC(x°, t0)) defined on a finite interval (a, bj c l con-
taining to, with the property that §(t) eXfor all t e (a, b). Then the limits

and lim§(t)
t-> IT

exist.

Proof. Let tx and t2 be two arbitrary points in (a, 6), with tx < t2. By Lemma
6.1, we have
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<Ht1) = x°+fcf(<Ks),s)ds and (j)(t2) = x0 +£7(0(4 s)ds

Hence,

<Kti)-<Kti) = £f(<Ks),s)ds (1)

Because ((j)(s), s) e D for all s e [tu t2\ and/( ) is bounded in D, there is some
positive constant M such that l/(0(s), s)\<M. Hence, (1) implies that

\0(t2 )-<t>(h )\<M\t2-h | (2)

Now, as tu t2->b from below, we have \t2 - h\ —> 0, implying that I0(£2) - (j)(h)\
-» 0. This, in turn, implies, by the completeness7 of R (or Rn in the general
case), that <j)(f) converges to some limit as t —> b~. A similar argument shows
that 0(r) has a limit as t —> a+. D

Using this result, we will now show that if a solution <p(t) is not defined on
the entire interval /, then it leaves any compact subset of X. This implies that
as t approaches the right end point of the maximal interval of definition, the
solution either tends to the boundary of the domain or "explodes" to infinity,
or both. If / is the entire real line, and X = Rn, then the theorem says that
if the right end point of the maximal interval of definition is finite (i.e., if
b < °°)5 then (j)(f) goes to infinity in finite time. (Notice that if the system is
autonomous, then we can assume that / is the entire real line by defining/(x,

Theorem 6.12. Let i(x, t) satisfy Assumption 6.6 in the open region D = X x
I in RB+1 containing (x°, t0). Let §(t) be the maximal solution of (PC(x°, t0))
in D, defined on the maximal interval Jm(x°, t0) = (a, b). Assume that b G int I.
Then, given any compact set K c X , there exists some t G (to, b) such that
€ K. Similarly, ifae int I, then §(t) € K for some t G (b, t0).

Proof By contradiction. Let X c l b e compact, and assume that 0(0 GK
for all t in (a, b). Because / i s continuous on the compact set K x [0, b], it is
bounded in this set. By Lemma 6.11, 0(0 has a limit as t —> b~. Let

be this limit, and define the function <p(f) in (a, b] by

for t e (a, b)

for t = b

Then q>(t) is continuous in (a, b] (from the left at b) and solves (PC(x°, £0))
in this interval (by Lemma 2.1), because q>(t) = (j)(t) solves (PC(x°, t0)) in
(a, b) and
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) = lim 0(f) = x° + lim f /fofa), 5) ds

= x°

Notice also that because K is compact, with cp(f) continuous and q>(t) e K for
all t in (#, 6), then x1 = 9(6) (is a closure point of K and therefore) lies also
in K c X Hence, (<p(fc), 6) e Z>, and it follows that cp(f) is a solution of (PC(x°,
*o)) in D defined on (a, b]. This contradicts the fact that (a, b) is the maximal
interval of existence of the solution of (PC(JC°, t0)) in D. •

Corollary 6.13. Under the hypotheses of Theorem 6.12, if b e int I and
lim <|>(t) exists, then

t-»b~

Proof. Assume that b e int /. Let (p(/) be the (continuous) extension of
)(t) to the interval (a, b] defined in the proof of Theorem 6.12. Then the
set

K = <p[0, 6] = {x e Pv; x = <p(f) for some t e [0, b]}

is compact, because it is the continuous image of a compact interval. Assume
that <p(b) = x1 € X Then, because q>[0, b) = $0, 6) is certaily contained in X,
we have X c l , and it follows by Theorem 6.12 that there is some t e (0, b)
such that q>(f) £ i£. This contradicts the definition of K, so x1 g X But
because q>(r) e X for all r in [0, 6), it follows by the continuity of <p( ) that
x1 = 9(6) is a closure point of X. Hence, x1 e cl X ~ X= bdy X •

The contrapositive of Theorem 6.12 says that if there exists a compact set
K in X such that the maximal solution <p(t) stays within K for all t in [0, 5),
then & is the right end point of /. A similar argument at the other end point
yields the following result.

Corollary 6.14. Under the hypotheses of Theorem 6.12, if there exists a
compact set K in X such that the maximal solution §(t) stays within K for all
t in Jm(x°, t0) = (a, b), then Jm(x°, t0) = I.

Of course, if/= R, or the system is autonomous, this implies that any solu-
tion that stays within a compact subset of X is defined for all t.

Using Theorem 6.12, it is easy to show that if / is a linear function of x,
that is, if /(%, t) =A(t)x, where the function A(t) is continuous on the inter-
val / containing tQ, then the boundary-value problem (PC(x°, f0)) has a
unique solution defined on the entire interval /. Problem 6.15 asks the reader
to prove this result for the special case of a scalar system.
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Problem 6,15, Let c(t) be a continuous real-valued function defined on an
open interval I = (a, f5) containing t0. Consider the initial-value problem
defined by the linear system x = c(t)x and the initial condition x(tQ) = x° e JR.
Show that the solution to this problem is defined on the whole of /.

Hint: By contradiction, using Theorem 6.12 and GronwalPs lemma (the
following Lemma 6.16).

(c) Dependence on Initial Conditions and Parameters

In this section we will investigate the dependence on initial conditions of the
solutions of the family of boundary-value problems

x = f(x,t), x(to) = x° (PC(x°,to))

where we now regard the initial data (x°, to) as variables. As usual, we assume
that/(x, i) is continuous and locally Lipschitz in some open region D = Ix
/ in Rn+1, where / is an open interval (Assumption 6.6). Then Theorem 6.9
assures us that for each (x°, t0) in D the boundary-value problem (PC(x°, t0))
has a unique solution in D. Hence, we can define the flow of/() as the func-
tion $/, x°, to) :E —» X defined on the set

E = {{t,x\to)eIxXxI;teJm(x°,to)}c:DxI

such that for each fixed (x°, t0), the function 0(% x°, t0) defined in /m(x°, t0) is
a solution of (PC(x°, t0)). Because 0(-, x°, to) is a solution of (PC(x°, t0)), we
know already that (/>( ) is C1 in its first argument. We will now show that
under our maintained assumptions, E is an open set, and (f>(t, x°, t0) is a
continuous function of all its arguments. In fact, if/( ) is Ck in £>, then so is
0( ). Roughly speaking, then, the flow of a continuous system is as smooth
as the vector field itself.

In most of what follows, we will work with a fixed t0, suppress the third
argument of the flow, writing it (j)(t, x°), and concentrate on the dependence
of the solution on the initial position x°. All our results can be easily
extended to (x°, t0).

We will first establish a useful lemma. Using this result, it will then be easy
to obtain a bound on the distances between solutions of (PC(x°, t0)) that start
from different initial values.

Lemma 6.16. GronwalVs lemma. Let u(t) >0 be a continuous real-valued
function defined on the interval [t0, tj]. Assume that there exist positive con-
stants C and K such that

for all t G [to, tj]. Then we have
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u(t;5SCeKlt-tfllVte/t(,,t,;

Proof. For each t € [t0, ti], let

U{t) = C + K(u(s)ds>0
Jto

Then u(t) < U(t) by assumption. Differentiating U( ), we have

Hence,

dlnUjt) _ U\t) _ Kujt)^ KU(t) _
dt ~ U(t) ~ U(t) " _

Integrating both sides of this expression between t0 and £,

lnU(t)-lnU(tQ)<K\t-t0\=$lnU(t)<lnU(t0) + K\t-t0\

Taking exponentials and observing that U(t0) = C, we obtain the desired
inequality

Lemma 6.17. Let f(x, t) satisfy Assumption 6.6 in the open setD=Xxl in
Ra+1. Assume that f ( ) is Lipschitz in x on D, with Lipschitz constant K. Given
two points (to, x°) and (to, y°) in D, let §(t, y°) and §(t, x°) be the unique solu-
tions in D of the system (CS(t)), x= f(x, t), going through these points, defined
respectively in the maximal intervals Jm(x°) and Jm(y°) c I. Then, for each
t e Jm(x°) n Jm(f) we have

teW-itW"*-* (4)

Problem 6.18. Prove Lemma 6.17. Hint: Consider the scalar case and apply
Gronwall's lemma to the function q(t) = I0(r, /) - (j)(t, x°)\.

The preceding lemma almost implies the continuity of (j)(t, x°) in x° for
given t when / ( ) is (globally) Lipschitz on D. If we fix some t in Jm(x°) and
let | | / - JC°|| go to zero, inequality (4) implies that ||0(r, / ) - </)(t, x°)\\ -> 0 -
provided that 0(£, y°) is defined for all / sufficiently close to X°. Our next
result takes care of this loose end by showing that for any t e Jm(x°), (j)(s, y°)
is defined in [0, t] for all / sufficiently close to x°. The proof of the theorem
also shows that the graphs of the two solutions (j)(t, y°) and (j)(t, x°) in [a, b]
stay within a compact subset of D. Hence, the inequality in Lemma 6.17 con-
tinues to hold for some K, and 0( ) is continuous in x° for given t provided
that / ( ) is locally Lipschitz (because, by Theorem 8.25 in Chapter 2, a func-
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tion that is locally Lipschitz on a set D is Lipschitz on any compact subset
ofD).

Theorem 6.19. Let f(x, t) satisfy Assumption 6.6 in the open set D = X x I
in Ra+1. Given some point (x°, t0) in D, let the unique solution §(t, x°) of
(PC(x°, to)) be defined on a closed interval [a, b] c Jm(x°). Then there exists
some § > 0 and a positive constant K such that for all y° e B§(x°) the initial-
value problem (PC(y°, t0)) has a unique solution (|)ft, y°) defined on fa, b] that
satisfies

for all t in [a, b].

Proof Because [a, b] is compact and </>(t, x°) is a continuous function of t,
the set

A = (j)([a, b], x°) = {x e X; x = 0(r, x°) for some t e [a, b]}

is a compact subset of X. Because X is open, moreover, there exists some
e > 0 such that the compact set

e[jc] = { z e R n ; \\z-<j)(t,x°)\\<e for some te[a,b]}
xeA

is a subset of X. Moreover, because /( ) is Lipschitz in x on the open set D,
and C - B x [a, b] is a compact subset of D, it follows by Theorem 8.25 in
Chapter 2 that /( ) is Lipschitz on C, that is, that there exists a positive con-
stant K such that

\f(y,t)-f(x,t)\<K\y-x\ (1)

for all (y, t) and (x, t) in C.
Choose some 8> 0 such that

S<min{£,ee-K{b-a)} (2)

and let y° be a point in Bd(x°). Because (y°, f0) eD, Theorem 6.9 guarantees
the existence of a unique solution <j){t,y0) going through this point and
defined on some maximal interval of existence Jm(y°) = (a, j3) c / containing
t0. We will show that [a, Z>] e (a, /?) and that (j)(t, y°) satisfies the desired
inequality. We start by establishing the following fact:

(i) Claim: If 0(f, / ) is defined in [a, b], then 0(r, / ) eB for all t G [a, b].
Assume that </)(t, y°) is defined in [a, b], and observe that because 0(fO5 y°) =

y° € B^x°) e Be(x°) cB,we have </>(t, y°) eB for all t in some interval contain-
ing t0. We assume that (j>(t, y°) leaves B at some point in [a, b] to the right of £
and thus obtain a contradiction (a similar argument will work in the other
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case). Under this assumption (by the continuity of 0( ) in i) there exists some
r* € (t0, b) such that 0(r, / ) € B for t G [f0, f*], and 0(f*, / ) e bdy B.

Now, because 0(f, y°) G £ for all f in [f0, f*] c [a, b], the graph of 0(f, / ) in
[t0, t*] is contained in the compact set C = Bx [0, 6], and it follows that K is a
Lipschitz constant for / ( ) in this region. By Lemma 6.17, this implies that

\^t,y°)-<p(t,xo)\<\/-x°\eK^ (3)

for all t e [t0, t*]. Using (2), this inequality implies, with t = t* e [a, b], that

\${t*,y°)-(t>{t*,xo)\<\yo-xo\eK(>*-lo) <8eK^a) <e (4)

because y° &B^x°). Because </>(£*, x°) eA, it follows that 0(7*, y°) is an interior
point of B (see the definitions of the two sets). This is a contradiction, because
0(f*, / ) is a boundary point of B. Hence 0(f, /) € 5 for all t e [a, 6].

(ii) By the same argument, it follows that if P < b, then 0(f, y°) e B for all t e [t0,
P). If)8<6, then the point f* in (i), with 0(f*, / ) e bdy B, must lie in (r0, J8), but
then (4) holds (because f* < /3< ft), and 0(£*, y°) is also an interior point of B,
which is again a contradiction.

(iii) Next, we show that [a, b] c (a, p) = Jm(y°), so that indeed 0(f, y°) is defined on
the entire interval [a, b] on which we know <j)(t, JC°) to be defined. We assume
that p < b and obtain a contradiction. Under this assumption we have <p(t, y°)
e B for all t e [r0, j3), by (ii). But notice that if p < 6, then [t0, p] c [r0, 6], where
i> is an interior point of the (open) interval Jm(x°) and therefore is an interior
point of /. Hence, P is also an interior point of /. But then Theorem 6.12 implies
that 0(r, y°) must leave any compact subset of X and, in particular, that there
exists some t e (f0, P) such that <p(t, y°) £ B, which contradicts (ii). Hence, it must
be that b < p.

A similar argument can be used to establish that if a > a, then 0(r, y) eB for
all t G (a, Jo] and that this also leads to a contradiction. Hence a > a, and we
conclude that [a, b] is contained in (a, /J), the maximal interval of existence of
(j)(t, y°). Thus (j>(t, y°) is defined in the entire interval [a, b]9 as claimed.

(iv) Once we have shown that $(t,y) is defined in the entire interval [a, b]9 (i)
implies that (p(t, yQ) e B for all t in [a, b]. Hence, the graph of (p(t, y°) in [a, b] is
contained in the compact set C = B x [a, 6], and it follows that K is a Lipschitz
constant for / in this region. Lemma 6.17 then gives

\4>(t,y°)-<l>(t,xo)\<\yo-xo\eK^

for all fG [a, b]. •

Using this result, it is now easy to establish the continuity of the flow.

Theorem 6.20. Continuity of the flow. Assume that f (x, t) satisfies Assump-
tion 6.6 (continuity and existence of a local Lipschitz constant) in some open
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448 /: Basic Concepts and Scalar Systems

region D =X x I in Rn+1. Then the flow of the continuous system (CS(t)),
)(% x°):E —> X, is a continuous function, and its domain of definition

E = {(t,x)eIxX; teJm(x)}QD

is an open set.

Proof
• Openness of E. Let (s, x°) be an arbitrary point of E. We want to show that any

point (t, x) sufficiently close to (s, x°) lies in E, that is, that t e Jm(x) for any such
point.

Assume that (s, x°) e E and, for concreteness, that s > t0. Then s e /m(x°), and it
follows that the solution 0(f, x°) of the initial-value problem (PC(x°, t0)) is defined
on (Yo, s]. Because Jm(x°) is open, s is an interior point of /m(x°), and it follows that
(j)(t, x°) can be extended to the interval (Yo, s + s] for some £ > 0. Hence 0(Y, x°) is
defined on the closed interval [s- £,s + e].

It then follows by Theorem 6.18 that there exists some S > 0 such that for any
y° e B£x°) the solution <j*(u / ) of (PC(y°, t0)) is defined for all t in [s - £, s + e].
Hence, (s - £, s + e) x B^x°) c E, and it follows that E is open in D.

• Continuity of 0( ). Given some point (s, x°) e E, let e and 8 be as in the first part
of the proof, and choose some /LL, with 0 < // < min{£, S\. Consider a point (/, y°)
such that te (s-^s + jj) and / e B^x0). Then (t, y°) e £, so <j>(t, y°) is defined
and satisfies

by the triangle inequality. Consider the limit of the right-hand side of this expres-
sion as (t, y°) -» (5, x°). By the continuity of (j>( ) in x for given t9 the first term goes
to zero as y° —> X°. Similarly, the second term goes to zero, by the continuity of
0( ) in t for given x. Hence, 0(f, y°) —> 0(5, JC°) as (t, y°) —> (5, JC°), which establishes
the continuity of (j)(t, x) at an arbitrary point (s, x°) in E, and therefore in the whole
set. •

Continuity of the Flow of Parameterized Systems

Let us now introduce the parameters explicitly into the analysis (while still
maintaining a fixed t0) and consider the family of parameterized boundary-
value problems

x = f(x9 1, <x\ x(t0) = x° (PC(x°, t0, a))

where /( ) will now be assumed to be continuous and locally Lipschitz in x
on some region D x Q = X x I x Q i n Rn+1+p, with X an open set in Rn, / an
open interval in R, and O an open set in Rp. For a given value of a we have
a nonparameterized system of the type we have studied in this section, and
our previous results ensure the existence of a unique and continuous
maximal solution of the boundary-value problem. This solution, however,
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Solutions of Continuous-Time Systems 449

will generally change with the parameters, as will its maximal interval of exis-
tence in D. Hence, we will denote the solution of (PC(x°, r0, a)) by <f>(t, x°,
a), and its maximal interval of definition by Jm(x°, a). Proceeding as before,
we can now define the flow of the system as the function 0(f, x°, a): E —>
X defined on the set

E = {(t,x\a)eIxXxQ; t e/m(x°,a)}c£>x Q (5)

such that for each fixed (x°, a), the function $(-, jt°, a) defined in /m(x°, a) is
the unique maximal solution of (PC(x°, f0, <*)).

We will use a simple transformation to show that all our previous results
on the properties of the flow of nonparameterized systems extend to the
present case. Define the vector y and the function F() by

y = (x,a) and F(y,t) = (f(x,t,a),0)

and consider the initial-value problem

y = F(y9t), y(0) = yQ={x\a) (Ry)

Notice that (P.y) is simply the system

(i = /(%,;,a),d = 0)

with the initial condition

(i.e., we treat the parameters as additional state variables but set their deriv-
atives to zero so that they remain constant over time).

Then the flow of F is a function of the form

where (f)(t, x°, a) is the flow of/. Because (P.y) is a nonparameterized system,
our previous results guarantee that its flow will be nicely behaved provided
that F is continuous and locally Lipschitz in y. And because 0(r, x°, a) is just
a component of O(r, y°), this function will be continuous. Hence, we have the
following result.

Theorem 621. Continuity of the flow of a parameterized system. Assume that
f(x, a, t) is continuous and locally Lipschitz in (x, a) on some region D x Q
= X x I x Q in Rn+p+i, with X an open set in RB, I an open interval in R, and
Q an open set in Rp. Then the flow of the continuous system (CS(QL, t)), <))(%
x°, aj:E —> X, is a continuous function, and its domain of definition

E = f(t,x°, a)e Ix X x Q; t e Jm (x°,aj/cDx Q

is an open set.
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Differentiability of the Flow

Our final result in this section shows that if/( ) is a C1 function in D, then
so is the flow (j)(t, x°, a) in the set E defined in Theorem 6.21. By the discus-
sion in the preceding section, it is sufficient to consider the case of a non-
parameterized system, because any results on the dependence on initial
conditions extend automatically to the parameters, provided/() is as smooth
in a as in x.

We have already seen that 0( ) is a continuously differentiable function
of t for given x°. Hence, it suffices to show that Dx(j)(t, x°) exists and is a con-
tinuous function of (f, x°). Assuming for now that Dx(j)(t, x°) is defined, we
can begin by guessing what this derivative must look like. Consider the
initial-value problem

x = f(x,t\ x{to) = x° (PC(xV0))

where /( ) is C1, and let 0(r, x°) be its maximal solution defined on the inter-
val Jm(x°, to). Substituting the solution function back into the differential
equation and using Dt and Dx to indicate partial derivatives with respect to
t and x, respectively, we have the identity

Differentiating both sides of this identity with respect to x°, we have

DxDt^t, x°) = Dxf[<f){t, x°), t]Dx$(t, x°)

If we assume further that the order of differentiation can be inverted in the
term in the left-hand side of this expression, we have

D.D^t, x°) = Dxf[<p(t, x°), t]Dx<t>(t, x°) (6)

Hence Dxty{t, x°) satisfies a linear differential equation. This can be better
brought out by letting

z(t,x°) = Dx$(t,x°) and A(t,x°) = Dxf[<j)(t,xo),t]

and rewriting (6) in the form

z = A(t,x°)z (7)

Notice, moreover, that at time t0 the solution must go through the given
initial condition. Hence, 0(fo, x°) = x°, and therefore

z(to) = Dx(j)(to,x°) = I (8)

where I is the identity matrix. Hence, our candidate for Dx(/)(t,x°) is the
unique solution z(t) of a boundary-value problem involving a parameterized
linear system. By Problem 6.15, the solution z{t, x°) to this linear problem is
defined whenever A(t, x°) is defined, that is, on the whole interval Jm(x°, t0),
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and by Theorem 6.21, z(t, x°) is continuous in t and JC°. Hence, Dx<l)(t, x°) =
z(t, x°) is continuous, and it follows that 0( ) is a continuously differentiable
function of x°.

Notice that in the general case, where /maps Rn into Rn, z = Dx(j)( ) is an
n x n matrix. This poses no particular problem, because we can think of z as
a vector in Rnxn. Alternatively, we can bring (7) back to a more familiar
dimension by working with the differential of 0( ), rather than with its deriv-
ative. Let h be an arbitrary vector in Rn, and define y e Rn by y = zh. Then
y = zh= Azh = Ay, and we obtain a linear system in n variables. Notice that
now the initial condition will be y(/0) = z(to)h - \h - h.

We will now show that the solution of the variational problem (7) is indeed
the derivative of the flow with respect to x°. To simplify things somewhat,
we will consider the case of the autonomous system (CS), i=/(*) .

Theorem 6,22. Differentiability of the flow. Let f(x, a) be C1 in the open set
XxQin Rn+P, and let

E = {(t,x°,a)eRxXxQ;te Jm (x', aj}

Then the flow oft( ) , <j)(% x°, a ) ; E —> X, is a C1 function.

Proof. We will later make use of the following fact. Let /( ) be a C1 func-
tion; then we have

f(y) - f(x) = Df(x)(y -x) + R(y, x) (1)

by Taylor's theorem, where

R(v, x) .
, w -> 0 as y ->x
sy->

This means that given any e> 0, there exists some 5> 0 such that

)\<e\y-x\ (2)

for ally such that \y - x\ < 8. Notice that, in general, the value of 8will depend
on x. If we restrict x to a compact set C, however, given any e we can find a
8 that will work for all x in C (by the same argument as in the proof of
Theorem 8.24 in Chapter 2). Hence, R(y, x)l\y - x\ —> 0 as y —> x uniformly
for x in the compact set C.

As noted, it suffices to consider the case of the nonparameterized system
(CS),jt = f(x). Letting t0 = 0 for convenience, let </)(t, x°) and 0(r, X° + h) be the
maximal solutions of (CS) going through the points x° and x° + h, respec-
tively, at time zero. Let Jm(x°) be the (maximal) interval of definition of the
first of these functions, and fix some compact interval Jb = [0, b] contained
in Jm(x°). Let z(t) be the solution of the variational problem
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i=D_M, m._iAflJ£=l (PV)

As noted in the discussion prior to the statement of the theorem, z(t) will
be defined on the entire set Jm(x°) and therefore in all of Jb.

By Lemma 6.1, we have, for each t e Jb,

, x° + h)) ds

)ds (3)

where, for short, we write Df(xs) for Df(ty{s, x0)). Using these expressions,
we have

= \<t>{t,x° +h)-<t>{t,x»)-z(t)h\

, x° + h)) - f(fa, x0)) - Df(xs )z(s)h] ds

- <I>(S, x°) - z(s)h]\ ds

for each t eJb, where the last equality follows by applying Taylor's theorem
to f(<j)(s, x° + h))- f((l)(s,x0)) (see equation (1)), and /?(-, -) is the Taylor
remainder.

Now, let

N = max\\\Df(xs)\\;ssJh}

where ||-|| denotes the norm of the linear operator Df (in fact, this could be
replaced by the absolute value, because we are in the scalar case), and N
exists because Jb is a compact set and ||D/(J:S)|| = \\Df(<j)(s, x°))\\ is a continu-
ous function of s (because / ( ) is C1 and 0( ) is continuous). We have, then,

x° + h) - fa, x°) - z{s)h]\ ds

< j'a IW(xs )1 \fa, x°+h)- fa, x°) - z(s)h\ ds

< NJ' Q\fa, x° + h)- fa, x°) - z(s)h\ ds < NJ'G g(s) ds (5)

Substituting this expression in (4), and recalling the definition of g( ) ,

for all t e A.
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To apply GronwalFs lemma to g(), we need to show that the integral of
the Taylor error terms is bounded. Fix some arbitrary e > 0 and observe that
the set (j)(Jb, x°) is compact because it is the continuous image of a compact
interval. Hence,

uniformly for 0(s, x°) in the compact set (j>(Jb, x°) (i.e., for all s e Jb). Hence,
there is some number 5o£ (valid for all s e Jb) such that

\R[(l)(s, x°), </)(s, x° + /z)]|< £|0(s, *°+A)- 0(s, x°)| when

\<j)(s, x°+/z)- 0(j, x°)| < 4 , and s e Jb (7)

Now, by Theorem 6.19 there exists some 5i£> 0 and some positive constant
K such that for all h, with \h\ < 5iej we have

\<p(s, x° + /i)- 0(5, x°)| < \h\eKs < \h\eKh < Sl£e
Kb

for all s e Jb. Clearly, we can choose 5i£ small enough that

\<!>(s,x0+h)-<t>(S,x
0)\<\h\eKh<50e (8)

Assume now that \h\ < 8i£. Then, by (8), we have \(f)(s, x° + h) - (j)(s, x°)\ <
<5be, so it follows by (7) and (8) that

s, x°), 0(5, x° + h)]\ < e\${s, x° + h) ~ 0(5, x° )| < e\h\eKb

for all s e Jb. Integrating this expression between zero and t e Jbj

Jo'|i?(0(s, x° + /*), 0(J, JC°))| ds < [e\h\eKb ds = et\h\eKh < eb\h\eKb

Substituting this expression into (6),

g(t)<Nlg(s)ds + eb\h\eKb (9)

Gronwall's lemma now yields

g(t) < eb\h\eKbeNt < eb\h\e(K+N)b (10)

for any t e Jb. Dividing through by \h\ and recalling the dejfinition of g(f) in
(4), we have

g(t) _ \t(t,x° + h)-<l>(t,x0)-z(t)h\ {K

for all t e Jb. Because e is an arbitary positive number, it follows that

,*° + ft)-rt*,*°)-z(0*|_ Q
\h\
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uniformly for t e Jb. Hence, we have shown that, as claimed,8 the solution of
the variational problem (PV) is the partial derivative of the flow, that is,

Because z(t, x°) is a continuous function defined on the entire interval Jb,
moreover, so is Dx(f>(ty x°), and this implies that 0( ) is C1 on Jb = [0, b].
Because b is an arbitrary point of Jm(x°), finally, we conclude that 0( ) is C1

on its entire domain. •

Our next result shows that the flow is as smooth as the vector field /( ).

Theorem 6.23. Let f(x, a) be O (with 1 < r < <*>) in the open set D x Q in
Rn+P. Then the flow ofi( ) , §(t, x°, ocj.E —> X, is a Cr function.

Proof. As before, it suffices to consider the case of the nonparameterized
system (CS), x=f(x). We proceed by induction on r. By the preceding
theorem, the result holds for r = 1. Assume now that / i s C and that if F is
a C~l function, then the flow of the system y = F(y) is C~x. Consider the
system formed by (CS) and its variational equation

z = Df(x)z (V)

Letting y = (x, z) and F{y) = F(x, z) = (/(*), Df(x)z), this system can be
written

Notice that F is a C~l function, because its first component, /( ), is C in x,
and its second component, Df{x)z, is C~l in x and linear (and therefore C°)
in z. It follows (by the induction assumption) that the flow of F, <&(£, y), is
C~\ But notice that O() is of the form

O(f, / ) = fc(f, x°, z°) = ($(t, x°), Dx(j)(t, x
0))

because the second component of (P.y) is the variational equation of (CS).
Hence, Dx(j)(t, JC°) is C1"1, and it follows that (f>{t, x°) is C in x. Moreover, D
(r, JC°) is C~\ because

and both/( ) and (j)(t, x) are Cr~l or better. Hence, (j)(t, x°) is (7, because both
of its partial derivatives are C~x. This proves the theorem. •
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Notes

1 To find the steady state of the system, we set x= 0 in (N) and solve for x.
2 All that we have done has been to reindex the family of solutions of (N) by x(0), instead

of c, but we still have to specify which trajectory of the system we want. This can be
done by choosing the value of ;t(0) directly (i.e., by imposing an initial condition in the
strict sense of the term) or by specifying some other type of boundary condition, in
which case we have to solve for the value of x(0). See Chapter 11 for some examples.

3 To find the steady state of (ND), we suppress the time subindices and solve for x:

(1-a)x = b==>x = provideda*1
\-a

4 This can be done for an arbitrary time s. When t = s, we have xs = x+ ca\ Solving for c
and substituting in (GS), we obtain xt = x+ (xs -x)a'~s. If xs is known, this expression gives
the particular solution that goes through this point at time s. Otherwise, xs is
undetermined, and we just have another equivalent form of the general solution.

5 Notice that

if g'(s) changes sign in the interval, then me = 0, and therefore \g(x)\ > 0 = me \x\
if g{s) > 0 everywhere in the interval, then e\g(x)\ = Jog'(5) ds > m£ Ixl, and
if g(s) < 0 everywhere in the interval, then \g(x)\ = Jo - g'(s) ds > me \x\.
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6 In Section 2 of Chapter 11 we will make use of the forward solution for an equation that
describes the evolution of the price of a share of stock. The reason for the terms
"fundamental solution" and "bubble term" will then become clear.

7 Think of tx and t2 as terms of a sequence {tn} converging to b. Then (2) implies that {0(0}
is Cauchy, and convergence follows by completeness.

8 See the definition of "derivative" in Section 3 of Chapter 4.
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10

Dynamical Systems. II: Higher Dimensions

In this chapter we will study dynamical systems of dimension 2 or higher,
that is, those defined by systems of two or more differential equations in
several variables. Sections 1-3 will deal with linear systems. In the remain-
der of the chapter we will discuss some techniques for analyzing nonlinear
autonomous systems.

1. Some General Results on Linear Systems

Our discussion of linear systems will concentrate on the solution of systems
with constant coefficients. We begin, however, by listing some important
results of the general theory of linear dynamical systems that will be useful
later. Consider a first-order homogeneous system of the form

x = A(t)x (CH)

where the coefficients of the n x n matrix A can be arbitrary functions of
time defined on some interval of the real line. The discussion will be in terms
of continuous-time systems, but it is easily shown that the results also hold
for discrete systems.

Our first result concerns the algebraic structure of the space of solutions
of (CH).

Theorem 1.1. The set

SH = fx(t j t e I; x(t) = A(tjx (t) V t e I]

of solutions of (CH) is a vector space of dimension n.

A set F= {x1(t),..., xn(t)} of n linearly independent solutions of (CH),1

that is, a basis of SH, is called a fundamental set of solutions of (CH), and the
matrix

457
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458 //; Higher Dimensions

is a fundamental matrix for the system.
Because SH is a vector space and F is a basis for it, given an arbitrary solu-

tion y{t) of (CH), we can write it precisely in one way as a linear combina-
tion of xl(i),..., xn(t); that is, there exist unique scalars cu ..., cn such that

Assigning different values to the vector c = (cu .• • , cn), we can recover all
the solutions of the system. Hence, we can think of (1) as the general solu-
tion of (CH). Notice that in order to construct the general solution of the
system it suffices to find a fundamental set of solutions, that is, a family of n
linearly independent solutions of (CH).

Once we have found a fundamental set of solutions of (CH), the solution
of any initial-value problem can be easily obtained. The most compact way
to write such solution is in terms of a fundamental matrix. As we have seen,
the general solution of (CH) can be written

*'(0 = H <**'(') = *(')*
Next, suppose we are given the boundary condition

x(to) = x°

In order to find the value of c that corresponds to this boundary condition,
we observe that the solution we seek satisfies

Solving this equation for c,

and substituting the result in the general solution, we obtain the solution of
the given boundary-value problem:

Next we turn to the nonhomogeneous first-order system

x = A(t)x + b(t) (CN)

and consider its solution space:

SN = {*(*), t E /; x(t) = A(t)x(t) + b(t) V t € /}

It is easy to show that SN is an affine space of dimension n "parallel" to SH.
That is, SN is a translation of SH, and the translation factor is an arbitrary
particular solution xp(t) of (CN). Hence, the general solution of the nonho-
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mogeneous continuous system (CN) is the sum of the general solution of
the homogeneous system (CH) and an arbitrary particular solution of (CN).
We can therefore write

where the general solution of the homogeneous system, xH(t), is sometimes
called the complementary function.

2. Solution of Linear Systems with Constant Coefficients

In this section we will study linear systems with constant coefficients, that is,
systems of the form

x = Ax + b <=>

in continuous time, or

xt+i = Axt + b <=>

_xn ««JL n _ L « _

(CN)

' 1 'xt+l

**-nn %t

(DN)

in discrete time.
We have seen that the general solution of a nonhomogeneous system can

be written as the sum of the general solution of the corresponding homo-
geneous system and any particular solution of the nonhomogeneous system.
Hence, we start by solving the homogeneous system

x = Ax (CH)

or
(DH)

Having done this, the general solution of the nonhomogeneous system is
easily completed by computing its stationary solution or steady state.

In the following section we will develop a solution procedure for homo-
geneous systems that will allow us to exploit our knowledge of the general
solution to the scalar linear equation. The method works by reducing (CH)
or (DH) to an equivalent diagonal or uncoupled system through an appro-
priate change of variables. A diagonal system is simply a set of independent
first-order linear equations that we already know how to solve. Given its
solution, it is easy to recover that of the original system by applying the
inverse of the diagonalizing transformation. In Sections 2(b) and 2(c) we will
discuss the complications that arise when the coefficient matrix A has
complex eigenvalues or cannot be diagonalized. In the remainder of Section
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2 we will analyze the nonhomogeneous case and discuss the stability of
linear systems.

(a) Solution by Diagonalization

Consider the discrete-time homogeneous system

xt+t=Axt (DH)

where A is an n x n matrix of real numbers, and x is a vector in Rn. For con-
creteness, we will often work with the two-dimensional or "planar" system:

p&il p»n al2Jx)l ( D m )
Ur+J L«21 ChzLxU

Notice that there is a special case of (DH2) that we already know how to
solve. If A is a diagonal matrix, that is, if an = a21 = 0, then (DH2) is simply
a set of two independent equations in one variable,

x}+1 = anxj and xf+1 = a22x2

and their general solutions are of the form

xj = Ciflii a n d x2
t = c2a22

where cx and c2 are arbitrary constants.
In the general case, A is not a diagonal matrix. In many cases, however,

we can find a change of coordinates that will diagonalize or "uncouple" the
system. In particular, recall from Chapter 3 that if A has no repeated eigen-
values, then its eigenvectors ei, ..., en are all linearly independent, and the
matrix E = [eu ..., en] can be used to diagonalize A. That is, E~1AE = A,
where A = diag(Ai,..., X,) is the matrix with the eigenvalues of A in the
principal, diagonal, and zeros elsewhere.

Using this result, we can now derive a formula for the general solution of
(DH) when the coefficient matrix A has no repeated eigenvalues. Premulti-
plying both sides of

xt+1=Axt (DH)

by the inverse of the matrix of eigenvectors, E (observe that EE~X = / ) ,

E-Xxt+1 =E1A(EE1)xt=(E-lAE)(E-lxt)

Using the fact that E~1AE = A, we have

Finally, defining the transformed variables

yt = E~1xt
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we can rewrite the equation in the form

yt+1 = Ay,

In this way, we obtain a diagonal or uncoupled system in the transformed
variables yt whose coefficients are the eigenvalues of the coefficient matrix
of the original system. The general solution of this system, denoted by yf, is
easy to calculate, as we will soon see. Given y?(c), we can recover the general
solution of the original system simply by applying the inverse of the diago-
nalizing transformation, that is, by premultiplying yf by the matrix formed
by the eigenvectors of A:

X, = £.y.

For example, the planar system

J d i l p i n a12lxH ( D m )

xf+i\ [_a2l a22±.xf\

reduces, after diagonalization, to two independent equations,

y}+i=hy} and y h =X 2 y f (1)

where

The general solution of (1) can be written

in terms of the transformed variables, and

-XtA leu e
in terms of the original variables. As usual, c - (cu c2)

T is a vector of arbi-
trary constants, and the choice of a value for c is equivalent to the specifica-
tion of a boundary condition.

The generalization for systems of arbitrary dimension n is straightforward.
The general solution of yt+1 = Ayt is of the form

where A1 = diag(Ai,..., A£), and c is a column vector of arbitrary constants.
Premultiplying by E, the general solution of the original system is given by

(3)

Operating in (3), the general solution can be written as shown in the fol-
lowing theorem, which summarizes our results.
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Theorem 2.1. Let Abe a real n x n matrix with no repeated eigenvalues. Then
the \th component of the general solution of the system xt+1 = Axt can be
written

where ê  is the ]th component of the eigenvector eA associated with the eigen-
value A*

Proceeding in a similar fashion, we obtain an analogous result for the
homogeneous linear system in continuous time,

(CH)

(4)

The general

where

solution of

eKt

x = Ax

(CH) is of the

xh(t;c) =

"exp(V) ..

0

form

EeAtc

0 "I

exp(A 0

Theorem 2.2. Let Abe a real n x n matrix with no repeated eigenvalues. Then
the ]th component of the general solution of the system (CH), x= Ax, can be
written

x f f t ; c) = X L c i e i j

where e% is the ]th component of the eigenvector t{ associated with the eigen-
value Ai.

Problem 2.3 will ask the reader to derive this result using a diagonaliza-
tion procedure. But first we give an alternative proof of the theorem that
may be instructive.

Proof. We seek solutions of the system (CH), x - Ax, of the form

x(t) = eatz (1)

where z is a vector, and a a scalar. For a function of the form (1) to be a
solution of the system, we will have to impose certain restrictions on z and
a. In particular, we want (1) to satisfy equation (CH), that is,

[x(t) =] aeatz = eatAz [= Ax(t)]

Dividing both sides by eM * 0 and rearranging, we have

(A-al)z = 0

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:31:28 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.011

Cambridge Books Online © Cambridge University Press, 2013



Constant Coefficients 463

where / is the identity matrix. Observe that this is precisely the condition
that must be satisfied by the eigenvalues and eigenvectors of A. Hence, the
vector-valued function x(t) = zeat is a solution of (CH) if a is an eigenvalue
of A and z is a corresponding eigenvector. Occasionally we will refer to solu-
tions of this form as elementary solutions of (CH).

Hence, the functions of the form

xl(t) = [x[(t),... ,4(r)]r = exp(A,0e, (2)

are solutions of (CH). Moreover, we have assumed that the eigenvalues Xu

. . . , Xn are all distinct. Because this guarantees the linear independence of
the eigenvectors, the functions {x\i)\ i = 1,..., n} are linearly independent
and therefore constitute a fundamental set of solutions. Thus, we can write
the general solution of (CH) in the form given in the theorem,

•

Problem 2.3. Derive equation (4) by diagonalizing the coefficient matrix of
(CH).

(b) Imaginary Eigenvalues

Let A be a real matrix with no repeated eigenvalues. We have just seen that
the functions of the form x\i) = exp(A;f)e, form a basis for the solution space
of the homogeneous system

x = Ax (CH)

Hence, the general solution of (CH) can be written in the form

\et (G.S)

If A has only real eigenvalues, its eigenvectors will have real components,
and by assigning real values to the constants ct in (G.S), we can obtain all
the real-valued solutions of the system. If the system has some complex
roots, (G.S) remains valid, but its usefulness is limited, as this expression now
describes a family of complex-valued functions. Although all these functions
are indeed solutions of the system, typically we are interested only in those
that are real-valued. Hence, we would like to construct a different basis for
the solution space, one that will allow us to recover the real solutions of the
system by assigning real values to the arbitrary constants.

This turns out to be fairly easy to do. If A is a matrix with real entries, its
complex eigenvalues and eigenvectors come in conjugate pairs, and, there-
fore, so do the functions xl(t) = exp(A/)e; that are still solutions of (1).
That is, if x%i) = u(t) + iv(t) is a solution of (CH), then so is the function
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xj(t) = u(t) - iv(t). It is possible to show, moreover, that the real functions u(t)
and v(t) are themselves solutions of (CH) and that they can be used, together
with any real-valued elementary solutions of the system, exp(Xtt)eh to form
a real-valued basis for the solution space of the system.

For the sake of concreteness, let us assume that the first two eigenvalues
of the coefficient matrix, Xt and X2, are complex, and the rest, A3,.. . , A*, are
real numbers. If A has only real coefficients, then Xx and X2 are conjugates,
that is,

x fi and X2 = a-i/u

and the same is true of the corresponding eigenvectors, which can be written

ex = d + if and e2 = d-if

where d and / are vectors in Rn. The corresponding elementary solutions
are the functions

x1 (t) = exp(Ai f )ei and x2 (t) = exp(X2t )e2

Let us rewrite x1(t) in a more convenient form.2 We have

xl (t) = exp(A4*)*i = e(a+'w' (d + if) = eat{cos^t + i sin fit)(d + if)

= eat{d cosfM + if cos/Jt + id sin/if + i2f sin /tf}

= eat(d cos/it - f sin/tf) + ieat(f cos/dt + d sin /Jt)

Proceeding in the same way,

x2(t) = exp(X2t)e2 = eat(d cos/Jt - / sinjitf) - ieat(f cosjjt + d sin/tf)

We now define the functions

u(t) = eat{d cos /ut-f sin /tf) and v(t) = em(/cos/Jt + <isin/zf)

and write the elementary solutions in the form

xl(t) = u{t)+iv(t) and x2{t) = u(t)-iv(t)

We know that any linear combination of solutions of (CH) is also a solu-
tion of (CH). Therefore,

y(t; KUK2) = KXX1{t) + K2X
2 (t) = KX [u(t) + iv(t)] + K2 [u(t) - iv(t)]

= (iCi + K2)u(t) + i(Kx - K2)v(t)

is also a solution for any (complex) scalars K\ and K2. In particular, we can
put

u(t) and yfo-i/2
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to conclude that u(t) and v(t) are also solutions of (CH). Moreover, it can
be shown that u{ ) and v( ) are linearly independent of each other and the
other elementary solutions. Hence, instead of xl(i) and x2(t), we can use u{i)
and v(t) to complete the fundamental set of solutions. Then we can write the
general solution of the system in the form

xh (t; c) = Clu(t) + c2v(t) + £"=3 c,exp( A^e,

= cteat(d cosfM - f sin/tf) + c2e
at(f cosjM + d sin/Jt) + ̂ " c,- exp(A,?)e,

(5)

For the case of the discrete system jtr+1 = Axh a similar procedure can be
used. Assume that the first eigenvalues Xx and X2 of the coefficient matrix
are complex,

i/A = r(cos d + i sin d\ X2 = a - i/i = r(cos d-isind)

where r is the common modulus of Xx and A2, 9 is the angle formed by the
vector Ai in the complex plane and the horizontal axis (see Section 7 of
Chapter 1), and the rest, A3 , . . . , K, are real. Then the general solution can
be written in terms of a real basis, as follows:

4 (c) = Cxu{t) + C2v(t) + ]T"=3 CjX'id

= c^id cosdt-fsmGt) + c2r'(f cosOt + d sin0f) + £"̂ c,-A-e,- (6)

Problem 2.4. Derive equation (6).

(c) Repeated Eigenvalues

We now consider what happens when the coefficient matrix of the homo-
geneous linear system has some repeated eigenvalues. If <fj is an eigenvalue
of multiplicity m (i.e., it is repeated m times), then associated with it there
is a set of up to m (but possibly fewer) linearly independent eigenvectors. If
we cannot find a full set of m linearly independent characteristic vectors, the
coefficient matrix will not be diagonalizable, and the procedure we have
used thus far will not work.

From a slightly different perspective, the problem is that we may not have
enough linearly independent elementary solutions of the form exp(A,/)e, to
complete a basis of the solution space. To complete a fundamental set of
solutions, we will have to search for functions of a different form. It turns
out that the additional solutions we need can be found among a family of
functions of a relatively simple form, each containing the product of a poly-
nomial in t and an exponential.
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In particular, assume that the coefficient matrix A has k distinct roots
flu ..•, Mb with multiplicities mu..., m*, respectively. Then the solutions of
the system (CH), x = Ax, will be of the form

*(0 = I^f l (OexpGtf) = TLlS!^P*thl™BM (7)
where Pf-(f) is a polynomial in £ of order k-1 (with vector-valued
coefficients). We observe, however, that not all functions of the form (7) are
solutions of (CH). Additional restrictions must be placed on the coefficients
Pij in order for x(t) to be a solution of the system, as shown in the following
problem.

Problem 2.5. Given the linear system (CH), x = Ax, assume that there is one
eigenvalue £ of multiplicity 2 (Ai = A2 = £), and the rest of the eigenvalues
A3,..., K of A are all different from each other. Associated with the
repeated eigenvalue we have two elementary solutions:

x1(t) = cxp(Xit)e1 = e*e\ and x2(t) = exp(X2t)e2 = e*e2

Clearly, if ex and e2 are linearly independent eigenvectors associated with £,
the elementary solutions xl(t) and x2(t) are also independent from each other
and from the rest of the elementary solutions x3(t),..., xn(t). Hence the set
of elementary solutions is still a basis for the solution space of the homo-
geneous system, and we can write the general solution as before:

x'(t) = c1x1(t) + ... + cnxn(t) ( G S )

If ex and e2 are linearly dependent, however, so are xl(i) and x2(t), and we
do not have enough independent elementary solutions to span the solution
space. To complete a basis for the solution space that will allow us to write
the general solution, we need to find an additional solution to (CH) that will
be linearly independent from the elementary solutions. We will seek a solu-
tion of the form

0(0 = {a + bt)e^ = ae^ + tee* (1)

that is, the product of a polynomial of order 1 (1 less than the multiplicity
of §) in t and the exponential term in the eigenvalue £ What restrictions
must be placed on the vectors a and b so that <p(i) will indeed be a solution
of the system, that is, will satisfy the equation (ff(t) = A(j)(t)? Write the general
solution of the system.

(d) Nonhomogeneous Systems and Stability Conditions

We now turn to nonhomogeneous linear systems of the form

x = Ax + b (CN)
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or

xt+1=Ax, + b (DN)

We have seen that the general solution of such a system can be written

x»(t) = x«(t) + xp(t) ( G . S )

where the complementary function xH(t) is the general solution of the cor-
responding homogeneous system, and xp(t) is an arbitrary particular solu-
tion of the nonhomogeneous system.

In the preceding sections we have shown how to compute xH(t). Hence, it
suffices to find one particular solution of (CN) or (DN) to be able to write
its general solution. An obvious choice is the stationary solution of the
system, x, whenever it exists. To find it, in the discrete case we put xt+1 = xt9

eliminating the time subscripts, and solve for x to obtain

x = Ax + b=>(A-I)x = -b

=*x = -(A-I)~1b (8)

whenever A -1 is invertible. In the continuous case, we set x to zero:

x= Ax + b = 0=> Ax = -b

=> x = -A~1b (9)

provided A is invertible.3

Using the results from the preceding section, we can write the general
solutions of the given systems directly.4 Then the conditions for stability or
instability follow immediately by inspection.

Theorem 2.6. Let Abe a real n x n matrix with no repeated eigenvalues, all
different from zero. Then the general solution of the system (CN), x = Ax + b,
is given by

xg(t; c)= l+^^expfatfr (G.S.C)
where x = -A~2b is the unique stationary state of the system, ch . . ., cn are arbi-
trary constants to be definitized by choice of a boundary condition, X{ is the
ith characteristic root of the coefficient matrix A, and e* is the corresponding
characteristic vector.

Given (G.S), it is easily determined whether the steady state x is stable or
unstable. Suppose first that all roots of the system are real numbers. Then
the /th component of the general solution is given by

xf (t; c) = x, + X;
=1 Qe,yexp(A«0 (10)

The stability of the steady state depends on the signs of the system's eigen-
values. If all roots are negative, then all terms of the form exp(A,£) go to zero
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as t —* °°? and the solution converges asymptotically to the steady state x for
any value of the constants ct - that is, from any initial position. On the other
hand, if any of the roots of the system are strictly positive, the correspond-
ing exponential terms exp(A,f) go to infinity as t —»<*>. Hence the system is
unstable and diverges from the steady state, unless we "kill" the explosive
roots by assigning a zero value to the corresponding constants.

If any of the characteristic roots are complex, the general solution can
be written in the form derived in the preceding section. In particular, if
X\ = a + ifi and Xi - a - ifi are the only complex eigenvalues, with eigenvec-
tors ei = d + if and e2 = d - if we have

x8 (t; c) = x + cxeat(d cos jit - f sin/Lit) + c2eat(f cosjut + d sinfit)

e, (11)

This expression shows that the crucial determinants of the stability of the
steady state are the signs of the real parts of the eigenvalues of the system,
a. The existence of a nonzero imaginary component fi introduces a cyclical
element into the solution through the functions sin jit and cos fit, but what
determines the convergence or divergence of the system is the behavior of
the term em. Observe also that if the eigenvalues of A are all pure imaginary
numbers, the solutions of the system are cyclical and describe closed trajec-
tories around the steady state.

Finally, if the system has repeated roots, the general solution is of the form

This expression implies that even with repeated roots, the stability of
the system depends on the signs of the real parts of its eigenvalues. If fit
is real and negative, for example, the terms of the form tem also tend to
zero as t —> <», because the exponential term prevails. By L'Hopital's rule, we
have

limte'* = lim = 3 : ~ - — = 0

In summary, the stability of the continuous-time autonomous linear
system depends on the signs of the real parts of the eigenvalues of its
coefficient matrix. We summarize as follows:

Theorem 2.7. Let A be a real n x n matrix with nonzero eigenvalues. Then
the unique steady state of the system (CS), x = -A - ib, is (globally) asymptot-
ically stable if and only if all the eigenvalues of the coefficient matrix A have
strictly negative real parts, and it is unstable if at least one of the eigenvalues
is strictly positive.
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A steady state that satisfies the conditions of the theorem (i.e., has
nonzero characteristic roots) is said to be hyperbolic.

For discrete-time systems, we have a very similar situation.

Theorem 2.8. Let A be a real n x n matrix with eigenvalues all distinct
and different from I.5 Then the general solution of the system (DN),
xt+i = Axt + b, is given by

xf(c)=x + y£l1ctiel (G.S.D)

where x= -(A - I^'b is the unique steady state of the system, ch ..., cn are
arbitrary constants whose values will be determined by the choice of an appro-
priate boundary condition, A* is the ith eigenvalue of A, and ei is the corre-
sponding eigenvector.

This expression shows that what determines the convergence or diver-
gence of the system is whether or not the absolute values of its roots are
smaller than 1. If we have complex roots, we have

xf{c) = dr'id cosdt~f$m6t) + c2r
t(f cos dt + d

where we observe that the stability of the system depends on the value of
r, the modulus of its complex roots. In the case of systems with repeated
roots, the situation is similar to the one that arises in continuous-time
systems. We have, then, the following:

Theorem 2.9. Let A be a real n x n matrix whose eigenvalues all have
moduli different from 1. Then the unique steady state of the system (DN),
given by x= -(A - Ij";b, is (globally) asymptotically stable if and only if
all the eigenvalues of the coefficient matrix A have moduli strictly smaller
than 1, and unstable if at least one eigenvalue has modulus strictly larger
than 1.

A Class of Nonautonomous Systems

The diagonalization procedure discussed in Section 2(a) can be extended to
deal with nonautonomous systems of the form

x = Ax + b(t) or xt+i = Axt + bt (13)

where the coefficient matrix A is constant, but the forcing term b is a func-
tion of time.

Assume that A is diagonalizable, and consider, for concreteness, the dis-
crete case. Proceeding as before, we premultiply both sides of (13) by the
inverse of the eigenvector matrix, E~l

9 to get

xt+l = E'lA(EE~l )xt + E~lbt = AE~lxt
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If we now define the transformed variables

yt = Erlxt and dt = Erxbt

we can rewrite the earlier expression as

yt+1 = Ayt + dt

Because A = diag(A i,..., A*) is diagonal, the transformed system reduces to
a set of independent equations of the form

Following the procedure discussed in Section 5 of Chapter 9, we can solve
each of these equations separately. To recover the solution of the original
system, it suffices to apply the inverse of the original transformation, that is,
to use the relation xt = Eyt.

(e) Stable and Unstable Spaces

We have seen that the stability of a linear system depends on the values of
its characteristic roots. In the case of the continuous-time system x = Ax + 6,
for example, if all the eigenvalues of A have negative real parts, the solution
converges asymptotically to the stationary state x from any initial position.
In this case, we say that x is a sink. If all the characteristic roots of A have
positive real parts, the system is "completely unstable" and "explodes" from
any initial position other than the steady state itself. In this case, we speak
of a source. The situation is similar in the case of discrete-time systems,
except that now we are concerned with the moduli of the eigenvalues, rather
than with the signs of their real parts.

When the system has roots with positive real parts and roots with nega-
tive real parts (or roots inside and roots outside the unit circle in the complex
plane, in the discrete-time case), we say that its steady state is a saddle point.
A saddle point is an unstable equilibrium, according to the definition given
in Chapter 9, for there exist solution trajectories that, starting arbitrarily
close to the steady state, get arbitrarily far from it as time passes. There are,
however, other trajectories that converge asymptotically to the steady state.
In fact, there is a possibly large region of the state space with the property
that any trajectory originating in it converges to the steady state. This region
is what we call the stable space or stable manifold of the system.

Suppose, for concreteness, that we have a homogeneous system in con-
tinuous time, (CH), x = Ax, with n distinct eigenvalues, all real and different
from zero. Partition the eigenvalues of A, {A*; i = 1 , . . . , n], into two sets,
S and £/, with ie 5 if Xt< 0 and i e U if X{ > 0, and write the general solution
of the system in the form
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xg(t;cu, cs) = £ " ic!exp(Air)ei = ]T . ^ e x p ^ ) ^ + 1 WQexp(A,f)e,
(14)

where, as usual, c = (c i , . . . , cn)
T is a vector of arbitrary constants. Clearly, if

we set the constants cu corresponding to the unstable roots equal to zero,
then, the solution of the system, which reduces to

converges to the steady state x= 0 for any value of the vector cs.
Setting some of the arbitrary constants equal to zero is equivalent to

choosing a subset of the state space Rn. We will show that the subset of Rn

corresponding to the boundary condition cu = 0 is the subspace of Rn

spanned by the eigenvectors associated with the stable roots. Recall that the
absence of repeated roots guarantees the linear independence of the eigen-
vectors of the coefficient matrix A. Hence, under our assumptions, A has a
full set of n linearly independent eigenvectors, e = \et e Re; i = 1 , . . . , n}, and
this family of vectors is a basis for the state space Rn. Let x° be the initial
position of the system at time zero. Because e is a basis of Rn, the vector x°
can be written in precisely one way as a linear combination of the eigen-
values of A. That is, there exist real numbers $ , . . . , ( 5 m not all zero, such
that

^Jfe. (15)

Moreover, evaluating the general solution of the system at time zero,

ciexp(XiO)ei=Y'i=1clel=x0 (16)

and combining (15) and (16),

X°= i(c;-A>,=0 (17)
Finally, by the linear independence of the eigenvectors, (17) implies that

c, = #• V/ = l , . . . ,n

That is, the arbitrary constants ct in the general solution correspond to the
coordinates of the system's initial position in the coordinate system defined
by the eigenvectors of the coefficient matrix.

Now, the convergent space of the system is the set of points for which
cu = 0, that is, the set of n-vectors that can be written as linear combinations
of the stable eigenvectors, or the subspace of Rn generated by {et e Rn; / e
5}. Call this set Ws(0), where 0 is the steady state of the given homogeneous
system. Given any point x° in Ws(0), the particular solution of the system
through this point is given by
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Hence, x(t\ x°) —» 0 as t —> <*>. Moreover, Ws(0) is invariant under the flow of
the system, for if x° is a linear combination of the stable eigenvectors, so is
x(t\ x°) for any t. Similarly, if y° = Z/eU Y& is a point in the unstable subspace
of the system Wu(0) = span{e(; i e U), the solution through y° is given by

and we have

|x(r;y°)||—>°o ast-^°o and x(t;y°)^0 ast—>-«>

So far, we have assumed that all the characteristic roots of the system are
real-valued, but the situation is not very different if some eigenvalues are
complex. Suppose A has n distinct but possibly complex roots,

A, = « , + * > , (J = l,...,n)

with corresponding eigenvectors

(Recall that complex eigenvalues and eigenvectors come in conjugate pairs.
Hence, if fik ± 0 for some k, then Xk - ak - ifik is also an eigenvalue, and its
corresponding eigenvector is of the form ek = uk-ivk.) For each pair of
complex eigenvalues, we can replace the eigenvectors ek and ek by the real
vectors uk and vk and proceed as before. Hence, the stable and unstable sub-
spaces of the homogeneous system x = Ax are now given by

Ws(0) = span{w,,vy;a,<0} and W(0) = span{uy,vj;aj>Q) (18)

Finally, in the case of the nonhomogeneous system x = Ax + 6, with steady
state x, the stable and unstable spaces Ws(x) and W"(x) are obtained by "dis-
placing" the stable and unstable subspaces of the homogeneous system so
that they "go through" the steady state x. That is, Ws(x) and W"(x) are the
affine (rather than linear) subspaces of Rn given by

( = x + 0) and Wu(x) = x + Wu(0) (19)

We summarize the discussion in the following theorem.

Theorem 2.10. Stable and unstable manifold for linear systems. Consider the
linear system x - Ax + b, with steady state % and suppose that A has no
repeated roots. Then the sets Ws(x) and Wu(x) defined in (19) are invariant
under the flow of the system. Moreover, given any point x° in Ws(x), the solu-
tion of the system through this point, x(t; x°), converges to x as t —> «>. Given
any point y° in Wu(x), the corresponding solution, x(t; y°), satisfies

|x(t/ y0 ]̂—> °° fls t—o° and x(t; y°J->x ast—>-=>°
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A similar result holds for discrete-time systems. In this case, however,
the stable (unstable) space is defined by the eigenvectors corresponding to
eigenvalues inside (outside) the unit circle in the complex plane, that is,

Ws(O) = span{w/,vy;|A/|<l} and W"(O) = span{My,v/;|Ay|>l} (20)

(/) Linear Systems on the Plane

In this section we analyze in detail the dynamics of autonomous linear
systems in the plane, that is, systems of the form

x=Ax+b (CS2)

or

xt+1=Axt + b (DS2)

where A is a real 2 x 2 matrix.
Practically all the information we need to describe the dynamics of (CS2)

or (DS2) is summarized by the eigenvalues of the coefficient matrix A.
Depending on whether the characteristic roots of A are real or complex,
have positive or negative real parts, or lie inside or outside the unit circle in
the complex plane, the steady state of the system will be stable or unstable,
and the solution trajectories will behave differently. We will examine the dif-
ferent possibilities that can arise in the continuous- and discrete-time cases.
To summarize our results, we will construct two figures (one for discrete
systems and the other for continuous systems) drawn on a Cartesian plane,
with det A on the vertical axis and tr A on the horizontal axis. For each type
of system we will divide this plane into a number of regions, each corre-
sponding to a different type of steady state.

Recall from Chapter 3 (Section 6) that the eigenvalues of A (Ai and A2)
satisfy the relations

X1 + X2 (21)

= XlX2 (22)

and are the solutions of the characteristic equation

p(X) = \A-XI\ = X2 -(tr A)X + detA = 0 (23)

Hence, by the quadratic formula, Xt and X2 are given by

, , tr±Vtr2-4det
Ai,A2= (24)

Equation (24) shows that the eigenvalues of A are real or complex depend-
ing on the sign of the discriminant of the characteristic equation,
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det = ; A = 0

\ complex

real \ .

A
real eig(

<0
eigenvalues

>0
nvalues

)

/
rea

tr = X] +X2

Figure 10.1. Regions of real and complex eigenvalues.

A = tr2 - 4det

Setting A equal to zero and solving for the determinant,

A = tr2 - 4det = 0 => det = tr2/4 (25)

we obtain the equation for a parabola with a minimum at the origin. This
curve divides the plane into two regions, as shown in Figure 10.1. In the
region above the parabola we have A < 0, that is, tr2 < 4det, indicating that
the roots of the system are complex numbers, whereas the region below the
curve corresponds to the case of real eigenvalues (A > 0).

Equation (24) also shows that complex eigenvalues come in conjugate
pairs. Hence, if Xx = a + i\i is an eigenvalue, then so is A2 - a - i\i, and equa-
tions (21) and (22) imply that

tr A = Ai +A2 = (a + i/n) + (a - iji) - 2a (26)

i2ji2 =a2+fi2 =|Ai| = |^ l

(27)

Hence, when the eigenvalues are complex, the trace of the coefficient matrix
is equal to twice the (common) real part of the eigenvalues, and the deter-
minant is the square of their (common) modulus.

(i) Continuous Time

Consider the planar system in continuous time,
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Case a.l: stable node (Xj, X2 < 0) Case a.2: unstable node (Xj, A? > 0)

Figure 10.2. Nodes.

x - Ax + b (CS2)

and recall the general discussion of stability in Section 2(d).
Suppose first that A = tr2 - 4det > 0 (i.e., we are in the region below the

parabola). Then the characteristic roots of the system are real numbers, and
its general solution can be written

xf (r, c) =

xf (t, c) = x2 + c1e12exp(A1f)

The stability of the system depends on the signs of the eigenvalues. The pos-
sible cases are the following.

• Case (a). Real roots of the same sign: nodes
If det A = X\Xi > 0, then both roots are real numbers with the same sign. In this

case, the steady state x is called a node, because all the trajectories point directly
"into" or "out of" the steady state. Given that the eigenvalues of A must have the
same sign, the sign of the trace of this matrix will tell us whether the system is
stable or unstable. If tr A = Xx + %i < 0, both eigenvalues are negative, and all tra-
jectories converge smoothly to the steady state, yielding an (asymptotically) stable
node. If the trace is positive, so are both eigenvalues, and the node is unstable, as
illustrated in Figure 10.2.

A similar situation arises if (trA)2-4(detA) = 0. Then the system has a
repeated real root (Ai = X2 = £), and its general solution is of the form

xf (t,c) = X!

x\ (t, c) = x2

where ex = (en, e12)T is an eigenvector of A associated with the repeated root, and
b = (bu b2)

T is a 2-vector. Note that the solution trajectories converge if £ < 0, and
diverge when £ > 0.
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• Case (b). Real roots of different signs: saddle points
If det A = X\X2 < 0, the roots of the system are real numbers, of opposite signs,

and the steady state is a saddle point. As we saw in Section 2(e), in this case the
solutions of the system converge from some initial positions and diverge from
others.

For concreteness, suppose that Xx > 0 and Xa < 0, and consider the general solu-
tion of the system:

xf(r, c) = xt + CtenexpiXtt)+c2e21exp(A2r)

x\ (t, c) = x2 + Ciel2cxp{Xit) + c2e22exp(X2t)

It is clear that if ct # 0, the system's behavior will ultimately be dominated by its
positive root Xt > 0. As t —» ©°, lciexp(/li?)l —» <*>, and the system displays explosive
behavior, moving farther and farther from the steady state as time passes. On the
other hand, if we impose the boundary condition ct = 0, the system's behavior
is determined by its negative root alone, and it converges to the steady state x as

Note that in order to "kill off" the explosive root we have to assign a value of
zero to one of the arbitrary constants, cu while the other remains "free." We have
seen that assigning values to the two constants is equivalent to picking an initial
point for the system, and that assigning a value to only one of them is equivalent
to selecting a subspace of the phase plane. Hence, the system will converge to the
steady state if and only if it starts out from a point in some subset of the (JCI, x2)
plane characterized by the condition that the arbitrary constant associated with
the explosive root is equal to zero.

To see what the stable subspace looks like, set ct = 0 in the general solution to
get

Xl(t)-x1=c2e21exp(X2t)

x2 (t) -x2= c2e22exp(A2r) (28)

Using the second equation to eliminate c2exp(A2/) from the first one,

M;) -xJ =—[x2«-x2]
e22

=**,(*) = *+—[x2{t)-x2} (29)

which is the equation of the straight line labeled S in Figure 10.3. This line, known
as the saddle path, is the convergent subspace of the (xu x2) plane. If the system
does not start out from a point on 5, it will embark on an explosive path, as shown
in the figure.

Notice that the slope of the saddle path is determined by the eigenvector e
associated with the stable root X2 < 0. If we take the steady state as its origin, the
stable eigenvector points in the direction of the saddle path. The other eigenvec-
tor (associated with Xt > 0) also defines an interesting direction in the state plane,
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U
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Figure 10.3. Case (b): saddle point (Xt > 0, Xi < 0).

that of a divergent path, the "anti-saddle path" or unstable subspace, labeled U
in the figure. (Note that the two eigenvectors need not be orthogonal to each
other.)
Case (c). Complex roots: spiral points

Next, suppose that the discriminant A = tr2 - 4det is negative. Then the eigen-
values of the system are complex numbers, Xx = a + iji and %i = a - ifi, and, fol-
lowing the discussion in Section 2(b), the general solution can be written

where

xg (r, c) = x + du(t) + c2v(t)

= eat(dcosftt-f sinjit) and v(t) = eat(f cosjM + d sinfit)

(30)

When the characteristic roots of the system are complex, the steady state is said
to be a spiral point, because the circular functions sin /at and cos jit in the solu-
tion induce a spiral-like pattern in the orbits of the system. As nodes, spiral points
can be either stable or unstable. This can be determined by checking the sign of
the trace, which in this case reduces to

tr A = Xi + X2 -a + ijti + a-ijx - 2a

Hence, if tr A < 0, the eigenvalues have a negative real part a, and (30) describes
a family of spiral trajectories converging to the steady state x, if tr A > 0, then
a > 0, and the spirals diverge away from x
Case (d). Pure imaginary roots: centers

If tr A = 0 and det A > 0, the discriminant is negative, and the eigenvalues of
the system are pure imaginary numbers with a zero real part a. Hence, the scale
factor eat that multiplies the circular functions u(t) and v(£) in the general solu-
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Case c.l: stable spiral point (a < 0) Case c.l: unstable spiral point (a > 0)

x l

Case d: Center (a - 0)

Figure 10.4. Spiral points and centers.

tion (30) becomes a constant, and the trajectories of the system are closed curves
around a steady state that is called a center. This is the only case in which the con-
tinuous linear system (CS2), x = Ax + 6, has cyclical solutions. Note that a center
is stable, because nearby solutions remain nearby, but not asymptotically so,
because they do not converge to the steady state.
Summary

We have seen that the nature and stability of the steady state of the 2x2
autonomous linear system depend on the values of its characteristic roots, given
by

tr + Vtr2-4det
(24)
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Figure 10.5. Stability map for continuous linear systems in the plane.

By keeping in mind (24) and

tr A = Ai + As

det A = A1 A2

(21)

(22)

it is easy to determine the nature of the system's steady state and orbits just by
looking at the coefficient matrix. In particular, we have seen the following:

(i) If det A = AiA2 < 0, the eigenvalues of the system are real numbers of oppo-
site signs; hence, we have a saddle point.

(ii) If det A = XtX2 > 0, the roots are either complex numbers or real numbers of
the same sign. In this case there are two possibilities:

(a) If tr A = Ai + A2 < 0, the two eigenvalues are negative (if real) or have neg-
ative real parts; in either case the system is stable.

(b) If tr A = Ai + A2 > 0, both roots are positive or have positive real parts; in
both cases, the system is unstable.

(ii) Discrete Time

In the discrete-time case, stability is determined by the moduli of the eigen-
values of the coefficient matrix. When the characteristic roots of the system
are real, the question reduces to whether or not they fall inside the interval
(—1,1). A convenient way to determine when this is the case is based on the
following observation.
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tr

Eigenvalues are on
different sides of 1

p(-l) < 0

Figure 10.6.

Let Ai and Xz be the eigenvalues of A We can factor the characteristic
polynomial of the matrix and write it in the form

p(X) = (X-X1)(X-X2)

Suppose for the time being that both eigenvalues are real, and imagine that
we want to determine whether or not both of them fall on the same side of
a given constant a. Evaluating p( ) at a, we have

p(a) = (a-X1)(a-X2)

Clearly, p(a) > 0 if and only if the two factors on the right-hand side have
the same sign, that is, if Xx and A2 fall on the same side of a.

In our case, we are interested in determining whether or not the (real)
eigenvalues of A fall on the same sides of 1 and - 1 . Thus, we will draw the
lines p(l) = 0 and p(-l) = 0. Recalling that

= X2-(trA)X + det

we have

• det > tr - l (31)

Hence, the set of points in the (tr, det) plane that satisfies p{\) = 0 is a
straight line through the points (0, -1) and (1,0) that divides the plane into
two regions, as shown in Figure 10.6. In the region above the line, we have
p(l) > 0, indicating that both roots lie on the same side of 1, whereas the
opposite inequality holds in the region below the p(l) = 0 line, indicating
that the eigenvalues fall on opposite sides of 1 on the real line.
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tr
p(l) > 0, p(-l) < 0

Figure 10.7.

Similarly, we have

det > - 1 - tr (32)

The line p(-l) = 0 goes through the points (-1, 0) and (0, -1). In the region
above the line, we have p(-l) > 0, and both roots are on the same side of
- 1 . Combining the two graphs, the plane is divided into four regions, as
shown in Figure 10.7.

Next, we add to this graph the line

tr2-4det =

tr2

> det = —• (33)

As we know, points above the parabola described by (33) correspond to
systems with complex eigenvalues. It is easy to check that the line A = 0 is
tangent top(-l) = 0 at the point (-2,1) and top(l) = 0 at (2, l).The parabola
is therefore entirely contained in the "upper quadrant" of the plane, as par-
titioned by the two straight lines.

Figure 10.8 shows that the plane can be divided into eight regions by the
three reference lines described earlier and a horizontal line at det = 1. For
each of these regions, we can now determine the stability type of the steady
state.

First, we concentrate on the regions of the plane that correspond to real
eigenvalues (1, 2, 3, 4, 7, and 8). The steady state is a sink if both roots are
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A = 01
p(l)=0

roots,
p(l)>0, p(-l)>0
tr > 2, det > I

Real roots. rn
1 2 p(l)<0, p(-l)>0 V_y t r

Real roots

Figure 10.8.

in the interval (-1,1), a source if neither eigenvalue falls in this region, and
a saddle point if one root is within this interval and the other is not. Taking
each region in turn, we have the following:

Region 1: p(l) < 0 and p(-l) > 0. The
two eigenvalues fall on the same side
of -1 and on different sides of 1.
The only possibility is shown here:
There is one eigenvalue in (-1,1),
and the other is larger than 1. The
steady state is a saddle point.

Region 2: p(l) < 0 and p{-\) < 0. The
steady state is a source.

Region 3: p(l) > 0 and p(-l) < 0. The
steady state is a saddle point.

Region 4: p(l) > 0 and p(-l) > 0. The
two eigenvalues are on the same
sides of 1 and —1. Moreover, we
have det > 0, so both eigenvalues
have the same sign, and tr < -2, so
they are both negative. Hence, both
roots are smaller than -l.The steady
state is a source.

R

Ai /

- 1

A

- 1

I2

1

2

1

R

R

R
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p(-l)=O P(1)=O

Figure 10.9. Stability map for the discrete planar system.

Region 8: p(l) > 0 and /?(-!) > 0. Now
det > 0 and tr > 2, so the two roots
are positive and fall on the same
sides of both 1 and - 1 . Hence, they
must be larger than 1, and the steady
state is a source.

Region 7: p{\) > 0 and p{-\) > 0. Now
we have -2 < tr < 2 and -1 < det < 1.
Both eigenvalues must lie in (-1,1),
and we have a sink.

R

-1 R

In regions 5 and 6, the eigenvalues are complex numbers,

Xi = a+i/i and X2 = cc- ifi

Recalling that

it is easy to determine the stability of the system. In region 5, we have det
> 1, implying that I AJ = \Xa\ > 1. Hence, the steady state is a source, whereas
in region 6 the opposite inequality holds, indicating that we have a sink. Our
conclusions are summarized in Figure 10.9.
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3. Autonomous Nonlinear Systems

In this section we will study autonomous nonlinear systems of the form

x = f(x) (CS)

or

xt+1=g(xt) (DS)

where /, g: Rn 2 X —> Rn are C1 functions. Because explicit solutions for
nonlinear systems are, in general, not available, we will have to rely on more
indirect methods to analyze the behavior of such systems. We start by devel-
oping a graphical method that will allow us to obtain qualitative informa-
tion about the behavior of planar dynamical systems and present it in a
convenient and intuitive manner. We then show that a considerable amount
of information regarding the behavior of a nonlinear system near an equi-
librium can be obtained by studying its linearization, that is, the linear system
defined by the derivative of / ( ) or g() at the steady state.

(a) Phase Diagrams for Planar Systems

In Chapter 9 we introduced the phase diagram as a useful tool for studying
nonlinear systems in one dimension. In this section we will see that this tech-
nique can be extended to the case of dynamical systems in two variables.
The basic idea is the same in both cases: We project onto the state space the
graphs of the solutions of the system as a way to visualize their behavior. In
two dimensions, the result is a diagram showing the system's trajectories on
the plane.

Given a system of differential equations in the plane,

x = f(x,y) (1)

y = g(*,y) (2)

where / and g are C1 functions, the first step is to set x and y equal to zero
in (1) and (2) to obtain the equations of the phase lines:

jfc = 0 = * f ( x , y) = 0 (3)

y = 0=>g(x9y) = 0 (4)

Each of these equations describes a curve in the (x, y) plane.6

Consider these lines one at a time. The phase line x = 0 divides the (x, y)
plane into two regions. In one of them, we have x > 0, indicating that x
increases over time (xT), whereas in the other, i < 0, and x decreases over
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x > 0 => x(t) T

x<0=>x(t)4

y <0=>y(t)l

Figure 10.10. Phase lines and arrows of motion.

time. To determine which is which (if it is not obvious from inspection of the
equations), we can evaluate either of the derivatives7

dx = df(x, y)
dx dx

dx = df(x, y)
dy dy

at a convenient point in the x = 0 line (typically at the steady state). For
example, suppose that dx/dx > 0, as assumed in Figure 10.10. This tells us that,
starting from the x = 0 line, a small movement to the right will increase the
value of i, making it strictly positive. Hence, x > 0 in the region to the right
of the phase line. We indicate this in the graph through a horizontal "arrow
of motion" pointing to the right along the x axis.

Doing the same thing with the y = 0 phase line, we obtain the second panel
of Figure 10.10. The next step is to combine the two phase lines into a single
diagram. Intersections of the phase lines correspond to steady states of the
system (at such points, we have x = 0 and y = 0, so both variables remain con-
stant over time). The (x, y) plane is now divided into a number of regions
by the phase lines (four if they intersect only once). Combining the infor-
mation summarized by the two panels of Figure 10.10, we can draw, for each
region of the plane, a set of arrows of motion describing the direction of
motion of the system along each of the axes, as shown in Figure 10.11.

The pattern of the arrows of motion will give us valuable information
about the behavior of the system. In this case, for example, they suggest
the existence of a convergent saddle path through the upper and lower
quadrants. Arrows alone are not enough, however, to provide a complete
description of the trajectories of the system. We may, for example, find
configurations that are compatible with a closed cycle or a (convergent or
divergent) spiral path; hence, we may need further information to determine
the actual pattern of the solution trajectories.
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v = 0

Figure 10.11. Phase diagram.

For the case of discrete-time systems, the procedure is very similar. Given
a system of the form

xt+1 = f(xt ,yt) or Axt = xt+1 -xt= f(xt ,yt)-

yt+i = g(xt 9yt) or Ayt = yt+1 -yt= g(xt ,yt)-

(5)

(6)

we obtain the phase lines by setting Axt and Ayt equal to zero (i.e., by delet-
ing the time subscripts and setting xt+1 = xt = x):

Axr = 0 => x = f(x, y)

Ayt = 0 => y = g(x, y)

As in the continuous case, the Axt = 0 phase line divides the phase plane into
two regions. In one of them, Axt > 0, and x increases over time, whereas in
the other, Axt < 0, and x decreases. To determine the pattern of the arrows
of motion in each region, we differentiate (5) with respect to one of the vari-
ables and evaluate one of the derivatives

dAxt_ df(xt,yt)
dx dx

- 1 or
dAxt _ df(xt,yt)
dyt dyt

at a convenient point in the Axt = 0 line. We then proceed as discussed earlier.
Although phase diagrams can be extremely useful tools, they do not yield

sufficient information to analyze all aspects of interest in a system's behav-
ior, and they can be used to study systems in only one or two dimensions.
In the remainder of this section, we will review some results that yield more
precise (but only local) information about the behavior of nonlinear systems
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of any dimension. The basic idea is to approximate a nonlinear system in the
neighborhood of a steady state by the linear system defined by its deriva-
tive. As we will see, the local behaviors of the two systems are very similar
in most cases.

(b) Local Analysis by Linearization

Let/: R n 2 X —> Rn be a C1 function, and x° a point in its domain. As we
saw in Chapter 4, we can write

{x-x°) (7)

and the differentiability of / implies that the error term Ef(x - x°) will be
small for x close to x°, in the sense that

| j m f e ( x - ^ | = 0
*-M° \\X-X ||

With this in mind, consider a nonlinear autonomous system of the form

* = /(*) (NC)

or

xt+i=g(xt) (ND)

where / , g : R n 2 I —> Rn are C1 functions, and let x be a steady state of
(N). Then the linear system8

x = Df(x)(x-x) ( L C )

or

xt+1 = x + Dg{x ){xt -x) (LD)

can be expected to be a reasonable approximation to (N) around the equi-
librium point x, for the only difference between the two systems is the error
term Ef(x - x). Because expression (8) guarantees that this term will be small
in the neighborhood of x, we can expect it to have little influence on the
behavior of the system. For a large class of systems this is indeed the case,
and as a result we can obtain a fair amount of information about the behav-
ior of the nonlinear system (N) near an equilibrium by studying its lin-
earization (i.e., the linear system defined by the derivative of / o r g at the
steady state).

To make this result more precise, we need to introduce some additional
concepts. Two systems are topologically equivalent if they have similar orbit
structures. More formally, two systems are topologically equivalent if their
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solution trajectories are the same after a continuous "change of
coordinates."

Definition 3.1. Topological or flow equivalence. Given two dynamical
systems / and g, we say that they are topologically equivalent if there exists
a homeomorphism h (a continuous change of coordinates) that maps/orbits
into g orbits while preserving the sense of direction in time.

The concept of flow equivalence allows us to make precise the idea that
two systems behave "very similarly." The central result of this section says
that most nonlinear systems are topologically equivalent to their lineariza-
tions near an equilibrium point. There are, however, some exceptions. Equi-
libria for which linearization is guaranteed to work well are said to be
hyperbolic.

Definition 3.2. Hyperbolic equilibrium. Let x be a steady state of the non-
linear system (N), x=f(x) [or xt+1 = g(xt)]. We say that x is a hyperbolic equi-
librium if the derivative of / evaluated at %, Df(x), has no eigenvalues with
zero real parts [Dg(x) has no eigenvalues with moduli equal to 1].

Theorem 3.3. Grobman-Hartman. Let x be a hyperbolic equilibrium of
(NC), x= f(x). Then there is a neighborhood Uo/x such that (NC) is topo-
logically equivalent to the linear system

x = m(x)(x-x) (LC)

in U. Similarly, given the discrete system (ND), xt+1 = g(xt), ifx is hyperbolic
and Dg(x) is invertible, then there is a neighborhood Uo/x such that (ND)
is topologically equivalent to the linear system

xt+1 = x+Dg fx /xt - x) (LD)

Hence, linearization works well around hyperbolic equilibria.9 In the dis-
crete case, we require g( ) to be locally invertible, so that the negative orbit
is defined.

Our next two results provide more precise information about the behavior
of the nonlinear system. The first theorem tells us that around hyperbolic
equilibria, the stability type of the equilibrium is the same for the nonlinear
system and for its linearization. The second one says that if the linearized
system has a saddle point, so does the nonlinear system. Moreover, the
nonlinear system has a saddle path of the same dimension as and tangent
to the stable space of the linearized system at the steady state.

Theorem 3.4. Local stability for nonlinear systems. Consider the system
(NC), x= f(x), where f : R n 2 X —> Ra is a C1 function, and let x be an equi-
librium point of (NC). Then we have the following:
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• If all eigenvalues o/ Df (x) have strictly negative real parts, then x is asymptotically
stable.

• // at least one eigenvalue of Df(x) has a positive real part, then x is (locally)
unstable.

• / / at least one eigenvalue of Df (x) has a zero real part, and all other eigenvalues
have negative real parts, then the equilibrium xmay be stable, asymptotically stable,
or unstable.

Similarly, let x be a steady state of the discrete system (ND), xt+1 = g(xt).
Then we have the following:

• If all eigenvalues o/Dgfx) have moduli strictly less than 1, x is asymptotically stable
(a sink).

• If at least one eigenvalue has modulus greater than 1, then x is unstable (a source).
• If the eigenvalues of the Jacobian are all inside the unit circle, but at least one is

on the boundary (has modulus 1), then x may be stable, asymptotically stable, or
unstable.

Theorem 3.5. Stable manifold. Let x be a steady state of the system (NC),
x= f(x) [or (ND), xt+1 = g(xt)J, where f, g; KD —> RB is a C1 function.
Suppose the matrix Dffx) [T)g(x)] has k eigenvalues with negative real parts
[inside the unit circle in the complex plane] and n - k eigenvalues with
positive real parts [outside the unit circle]. Then there exists a k-dimensional
differentiable manifold S, tangent to the stable space of the linearization of
(NC) [(ND)] at % that is invariant under the flow of the system and such that
for any x° in S, the solution through x° converges to the steady state, that is,

limxft, x°)=x

Similarly, there is an (n - k)-dimensional differentiable manifold U, tangent
to the unstable space of the linearized system at x, that is invariant under the
flow of (N). For any point y° in U, moreover,

The proofs of these results would take us too far afield. The interested
reader can consult Perko (1991, ch. 2) and Ruelle (1989) and the references
cited therein.

4 Problems

Problem 4.1. Polar coordinates. When working with planar systems it is
sometimes convenient to work in polar coordinates. Consider a point with
Cartesian (ordinary) coordinates (x, y). Its polar coordinates are (r, 0),
where r is the Euclidean distance from the origin to the point (x, y), and d
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is the angle formed by the line segment going from the origin to the point
(JC, y) and the horizontal axis. Hence, r and 6 are defined by

r2 = x2 + y2 (1)

0 = arctan(y/x) (2)

and 9 is such that

cos6 = x/r and sind = y/r (3)

Differentiating (1) and (2) implicitly with respect to time, show that

rf = xx + yy (4)

r2d = xy- yx (5)

Hint: Recall that if y = arctan w, then / = w7(l + u2).
To rewrite a system of the form

* = fix, y)> y = §(x> y) (6)

in polar coordinates, we substitute (6) into (4) and (5) and see whether or
not the resulting expressions can be written entirely in terms of r and 6. If
this can be done, and the resulting system can be solved explicitly, the solu-
tion functions for the original system, x(t) and y(t), can be recovered using
the following relation, derived from (3):

x = r cos 0 and y = r sin 0 (7)

Problem 4.2. Let A be a 2 x 2 real matrix with complex eigenvalues Xu

Aa = a±iji and corresponding complex eigenvectors eu e2 = u ± iv. It can be
shown that the real vectors u and v are linearly independent, so the matrix
P - [Uj v] is invertible.

(i) Show that

a -
P~1AP = R= (8)

a J
Equation (8) shows that if A has complex eigenvalues, then the planar system
z=Az can be written (after a coordinate change) in the form

In
or, equivalently,

(9)
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y=Hx-ay (10)

(Think of using P, rather than the eigenvector matrix E, to "diagonalize"
A. The resulting matrix is not diagonal, but, as we will soon see, is quite
convenient.)

(ii) Rewrite the system (9)-(10) in polar coordinates and solve it, leaving the solu-
tion (r(t), 0(t)) as a function of the initial values r(0) and 0(0).

(iii) Using the trigonometric identities

sin(a + 6) = (sina)(cosb) + (cosa)(sinb) (11)

cos(a + b) = (cos fl)(cos b) - (sin a){sm b) (12)

recover the solution (x(t), y(t)) of the original system, written as a function of
the initial values x(0) and y(0).

Problem 4.3. Consider the following system of differential equations:

x = f(x,y) = y + x{c-x2-y2) (17)

y = g(x,y) = -x + y{c-x2-y2) (18)

(i) Show that the point (0, 0) is the only steady state of the system for any value
of c.

(ii) Linearize the system around the steady state and compute its eigenvalues. What
can we say about the stability and type of the steady state? (There are three
possible cases, depending on the value of c.)

(iii) Show that the original system can be written in polar coordinates as

r = r(c-r2) (19)

6=-l (20)

Using these expressions, describe the behavior of the system, and compare the
results with those obtained in (ii). Linearization should give accurate local
results in two cases, but we can now "see" more things. What happens in the
third case?
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Notes
1 Note that each solution xl(t) is a vector-valued function.
2 By Euler's formula: el6= cos 6+i sin 6. See Section 7 of Chapter 1.
3 That is, provided det A&0. Because the determinant is equal to the product of the

eigenvalues, what we need is that A have no zero roots.
4 We can also transform the given systems into equivalent homogeneous ones, simply by

rewriting them in deviations from the steady state. That was what we did in our
discussion of scalar systems in Chapter 9.

5 The characteristic roots of the matrix B = A - 1 are the solutions of the system
det(£ - XI) = dQt[A - (A + 1)1] = 0, and those of A solve det(A - XI) = 0. Hence, the
characteristic values of the two matrices satisfy the relation XB + 1 = XA. For B to be
invertible (thus guaranteeing the existence of a unique steady state), we need its
determinant to be different from zero, or, equivalently, its eigenvalues all to be different
from zero. But XB * 0 is equivalent to XA ^ 1; hence the assumptions of the theorem.

6 If equation (3) or (4) cannot be solved explicitly, we can use the implicit-function
theorem to determine the slopes of the curves they define.

7 Either one will do, as long as we are careful with how we interpret the sign of the
derivative. Essentially, what we are doing is checking the sign of x at an arbitrary point
in one of the subplanes into which the phase line divides the plane. All the points in a
given subplane should yield the same sign for x; but note that "below" and "to the right"
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of an upward-sloping line are one and the same thing, so in the preceding graph it does
not matter whether we check at A (dxldx) or at B (dxldy).
It may be easy to remember that dxjdxi > 0 implies that the arrow of motion for xt points
away from the corresponding (xt = 0) phase line. An increase in XT makes xt positive, and
hence causes xt to increase even more.

8 To get (L) from (7), notice that f(x) = 0 and g(x) = xby definition of steady state.
9 It can be shown that "most" equilibria are hyperbolic. Intuitively, nonhyperbolicity is a

fragile property, for the following reason. Note that the real parts of the eigenvalues of
Df(x) are continuous functions of the entries of the Jacobian matrix. If a given
eigenvalue has a zero real part, any small change in the values of these entries will make
it nonzero, turning the equilibrium into a hyperbolic steady state.
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11
Dynamical Systems. Ill: Some Applications

This chapter discusses some examples of dynamic economic models in order
to illustrate the use in economic theory of some of the techniques and results
discussed earlier.

We will first study in detail the dynamics of an IS-LM model with adap-
tive expectations and sticky prices. This exercise will illustrate the construc-
tion of phase diagrams and the use of a system's eigenvalues to determine
its stability properties. We will then turn to a simple perfect-foresight model
that illustrates how the choice of boundary conditions embodies important
economic assumptions. A similar issue arises in regard to Dornbusch's cel-
ebrated overshooting model, which will be discussed next. The last part of
the chapter contains an introduction to neoclassical growth theory and a dis-
cussion of some techniques that are useful in dealing with nonlinear systems.

1. A Dynamic IS-LM Model

Introductory texts in macroeconomics often rely on Keynesian-style static
IS-LM models like the one we analyzed in Chapter 5 (Problem 4.1). A simple
version of this model can be written as follows:

y = py~yr (IS) (1)

m = Ky - a{r + Ke) (LM) (2)

where the Greek letters are positive parameters, y is the log of real output,
r is the real interest rate, ne is the expected rate of inflation, and m = ln(M/P)
is the logarithm of real money balances, that is, the nominal money supply
(M) divided by the price level (P). Equation (1), often called the IS sched-
ule, can be interpreted as an equilibrium condition for the goods market. It
says that the demand for output, which is an increasing function of income
and a decreasing function of the interest rate, should be equal to the supply
of output. Equation (2), the LM schedule, is an equilibrium condition for the
money market. It requires that the demand for real balances, which is

494
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A Dynamic IS-LM Model 495

increasing in income and decreasing in the nominal interest rate (r + ne), be
equal to the real money supply.

If we take the real money supply and the expected rate of inflation as
given, equations (1) and (2) can be solved for the equilibrium values of
income and the interest rate (y* and r*) as functions of m and Ke. It is easy
to check that

m + ane a(l-B) . ,_,.
h —— >0 (3)

y

whered = a + ̂ ->0 (4)
1-p

r r ( m , K ) t \ whered a +
a 1-p

To turn the preceding model into a dynamic model, we make some simple
assumptions about the evolution of the money supply, the formation of
expectations, and price dynamics. First, we assume that the nominal money
supply M grows over time at a constant rate /u. Hence:

Second, we assume that actual inflation at each point in time {n= PIP) is a
function of expected inflation and the difference between current output and
a "natural" rate of output y. Hence, if demand is very high, and that pushes
the economy to operate at more than normal capacity, prices will rise faster
than expected, as described by the following Phillips relation'}

y) (6)

Finally, we assume that expectations are adaptive, with inflation forecasts
updated each period by a fraction of the current forecast error:

ke=8{K-ne) (7)

To analyze the dynamics of the model, we reduce the preceding equations
to a system of differential equations in m and ne. To obtain the law of motion
describing expected inflation, we substitute (6) into (7) and use (3) to get

n e = S 6 [ y ( m , n e ) - y ] = 8 6 \ y = n e + — m - 8 6 y ( L . K e )
V c ) c c

To get the second equation that we need, notice that by definition
m = ln(M/F) = In M - In P. Differentiating this expression with respect to
time, we have

. M P
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Substituting (6) into this last expression, and using (3), we obtain

= y.-n + 6y-6 = - 1 + — \ne - -
c V c ) c

(L.m)

Hence, the model reduces to a system of two linear and autonomous dif-
ferential equations.2 We will construct its phase diagram and compute the
eigenvalues of the coefficient matrix to check the stability of the steady state.

In what follows, we treat ne and P (and therefore m = MIP) as predeter-
mined variables. That is, we assume that the time paths of actual prices and
expected inflation are continuous and therefore do not display sudden
jumps. Economically, we are saying that both prices and expectations
respond with some sluggishness to changing circumstances. This assumption,
common in old-fashioned Keynesian-type models, is not necessarily the most
reasonable one that can be made. In later sections we will study other models
in which prices are allowed to adjust instantaneously, even if this involves a
discrete jump in their level.

(a) Phase Diagram and Stability Analysis

The evolution of our model economy is described by a first-order system of
differential equations:

J\ 86a . 86

m = ii-ne +6\ y = - 1 + — \ne - m + ju + Oy (L.m)
V c ) V c J c

As a first step in our analysis of this system we compute its steady state
and construct its phase diagram. Setting if - 0 and m = 0 in the laws of
motion describing expected inflation and the real money supply, we obtain
the equations of the phase lines:

ne = 0 => = y => m = cy - an 6

_ m + 0C7f\ ,_ .
y (P.m)

c J
This system of equations can be solved for the steady-state values of m

and ne. Using (F.ne) in (P.m), we see that

W=ii (8)
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Figure 11.1. The ke = 0 phase line.

Next, substituting (8) into (P./re),

m=cy-a/J, (9)

Given m and n\ we can use (3) and (4) to solve for the steady-state values
of output and the interest rate:

fh + ane

y*(m,W) = - cy
_

r(m9K
e) = -

d d
We can think of the steady state as a long-run equilibrium position. In

such an equilibrium, both anticipated inflation and actual inflation (see
equation (7)) are equal to the rate of money creation //, and because there
are no inflationary surprises, output is at its natural rate. The equilibrium
money supply is positively related to (the natural rate of) output and nega-
tively related to \i - because monetary growth induces inflation, which
lowers the demand for real balances.

Turning now to the dynamics of the model, the next step is to plot each
of the phase lines with the corresponding arrows of motion. From

m = cy-ane (P./re)

we see that the if = 0 phase line defines a downward-sloping function in the
{n\ m) plane, as shown in Figure 11.1. This line divides the plane into two
regions: one in which if > 0 (i.e., expected inflation increases over time), and
a second one in which the reverse is true. To determine which is which, con-
sider the following experiment: Imagine that, starting out from a point in the
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Figure 11.2. The m = 0 phase line.

if = 0 phase line (say the steady state), we increase the value of m slightly
and see what happens to the value of if. More formally, we use (L.ne) to
compute the derivative of if with respect to m, and (if this derivative is not
a constant) we evaluate it at the starting point:

dm
= 58/c>0

Because the derivative is positive and the initial value of if was zero, we
conclude that moving "north" of the phase line puts us in the region in which
if > 0. Hence, ne increases over time in the region above the phase line, and
the corresponding arrows of motion along the ne axis point to the right.3

For the m = 0 phase line we proceed in similar fashion (Figure 11.2).
Solving for m as a function of ne in (P.m), we see that the phase line is
downward-sloping:

m=C-( (10)

Differentiating (L.m), we see that the partial derivative of m with respect
to m,

dm

is negative. Thus, m decreases (from an initial value of zero at the steady
state) and becomes negative as we move into the region above the phase
line. Hence, m decreases over time in this area of the phase plane, and
we indicate this fact with an arrow of motion pointing down along the m
axis.
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m = 0

Figure 11.3. Phase diagram.

Combining the two phase lines and the corresponding arrows of motion,
we can now construct the phase diagram. Because both lines are downward-
sloping, the first step is to determine which is steeper. Using (P.m) and (10),
we see that

dm\
= a< (c/d) + a = dm\

so the phase line (P.m), m = 0, is steeper, as shown in Figure 11.3. Notice
that the pattern of arrows of motion is compatible with (convergent or diver-
gent) spiral trajectories or with a saddle path, depending on the values of
the parameters. To be more precise, we have to look at the eigenvalues of
the system.

To determine the local stability properties of the steady state, we compute
the eigenvalues of the coefficient matrix of the system,

A =
-e- -fu«»

c V c

L C C

As we saw in Chapter 3 (Section 6), the characteristic roots of A are given
by

A ] , X 2 —
tr ± Vtr2 - 4det
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where

. . . 9 aS6 6
tr A = Xt+X2 =—+ = -

c c c

, . , , 6a86 (. 6a\86 aS02 86 aSO2 86
det A = XlX1 = + 1 + — — = 7 - + — + —IT- = —2 = — > 0

J c c" c c c
Hence, the determinant of the coefficient matrix is positive, and the trace
may be either positive or negative depending on parameter values. Similarly,
the discriminant A = tr2 - 4det may be either positive or negative, and as a
result the eigenvalues of the system may be either real numbers or complex
numbers.

Suppose first that the eigenvalues are real numbers (i.e., that A > 0). In
that case the positive sign of the determinant (which, as we know, is equal
to the product of the eigenvalues) implies that Xx and Xi have the same sign.
The stability of the system then depends on the sign of the trace (whose
value is equal to the sum of the eigenvalues). In particular, the steady state
will be stable if

tr A - Xi + X2 < 0 <=> 8 < l/a

as both eigenvalues will then be negative real numbers.4

If the discriminant is negative, on the other hand, the eigenvalues of the
system will be complex conjugates of the form X1 = a + ib and X2 = a - ib.
Hence,

tr = Xi + X2 = 2a

so the sign of the real parts of the eigenvalues is the same as the sign of the
trace. If 8< I/a, the trace and therefore the real parts of the eigenvalues are
negative, and the system is stable.

Hence, the stability condition is the same in both cases and depends cru-
cially on the size of the expectations adjustment parameter <5. This parameter
tells us how quickly expectations are revised in response to forecast errors.
If 8 is small, there is an element of sluggishness built into the model. Infla-
tionary expectations take a while to catch up with actual inflation. They do
eventually catch up, however, and equilibrium is restored, but this may take
some time. Thus, with low 8, the model is stable and slow to adjust. If, on the
other hand, 8 is "too large," the model becomes unstable, because price
expectations "overreact," and because expected inflation becomes a com-
ponent of actual inflation, there is no way to restore equilibrium.

In the remainder of this section we will assume that parameter values are
such that the eigenvalues are both real and negative. This gives us a "well-
behaved system" that converges asymptotically to the steady state without
cyclical oscillations.
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(b) Effects of Monetary Policy

We can now use the phase diagram and the stability assumption we have
just made to analyze the response of the system to a change in the value of
one of its parameters. In particular, we focus on the effect of a once-and-for-
all change in the rate of money creation ji.

Assume that we are initially at the steady state So that corresponds to a
constant rate of monetary growth fa. Next, imagine that the government
increases the rate of growth of the nominal money supply from fa to fa and
promises never to change it again, and people believe it. What happens?

Because we have assumed the system is stable, it will converge asymp-
totically to a new steady state S\ that corresponds to the new value of fa
There are two different questions to consider: First, we have to see what
happens to the steady state when the parameter changes. This is an exercise
in comparative statics. Second, we would like to determine the path the
system follows from its initial position (the steady state associated with fa)
to the new long-run equilibrium.

Let us start with the long-run effects of the proposed policy change. Recall
that the steady state of the system lies at the intersection of the phase lines

V)
m = cy - ane

Inspection of these equations shows that an increase in fi shifts the m = 0
phase line upward, but has no effect on the ff = 0 locus. The new steady
state Si will therefore lie to the southeast of the old one, as illustrated in
Figure 11.4. Hence, the long-run effect of an increase in the rate of money
growth is to increase expected inflation and reduce real money holdings.

Recalling equation (8), W = FA we see that an increase in the rate of mon-
etary growth leads in the long run to a proportional increase in the rate of
expected (and actual) inflation and to a reduction in the stock of real bal-
ances. We also know that

y*(m, ne) = y and r*(m, He) = -(c/d)y

so steady-state output and real interest rates are independent of monetary
policy. Hence, monetary policy is neutral in the long run, because it has no
effect on output5 or interest rates. Its only effect is a proportional increase
in the rate of inflation that reduces the demand for real balances.

In the short run, however, a change in the rate of money creation will have
real effects. Figure 11.5 describes the transition to the new long-run equi-
librium. At time zero, the system is at point 50. This point is the steady state
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m = 0

Figure 11.4. Long-run effect of an increase in the rate of money creation.

m = 0

Figure 11.5. Adjustment to an increase in the rate of money creation.

corresponding to fa, but it is no longer a steady state when the increase in
the rate of money creation shifts the m = 0 phase line to the right. Under
the new policy, the arrows of motion of the system point to the northeast at
So. Hence, money balances and expected inflation increase along the first
part of the adjustment trajectory, labeled (1) in Figure 11.5. Eventually,
however, the system enters into a different quadrant in which the arrows of
motion point to the southeast, the segment of the system's trajectory labeled
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(2). During this second stage of the adjustment process, expected inflation
continues to increase, but real money holdings now decrease, eventually
falling below their initial value.

Given the trajectories of ne and m, we can derive the time paths of output
and the real interest rate. We have seen that

y*(m, n ) - and r*(m,n ) = —
c a

where c and d are positive numbers. In part (1) of the adjustment trajectory,
both m and ne are increasing, so y* is rising, and r* is falling. This is the stan-
dard Keynesian result concerning the expansionary effects of a loosening of
monetary policy. These responses, however, are reversed later, with both
income and the real interest rate returning to their original levels in the new
steady state Si.

2. An Introduction to Perfect-Foresight Models

In Chapters 9 and 10 we warned the reader that the selection of appropri-
ate boundary conditions often is not as straightforward in economic models
as in the case of physical systems. In this section we study two examples that
will serve to illustrate this point and to introduce the reader to the logic of
perfect-foresight models. The first is a simple model of stock prices based on
the no-arbitrage principle, and the second is a model of exchange-rate deter-
mination. In both cases we seek the equilibrium path of some asset price.
Because this variable is not tied down by previous history, we have to rely
on economic considerations to determine which of the infinitely many solu-
tions of a certain dynamical system should be considered the equilibrium
trajectory.

(a) A Model of Stock Prices

Suppose investors in financial markets have a choice between two assets:
government bonds, which pay a fixed interest rate r, and shares of stock,
which pay a constant stream of dividends d. We take r and d as given and
develop a model of the evolution of share prices (v).

To derive the asset-pricing equation, we start out from the postulate that
no obvious profit opportunities should remain unexploited in equilibrium.
The instantaneous return earned by an agent who invests v dollars in bonds
is rv. Alternatively, if he buys a share of stock, his expected return is the
sum of the dividend d and the expected increase in the value of the share
ve = dveldt. In equilibrium, the expected returns on the two assets must be
the same, yielding the condition

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:32:10 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.012

Cambridge Books Online © Cambridge University Press, 2013



504 /// ; Some Applications

rv = d + ve (1)

If this condition did not hold, we could not be in equilibrium, because no
investor would want to hold the asset with the lower return. Prices would
have to adjust until somebody was willing to hold all existing assets.

It remains to specify how expectations are formed. We will consider two
possibilities. The first is that agents have adaptive expectations, formed in
accordance with the equation

ve=a(v-ve) (2)

That is, if the actual price of the share v exceeds its expected price ve, agents
revise their expectations upward. The size of the correction depends on the
"forecast error" and on the value of the parameter a, which can be inter-
preted as a measure of the speed of learning. To ensure that the model
behaves sensibly, we assume that 0 < a < r. The second possibility is that
agents have perfect foresight (i.e., that they forecast share prices correctly).
In this case, ve(t) = v(t) for all t (and hence ve = v).

In what follows, we refer to the present value of the stream of dividends,

as the fundamental value of the stock.

(i) Adaptive Expectations

In this section we will assume that expectations are adaptive. Under this
assumption, the evolutions of actual and expected share prices are described
by equations (1) and (2). To solve the model, we start by finding the time
path of expected share prices. Solving for v in (1),

v = ^ + A (3)
r r

and substituting this expression in (2), we obtain a differential equation in
Ve-

(d ve\ . (^ a\ ad
ve =av-ave =a\ — H— \-ccve => vJ 1 — \--ave H

\r r J \ r J r
ad ar ,..

=» ve - -yve -\ , where y = (4)
r-a r-a

Setting ve = 0 in (4), we can solve for the steady-state value of ve:
ar ad

r-a r-a
(5)

r
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The solution of (4) is then given by

ve(0 = v* + [v,(0)-v*>-* (5)

Under the assumption that a < r, we have y> 0, and the system is stable. Any
initial discrepancy between the expected share price and its fundamental
value decreases over time and disappears asymptotically. In the long run,
the expected price of a share of stock is equal to the present value of its
dividends.

Next, we solve for the time path of v. Substituting

ve=a(v-ve) (2)

in (3), we have

= V*+ - ( v - V,,)=» V 1 = V * V

r V 1 = Vr
Ve

Substituting equation (5) into this expression and solving for v, we obtain,
after some algebra,

v(r) = v * — — M O ) - v * ] e - v (6)
r-a

Under our assumptions, e~n -» 0 as t_ —» <». Hence, asymptotically, the market
price of the stock also converges to its fundamental value v*.

The long-run predictions of the model are both intuitive and reasonable:
In the steady state, the market price of the share is equal to the discounted
value of its dividend stream, and expectations are correct ( v = v = v*). This
is no longer the case in the short run, as we will soon see. During the tran-
sition to the steady state, actual and expected prices need not be equal, and
both can deviate from the stock's fundamental value. Comparing (5) and
(6), we see, moreover, that v{i) and v{i) lie on opposite sides of v* and must
be moving in opposite directions (Figure 11.6). That is, when actual prices
are "too high" relative to the fundamental value, the expected price is below
v*, and when share prices are rising, expected share prices are falling.

Another disturbing feature of the model is that the forecast error is pre-
dictable. Combining (5) and (6), we can solve explicitly for the time path of
the forecast error,

ve(t) - v(t) = (v* + [ve (0) - v*]e~rt) - f v* - -^—[ve (0) - v*]e~rt

-[ve(0)-v*]e-'" (7)
r-a

Setting t= 0 in equation (7),

v,(0)-v(0) = —[ve(0)-v*]
r-a
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v(t)

v ( t )

Figure 11.6. Time paths of actual and expected stock prices with adaptive
expectations.

we obtain a relation between the actual and expected prices of the stock at
time zero:

r (8)

Notice that equations (1) and (2) describe the time paths of v and ve, but
do not tie down their initial values. For both equations to hold simultane-
ously, these initial values must satisfy condition (8), but what does this mean?
If we take the initial expected price as given, then (8) gives the equilibrium
price of the stock at time zero. Alternatively, if we take v(0) as given, we can
solve (8) for ve(0), but it is hard to see why agents would choose to make
just such a forecast. In any event, if initial expected prices are correct
(ve(0) = v(0)), then both actual and expected prices must be equal to the fun-
damental value of the stock v*; but if the expected price at time zero is dif-
ferent from v*, the initial equilibrium price must be on the opposite side of
v*, and the forecast error disappears only gradually.

Perhaps the most unsatisfactory implication of the model we have just
developed is that (except when ve(0) = v(0) = v*) agents commit, each
period, a perfectly predictable forecast error that costs them money. As a
result, an agent who knows the structure of the model will have an incen-
tive to deviate from the predicted behavior, thereby invalidating the theory.
For example, if you know that expected prices tomorrow will be below
market prices, you can write a contract today offering to buy tomorrow at
the expected price. If expectations are formed as we have assumed, some-
body will be willing to buy such a contract - but when tomorrow comes you
will immediately be able to resell the stock at a profit. Hence, the predictable
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discrepancy between actual and expected prices involves an opportunity for
quick profits. Agents would have an incentive to compute the actual trajec-
tory of prices, but the model assumes that they do not do so (i.e., that they
form expectations according to (2)).

This is hard to reconcile with the hypothesis that individuals are rational
and maximize utility or wealth. In the context of a model as simple as the
present one, without uncertainty or asymmetric information, the easiest way
to model the idea that individuals are rational is to assume that they know
the model and all the relevant data, such as the time path of dividends. But
then each agent could compute the solution, just as we have done, and
it makes little sense to assume that forecast errors would be eliminated
only gradually when it would be possible (and profitable) to avoid them
completely.

(ii) Perfect Foresight

In conclusion, in a world without uncertainty, adaptive expectations are not
consistent with the assumption of rationality. The theory works only as long
as agents do not understand what is happening. To avoid this problem,
we will postulate that agents form expectations that are consistent with the
structure of the model. In particular, we assume that the agents know the
model and use it, along with all the relevant information they have, to predict
the evolution of share prices. Because there is no stochastic element in the
model, the time path of prices will be correctly anticipated. Hence, we
replace equation (2) with the assumption of perfect foresight:

ve(r) = v(r)Vr (9)

Let us see where this assumption takes us. Given (9), ve= v for all t, and
the equation describing the time path of asset prices becomes

rv = d + v
=>v = rv-d (10)

Like equation (4), equation (10) has a unique stationary solution,

v* = d/r

in which share prices reflect the discounted value of the dividend stream.
The dynamics of the two systems are, however, very different. In particular,
whereas (4) is stable, the stationary state of (10) is unstable, because r > 0.
The general solution of (10) is given by

v* (f, c) = v* + cen = v* + [v(0)» v*]ert (11)

where we emphasize that assigning a value to the arbitrary constant c is
equivalent to choosing an initial value for the share price.
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At first sight, this does not look very promising. Because the "bubble
term" cert goes to plus or minus infinity as t —» °°, equation (11) predicts that
share prices will explode, except in the case in which v(0) = v*. If we take
the initial value of v as given, then the model predicts an unreasonable-
looking path of share prices, except by chance. This difficulty, common in
asset-pricing models, almost led to the abandonment of perfect-foresight
models. However, researchers like Sargent and Wallace (1973) and Calvo
(1977) soon realized that taking initial asset prices as given was not always
the most reasonable alternative. Because asset prices are free to move, and
even "jump" at each point in time, at least half the problem is determining
their initial value.

In more general terms, the important point is that it is not always legiti-
mate from the point of view of economic theory to take the initial value of
a variable as a parameter fixed by previous history. The choice of an appro-
priate boundary condition often requires a little thought about the eco-
nomics of the problem. What equation (10) says is that the solution of the
model must be one of the family of functions described by vg(t, c). The eco-
nomic problem is that of determining which of these trajectories corre-
sponds to an equilibrium. The answer then determines the appropriate
boundary condition and therefore the initial value of v.

For the sake of the argument, let us take an arbitrary value of v(0) as
given. The instability of the system implies that if the initial price is incor-
rect (in the sense of not reflecting the fundamental value of the asset), then
things can only get worse. To see why, let us return to (10) and rewrite it in
the form

= r or v = rv - d = r(v - v*) (12)
v

Suppose that v(0) > v* (i.e., that share prices are higher than what would be
reasonable in terms of the present value of the underlying dividend flow).
Then, in order for (12) to hold, the price of the share must be increasing at
a rate such that the capital gains are just enough to make up for a dividend
that is low relative to the price. Today's price increase, on the other hand,
makes tomorrow's price even less reasonable, and therefore requires an
even higher rate of appreciation in the future.

It is not clear what mechanism would make tomorrow's share prices rise
by enough to justify, ex post, today's unreasonably high price. In fact, the
only sensible way to interpret such an explosive path of share prices is
as a "bubble" in which unreasonable expectations become self-fulfilling.
Although such phenomena are not unknown, it may be reasonable to rule
out such behavior under "normal" circumstances. This leaves us with only
the constant solution (c = 0) given by the fundamental value of the asset, in
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which share prices accurately reflect the present value of dividends. In equi-
librium, the value of the share, v, jumps immediately to v* and remains con-
stant forever - unless the system is disturbed in some way.

It is worth noting that the assumption of perfect foresight eliminates the
inconsistency we found in the adaptive expectations model. An individual
who knows the structure of the economy and knows that all other agents
use an adaptive forecasting rule has every incentive to deviate from the pre-
dicted behavior (i.e., to forecast prices correctly, and get rich along the way).
But because the same is true of each and every agent, the model cannot be
correct. With perfect foresight, by contrast, everybody uses the correct model
to predict prices, and nobody has an incentive to behave differently.
Although the ability to predict prices exactly does not generate extraordi-
nary returns, any other alternative will lose money, on average.

Next, we will see how the model can be used to analyze the response of
share prices to a change in the tax rate on dividends. The exercise will also
serve to check the "reasonableness" of the model.

Assume that dividends are taxed at a flat rate Tthat remains constant over
time. Then equation (10) becomes

v = rv-(l-T)d (13)

where (1 - x)d is the net-of-tax dividend. The general solution of this equa-
tion is given by

v8 (t, c; r) = V*(R) + cert = V*(R) + [v(0) - v* (T)]ERT

where the stationary solution

*, ^ ( 1 - T W
V*(R) = ~ —

now reflects the present value of after-tax dividends.
The policy change we will analyze involves an increase in the tax rate from

TO to some higher value TX. TO start, let us suppose that the tax increase is
unexpected and that the agents believe that the new rate will remain in effect
forever. As shown in Figure 11.7, the change in the tax parameter shifts the
phase line upward, yielding a new stationary solution

If we rule out explosive paths, the value of v jumps down immediately after
the policy change to its new fundamental value V*(TI). The model predicts,
reasonably enough, that a tax increase will result in an immediate drop in
prices equal to the reduction in the present value of the after-tax dividend
stream.

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:32:10 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.012

Cambridge Books Online © Cambridge University Press, 2013



510 ///: Some Applications

Figure 11.7. Response of stock prices to an unanticipated increase in dividend taxes.

Next, imagine that today (at time zero) the government announces (and
everybody believes it) that the tax rate will be raised to Ti at some time T
in the future and will remain constant thereafter. To determine the equilib-
rium path of the system following the announcement, we work backward in
time. If we rule out explosive paths, at time T the system must be at the new
fundamental solution v*(ii). For t < T, the initial tax rate (R0) still applies,
and the system must therefore obey the "old" law of motion:

v = rv - (l - ro )d (14)

Hence, the equilibrium path of the system during the transition period
[0, 7) must be one of the family of functions described by the general solu-
tion of the "old" system:

The equilibrium solution is the one that puts us at the new fundamental price
v*(Ti) precisely at the time T at which the policy change takes effect. For-
mally, the appropriate boundary condition is

v(T; To) = v*(Ti) => V*(TQ ) + [v(0) - V*(T0 )]erT = V*(T, )

Notice that the only unknown in this expression is the price of the stock at
time zero (i.e., at the moment of the announcement). Solving for v(0),

v(0) = V*(T0 ) - [V*(T0 ) - v ~rT (16)

the initial drop in share prices is given by

v*(T0)-v(0) = [ V * ( T 0 ) - V

Substituting this expression into the general solution, we obtain the trajec-
tory of stock prices during the transition to the new steady state:
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v (x,)

0 T

Figure 11.8. Response of stock prices to an anticipated increase in dividend taxes.

= v*(T0)-[v*(T0)-v*(T1)]er(t-T) (18)

Hence, stock prices fall immediately as a result of the announcement, and
they continue to fall until they reach the new fundamental price precisely
at the time of the tax change. Observe also that the size of the immediate
capital loss is equal to the discounted value (at time zero) of the change in
the stock's fundamental value. In some sense, this is what we should expect.

Figure 11.8 displays the time path of share prices. During the transition
period, prices follow what looks like (but is not) an explosive path of the
"old" system. In fact, the equilibrium path is the only solution of the system
that yields a continuous trajectory from time zero on and ends up at the new
fundamental value of the stock at time T. This continuity property has an
intuitive economic interpretation: If share prices were to remain constant at
V*(R0) until the time of the actual policy change, agents would be anticipat-
ing a capital loss of V*(T0) - v*(Ti) at time T. To avoid such loss, each agent
would try to sell his shares just an instant before T. Hence, prices would fall,
pushing v{T- e) below V*(R0). In fact, the adjustment must start even earlier,
for the same logic implies that the price cannot be V*(T0) at time T-2e if
agents anticipate a capital loss at T - e, and so on. In fact, there cannot be
an equilibrium in which agents anticipate a rate of return on the stock lower
than r at any point in the future. Hence, the full burden of the adjustment
must fall on the initial shareholders, who, taken by surprise by the announce-
ment, cannot do anything to avoid a capital loss.

Problem 2.1 asks the reader to verify that the solution trajectory we have
just derived can be obtained directly by solving a nonautonomous version
of the stock-pricing equation.
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Problem 2.1. When the tax rate on dividends varies over time, our stock-
pricing equation can be written in the form

v = rv-b(t) (1)

where

b(t) = (l-tt)d

Equation (1) is a nonautonomous linear equation of the type we studied
in Section 5 of Chapter 9. Its solution can be written in the ("forward")
form

v(t) = [v(0)-F(0)]e"+F(t) (2)

where

F(t) = j"b{s)er(ts)ds (3)

the fundamental solution of (1), is the discounted value of the stream of
future after-tax dividends, and [v(0) - F(0)]ert is a bubble term capturing
possible deviations from the fundamental value of the stock. By the same
logic as in our earlier discussion, we will rule out bubbles and assume that
v(t) = F(t) for all t. Hence, the value of the stock at each point in time will
be given by (3). We will now show that this fundamental solution gives the
same time path of stock prices in response to a preannounced future
increase in dividend taxes as the procedure we followed earlier.

(i) Show that

i t - s ) d (l(r{t-r{tb)){t-r{tb))- (4)

(ii) As before, assume that an announcement is made at time zero that dividend
taxes will increase at time T from T0 to Ti. Then

b(t) = (l-ro)d for re [0,T)
= (1-Tt)d forte[T,°°) (5)

Using (3) and (4), compute the trajectory of stock prices following the
announcement.

Problem 2.2. Cagan's model with perfect foresight. Consider the following
specification of equilibrium in the money market:

m{t) -p{t) = -X7i{t), withA>0 (1)

where m is the log of the nominal money supply, p is the log of the price
level, and n= p is the (both actual and expected) inflation rate (i.e., we are
assuming perfect foresight). If we are willing to assume away real-side com-
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plications (e.g., assume that output is fixed at the natural rate), then the full
equilibrium of the economy is determined by this equation.

Assume that the nominal money supply grows at a constant rate m = fi.
Differentiating (1) with respect to time, we can obtain a differential equa-
tion in the inflation rate,

ji-K = rh- p - -Xk

=>n = d(n-ii\ where 0 = 1/A (2)

(i) Find the steady state of this equation, and write its general solution.
(ii) Assume that n remains constant forever. From an economic point of view,

which is the most reasonable particular solution of this equation? Why?
(iii) Assume that we are at time zero and that ji has always been constant at some

value jJk). Suddenly the government announces that at some time T in the future
the rate of money creation will increase to ^ > JUQ and will remain constant
forever thereafter (and people believe the announcement). Describe the evo-
lution of the inflation rate following the announcement and your reasons for
selecting this particular adjustment path. Write the particular solution corre-
sponding to this behavior, and use it to solve for the jump in the price level at
the time of the announcement. What factors determine the size of this jump?

(b) DornbuscWs Overshooting Model

The model we study in this section is an open-economy IS-LM model with
perfect foresight and sticky output prices. It is designed to study how price
rigidity in goods markets affects the short-run responses of exchange rates
to policy shifts and other exogenous disturbances. Because the focus is on
short-run dynamics, we assume that the level of output is fixed. We will find
that the sticky-price assumption yields a model that mimics the observed
tendency of exchange rates to exhibit considerably more volatility than the
underlying "fundamentals."

As in Section 1, Greek letters will denote positive parameters, and vari-
ables denoted by lowercase letters will be the natural logarithms of the cor-
responding variables denoted by uppercase letters. Asterisks will be used to
denote foreign variables. For example, p = In P is the log of the domestic
price level, and hence p = PIP is the domestic rate of inflation. We will use
s to denote (the log of) the nominal exchange rate, defined as the price of
one unit of foreign money in domestic currency units. Hence, an increase
in s represents a loss of value of the home currency, and s is its rate of
depreciation.

Starting with the market for domestic output, the basic equations of the
model are the following. Output supply is fixed at some constant, exogenous
level
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f=y (i)
Demand for domestic output, on the other hand, depends positively on the
ratio of foreign to domestic output prices expressed in a common currency
unit (s +p* -p). Aggregate demand is also positively related to government
expenditures g and negatively related to the real interest rate R— py where
R is the nominal interest rate, and p is the (actual and expected) rate of
inflation:

yd=S(s + p*~p)-~a(R-p) + g (2)

If demand exceeds supply, inventories are drawn down, and prices increase
in proportion to excess demand, as described by the following "Phillips
curve":

p = a(yd-y) (3)

The last two equations of the model,

m- p = (f)y-XR (4)

R = R* + s (5)

are asset-market equilibrium conditions. Equation (4) is a standard LM
schedule, relating the demand for real balances (m -p) to income and the
nominal interest rate, and (5) is an uncovered interest parity relation, telling
us that the interest-rate differential between domestic and foreign
bonds must be just enough to offset the depreciation (s) of the domestic
currency.

We will make the standard "small-economy" assumption and treat the
world interest rate 7?* as an exogenous constant. To simplify things, we will
also assume that the nominal money supply (m), government expenditures
(g), and the foreign price level (/?*) remain constant over time. This leaves
us with three time-dependent state variables: s,p, and R.

Working with equations (2)~(5), it is easy to solve for the steady state of
the model. Setting s equal to zero in (5), we have

R = R* (ss.i?)

That is, the domestic interest rate must be equal to the world rate in a long-
run equilibrium, for otherwise the domestic currency would have to appre-
ciate or depreciate in order to compensate investors for the interest-rate
differential between domestic and foreign bonds.

Using R = i?*, we can solve (4) for the steady-state price level:

(4) => m - p = (py - Ai?*

=> p = m - 0y + XR* (SS-P)
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Setting p = 0 in equation (3), we obtain yd = y. Using this expression, equa-
tion (2) can be solved for the steady-state exchange rate:

-g) (ss.J)

The steady-state exchange rate depends on the relative price levels of the
two countries, p-/?*, but notice that there is an additional term. From equa-
tion (2), S is the real-exchange-rate elasticity of the demand for domestic
output. If domestic and foreign goods were perfect substitutes, we would
have 8 -> <» and (ss.s) would reduce to s = p-p*, which would be the (long-
run) purchasing-power-parity relation (one unit of domestic currency buys
the same output in both countries).

Equations (l)-(5) can be reduced to a system of two differential equa-
tions in p and s that summarize, respectively, the behaviors of asset markets
and goods markets. First, we solve (4) for i?,

R ( 6 )
A

and substitute the result into (5) to get the law of motion describing the evo-
lution of the exchange rate,

* y m + PR* (L.5)i RR R
A

Next, substituting (2) into (3),

p = a[8(s + p* - p) - a(R - p) + g - y]

and solving for p , we have

Finally, we substitute (6) into (7) to get

cc (', A , (py-m + p
p = - \8(s + p*-p)-(7^——- + g-y

and, grouping terms,

The next two problems ask the reader to investigate the dynamic behav-
ior of this system of differential equations and to identify the solution tra-
jectory that corresponds to the equilibrium of the model. The first step is to
construct the phase diagram.
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Problem 2.3. Construct the phase diagram for the system (L.s)-(L.p).
Assume that 1 - aa> 0. What does this assumption mean?

Next, the reader is asked to verify that the steady state of the system is a
saddle point. As we saw in Chapter 10, this implies that the system converges
to the steady state provided its initial position lies on a straight line through
this point, called the convergent subspace of the system or saddle path. For
a given initial value of the domestic price level (which we take to be a pre-
determined variable) there is a unique value of the exchange rate that will
put us on this convergent trajectory. Because any other solution of the
system would "explode," generating a rather unreasonable trajectory of
domestic prices and exchange rates, we will take the saddle path as the equi-
librium solution of the model. The reader is asked to solve explicitly for the
appropiate particular solution of the dynamical system.

Problem 2.4. Solution of Dornbusch's model.

(i) Compute the eigenvalues and eigenvectors of the system (L.s)-(L./?), and verify
that the steady state is a saddle point.

(ii) Write the general solution of the system. Find the particular solution of the
system that corresponds to the saddle path, and discuss the equilibrium trajec-
tory of the system from an arbitrary initial price level. Find the equation that
describes the saddle path, and show that it has negative slope.

We will now use the model to analyze the effects of different monetary-
policy and fiscal-policy measures on price levels and exchange rates. The first
two policy changes are unanticipated changes in government expenditures
and in the money supply. To analyze their impact, the reader can proceed
essentially as we have done in previous exercises of a similar nature. The
first step is to determine the effect of the policy change on the steady state
of the system. Then we select the solution of the system that, given the initial
price level, will take us eventually to the new steady state. This solution is
required to be continuous at all points, except possibly at time zero, when
the exchange rate (which is assumed to be a "free variable") is allowed to
jump as required in order to put us on the convergent trajectory.

Problem 2.5. Assume that the economy is initially (at time zero) at the
steady state 50=( po, So) corresponding to values m0 and g0 of the money
supply and government expenditures.

(i) Suppose the government announces an immediate and unanticipated perma-
nent increase in its expenditure level on domestic goods to gi > g0. Discuss the
impact on the steady state of the system, and describe the adjustment trajec-
tory from the initial position to the new equilibrium.
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Pi=Po

Po

Sj = s0 + Am

Figure 11.9. Adjustment to an anticipated increase in the money supply.

(ii) Analyze the effect of an immediate, unanticipated, and permanent increase in
the nominal money supply to mi > m0. It will be seen that the exchange rate
temporarily "overshoots" its new long-run equilibrium value. Explain in what
sense this is true, and discuss the economic mechanism that generates this result.
What determines the degree of overshooting?

The final policy experiment we will consider is a preannounced future
increase in the money supply. The logic of the analysis is still the same. We
want to identify a trajectory that will eventually take us to a new steady state
and that will be continuous at all points, except possibly at the time of the
announcement. In constructing such a path, the reader should keep in mind
that the system must obey the "old" law of motion (corresponding to the
initial parameter values) until the policy change actually takes place.

Problem 2.6. As before, assume that the economy is initially (at time zero)
at the steady state 50 = (Po, s0) corresponding to a value m0 of the money
supply. Now imagine that at time zero the government announces that at
some time T in the future the money supply will be permanently increased
from the current level of m0 to mi = mo + Am. The change in the steady state
will be as in the preceding problem, with the long-run equilibrium levels of
p and m increasing proportionately to Am. The adjustment path is sketched
in Figure 11.9. Explain how this path is constructed, and explain how you
would go about finding the coordinates of points A and B in Figure 11.9
using the general solution of the system (derived earlier) and appropriate
boundary conditions.
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3. Neoclassical Growth Models

This section reviews some simple models of growth in a one-sector neo-
classical economy. These models have become the standard framework for
much work in macroeconomics, as well as in growth theory. We begin by
setting down some common assumptions concerning the technology and
characterizing equilibrium factor prices in a one-sector neoclassical setting.
We then develop Solow's classic model (1956) and an extension of it due
to Diamond (1965) that endogenizes the savings behavior of finitely-lived
individuals.

(a) Technology and Factor Prices in a Neoclassical World

The predictions of a growth model regarding the time path of output and
the evolution of the international distribution of income depend, essentially,
on its technological assumptions concerning the existence of constant or
increasing returns to scale in capital and the nature and determinants of
technical progress. In this section we will review the central technological
assumptions of the basic neoclassical models. Some of their implications will
be explored later within the framework of the Solow model.

Consider a world with two factors and a single good. Capital (K) and labor
(L) are used to produce a homogeneous output that can be consumed
directly or used as capital in the production process. We will assume that the
technology can be described by an aggregate production function

Y = F(K,L) (1)

where Y is aggregate output. We will typically assume that F( ) is a smooth
and concave function that exhibits constant returns to scale and positive and
decreasing marginal products (FK, FL > 0, and FKK, FLL < 0). In most cases,
we will also assume that both capital and labor are essential for production
(F(0, L) = F(K, 0) = 0) and that the following Inada conditions hold:

FK —* 0 as K —» °°5 FK —$ °° as K —> 0,

F x - ) 0 a s L ^ M , F->oo asL->0 (2)

We will often use as an example the Cobb-Douglas specification

Y = AKalf (3)

where A is an index of "total factor productivity" that summarizes the
current state of technical know-how. The coefficients a and (5 measure the
elasticity of output with respect to the stocks of the two factors: If the stock
of capital increases by 1%, holding the labor force constant, national output
will increase by a%.
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Before discussing the neoclassical specification of the production func-
tion, we need to introduce the notion of returns to scale. We will say that
the production function F{ ) exhibits increasing returns to scale (in K
and L) if increases in the stocks of both factors in the same proportion
yield a more-than-proportional increase in output, that is, if for all A > 1 we
have

F(XK,XL)>XF(K,L)

Similarly, F( ) exhibits constant returns when F(XK, XL) = XF(K, L), and
decreasing returns when F(XK, XL) < XF(K, L) for all A > 1. In the case of a
Cobb-Douglas function, we have

F(XK, XL) = A(XK)a(XL)P = Xa+pAKaLp = Xa+I3F(K, L)

Hence, F( ) presents increasing returns if and only if a+ j8> 1, decreasing
returns if and only if a + j8 < 1, and constant returns when p = 1 - a.

In the simplest version of the neoclassical model, technology exhibits con-
stant returns in K and L. This hypothesis is usually justified in part by a repli-
cation argument: If the stocks of all inputs were to double, we could simply
replicate all productive processes at the existing scale, thus ensuring that
output would also double. If K and L are the only relevant factors, this argu-
ment implies that the technology would present nondecreasing returns, but
it does not rule out, in principle, the possibility of strictly increasing returns,
for we might be able to increase efficiency by expanding the scale of certain
processes. The neoclassical literature, however, has tended to ignore this pos-
sibility, largely because increasing returns are difficult to reconcile with the
traditional assumption of perfect competition and therefore tend to make
modeling more complicated.6

The assumption of constant returns to scale turns out to be very conve-
nient. One of the main reasons is that it allows us to write factor prices in a
competitive equilibrium as simple functions of a single state variable, the
capital/labor ratio in the economy. To see this, let us start by introducing a
per-capita production function. Exploiting the linear homogeneity of the
production function, and letting A = 1/L, we can write

F(K/L, 1) = (1/L)F(K, L)==>Y = F(K, L) = LF(K/L9 1)

Thus, per-capita output is a function of the capital stock per worker.
Letting Z and Q denote the capital stock and output per worker, respec-
tively (Z = KIL and Q = Y/L), we define the per-capita production function
by

Q = F(K/L,l) (4)

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:32:10 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.012

Cambridge Books Online © Cambridge University Press, 2013



520 ///; Some Applications

The relationship between the per-eapita and aggregate production functions
is therefore given by

Differentiating this expression with respect to K and L, the corresponding
marginal products can be written as functions of Z:

FL (K, L) = Lf'(Z)(-K/L2) + f(Z) = f{Z) - f\Z)Z

Finally, using the homogeneity of degree zero of the partial derivatives of
F( ),7 we have

from where

= Fn(K/L,l)<0

Thus, under the standard assumption that the marginal product of capital
falls with K, the per-capita production function is an increasing and concave
function of capital intensity.

Consider now an economy endowed with a constant-returns technology
in which all agents behave competitively Firms maximize profits, taking
factor prices as given. Workers have no utility for leisure and therefore
supply their entire endowment of labor time at the market-determined wage
rate. The economy is always in competitive equilibrium, with full employ-
ment of labor, and factor prices are given by the corresponding marginal
products.

A competitive firm hires labor at the market-determined wage w and rents
capital at a net rental rate r - meaning that it must return to lenders 1 + r
units of output (principal plus interest) per unit of borrowed capital. If
capital depreciates at a rate <5, the gross rental rate of capital is p = r + 8, and
profits are given by

F{K,L)-wL-pK

Using the per-capita production function, total profits can be written as the
product of profits per worker and the size of the labor force. The firm's
problem,

maxL[ / (Z) -pZ-w] (P)

can be approached in two steps. First, Z will be chosen to maximize profits
per worker, yielding the necessary condition
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which defines the optimal capital/labor ratio Z as a function of the rental
rate. The linearity of the objective function in L implies that the optimal
choice of scale depends on factor prices in a discontinuous way. If w and p
are such that maximum profits per worker are negative, the optimal deci-
sion is to shut down (L = 0) in order to minimize losses. If profits per worker
are positive, however, the thing to do is to set L = ©°. This choice, however,
is incompatible with equilibrium. If there is free entry into the industry, new
firms will come in until profits are eliminated, that is, until

w = f(Z) -pZ = f(Z) - Zf\Z) S w(Z)

Now, with zero profits per worker, the size of individual firms is indetermi-
nate (they are indifferent among sizes, because they earn zero profits
anyway). Equilibrium factor prices, however, are easily determined. If we
take as given the aggregate stock of capital K and the size of the labor force
L, then the aggregate capital/labor ratio Z = KIL is determined, and because
in equilibrium all firms (facing the same technology and factor prices) use
inputs in the same proportion, equilibrium factor prices can be conveniently
written as simple functions of Z:

p = f \ Z ) and w = w(Z) = /(Z)-Z/'(Z) (5)

In some models, factor productivity increases over time as a result of tech-
nological progress. A common way to model this process is to write the pro-
duction function in the form

Yt=F(BtKt,AtLt) (6)

where At and Bt are indices of labor productivity and capital productivity. If
we define Z as the capital/labor ratio in "effective units,"

Z = BK/AL

we can proceed as before. Output per efficiency unit of labor is now given
by

and total output is

Y = F(BK, AL) = ALf{Z)

In a competitive equilibrium, the wage is

w(Z) = f{Z)-Zf'(Z)

per efficiency unit of labor, or W(Z) = Aw(Z) per worker, and the rental rate
is f'(Z) per efficiency unit, or Bf\Z) per physical unit of capital.
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(b) The Solow Model

In this section we will study a simple model of a dynamic economy devel-
oped by Solow (1956) in one of the papers that marked the beginning of
modern growth theory.8

Suppose technology is described by a neoclassical production function
Y = F(K, AL), with constant returns to scale and labor-augmenting techni-
cal progress at a constant exogenous rate g = A/A. We assume that a con-
stant fraction s of the current flow of output is invested at each point in time.
If capital depreciates at a constant rate 5, the evolution of the capital stock
over time is described by the equation

K •= sY-SK = sALf(Z)-SK (7)

where K = dKldt can be interpreted as the increase in the aggregate stock
of capital during a period of time of infinitesimal length, and Z = KIAL is
the capital/labor ratio in efficiency units. Dividing both sides of (7) by K,

we see that the growth rate of the aggregate capital stock (KIK) is the dif-
ference between investment per unit of capital and the rate of depreciation.
If investment exceeds depreciation, K increases over time, and vice versa.
Given that Z = KIAL, we can take logs of both sides of this expression,

and differentiate with respect to time, obtaining

Z K L A K

where LJL = n is the (constant) rate of population growth. That is, the rate
of growth of the stock of capital per effective unit of labor is the difference
between the rates of growth of the aggregate capital stock and the labor
force, measured in efficiency units. Substituting (8) into the foregoing expres-
sion, we arrive at

Z K L A sLAf(Z)~SK t , f(Z) ,
n+ s § + n + \ (9)

Z K L A K V &> Z V 6>

Equation (9) shows that, given a constant investment ratio, the rate of
growth of Z depends crucially on the behavior of the average product of
capital f(Z)/Z, which is itself a function of the capital/labor ratio. What can
we say about the shape of this function? Recall that /(Z) = F(Z, 1), where
F( ) is linearly homogeneous in both its arguments. Hence, for any X > 1, we
have
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f{XZ) = F{XZ, 1) < F(AZ, X) = Xf(Z)

whenever F( ) is strictly increasing in its second argument. Constant returns
in capital and labor imply diminishing returns in capital alone and therefore
in the per-capita production function. As we combine more and more capital
with a unit of labor, output increases less than proportionately. Dividing both
sides of the foregoing expression by Z and rearranging, we see that

f(XZ) ^ f(Z)

xz z
for any X>1. Hence, the average product of capital decreases with Z.

An important implication of this feature of the technology is that the
growth rate will tend to fall as investment flows into decreasingly produc-
tive activities. Plotting both terms from the right-hand side of (9) as func-
tions of Z, the rate of growth of Z (Z/Z) is given by the vertical distance
between these lines, as shown in Figure 11.10. The negative slope ofsf(Z)/Z
therefore implies that the growth rate of Z (and therefore that of income
per efficiency unit of labor) will be a decreasing function of capital inten-
sity. Moreover, if the productivity of investment falls sufficiently that sf(Z)/Z
drops below the horizontal line n + g + <5, growth (in output per efficiency
unit of labor) will eventually stop. This condition will be satisfied whenever9

l i m ^ = limf '(Z) = f'{oo)<n + g + S (10)

This outcome, however, does not necessarily follow from the linear
homogeneity of the aggregate production function, and thus it requires
stronger assumptions. For example, if we assume a linear technology,
F(K, AL) =aK + bAL, we have f(Z)/Z = a + (bIZ), and growth will continue
indefinitely, provided that a > n + g + S. Hence, constant returns per se do
not rule out the possibility of sustained growth in output per efficiency unit
of labor. One common assumption that does imply (10) is the Inada condi-
tion, /'(°°) = 0, which implies that labor is an essential factor in production
(F(K, 0) = 0). Observe that by the homogeneity of F() we can write

and taking limits,

/ ' H = l i m ^ = limF(l, l/Z) = F(l, 0)

In short, the problem is that labor is fixed in supply and is essential. If
capital increases without bound, "labor per machine" goes to zero, driving
down the productivity of capital to the point where it can no longer repro-
duce itself.
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n + g + 8

Z Z

Figure 11.10. Dynamics of the Solow model under strongly decreasing returns.

Figure 11.10 shows the dynamics of the Solow model under the standard
assumption of strongly decreasing returns implied by the Inada condition.
The decreasing function sf(Z)/Z intersects the horizontal line <5+n + g at the
point Z that solves the equation Z/Z = 0. The negative slope of the curve
also implies that Z converges toward its stationary value Z. As the figure
shows, Z/Z is positive (i.e., Z is increasing over time) when the stock of
capital per worker is low (and therefore the return on investment is high),
and negative when Z is "high" (higher than Z), for in this case the low return
on investment implies that saving will not be enough to cover depreciation
and equip newborn workers with the preexisting average stock of capital.

In the long run the system converges to a stationary equilibrium in which
the capital/labor ratio Z is constant. Output per worker along such a
balanced-growth path is given by

Qt=Af(Z) (11)

Taking logarithms of this expression, and using the fact that A grows expo-
nentially over time at a constant rate g (i.e., At = Aoe8'), we have

lnQt=\n(Af(Z)) + gt

Hence, the time path of the system is as shown in Figure 11.11. An economy
that starts out with a capital/labor ratio below its steady-state value will ini-
tially grow at a rate exceeding g, but will gradually approach the balanced-
growth path given by (8). Asymptotically, output per worker grows at the
(exogenous) rate of technical progress, g.
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lnQt

ln(Aof(Z))

lnQt

Figure 11.11. Time path of output in the Solow model.

This result has some strong implications. First, notice that in the absence
of technological progress (g = 0), growth in per capita income eventually
stops. Standard neoclassical assumptions allow for "extensive" growth: If
capital and labor grow at the same rate, output will increase proportionately.
However, the technological assumptions we have made severely limit the
possibility of growth in income per capita, for the technology exhibits
strongly decreasing returns in the only reproducible factor, K, whose mar-
ginal product falls to zero in the limit.

Second, the model predicts that policy changes will have only level effects.
That is, changes in economic policy (or other parameters of the model) can
affect the level of the path of output, but will have no effect on its long-run
growth rate, which is determined only by the exogenous rate of technical
progress. As an example, Figures 11.12 and 11.13 illustrate the effect of an
increase in the investment ratio. A higher s shifts the curve sf(Z)/Z upward,
yielding a higher steady-state capital/labor ratio. This, in turn, shifts the inter-
cept of the balanced-growth trajectory upward, but does not change its slope.
During the transition period, higher investment does yield a temporarily
higher growth rate, but this effect disappears gradually over time as the
economy approaches its new balanced-growth path. Thinking in cross-
sectional terms, the model implies that in the long run, countries that invest
more (or have lower rates of population growth) will have higher income
levels but the same growth rates as those that invest less (or have faster-
growing populations). On the other hand, countries that are similar in these
respects will eventually end up with the same per capita income, even if they
start out with very different endowments of capital per worker.
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n + g + 8

Figure 11.12. Effect of an increase in the investment rate on steady-state capital
intensity.

lnQ t

ln(Aof(Z))

Figure 11.13. Time path of output following an increase in the investment rate.

Problem 3.1. The Solow model with a Cobb-Douglas production function.
Assume that the aggregate production function is Cobb-Douglas, with labor-
augmenting technical progress

= Ka(AL)l - a
(1)

with AJA = g. Write the intensive-production function /(Z), giving output
per efficiency unit of labor as a function of the capital/labor ratio in effi-
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ciency units, Z - KIAL. Derive the law of motion for Z under Solow's
assumptions, and solve explicitly for the steady state of the system. What
factors determine a country's long-term level of income?

Problem 32. Suppose the production function is of the form (1): Yt=
{BtK)a(AtLt)l~

a, with both capital- and labor-augmenting technical progress
at rates BIB = gB and A/A=gA. Derive the equation of motion for the
capital/labor ratio in effective units, Z = BK/AL, under the assumptions of
the Solow model. Show that the system has a balanced-growth path (i.e., a
constant-Z solution) if and only if gB = 0 (i.e., if technical progress is only
labor-augmenting).

(c) An Overlapping-Generations Model (Diamond)

Although Solow's model is extremely simple, at the time it was written it
brought real progress. The reason is that, unlike static formulations of the
Keynesian type, it explicitly brought out the role of investment in increas-
ing the economy's productive capacity and highlighted the trade-off between
present consumption and future consumption. One obvious limitation of the
model, however, is its assumption of an exogenous savings rate. Back in the
1950s, that was seen as a perfectly reasonable simplification. Since then,
however, economists have come to insist that the behavior of agents should
be derived from some sort of optimization problem. To remedy this short-
coming, the Solow-Swan model was soon extended by authors who derived
savings behavior from the maximization of lifetime utility. Two specifications
have become standard in the literature. The main difference between them
is their demographic structure. One of them, first developed by Cass (1965)
and Koopmans (1965), building on earlier work by Ramsey (1928), features
a representative household that lives forever; the other, due to Diamond
(1965), assumes, rather more sensibly, finite lifetimes. In this section we will
study the second of these models, which is simpler in some ways, leaving the
Cass-Koopmans model for a later chapter.

An interesting feature of the Diamond (1965) model is its demographic
structure. The economy is populated by successive generations of finitely-
lived workers. In the simplest version of the model, agents live for two
periods and "have children" at the end of the first one. At any given point
in time, then, members of two generations coexist on the earth (hence the
name overlapping generations) and interact with each other and with firms
through competitive markets for labor and output/capital. Young agents sell
their labor, eat part of the proceeds, and save the rest for old age by lending
unconsumed output to firms for use as capital in the next period's produc-
tion. Old individuals do not work, but simply consume their savings, includ-
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ing interest earnings. Firms hire labor and borrow capital to produce output
using a constant-returns-to-scale production technology.

(i) Household Behavior

The utility of an agent born in period t (belonging to the rth generation) is
an increasing function of consumption in the first and second periods of his
life (c and x, respectively):

tf,=t/(c,,x,+1) (1)

We will assume that U is strictly increasing in both arguments, smooth, and
strictly quasiconcave. Having no taste for leisure, households sell their entire
endowment of labor time (one unit in youth) in the labor market in
exchange for a real wage of wt units of output. Part of this income goes to
current consumption, cr, and the rest (st) is lent to firms for use as capital in
next period's production at an interest rate rt+1. Old agents, therefore, have
a total wealth of s,RM = 5/(1 + rt+1) units of output and, not caring about their
children, consume all of it.

Households, then, maximize (1) subject to the constraints

wt =ct+ st and stRt+1 = xt+i

For future reference, it will be convenient to study a slightly more general
version of this problem. We will allow for the possibility that agents may
have some income in the second period of their lives and solve

max{£/(c, x) s.t. yt = c + s and x = y2 + sR} (P)
c,x

where y1 and y2 denote first- and second-period incomes, respectively. We
will make the following assumptions:

UU>0

Ucc,Uxx<0 and Ucx = Uxc>0 (A.2)

£/c(c,x)->«> asc-»0 and £/x(c, jt)-»oo asx-»O (A3)

Assumption (A.2) is plausible and allows us easily to sign certain partial
derivatives of interest. We will show later that it can be replaced by the
assumption that consumption is a normal good in both periods. The third
assumption is made to avoid the possibility of corner solutions. Because the
marginal utility of consumption in either period goes to infinity as con-
sumption approaches zero, agents will consume positive amounts in both
periods whenever they have any income at all. Hence, the natural nonneg-
ativity constraints on c and x will not be binding at an optimum and can be
ignored in the formulation of the problem.
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Substituting the constraints into the utility function U( ), we can rewrite
(P)as

maxU{yx-s,y2 + sR) (P')
s

Differentiating U with respect to s, we obtain the first-order condition

0^R = j ^ ^ - (2)

As usual, the agent sets the marginal rate of substitution between present
consumption and future consumption (i.e., the rate at which he would be
willing to trade present consumption for future consumption) equal to the
rate at which he can do so, which is given by the interest factor. Because U
is a concave function of s, equation (2) does characterize an optimum.

The solution to this problem gives us the optimal level of savings as a func-
tion of first- and second-period incomes and the interest factor, that is, a
savings function of the form

s* = s(y1,y2,R)

which conveniently describes the optimal behavior of the household. The
following proposition summarizes the properties of the function s( ).

Proposition 3.3. Properties of the savings function. Consider the function

s(ylfy2,R)=argmaxU(yi-$,y2+sR)

Under the assumption that (i) first- and second-period consumptions are
normal goods (i.e., the demand for them is increasing in income), or (ii) Uco

Uxx < 0 and Ucx > 0, we have that

3s* ,,3s* 3s*
— e(0,l,r — <0, and —>0 fors*<0
dyi dy2 dR

If, in addition, c and x are strict substitutes (i.e., if an increase in the relative
price of one, measured by the interest factor, leads to an increase in the demand
for the other), then

also for net savers (s > 0).

Problem 3.4. Prove Proposition 3.3.

To conclude, note that the problem faced by a worker in Diamond's model
is exactly the one in the proposition, with
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y\=wt, y2=0, and R = i?,+1

Hence, we can write the savings function

s* = s(wt,Rt+1)

and under the assumptions of Proposition 3.3 we can sign the partial deriv-
atives sw( ) and sR( ).

(ii) Equilibrium and Dynamics

We will assume that population grows at a constant rate n (i.e., Lt+i -
(1 + n)Lt) and that capital depreciates at a rate S. Each period young agents
sell their labor, eat part of the proceeds, and lend the remainder to firms.
Older workers simply consume their savings. Firms are of the standard neo-
classical variety. In equilibrium, factor prices are equal to their marginal
products, and factor markets clear. Hence (see Section 3(a)),

wt=w(Zt) = f (Z t ) -Z t f \Z t ) and
Rt+l = 1 + rt+1 = 1 + pt+l -8 = f'(Zl+l) + (l-8)

Labor-market clearing means simply that all young workers are employed.
Capital-market clearing requires that next period's capital stock be equal to
current savings by the young:10

Kt+1 = Ltst (3)

Dividing both sides of this expression by Lt+1 = (1 + n)Lt, and letting Z = KIL,
we have11

Kt+\ Ltst

L (l + n)Z*

=>(l + n)Z,i=.y, (4)

Substituting the savings function, evaluated at equilibrium factor prices, into
(4), we arrive finally at

(l + =s[w(Zt)J'(Zt+1) + (l-S)] (5)

To simplify the exposition somewhat, in the remainder of this section we
will assume that the population is constant (n = 0) and that capital depreci-
ates completely upon use (5=1). With these assumptions, equation (5)
reduces to

Z t+1=s[w(Z t)J '(Z t+J] (6)

Equation (6) implicitly defines a function of the form Zt+1 = $(Zf), that is, a
first-order difference equation (notice that Zt+1 appears on both sides of this
expression).
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Without knowing the specific forms of U( ) and /( ) we cannot solve for
0( ) explicitly, but we can get some qualitative information about it. We are
particularly interested in two questions. The first has to do with the existence
of steady states for the dynamical system described by (6). Second, if steady
states exist, we would like to determine under what conditions they are
stable. To answer these questions, we need some information about the prop-
erties of 0(). Steady states of the system are just fixed points of 0, and their
stability depends on the value of 0'(Z).

Differentiating (6) implicitly with respect to Zh we obtain the slope of the
phase line, 0'(Z?) = dZt+1/dZt:

= sw( )w{Zt) + sR{ )f (
aZ

m

dZ, l-sR( )f (Zr+1)

Notice that the denominator of this expression is always positive. Because
/ ' ( ) < 0, the whole expression will be positive provided that s( ) > 0 or
SR( ) < 0 and is "small" in absolute value. To determine whether or not a given
steady state Z is stable, we only have to check whether or not |0'(Z)| is
smaller than 1. There is, however, no guarantee of stability, or even of the
existence of any interior steady states.

The function <j)( ) summarizes the effect of the capital stock on savings, as
mediated by both preferences and technology through separate interest and
wage channels. Standard assumptions are not sufficient to ensure that (6)
will be as well-behaved as the Solow model we analyzed in the preceding
section. They are, however, sufficient to show that 0(0) = 0 and 0(Z) < Z for
sufficiently large Z. Hence, 0( ) goes through the origin and eventually falls
below the 45° line, making indefinitely sustained growth impossible. The
origin is always a steady state, but the system may have no interior steady
states, or any odd number of them, with alternating stability properties, as
suggested in Figure 11.14.

Clearly, a sufficient condition for the existence of a nontrivial steady state
is that 0'(O) > 15 and a sufficient condition for uniqueness is that, in addition,
0( ) be concave. The following proposition summarizes the key properties
of the model.

Proposition 3.5. Existence of steady states in the Diamond model Assume
that the intensive production function f( ) is concave, with i(0) = 0 and

f(Z)->0 asZ--»oo and f(Z)-> °o asZ->0
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45°
-t+l

Figure 11.14. Possible phase diagrams for the Diamond model.

Then <l>(0) = 0, and for Z t sufficiently large, Zt+i/Zt = #Z t ) /Z t < 1. Hence, 0 is
always a steady state of the system, and indefinite growth is not possible. More-
over, if

then there exists at least one additional steady state with Z>0. If this last con-
dition is satisfied and (j) is increasing and concave, there is a unique nontriv-
ial and globally stable steady state.12

Proof

• First, we note that Z = 0 is always a steady state for the system, that is, 0(0) = 0.
With zero capital, no production is possible (/(0) = 0), and hence w(0) = 0. With
zero wages, no savings are possible [s(0, R) = 0], and therefore there can be no
capital accumulation.

• Next, we show that (Zt+1/Zt) -> 0 as Zt —» <*>. It follows that for sufficiently large Z
we have Zt+i/Zt = </)(Zt)/Zt < 1 => Zt+1 = (j>(Zt) < Zh and hence the graph of (j> is
below the 45° line. This implies that capital accumulation cannot continue forever,
for if Z is large enough, it must be decreasing.

To derive this result, note that

ZM s(wt,Rl+i)^w(Zt) =/(Z,) fr(7^f(Zt)
~~7~ ~ 7 ——7—~ 7 / ^ t / - ~^~

Taking limits as Z -> °°, we have, by L'H6pitaFs rule,

0 < lim—— < lim^—— = lim/'(Z) = 0

whenever /( ) is unbounded; otherwise, we can omit the penultimate term in the
foregoing expression, and the inequalities will still hold.

• The function 0, then, goes through the origin and is below the 45° line for Z large
enough. Clearly, whether or not additional steady states (with Z > 0) exist will
depend on the slope of 0 at the origin. There are two possibilities: If the slope of
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0 is greater than 1 at the origin, then 0 starts above the 45° line; because it must
eventually end up below it, continuity implies that it must cross it an odd number
of times, and at least one additional steady state exists. On the other hand, if 0
starts below the 45° line, we will have an even number of such equilibria, possi-
bly zero. Note that because 0(0) = 0,

lim 0'(Z) = lim ̂  < lim ̂  = lim w\Z)

so a necessary condition for 0'(O) > 1 is w'(0) > 1. The last part of the proposition
is obvious. •

Example 3.6. Cobb-Douglas technology and log preferences. Assume that
the population grows at a constant rate n, and the production and utility
functions are of the form

U(c,x) = p\nc + (l-P)lnx, where(3e(0,1) (U)

F(K,L) = a , where a e (0,1) (P)

Under these assumptions we have

w = (l-a)Za, R = aZa\ and s(w, R) = (1 - /?)w

and the law of motion for the stock of capital per worker is given by

m) Z? (L.Z)

Note that

( 1 ~ ^ " t t ) > 0 and

-l)Zr2 < 0

Thus, the phase line goes through the origin and is monotonically increasing
and strictly concave. Notice also that (jf(Z) —> °° as Z -» 0, and §'(Z) —» 0 as
Z —> °o. Hence, the phase line 0( ) starts out above the 45° line, but eventu-
ally becomes flatter and must therefore eventually go below it. This implies
the existence of an interior steady state, Z > 0. In fact, we can solve for Z
explicitly. Eliminating the time subscripts in (L.Z),

which holds for Z = 0. For Z * 0, we can divide through by Z" to get

>0
(l + n) I (1 + n)
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Because $'(0) > 1, the steady state at the origin is an unstable node. To check
the stability of Z, note that

(1 fl(i a) = (1 m a)
^V ; (1 + w) (1 + n)

so the interior steady state is a stable node. •

4 Some Useful Techniques

Nonlinear differential equations often lack closed-form solutions. Whereas
it is often possible to analyze the qualitative behavior of such systems, it is
more difficult to get accurate quantitative predictions by analytical methods.
As we will see in the first part of this section, one possibility is to linearize
the system around a steady state and work with the linearized model. The
resulting approximation, although valid only locally (in a neighborhood of
a steady state), is often quite useful, both in theoretical studies and in empir-
ical work. An alternative, which also allows us to deal with systems whose
behavior is difficult to characterize with analytical methods, is to use a com-
puter package to solve the system numerically. In the second part of this
section we will solve the Solow model using Mathematica. In Chapter 13 we
will see how to deal with more complicated systems.

(a) Linearization and Derivation of a Convergence Equation

We have seen that in the Solow model the growth rate of the stock of capital
per efficiency unit of labor is given by

Z~K L A~

where Z = KIAL. If all countries have access to the same technology (i.e., if
A is the same for all of them) and all share the same rates of depreciation
(5) and technical progress (g), and if the production function exhibits
decreasing returns to capital, this equation implies that the rate of capital
accumulation per worker (and therefore the rate of growth of income per
capita, Q) will be a decreasing function of Z (and hence of Q) and popula-
tion growth (n), and an increasing function of the investment rate (s).

To test these hypotheses, we can try to estimate equation (1), after assum-
ing some specific functional form for the production function. As it stands,
however, this equation is not very suitable for empirical work. The main dif-
ficulty is that it is written in terms of a variable (the stock of capital per effi-
ciency unit of labor) for which we do not have very good data.13 In this
section we will construct an approximation to (1) that will be useful in empir-
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ical work, following the procedure developed by Barro and Sala-i-Martin
(1990) and Mankiw, Romer, and Weil (1992). The equation we will obtain
can be seen as a reduced form of the Solow model, or simply as a conve-
nient way of estimating the production function using flow data.

Suppose the production function is Cobb-Douglas. Then equation (1)
becomes

^ = sZ^-(8 + n + g) (2)

To construct a suitable approximation to this equation, we start by intro-
ducing a new variable,

z = lnZ

and observing that

z = — and Z = ez

Hence, we can rewrite (1) in the form

z = sez(a~l)-{8 + g + n) = <l>(z) (3)

Notice that the steady-state value of z satisfies

(4)> z l n
1-a 5+g+n

and the derivative of 0( ) at the steady state is given by

(j)'(z) = (a- l)sez{a-1] = - (1 - a)(8+g + n)<0

Hence, the log-linearized system

) ) (5)
is stable, like the original one, provided that a< 1 (see Problem 3.1).

Because equation (5) is a first-order linear differential equation, we can
write its solution immediately. If we consider the period from t to t + h, the
final value of z (zt+h) is given by a weighted average of its initial (zt) and
stationary (z) values, with weights determined by the coefficient X and
the duration of the period h:

= z+(zt- z)e-Xh = zte
-Xh + z (l - e-Xh) (6)t+h

Equation (6) implies a relationship between the rate of income growth
over the period and its initial level, as well as other variables. To make this
relation explicit, recall that output per worker is given by Q = AZa. Taking
logarithms of both sides of this expression,
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q=a + az=*ocz = q-a (7)

and substituting (6) into (7) evaluated at time t + /z,

qt+h = at+h + azt+h = at+h + (qt - at )e~u + (1 - e~Xh )az

Subtracting initial income g,from both sides, dividing through by h, and using
the fact that at+h = at + gh, we obtain

h h

ii { q i a

h yl-a S+g+n
This convergence equation relates the growth of per-capita income over

the period to the initial level of income per capita, the determinants of the
steady state, the rate of technical progress, and the inital value of the tech-
nological index. In particular, equation (8) tells us that the rate of growth
over a given period is equal to the rate of technical progress, g, plus a tran-
sitional factor that depends on the difference between current output per
efficiency unit of labor (q - a) and the steady-state value of this variable,
az. For a given value of the steady state, the transitional component of
growth decreases with initial income and increases with a, because techni-
cal progress reduces the stock of capital per efficiency unit of labor.

The empirical implementation of equation (8) does not raise any special
difficulties. Given time-series data on output per capita or per worker,
investment, and population or labor-force growth, the equation can be esti-
mated using cross-section or panel data at the national or regional level. This
specification allows us to estimate the rate of convergence and to recover
(given values for some parameters) the coefficient of capital in the produc-
tion function.14

Problem 4.1. Measuring the speed of convergence. The "eigenvalue" X of
the log-linearized system provides a measure of the speed of convergence
of an economy toward its steady state. Show that the half-life of the system
described by equation (5) (defined as the time H at which half the original
deviation of z from its steady-state value has been eliminated)15 is given by

X

Notice that H is inversely proportional to A.

Problem 4.2. Determinants of long-run income dispersion. Assume that the
evolution of income per capita in a given country can be described by the
equation
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y»,r+i = xt + (1 -P)y u + e!r or Ay,-,, = xt - )3y,-,r + eit (1)

where y^ = ln(Qit/Qt) denotes the logarithm of income per capita in country
i in period t (Qit) normalized by the sample mean of the same variable (Qt),
and Ayt = y,-,r+1 - yiJt is approximately equal to the growth rate of per-capita
income in country /, measured in deviations from the average growth rate
in the sample. In this expression, eit is a random disturbance, with zero mean
and variance, o\, independent and identically distributed over time and
across countries and uncorrelated with yUt and xt. The term xh which sum-
marizes the "fundamental" determinants of growth in territory i, is constant
over time and is distributed across countries, with zero mean and variance
a2x. (This equation can be interpreted as a linear approximation to the con-
vergence equation we have just derived, with xt summarizing the effect of
the rates of investment and population growth in country i.)

Taking the expected values for both sides of (1), given initial income yit0,
we obtain a nonstochastic equation in expected income yfy.

fit+i=Xi+(1-fi)yl, w i t h ^ = 3 ^ (2)

The solution of (2) is of the form

yl=y?+(y,0-y?)(i-P)' (3)

where

is the steady-state value of yit. Equation (3) shows that the stability of the
system depends on the value of the slope coefficient /J. If p e (0,1), the term
(1 - py goes to zero as t -> °°. The system is therefore stable, and the
expected income for each nation converges monotonically to its steady state
y* at a rate determined by /?. Hence, we can interpret y* as the expected (rel-
ative) income level of country i in a long-run equilibrium.

We want to use equation (1) to investigate the determinants of income
inequality across countries in the long run. Let of denote the sample vari-
ance of yih and ct - Ex fa the co variance between current income and country
fundamentals, and observe that if the number of countries is large, the
sample variance and covariance will be approximately equal to their popu-
lation values. Using (1), derive a system of difference equations in a] and ch

discuss its stability properties, and compute its steady state. What determines
the degree of income inequality in the long run, measured by the steady-
state value of op.

Hint: Take the variance for both sides of (1), and notice that
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(b) Solving the Solow Model with Mathematics

It is easy to see that the law of motion for the capital/labor ratio in the Solow
model with a Cobb-Douglas production function is given by

Z = sZa-(8+n + g)Z

(see Problem 3.1). This equation is a nonlinear differential equation that
does not have a closed-form solution. In this section we will show how equa-
tions such as this one can be solved numerically using Mathematica, a com-
puter program that has a built-in routine for such computations.

Because Mathematica does not have Greek letters, we will start by rewrit-
ing our equation in the form

Z = F(z, s, a, d, g, n) = sza-(d + n + g)z (9)

The first step is to define the function F( ). For this, we type (the text in bold-
face letters is what we type in; the stuff in italics is the computer's output):

p[z_/s_-#a_./d_.r9_/n._l s=s*(zAa) — (d+g+n) *z

followed by "enter" or "shift-return." (A normal "return" puts you on a new
line, but it does not tell the computer to execute the command.) This tells
the computer to define a function called F with the arguments specified
inside the square brackets. Notice that each argument is followed by the
symbol "_", arguments are separated by commas, and the definition of the
function must be preceded by the symbol ":=".

Next, we assign values to the parameters and compute the steady-state
value of z using the formula

derived in Problem 3.1. In order to illustrate how the value of a (a) affects
the speed of convergence to the steady state, we will repeat the exercise with
two different values of a (al = 0.69 and a2 = 0.33). Notice that we use " = "
to assign values to parameters. The program returns the steady states cor-
responding to the two values of a. (To prevent the computer from repeat-
ing all the parameter values, we use a semicolon at the end of each line.)

In[2]:=
al=0-69? a2=0.33?
d=0.03? g=0.02;
s=0.25; n=0.01?
zsl= (s/(d+g+n) )A(l/(l~al))
zs2= (s/(d+g+n) ) A ( l / ( l
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Out[5]=
99.8432

Out[6] =
8.41507

The next statement asks the computer to solve equation (9) numerically,
together with an initial condition which specifies that the initial value of z
is equal to one-half the corresponding steady state. Notice that a separate
statement is needed to compute the solution for each set of parameter
values. Prior to executing NDSolve, we must assign values to all the para-
meters,16 so that the only unspecified argument of F() is the variable whose
time path we seek (z). We must also specify that this variable is a function
of time by writing it z[t] (or z[s] ....) on both sides of the equation, which
are separated by two equal signs (==). The list of equations to be solved
goes inside curly brackets separated by commas (the initial condition is also
considered an equation). After the list of equations, we specify that the
"unknown" is z, and then (also in curly brackets) we indicate that the depen-
dent variable (i.e., "time") is t and that we want the solution evaluated for
all t between 0 and 100. Finally, the first side of each statement assigns a
name (soil and sol2) to each "solution function."

soll=NDSolve[{z'[t]==F[z[t], s, al, d, gr n],
z[0]= = zsl/2}, z, {t, 0, 100}]

sol2=NDSolve[{z'[t]==F[z[t] , s, a2f d, g, n],
Z[0]= = zs2/2}, z, {t, 0, 100}]

Out[7]=

{{z-> InterpolatingFunction[{0., 100.}, <>]}}

Out[8] =

{{z -> InterpolatingFunction[{0., 100.}f <>]}}

Out[7] and Out[8] inform us that the commands have been executed suc-
cessfully (otherwise you will get an error message) and the solution path of
z has been placed into what Mathematica calls InterpolatingFunctions. The
next step is to put the solution functions in a usable form. For this, we eval-
uate the generic solution function z[t] using each of the solution rules (soil
and sol2) to obtain two new functions, pzl[t] and pz2[t], that can be manip-
ulated as ordinary functions.

In[9]:=
pzl[t_J:=z[t]/.soll
pz2[t_]:=z[t]/.so!2

Finally, we can use the Plot command to display the time path of z.
The following statement asks Mathematica to plot pzl[t] and (the
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constant) zsl as functions of f, with this variable taking values between 0 and
100.

t, 0, 100}]Plot[{pzl[t],zsl},
Out[ll]=
-Graphics-

100

90

80

70

60

zsl

pzl[t]

20 40 40 80 100

In[12] repeats the experiment with the lower value of a. Notice that in
this case convergence toward the steady state is much faster.

Plot[{pz2[t],zs2},{t, 0, 100}]
Out [12]=

-Graphics-

*-t
20 40 60 80 100

5.5

5. Problems

Problem 5.1. Homogeneous output is produced using two types of capital
(private and public), K and P, according to a technology of the form

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:32:10 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.012

Cambridge Books Online © Cambridge University Press, 2013



Problems 541

Yt = KfPf where a+(5< 1 (1)

Both types of capital depreciate completely upon use. In each period, the
government taxes income at a rate R and invests the proceeds in public
capital for the next period. Agents save a fixed fraction s of their after-tax
income and invest it in private capital. Hence,

*,+1=*(1-T)Y, (2)

and

Pt+i=tYt (3)

Using (l)-(3), derive a single difference equation in Y that describes the
evolution of income. Call this equation (4). Solve for the steady-state value
of Y, and show that the system is stable. How does steady-state income vary
with s and T? What value of % should the government choose if it wants to
maximize steady-state output?

Problem 52. Consider an economy endowed with an aggregate production
function of the form

Y = Ka(LH)la (1)

where K is the aggregate stock of physical capital, L is employment in goods
production, and H is the average stock of human capital. "Pure knowledge,"
A, increases over time at a constant exogenous rate g, that is,

A=(l + g)A (2)

Pure knowledge and teacher's time and human capital are combined to
"produce" the next generation's human capital according to

A}-r (3)

where r is the fraction of the population employed as teachers, a variable
chosen by the government.

Suppose that population is constant, and normalize it to 1 (so that the
labor force is L = 1 - T), and suppose that capital depreciates completely
upon use and that agents save a constant fraction s of their income. Then
the law of motion for the capital stock is of the form

Kt+l=sK?H}-a{l-xf~a (4)

(i) Define

and E = H/A

Using the previous expressions, derive a system of difference equations in Z
and E that will describe the evolution of the economy.
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(ii) Solve for the steady-state values of Z and E, and compute the steady-state
value of Q = Y/A.

(iii) Find the value of R that will maximize steady-state Q,
(iv) Let z - In Z and e = In E. The system derived in (i) should be linear in e and z.

Working with the system in logs, compute its eigenvalues, and discuss the sta-
bility of its steady state.

(v) Draw the phase diagram for the system.

Problem 53. A model of learning by doing. Starting from the Solow model
with exogenous technical progress, we will develop a simple model of
endogenous growth and examine some of its implications. Assume that the
production function is of the form

Y = Ka(AL)1~a

Then output per worker is given by

Q = AZa (1)

where A is an index of technical efficiency, and Z = KIAL is the capital/labor
ratio in efficiency units. Given a constant investment coefficient s, the growth
rate of Z is given by the following equation:

^ = sZ^-(8+n + gA) (2)

where n is the rate of population growth, and gA = AIA is the rate of tech-
nical progress.

Instead of assuming that gA is a given constant, we will now assume that
the rate of technical progress gA reflects the accumulation of knowledge with
productive experience. In particular, we assume that the instantaneous
increase of A is proportional to output per worker, that is,

(3)

where the coefficient /measures the speed of learning.

(i) Show that under these assumptions the law of motion of the capital/labor ratio
is of the form

Z = (s-yZ)Za-(S+n)Z (5)

(ii) Construct the phase diagram for the system, and discuss the stability of its
steady state. What is the growth rate of income per worker along the steady-
state path?

(iii) Analyze the impact of an increase in the investment rate on the steady state
and on the time path of the system. Things are now quite different from what
they were in the Solow model with exogenous technical progress. In what
sense?
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(iv) Consider two countries that are identical except for their investment rates.
Discuss the predictions of the current model and the Solow model with exoge-
nous technical progress concerning the evolution of the relative income levels
of the two countries.

Problem 5.4. An extended Solow model with human capital (Mankiw et al.,
1992). Suppose the aggregate production function is of the form

Y = KaEr(ALf~a~r = ALZaHr (1)

where K and E are the aggregate stocks of physical capital and human
capital, L is the size of the labor force, and A is a productivity index that
summarizes the current state of technical knowledge. The normalized vari-
ables Z = KiAL and H = EIAL denote the stocks of physical capital and
human capital per efficiency unit of labor.

We postulate constant rates of population growth and exogenous techni-
cal progress (LIL = n and AIA = g) and assume that the fractions of gross
domestic product (GDP) devoted to investment in physical capital and
human capital (sk and sh) remain constant over time. Under these assump-
tions, the accumulation of productive factors is described by the system

K = skY-SK and E = shY-8E (2)

where the depreciation rate 8 is assumed to be the same for both types of
capital. Using the fact that ZIZ = K/K -n-g, and H/H = (EIE) -n-g, the
laws of motion for the stocks of physical capital and human capital can be
rewritten in terms of the normalized variables,

^ ) (3)

^ s h Z H ( 8 g ) (4)
ti

(i) Find the steady-state values of Z, if, and output per efficiency unit of labor,
P=Y/AL.

(ii) We will now construct a log-linear approximation to the system and use it to
derive a convergence equation similar to the one obtained in Section 4(a)
Letting z = In Z and h=\nH (from where Z = ez and H = eh), rewrite the system
(3)-(4) in terms of z and h. Show that the linear approximation to the trans-
formed system around the steady state is given by

where x -x—x denotes the current deviation of variable x from its steady-state
value. Discuss the stability of the system (11)-(12) (and hence that of the orig-
inal system).
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(iii) Using the system (11)~(12) and the fact that p = az + yh, derive a linear
differential equation in p that describes the approximate behavior of this
variable, and solve it. Rewriting the solution in terms of output per worker
q=p + a, derive a convergence equation of the form

l-e ~M

, g + , [ p , { q , a . ) ]
a a

where d is the duration of the period, and A = (1 - a-y){8+g + n).

Problem 5.5. Diamond's model with variable labor supply. In the basic
Diamond model, leisure does not enter the utility function of households.
As a result, each worker supplies inelastically his or her endowment of labor
time, and the level of employment is constant (on a per-capita basis). We will
now relax this assumption.

To simplify things, we assume that the rate of population growth is zero
(n = 0) and that individuals work in youth and consume only in old age.
Young workers, on the other hand, enjoy their leisure and must therefore
seek an optimal trade-off between the disutility of working and the need for
income. The utility function of a representative worker is given by

U{xt+i, L,) = - L,
1-7

where ye (0,1), L is labor time supplied in youth, and x is old-age con-
sumption. The per-capita production function is

(i) Because consumption takes place only in old age, workers save their entire
labor income wL and consume their savings plus interest earnings (wtLtRt+1) in
the second period of their lives. They solve, then,

f x1' 7
maxsU = f x L' s.t. x = wLR \
xj. [ 1- r J

Solve this problem for the agent's labor supply (Ls) and savings functions,
(ii) Firms maximize profits per worker, that is,

max nt - yt - Rtkt —wtLt = {ktLt) —Rtkt— wtLt

Write the first-order conditions for this problem, solve for w and R as functions
of (k/L), and derive the firm's labor demand function.

(iii) In equilibrium, agents optimize, and labor and capital markets clear. Because
population is constant, market clearing requires, in per-capita terms,

U=U (5)
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st = kt+i (6)

Show that the conditions for market clearing and individual optimization can
be reduced to the following system of first-order difference equations in k and
R:

kt+1=Rtkt (A)

+ * (B)

Hint: The idea is to eliminate w and L from the foregoing equations. Use the
first-order conditions for the firm's problem to show that

wt=l/4Rt (7)

wtLt=ktRt (8)

and substitute the savings function into the market-clearing condition to get
(A). Next, use the market-clearing and optimization conditions together with
(7) to obtain (B).

(iv) We have been able, then, to reduce the model to a system of two first-order
difference equations that describe the sequence of competitive equilibria in
this economy. Note that if we take logs, the system becomes linear. Defining

K = In k and p = In R

we can rewrite (A) and (B) as

Kt+I=pt+Kt (A')

(BO

Construct the phase diagram of the system, compute its solution, and analyze
its dynamics. What would be a reasonable initial condition for this model?

Problem 5.6. Social security in Diamond's model. Consider a Diamond
economy like the one analyzed in Example 3.6. Population grows at a con-
stant rate n, preferences are of the form

£/(c,jt) = j81nc + (l-j8)ln* (U)

with /3 e (0,1), and the production function is Cobb-Douglas,

Y = Kal}'a (P)

with ae (0,1).
We assume that wages are taxed at a proportional rate r and that pro-

ceeds are used to finance a balanced pay-as-you go social-security scheme.
Hence, first-period after-tax income for an agent born at time t is given by

yi = ( l - r)wt
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and his second-period retirement subsidy is equal to

(because there are 1 + n young agents for each old agent).

(i) Maximize U(c, x) subject to the appropriate budget constraint, and solve for
the agent's savings function s* = s(yh y2, R) and his indirect utility function
v(wh wt+u Rt+U T). Taking factor prices as given, when is the agent's welfare an
increasing function of the social-security tax rate?

(ii) Derive the law of motion for the capital/labor ratio, Z = K/L, and compute
the steady-state values of Z and factor prices as functions of r. Call these
functions

Z = Z5(R), W=WS(T), and R=Rs(r)

Under what conditions is it true that 1 + n > >

(iii) What are the effects of an increase in F on steady-state Z and factor prices?
Compute the following derivatives evaluated at T= 0:

a n d

(iv) One of the advantages of working with a model in which indiviudal prefer-
ences are clearly specified is that this gives us a natural criterion for evaluat-
ing the desirability of possible policy alternatives. Using your previous results,
and considering only its effects on steady-state welfare, when will it be a good
idea to introduce a social-security scheme? To answer this question, compute
the derivative of a representative individual's (maximized) welfare with respect
to T, taking into account both the direct effects of the tax and its indirect effects
through the induced change in steady-state factor prices, and evaluate it at
r=0.

Hint: Leave everything in terms of z'(0)-
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Notes

1 Solving (6) for the level of output, we can reinterpret this relation as a "Lucas"
aggregate supply function,

saying that output supply will be above its natural rate whenever inflation exceeds
expectations. One possible mechanism behind this relation works through the impact of
unanticipated inflation on perceived real wages. When inflation is higher than workers
realize, they may overestimate their real wage, and this may induce them to supply
more labor than they would otherwise.

2 Note how we have arranged things so that the model becomes autonomous. Instead of
working with price levels, we are working with inflation rates. In a steady state,
therefore, it is not prices, but rather inflation, that remains constant. Second, the driving
force behind inflation will be the growth of the nominal money supply. If we allowed
the rate of monetary growth to change over time, we would have a nonautonomous
system. To simplify things, we assume that \i is constant. Then we can analyze the effect
of a change in monetary policy by looking at the impact of a once-and-for-all change
injn.

3 Notice that we would get the same answer if we moved east, rather than north, from
the steady state. Hence, we could have used dne/d7f instead of dne/dm.

4 See Section 2(d) of Chapter 10 for a discussion of the conditions for the stability of
linear systems with constant coefficients.

5 This is more an assumption than a result. Our original equations already embody the
natural-rate hypothesis.

6 A simple way to see this is the following. Suppose the production function is
homogeneous of degree h, where h is not necessarily equal to 1. Then, by Euler's
theorem,
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) (1)

Suppose h = 1 (i.e., we have constant returns to scale) and there is perfect competition.
Then factor prices are given by the corresponding marginal products, and equation (1)
says that when capital and labor are paid their equilibrium prices, total output is just
exhausted. If h > 1, however (i.e., when we have increasing returns), factors cannot be
paid their marginal product, because the required amount is larger than total output.

7 It can be shown that if F is homogeneous of degree 1, then its partial derivatives are
homogeneous of degree 0, that is, for any X > 0, FK(K, L) = FK(XK, XL), and similarly
for FL. See Chapter 4.

8 A similar model with a Cobb-Douglas technology was proposed simultaneously by
Swan (1956). Hence, we sometimes speak of the Solow-Swan model.

9 The first equality in this expression follows by L'HopitaPs rule whenever / ( ) is
unbounded.

10 Notice that firms return undepreciated capital to the old workers after production takes
place. Because the old "eat everything," the young have to start from scratch each
period.

11 Technical progress can be handled in the same way as population growth. Let g be the
rate of labor-augmenting technical progress, i.e., AM = (1 + g)At, and define Z = KIAL.
Then we have

A,

where Aw(Z) is the salary per worker. Notice, however, that this equation will not, in
general, have a constant-Z solution. If preferences are homothetic, however, the savings
function is of the form s(y, R) = s(R)y, and the previous expression simplifies to

which does have a steady state.
12 It is shown in the proof that 0'(O) > 1 requires that w'(0) > 1. Galor and Ryder (1989)

have shown that this condition is stronger than the Inada condition f'(Q) = ©o. Hence,
the Inada condition is not sufficient to guarantee the existence of a nontrivial steady
state.

13 Because Z is a function of A, which is not observable, it may instead be better to work
with the growth rate of the capital stock per worker. Although data on this variable are
indeed available for some countries, their quality is in general rather poor, and the
available figures may not be fully comparable across countries. Hence, it may be better
to use a transformation of (1) that will allow us to work directly with (more reliable)
data on investment flows, rather than with capital stocks.

14 See Barro and Sala-i-Martin (1990,1992) and Mankiw, Romer, and Weil (1992) for
empirical applications of this methodology.

15 Because z is in logs, this is approximately the deviation from the steady state in
percentage terms.

16 This can also be done inside the function. Thus we could replace the statement in In[7]
by

soll=NDSolve[{z'[t]==F[z[t], 0.25, 0.69, 0.03, 0.02,
0.01],z[0]= = zsl/2}, z,{t, 0, 100}]
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12
An Introduction to Dynamic Optimization

This chapter contains an introduction to dynamic optimization. In Section 1
we develop some basic elements of dynamic programming that are then
used in Section 2 in an informal derivation of the maximum principle. Appli-
cations will be discussed in Chapter 13.

1. Dynamic Programming

Consider a system, economic or otherwise, whose evolution over time can
be at least partially controlled by the actions of a decision-maker. At each
point in time s9 the state of the system can be described by a dated vector
of real variables, xs e Re, which we call the state vector. In each period the
decision-maker chooses a vector of control or decision variables, us e Rm.
Together, the current state of the system and the choices of controls deter-
mine the value of the state vector for the following period according to the
(possibly time-dependent) law of motion

xs+1=rns(xSJus) (1)

Thus, different choices of the control variables will yield different time paths
of the system. It will be assumed that the decision-maker has preferences
defined over such time paths that can be summarized by a time-additive
return or objective function

T-\

For simplicity, we will take as given the planning horizon and the initial
and terminal values of the state vector. Thus, we consider the problem faced
by a planner who inherits at time t a predetermined state vector xh cares
only about what happens between times t and T (< <*>), and is obliged to leave
the state vector with value xT at the end of the planning period. The agent

549
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550 An Introduction to Dynamic Optimization

can also be constrained by further restrictions on the state and control
vectors, which we will write (xs, us) e Cs for each s.

Given the initial state of the system, xh and a sequence ut,x-i = {us; s = t,
t +l9..., T - 1] of control variables, the evolution of the state vector is
determined by the law of motion (1). Thus, xt and ut,T_! induce a sequence of
states x,+vr = {xs; s = t + 1 , . . . , T). We will write zt,T = {ut,T_i u xt+i,T} and say
that a such sequence is admissible if both states and controls are feasible at
all times and the terminal value of the state vector is equal to the required
value, xT. The set of all sequences zt?T admissible from a given initial state
vector xt will be denoted by <E>(xf), or by O(x,, xT) when we also want to make
explicit the terminal constraint on the state. When we want to indicate
explicitly the initial and terminal conditions on this sequence, we will write
z(ut)T_i, xu XT), and we will denote the portion of zt,T between points a and b
in time by z(ut,T_1? xh xT)\b

a.
In this notation the decision-maker's objective function can be written

Notice that W( ) is given by the sum of the instantaneous or period return
functions {/J, where each fs is a function only of time and the current state
and control vectors and does not depend on either past or future values of
x or u.

(a) The Principle of Optimality and Bellman's Equation

The problem the agent faces is that of choosing the time path of the control
variables so as to maximize the objective function Wt subject to the law
of motion (1) and appropriate feasibility constraints, taking as given the
planning horizon (t, T) and the initial and terminal values of the state vector.
We will denote by V( ) the value function for the planner's problem (i.e., the
maximum attainable value of the objective function). Clearly, V( ) will be a
function of the parameters of the maximization problem (the initial and
terminal times and state vectors) and is equal to the objective function eval-
uated at the optimal control path and the induced state sequence, assuming
they exist. Formally, the problem can be written

V(xt,t; xT, T) = max{W[z(u,,T_i,xt,xT), t, T -1]

T-l
= X f°(Xs,Us)s.t xs+1 =ms(xs,us\ t, T, xty

s=t

andx r given, (xS9 u ^ C . c Rn+m for each s} (DP)

If Tis finite (which may not be the case), (DP) can be solved by the stan-
dard methods for dealing with constrained optimization problems (i.e., by
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applying the Lagrange or Kuhn-Tucker theorems). The structure of the
problem, moreover, permits some important simplifications and will also
allow us to deal with infinite-horizon problems (to which the standard the-
orems do not apply). The features that make things easier are the additive
separability of the objective function and the simple structure of the law of
motion - the fact that for each s,fs (the period return function) and ms (the
law of motion) depend only on s and on the current values of the state and
control variables, but not on their past or future values, and that the total
return is simply the sum of the period return functions.

This property has the following implication. Let zt?T = z(ut,T_!, xt7 xT) be an
admissible sequence of controls and induced states between end points xt

and xr, and let a and b be positive integers, with t<a<b<T-l. Then we
can write the return function in the form

That is, the total payoff associated with a state-control sequence over the
whole planning horizon is simply the sum of the payoffs associated with dif-
ferent portions of the sequence over the corresponding subperiods. Using
this additivity property, it is easy to establish the following result, which gives
an important property of the optimal solution of (DP).

Theorem 1.1. The principle of optimality. Let zfr = Z(U*T-I> xt, xT) =/uf ,
xf+lj/ be the optimal solution of (DP) between given end points (xt, t) and (xT,
T). Given arbitrary points a and b, with t < a < b < T-7, let xf and xf be the
corresponding terms of the optimal state sequence /xf/. Then the optimal solu-
tion to

V(x *, a; x * b) = maxlwfz^ „ a, b - l ) = £ fs(xs, u j

s.t. xs+1 = msfxs, Us), a, b, x*, and x% given,

(xs, Us; eC s C Rn+m for each s 1 (DP.ab)

is given by z%T\\ '•

Roughly speaking, the theorem says that each portion of the optimal plan
is optimal on its own right. More precisely, any portion of an optimal tra-
jectory is an optimal trajectory for an appropriate subproblem of (DP)
in which we constrain the end-point values of the state vector to be equal
to the corresponding terms of the optimal state sequence for the whole
problem.
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Proof. We proceed by contradiction. Let O(JC*, x%) be the set of feasible
trajectories za,b_i between end points (x% a) and (x*, 6).This set is not empty,
as it contains at least the relevant portion of the optimal sequence
for the whole problem, zf,T-ilL which exists by assumption. Now suppose
that i%T-Abal is not optimal for the subperiod from a to b. Then there exists
a feasible sequence between these end points, Za,b-i, such that W{z'a,\>-i) >
W(2%T-i\

b
a
~1). By the time-additivity of the objective function,

/ * *- l \ . / * T-l\ / * T-l

W z
T

Hence, we have found a sequence zfx^lj i u za,b-i u Z%T-I\I ' that yields a
higher return than ZFJT_I. Moreover, because this sequence is feasible by
construction, we have reached a contradiction: zf,T_! cannot be an optimal
solution for the "whole" problem. •

Problem 1.2. A violation of the principle of optimality. Consider an agent
who lives three periods and maximizes a utility function of the form

Vi = Ux + aU2 + pU3

where utility in period i9 Uh is a function of current and (expected) future
consumption, that is,

(c2c3), a n d

and the budget constraint is of the form

At+i =At-ct (Ai given, and A4 = 0)

where A is wealth.
Notice that the return function is additive, but not separable over periods,

as the period-1 utility, for example, depends on (expected) consumption at
times 2 and 3. Hence, the assumptions of Theorem 1.1 do not hold, and, as
we will see, the principle of optimality fails.

(i) Compute the optimal consumption plan from the perspective of time 1,
cl = (c\,c\,c\).

(ii) Next, consider what happens as the agent begins to implement this plan. At time
1, he consumes c\, receives utility Uu and has leftover wealth A2 = A1- c\. He
then faces the problem of maximizing utility over the remainder of his life,

max V2 = aU2 + f3U3

subject to c2 + c3 = A2. Compute the new optimal plan, c2 = (ci cl), and compare
it with the last portion of c1. Has the consumer changed his mind? How and
why? Does the Bellman equation (discussed later) hold? •
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The principle of optimality has an important implication, sometimes
called time consistency: Suppose we compute the optimal path from the
beginning of the planning period and start moving along it. After a while,
we stop and recalculate the optimal solution from the current time and state.
The principle of optimality tells us that the solution of this new problem will
be the remainder of the original optimal plan. Hence, the decision-maker
will not be tempted to "change his mind."

This property allows us to approach the problem sequentially, leaving for
tomorrow decisions about future controls, thus breaking up the original
dynamic problem into a sequence of static subproblems. To make this
precise, consider one particular decomposition of the problem, that into (i)
today's choice of controls and (ii) all the rest of the plan. By the additivity
of the objective function, we can write

V(xt, t; xT,T)= max W[z(ut,T_i ,xt,xT%t,T- i\
ut,T-l

= max {/,(«„ xr) + W[z(ut+1,T-i, xt+1, xT), t + l, T-1]}
Ut. ut+l,T-l

where the maximization is subject to the usual constraints and, in particular,
xt+i = mt(xt, wr).The structure of the problem allows us to approach the choice
of the current (ut) and future (ut+i,T_i) controls sequentially. Notice that states
and controls dated t+1 or higher do not affect the current return, given
by ft(uh xt), and that the current state and control vectors (xt, ut) affect
future returns only through their effects on tomorrow's state, xt+i. Thus, we
can solve the problem in two steps: Given any choice of the current control,
tomorrow we will face the problem of choosing ut+i,T_i so as to maximize
W[z(ut+i,T_i, xt+i9 xt), t+ 1, T-l], taking as given the state xt+1 resulting from
today's decision - a problem identical with today's except for the initial state
and time. Having solved this problem, today's decision reduces to choosing
uh taking into account both its direct contribution to the current return
and its indirect contribution to future payoffs through its effect on
tomorrow's state. The principle of optimality assures us that this stepwise or
sequential maximization process will yield the same result as simultaneous
determination of the whole control path. Thus, we can write

V(xt,t;xT,T)=
«r"t+l,T-l

= max\ft(ut9xt) + max {W[z(ut+1,T_1? xt+u xT), t +l, T -1]}
Ut I Ut+l,T-l

s.t.*,+1 =mt(xn O

Finally, observe that the payoff resulting from the inside maximization is
given by the value function corresponding to "tomorrow's problem." Thus,
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max]ft(ut,xt)+ max{W[z(ut+itT..i,xt+uxT),t + l,T-1]} s.t. xt+1 =m t ( x t ,
Ut I O|+l,T-l

= max{/f(ut,*,) + V{xt+1,t + l\ xT,T) s.t. xt+1 = mt(xt9ut)}

and we arrive at Bellman's equation,

V(xt ,t;xT,T) = max{/r (ut ,x,) + V(xt+1 ,t + l;xTjT)s.t. xt+1 = mt (xt, ut)} (BE)
ut

This expression formally characterizes the optimal choice of the current
control vector as the solution of a static optimization problem in which the
future consequences of current actions are summarized by incorporating
tomorrow's value function into today's objective function. The solution to
the static maximization problem in (BE) yields a policy function that gives
the optimal value of the current control, u% as a function gt(xt) of time
and the current state. Tomorrow's state is then given by xt+1 =mt[gt(xt),xt]J

and a solution to a similar problem (with xt+1 now given) then yields
tomorrow's optimal control. (Notice that time enters both the value and
policy functions as a separate argument, reflecting the fact that periods may
differ in factors other than the state vector.)

The recursive relation given by (BE) is useful in that it allows us to con-
ceptually transform a dynamic choice problem into a sequence of static
problems we already know how to handle, at least in principle. But notice
that the maximization in Bellman's equation is not really a standard problem
in at least one sense: The value function V{ ) appears both inside and outside
the maximization operator (although with different arguments) and there-
fore is not a known function. In fact, (BE) is a functional equation - an equa-
tion in the unknown function V(). Hence, the reformulation of the original
problem does not really solve it, nor put it in a form we can solve directly.
The Bellman equation, however, does provide the basis for an alternative
approach to the problem that will indeed lead to an operational solution
method. In the sections that follow we will consider two cases: finite-horizon
problems, and infinite-horizon problems with some additional restrictions.

(i) Solution of Finite-Horizon Problems through Backward Induction

Dynamic programming problems over a finite planning horizon do not
present any conceptual difficulties. The value and policy functions can be
obtained by starting from the end and working backward. The optimal
control sequence can then be computed by applying the sequence of policy
functions, gu ..., gT-\, to the initial state vector.

One period before the end of the planning period the problem reduces to
choosing the last control, taking as given the terminal value of the state.
Omitting some of the arguments of the value function, we can write
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V(xT_l ,T-l) = max{fT_1 (uT_1,xT_1) s.t. mT-1 (xT_ u uT_1) = xT given}

Notice that at this stage there is no unknown value function inside the max
operator; hence, V(xT.u T- l) is well defined by the foregoing expression,
and for a fully specified problem its computation is, in principle, straight-
forward. On the other hand, the value of xr_i is not known at this point, but
this does not matter, for we are interested in the whole function V(-, T-1),
rather than its value for a specific state vector.

This procedure will also work for a class of problems more general than
those we have considered thus far. In particular, we can abandon the
assumption of a predetermined terminal state vector and let the agent
choose xT taking into account its contribution to his payoff, given by a scrap
or salvage value function S(xT).x In this case, the last-stage maximization
becomes

V(xT_uT-l) = max{fT_1(uT_uxT_1) + S(xT) s.txT =mT.1(xT_1,uT_1)}
UT-1

In any case, the solution of the last-period problem yields a policy function
that gives the optimal value of the last control as a function of the state at
the beginning of the period: w*_i = gr-i(*r-i). As for the value function, the
value of the argument is not known at this stage, but what we want is the
function itself.

Given V{xT.\, T -l), we can go back one step and compute the value
function for the previous period,

V(xT-2,T - 2) =

S . t . X r _ ! = r 2 ( T 2 , 7 2 ) }

obtaining also the corresponding policy function, u*.2 = gT-2(xT-2). Pro-
ceeding in this manner, we eventually reach the initial period and solve

V(xt, t) = max{ft(ut9xt) + V{xt+ut + l;xT,T) s.t.xt+1 = mt(xt,ut)}
Ur

to obtain the value function for the original problem and the first policy
function, gt(-). At this point, the initial value of the state, xt, is a given quan-
tity, and the whole sequence of policy functions {gs; s = t, t+ 1 , . . . , T- 1} is
also known. Hence, we can recover the optimal sequence of instruments,
given by u* = gs(xs), and the induced sequence of states, xs+1 = ms(xs, u*).

(ii) Discounting and Stationarity

It should be clear that the foregoing solution algorithm cannot be used when
the planning horizon is infinite, for there is no terminal date from which to
work backward. As we will see, however, certain kinds of infinite-horizon
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556 An Introduction to Dynamic Optimization

problems can be dealt with and in many cases are easier to solve than finite-
horizon problems. In this section we introduce some notation and impose
some additional structure on the dynamic programming problem before
briefly discussing a particular class of infinite-horizon problems that will be
analyzed in greater detail later.

Discounting. In many situations, payoffs accruing at different points in
time are valued differently by the decision-maker. Typically, those that are
realized further into the future are valued less than those that accrue
immediately. Although our earlier specification of a time-dependent period
return function fs(xs, us) implicitly allows for this possibility, it will be
convenient to bring it out explicitly by introducing a sequence of period-
specific weights. In particular, we will assume that the period return function
at time s is of the form fs(xs, us) - asFs(xs, us)y where the discount factor as is
a nonnegative real number, and consider an agent who faces a problem of
the form

r-i
V(XOJ 0) = maxY asFs(xs, us)

»0,T-l ~

subject to the usual constraints. We will interpret Fs( ) as the payoff
that accrues at time s, valued from the perspective of time s itself, and fs( )
= ccsFs( ) as the same payoff "discounted back" to the beginning of the plan-
ning period at time zero. Thus, multiplication of the current payoff Fs( )
by as brings it back to time-zero units, and division of the discounted payoff
fs( ) by the same factor brings it forward to time-5* units. Because first-
period returns need no discounting, we set a0 equal to 1.

As time passes and the agent gets to period t, he faces the subproblem of
maximizing the remainder of the objective function,

T-l
V(xt, t) = maxYocsFs(xs,us)

U..T-1 ~

Notice that the value function in this expression gives the maximum attain-
able payoff evaluated from the perspective of time zero, because each period
return is multiplied by the corresponding discount factor. When maximizing
over the subperiod starting at t, however, it is often more convenient to make
"current" valuations (as of time i). Thus, we define the current value func-
tion by

at «T,T-I ~ at

As usual, successive subproblems are linked by the Bellman equation:
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V(xt, t) = maxja^ {xt,ut) + V(x,+1 ,f + 1)}

To rewrite this equation in terms of current values, we divide both sides of
this expression by at, obtaining

Vc{xt, t) = m<ix{Ft{xt,ut) + ptV
c{xt+l,t + l)}

lit

where the one-period discount factor, fit = 04+1/04, discounts values from t +
1 to t (multiplying by 04+1 brings them back to zero, dividing by 04 takes them
back up to £). The interpretation of this expression is almost exactly the same
as that of the undiscounted version of the Bellman equation: Given tomor-
row's state, xt+u Vc(xt+U t+1) gives the maximum attainable payoff in "tomor-
row's utility units." To bring it back to "today's units," we multiply Vc( ) by
(3t. The optimal policy is then to choose ut so as to maximize the sum of
today's period return and the discounted value of tomorrow's current value
function.

Infinite Horizon, Stationary Problem. In many problems of interest it can
be assumed that the period return function, the law of motion, the one-
period discount factor, and the feasible set C to which states and controls
must belong are all time-invariant, that is,

FS = F, ms = m, CS = Qp s = p (Vs)

This assumption allows some further simplifications of the problem.
Notice that with a constant j8, we have as+1 = /?a5. This equation, together with
the assumption that ofo = 1, implies that the discount factor must be of the
form as = (5s. Thus, the subproblem starting at time t can be written

T-\

In the finite-horizon case, t is still a separate argument of the current value
function, as subproblems that start at different dates differ from each other
not only in the initial value of the state vector but also in the time remain-
ing until the end of the planning period. If the planning horizon is infinite,
however, this is no longer the case, and all subproblems are identical. Thus,
for infinite-horizon stationary problems, the current value function is a
function of the initial state alone, Vc(xt), and the Bellman equation becomes

Vc (x,) = max{F(xt ,ut) + pvc (xt+i)}

It follows that the policy function, u*= g(xt), is also time-invariant. This is an
important simplification, because we now have to find only one such func-
tion, rather than T -t oi them.
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558 An Introduction to Dynamic Optimization

As noted earlier, the backward-induction algorithm cannot be used
to solve infinite-horizon problems. The following observation, however,
provides the basis for a way to deal with such problems, as we will see later.
Given a function v( ) from Rn to R, we can define an operator T mapping
the space of such functions into itself:

Tv(x) = max{F(x, u) + /5v(y) s.t. y = m(x, u\ (x, u) e C}
u

The Bellman equation can then be written Vc = TVC. Hence, a function V
solves Bellman's equation if and only if it is a fixed point of the operator T.
Under certain assumptions, the contraction mapping theorem can be used
to establish the existence and uniqueness of a solution to Bellman's
equation and to determine some properties of interest of such a function.

(Hi) Uncertainty

Dynamic programming is particularly useful when dealing with problems
that involve uncertainty in a dynamic setting. Provided we ignore some tech-
nical problems, the previous discussion can be easily extended to deal with
stochastic problems.

Imagine that instead of a deterministic law of motion we have a stochastic
law: xt and ut no longer determine the value of xt+h but only its probability
distribution, described by a distribution function of the form G(xt+1; xt9 ut)y

where

G(y\ xt9ut) = pr(*,+i <y\xt9ut)

Agents now maximize expected utility. At time t, they choose uu not knowing
for certain the value of next period's state. Whatever xt+1 turns out to be,
they will optimize from tomorrow on, obtaining a value of Vc(xt+U t +1).
From today's perspective, then, ut must be chosen so as to maximize the
sum of the current return and the discounted value of the expectation of
Vc(xt+U t+ 1), computed using G( ). Hence, the Bellman equation becomes

t, t) = max{Fr(wf,xt) + pjvc(xt+1,t + l)dG(xt+1; xui*,)

(b) Some Results for Stationary Discounted Problems

In this section we will analyze in greater detail a class of infinite-horizon
problems. Given a predetermined state vector xt9 a decision-maker faces the
problem of maximizing the objective function
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with fi e (0,1), over the set of feasible sequences zt)OO = {us, xs+i} e O(xr),
where XS+1 = m(xs, us). We will assume that the series Wt converges (although
possibly to plus or minus infinity) for all feasible sequences zt?oo and that the
feasibility constraints are of the form

USET(XS)

where T is a correspondence mapping points in Rn into sets in Rm. The
problem faced by the agent can then be written

s.t. xs+l = m(xs, us), us e F(xs), xt given I (DP.°°)

and the current value functionVc(xr) gives the maximum attainable value of
the objective function whenever the problem has a solution. We know from
our previous discussion that if the value function does exist, then it satisfies
the Bellman equation:

Vc(x) = max{F(x,u) + pVc(y) s.t. y = m(x, u)\ (BE)
UGF(X)

The converse of this statement, however, is not necessarily true. The
Bellman equation may have several solutions, and only one of them can be
the value function for the programming problem. Hence, we need to estab-
lish conditions under which we can be sure that a given solution of (BE) is
the value function we seek.

Theorem 1.3. Let the function v:R
n —> R solve the Bellman equation (BE)

and satisfy the boundedness condition

lim$nw(xn) = 0 (0)
n—>co

for any sequence fxnj feasible from the initial state xt. Suppose, moreover, that
there exists a sequence z%oo = xt u /uf, xf+J, where uf solves

v(xs)= max {F(xs,us)+$v[m(xs,Us)]} (BE.s)
user(xS/)

for each s and x?+i = m(x% uf j . Then v is the current value function for the
programming problem, and zffOO solves (DP.°°) .

Proof To show that v( ) is the value function for the programming problem,
we need to show that for any given initial state xh

(i) v(xt) > Wf(zt,oo) for any sequence ztf00 e O(x,), and
(ii) there exists a sequence z*» e O(x,) such that Wt (z*,oo) = v(xt).
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560 An Introduction to Dynamic Optimization

That is, v(xt) is an upper bound for the value of the problem over the set of
feasible sequences, and there is a feasible sequence that attains this value.

Let zt)OO = XT\J {us, xs+i\ s > t) be an arbitrary sequence feasible from xt. Then,
by (BE.*),

v{xt) = max {F(xt,ut) + /5v(xt+1 )}>F(xt,ut) + /3v(xt+1)
uteT(xt)

>F(xt,u,) + p[F{xt+1, ut+1) + pv(xt+2)]

F(xs, us) +pn+'v(xt+n+l) (3)

Taking the limit of this expression as n —>», and using the boundedness
condition (0),

v(xt) > Wt(zt^

for any feasible sequence zt?oo. Hence, v(xt) is an upper bound for the value
of the problem. Moreover, the sequence z??oo = xt u {u% x*+i} of solutions to
(BE.51) attains this value. Notice that by definition,

v(x*)= max {F(xtus) + pv[m(x*,us)]} = Fix*,u

Hence, all the weak inequalities in (3) hold as equalities, and we conclude
that

which proves the theorem. •

Theorem 1.3 says that if we can find a bounded solution to the Bellman
equation, the original problem reduces to a sequence of static maximiza-
tions. There is, however, no assurance that such a solution will exist in all
cases. Our next task is to identify conditions under which the Bellman equa-
tion has a unique bounded solution. The discussion relies heavily on the
reader's familiarity with the concepts of a complete metric space and the
contraction mapping theorem (for a review of this material, see Section 7 of
Chapter 2).

We define the operator T mapping real-valued functions into real-valued
functions by

Tv{x) = max{F(x, u) + /3v[m(x, u)]}
uer(x)

Then the Bellman equation can be written in the form

V(x) = TV(x) (BE7)
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Thus, we see that finding a solution to the Bellman equation is equivalent
to finding a fixed point of the operator T. If we can show that under ap-
propriate assumptions, T is a contraction mapping a complete metric space
into itself, we can invoke the contraction mapping theorem to establish the
existence and uniqueness of an appropriate solution to (BE).

We recall from Chapter 2 (see Theorem 7.12) that the space C(X) of
bounded, continuous real-valued functions defined on a set X in Rn is a
complete metric space under the sup norm, defined by

Next we will check that under certain continuity and boundedness restric-
tions on the objective function, the law of motion, and the constraint cor-
respondence, the operator T maps C(X) into itself (i.e., T maps continuous
bounded functions into continuous bounded functions) and that T is a con-
traction. By the contraction mapping theorem, it follows that (BE") has a
unique bounded solution in C{X) that, by Theorem 1.3, is the value func-
tion we are seeking.

In what follows, we will make the following assumption.

Assumption 1.4. Continuity. The period return function F is bounded and
continuous, the law of motion m is continuous, the constraint correspondence
F is continuous,2 and the set T{x) is nonempty and compact for each x.

Under these conditions we can establish the following result.

Theorem 1.5. Suppose that Assumption 1.4 holds. Then T is an operator
mapping continuous bounded functions into continuous bounded functions.
Moreover T : CfX) —> CfXj is a contraction and therefore has a unique
fixed point V in CfX). This V is the value function for the corresponding
dynamic programming problem.

Moreover, under Assumption 1.4, the solution function for the maximiza-
tion in (BE) is the policy correspondence g( ) for the programming problem,
giving the set of optimal values of the control u as a function of the state, and
g( ) is nonempty and uhc.

Proof

• Let v e C(X). Under our assumptions, the maximization problem that defines the
operator T,

Tv(x) = max{F(x, u) + Pv[m(x, u)]}
usr(x)

is, for each x, that of maximizing a continuous function on a compact set. Hence,
by the extreme-value theorem, a maximum exists, and Tv is well defined. Because
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562 An Introduction to Dynamic Optimization

both v and F are bounded, Tv is also bounded; and because F and v are continu-
ous and the constraint correspondence is continuous and compact-valued, the
theorem of the maximum (Theorem 2.1 in Chapter 7) guarantees the continuity
of Tv. Hence, Jmaps C(X) into itself. Moreover, by the theorem of the maximum,
the solution mapping for this maximization (i.e., the policy function g(x)), is a non-
empty and uhc correspondence.

• To establish that T is a contraction, we make use of Blackwell's sufficient con-
ditions (see Theorem 7.19 in Chapter 2). We have to show that T satisfies

(i) monotonicity: V /, g e C(X), f(x) < g(x) V I => Tf(x) < Tg{x\ and
(ii) discounting: 3 p e (0,1) s.th. V / € C(X),x e X, a > 0: T[f(x) + a]< Tf(x) + /3a.

First, suppose that w(y) < v(y) for all y in X. Then for each (x, u)9 w[m(x, u)] <
v[m(x, w)], and therefore

Tv(x) = max{F(x, u)+j3v[m(x, u)]} > max{F(x, u)+j8w[m(x, u)]} = Tw(x)
«er(i) «eF(x)

Thus, T is monotone. Next, note that for any positive constant a, we have

T[v(x) + a] = max{F(x, u) + /?{v[m(x, u)] + a}}
UET(X)

= max {F(x, u) + fk[m(x, u)]} + Ba = Tv(x) + jia
usr(x)

Hence, T discounts. Because it satisfies both of Blackwell's conditions, T is a
contraction.

• Because T is a contraction on a complete metric space, it follows directly from
the contraction mapping theorem (Theorem 7.15 in Chapter 2) that it has a unique
fixed point V.

• By Theorem 1.3, the bounded continuous function V is the value function for
the corresponding dynamic programming problem. Moreover, the solution
mapping for the maximum problem in the Bellman equation is the optimal policy
correspondence. •

It also follows from the contraction mapping theorem that if, starting with
an arbitrary continuous and bounded function V0J we define a sequence {Vn}
of functions by

V 1 = TV

this sequence converges to the value function V. This fact can sometimes be
used to find the value function.

Knowing when the Bellman equation has a unique bounded solution (i.e.,
when the value function is well defined) is an important first step, but one
that is of little practical help. To go further we need to establish conditions
under which V will have certain desirable properties.

In the remainder of this section we will use the foregoing results relating
the value function with the bounded solution of the Bellman equation to
show that under reasonable restrictions on the period objective function
F and the constraints, the value function is strictly increasing and strictly
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concave, and the policy correspondence is a continuous function. For this,
we will rely on the following result: Recall that if (X, d) is a complete metric
space and Y is a closed subset of X, then (Y, d) is also a complete metric
space (Theorem 7.9 in Chapter 2). Now suppose that T: X —> X is a con-
traction in X and, moreover, that T maps Y into itself. Then T is also a con-
traction in Y, and it follows that the unique fixed point of T on X must be
in Y. A slight twist on this result yields the following theorem.

Theorem 1.6. Let (X, d) be a complete metric space, and let T : X —> X be
a contraction with fixed point v e X. Further, let Y be a closed subset of X,
and assume that T maps points in Y into some subset Z o / Y (Le., T : Y —>
Z). Then the unique fixed point vofT in X vW// be in Z.

Problem 1.7. Prove Theorem 1.6.

We will show that the set ND(X) of nondecreasing bounded and
continuous functions is a closed subset of C(X) and that the operator T
in the Bellman equation maps nondecreasing functions into strictly increas-
ing functions. It follows by Theorem 1.6 that the value function V must
be strictly increasing. A similar argument will allow us to establish strict
concavity.

Lemma 1.8. Consider the normed vector space [C(X), \\'\\s], where C(X) is
the set of bounded continuous functions f: Rn 2 X —> Wl,with the sup norm
||f||s = supf\f(x)\; x e X/. Let ND(X) be the set of nondecreasing bounded and
continuous functions on X. Then NDfX) is a closed subset ofC(X).

Recall that a function / : X —> R is said to be nondecreasing if

V x0, xt e X, xt > x0 => f(xt) > f(x0)

and strictly increasing if

V X0, Xi € X, Xi > X0 => f(Xx) > f(x0)

Proof Let {/„} be a sequence of nondecreasing continuous functions con-
vergent (in the sup norm and hence pointwise) to a function / (which is
bounded and continuous, by the completeness of C(X)). To establish that
ND(X) is a closed subset of C(X), it suffices to show that / is nondecreas-
ing. Let x0 and x{ be arbitrary points in X such that xx > x0, and consider the
sequence of real numbers [fn(xx) -fn(x0)}. Because \fn] ->/, {fn(x1) -fn(x0)}
converges to f{xx) -/(x0), and because /„ is nondecreasing, /n(xi) -/n(*o) > 0
for all n. Hence, we have a convergent sequence of nonnegative
real numbers, and it follows that the limit of the sequence,/(*i)-/(x0),

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:32:47 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.013

Cambridge Books Online © Cambridge University Press, 2013



564 An Introduction to Dynamic Optimization

is nonnegative. This establishes that the limit function /( ) is also
nondecreasing. •

Assumption 1.9. Monotonicity. Assume that F{ ) is strictly increasing in x9

m() is increasing in x, and the constraint correspondence T( ) is increasing
in the sense that

Lemma 1.10. Let T ; C(X) —> C(X) be the operator defined by

Tv(x)= max{F(x,uj+pv[mfx,u)]}

and assume that Assumption 1.9 (monotonicity) holds. Then T maps nonde-
creasing functions into strictly increasing functions.

Problem 1.11. Prove Lemma 1.10.

Combining these two lemmas with Theorem 1.6, the following result is
immediate.

Theorem 1.12. Suppose that Assumptions 1.4 and 1.9 (continuity and
monotonicity) hold. Then the value function V is strictly increasing in the
state x.

To summarize, we know that under the continuity assumption the Bellman
equation has a unique continuous and bounded solution V that is the value
function for the corresponding programming problem. This function can be
characterized as a fixed point of an appropriately defined operator T: C(X)
—> C(X). We have shown that the set of nondecreasing bounded and con-
tinuous functions ND(X) is a closed subset of C(X) and that under Assump-
tion 1.9, T maps nondecreasing functions into strictly increasing functions.
It follows that the value function must be strictly increasing. Intuitively,
our assumptions ensure that an "increase" in the state is strictly desirable
because it strictly increases the current return and does not reduce future
opportunities.

We will now develop a very similar argument to show that under certain
conditions, F is strictly concave. Recall that a function / is said to be (weakly)
concave if

V Xo, x, e X, X e [0,1], (1 - X)f(x0) + Xf(x,) < / [ ( I - X)x0 + Xx,]

and strictly concave if
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, Ae(0,l) , (1-

Lemma 1.13. Consider the normed vector space [C(X), \\-\\J, where ||-||s is the
sup norm, and assume X is a convex set. The set of (weakly) concave
functions in C(X) is a closed subset ofC(X).

Problem 1.14. Prove Lemma 1.13.

Assumption 1.15. Concavity. Assume that F is strictly concave, m is concave,
for each x the constraint set T(x) is convex, and the constraint cor-
respondence F is convex in the sense that

,*i eX, Ae[0,l], w0

(1 - A)u0 + Aw, e T[(l - A)*o + Ax, ]

Lemma 1.16. Let T : C(X) —> C(X) be the operator defined by

Tv(x) = max{F(x,u)+pv[m(x,u)]}

assume that the concavity and monotonicity assumptions hold. Then T
maps weakly concave functions into strictly concave functions.

Problem 1.17. Prove Lemma 1.16.

Using Lemmas 1.13 and 1.16 and Theorem 1.6, it follows that under the
continuity, monotonicity, and concavity assumptions, the value function V is
strictly concave.

Theorem 1.18. Suppose the continuity, monotonicity, and concavity assump-
tions hold. Then the value function V is strictly concave and strictly increas-
ing, and the policy correspondence g( ) is a continuous function.

Proof. The first part of the theorem is immediate. Moreover, we know by
the maximum theorem and Theorem 1.5 that the optimal policy correspon-
dence is uhc. Because any single-valued uhc correspondence is a continuous
function (see Section 11 of Chapter 2), we need only establish that the solu-
tion w* to the maximization in the Bellman equation is unique, but this
follows immediately by the strict concavity of F, the concavity of ra(), and
the concavity and monotonicity of V, all of which ensure that the objective
function for the problem is strictly concave (in (x, u) and therefore in u
alone). •
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566 An Introduction to Dynamic Optimization

Differentiability of the Value Function. The maximization in the Bellman
equation is a static optimization problem that looks like an ordinary
Lagrange or Kuhn-Tucker problem. Hence, one is tempted to write the
Lagrangean function and differentiate it with respect to u to obtain a set of
first-order conditions and then proceed in the usual way (by applying
the implicit-function theorem or differentiating implicitly the first-
order conditions) to establish the comparative-statics properties of the
optimal policy function. This approach, however, presupposes that all the
functions involved are twice differentiable, an assumption that generally is
not valid.

The basic problem arises because the value function for the problem,
V{ ), appears also inside the maximization operator. Whereas we are free
to make whatever assumptions we want about ra( ) and F( ), the differen-
tiability of V() must be established rather than directly assumed.3 It can be
shown that V( ) will be (once or twice) differentiable for a certain class
of problems, but not in general.4 As a result, the standard approach to
studying the comparative-statics properties of maximization systems is not
generally available for the case of dynamic programming problems.

2. Optimal Control

We now switch from discrete time to continuous time and develop the basic
elements of optimal control theory. A central result of this section is a set
of necessary conditions for an optimum in a certain class of dynamic opti-
mization problems, the so-called maximum principle of Pontryagin. We will
derive the maximum principle from a dynamic programming formulation.
Roughly, we start with a discrete-time problem, apply the dynamic pro-
gramming techniques discussed earlier, and consider what happens in the
limit as the length of the period goes to zero.

The continuous-time analogue of the problem studied in the preceding
section can be written

Vc(x0,0)= max \wo(u(t)\lo,x(t)\i_o) = f a(t)F[u(t\x(t\t]dt
u(t),0<t<Tl V / J O

+ a(T)S[x(T)] s.t. x(0) = x0 given,

and x(t) = m [u( t), x(t)9 i\} (R0)

where, as before, x is the state vector, and u the vector of control variables.
The salvage or scrap function 5( ) is used to allow for the possibility that
we may place some value on the state at the end of the planning horizon T
(which may or may not be finite). We will assume that the discount factor
corresponding to period t is of the form
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which reduces to the more familiar e~pt whenever the discount rate p is con-
stant over time.5 The notation x(t) indicates that the state is a function of
time. For convenience, we will often replace this functional notation by the
subscript notation xt to indicate dependence on time, or omit the fs when
they are not particularly needed. We will often treat x and u as if they
were single variables, but the reader should keep in mind that they are
vectors.

The problem is similar to the one analyzed in Section 1 except that the
planner now must choose a control trajectory (i.e., a function of time, u(t),
defined for t e [0, T]9 that describes the values of the instruments at each
point in time), rather than a control sequence {u,}J^. Given a control
path w°(0iL), the corresponding trajectory of the state vector, x°(t)\J=0, is
determined by the law of motion, xt = m(u, xJ f), and the initial condition
x(0) = x0. Evaluating Wo, we obtain the value of the given trajectories,
Wo(w°(£)|]lo,xo(£)|jLo). Our goal is to characterize the time paths of u and x
that will yield the largest possible value for the objective function. This will
be achieved by transforming the dynamic maximization problem (P.O) into
a combination of two more familiar problems: a static maximization at each
point in time, and a system of ordinary differential equations.

(a) The Maximum Principle

We begin with an intuitive discussion of the logic of the maximum princi-
ple. At each point in time t the planner finds herself with some predeter-
mined value of the state xt and must choose a control vector ut that will
determine both the immediate payoff Ft( ) and the rate of change of the
state variables xt.

6 Current decisions, therefore, have two effects on total
value: an immediate one through Ft( ), and an indirect one through the
induced change in x. Clearly, a control chosen to maximize just the current
return is unlikely to be optimal. We need some way to take into account the
effects of current decisions on future opportunities. Intuitively, the maximum
principle achieves this by attaching a price to the stocks of state variables.

The idea is to introduce a modified objective function that will add to the
immediate return the value of the change in the state vector due to current
decisions. To this end, we introduce a new set of variables qt, one for each
component of the state vector. These variables, known as multipliers
or costate variables, can be interpreted as the prices associated with the
state variables. The modified objective function, known as the current-value
Hamiltonian, is then defined as
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568 An Introduction to Dynamic Optimization

Hc
t = Hc(ut,xt,qt,t) = Ft(unxt) + qtmt(unxt) = Ft( ) + qtx

The first component of the Hamiltonian is Ft(uh xt), the current flow return
(utility, profit) to the decision-maker. The second term, qtxh measures the
increase in value due to the change in the state variables. Thus, we can think
of Hc as the sum of the immediate payoff from (x, u) plus the value of the
future gains to accrue from the "investment in the future" represented by
the change in the state variable.

In view of the foregoing discussion, it seems plausible that, given the
correct shadow prices, maximization of the Hamiltonian will yield the
optimal choice of instruments at each point in time. If Hc is a differentiable
function of u, a necessary condition for an optimum is

dF t (ut,xt), dmt(ut9xt) _
— - u => - tt qt - - t
du du, du,

That is, the decision-maker must balance immediate gains from a higher u
against the value loss stemming from the reduction of future opportunities
that the correspondingly lower future x entails.

The procedure is in some ways analogous to the method of Lagrange
multipliers used to solve static optimization problems with side constraints.
In both cases, the idea is to reduce a more complicated problem to an uncon-
strained maximization by introducing a set of prices to give the decision-
maker the right incentives. As in the Lagrange case, this leaves us with the
problem of making sure the shadow prices are set correctly (i.e., that they
truly reflect the marginal contribution of the state variables to the agent's
total payoff). One way to ensure this is simply to define the multipliers as
the partial derivatives of the value function with respect to the correspond-
ing state variables,

q' ~ dx,

As we will see, this implies that the evolution of the costate variables over
time is described by the system

The law of motion for the shadow prices can be interpreted as a no-
arbitrage or asset-valuation equation. Observe that the derivative of the
Hamiltonian with respect to the state variables,

dHc
t = dFt(ut9xt) | dmt(ut9xt)

dxt dxt
 t dxt
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measures the marginal yield of the "asset" x, given by the sum of its current
marginal return dFtldxt and its contribution to the increase in the stock of x
valued at its shadow price q. Rearranging (1), we obtain

pt ( 2 )

The left-hand side of this expression is the instantaneous rate of return on
the asset x, given by the ratio of its total return (the sum of its "dividend"
dHc

tldxt and capital gains qt) to its current price qt. The right-hand side is
the instantaneous discount rate (the "utility interest rate"). Equation (2)
requires that the marginal yield on "asset x" be equal to the required rate
of return, ph signaling the impossibility of further gains from a change in
asset holdings. This ensures that the asset is correctly valued.

We can now give a more formal statement of the result. We seek to
characterize the solution to the problem

V<(xo,O)= max <r{w0(W(OIL, x(t)l0) = [a(t)F[u(t\x{t\t] dt
u(t),0<t<Tl \ / J O

+ a(r)S[x(r)] s.t.x(0) = x0 given, x(t) = m[u(t\ x{t), r]} (P.0)

We will assume that the functions F(uy x, t) and ra(u, x, t) are continuously
differentiable with respect to the state vector x. Control trajectories u{i) will
be required to be piecewise-continuous functions of time, with at most a
finite number of discontinuities in any bounded interval, and to have both
right- and left-hand-side limits at any points of discontinuity. Under these
assumptions, necessary conditions for an optimum are given by the follow-
ing theorem.

Theorem 2.1. Pontryagin's maximum principle. Let u*(t), with t e [0, T], be
the time path of the control vector that solves the problem (R0). Then there
exist continuous functions of time qftj such that for each t € [0, TJ,

(i) the control maximizes the current-value Hamiltonian,

uf = arg max Hc(u, x, q, t)=arg max{F(x, u, t)+ qm(x, u, t)}
u u

(ii) the law of motion of the state vector holds,

i(t) = m[u*(tUftAt] (3)

(Hi) and the functions qft) satisfy the differential equations
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570 An Introduction to Dynamic Optimization

Given an admissible control path, m[u(t), x{i), t] is a piecewise-
continuous function of time. Thus the state trajectory, given by

x(t) = x(0) + J m[u(s\ x(s\ s] ds

is continuous and piece wise-differentiable. The same is true of the time paths
of the costate variables q(t). The time derivatives of both q(t) and x(t) may
be discontinuous at points of discontinuity of the controls. At such points,
however, (3) and (4) will still hold for both left and right time derivatives.

We will now give a heuristic derivation of this result based on a dynamic
programming approach. To simplify things a bit, we consider the case in
which the discount rate is constant over time,

Vc(x0,0)= max ff e~ptF[u{t\ x{t\t]dt + epTS[x(T)]
u(();0<i<rlJ0

s.t. x(0) = X0 given, x(t) = m[u(t), x(t), f]} (P.I)

and assume that the value function and the time paths of the controls are
differentiable functions (as they will be in most applications we are likely to
encounter). We begin by constructing a convenient discrete-time analogue
of (P.I). Time is now measured in discrete periods of length h9 and the one-
period discount rate is of the form p(h) = e~ph. At the beginning of the period
starting at f, the planner chooses the value of the control uh which remains
constant over the interval [f, t + h). The function Ft(uh xt) now measures the
instantaneous flow of value, and the total return from (uh xt) over a period
of length h is given by hFt(uh xt) in current-value terms. The state and control
vectors determine next period's state in accordance with the law of motion,
xt+h = xt + hmt(xh ut). The planner, then, solves

)TS(xT)

s.t. xt+h =xt+ hmt (xt, ut), x0 given

The Bellman equation for this problem can be written

Vc(*,, t) = max{hFt(xt, ut)+fi(h)Vc[xt +hmt(xt,K,),f + h]} (5)

If the value function is differentiable, the first-order condition for the max-
imization in (5) is given by

hdF,(ut,xt) | .j, dVc(xt+h,t + h) dxt+h ^Q

out dxt+h out
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Optimal Control 571

which describes the optimal trade-off between current and future values.
Recalling that the multiplier is defined as the partial derivative of the value
function with respect to the state, qt = dVc(x, t)/dxh and using the law of
motion to calculate dxt+h/duh we obtain

du, du,

Dividing by h and taking limits as h goes to zero, we arrive at the necessary
condition for the control to maximize the Hamiltonian,

f_dFt(ut9xt), dmt(ut,xt) _
- — + q, - - u

du, du, du,

Next, we compute the partial derivative that defines the costate variable.
Using the envelope theorem in (5), and operating as before,

_dVc{xt,t) _tdFt(ut,xt)
ax oxax, ox, dxt+h dx,

dx, ^ ^ y dx,

Subtracting /3qt from both sides of this expression,

-P(h)]q, = hdF<(""x') +/3(h)(q,+h -q,)+l3(h)qt+hh
dm'^u')

ax, dx,

dividing by h,

_dF,(u,,x,) Y dm,{x,,u,) ( ,qt+h-q,
^ + P(n)qh - + p{h)——:Qt ^ + P ( n ) q , + h + p{h)

h dx=t dxt h
and taking the limit as h goes to zero, we obtain the equation of motion for
the costate variables:

dFAut,xt) dmt(ut,xt) . dHt.
dx, dx, ox.

The maximum principle allows us to transform the original dynamic opti-
mization problem into a combination of two more familiar problems. The
maximization of the current-value Hamiltonian at each point in time yields
a policy function,

uf = g(xt 9qt,t) = arg max{/T (M, x9q,t) = F(x9 u,t) + qm(x,u, t)} (6)
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572 An Introduction to Dynamic Optimization

giving the optimal control as a function of the contemporaneous values of
the state and costate vectors and time.7 Substituting this function into the
other necessary conditions, we eliminate ut and obtain a system of differen-
tial equations in the state and costate variables:

x(t) = m[g(xt,qt,t\xt91] (7)

. nn _ dHct\g{xt,qt,t\qt,xt,t\
It - ptqt 5 (p)

dxt

The solution of the dynamic optimization problem will then be one of the
solutions of this system that satisfy the initial condition x(0) = x0 given.
Notice, however, that if the state vector is of dimension n, then (7)-(8) is a
system of 2n equations in as many variables, and we have only n initial
conditions (corresponding to the initial values of the state variables). To
determine which of the solutions of the dynamical system solves the
original problem, we need some additional conditions, as discussed in the
following section.

(b) Transversality and Sufficient Conditions

The additional restrictions needed to identify the optimal path often
take the form of terminal conditions on the multipliers, sometimes called
transversality conditions. The simplest case is that of the finite-horizon
problem with a scrap function, that is, maximization of

fQa(t)F[u(t\ x(t\ t] dt + a{T)S[x{T)}

subject to the usual conditions. Notice that the current value function at the
end of the planning horizon is now simply

Because the costate vector is defined as the derivative of the value function
with respect to the state, the appropriate terminal condition is

qT=DS(xT)

In many cases of interest there is no scrap function, but it may be natural
to impose some restrictions on the terminal value of the state vector. A
finitely-lived consumer, for example, (see footnote 5) may not derive any
utility from leaving a bequest to his children, but it seems reasonable to
require his terminal wealth to be nonnegative or, equivalently, to impose the
constraint that the discounted value of his consumption stream should not
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Optimal Control 573

exceed the present value of his lifetime income. In this case, the objective
function reduces to

\\
{t)F[u{t\x{t\t]dt

but we have as an additional constraint the nonnegativity condition xT > 0.
To derive the appropriate transversality condition, let us go back to the
artificial discrete-time problem we used to derive the maximum principle,

r-i
Vc(x0,0) = maxj YP(h)'hF t(x t, ut)s.t. xt+h = xt+hmt(xt,ut), x0 given,xT > 0

and consider the subproblem corresponding to the choice of the last control,

U-h,

Vc(xT-h>T-h) = max{hFT^h(xT_h,uT_h) s.t.xT = xT_h + hmT_h (xT_h,uT.h)>0}

This is an ordinary Kuhn-Tucker problem. Forming the Lagrangian,

£ = hFT_h (xT_h ,uT_h) + X[xT_h + hmT_h (xT.h, uT.h)]

the necessary conditions for the optimal choice of uT_h can be written

= 0=> — T T~h'—^-t + X T r~j"—T-^-L = 0

xT > 0, with equality if X > 0

X > 0, with equality if xT > 0

Moreover, the envelope theorem yields

_dVc{xT-h,T-h) _ d£

Taking the limit of this expression as h —> 0, we obtain qT = X. Hence, the last
two necessary conditions can be written

xT>0, qT>0, and qTxT=0 (T.I)

Thus the transversality condition is essentially the complementary slackness
condition for a Kuhn-Tucker problem. It says that if we are going to "leave
something at the end," that something must be worthless, and if it is not
worthless, then we will leave nothing. In any case^the value of the terminal
state, qTxT , must be zero.
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574 An Introduction to Dynamic Optimization

As an illustration, consider once more the problem of a nonaltruistic
consumer who maximizes the discounted value of lifetime utility subject
to a flow budget constraint and the restriction that terminal wealth be
nonnegative:

maxj e~ptU(ct) dt s.t. dt = rtat +yt-ct and aT > 0

It is easily shown that in this problem the current-value multiplier is the mar-
ginal utility of consumption, qt = U'(c). The transversality condition now
requires that terminal wealth be positive only if the agent is satiated, that
is, if qT = U'{cT) = 0, and that aT be zero whenever the marginal utility of
terminal consumption is strictly positive.

The following proposition gives the necessary conditions for an optimal
solution of the finite-horizon problem with nonnegativity terminal con-
straints on the states. The maximum principle still holds.

Theorem 2.2. Maximum principle and transversality conditions, finite
horizon. Let u*(%), t e [0, T], be the time path of the control vector that solves
the problem

V c(x0 ,0)= max (C a(t)F/u(t),x(t),t]dts.t. xT >0,
u(tJ,0<t<T LJ0

x(0) = x0 given, x(t) = m[n(t),x(t), t]] (P.0)

where aft) = exp(-jlop(s) ds). Then there exist costate variables q(t), continu-
ous functions of time, such that for each t,

(i) the control maximizes the current-value Hamiltonian,

u* = arg maxHc(u, x, q, t) =arg max{F(x, u, t)+ qm(x, u, t)}
u u

(ii) the law of motion of the state vector holds,

x(U = m/u*(tJ,x(Ut]

(in) the functions q(t) satisfy the differential equations

(iv) and the transversality conditions

qT>0 and qTxT = 0 (T.I)

The conditions we have derived thus far are necessary conditions for an
optimum. To be certain that they characterize a maximum, we need sufficient
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or "second-order" conditions, which, as in the case of static optimization
problems, often take the form of concavity assumptions.

Theorem 2.3. Sufficient conditions for an optimal path. Assume that the max-
imized Hamiltonian,

Hfx, q,t)= max{W(x,u,q) = Ft(x,u,tj+qtm,fx, uj)
u

is a concave function of x for given q and t Then any policy satisfying the
necessary conditions specified in Theorem 2.2 (i.e., the Pontryagin and trans-
versality conditions) is optimal for the finite-horizon problem with terminal
constraint xT > 0.

Observe that ft will be concave in x provided that F{ ) and m( ) are
concave in (x, w), but weaker conditions will suffice.

Proof. Let w? be a policy satisfying the necessary conditions for a solution
to the control problem, and (xf, qf) the corresponding paths of the state and
costate vectors. Let ut be any other feasible policy, and xt the corresponding
path of the state. We will show that the time path (wf, xf) yields a greater
value than any other feasible trajectory.

For any given (q, x), we have (omitting the time subscripts)

H(x, q) = maxHc(x, u, q) = Hc(u\x, q)>Hc(u, x, q) for any u (1)

where u° is the optimal choice of instruments given (q, x). By the assump-
tion that H(x, q) is concave in x for given q (and r), we can write

H(x,q*)<H(x*,q*) + DxH(x*,q*)(x-x*) (2)

for any x. From (1), moreover,

H(x,q*)>Hc{u,x,q*) for any w, and H(x*,q*) = Hc(x*,w*,#*) (3)

Using (3), (2) implies

Hc(u, x,q*)< Hc{x*9 u*, q *) + DxH(x*, q *)(x -x*) (3)

from where

F(u*, x *) - F(u, x)>q*(x-x*)- DxH{x*, q *)(x - x *) (4)

Next, using the envelope theorem in (1) and the necessary conditions for an
optimal path,

-DxH(x*9 q*) = -DxH
c(x*, q*,u*) = q~- pq
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576 An Introduction to Dynamic Optimization

Substituting this expression into (4) and multiplying both sides by the dis-
count factor a(t),

a{t)[F{u*, x*)- F(u, x)] > a(t)q *(x-x*) + cc(t){q - pq)(x -x*) (5)

We observe that the expression on the right-hand side of (5) is the deri-
vative of a(t)qt(xt - xf) with respect to time.8 Integrating both sides of the
inequality from t = 0 to T,

foa(t)[Ft(u*,x*)-F(u,x)]dt>[j-(a(t)q?(xt -*?))dt

= a(T)q*T(xT-x*T)-a(O)q*o(xo-xt) (6)

The last term in this expression vanishes, as the given initial value of the
state must be the same for any feasible trajectory. Using the transversality
conditions

q%>0 and q*Tx*T = 0 (T.I)

and the terminal constraint xT > 0, (6) implies the desired result:

foa(t)[Ft(u*, x*)-F(u, x)] dt >a(T)q*xT >0

That is, the path [x*(£), u*(t)] that satisfies the Pontryagin and transversality
conditions provides a greater return than any other feasible trajectory and
is therefore optimal. •

Infinite Horizon

It is often convenient (and not a bad approximation) to assume that the
planning horizon is infinite. Infinite-horizon problems, however, pose some
new problems. First, the objective functional, now given by the improper
integral

[a(t)F[u(t), x(t), t] dt = limfa(t)F[u(t), x{t), t] dt
JO T—>°° JO

may not converge. Even if it does, moreover, there is no guarantee that
an optimal control path will exist. If it does exist, however, the necessary
conditions derived earlier are still valid. The one exception to this has to do
with the transversality conditions, which can no longer be derived from a
terminal condition on x. On the other hand, the proof of the sufficiency
theorem (Theorem 2.3) will still go through provided that we replace (T.I)
with

)qt > 0 and lima(t)qtxt = 0 (T.2)
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Optimal Control 577

Thus, the transversality conditions may no longer be necessary for an
optimum, but they still have a role as sufficient conditions. That is, they may
not hold, but if they do hold for a given path w*(0, and if the maximized
Hamiltonian is concave in x, then that path is optimal.

The transversality conditions at infinity (T.2) can be seen as natural
extensions of those for the finite-horizon problem. Recall that (T.I) can be
interpreted as the complementary slackness condition associated with a
nonnegativity restriction on the terminal state. It tells us that the current
value of the terminal state, evaluated using its shadow price, must be zero
(i.e., that nothing valuable should be left at the end of the planning period).
Because we no longer have a terminal date, we can make no such argument.
However, the condition that the value of the state be asymptotically non-
negative still makes sense in many cases. For example, in the consumer
optimization problem that we have been using as an illustration, such a con-
straint is equivalent to the requirement that the discounted value of the
agent's consumption not exceed the present value of her income. Intuitively
speaking, (T.2) can be used to impose this type of constraint. The main
change from the finite-horizon case is that now we must consider the dis-
counted value of the state, a(t)qtxh whereas in the finite-horizon case it made
no difference whether we worked in current or in discounted value terms.
We summarize in the following.

Theorem 2.4. Maximum principle and sufficient conditions, infinite horizon.
Let u*(t), t E [0, T], be the time path of the control vectors that solves the
problem

Vc(x0,0) = max If a(t)F[n(t),x(t),t] dts.t

x(0)=x0 given, x(t)=m[u(t),x(t), t]j (R0)

where aft) = exp(-!lop(s) dsj. Then there exist continuous functions of time,
q(t), such that for each t,

(i) thecontrolmaximizesthecurrent-valueHamiltonian,u?=arg maxuH
c(u, x, q, t),

(ii) the law of motion of the state vector holds, x(t) = m/u*(t), x(t), t], and
(Hi) the functions qftj satisfy the differential equations —3Ht/3xt = qt - ptqt.

Moreover, if the maximized Hamiltonian,

H(x, qy t) = max{//c (x, w, q) = Ft (x,w, t) + qtmt (x, u)}
u

is a concave function of x for given q and t, then any policy satisfying the
Pontryagin conditions and the transversality conditions at infinity,
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578 An Introduction to Dynamic Optimization

lima(t)qt > 0 and lima(t)q,xt = 0 (T.2)

is optimal.
In some cases of interest, the sufficient conditions allow us to identify the

optimal path with the stable manifold leading to a saddle-point steady state.
For example, in the case of a stationary problem with a constant discount
rate p and time-invariant instantaneous return function F(x, u) and law of
motion m(x, w), the maximum principle yields an autonomous system of dif-
ferential equations

xt=m[g(xt,qt\xt]

dH?[g(xt,qt)9qt,xt]
q, -pqt=- dx,

in which time does not enter as a separate argument in any of the transition
equations. This system often has a steady state and solution trajectories
leading to it. The following proposition shows that if we can find a path (xr,
qt) that satisfies the necessary conditions and converges to a steady state,
then, under certain conditions, that path is optimal.

Theorem 2.5. Sufficient conditions for an optimum. Let x*(t), u*(%), and q*(%)
be a path satisfying the necessary conditions for a stationary, infinite-horizon
control problem, as given in Theorem 2.3, with aft) = e~pt, p > 0. Suppose
further that the concavity assumption of the sufficiency part of the theorem
holds. Then, ifx*(t) and q*(%) converge to a steady state (xs, qs), with xs, qs >
0, they constitute an optimal path.

Proof. Because jt*(f) and q*(t) converge to finite limits, and e~pt —> 0 as t —>
oo, the transversality conditions

q t > 0 and \ime'ptqtxt = 0 (T.2)

are satisfied. Optimality follows by the first sufficiency theorem. •

This result is particularly useful when the Pontryagin conditions give
rise to an autonomous system that has a unique saddle-point equilibrium,
because then the unique convergent path leading to the steady state will be
the optimal one.

(c) Constraints Involving State and Control Variables

In many cases, control problems involve additional complications in the
form of constraints that limit the choice of the decision or control variables
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u to a set that generally depends on the contemporaneous values of the state
variables x. The procedure for dealing with this problem involves the intro-
duction of a Lagrange function, similar to the one used in static program-
ming problems. The necessary conditions for an optimum can then be
rewritten in terms of the partial derivatives of the Lagrangian (sometimes
called the augmented Hamiltonian), rather than the Hamiltonian.

To illustrate the procedure for solving such problems, we return to the
finite-horizon problem of Section 2(a), to which we add some additional side
constraints. The problem is now

Vc(x0,0)= max If a(t)F[u(t\x(t\t]dt s.t. xr >0, jt(0) = x0 given,
u(r);O<r<7"l*

C[x(t), u{t), t]>0,x(t) = rr{u(t),x{t), r]} (EC)

where a(t) = exp(-f
0p(s) ds).

The same logic as before can be used to show that at any given time t the
optimal policy w* will maximize the corresponding Hamiltonian. Of course,
the maximization is now subject to the additional side constraints. Thus u*(t)
now solves

max{//c (u, x, q, t) s.t. C[x{t\ u(t), t] > 0} (1)
u

Subject to the standard constraint qualification, we can apply the Kuhn-
Tucker theorem to characterize the solution to this problem. In particular,
if w* solves (1), there will exist Lagrange multipliers A* such that

A*>0 and A*TC(x,wV) = 0 (2)

Moreover, if we define the Lagrangian function by

£? = Hc (w, x, q, t) + XC[x{t\ u(t\ t] = F(u, x, t) + qm{x, u, t) + XC(x, u, t) (3)

the necessary conditions for the maximization problem in (1) will include

d£c
t

dx=
= 0 (4)

Similarly, the equation of motion for the costate variables can be written in
terms of the partial derivatives of the Lagrangian. In particular, we have now

For other versions of the control problem, the necessary conditions can
be similarly amended to involve partial derivatives of the Lagrangian func-
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580 An Introduction to Dynamic Optimization

tion. (In particular, the necessary conditions are the same for the infinite-
horizon case.) Moreover, our previous results concerning the transversality
conditions and sufficient conditions for an optimum still hold as stated. Note,
however, that certain conditions may have to be imposed on the constraint
functions C( ) to ensure the concavity of the maximized Hamiltonian
required in the sufficiency theorem.
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Notes

1 For example, if xTis leftover wealth at the time of death, S(xT) captures the utility the
agent obtains by leaving a bequest to his or her children. More generally, S() assigns a
valuation to the final state vector.

2 Continuity for correspondences was defined in Section 11 of Chapter 2. Intuitively, the
idea is the same as for the continuity of functions: F is continuous if the set F(x) does
not change very much with small changes of x.
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Notes 581

3 Theorem 2.15 in Chapter 6 can sometimes be used to establish the differentiability of
the value function. See Section 2 of Chapter 13 for an example.

4 See, for example, Araujo (1991) and Santos (1995).
5 In certain cases of interest the instantaneous discount rate p cannot be assumed to be

constant over time. For example, if the control problem is that faced by a firm that
attempts to maximize the present value of a stream of cash flows, future receipts will be
discounted at the market rate of interest, which is likely to vary from period to period.
This gives rise to a discount factor of the form given in the text.

6 It may be useful to have a concrete example in mind. Consider the problem of an
individual who wants to maximize the discounted value of lifetime utility from
consumption plus the utility of the bequest he leaves to his children at death:

The state variable a now represents the consumer's current asset holdings. The agent
takes as given his initial wealth (a0) and the time paths of income (yt) and interest rates
(rt). The law for motion for the state variable is the flow budget constraint:

dt =rtat+yt-ct

7 In some cases it turns out to be more convenient to use the first-order conditions for the
maximization of the Hamiltonian to solve for the costate variable as a function of the
control and then use this expression to get rid of q in the system of differential
equations. We will see some examples in Chapter 13.

8 Observe that (/(t) = -a(t)pt\ then

, -x?)
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13

Some Applications of Dynamic Optimization

In this chapter we will review some applications of dynamic optimization to
economics. In Section 1 we develop two models of search to illustrate the
use of dynamic programming in a stochastic setting. Section 2 analyzes the
decision problem faced by a social planner who maximizes the utility of an
infinitely-lived representative agent in a one-good neoclassical economy. In
Section 3 we study the optimal investment policy of a competitive firm when
the installation of capital is costly. Finally, in Section 4 we develop the
Cass-Koopmans model of a dynamic competitive economy and use it to
analyze the welfare cost of factor taxes. Section 5 concludes with a series of
problems.

1. Search Models

Search theory provides a simple and yet interesting application of dynamic
programming to economics. In the basic search model, wage offers drawn
from a given distribution arrive at fixed or random intervals, and an agent
simply decides whether to accept one of them and become employed or
reject them and continue searching for a better opportunity. We have, then,
a very simple problem in stochastic dynamic programming: The control is
simply a take-it-or-leave-it decision, and the distribution of the state vari-
ables (the offers) is time-invariant and does not depend on either the state
or the control.

The first part of this section introduces the basic "microeconomic" model
of job search. In addition to its interest as an application of dynamic pro-
gramming, this model provides a useful counterpoint to the neoclassical
model of a competitive labor market. In the latter model, transactions are
assumed to take place instantaneously and at no cost, and wages are set so
that the market clears continuously. Hence, there is no room for unemploy-
ment. In the search model, on the other hand, it may be optimal for an agent
to remain temporarily unemployed in order to wait for a better opportunity

582
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Search Models 583

than those available today. Hence, the search model provides a useful frame-
work for analyzing how rational agents will respond to changes in the level
or duration of unemployment benefits, the abundance and riskiness of
employment offers, and many other questions that can hardly be addressed
within the neoclassical model.

The search model, however, does not necessarily require a departure from
the spirit of the neoclassical model. Notice, in particular, that the unem-
ployment that naturally arises in any search model is frictional in nature and
essentially voluntary. Hence, the explicit modeling of the process of job
search may well yield nothing more than a model with a natural rate of
unemployment. On the other hand, it is relatively easy to incorporate addi-
tional features into a search model that add a strong Keynesian flavor to it.
If we are willing to assume that an increase in the level of aggregate activ-
ity makes it easier for potential trading partners to locate each other, we
have a participation externality that generates inefficiency and the possibil-
ity of multiple equilibria, thus opening the door for public intervention to
improve things. A "macro" model with these features will be developed in
the second part of the section.

(a) The Basic Model of Job Search

Consider an infinitely-lived, risk-neutral worker who maximizes (the expec-
tation of) the discounted value of lifetime income,

r=0

where income at time t,yh is equal to the wage rate (x) for employed workers
and to a government-provided benefit (b) for the unemployed. Unemployed
workers also receive one employment offer each period. All jobs are per-
manent and pay the same wage each period. Wages, however, may differ
across jobs. Hence, x is a (nonnegative) random variable that we assume to
be drawn from a time-invariant distribution described by a cumulative dis-
tribution function (cdf) F(), where F(w) = pr(x < w).

A worker who has just received an offer has two options: One is to accept
the job and work forever at the specified wage x;1 the other is to reject the
offer and wait for a better one to arrive. We will denote the value of the first
option (accepting and being employed at wage x) by Wa(x), and that of the
second (rejecting the offer and remaining unemployed) by Wr. Clearly,
Wa(x), the present value of lifetime earnings on a job paying salary x, is an
increasing function of x given by

W.(x) = ±Px = -2- (1)
r=0 1 - P
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584 Some Applications of Dynamic Optimization

Figure 13.1. Value function and reservation wage for the search problem.

On the other hand, Wr is not a function of x: The expected present value of
lifetime earnings for an unemployed worker is independent of the wage
offer he has just rejected.

A rational worker will choose the action that will yield the larger value.
Thus, the expected value of lifetime income for an agent who has just
received an offer x is given by the value function

= max[Wa(x,),Wr] (2)

and he accepts the offer if and only if Wa(x) > Wr (i.e., if the value of being
employed at the offered wage exceeds the value of being unemployed). As
illustrated in Figure 13.1, the optimal decision strategy takes the form of a
reservation-wage rule. Because Wa(x) is increasing in the salary, and Wr is
independent of it, a job will be accepted if and only if it pays a wage that is
higher than some critical value x*.This critical or reservation wage is defined
as the value of x that makes the agent indifferent between taking the job
and remaining unemployed, that is, x* solves Wa(x*) = Wr.

It remains, of course, to determine the reservation wage x* or, equiva-
lently, the value of being unemployed, Wr. As a first step, consider the situ-
ation of a worker who is currently unemployed (i.e., who has just rejected
an offer): His income today is the unemployment benefit b; tomorrow he
will receive a new offer, x, and will accept it or reject it depending on whether
or not its value exceeds Wr. Hence, his current value one period hence (from
tomorrow's perspective) will be given by v(x) = max[Wfl(x), Wr], As of today,
however, the realization of x is not known, so we can only work with the
expected value of v(x). Moreover, because this value will accrue tomorrow,
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we have to discount it by one period. Formally, then, the value of being
unemployed is defined recursively by

Wr = b + j3£{max[Wfl(x), Wr]} (3)

We can now characterize the reservation salary. By definition, x* is the
value of x that makes the agent indifferent between accepting and rejecting
the offer. Hence, x* satisfies

and therefore

Substituting (3)

x

into (4),

* = Wr~pW

W(x*) ** W

^ ~ ' ~ r '

x* = (l-p)Wr

Wr=b + pE{max[Wa(x\WWr

(4)

3Wr

Bringing the (constant) last term into the expectation and the max opera-
tor, we obtain

x* = {[(x)-W;,0]} (5)

an equation that can be solved for x*. This expression can be simplified as
follows. We begin by writing out the expectation,

x* = b + p£ max[Wa (x) - Wr9 0] dF(x) (6)

and observing that the resulting integral can be broken up into two parts:

f max[Wa - Wr, 0] dF = f max[Wa - Wr, 0] dF + £ max[Wa -Wr,0] dF
JO JO Jx*

Notice that over the first interval of integration we have x < x*, implying that
Wa(x) < Wr; thus, max[Wfl(x) - Wn 0] = 0 for x e (0, x*], and the first integral
vanishes. For x e (x*, <>°)? on the other hand, we have Wa(x) > Wn implying
max[Wfl(x) - Wn 0] = Wa(x) - Wr. Hence, (6) reduces to

x* = b+p[t[Wa(x)-Wr]dF(x)

Finally, recalling that Wr = x*/(l - p) and Wa(x) = xl(l - j8), we arrive at the
fundamental reservation-wage equation,

) (R)

which implicitly defines the reservation wage x* as a function of the para-
meters of the model and the distribution of wage offers. This equation can
be used to study the comparative statics of the reservation wage, as we will
show later using an extension of this model.
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Continuous-Time and Stochastic-Offer Arrivals

One of the crucial determinants of how selective a worker can afford to be
in regard to wage offers is the availability of job opportunities. The model
in the preceding section, which assumes that the worker receives an offer
every period, ignores this aspect of the problem. We will now relax this
restrictive assumption and extend the model to incorporate a measure of
the "scarcity" of work opportunities through a parameter that reflects the
rate of arrival of job offers. We will also illustrate how to go from discrete
time to continuous time - a formulation that, although less intuitive when it
comes to the derivation of the valuation equations, turns out to be more con-
venient in many cases.

We will make two changes with respect to the earlier model. The first will
be to parameterize the length of the period. We will assume that all periods
have the same duration h and reinterpret the wage and the unemployment
benefit as rates per unit of time. Thus, an unemployed worker's income
during a period is now bh, and an employed worker earns xh. We will also
assume that the one-period discount factor is a function p(h) of the length
of the period. To go from discrete time to continuous time, we will take limits
as the length of the period goes to zero.

Second, we will now model the arrival of wage offers as a stochastic
process. We will assume that an unemployed worker has probability Ah of
receiving an offer during the current period. In the limit, as h goes to zero,
offer arrivals follow a Poisson process with parameter A, which can be inter-
preted as the instantaneous probability of receiving an offer.

The solution procedure is similar to that used earlier. The value of accept-
ing a job that pays salary x per unit of time is given by

( 1 >

and the value of rejecting it, Wr, is still independent of x. The reservation
wage JC* is the salary that makes the agent indifferent between accepting and
rejecting employment and therefore satisfies

Wa{x*) = Wr

^ = lzMWr (2)
h

To characterize W consider the prospects of an unemployed worker,
which are now slightly more complicated by the fact that he no longer
knows when the next offer will arrive. During the current period, his only
income is the unemployment benefit bh. Next period, he will receive an
offer with probability Ah, and no offer otherwise (with probability 1 - Ah).
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In the second case, his value next period will again be Wr. In the first case,
his payoff next period will be given by v(x) = max[Wa(x), Wr], but because
the realization of x is not known today, we have to compute the expected
return. Finally, all values accruing tomorrow must be discounted by one
period. Hence, the expected value of being currently unemployed is given
by

Wr=bh + p(h){MiE max[Wa (xl Wr] + {l - Ah)Wr} (3)

The next step is to manipulate this expression so that we can substitute it
into the right-hand side of (2). Subtracting {5(h)Wr from both sides of (3),

[1-p(h)]Wr =bh + p(h)E{Ah max[Wa(x), Wr]-AhWr}

= bh + p(h)MiE{E mzx[Wa(x)-Wr, 0]}

and dividing by h,

^ a(x)-Wr,O]} (4)

Substituting (4) into (3) and simplifying, we could obtain a reservation-
wage equation very similar to the one in the preceding section. Instead,
let us go to continuous time. For this, let the discount factor be of the
form p(h) = e~ph. Then we have (using L'HopitaPs rule in the second
expression)

lim/3(/0 = l and l i m ^ ^ = p (5)

Taking limits as h —» 0, (1) yields Wa(x) = x/p, (2) becomes

jc* = pW, (20

and (4) implies2

pWr=b + XE{m2ix[Wa (x)-Wr, 0]} (4')

Substituting (4') into (2r) and proceeding as in the preceding section, we
obtain the reservation-wage equation:

x* = pWr = b + Aj~ max[Wa (x) - Wr, 0] dF{x)

Now, if x < x*, the agent rejects the offer, that is, Wa(x) < Wn and therefore
max[Wa(x) - Wn 0] = 0. On the other hand, if x > **, then Wa(x) > Wn and
therefore max[Wfl(x) - Wn 0] = Wa(x) - Wr. Hence, we can break up the
domain of integration into two parts, (0, x*) and (x*, <»), and observing that
the integral over the first interval vanishes, we have

= b+A.r[WJx)-Wr]dF(x)
Jx*
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Finally, substituting Wr = x*/(p) and Wa(x) = x/(p) in this expression, we
obtain the fundamental reservation-wage equation:

x* = b + -j~t(x-x*)dF(x) (R)

This equation has an intuitive interpretation. Rearrange it to get

x*-b = -£(x-x*)dF(x)

Then the left-hand side measures the immediate opportunity cost of reject-
ing an offer, and the right-hand side gives the present value of the expected
gain from continued search. The reservation wage, by definition, equates the
two quantities.

It is straightforward to do comparative statics using this expression. Write

H(x*;b,X,p) = x*-b-- j°°(x-x*)dF(x) = 0
pJx*

and compute the partial derivatives of H( ):3

-

Hx=--£(x-x*)dF(x)<0

By the implicit-function theorem,

Hp=~£(x-x*)dF(x)>0

and
> 0 , >0, and «>

db Hx* dX Hx* dp Hx*
That is, an increase in the unemployment benefit leads to an increase in
the reservation salary, as workers can now afford to wait longer for a better
offer (an increase in b reduces the opportunity cost of rejecting any offer).
An increase in A means that jobs become less scarce, and it has a similar
effect (the expected cost of rejecting an offer is now lower because the
expected delay until a new one arrives is shorter). Finally, an increase in p
means that future benefits are discounted at a higher rate (agents are less
patient); because the expected benefits of continued search will accrue in
the future, waiting becomes less attractive, and the reservation wage
decreases.
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(b) A Search-Based Macro Model

Standard neoclassical models implicitly rely on the Walrasian auctioneer to
perform two crucial tasks. One is setting prices so that markets will clear
continuously. The second can be called trade coordination: The auctioneer
is assumed to provide clearing services that will make it unnecessary for the
parties to a transaction to physically locate each other, thus simplifying
the task of matching desired quantities. In short, these models assume that
the allocation of resources is a costless and frictionless process. One impli-
cation of this assumption, if we take it literally, is that there is no room for
involuntary unemployment. Extensions of the neoclassical model can gen-
erate fluctuations in employment levels as agents adjust their labor supply
in response to price or productivity shocks, but the labor market must clear
continuously, like any other market.

Search models do away with the trade-coordination function of the auc-
tioneer and explicitly model the fact that many transactions must take place
between individuals who must first find each other. Trade thus becomes a
costly and time-consuming process. Applied to labor markets, this kind of
model leads to the emergence of frictional unemployment, for agents will
be inactive during some of the time that they wait for an acceptable job.

Moreover, this view of the process of resource allocation naturally sug-
gests an important externality associated with the exchange technology: It
seems likely that the greater the number of people who want to trade at any
given time, the easier it will be for each of them to locate a suitable partner.
Loosely speaking, because an increase in the level of economic activity
makes it easier for the parties to an exchange to find each other, individual
decisions have external effects over the opportunities available to other
agents. One result of this phenomenon is that the equilibrium will not be
Pareto-optimal, as agents will fail to take into account the external effects
of their actions. Another implication is the possibility of multiple equilibria,
as either pessimistic or optimistic expectations tend to become self-fulfilling.
Thus, there is a role for government policy, both in correcting for external-
ities and in helping the economy select a good equilibrium. Policy may be
useful as a device for improving coordination between agents in a way the
market cannot achieve because of the presence of external effects.

The search model has served as a framework for some contributions to a
literature which shows that macro models with "Keynesian" properties can
be built from solid micro foundations. The remainder of this section devel-
ops one such model, due to Diamond (1982) and Diamond and Fudenberg
(1989), in which an agent must first search for production opportunities and
then locate a trading partner before consumption can take place. The model
illustrates how, in the presence of a plausible participation externality, a sub-
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590 Some Applications of Dynamic Optimization

optimally low level of economic activity may arise as a result of the difficulty
of coordinating exchange in an economy with many agents.

Diamond's Search Model

Imagine a tropical island inhabited by infinitely-lived natives who walk
around the beaches looking for coconut trees (production opportunities).
Having found a tree, an agent must decide whether or not to climb it. If he
does, he comes down with a coconut, but he is not finished yet: An ancient
taboo forbids the consumption of one's own coconuts. Hence, the agent must
find another native with whom to trade coconuts (one for one) before
eating.4 Having done this, he continues to search for additional production
opportunities.

All trees have exactly one piece of fruit, but they may differ in height (pro-
duction cost). Consumption of a coconut yields utility y. Production costs
(the disutility of climbing) are proportional to the height of the tree, which
is a nonnegative random variable, c, bounded below by c and drawn from a
known distribution with cdf G( ). That is, G(x) = pr(c<x), and G(c) = 0.
Agents maximize the expected value of discounted lifetime utility,

V = E^lQe-""Uti, where Uti = ytl-cti

Notice that although time is continuous, production and consumption take
place at discrete intervals. At a given time th the agent may be engaged in
production (climbing a tree), in which case his instantaneous utility is -c, in
eating (with utility y), or in doing neither, in which case his instantaneous
utility is zero.

An agent who is not engaged in production or consumption may be in
either of two states. We will say that he is unemployed if he is looking for a
production opportunity and that he is employed if he is carrying a coconut
and is looking for someone with whom to trade. The arrivals of production
opportunities and trading partners follow Poisson processes, with para-
meters that are taken as given by each individual agent. We will denote by
a the instantaneous probability of finding a tree, and by b(e) the instanta-
neous probability of finding a trading partner.

A crucial assumption of the model is that b is an increasing function of
the aggregate employment rate e. That is, the larger the number of people
who are walking around with coconuts in their hands, the easier it will be
for them to bump into each other. We will assume that

6(0) = 0, Z/(e)>0, and b"(e)<0

Thus, an individual's decision to produce has a positive spillover effect on
other agents' trading opportunities. When making production decisions,
agents will not take this factor into account. As a result, the equilibrium level
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of activity will be suboptimally low. As we will see, the externality is also at
the root of the possibility of multiple equilibria, for it makes both optimism
and pessimism potentially self-fulfilling. For example, if most agents believe
that trading will be easy, they will have an incentive to climb even relatively
high trees. If they all do, then finding a trading partner will indeed be easy,
thus validating ex post their initial optimism.

Production Decisions. The only decision that an agent has to take in the
model is whether or not to climb a tree he has just run into. As in the job-
search model, the decision rule takes the form of a reservation level: Agents
will accept all of those production opportunities whose cost is smaller than
some critical level c* (i.e., natives will climb all sufficiently low trees).

To characterize the reservation cost, we will proceed as before, beginning
with a discrete-time version of the model and then taking limits as the dura-
tion of the period, h, goes to zero. In what follows, then, the relevant transi-
tion probabilities will be ah and bh for one period, and the one-period
discount factor will be given by fi(h) = e~ph.

Denote by We(e) the expected lifetime utility of an employed worker
when the employment rate is equal to e, and by Wu(e) the value of being
unemployed given e,5 and consider the situation of an employed worker at
time t. With probability b(et)h he will find a trading partner during the
current period, consume his coconut (earning utility y), and then become
unemployed. With probability 1 - b(et)h he will be unable to consume and
will remain employed. Thus, his expected payoff is given by

where we have taken into account the fact that from this period to the next
(which starts at t + h) the employment rate may change, altering the
expected values of both employed and unemployed agents. Subtracting
P(h)We(et) from both sides of the foregoing expression and dividing both
sides by h, we obtain

= bhy+(S(h)[bh[Wu (el+h)] - We(et+h)) + [Wu(et+h) - We(et)]

(et) = by + p(h)[b[Wu(el+h)-We(et+h)]+ W

Taking the limit on both sides of this expression as h goes to zero,

)W(e)] +
at

or, assuming that We(-) is a differentiable function,
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PWe&) = by+b[Wu (et) - We(et)] + We'(et )et (1)

where e denotes the derivative of the employment rate with respect to time.
This expression is similar to the asset-valuation equations of earlier sec-

tions, but contains an additional term, We{e)et, that captures a new source of
"capital gains" (or losses) not present in the previous model: the possibility
that changes in the state variable e will affect the asset's value.

In a similar way, it is easy to show that the expected utility of an unem-
ployed worker satisfies

pWu(et) = a[ [We(et )-Wu(et)- c] dG(c) + W:(et )et (2)

where c* is the reservation cost of production (the maximum acceptable tree
height). An unemployed worker finds a production opportunity with instan-
taneous probability a. If the opportunity is good enough (i.e., if c < c*), he
takes it, pays the cost c, and changes status from unemployed to employed.
Thus, the net gain in value is given by (We - Wu - c) if c is low enough, and
by zero otherwise (as for c> c*, the agent ignores the tree and remains
unemployed). Ex ante, the realization of c is not known, so we have to cal-
culate the expected value of this quantity. Using the argument illustrated in
the preceding section, it is easy to see that this expectation can be written
as the average gain over the interval of acceptable opportunities (c, c*).

The reservation cost is the value of c that makes the agent indifferent
between accepting and rejecting a production opportunity. Hence, the net
gain from climbing a tree of height c* is zero or, equivalently,

-W(e)] (3)

Substituting (1) and (2) into (3),

pc*=pWe(e)-pWu(e)

= by + b[Wu (e) - We (e)] + W;
(e)e - a[ [We (e) - Wu (e) - c] d - W;{e)e

=> pc* = by-bc* +We'(e)e -a£ [We(e) - Wu (e) - c]dG(c) - W;{e)e (4)

To simplify this expression, notice that (i) differentiating (3) with respect to
time, c* = We(e)k - W'u(e)e, and (ii)

[[We(e)-Wu(e)-c]dG(c) = [We(e)-Wu(e)]g(c*)

= c*G(c*)- fcdGU)
Jc

because We(e) and Wu(e) are not functions of c.
Substituting these expressions into (4), we obtain a necessary condition

for the optimal willingness to produce along a path:
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pc* = b(e)(y - c*) - ac*G(c*) + af cdG(c) + c*

Solving this equation for c* as a function of c* and e, we obtain the law of
motion for c* along an individually rational trajectory:

c* = [p + b(e) + aG(c*)]c* -b{e)y - af* cdG(c) = B(e,e*) (5)

From the point of view of each agent, the time path of e is exogenous, but
in equilibrium e is also determined by individual choices. Given the match-
ing technology described by b{ ) and the rate of arrival of production oppor-
tunities, a, the instantaneous rate of change of employment is the difference
between the flows into and out of employment. At each point in time, a frac-
tion e of the population is employed. The probability that each employed
agent will run into a trading partner and become unemployed after eating
is fe(e). Thus the fraction of the population that becomes unemployed during
the "period" is eb{e). The remaining fraction 1 - e of the agents are unem-
ployed. Each of them finds a tree with probability a and climbs it, thus
becoming employed, provided that c < c*, that is with probability G(c*) =
pr(c < c*). Thus, the instantaneous flow into employment is (1 - e)aG(c*)>

and the rate of change in employment is given by

e = aG(c*)(l-e)-b(e)e = A(e9c*) (6)

Dynamics. We now have a system of differential equations in e and c* that
describe the evolution of the economy over time. To analyze its behavior,
we begin by constructing the phase diagram. Setting e = 0, we obtain

e = A{e, c*) = flG(c*)(l - e) - b(e)e = 0 (7)

Equation (7) implicitly defines a function of the form e = e(e*) that gives the
stationary level of employment as a function of the reservation cost c*.
Because a higher c* means that agents are willing to accept more produc-
tion opportunities and therefore tend to become employed faster, the sta-
tionary level of employment increases with c*, yielding an upward-sloping
phase line. Formally, we compute the partial derivatives of A,

A = -aG(c*)-[b\e)e + b(e)]<0 and Ac = aG'(c*)(l-e)>0

and apply the implicit-function theorem to calculate the derivative of e(c*):

To plot the function e(c*), notice further that if c* < c, then G(c*) = 0, and
therefore e = 0; that is, if nobody is climbing coconut trees (the reservation
height is below that of the shortest tree), the only sustainable employment
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e = 0 |

e < 0

Figure 13.2. The e = 0 phase line.

rate is zero. Second, as c* increases without bound, we have G{c*) —> 1
(natives come closer to climbing all trees), and the stationary level of
employment approaches a maximum value, eM, which solves a(l - e) - b(e)e
- 0. Hence, the e = 0 phase line looks as shown in Figure 13.2. Its first portion
coincides with the vertical axis (e - 0 for all c < c*), and the function has a
vertical asymptote at eM.

It remains to determine the direction of the arrows of motion along the
e axis. Notice that

e>0 if and only if G(c*)>
b(e)e

and because G is an increasing function, this is true for "high" values of c*.
Thus, for points in the state space that lie above the phase line, the arrows
of motion along the e axis point to the right, as shown in Figure 13.2. Alter-
natively, notice that

So, starting from the e = 0 locus, a small increase in c* (which takes us above
the phase line) puts Us in the region where the level of employment is rising
over time.

To plot the second phase line we proceed in a similar way. Setting c* = 0
in (5), we obtain

c* = , e) = [p + b{e) + aG(c*)]c* -b(e)y -a£ cdG(c) = 0 (8)
Jc
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Figure 13.3. The c* = 0 phase line.

an equation that implicitly defines a function of the form c* = c(e) giving the
reservation cost c* as a function of e when the latter is constant (or when
agents expect it to be constant). Taking the partial derivatives of B( ),

Be=b'(e)(c*-y)<0

Bc=[p + b{e) + aG{c*)] + ac* G'(c*)

we find that

(c* )-G'{c*) = p + b(e) + aG(c*) > 0

>0c(e)v ; Bc p+b(e) + aG{c*)

That is, in a stationary environment, the reservation cost increases with the
employment rate, provided that b'( ) > 0. When e is high, agents do not have
to wait long for partners with whom to trade. Thus, they find it worthwhile
to climb even relatively high trees, rather than waiting for a better oppor-
tunity, for doing so does not imply a large delay, on average.

Observe that c* < y, for no agent will accept a production opportunity
whose net return is negative (the cost of climbing exceeds the value of the
coconut). Also, the phase line goes through the origin, c(0) = 0, for it is never
worthwhile to expend effort to get a coconut when there is nobody around
with whom to exchange it.6 Finally, the arrows of motion along the c* axis
point upward in the region above the c* = 0 line, as dc*lde = Be < 0 (Figure
13.3).

Combining the preceding two figures, we obtain the phase diagram shown
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596 Some Applications of Dynamic Optimization

Figure 13.4. Phase diagram.

in Figure 13.4. Notice that there is always a steady state at the origin: If no
production is undertaken, nobody will be employed, and if nobody is
employed, it would never pay one to become employed and produce,
because one would never find a trading partner.

In some cases, this may be the only long-run equilibrium. But if the phase
lines cross outside the origin, they must do so at least twice, for the c* = 0
locus is bounded above by y9 and the e = 0 curve has a vertical asymptote at
eM. Notice that the existence of trading externalities is crucial for the exis-
tence of multiple steady states. The e = 0 phase line is always upward-sloping
(as natives become willing to climb higher trees, they become employed
faster, raising the stationary employment level). The c* = 0 locus, on the
other hand, becomes a horizontal line if the rate of arrival of trading oppor-
tunities is independent of the employment rate, that is, if b'(e) = 0. In this
case, the system has a unique interior steady state.

The stability properties of each steady state can be determined from
the eigenvalues of the corresponding Jacobian matrix (the coefficient matrix
for the linearization of the system around each steady state). Given the
Jacobian

A, A?

the corresponding eigenvalues satisfy

XX =det / =
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e = 0 |

Figure 13.5. Convergent trajectories.

If de t /<0 , the eigenvalues are real numbers of opposite signs, and the
steady state is a saddle point. We can relate the sign of det / to the relative
slopes of the phase lines. Observe that

5^ A* W e'(c*)

Hence, a steady state is a saddle point if and only if it corresponds to a point
where the e = 0 phase line is steeper and cuts the c* = 0 locus from below.

In the phase diagram shown in Figure 13.4 there are therefore two saddle
points: the equilibrium at the origin, and the steady state with the highest
level of activity. Figure 13.5 shows the saddle-path trajectories leading to
these equilibria, which are also the possible equilibrium paths of the system.7

The figure shows that, at least for certain initial values of the predetermined
state variable e, there are two equilibrium trajectories, one leading to the
high-activity steady state, and the other leading to the "shutdown" equilib-
rium at the origin.

There are, then, two "natural rates" or long-run equilibria, one clearly
superior to the other, and, in many cases, two equilibrium paths, each leading
to one of these steady states. We therefore face a coordination problem -
which of the paths will be taken will depend on the ability of agents to coor-
dinate their actions on the good equilibrium. As noted earlier, we can think
of the problem in terms of the tendency for optimistic or pessimistic expec-
tations to become self-fulfilling. In some sense, the problem is one of coor-
dinating beliefs. This raises the possibility that the assumption of rational
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598 Some Applications of Dynamic Optimization

expectations may not be sufficient to fully close the model: Even if agents
know the structure of the model and can compute the equilibrium paths,
there is uncertainty concerning the actual path of the economy, for agents
cannot know for sure which equilibrium will be selected.

2. Optimal Growth in Discrete Time

Consider an economy populated by a constant number of identical infinitely-
lived agents. There is a single good that can be consumed directly or used
as capital in production. The preferences of a representative individual are
described by a utility function of the form

) (1)

where /3 e (0,1) is the rate of time discount, a measure of the agent's "impa-
tience," ct is consumption at time £, and the period utility function U( ) is a
strictly increasing and strictly concave C2 function. All agents are endowed
with one unit of labor time each period.

Production of the single good requires both labor (L) and capital (K).
The production technology is described by a strictly concave production
function,

Y = F(K,L)

where we interpret Y as gross output (i.e., new production plus undepreci-
ated capital).8 We assume that F() is C2 and is strictly increasing and exhibits
constant returns to scale (i.e., is homogeneous of degree 1). Thus, if both
inputs are changed by the same factor A, output changes also by a factor of
A, and we have

F(XK,XL) = XF(K,L) (2)

This property of the production function allows a convenient normalization.
In (2), let A = 1/L, and note that

F(K/L, L/L) = (1/L)F(K9 L) => F(K, L) = LF(K/L, 1)

If we write k for the per-capita capital stock (K/L) and define the per-capita
production function by

= F(k,l) (3)

we can write total output as

Y=Lf(k)

and per-capita output y = YIL as a function of the average capital stock per
worker,
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Optimal Growth in Discrete Time 599

(4)

Imagine that this economy is regulated by a benevolent, all-powerful
social planner who makes production, consumption, and investment deci-
sions so as to maximize the lifetime utility of the representative individual.
The planner chooses a sequence {ch kt+1}Zo of consumption levels and capital
stocks so as to maximize the utility function (1), taking as given the
production technology, and subject to a resource-availability constraint.
Working in per-capita terms, the initial capital stock k0 is given, and at each
point in time, consumption and investment must satisfy the constraint

f(kt) = ct + kt+1 (5)

That is, current output per capita, including undepreciated capital, /(/cr), can
be either consumed today or used for tomorrow's production.

At any given point in time t, the initial capital stock kt describes com-
pletely the state of the system and determines the economy's consumption
possibilities for the current period and all future time. Given kh the planner's
immediate concern is to choose current consumption. Alternatively, because
kt+1 + ct must add up to current output, we can think of the planner as choos-
ing an investment level kt+1. Hence, the planner's problem can be written

V(ko)= max \t,PU[f(k t)-k t+l] s.t. 0< kt+1 < f(kt\ k0 given} (P)

The constraint says that next period's capital stock cannot be negative and
cannot exceed current gross output. To rule out corner solutions, we will
assume that both the production function and the period utility function
satisfy the following conditions:

/(0) = 0, //(0) = °°, /'(<*>) = 0, C/'(0) = °°, and £ / 'H = 0 (6)

Following our discussion in Chapter 12, the (current) value function for
the planner's problem satisfies the Bellman equation,

V(kt) = max{U[f(kt) - kt+1 ] + pV(kt+1) s.t 0 < kt+1 < f(kt)} (BE.P)

Under our assumptions regarding preferences and technology, all but one
of the conditions that would guarantee the existence and uniqueness of a
bounded, continuous, strictly increasing and strictly concave solution to
(BE.P) are satisfied. In particular, recall that Theorem 1.5 in Chapter 12
required the period return function to be bounded. In the current context,
however, the period utility function U( ) and the production function
may very well be unbounded. There is, however, a simple way to sidestep
the problem by restricting ourselves to a bounded subset of the domain of
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45°

f(kt)

Figure 13.6.

Imagine, for a moment, that consumption is zero in all periods. Then the
evolution of the capital stock is described by the difference equation

kt+l=f(kt) (7)

It is easy to show (see the discussion of the Solow model in Chapter 11) that
under our assumptions, the phase diagram for this equation is as shown in
Figure 13.6, with a unique and globally stable steady state, kM. Hence, even
if all output is invested each period, there is a maximum sustainable per-
capita capital stock. We can therefore restrict ourselves to values of k in the
interval [0, kM]. Because U[f(k)] is certainly bounded in this set, we can apply
Theorems 1.5 and 1.18 in Chapter 12 to obtain the following result.

Proposition 2.1. The Bellman equation (BE.P) has a unique continuous and
bounded solution V. This function is the value function for the planner's
problem (P) and is strictly increasing and strictly concave. Moreover, the
policy correspondence g( ) giving next period's optimal capital stock as a func-
tion of today's state kt is a well-defined and continuous function.

Given this result, we can establish some important properties of the policy
function by studying the maximization inside the Bellman equation. We
begin by using Theorem 2.15 in Chapter 6 to show that V() is differentiable.
This will allow us to use the first-order condition for the maximization in
(BE.P) to characterize the optimal investment decision.

Proposition 2.2. The value function for the planner's problem, V( ) , is dif-
ferentiable, with

V'(kt) = U'[f(kt)-kt+1]f'(kl)
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Proof. Fix some k°t in (0, kM), and let &?+1 be a solution of the problem

V{k«) = max{U[f{k°)- kt+1]+/3V(kt+1) s.t. 0<kt+1 < /(*?)} (BE.P)
ki+i

Next, define the function

for A;, within some £-ball with center at k% B£(k°). Under assumption (6), k°t+x
will be an interior solution of this problem, that is, 0 < fc?+1 </(£?). By the con-
tinuity of/, e can be chosen small enough that f(kt) > fc?+1 for all kteBe(k°t),
that is, so that kfj+i is still feasible for all kt e Be(kf). On the other hand, k%

i

is not necessarily optimal for an arbitrary kt in Be(k®). Hence,

W(kt) = U[f(k,) - *,°+1 ] + pV(k,°+i) ^ max{l/[/(*,) - kt+1 ] + pV(kt+1)} = V{k,)
k i

because fc?+1 is optimal for A:?. Moreover, W() is a differentiable function of
kh because U( ) and /( ) are differentiable, and V(k!j+l) is just a constant.
Hence, by Theorem 2.15 in Chapter 6, V{ ) is differentiable at k% and

Because V( ) is differentiable, an interior solution of the maximization
inside the Bellman equation is characterized by the first-order condition

kt+1) (8)

which implicitly defines the policy function

fc*i =g(k)

Without additional restrictions there will be no guarantee that V will be
twice differentiable. Hence, we cannot differentiate (8) again to establish the
comparative-statics properties of the function g(). As we will see, however,
equation (8) and the concavity of the value function provide sufficient infor-
mation to establish some important properties of the policy function and the
optimal sequence of capital stocks.

In some cases it will be useful to rewrite (8) in an alternative way. By
Proposition 2.2, applied at time t + 1, we have that

V\kt+l) = U'[f(kt+1) - kt+2]f'(kt+1) = U'(ct+l)f'(kM) (9)

Substituting (9) into (8), we obtain the so-called Euler equation,

U\f{kt) - kt+1] = (5U'[f(kt+1) - kt+2]f'(kt+1) (10)

or, reintroducing consumption explicitly,
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U'(ct) = (KJ'(ct+1)f'(kt+1) (100

To interpret this equation, consider reducing periods consumption by one
unit in order to invest it and increase consumption at t + 1. On the one hand,
there is a utility loss of U'(ct) in period t. On the other, an additional unit of
investment will allow consumption to be higher by f(kt+1) units next period,
yielding a utility gain of lf(ct+i)f(kt+i). Because this utility gain comes one
period later, however, we must discount it by /?. The Euler equation says that
along an optimal path, today's loss and tomorrow's gain must be equal, for
otherwise a feasible rearrangement of the consumption/investment plan
would increase its total value, implying that the original plan could not have
been optimal. Hence, along an optimal trajectory, the planner must be indif-
ferent, at the margin, between using an additional unit of output for current
consumption or for investment.

There are now two different ways to proceed. One is to work directly with
the first-order condition (8); the other is to analyze the two-equation system
formed by the Euler equation (10') and the constraint (5), reinterpreted as
the law of motion for the capital stock,

kt+1=f(kt)-ct (5')

We will work through the first approach and let the reader explore the
second approach through a series of problems.

(a) Properties of the Policy Function and
the Optimal Capital Sequence

Given the policy function g(), the optimal time path for the capital stock is
the solution of the difference equation kM = g(kt). We know that the optimal
sequence, {kf}y must satisfy the first-order condition (8) and the Euler equa-
tion (10) and that the value function V{ ) is strictly concave and increasing.
In this section, we will use this information to establish some properties of
g( ) and {k*}.

We begin by characterizing the steady state of the system. Setting kt = kt+1
= kt+2 = A;in the Euler equation (10), we obtain

=>/'(*) = 1/0 (11)
an equation that implicitly defines the steady-state capital stock k as a func-
tion of the discount rate /?.9 Because /( ) is strictly concave, the marginal
product of capital,/'(A:), is a strictly decreasing function of the capital stock,
implying that equation (11) has at most one solution. The assumptions that
/'(0) = °° and/'(<*>) = 0, moreover, ensure the existence of a positive solution,
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Optimal Growth in Discrete Time 603

k Moreover, we have k< kM, as k cannot be larger than the maximum sus-
tainable capital stock described earlier.

Next, we show that the policy function g( ) is an increasing function of kt.
This result is then used to establish that the optimal sequence of capital
stocks {kf}Zo is monotonic and converges asymptotically to the steady state
for any given initial stock k0 > 0.

Proposition 2.3. The policy function kf+i = gfk j is increasing in kt.

Proof. By contradiction. Suppose g( ) is not increasing everywhere. Then
there exist capital stocks k' and k" such that k" > k' and

g{k")<g{k') (1)

Because V( ) is concave, moreover, V\ ) is decreasing, and (1) implies

V'[g(k")]>V'[g(k')] (2)

By the first-order condition

U'[f{kt)-kt+l] = pV\kM) (8)

inequality (2) implies

U'[f{k")-g{k")]>U'[f{k')-g{k')\

Now, Because U() is strictly concave by assumption, the foregoing expres-
sion implies that

f(k") - g(k") < f(k') - g(k') => g(k") - g(k') > f(k") -f(k')>0

where the last inequality holds because /( ) is increasing. But then g(k") >
g(k'), which contradicts (1). •

Proposition 2.4. The optimal capital sequence {kt}, defined recursively by kf+1

= gfkf), with k0 given, is monotonic.

Proof. Suppose k\ > k0. Because g( ) is increasing, we have

kt

which implies, in turn,

kt
and so forth. Similarly, if kf < k0, then

and so on. •
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604 Some Applications of Dynamic Optimization

Proposition 2.5. If the initial capital stock k0 is above the steady state k, then
fkfj decreases monotonically; ifko < k, then {kf+j} increases monotonically.

Proof Because V{ ) is strictly concave, V'( ) is strictly decreasing. Hence

k">k'=>V'(k")<V'(k') (1)

Consider two successive capital stocks, kf and kf+u where kf+1 = g(kf). By (1),
kf - kf+1 and V\kf) - V'(kf+1) will have opposite signs, that is,

(k* - kt x)[V'(k*) - V'(kti)] < 0 (= 0 at the steady state) (2)

By equations (8) and (9), we have

(8) => V'(kti) = {llP)U\f{k*) - C ]

Substituting these expressions in (2),

{k* - **,)M/(tf) - k*+l]f (k*) - (i/W[f(k*) - ** i]} ^ o
and, dividing by U'( ) > 0,

* ) [ ^ / 0 (3)

Recall that at the steady state, f\k) = Vf5, and /'( ) is decreasing, by the
concavity of /( ). Hence,

• if kf < k, we have /7(A:f) > (l/j3), and (3) implies that kf< kf+u that is, {kf\ is increas-
ing, and

• if kf>k, we have f'(kf)<(l/p), and (3) implies that kf>kf+u that is, {kf\ is
decreasing. •

Proposition 2.6. The optimal capital sequence (kfj converges (monotoni-
cally) to the steady-state capital stock kfor any initial k0 > 0.

Proof. Note that {kf} is monotonic and bounded (above by kM, below by
zero or, alternatively, by k0 and k). Because every monotonic bounded
sequence converges, {kf} has a limit that we will call A;*. By the continuity of
the policy function g ( ) , A;* must be a fixed point of g(), for

k* = li ) = g(limkt) = g(k*)

Hence, /c* is a steady state. Because there is a unique steady state fc, we con-
clude that {kf} -*k •

(b) The Euler Equation and Dynamics

In the preceding section we found it convenient to solve the resource con-
straint for c and work only with the capital stock. Using the concavity of the
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Optimal Growth in Discrete Time 605

value function and the first-order condition for the maximization in the
Bellman equation, we have established that the optimal capital sequence {kf}
converges monotonically to the steady state of the system. We can then use
the constraint again to infer the optimal path of consumption over time. We
now illustrate a second and probably more instructive approach to analyz-
ing the dynamics of the optimal-growth model. The basic idea is to treat the
system formed by the Euler equation and the transition law for the capital
stock,

t+1)f'(kt+1) (11)

*,+i = / (* , ) -c , (12)

as an ordinary system of difference equations and study its dynamics in the
standard way. Thus, we first solve for the steady state; then we construct a
phase diagram and compute the eigenvalues of the Jacobian matrix at the
steady state to check for stability.

Setting ct = ct+1 = c and kt = kt+1 = kin (11) and (12), we get

(11) => u'(c) = pu\c)f'{k) => pf'(k) = 1 (13)

(12) =*c = / ( * ) - * (14)

As we have seen, equation (13) has a unique solution £ Given k, equation
(14) can be solved for steady-state consumption c.

The system (11)—(12) is not quite in the "standard form." In particular, we
would like to have each variable (kt+x and ct+1) as a function of the lagged
values kt and ct. To this end, we solve (12) for kt+u substitute the result into
(11), and apply the implicit-function theorem to the resulting equation to
obtain a function 0( ) giving ct+1 as a function of kt and ct. This yields the
system

kt+1 = f(kt) -ct = (p(kt, ct) (15)

U\ct) = pU'(ct+1)f'[f(kt)- ct] <* c,+1 = #*,, ct) (16)

Problem 2.7. Apply the implicit-function theorem to compute the partial
derivatives of the function (j)(kt, ct) defined implicitly by equation (16), and
determine their sign.

Problem 2.8. Setting ct = ct+1 = c and kt = kt+1 = k in (15) and (16), draw the
phase lines Akt = 0 and Act = 0. To complete the phase diagram, determine
the directions of motion along the c and k axes in each of the four regions
into which the state plane (c, x) is divided by the phase lines.

Problem 2.9. The phase diagram you have just drawn should suggest that
the steady state is a saddle point. Check that this is true by showing that the
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606 Some Applications of Dynamic Optimization

eigenvalues of the Jacobian matrix for the system are positive real numbers
lying on opposite sides of 1.

The phase diagram we have constructed shows the orbits of the system
(15)-(16), but only one of these trajectories corresponds to the solution of
the original planning problem. These two equations can be thought of as the
first-order conditions for an optimum, but they are not sufficient to fully
characterize the optimal path.

Out of all the solutions of (15)—(16), we want to identify the one that cor-
responds to the solution of the programming problem. To select one partic-
ular solution, we need two boundary conditions to pin down one point in
the phase plane through which the system will have to go. The initial value
of the capital stock should be taken as given; this yields one initial condi-
tion, kit = 0) = k09 a given constant, specifying that the system starts out from
some point on a vertical line through k0 in the phase plane. On the other
hand, there is no natural initial condition for the free variable c, so we need
another way to identify the optimal path.

It turns out that the optimal consumption/investment plan is the one
described by the saddle-path trajectory. An intuitive way to see this is by
examining the phase diagram for the system after adding to it a feasibility
bound requiring that consumption not exceed current output, that is, c <
f(k). Inspection of this figure suggests that all trajectories other than the
saddle path eventually run into either the k axis or the feasibility bound,
where present consumption exhausts output, leaving nothing for next
period. In either case, consumption becomes zero and remains so thereafter.
It is clear that such paths cannot be optimal, leaving us with only the saddle
path.

A more formal way to identify the optimal path is through a so-called
transversality condition. In some sense, the problem is the same as in a static
maximization problem: The first-order conditions (the Euler equations here)
identify possible candidates for a maximum, but they are also satisfied by
points that are not maxima. To find an optimum, we need an additional cri-
terion, some sort of second-order condition relating to the concavity of the
objective function at the candidate point. The transversality condition plays
a similar role in the present context, and as we will see, the sufficiency proof
relies heavily on the concavity of the objective function.

An alternative way to think of the transversality condition is as a termi-
nal condition for the system of difference equations. Consider first a finite-
horizon version of the planning problem we are studying. In that case kT+1
is the capital stock to be left "at the end of time"; it is clear that the optimal
thing to do is to leave nothing, so kT+1 = 0, providing us with a second bound-
ary condition to identify the particular solution of (15)—(16) that solves the
planner's problem. As we saw in Chapter 12, in the infinite-horizon case the
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Optimal Growth in Discrete Time 607

transversality condition can be interpreted in a somewhat similar way, as the
requirement that as t —» °° the suitably discounted value of the capital stock
should go to zero. Intuitively, we want to prevent the planner from accu-
mulating too much capital at the expense of deferring consumption forever.

Proposition 2.10. Transversality condition. Let s* = k0 u fcf, kf+1}Zobe a solu-
tion sequence of the system (15)-(16). If this sequence satisfies the transver-
sality condition

T—

then it solves the planner's problem.

Proof Let s* = k0 u {cf, kf+1} be a sequence satisfying the conditions of the
proposition, and s = k0 u {c,, fcr+1} an arbitrary feasible sequence.To establish
that 5* is optimal, we show that

r=0

That is, the total "utility value" of the candidate sequence s* is at least as
large as that of any feasible sequence.

To show this, it will be convenient to solve the resource constraint for c,

kt+1 = f(kt) -ct=>ct= f{kt) - kt

and write the period utility function as

U(kt, kt+1) = U[f(kt)-kt+1]

It is easy to show that the function U(kt, kt+1) is concave. Moreover, we have

IM*,, kt+1) = U'[f(kt)~ kt+1]f'(kt)>0 (1)

U2(kt, kt+1) = -U'[f{kt) - kt+1] < 0 (2)

In this notation the Euler equation can be written

U'[f{kt) - kt+1] = (3U'[f(kt+i)- kt+2]f'(kt+1)

=> U2(kt, kt+1) + pU1(kt+1, kt+2) = 0 (3)

Next, write d in the form

d = W0(s*) - W0(s) = hm^F{U(k*, kf+1) - U(kt,kt+1)}
~^°° t=Q

and observe that, by the concavity of U(kh kt+1),

U(kt,kt+1)<U{k*, C ) + l/i(** k?+1Xkt-k*) + U2{k*, kt,){km -**,)

or, rearranging,
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608 Some Applications of Dynamic Optimization

U(k*,k*+1)-U(klfk,+1)^U,{k*,k?+1)(k* - k , ) + U2(k*,A:*tX*:*i - k M ) (4)

Hence, we have

d = lim J>{£/(*:?, O - U { k t , k,+1)}
t=0

yik*, k*M){k* - kt)+U2{kt, **!)(**! - kt+l)}

= P°{U1(kt kt){kt - ko) + U2{k*o, *?)(*? - kr)}

+p{U1{kt k*2){k*1-k1)+U2(k*1, k*2)(k*2 - k2j\+...+

P{Ui{k*, k%){k* - kt) + U2{k*, k*+x){k*+l -kt+l)}

+pM{Ul(klx, kt2){k?+1 - kt+l)+U2{ktu kt2)(k*+2 - kt+2)} + ...

Observe that the initial capital stock is given and thus is the same in both s
and s*; hence k% - k0 = 0, and the first term in the sum vanishes. The remain-
ing terms can be rearranged to give

d = li

Next, recall that s* is assumed to satisfy the Euler equation

ti)+pU X0+jMAfC k*+2) = 0 (3)

Hence the terms in the summation vanish, and we have

d = W0(s*)- W0{s)> limpTU2{kr, k*+1){k*+1 - kT+l)

Moreover, we have kT+t > 0, by the feasibility constraint, and U2( ) < 0, by
(2). Hence, the product U2(k% kf+1) (-kT+i) is positive, and we have, using the
Euler equation,

d = W0(s *) - W0(s) > YimpTU2{k*T, k*+1)k*+l

= limjS^C/, (fc*+i, k*+2)k*T+1 = -limpT+1U'(c*T+,)f'{k%)k*T+1 = 0

where the next-to-last equality follows from (1), and the last limit is zero, by
the transversality condition (T).

In conclusion, we have shown that

d = Wo(s*)-Wo(s)7>O

Because the sequence s* that satisfies both the Euler equation and the trans-
versality condition must yield a greater value than any other feasible
sequence, it must be optimal. •
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Investment with Installation Costs 609

Problem 2.11. Show that the function U(kh kt+i) defined in the proof of
Proposition 2.10 is concave.

To conclude, it is easy to verify that the saddle-path solution satisfies the
transversality condition (T) and is therefore optimal. For this solution, both
ct and kt converge to finite values c and k. Hence, k, U\c), and f(k) are just
finite constants, and

KmpTU'(c)f'(k)k = 0
T-

because fi e (0,1). Along explosive paths, however, either k or c will become
zero. In that case, f\k) —> °° or U\c) -> °°? so (T) may not hold.

3. Investment with Installation Costs

In the standard static model the firm is assumed to maximize current profits,
defined as the difference between output and contemporaneous factor pay-
ments. Letting K and L denote labor and capital inputs, and w and R the
wage and the rental rate of capital in units of output, the firm's problem can
be written

maxF(K,L)-wL-RK (1)
K X

The solution functions for this problem are factor demands giving optimal
input levels as functions of factor prices:

K* = K(wJr) and L* = L(w,r)

This formulation assumes that the firm can rent inputs in "spot markets" and
put them to work immediately and at no cost. This clearly unrealistic
assumption may lead, at best, to a theory of the determination of the optimal
capital stock, but it has no implications (or very naive ones) for the optimal
investment policy.

In practice, capital is typically purchased, rather than rented, and its instal-
lation may involve considerable delays and adjustment costs. Thus, a firm's
stock of "installed capital" becomes a sluggish state variable, and investment
decisions must be made taking into account their effect on the entire time
path of profits, rather than on a period-by-period basis.

The first part of this section analyzes the optimal investment policy for a
competitive firm when the installation of capital is costly. In the second part,
we go from partial to general equilibrium and study the time paths of invest-
ment and share prices in a small open economy and their responses to
changes in tax policy.
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610 Some Applications of Dynamic Optimization

(a) A Model of Investment with Installation Costs

Consider a competitive firm with access to a constant-returns technology
F(K, L). The firm hires labor in spot markets at a constant wage rate w and
may devote part of its output to productive investment /. The installation of
new capital involves a cost. In particular, an investment expenditure of /
units of output yields *F(/, K) <I units of new productive capital when the
already-installed stock is K. If capital depreciates at a constant rate <5, the
instantaneous rate of change of the firm's stock of installed capital is given
by

Kt=V(It9Kt)-SKt (1)

Profits, defined as output minus wage payments, are taxed at a constant rate
R, and investment is subsidized at a rate c. Thus, the firm's instantaneous net
cash flow is given by

n , = (1 - r\F{Kt9 Lt) - wLt] - (1 - c%

We will assume that net cash flows are distributed as dividends among the
firm's owners each period and that the stock market values the firm cor-
rectly (i.e., that the value of its stock is the discounted value of the dividend
stream),

[e-rtTItdt (2)

where r is the market rate of interest (assumed constant). In these circum-
stances, all shareholders will agree that the firm should maximize (2). The
firm's problem can therefore be written10

rt((l-t)[F(Kt,Lt)-wL,]-(l-c)It)dt

s.t. Kt = V(It, Kt)-SKt9 KQ given]

We will assume that F( ) and *F() exhibit constant returns to scale and are
increasing and concave functions that are twice continuously differentiable,
with

FKK, FLL < 0, FKL > 0, FL(K, 0) = -
VKK^II^K^O, V(I,K)<I, and ¥(0, K) = 0 VK

Thus, the installation function is concave in / for given K and goes through
the origin. More investment leads to faster capital accumulation, but at
a decreasing rate, and the marginal productivity of capital in installa-
tion Q¥K) is positive, but decreases with both K and /. In principle, we
allow investment to be negative; that is, capital can be disinstalled and
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Investment with Installation Costs 611

"eaten," but only at a loss Q¥ < I implies that we lose some capital when we
disinstall it).

The state variable is the stock of installed capital K, and the decision vari-
ables are the investment rate and the level of employment at each point in
time. Necessary conditions for an optimal solution of (P) can be obtained
by applying the maximum principle. Following the procedure developed in
Section 2 of Chapter 12, we begin by introducing a (current-value) costate
variable or multiplier, qh and forming the current-value Hamiltonian,

Hc
t=(l-T)[F(Kt,Lt)-wLt]-(l-c)It+qt[V(It,Kt)-8Kt]

The shadow price of installed capital, q, is the derivative of the value of the
firm, V, with respect to K, that is, the increase in the firm's (stock-market)
value that would result from an additional unit of installed capital. The last
term in H\ qK, is the current value of the contemporaneous increase in K.
The Hamiltonian, defined as the sum of qKand the firm's current dividend,
measures the total flow of (current and discounted future) benefits arising
from today's decisions. Thus, the control variables L and / should be chosen
to maximize Hc

t, yielding the following conditions:

(3)

I,K) (4)

The equation of motion for the costate variable q is given by

VK (I, K)] - (1 - z)FK (K, L) (5)

Maximization of Hc with respect to L yields a familiar condition: Because
employment decisions can be made on a period-by-period basis, the mar-
ginal product of labor should be set equal to the wage, exactly as in the static
model. Equation (4) requires that the net cost (after subsidies) of one unit
of newly purchased capital equal its marginal contribution to the firm's
value, obtained by multiplying the resulting increase in installed capital (*F7)
by its shadow price q. Both conditions are in agreement with the general
proposition that additional units of an input should be purchased as long as
each yields a marginal benefit that exceeds its cost.

Equations (3) and (4) define policy functions giving the optimal choices
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612 Some Applications of Dynamic Optimization

of instruments (/* and L*) as functions of the state and costate variables
and the wage rate. To write these functions in a convenient form, we will
exploit the homogeneity of degree 0 and the monotonicity of the first partial
derivatives of the production and installation functions.11 Equation (3) can
be written

FL(K,L) = FL(K/L,l) = w

Inverting FL(% 1), we can solve for the optimal capital/labor ratio as a func-
tion of the wage and write

L * = o ? b ' where ® = F [ l ^ (6)

showing that the optimal employment level increases with the stock of
capital and decreases with the wage. Similarly, equation (4) can be written

and, letting P( ) = Yj1^, 1), we see that the optimal level of investment is an
increasing function of K and q:n

/ * = / ? — # , with "n^ *»«*=?( )^±-±l = -—^_^>0 (7)
U ) dq qwith)2 *F q 2

Finally, we turn to the law of motion for the multiplier. Rearranging equa-
tion (5), we obtain

r = ^_v LJL±-A+yK( ys (8)

To interpret this expression, think of an investor who has a choice between
two assets: a bond that pays the market rate of interest, r, and "stock
certificates," each of which entitles the holder to ownership of one unit of
the firm's capital and the corresponding dividends. The right-hand side of
this expression gives the rate of return on installed capital if we price it at
its shadow value.13 Equation (8), which requires that the returns on the two
assets be the same, can therefore be interpreted as an equilibrium condition,
for nobody will hold capital if there is another riskless asset that will yield
a higher return.

In fact, the no-arbitrage interpretation of the law of motion for the mul-
tipliers can be taken quite literally in the present model, for it turns out that
q will indeed correspond to the market valuation of a unit of installed
capital. Recall that q is the marginal contribution of an additional unit of
capital to the firm's market value; in principle, this need not coincide with
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Investment with Installation Costs 613

the market price, which should reflect the average value. With constant
returns to scale in both production and installation, however, "average" q
and "marginal" q coincide, as we will presently show, implying that we can
indeed interpret q as the market price of a unit of installed capital,14 equa-
tion (8) as a no-arbitrage condition, and the current-value Hamiltonian as
the objective function for a manager who seeks to maximize the current
market valuation of his firm.

Proposition 3.1. Assume that the installation and production functions (W
and F) exhibit constant returns to scale (homogeneity of degree 1) and that
the transversality condition

lime~Tiqtxt =0
t->oo

holds. Then average q and marginal q coincide (i.e., VC(K) = qK).

Proof. The value of the firm at time s is given by

*-(l-c)I*)dt (9)

where the asterisks indicate the optimal values of the instruments, as char-
acterized earlier, and Kf is the optimal path of the capital stock, the solution
to

£, = ¥( /* Kt) - 8Kt (Ko given)

Exploiting the homogeneity of the installation and production functions,
we can rewrite (9) in a convenient way. Notice the following:

• Euler's theorem and the equality of the wage and the marginal product of labor
imply that current profits will be equal to the product of the stock of capital and
its marginal product:

F(K9 L) = KFK + LFL = KFK + Lw
=> F{K, L) -wL = KFK (10)

• Similarly, by the linear homogeneity of the installation function, we have

/, K) -

Substituting this expression in the condition for the optimal investment level,
equation (4), (1 - c) = #¥ /( / , K), we have

(11)

Substituting (10) and (11) into (9), the value of the firm is given by
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614 Some Applications of Dynamic Optimization

VC(KS) = re-H'-s){(l-T)KFK - qMl,K)-KVK]} dt

= \™e-'(<-s){(l-T)KF-q{k + 8K-KV)} dt

= J"e'ri'^{K[(l-T)FK -q(S-¥*)]-qK} dt

-q)- qK} dt

where the second equality follows by the law of motion for the capital stock (
K)=K+ 8K), and the last follows by the transition equation for the costate vari-
ables.15 Observing that

we have

VC(KS) = rers Te'nq,Kt dt - ers e r sJs t dt

Integrating the second integral by parts, we arrive at

Vc{ks) =re"j~e-rtq,K, dt-e"([e~«qtKt]~ +r\°°e"qtKt dt)

= -ers{e~nqtK^s - -era(lime""qtKt - e~"qsKs) = q5Ks

where the limit vanishes, by the transversality condition. •

Phase Diagram and Dynamics. Substituting the policy functions (6) and (7)
into the transition equations for the state and costate variables,

kt=*¥{I*,Kt)-8Kt

qt=qt[r + 8-VK{I*,Kt)}-{l-T)FK{Kt,L*t)

we obtain a system of differential equations in (q, K):

\-8Kt (12)

qt =

where we have once more made use of the homogeneity of *F(), FK( ), and

VK( )•
Setting K= 0, the equation of the first phase line is implicitly defined by

the condition that gross investment per unit of capital be equal to the rate
of depreciation,

W^Vl (14)
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K>O=»K(t)T

K = 0

K<O=>K(t)i

K

Figure 13.7. The K = 0 phase line.

Because the left-hand side of this equation is a monotonic function of q,
there is at most one value of q that satisfies this equation. We will assume
that *F( ) is such that equation (14) has a solution, and we call it q}

6 This
solution value of q corresponds to the lowest "share price" at which it
becomes profitable to invest enough to offset depreciation. From (12),

dq dq

so K increases over time whenever q > q, as indicated by the arrows of
motion shown in Figure 13.7.

The second phase line (q = 0) is defined by the condition that the rate of
return on installed capital in the absence of capital gains be equal to the
interest rate, that is,

\- TT/
1-c

,i\-s (15)

As K does not enter into this equation, and the right-hand side is a decreas-
ing function of q, (15) also yields a horizontal phase line at a constant value
of q, say q*. Differentiating (13) with respect to q,

dq
dq dq

(16)
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\
q>O=>q(t)T

! •

q = 0

K

Figure 13.8. The q = 0 phase line.

(provided that ¥*:/ < 0), we see that the arrows of motion along the q axis
point away from the phase line, as shown in Figure 13.8. Intuitively, if q is
"too high" relative to the underlying stream of dividends, people will hold
capital only if they expect it to appreciate over time.

Assuming that q*> q (i.e., that the sustainable stationary price of capital
induces investment in excess of depreciation), and combining the two phase
lines, we obtain the phase diagram shown in Figure 13.9. The system has no
steady states, and all paths are explosive in some sense. The closest thing to
a saddle path is the horizontal trajectory along the q = 0 phase line, with con-
stant q and unbounded capital accumulation at a constant rate given by

K
If g < r, the transversality condition

lime rtq*Kt=Q

holds, and this is indeed the optimal path, by Theorem 2.3 in Chapter 12.
Using (15) and (17) and the homogeneity of the installation function,

r * '

q"
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q

q*

U
q = 0

P
K = 0

1
K

Figure 13.9. Phase diagram.

where the last equality follows from the necessary condition for optimal
investment, equation (4). Because /?* = I*IK, we have g < r whenever (1 -
c)I* < (1 - T)FK( )K, that is, whenever the firm pays positive dividends.

In conclusion, given constant returns to scale in both production and
installation and constant factor prices, a competitive firm will grow over time
at a steady rate while maintaining a constant shadow price of installed
capital equal to the present value of the (constant) stream of dividends per
unit of capital. It is clear, however, that this situation cannot persist in equi-
librium, where the factor demands of firms are unlikely to be made com-
patible with the factor supply decisions of households at constant input
prices. In particular, capital accumulation is unlikely to continue at a con-
stant rate forever. With a constant population, for example, the increase in
the stock of capital per worker will drive down the marginal product of
capital and increase the equilibrium wage rate. Both changes will reduce the
profitability of investment and eventually bring it to a stop.

(b) Capital Accumulation and Share Prices in a Small Open Economy

We will now construct the simplest possible general-equilibrium extension
of the investment model developed in the first part of this section. We con-
sider a small open economy with constant population. Wages will now be
determined endogenously and will indeed rise with capital accumulation,
putting a limit to it. The interest rate, however, will be determined in world
capital markets and can therefore be taken as a given constant. Thus, capital
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618 Some Applications of Dynamic Optimization

will flow in from abroad if domestic investment is sufficiently productive,
and we can solve the model for the equilibrium paths of q and K without
taking explicitly into account the behavior of households.

Because firms behave exactly as in the preceding section, the Pontryagin
conditions obtained earlier still apply:

KC=*¥{I*, Kt)-8Kt (1)

qt ¥ * + (/* K,)]-(1-r)FK{Kt,L?) (5)

(7)

FL(Kt,L*) = wt (3')

The only thing that changes is that the wage is no longer exogenous.
Normalizing the size of the population to 1, we can write the labor-market-
clearing condition

L?=l (18)

and interpret equation (3') as giving the equilibrium wage as a function of
(K, L), rather than as the demand for labor as a function of the wage. Aside
from this, the model remains the same. Substituting (7) and (18) into (1) and
(5), we obtain a system of two differential equations in (K, q):

Kt = ̂ — \ 1 V - 8kt = <?(qt, Kt) (19)

(20)

Equation (19) still yields a horizontal K= 0 line at the value of q that
makes optimal investment equal to depreciation, q. On the other hand, the
4= 0 phase line is no longer horizontal; it is now defined implicitly by

It is easy to check that the left-hand side of this expression is an increasing
function of q and that the right-hand side decreases with K. Thus, an increase
in K lowers the stationary value of q to reflect the declining marginal pro-
ductivity of capital. The 4 = 0 locus is therefore downward-sloping, and under
plausible assumptions the system has a steady state. It is still true, however,
that dqldq\q=® > 0, so the vertical lines of motion point away from the phase
line. The phase diagram and arrows of motion are shown in Figure 13.10.

The Jacobian of the system (19)-(20), evaluated at the steady state, is
given by17
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K = 0

K

Figure 13.10. Phase diagram.

Recalling that the product of the system's eigenvalues is equal to the deter-
minant of /,

= det / =
dq

- X)FKK(K, 1) < 0

we see that the steady state is a saddle point, as suggested by the pattern of
the arrows of motion in the phase diagram (Figure 13.10). It is easy to see
that the transversality condition for the firm's problem is satisfied along the
convergent trajectory (Figure 13.11). Because the Hamiltonian is concave in
K, the convergent path is compatible with firm optimization and is therefore
the equilibrium trajectory of the system. Given an initial K below the steady
state, K, the market price of installed capital decreases as capital accumula-
tion reduces the marginal return on investment.

Changes in Tax Policy. We will now use the model to analyze the responses
of investment and asset prices to a change in tax policy. Imagine that there
is an unanticipated and permanent increase in the corporate tax rate r. The
first step is to see how this policy change affects the steady state of the
system. Because fdoes not enter into the law of motion for the capital stock,
given by equation (19), a change in xleaves the K — 0 phase line unchanged.
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K = 0

Figure 13.11. Convergent trajectory.

That is, the value of q that induces replacement investment is independent
of the tax rate. Taxes, however, do enter into the other transition equation,

qt = -(l-T)FK(K,l)^(t>(qt, Kt) (20)

and do, therefore, affect the position of the q = 0 locus. Setting q = 0, (20)
yields

Because the left-hand side of this expression is an increasing function of q,
an increase in T, which reduces the value of the right-hand side, yields a lower
value of q for any given K. Thus, an increase in the corporate tax rate shifts
the 4=0 locus down, as, given K, the sustainable price of capital must fall in
response to a reduction in after-tax dividends.

In summary, the tax increase reduces the steady-state capital stock, but
has no effect on the steady-state value of q. To study the transition, refer to
Figure 13.12 and suppose that just prior to the policy change the economy
was at the steady state corresponding to the old tax rate, E(0). After the
change, the new steady state is £"(1), and the equilibrium path of the new
system is the stable manifold leading to the new stationary equilibrium SS'.
At the time of the change, therefore, the economy must jump from the
initial position to the new equilibrium path, and because the initial capital
stock is predetermined, the whole burden of the adjustment falls on share
prices, which experience a sudden drop. Initially, the higher tax rate reduces
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SS

K(0) K

Figure 13.12. Effect of an unanticipated tax increase.

the stream of dividends accruing to the owners of the firm. As the capital
stock declines, however, the marginal product of capital rises, and eventu-
ally q goes back to the original level, which supports only replacement
investment.

Finally, we analyze the response of the system to an anticipated tax
increase. At time zero (i.e., today), the government announces that at some
time T in the future the corporate tax rate will be permanently increased.
Eventually, the economy must reach the same steady state we have just
described, but what is the adjustment trajectory? We know that the transi-
tion path

(i) asymptotically reaches the new steady state,
(ii) must obey at each instant the laws of motion for the system corresponding to

the tax policy currently in effect (i.e., until the policy change actually takes
place, the motion of the system must be consistent with the phase diagram for
the original tax rate), and

(iii) must be continuous everywhere, except possibly at time zero.18

Using these three properties, we can reconstruct the adjustment trajectory
by working backward (Figure 13.13). At time T, we must be on the saddle
path leading to the new steady state. From 0 to T, we must be on what looks
like an explosive trajectory of the old system. This trajectory must take us
to the saddle path of the new system at precisely the time of the policy
change. Following it backward, we can determine the value of q at time zero
and calculate the immediate drop in prices.
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K(0)

Figure 13.13. Effect of an anticipated tax increase.

4 The Cass-Koopmans Model and Some Applications

Perhaps the most commonly used model in the growth literature, and in
much of macroeconomics as well, is that developed by Cass (1965) and
Koopmans (1965), building on earlier work by Ramsey (1928). In this
section we will develop a version of this model and use it to discuss
some techniques that will be useful in policy analysis when we don't have
closed-form solutions.

(a) Optimal Consumption for an Infinitely-Lived Household

Imagine a neoclassical economy populated by a number of identical agents
(or altruistic families) who live forever. The preferences of each (identical)
individual are summarized by a time-separable utility function of the form19

r~ Cl~a

where <x> 0 is the inverse of the intertemporal elasticity of substitution, C
is consumption, and p is the rate of time discount. At each point in time, the
agent faces the flow budget constraint

a, = atrt + y,-C, (2)

That is, the instantaneous change in the stock of real assets held by the
household (dt) is equal to the difference between the current flow of earn-
ings (interest on existing assets, ar, plus other income, y) and current con-
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The Cass-Koopmans Model: Some Applications 623

sumption. The agent chooses time paths of consumption and asset holdings
so as to maximize (1) subject to (2), taking as given initial wealth, a0, and
the time paths of interest rates and noninterest income.

To obtain the necessary conditions for a solution to this problem, we will
use the maximum principle. The current-value Hamiltonian for the problem
is

The costate variable, X,, can be interpreted as the shadow price of wealth (in
utility units), and Hc, gives the current flow of utility plus the increase in the
"utility value" of the stock of assets that results from the current consump-
tion/saving decision. The Pontryagin conditions are given by

~°-X = 0 (3)
dC

dHc
 =

da

A

(4)

(40

Equation (3) says that the agent balances the benefits of current consump-
tion against its opportunity cost in terms of forgone future consumption.
Equation (4) can be interpreted as saying that the total return on savings (r
plus the rate of "capital gains," A/ A) is equal to the "interest rate" p at which
the agent discounts future utility flows; hence, there will be no gain or loss
(in utility terms) from holding one more unit of capital rather than con-
suming it.

Equations (3) and (4) can be consolidated into a single differential equa-
tion describing the time path of consumption. Taking logs of both sides of
(3) and differentiating with respect to time, we have

and substituting (4') into this last expression,

y; = -{r-p) (5)

Along an optimal path, the growth rate of per-capita consumption is equal
to the product of the intertemporal elasticity of substitution and the differ-
ence between the interest rate and the rate of intertemporal discount. We
can think of p as measuring the agent's impatience, and of r as the reward
for postponing consumption. Hence, less impatient agents will be more
willing to defer consumption and will tend to save more, and consequently
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624 Some Applications of Dynamic Optimization

their consumption will increase at a faster rate. This tendency will be
stronger if the elasticity of substitution (l/o) is high (i.e., if future con-
sumption is a good substitute for current consumption).

Equations (2) and (5), together with the initial asset holdings of the house-
hold and the transversality condition,

limate~pt >0 and limatXte~pt =0 (6)

characterize the optimal paths of consumption and asset holdings for the
household for given paths of income and the interest rate.

Integrating the law of motion for consumption (5) and the flow budget
constraint (2), we obtain20

Ct=CoeH'\ with p(t) = -Urs-p)ds (7)

ate-*®=ao + le-Rto(ys-Cs)ds, with tf(f) = JjV,<fc (8)

Equation (8) says that the present value (discounted to time zero) of house-
hold assets at time t is equal to initial assets plus the discounted value of
accumulated savings.

The transversality condition (6) imposes a nonnegativity restriction on the
asymptotic value of household assets. In the absence of this constraint, the
optimal behavior of the household would involve unbounded borrowing
and consumption. To understand the role of this condition, rearrange (8) and
take limits as t -> «> to obtain

\imate~pt = l i m L + [' e-R{s) (ys -C s ) ds)eR{t)-pt (9)
r->°o r-*x>\ Jo /

The first part of the transversality condition requires that the limit in this
expression be nonnegative. For this inequality to hold, the limit of the term
inside the parentheses must be greater than zero, that is,

e-R(s)ys dsj - JV* W C, ds = (a0 + Yo) - PVC0 > 0

where Yo and PVC0 denote the present value, as of time zero, of the income
and consumption streams, respectively. Hence, the first part of (6) requires
that the discounted value of consumption not exceed total wealth,

PVC0 s JV*WC, ds<ao+ Yo

In fact, this expression will hold as an equality, for the utility function we
have chosen implies that the agent will never be satiated. Given that A, =
C,"'7, we can use (9) and (7) to write the second half of the transversality con-
dition in the form

limatXte-pt = l i m L + f'e'R{s)(ys -C s)ds)eRi l )-p 'Co
ae-am = 0 (10)
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The Cass-Koopmans Model: Some Applications 625

Now, notice that

so the exponential terms in (10) cancel out, and we end up with

+ [e-R(s)y5 ds} - j™e~R(s)Cs ds = {a0 + Yo) - PVC0 = 0 (11)

which can be interpreted as the present-value form of the budget constraint.
Finally, we can solve for the initial consumption level. Substituting (7) into

(11),

J*WC, ds = [ep{s)~R(s)C0 ds = ao +Yo

from where

Ca=
 0+Y° (12)

rP(s)-R(s) ds

Notice that this is a fairly complicated function. Current consumption is a
linear function of total wealth, but it depends on the whole time path of
income and interest rates. A change in interest rates will affect the propen-
sity to consume out of current wealth (the direction of the effect depends
on whether or not a < 1), but also the discounted value of the income stream
(Y).

(b) Equilibrium and Dynamics in a Model with Taxes
on Factor Income

So far, we have focused on the behavior of individual agents, taking as given
the time path of wages and the interest rate. In equilibrium, the equations
derived in the preceding section continue to hold, but they must be evalu-
ated at equilibrium factor prices. We will now derive these and introduce a
couple of policy parameters.

We will assume that the technology is described by a constant-returns-to-
scale neoclassical production function with labor-augmenting exogenous
technical change, that is,

Y = F(K,AL) = ALf(Z)9 where Z = K/AL and /(Z) = F(Z,1) (11)

Firms rent capital and labor services in competitive markets at equilibrium
prices given by the net marginal products of capital and labor,

r = f'(Z)-S (13)
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626 Some Applications of Dynamic Optimization

= f'(Z)Z (14)

where w is the salary per efficiency unit of labor. In equilibrium, factor
markets must clear. We will assume that population is constant, and nor-
malize it to 1, and that each agent is endowed with one unit of labor "per
instant." Because they have no taste for leisure, agents supply their entire
endowment of time inelastically, and labor-market clearing requires Lt = 1
for all t.

The government taxes labor and net capital incomes at proportional rates
RW and Tn makes a lump-sum transfer P to each individual, and destines X
units of output (per capita) to public consumption. We will assume that the
government must run a balanced budget at each point in time and that tax
rates, transfers, and public-consumption expenditures per efficiency unit of
labor (x = XIA and p = PI A) are constant over time. Hence, the govern-
ment's budget constraint can be written

T[f'(Z)-8\Z + TMZ) = x + P (15)

where the left-hand side is total tax revenue per efficiency unit of labor, and
the right-hand side gives total expenditure. Given constant values of x + p
and rr, equation (15) can be solved for the value of rw that will preserve
budget balance for each value of Z.

Substituting (13) into (5) (where r should be interpreted as the net-of-tax
interest rate), the law of motion for consumption becomes

{ ( l X / ( Z ) 5 ] - p } (16)

In equilibrium, the representative agent's non-interest income after tax is
given by

y = (l-rw)Aw(Z) + Ap (17)

and his real asset holdings must be equal to the stock of capital per worker
(there are no other assets). Hence a - K - AZ, and the flow budget con-
straint given by equation (2) becomes

K =(1-r )[/'(Z) -8\AZ + {\-T)Aw(Z)

+ w(Z)]-8K-C-A{rr[/'(Z)-8]Z+TWW(Z)-p}

Using equations (14) and (15), the growth rate of the capital stock is given
by

Kf(Z) C/A x
K Z Z Z v '

In the presence of exogenous technical change, productivity increases
without bound, and so does consumption per capita. Hence, the system as it
stands will not have a steady state. It is convenient to define a new variable,
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The Cass-Koopmans Model: Some Applications 627

c-£ (19)
to rewrite the system in a way that will admit a constant solution. Taking
logs of (19) and differentiating with respect to time,

c C

Substituting (16) into this expression,

c ^ (20)

Similarly, Z/Z = KIK - g, so (18) yields

Z = f(Z) c x

z z z z 6

from where

Z = f(Z)-(g + S)Z-c-x (21)

We have reduced the model to a system of two autonomous equations in
Z and c:

^ y T r ) (20)

(21)

Equation (21) is a resource constraint; it says that the instantaneous change
in the capital/labor ratio is equal to net output per efficiency unit of labor
(after depreciation, taxes, and current consumption) minus the amount
required to equip new efficiency units of labor with the prevailing average
stock of capital (gZ). Equation (20) is the condition for the optimal alloca-
tion of consumption over time evaluated at equilibrium factor prices.

From (20) and (21) we see that

(22)

+ S (23)

The phase diagram is shown in Figure 13.14, under the assumptions that x
is small enough that the two phase lines cross in the positive quadrant and
/(0) = 0,/'(0) = °o? and/'(°°) = 0. These conditions are sufficient to guarantee
the existence of a unique nontrivial steady state (Z*, c*).

The direction of the arrows of motion suggests that the steady state is a
saddle point. To verify this, we compute the determinant of the Jacobian
matrix of the system evaluated at the steady state:
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c = 0

Figure 13.14. Phase diagram and convergent trajectory.

j -

<Pc

Because

0 i-(l-Tr)/"(Z

L-l f(Z*)-g-8

=—(1-%r)/"(Z*)<0
a

(24)

the eigenvalues of the system are real numbers of opposite signs, and the
steady state is indeed a saddle. Using the transversality condition for the
household problem, it can be shown that the equilibrium path for this
economy is the unique solution to the system (20)-(21) that satisfies the
initial condition Z(0) = Zo (a given constant) and converges to the steady
state.

Let X < 0 denote the stable root of the system. For future reference, we
will compute the eigenvector e = (ei,e2) associated with this root. As the
reader will recall, e is "tangent" to the saddle path at the steady state. Nor-
malizing the second component of e to 1, the stable eigenvector satisfies
Je = Xe, and therefore

- ex + (p, = X

Hence, the slope of the stable manifold at the steady state is given by

eT = <p, - A (25)

where, using (23) and (24),

(26)
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The Cass-Koopmans Model: Some Applications 629

Note. The equilibrium trajectory of the system approaches a steady state in
which c is constant and Ct = cAt = cAoe8t grows at a constant rate equal to the
rate of technical progress. In such an equilibrium, the utility of a represen-
tative individual, given by

at {ii)e d t

Jo 1 - C T l _ <

will be unbounded whenever (1 - d)g - p > 0. In fact, in this case the
problem cannot be solved by the methods we developed in Chapter 12. To
avoid such problems, we will assume that g is low enough that (27) con-
verges, that is,

( l -<x)g-p<0 (28)

We will refer to this assumption as the boundedness condition.

Problem 4.1. A social planner maximizes the utility of the representative
individual,

±—ep'dtJo 1-0"

subject to the resource constraint

Kt=F(Kt,A)-8Kt-Ct, with 4 = £

List the necessary conditions for this problem, and show that they reduce
to equations (20) and (21) whenever there are no taxes or subsidies. Hence,
under these conditions, the competitive equilibrium will be a social
optimum.

(c) The Welfare Cost of Factor Taxes

We will now study the effects of a tax change. The specific experiment we
will analyze is the following: Suppose the economy is initially at the steady
state corresponding to the given values of the different tax parameters.
Without previous announcement, the government changes the tax rate on
interest income from the initial value T^ to a new one rrU keeping total
expenditure per efficiency unit of labor (x+p) constant, and adjusting the
tax rate on wage income as needed to preserve budget balance at each point
in time.

The first step is to determine the effects of the policy change on the steady-
state values of income and consumption, given by the solution of the system

(22')
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c = 0

Z = 0

Figure 13.15. Long-run effect of an increase in capital income taxes.

xr

(23')

With x fixed, the position of the Z - 0 phase line does not depend on the
value of rr. From (23'), however, it is clear that an increase in %r reduces the
stationary value of the capital/labor ratio and shifts the c = 0 phase line to
the left, as shown in Figure 13.15. The effect on consumption depends on the
slope of the Z= 0 phase line at the steady state, given by

Hence, cs(Z*) > 0, provided that g(l - <r) - p < grr. The boundedness condi-
tion (28) ensures that the left-hand side of this expression is negative. Hence,
for any nonnegative tax rate on interest income, an increase in this para-
meter will reduce steady-state consumption. The reason should be clear from
the law of motion for consumption, equation (20): An increase in xr dis-
courages accumulation by reducing the net return on savings. In the long
run, therefore, the capital stock is a decreasing function of xr.

Problem 4.2. Assuming a Cobb-Douglas production function (i.e., f(Z) =
Za), solve for the steady-state savings rate as a function of xr and the other
parameters of the model.

Welfare comparisons across steady states are straightforward. Because
steady-state utility, given by
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Figure 13.16. Transition path following an increase in capital income taxes.

r
Jo

_ (Ac*)
\-a

1

1-a p-(l-a)g
(29)

is an increasing function of steady-state consumption, increases in xY will
reduce welfare.

Once we take into account the transition from one steady state to another,
the effect of capital income taxes on welfare is no longer so obvious. To see
why, consider the transition path shown in Figure 13.16. The impact effect
of the tax change is a jump in consumption that takes us to the new saddle
path. The saddle lies above the Z= 0 line and therefore above the initial
steady state. The reduction in the incentive to save causes agents to increase
their consumption. This behavior, of course, leads to a reduction in the
capital stock and, in the long run, to lower consumption as well. During part
of the transition, however, consumption exceeds its old steady-state level,
and therefore so does the current flow of utility.

To calculate the net welfare change, we have to evaluate the utility func-
tion along the whole adjustment path. The idea is simple. We define a func-
tion that gives the utility of the representative individual as a function of the
policy parameter:

1-a
-"dt
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where Ct(xr) = Atct(tr) is consumption along the equilibrium solution of the
system

c = [^ {(1 - TR )[f'(Z) -8]-p]- g\c t fa Z; RR ) (20)

Z = f{Z)-{g + 8)Z-c-x = y(c,Z) (21)

corresponding to the given value of the policy parameter. Our objective is
to evaluate the derivative V\ir) starting from a steady state.

The most difficult part of the problem is to characterize the solution func-
tion of the system in a way that will be precise enough to allow us to compute
derivatives. We begin by observing that we can think of the saddle path of
the system as the graph of a policy function,

c = p(Z,tr)

that gives the equilibrium value of consumption as a function of the current
value of the state variable Z and the tax parameter. Notice that we have
some information on the properties of this function at the steady state. In
particular, we know that the slope of the saddle at the steady state is nega-
tive and is given by the slope of the stable eigenvector and that a tax increase
will shift the saddle path upward. Using subscripts to denote partial deriva-
tives, we have, then,

p z = d = ( p z - X = / ' ( Z * ) - g - S - X = g - X < 0 a n d p t > 0 ( 3 0 )
1 — T r

Next, substituting the policy function into the law of motion for Z given
in equation (21), the equilibrium dynamics of the system can be character-
ized by a single differential equation that describes the evolution of the state
variable along the stable manifold:

Z = <p(c9 Z) = cp[p(Z, rr), Z] = *¥(Z, rr) (31)

Notice that this equation has a unique steady state that coincides with the
steady-state value of Z for the original system. This steady state is stable;
in fact, the "eigenvalue" of this equation is the stable eigenvalue of the full
system, because, using (24) and (30),

The solution of (31) yields the equilibrium value of Z as a function of
time and the tax parameter Zt(tr). Finally, substituting this function into the
policy function, we obtain the time path of c:

),Tr] (32)
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The Cass-Koopmans Model: Some Applications 633

To calculate the change in welfare, we need to compute the effect of the
policy change on the whole time path of consumption. Using (32), the mar-
ginal change in consumption at time t is given by

Evaluating this expression will be easier than it might seem, at least when
we start from a steady state. In that case, pz(Z\ xr) and px (Z*, xr) are con-
stants of known sign, and dZt(xr)/dxr= ZT{t, xr) is, as we shall presently see,
easily computed using the method discussed in Section 3(c) of Chapter 9.

To compute ZT(t, rr), notice that the solution function of (31), Zt(xr) = Z(t,
Tr), must satisfy identically the original equation,

Z(t,xr) = <?[p{Z(t,xr),xr),Z(r,xr)]

Differentiating both sides of this identity with respect to xr (and assuming
that all the functions involved are sufficiently smooth), we can write

Z T = 9c( )[Pz( )ZT( )+JpT( ) ] + q > z ( )ZT (

= [<Pc( )Pz( ) + <Pz( ) R ( ) + 9c( )Pr( )

Hence, Z t satisfies a linear differential equation. When we start from a steady
state, moreover, the coefficients of this equation are constant, and we can
write, using (24) and (30),

ZT = [-l(<pz -X) + cpz ]ZT -pT = XZX - pT (34)

The general solution of this autonomous linear equation is given by

where, because the capital stock is a predetermined variable, ZT(0), the
impact effect of the tax change on the stock of capital is equal to zero.
Because X < 0, the steady state of this equation is stable, and ZT converges
asymptotically to its stationary value, given by

Z T H = M Z * > T R ) < 0 (35)
A

which is also the derivative of the steady-state value of Z with respect to the
tax parameter.21 Hence, the equilibrium time path of ZT is given by

Zt(t) = {l-e )Zt (oo) = (1 - e ) =— (36)

That is, following a small tax change, Z falls gradually toward its new steady-
state value at an exponential rate given by the stable root of the original
system.
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634 Some Applications of Dynamic Optimization

Substituting (36) into (33), we can now compute the derivative of the time
path of consumption with respect to the tax parameter:

A

(37)

Notice that

dtr = PT

Hence, the derivative of cr(rr) at time zero - the impact effect of the policy
change - is equal to the upward shift in the saddle path, and its long-run
effect is the decrease in steady-state consumption. As we already knew, con-
sumption increases at first and then decreases.

Now that we have calculated the change in consumption at each point in
time, it remains only to evaluate the derivative of the utility function with
respect to the policy parameter. We have

v{Tr)= rCAlille-P. dt = r (Wl^-p, dt

~^^e-pl dt ^
Differentiating with respect to rr, evaluating the result at a steady state, and
using (37) and (30), (pz + A = cpz), we have

V\xr) = At" ( V ^ ' V ^ ^ dtJo axr

A dt

P V P±dt

\X[p-(l-a)g] X[p-(l-o)g-X)

Pz

-(l-o)g p-{l-a)g-X

T o s i m p l i f y t h i s e x p r e s s i o n , n o t i c e t h a t , u s i n g (30),/?z= (gcr+ p)/(l - r r ) - g
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The Cass-Koopmans Model: Some Applications 635

Pz 2 (pz + A)[p - (1 - <r)g - X] - Pz[p - (1 - a)g]

-o)g p-{\-a)g-X [-(i-o)glp-
X[p-{l-a)g-X-pz] p+gg-(gcy+p)/(l-Tr)— = A- —

[p - (1 - (j)g][p - (1 - a)g - X] [p - (1 - cr)g][p - (1 - a)g - X]

-Xrr(go+p)

Hence,

v>(~ \- A^-ol^V- -MgG+p)
' — ^ > "[p-(l-ff)g][p-(l-a)*-A](l-T,)

Recall that pT > 0, X < 0, and that p - (1 - cr)g > 0 by the boundedness condi-
tion (28). Hence,

V'(rr)<0 iff Tr>0

and it follows that setting xr equal to zero is the optimal policy: Increasing
tax rates on capital will decrease welfare if the tax rate is positive and
increase welfare if the tax rate is negative.

Problem 4.3. One limitation of the approach we have followed is that it
assumes that the economy is initially at a steady state. Otherwise the
coefficients of the variational equation (the law of motion for ZT) would
change over time, and that would make it difficult to evaluate V\Tr). It is
still possible (and in fact much easier) to show that a zero tax on capital
income is optimal by showing that when xr - 0, the equilibrium path for the
economy solves a closely related planning problem.

Consider, in particular, the problem faced by a social planner, similar to
the one described in Problem 2.1, who maximizes the utility of the repre-
sentative agent subject to the standard resource constraint and the addi-
tional restriction that he must "throw away" an amount of output equal to
xA at each point in time. Write the planning problem, derive the necessary
conditions for an optimum, and verify that they reduce to equations (20)
and (21) when xr - 0 in this system.

Numerical Solution: The Time-Elimination Method

The analysis of the preceding section can be used to provide (for specific
parameter values and functional forms) a quantitative estimate of the
welfare gain associated with a marginal policy change. To evaluate the
impact of "large" policy changes, however, we need to resort to numerical
methods.

In principle, this poses no problem. We saw in Chapter 11 that there are
computer packages that can be used to solve systems of differential
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636 Some Applications of Dynamic Optimization

equations numerically. The model we have developed in this section,
however, presents one additional difficulty that we did not have to face in
the case of the Solow model. The problem is that in the present model the
boundary conditions that allow us to pick the particular solution of interest
are not in a very convenient form. Whereas in the Solow model we had a
single predetermined variable, in the Cass-Koopmans model consumption is
a "free variable" without a predetermined initial value. As we have seen, the
equilibrium trajectory of the model is the only time path that, from the given
initial value of Z, approaches the steady state as t —> °°. Computer programs,
however, do not let us specify asymptotic boundary conditions directly, so
we need to find an indirect way to impose them.

One possibility is to use a trial-and-error "shooting" method. Given Zo,
we can guess an initial value of c, have the computer solve the problem, and
follow the solution path. If this path "explodes," we adjust the original guess
accordingly and repeat the experiment until we find a solution that seems
to approach the steady state. This method is quite time-consuming and not
very accurate.

Fortunately, there is a better alternative, sometimes called the time-
elimination method.22 The idea is to eliminate time from the original laws
of motion to obtain a differential equation with Z (rather than i) as the inde-
pendent variable. The solutions of this single equation will correspond to the
solution trajectories of the original system in the (c, Z) phase plane (rather
than to the time paths of c and Z). Using an easy-to-impose boundary con-
dition (instead of an asymptotic one), we can find the policy function that
gives the equilibrium value of c as a function of Z (i.e., find the saddle path).
Then we proceed as before: Substituting the policy function into the law
of motion for Z, we eliminate c and obtain a single differential equation
in Z (with time as the independent variable) that can be solved for the
equilibrium time path of Z. Finally, evaluating the policy function along this
trajectory, we obtain the equilibrium time path of c. We can then evaluate
the utility function along the solution path to determine the change in
welfare.

The procedure, in somewhat greater detail, is as follows. We seek the
"saddle-path" solution of a system of the form

^ = <t>(c,Z) (38)

— < ?(c,Z) (39)
dt

"Dividing" (38) by (39), we "eliminate time" from the system and obtain a
single differential equation,
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The Cass-Koopmans Model: Some Applications 637

= * ^ = V(c,Z) (40)
(p(cZ)

whose solution gives us the value of c as a function of Z, c(Z). Intuitively,
\j/(c, Z) gives us, for each point in the phase plane (c, Z), the slope of the
solution trajectory of (38)-(39) that goes through this point. Solving (40)
means using this information to reconstruct the family of curves in the phase
plane that correspond to the solution trajectories of the original system. We
are interested in one specific member of this family of curves, the one that
goes through the steady state (c*, Z*). To select it, we only have to impose
the boundary condition c(Z*) = c*.

Before we can ask the computer to solve (40), we have to deal with one
minor complication. Notice that the function y/(c, Z) is not well defined at
the steady state, for y/(c*, Z*) = 0/0. We know, however, that the slope of the
saddle path at the steady state is equal to the slope of the eigenvector asso-
ciated with the stable (negative) eigenvalue of the linearized system, e,i/e;2-
Hence, we need to extend (40) and define

y/(c,Z) = en/el2, when (c, Z) = (c*, Z *)

otherwise (41)
9(c, Z)

Now we can ask the computer to solve the problem

dc
dZ

= y/(c, Z), together with the boundary condition c(Z *) = c*

for the policy function c = c(Z). Substituting this function into the law of
motion for Z, we obtain an ordinary differential equation in Z,

Z = q>[c(Z),Z] (42)

which describes the motion of the predetermined state variable along the
saddle path. Solving equation (42) together with the natural initial condition
on Z (Z(0) = Zo given), we obtain the solution path of Z, Z(f), which can
then be substituted into the policy function to recover the time path of c,

c(t) = c[Z(t)]

To apply the method, of course, we need to choose explicit functional
forms and assign specific values to the parameters. Under the assumption
that the production function is Cobb-Douglas {Y-Ka{AL)l~a), equations
(20) and (21) become

c = - 1 - xr)[aZa~l -S]-p}-gc= $(c,Z) (43)
<7
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638 Some Applications of Dynamic Optimization

Z = Za-{8+g)Z-x-c = iS?{c,Z) (44)

and the steady-state values of c and Z are given by

The next subsection contains a Mathematica program that carries out the
computations we have just outlined. After solving the system numerically
for two different values of the parameters, rrQ and xr, we evaluate the utility
function of the representative individual in each case and compute the
welfare gain in consumption-equivalent terms. For this, we will use a proce-
dure that is useful to evaluate the welfare effects of discrete policy changes.
We introduce an auxiliary parameter, r\, in the utility function, defined now
by

1-C7

Notice that an increase in r\ has the same effect on welfare as a proportional
increase in consumption in all periods. Hence, the solution rj(rr(), rr) of the
equation

can be interpreted as the proportional variation in consumption equivalent,
in terms of welfare, to a change in policy from rr to RR .

Numerical Solution and Welfare Analysis with Mathematica

We will now write a Mathematica program to compute numerically the solu-
tion trajectory of the growth model developed earlier and analyze the
welfare impact of change in a tax parameter.

We begin by assigning values to the parameters and computing the steady-
state values of Z (zssO and zssl) and c for two different values of the tax
rate on interest income (trO and trl). (Note: A semicolon after a command
suppresses "feedback output"; without it, the computer prints out the value
of the calculation or the value assigned to the parameter. Hence, Out[ll]=
5.33363 gives the value of zssO,for example. When you are writing a program,
it may be a good idea not to use semicolons, so that you can check the results
of intermediate calculations).

In[l] : =
sigma=2; alfa=0.33; d=0.02; ro=0.03;
g=0.02; tr0=0.20; trl=0.15;
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The Cass-Koopmans Model: Some Applications 639

In [10] : =
zssO=((d/alfa)+(((g*sigma)+ro)/(alfa*

(1-trO))))A(l/(alfa-l))
x=0.10*(zss0Aalfa);
cssO=(zssOAalfa)-(d+g)*zssO-x;
zssl=((d/alfa)+(((g*sigma)+ro)/(alfa*

cs s l= (z s s lAa l f a ) - (d+g)*zs s l -x ;
Out [ll] =

5.33363
Out[14]=

5.73887

We set x (public consumption per efficiency unit of labor) to 10% of
steady-state output per efficiency unit of labor to make sure that the
assigned value is not "unreasonable."

The next step is to define the laws of motion for consumption (given by
the function fc[ ]) and the capital/labor ratio (fz[ ]). Differentiating these
functions with respect to z and c, and evaluating the resulting function at
the steady state, we construct the Jacobian of the linearized system (Jac) and
compute its eigenvalues and eigenvectors.

fc[c_,z_,tr_]:=((alfa*(zA(alfa-l))-d)*(l-
trl)-ro)*(c/sigma)-g*c;

fz[c_,z_,tr_]:=(zAalfa)-(d+g)*z-x-c;

To calculate the Jacobian, we first define an "empty matrix," Jac, and give
names to its entries. To compute each one of them, we proceed in two steps.
First, we compute the symbolic derivative of the law of motion with respect
to each of the state variables (using the command D[function[ ], with respect
to]) and then evaluate this expression at the steady state.

Jac={{jcc,jcz},{jzc,jzz}}
Out[20]=
{{jcc, jcz}, {jzc, jzz}}

In [21] : =
j ccO=D[fc[c,z,tr1],c];
jcc=jccO/.{c->cssl,z->zssl};
j czO=D[fc[c,z,trl],z];
jcz=jczO/.{c->cssl,z->zssl};
jzcO=D[fz[c,z,trl]rc]}
jzc=jzcO/.{c->cssl,z->zssl};
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640 Some Applications of Dynamic Optimization

jzzO=D[fz[c,z,trl],z];
jzz=jzzO/.{c->cssl,z->zssl}?

Finally, we ask the computer to print out the Jacobian in matrix form and
to compute its eigenvalues and eigenvectors. (Notice that the first entry of
the Jacobian should be zero, it is almost zero, but not quite). The function
N[ ] asks the computer to use the numerical values of the entries of the Jaco-
bian matrix to perform the actual calculations.

In[29] : =
MatrixForm[Jac]
{ll,12}=Eigenvalues[N[Jac]]
{eigl,eig2}=Eigenvectors[N[Jac]]

Out[3 0]//MatrixForm=
3.46945 10~18 -0.00699145
-1 0.0623529

Out [31] =
(0.120414, -0.0580615}

Out[32]=
{{0.0579639, -0.998319}, {-0.119551, -0.992828}}

As expected, one of the eigenvalues of the system is positive, and the other
negative. The eigenvector corresponding to the stable root is the second one.
Because of the way we have arranged the elements of the Jacobian (with c
on top of Z, and the derivatives with respect to c before the ones with respect
to Z), the c coordinate of the eigenvalue is listed first, and the slope of the
saddle path at the steady state (in a Cartesian plane with c in the vertical
axis) is given by the ratio of the first to the second coordinate of the second
eigenvector. To select each coordinate of this vector, we use subindices inside
double brackets, as shown next.

The following statement defines the function we have called y/(c, Z) in the
text (gc[ ] in the program). Next, we solve the differential equation

together with the boundary condition c(Z*) = c*, to obtain the "policy func-
tion" or saddle path, denoted by pfc[z], and we ask the computer to plot it,
together with the two steady-state values of c.

In[33] :=
gc[c_,z_]:=If[z==zssl,eig2[[l]]/eig2[[2]],
fc[c,z,trl]/fz[c,z,trl]];
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The Cass-Koopmans Model: Some Applications

In[35]:=
AccuracyGoal->Infinity;
MaxSteps->700;
mxz=Max[zssO,zssl]*1.1;
mnz=Min[zssO,zssl]*0.9;

In [40] : =
sol=NDSolve[{c'[z]==gc[c[z] , z ] , c [ z s s l ]=

css l } , c , {z ,mnz ,mxz}]
Out [40] =

{ {c -> InterpolatingFunction[{4. 80027,
6.31276}, <>]}}

In[41] : =
pfc[z__]:=c[z]/.sol
Plot[{pfc[z]fcssO,cssl} r{z,zssO,zssl}]

Out[42]=
-Graphics-

641

1

1

1

.37

.36

.34

: 5 .5 5.6 5

y

.7

To find the time path of z, we substitute the policy function into the law
of motion for z and solve the resulting "ordinary" differential equation in z,
together with an initial condition that specifies that we start from the value
of z corresponding to the "old steady state." We call the solution function
cpath[t]. Next, we recover the time path of z, denoted by zpath[t], and plot
both time paths (for time = 0-100) to visualize the adjustment path from one
steady state to the next.

In[43] ; =
solz=NDSolve[{z/[t]==

f2[pfc[z[t]]f2[t]ftrl]/z[0]==zss0}fz/{tf 0f100H
Out[44]=
{{z -> InterpolatingFunction[{0. , 100.}, <>] } }
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642 Some Applications of Dynamic Optimization

In[45] : =
zpath[t_]:=z[t]/.solz
cpath [ t_]: =p£ c [ zpath [ t ] ]
Plot[{zpath[t],zssO,zssl},{t,0,100}]
Plot[{cpath[t],cssO,cssl},{t,0,100}]

Out [47] =
-Graphics-

5 . 7

5 . 6

5 . 5

1 20 40

^ — • —

60 80 100

Out[48]=
-Graphics-

1.37

1.36

1.35

1.34

20 40 60 80 100

The last step is to calculate the welfare change due to the policy experi-
ment. We begin by defining a function, Vs[ ], that gives us steady-state utility.
(It does not matter that we get a negative number; we should with <7> 1.
What matters is that marginal utility is positive.) Then, Vs[css0] gives the
equilibrium utility that would have obtained if the economy had stayed in
the path corresponding to the old policy, and Vsfcssl] the utility we obtain
if we have moved immediately to the new steady state.
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In [49] : =
Vs[c_]:=(CA(1-sigma))/((1-sigma)*(ro-

(1-sigma)*g));
Vs[cssO]
Vs[cssl]

Out[52]=
-14.8107

Out [53] =
-14.5278

As expected, steady-state utility is higher with the lower tax rate on inter-
est income. We still have to take into account the transition, however. To
approximate total utility, we integrate numerically the utility function (eval-
uated along the new equilibrium path) between t = 0 and t = 100 and add to
it the discounted value of the average of Vs[cssl] and Vs[ ] evaluated at the
consumption level obtained at the end of the 100 years. (We cannot inte-
grate the utility function numerically over an infinite time path, but after 100
years we will be very close to the new steady state, and with a reasonable
discount rate it does not matter much what happens that far in the future
anyway.) As expected, utility is higher under the new policy, even when we
take into account the transition.

In [54] :=
Vl=(l/(1-sigma))*NIntegrate[Evaluate[(cpath[t]A

(1-sigma))*Exp[((1-sigma)*g-ro)*t]],{t,0,100}]
+Exp[-100*ro]*(l/2)*(Vs[cssl]+Vs[cpath[100]])

Out[57]=
{{-14.6773}}

Finally, we compute the consumption equivalent of the welfare gain
from the change in tax policy, denoted by eta, which turns out to be around
0.9%.

In[59] : =
eta=(1/(1-sigma))*Log[VI*(1-sigma)*(ro-(1-

sigma)*g)]-Log[cssO]
Out [59]=

{{0.00904369}}

5. Problems

In this section we will ask the reader to work through a number of prob-
lems that make use of the material developed in this chapter.
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644 Some Applications of Dynamic Optimization

(a) An Efficiency-Wage Model

Efficiency-wage theories are attempts to explain the emergence of wage
rigidities that can generate unemployment in an equilibrium context. The
key feature of these models is that labor productivity depends partly on the
wage rate. Knowing this, firms set wages and employment levels so as to
maximize profits. Because increasing wages increases output, firms may find
it optimal to pay a wage that is above the market-clearing level. Hence,
unemployment may arise in equilibrium.

The difficult part, of course, is explaining why the wage can have an impact
on productivity. Several mechanisms have been explored in the literature.
Some of them rely on informational asymmetries, others on turnover costs,
and the rest on sociological factors. The following problem develops a "shirk-
ing" model of efficiency wages due to Shapiro and Stiglitz (1984). In this
model, labor productivity depends on the level of (costly) effort exerted by
workers, a variable that can be monitored only imperfectly by firms. In par-
ticular, workers who do not exert effort will be caught, with some probabil-
ity q< 1. Hence, all workers who are not caught shirking will have to be paid
the same wage. If detected shirkers go unpunished, pay will be independent
of effort, and workers will find it optimal to shirk.

One possible way to avoid this outcome is by firing detected shirkers.
Notice, however, that this will work only as long as job losses are costly. To
achieve this, a firm can resort to raising its wage offer above the market-
clearing level, so that its workers will value their jobs and will not shirk. If
all firms are alike, all of them will act in the same way, and the equilibrium
wage will be above the market-clearing level. Hence, the equilibrium
involves unemployment, which serves as a discipline device: Workers who
are fired will not be rehired immediately and therefore will incur a cost. To
prevent this, they refrain from shirking. This unemployment, moreover, is
involuntary: Workers would prefer to work even at a wage below the current
one, but firms will not reduce wages and hire them because at the lower
wage, workers' promises not to shirk would not be credible.

Consider an economy populated by N identical and risk-neutral workers,
with a separable instantaneous utility function U(w, E) = w - E, where w is
the instantaneous wage rate (assumed to be constant over time), and E the
level of effort. Workers maximize

[(w-E)e-<*dt (1)

by choice of their effort level. For simplicity we will assume that effort can
take only one of two values: zero and some positive level x. If a worker shirks
(exerts zero effort), there is an instantaneous probability q ee (0,1) that he
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will be caught and fired. Whether or not he shirks, there is a probability b
of separation due to other factors. Unemployed workers are paid unem-
ployment benefits at a rate wu and are assumed to find new jobs with instan-
taneous probability a, which we will take as given for now. The parameters
b and q are taken as exogenous in the model and are constant over time.

Problem 5.1.

(i) Let Ve(s) be the expected lifetime utility of an employed worker who shirks,
Ve(n) the expected lifetime utility of an employed non-shirker, and Vu the
expected lifetime utility of an unemployed worker. Write the valuation equa-
tions defining Ve(s) and Ve(n), and explain their meaning.

Hint: If it helps, consider the analogous discrete-time problem with periods
of length h and take the limit as h -> 0.

(ii) An employed worker will choose not to shirk if Ve(n) > Ve(s). Show that this
"no-shirking" condition implies that Ve(s) > Vu, so that workers prefer to be
employed, and use it to solve for the minimum wage wm at which workers will
find it optimal not to shirk. What factors determine wml

Let L be the effective labor force employed by the representative firm,
defined as the number of non-shirkers it employs (for simplicity, we assume
that workers who shirk contribute nothing to output). The firm maximizes
profit f(L) - wL subject to the constraint that (because it can detect shirk-
ing only imperfectly and ex post) it must pay the same wage to all workers.
To produce at all, then, the firm needs to set a wage that will induce its
workers not to shirk. It follows that in equilibrium, w > wm, so workers do
not shirk, and the expected lifetime utility of an employed worker, Ve, is
given by Ve(n).

To maximize profit, the representative firm will pay the minimum non-
shirking wage wm and then set the level of employment so that the marginal
product of labor will be equal to the wage. Hence, the firm's labor demand
function is implicitly given by

f'(L) = wm (8)

Problem 5.2. We will now characterize a stationary equilibrium of the
model.

(i) Let wu be the unemployment benefit. Derive the expected lifetime utility of an
unemployed worker, Vu, as a function of wu and the value of an employed
worker, Ve.

(ii) Using the expressions for Ve (= Ve(ri)) and Vu derived earlier, solve for Ve and
Vu as functions of a and the parameters of the model. Rewrite the no-shirking
condition, replacing Vu by its equilibrium value. How do unemployment
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646 Some Applications of Dynamic Optimization

benefits and the probability of finding employment affect the minimum non-
shirking wage?

(iii) Let N be the given labor supply. In a steady-state equilibrium, the flow into
unemployment and the flow out of it must be equal. Using this condition, solve
for the probability of finding employment, a, as a function of b, L, and N, and
substitute the result into the no-shirking condition. Interpret the resulting con-
dition. The equilibrium wage and unemployment levels are determined by the
intersection of the non-shirking condition and the labor demand schedule/'(L)
= wm. Draw both functions in the (H>, L) plane, and verify that the equilibrium
involves an excess supply of labor.

(b) Unemployment in a Matching Model

This section is based on Pissarides (1990). Consider an economy in which
workers and firms look for each other. The population is a continuum
of measure 1 of homogeneous, risk-neutral workers. Let u be the unem-
ployment rate (the fraction of the population that is unemployed), and v the
vacancy rate (the number of open but vacant jobs available as a fraction of
the population). The instantaneous rate of matching between unemployed
workers and vacant jobs is given by a matching function of the form

x = u V " = vOa, where 6 = v/u (1)

Hence, the instantaneous probability that an open vacancy will be filled is
given by

- = e~a (2)
v

and the instantaneous probability that an unemployed worker will find a job
is

- = e1~a (3)
u

Each firm consists of a single job that can be either filled or vacant. When
a worker and a firm meet, they form a match. An occupied job produces a
flow of output at a constant rate y and has an instantaneous probability s of
disappearing because of "structural shocks." An open vacancy has a cost c
per instant of time. An unemployed worker earns unemployment benefits
at an instantaneous rate b. The wage, w, is set through a bargaining process
described later.

Problem 5.3.

(i) Derive an expression that describes the evolution of the unemployment rate
over time as a function of the instantaneous rate of separation (s) and the prob-
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ability of finding employment, #~a. Set u - 0 and solve for the steady-state
unemployment rate as a function of the rates of flow into and out of unem-
ployment (assuming 0 is constant).

(ii) Let V be the value of a vacancy, / the value of a filled job, and r the discount
rate. Taking into account the relevant transition probabilities and the flows of
costs and benefits for an occupied job and a vacant job, write the valuation
equations for these two assets, / and V. Explain their meaning. Using the two
asset-valuation equations (subtract one from the other), derive an expression
for / - F as a function of y, c, w, r, and the relevant transition probabilities.

(iii) Let E and U be the "values" of an employed worker and an unemployed
worker, respectively. Write and explain the corresponding asset-valuation
equations, and derive an expression for E-U.

Wages are set through a centralized bargaining process between a union
and firms. The equilibrium wage is the one given by the Nash bargaining
solution, that is, the value of w that solves

where /? is an index of workers' bargaining power.

Problem 5.4. Using the results of Problem 5.3, solve for the equilibrium
wage.

Problem 5.5. In equilibrium, new firms enter until the value of a vacant job

drops to zero, that is, until V = 0.

(i) Using the valuation equations for V and /, show that
v — w
w v c6a (13)

r + s v

(ii) Using equation (13), along with the expression for the equilibrium wage
obtained in Problem 5.4 and the formula for the steady-state unemployment
rate obtained in Problem 5.3, solve for the equilibrium values of w, iv, and 6.
Draw a diagram in the (u, 6) plane illustrating the determination of equilibrium.

(iii) What are the effects on the equilibrium unemployment rate of an increase in
workers' bargaining power (/3), an increase in the unemployment benefit (b),
and an increase in the probability of structural shocks (s)?

(c) The Behavior of the Savings Rate in the Cass-Koopmans Model

Consider an infinitely-lived dynasty whose size increases over time at a con-
stant rate n. The objective function is now of the form

where Lt - Loe
nt is the size of the dynasty, and C is per-capita consumption.

The household maximizes (1) subject to the budget constraint
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648 Some Applications of Dynamic Optimization

fa -LC-8K (2)

where 8 is the rate of depreciation, and A grows at a constant rate g. We will
assume that the condition

g o + p > n + g (3)

holds, in order to guarantee the boundedness of (1). Following the same pro-
cedure as before, it is easy to show that the necessary conditions for house-
hold optimization yield the following system of equations:

^ { ( p ) } g (4)

| = Z - 1 ~ | - ( n + g + 5 ) (5)

where c = CIA and Z = KIAL.
Following Barro and Sala-i-Martin (1995), we will analyze the behavior

of the savings rate in this model. The first step will be to rewrite it in terms
of the consumption ratio and the interest factor.

Problem 5.6. Define the variables

X = — and R = Zal (6)

(i) Rewrite the system (4)~(5) in terms of X and R. Solve for the steady-state values
of X and Z.

(ii) Construct the log-linearization of the system obtained in (i). Compute the
eigenvalues of its coefficient matrix, and show that the steady state is a saddle
point. Compute the eigenvector associated with the negative eigenvalue, and
relate the slope of the saddle path to the size of the negative eigenvalue. Does
anything look familiar?

Problem 5.7. Next, we will consider a special case. Assume that the follow-
ing restriction on the parameters holds:

p+8+go = ao{8+n + g) (12)

Construct the phase diagram for the system, and compute its negative eigen-
value and the associated eigenvector.

Problem 5.8. Let us now return to the general case of the model. Define the
parameter /i by

P + 5 + 8 \ (18)
ao{8
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and notice that if \i = 0, then we are in Problem 5.7. Write the negative eigen-
value of the system and the corresponding eigenvector as functions of jU, and
relate the slope of the saddle path to the sign of \x. Draw the phase diagram
of the system for ji> 0 and fi< 0.

(d) Productive Government Spending in a Model
of Endogenous Growth

As in Barro (1990), a representative agent with the usual preferences

-e-<*dt (1)Jo i _ (-o
is endowed with an initial amount of capital k0 and with a production tech-
nology of the form

v = ki~apa (o < a < l) (2)

where p are government-provided public services. Income is taxed at a con-
stant proportional rate T. Assuming there is no depreciation, the agent's flow
budget constraint can be written

Problem 5.9.

(i) Taking as given the time path of p, write the necessary conditions for a solu-
tion to the consumer's problem. Derive an equation describing the evolution
of consumption over time.

(ii) Assume that p=ry, that is, that all tax revenue is used to finance public ser-
vices. Substituting the production function in this last expression, solve for p as
a function of T and k. Substitute the result into the flow budget constraint and
the transition equation for consumption. Call y the growth rate of consump-
tion, tic, obtained from this step, and let (5 be the coefficient of k in the law of
motion for k (both / and p are functions of T and other parameters). Notice
that (5 can be written as a simple function of y.

(iii) Observe that consumption grows at a constant exponential rate. Hence, once
we determine its initial level, we have characterized its entire path. Integrating
the flow budget constraint and imposing the transversality condition, we obtain

(9)

Use this expression to solve for c0.

Problem 5.10.

(i) Substitute the equilibrium path of consumption into the agent's objective func-
tion to obtain utility as a function of / (or R), U(y). What condition must we
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650 Some Applications of Dynamic Optimization

impose in order to guarantee that utility is bounded? Assume this condition
holds,

(ii) Find the optimal value of R.
Hint: Differentiate U(f). Can you sign the derivative? Proceed accordingly.

Does the result "look right"? Why or why not?

(e) A Model of Endogenous R&D

Let us return to the product-variety model developed in Section 5(a) of
Chapter 8. As the reader will recall, we had a two-sector economy in which
labor was used to produce differentiated components that were then assem-
bled into a homogeneous consumption good. In equilibrium, final output
was proportional to ("variable") employment in goods production and was
an increasing function of the existing number of component varieties. More
specifically, output per worker was given by the (reduced-form) per-capita
production function

Q = n{1^)/a — (1)
JLv

where Lx was total employment in goods production, L was the (constant)
size of the labor force, and the parameter a < 1 measured the substitutabil-
ity of components in the production of final goods.

The previous version of the model was static. The equilibrium number of
component varieties was determined by a zero-profit condition and a fixed
entry cost: Firms entered the market until their operating profits were just
enough to pay for the cost of a given amount of labor required to set up
production. Let us now consider a dynamic version of the same economy in
which the entry charge must be paid only once and will be interpreted as
the cost of designing a new intermediate product.23 More specifically, we will
assume that blueprints for new components are developed in an R&D sector
that takes labor as an input. We will also assume that the amount of labor
required to produce a blueprint for a new product is inversely proportional
to the stock of accumulated technical knowledge, summarized by the
number of preexisting varieties of intermediate products.24 Hence, the rate
of introduction of new products is given by

^ = aLn=a(L-Lx) (2)

where na is the number of blueprints that can be produced with a unit of
labor, and L = (L- L) is total employment in R&D. Equation (2) then
implies that (if the fraction of the labor force employed in R&D remains
constant over time, as will indeed be the case in equilibrium) output growth
is driven exclusively by the increase in efficiency that results from the intro-
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duction of new product varieties. The rate of technical progress will be
determined by the level of employment in research activities. Our main task
in this section will be to show how this variable is determined.

Problem 5.11. It will be convenient in what follows to work with the growth
rate of per-capita consumption, denoted by g. Assuming that the level of
employment in goods production, Lx, remains constant over time, solve for
Lx as a function of g. Keep an eye out for scale effects, that is, reasons why
a larger economy (as measured by the size of the labor force, L) may be able
to grow faster.

Our task is to determine how available resources are allocated between
goods production and research. Loosely speaking, the equilibrium level of
R&D employment (i.e., the value of g) will be determined by the require-
ment that the savings decisions of consumers must be compatible with the
investment decisions of producers. Because researchers must be paid out of
somebody's savings, factor prices must adjust so that in equilibrium con-
sumers will be willing to finance the volume of investment that producers
want to undertake.

We will characterize the equilibrium value of g in terms of two relations
between the interest rate and the growth rate, one implied by consumer
intertemporal maximization, and the other summarizing equilibrium in the
production sector of the economy. Let us start with the consumption side
of the model. For a change, households will be assumed to maximize the
function

U=r^-e'ptdt (4)
Jo i-o- v >

where Ct is consumption of the composite final good at time t, subject to a
standard budget constraint. The solution of this problem yields the familiar
condition for the optimal allocation of consumption over time,

C _r-p

=> f = p + (Jg \P&)

where r is the market interest rate. Hence, consumer optimization implies a
positive relationship between the growth rate of consumption and the inter-
est rate (both at the individual level and at the aggregate level): High growth
implies deferral of consumption to liberate resources for investment, and a
high interest rate is required in order to provide consumers the incentive to
postpone consumption. To put it in a slightly different way, if we want con-
sumers to accept a steeper consumption profile (i.e., to trade more current
consumption for future consumption), we have to give them an incentive,
by making future consumption relatively cheaper.
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652 Some Applications of Dynamic Optimization

To derive the second relation between g and r, we need to think about the
incentive to do research. It will be convenient to imagine that innovation
takes place in a separate R&D sector. Agents, in their role as suppliers of
labor, have a choice between taking a "regular job" in industry at wage w
or entering the research sector. In the latter case, we will think of them as
starting a new company for each blueprint they produce and selling its
shares at the going price (v) in the stock market. In equilibrium, employ-
ment levels and earnings in the research and production sectors must be
such that, at the margin, no agent has an incentive to switch sectors. If
research and manufacturing are to coexist in equilibrium, net earnings per
unit of labor must be the same in the two sectors. That is, the equilibrium
wage (w) must be equal to the market value of the blueprints that can be
produced with one unit of labor (an):

w = anv (5)

Finally, the stock-market value of a firm in the intermediate sector will be
equal to the discounted value of its flow of future profits, that is,

7tt+s
sds (6)

Problem 5.12. Using equations (5) and (6), together with the expressions
for equilibrium factor prices derived in Section 5(a) of Chapter 8, derive the
following relationship between the interest rate and the growth rate of
consumption:

a(l-a) T a /TTX

r = — -L-——g (II)
a 1-a

Interpret this condition.

Putting the II and SS schedules together, we can solve for the equilibrium
values of the interest rate and the rate of growth. When the interest rate is
low, R&D investment is attractive, but saving is not, whereas at high inter-
est rates we have the opposite situation. Savings and investment decisions
will be compatible only at the interest rate given by the intersection of the
SS and II schedules, as shown in Figure 13.17.

Problem 5.13. Solve for the equilibrium values of g and the fraction of the
labor force employed in research (Ln/L). Discuss the determinants of the
equilibrium growth rate and the impact on both variables of an increase in
the size of the labor force, L. Consider also the effects of "merging" two
isolated economies into a larger, integrated one. Does anything change? To
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SS

g* g

Figure 13.17. Determination of the equilibrium growth rate.

what extent is the answer to this question sensitive to the details of the
specification we have used?

Bibliography

Abel, A. 1981. Dynamic Effects of Permanent and Temporary Tax Policies in a q
Model of Investment. Journal of Monetary Economics 9:353-73.

Abel, A., and Blanchard, 0.1983. An Intertemporal Equilibrium Model of Saving
and Investment. Econometrica 51(3):675-92.

Arrow, K. 1968. Applications of Control Theory to Economic Growth. In:
Mathematics of Decision Sciences, Part 2, pp. 85-119. Providence, RI:
American Mathematical Society.

Barro, R. 1990. Government Spending in a Simple Model of Endogenous Growth.
Journal of Political Economy 98(5, pt.2):S103-25.

Barro, R., and Sala-i-Martin, X. 1995. Economic Growth. New York: McGraw-Hill.
Blanchard, O., and Fischer, S. 1989. Lectures on Macroeconomics. Massachusetts

Institute of Technology Press.
Cass, D. 1965. Optimum Growth in an Aggregative Model of Capital

Accumulation. Review of Economic Studies 32:223-40.
Diamond, P. 1982. Aggregate Demand Management in Search Equilibrium.

Journal of Political Economy 90:881-94.
Diamond, P. 1984. A Search-Equilibrium Approach to the Micro Foundations of

Macroeconomics. Massachusetts Institute of Technology Press.
Diamond, P., and Fudenberg, D. 1989. Rational Expectations Business Cycles in

Search Equilibrium. Journal of Political Economy 97(3):606-20.
Grossman, G, and Helpman, E. 1991. Innovation and Growth in the Global

Economy. Massachusetts Institute of Technology Press.
Hayashi, F. 1982. Tobin's Marginal q and Average q: A Neoclassical

Interpretation. Econometrica 50(l):213-24.
Koopmans, T. 1965. On the Concept of Optimal Economic Growth. In: The

Econometric Approach to Development Planning. Chicago: Rand McNally.
Lucas, R. 1990. Supply-Side Economics: An Analytical Review. Oxford Economic

Papers 42:293-316.

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Fri Jun 28 00:33:20 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.014

Cambridge Books Online © Cambridge University Press, 2013



654 Some Applications of Dynamic Optimization

Mortensen, D. 1986. Job Search and Labor Market Analysis. In: Handbook of
Labor Economics, vol. 2, ed. O. Ashenfelter and R. Layard, pp. 849-919.
Amsterdam: Elsevier.

Mulligan, C, and Sala-i-Martin, X. 1991. A Note on the Time-Elimination Method
for Solving Recursive Dynamic Economic Models. NBER technical working
paper no. 116.

Pissarides, C. 1990. Equilibrium Unemployment Theory. London: Blackwell.
Ramsey, F. 1928. A Mathematical Theory of Savings. Economic Journal 38:543-59.
Romer, P. 1990. Endogenous Technological Change. Journal of Political Economy

(October):S71-S102.
Sargent, T. 1987. Dynamic Macroeconomic Theory. Harvard University Press.
Shapiro, G, and Stiglitz, J. 1989. Equilibrium Unemployment as a Worker

Discipline Device. American Economic Review 1A:A33-AA.
Simmons, G. 1972. Differential Equations with Applications and Historical Notes.

New York: McGraw-Hill.
Stokey, N, and Lucas, R. 1989. Recursive Methods in Economic Dynamics.

Harvard University Press.
Tobin, J. 1969. A General Equilibrium Approach to Monetary Theory. Journal of

Money, Credit and Banking 1:15-29.
Wolfram, S. 1991. Mathematica. A System for Doing Mathematics by Computer.

Reading, MA: Addison-Wesley.

Notes

1 It can be shown that, given our assumptions, it will never be optimal for the worker to
quit a job he has already accepted in order to look for a better job. To avoid
complications, we will simply assume that he is not allowed to quit.

2 As usual, this expression can be interpreted directly as an asset-valuation equation.
"Being unemployed" can be thought of as an asset that will pay a direct instantaneous
dividend, b, and with instantaneous probability X will yield the opportunity for a capital
gain Wa(x) - Wn because of a change in status from unemployed to employed. Because
this change will take place only when the offer is accepted, we take the maximum of
this quantity and zero, and because x is not known, we compute the expectation.
Finally, the expected return of the asset, measured as a fraction of its value, must be
equal to the discount rate p.

3 In computing Hf, we make use of the following result, known as Leibniz's rule.
Consider the function (x) = J F(x, s) ds. Then

, b(x)]-a'(x)F[x, fl(x)]

4 This assumption captures the fact that in a modern economy, people seldom consume
much of what they produce. Hence, consumption requires trade, as well as production.

5 The aggregate employment rate determines the probability of an "employed" worker
finding a trading partner during the period, given by b(e): The larger e is, the faster the
agent can expect to be able to eat. Thus, the value of being employed increases with e.
The value of being unemployed depends partly on the value of being employed and
therefore is also a function of e.

6 From (8)
b(e)y + a[cdG(c) ^

~ b() G(*) ~) + aG(c*) ~ p + b(e) + aG(c*)

and, rearranging terms,
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c*<-

When e = 0, c* is the solution to,

afcdG{c)

~ p + aG(c*)

Now, c* = 0 is clearly one solution of this equation. To show that there are no others,
notice that

ajCcdG(c

(c*)YX } p+aG(c*)

and observe that $(c*) = 0 for e* < c and

c*
<t>{c *) = -. ; ; r r < C* for C*>C

l + (p/aG(c*))

Thus, the functions on the two sides of (1) cross only at the origin.
7 Other paths will eventually violate either some feasibility condition or the

transversality condition for the agent's optimization problem, which requires c* to be
bounded and strictly positive for b(e) > 0.

8 That is, if net output is given by G(K, L), and 8 is the rate of depreciation of the capital
stock, we have F(K, L) = G{K, L) + (1 - 8)K.

9 Observe that the steady-state capital stock depends only on the production function
and the rate of time preference, not at all on the form of the period utility function.

10 We are assuming that the firm does not use debt financing. In the absence of taxes,
however, the capital structure of the firm makes no difference. To see this, assume the
firm borrows b dollars at time zero, uses them to increase the current dividend, and
then pays interest forever on the debt. The net gain to shareholders from the operation
is b - brlr = 0. When we consider taxes, things get messier.

Notice also that there is no guarantee that dividends will be positive every period.
Negative dividends would amount to stockholders buying additional shares of the firm
in order to provide funds to carry out current investment plans.

11 Recall that the first partial derivatives of a linearly homogeneous function g(x, y) are
homogeneous of degree 0. This implies that the partial derivative is a function only of
the ratio of the two arguments, e.g., gx(x, y) = gx(x/y, 1). For a discussion of
homogeneous functions, see Section 5 of Chapter 4.

12 In a well-known paper, Tobin (1969) anticipated this result. He conjectured that the
firm should continue to invest as long as what he called "marginal q" (the marginal
contribution of a unit of installed capital to the market value of the firm, divided by the
price of investment goods) exceeded 1.

13 This rate of return is the sum of two terms: The first is the ratio of capital gains and the
current dividend, net of taxes, to the asset's price, and the second captures depreciation
and the fact that installed capital reduces installation costs.

14 Another useful aspect of this result is that it makes the theory potentially testable, as
the firm's market value is an observable quantity, and K can, in principle, be computed
from accounting information.

15 Thatis,q = q[r + 8-VK(l,K)]-(l-u)FK(K,L)=*(l-u)FK(K,L)-q(8-VK) = rq-q
16 This requires only that ¥(/?(•), 1) > 8 as q —>? which seems reasonable enough.
17 First, note that

at a steady state, and
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where the second equality makes use of the fact that d/?[(l - c)lq]ldq = -(1 -
Next, because the installation function is homogeneous of degree 1, its partials are
homogeneous of degree 0, implying

4 V + %KK = 0 => {%K/%,) = -{IIK)

Thus, we can write

making use of the condition for optimal investment, (1 - c)lq = ¥/(//#, 1). By the linear
homogeneity of the installation function, ¥,(//#, 1)(//£) + VK(I/K, 1) = ¥(//#, 1),
implying

because at a steady state, ¥(/?(), 1) = &
18 With perfect foresight, future discontinuities in the time path of asset prices are

incompatible with equilibrium. If such discontinuities existed, agents would anticipate
very large capital gains or losses at some point in the future and would act now to take
advantage of them or avoid them. These actions, however, would bring the price change
to the present. At the time of the announcement, for example, agents will know that
stock prices will fall at time T, if not sooner. To avoid such losses, agents will dump
their stock holdings now, causing an immediate drop in the "stock price" q. Thus the
trajectory must be continuous, except possibly at the time of the announcement, when
surprised stockholders will be unable to avoid unexpected capital losses. See Section 2
in Chapter 11.

19 The reader should check that this is the only functional form for which the model has a
balanced growth path when there is technical progress.

20 See Section 5 of Chapter 9 for a discussion of the solution of nonautonomous linear
differential equations.

21 Observe that this steady-state derivative can also be computed using (22') and (23').
The resulting expression can be used, together with (35), to solve for p£Z*, rr).

22 See Mulligan and Sala-i-Martin (1991), Simmons (1972), or some other textbook on
differential equations.

23 This section draws on the work of Grossman and Helpman (1991) and Romer (1990).
24 Without this assumption, innovation would eventually stop with a fixed population,

because of a market-saturation effect; as we know, profit is a decreasing function of the
number of existing competitors.
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Chapter 1

Problem 2.2. Prove the following equivalence (X is the universal set):

X = (~P) u Q

659

X n (~G) = [(-/>) u g ] n (~<2)
X ~ Q = [(rP) n (~G)] u [Q n (~

See Figure A. 1.1.

Problem 2.3. Prove the second of De Morgan's laws: Let A = {At\ i
family of sets in X. Then ~(rvQ = u/(~AI).

xe~(r\ A/) <=» J t gr\ A, <=>-i (V/ G/, xe At)
<=> 3 / e I s.th. JC€Ai <=> 3 / e I s.th. x e ~A

1} be a

«X€Ui(~i4,) •

Problem 2.8. The following modification of the induction principle is sometimes
useful: Let P be a property that natural numbers (or positive integers) may or
may not have. If

(i) P(0) holds and
(ii) if P holds for all integers k = 0 , l , . . . , n - l, then it also holds for n.

Then P holds for all natural numbers. Prove this result.
Let 5 be the set of nonnegative integers for which P(ri) is false. Assume that S

is not empty. Then, by the well-ordering principle, this set has a smallest element
we will call nQ. By (i), n0 * 0, and because n0 is the least element of S, P(k) holds
for all 0 < k < n0. By (ii), P(n0) is true, implying that no S,a contradiction. •

Problem 2.9. Use the modified induction principle to prove that any integer
larger than 1 is either a prime number (it has no integer divisors other than 1) or
the product of prime numbers.

The result holds trivially for 2. Assume that it holds for every integer k where 1
<k<n. We have to show that this implies that the result holds also for every k

Figure Al.l.
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with 1 < k < n + 1. There are two possibilities: (i) n is prime, in which case there is
no problem, or (ii) n is not a prime number. But if n is not prime, it has a divisor
d < n, and we have n - dc, where c is also between 1 and n. Hence, 1 < c, d < n, so
both numbers are, by hypothesis, either prime or products of primes, and
therefore so is n = dc. O

Problem 4.4. Explain why inclusion works only in one direction in the second
part of Theorem 4.3, but in both directions in the first part.

(i) Give an example in which nieIf(Ai) is strictly larger than f(nieIAi).
(ii) Prove that if/is one-to-one, then nieIf(Ai) =f(nieIAt).

The proof that f(nieIAt) c nisIf(Ai) goes as follows:
y e f (n i e I At) <=> 3 x e nieI At s.th. f(x) = y

=> V i e / , 3xt G Ai s.th.f(xt) = y (e.g., xt=xV /)

> V / e / , y e f(At) <=> y e n ieIf(A i)

The second implication is the only one that goes only in one direction. If there
exists some x that belongs to all the At's simultaneously and has a certain
property, it must be true that each At contains at least one element (the given x)
with the desired property. But the converse is not necessarily true: Even if each At
contains an appropriate xh it does not follow that any of these points will lie in
the intersection of the A t

% as each of the x/s may be different, and it is possible
that for each / we might have xt e At n (~Ak) for some k * i.

However, if the function is one-to-one, then y has a unique inverse image,
implying that all the x ' s are the same. In this case, the converse implication also
holds.

The proof oif~l(r\^iB?) = nieIf'1(Bi), on the other hand, is of the form

x e f-1 (n ieI Bt) <=> f{x) e n/e/ B
<=> V i e /, fix) e Bt

<=>Vie/, xef-l(Bt)

In this case, all the implications go in both directions. In particular, because f(x) is
a single element (which is not generally the case for inverse images), if f(x) e Bt
for all /, then f(x) e n i e IBh and vice versa.

Consider the function /(x) = x2, defined on the interval [-1,1]. (See Fig. A.I.1.2
on p. 661). Then we have

/([-l ,0]n[0,l]) = /(0) = 0 and /([-I, 0]) n /([0,1]) = [0,1] •

Problem 4.5. Given a function f:X —> Y, two subsets of X, Ax and A2, and two
subsets of y, 2?i and B2, show that

(i)f\~B1) = ~f-\B,),
(ii) f-\Bx ~ B2) =t1(Bl) ~f-\B2), and

(iii) if / is bijective, then

/Mi) = ~/Ui) and f(A1~A2) = f(Al)~f(A2)

What can we say if / i s not bijective?

(i) x € f-\~B1) o/(x) iB^xi rW m e ~f-\B,)
(ii) t\B, ~ B2) =/"1[51 n (~B2)} =f\Bl) nf~\~B2) =/1(51) n h f W ] =

t\B,~B2)
(iii) y € r\)r\)f(~Ai) <=> 3 x0 e (-A) s.th. y=f(x0) (if / i s one-to-one) =>ye ~
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-1

Figure A1.2.

If/is one-to-one, xQ is the only inverse image of y (i.e., there is no other x with
y as an image). Hence, for every x e Auf(x) * y, and it follows that y e ~f(Ax).
Notice, however, that the argument requires that / be one-to-one. If that were not
so, y could have several preimages, and then it could be an element of both f(~Ai)

)

yG~/(A)o^jceAi s.th.y = f(x) (if/is "onto")
=>3xe~Ai s.th.y = / ( * ) o y e / ( ~ A )

If/is onto, each y will have some preimage; if it does not belong to Au it will lie
in ~AU implying that y G /(~AI). If y is not onto, however, y may have no
preimage.

If/is bijective, we have, using Problem 4.4 and condition (iii),

~ A= - f[A n = /(A) n

If/is not bijective, we havef(Ax) n (~ ~ A2). D

Problem 4.6. Let / be a function from X to Y, with A a subset of X, and B a
subset of Y. Then

/ [ / - ' ( £ ) ]££ and Ac/"1[f(A)]

When are the two sets not equal to each other?
Some elements of B may not have preimages. Hence, when we "go" to f~x{B)

and "come back," we may lose some elements. Similarly, there are elements of
f(A) that may have preimages outside A; hence, when we go to f(A) and come
back, we may pick up some additional elements. •

Problem 5.3. Let "*" be a law of internal composition on X that satisfies the
associative property and is endowed with an identity element. Prove that if x
and y have symmetric elements Xs and y\ then the symmetric element of x * y is
y s * Xs.

[ y s *xs) = x*(y*ys)*xs =x*e*xs =x*xs =e •
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Problem 5.4. Let X be an arbitrary set, and {G, *} a group. Show that the set of
functions of X into G, endowed with the operation defined by the composition of
images, that is,

H v c V (f * p\(x)— fix)* C(Y)

is a group.
Given that /(x) and g(x) are elements of G, so is their composition, implying

that the set of functions from X to G is closed under "*." For the same reason,
this set inherits the associative property from {G, *}.The identity element is the
function given by e(x) = e for all x in G, and the symmetric element of a function
/ is the function f, defined by f(x) = \f(x)]s for each x in G. •

Problem 5.5. Show that the intersection of subgroups of G is a subgroup of G.
Let {Gt; Gt c G , / e /} be a family of subsets of G such that {Gh *} is a group for

each /. Because "*" is associative in G, it will remain so for any subset of G,
including ntGi. By assumption, each {Gh *} is a subgroup, implying that the
identity element e belongs to each and all the G/s and therefore to niG(. Next,
because each G, is closed under "*," if we take two points, x and y, in niGi we will
have x * y e G, for all /, implying that x * y e r \ Gt. Finally, every x in Gt has a
symmetric element Xs in G,; thus, if x e Gt for all i, so does x5, and it is therefore
true that every x in r\iGi has a symmetric element also in ntGi. D

Problem 5.9. Prove Theorem 5.8: Let V be a vector space over a field F, and let 5
be a nonempty subset of V. Then 5 is a vector subspace of V if and only if

Va,/3€FandVxjeS, we have ax + £y e S (1)

Clearly, 5 inherits those manipulative properties of vector addition and
multiplication by a scalar that hold in all V. With a = /3= 1, equation (1) implies
that S is closed under vector addition, and also (with /? = 0) that the product of
any element of S and a scalar is an element of 5. With a - P = 0, we have
0x + Oy = 0 + 0 = 0 e 5, and a = - l and /? = 0 imply (-l)x + 0y = -x + 0 = -x € 5,
from which we conclude that the symmetric element of x is also in S. •

Problem 6.1. Show that there is no rational number a = p/q (where p and q are
integers with no common divisors) such that a2 = 2.

Assume this is not true, that is, p2/q2 = 2. Then p2 = 2q2, and p2 is an even
number. Because the square of an odd integer is odd [if z = (2n + 1), then z2 =
4n2 + 2n + l = 2(2n2 + n) + 1, also odd], it must be that p itself is even, and
therefore we havep=2k for some integer k. But then

p2 = 2q2 => 4k2 = 2q2 =>q2 = 2k2

and q is also even. Hence, 2 is a common divisor of p and q, which contradicts our
assumptions. •

Problem 6.5. Let x, y, and z be arbitrary real numbers. Using the order axioms,
show that the following statements are true:

(i) (x < y and x' < /) => x + x' < y + /

(ii) x < y =$ -y < -x

(i) x <y =*x + x' <y + x', and x' <y' =»x' + y <y' + y, from where x + x' <y+x' <

(ii) Add -x - y to both sides. •
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Problem 6.11. Prove Theorem 6.10: The set N of the natural numbers is not
bounded above (i.e., for any x e R , there exists a natural number n such that
n >x).

If the result is false, there exists a real number x that is an upper bound of N.
Then, by the supremum property, N has a supremum, u. Because u is the least
upper bound of N, u - 1 is not an upper bound, and there exists a positive integer
k such that k> u - 1. Therefore, u < k +1, but because k + 1 is a positive integer,
this contradicts the fact that u is an upper bound of N. •

Problem 6.13. Let A and B be nonempty sets of real numbers, both of them
bounded above, and let C be the set

b; aeA. beB}

Show that C has a supremum that is given by

sup C = sup A + sup B

Let a* = sup A and Z>* = sup B. For each c e C, we have c = a + £, where a e A
and beB. Because a < a* and b < ft*, we have

V C E C , c = a+b<a* + b* (1)

implying that 0* + fo* is an upper bound of C. Hence C is bounded above, and by
the supremum property it has a supremum we will call c*, with the property that
c* < a* + 6*. It remains to prove the reverse inequality to show that c* = fo* + a*.

Fix an arbitrary £ > 0. Because no number smaller than the supremum is an
upper bound, there exist numbers a e A and beB such that

a > a* - £ and b>b* - e

Adding these inequalities,

a* + 6* - 2e < a + b = c < c*

and given that this must hold for any £ > 0, we conclude that a* + fr* < c* by
Theorem 2.4. •

Problem 6.14. Show that a nonempty set S of real numbers is an interval if and
only if whenever x and y are in S, any real number z such that x <z <y lies also
in S.

The first part is obvious by the definition of interval. Conversely, let S be a set
with the desired property, and define

a = inf 5 (or a = -°° if S is not bounded below),
b = sup S (or b = °°* if S is not bounded above).

We will show that (a, fe)c5c [a, fc], where we interpret (a, b) as the empty set if
a = b. Clearly, if this chain of inclusions can be established, S can only be an
interval.

First, notice that S c [a, b] follows by the definition of a and b. It remains to
show that (a, b) c S. For this, let z be an arbitrary point in (a, b). Then z > a, and
by the definition of a there exists a point x in S with x < z (otherwise z would be
a lower bound for 5, and a could not be the infimum). Similarly, z < b, and this
implies that there exists a point y in S with y>z. Hence we have x < z <y, where
both x and y are in 5, and it follows that z e S. Because z was an arbitrary point
of (a, b), we have shown that (a, fe) c 5. •
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Problem 6.15. Show that if a > 0, then \x\ < a if and only if -a < x < a.
Because btl = x or \x\ = -x, we have -\x\ <x< \x\. If we assume btl < a, we have

-a < -\x\ < x < \x\ < a. Conversely, if -a < x < a, then

if x > 0, then \x\ = x < a, and
if x < 0, then bcl = -x < a (because x < y => -y < -x),

so, in any event, \x\ < a. •

Problem 6.17. Given real numbers xh i = 1, 2 , . . . ,n, show the following:

(i) Eti*,l<£?=,W
(ii) \a-c\<\a-b\ + \b-c\

(i) We know that the result holds for n = 2, because it then reduces to the
triangle inequality. Assume that the result holds for n; then it will also hold
for n + 1, because

where the first inequality holds by the triangle inequality, and the second by
the assumption that the property holds for n.

(ii) Let x-a-b andy = b -c in the triangle inequality, \x + y\ < \x\ + \y\. O

Chapter 2

Problem 1.7. The Cauchy-Schwarz-Bunyakovsky inequality. Let / and g be
continuous functions [a, b] —> R. Adapt the proof of the Cauchy-Schwarz
inequality to establish the following analogue for integrals:

(faf(x)g(x) dx) < (f[f(x)fdx)(f[g(x)]2dx)

Identical with the one in the text, with X = fbaf(x)g(x) dx/Jb
a[g(x)f dx. D

Problem 1.8. An alternative to the Euclidean norm in Rn is given by the sup
norm, defined for any x e Re by the absolute value of its largest component:

IMI, =max,{|x'|; i = l,2,...,n}

Show that 11-11,: Rn —> R is a norm.
The only thing that is not obvious is that ||-||5 satisfies the triangle inequality. To

show that it does, we use the triangle inequality for real numbers. Given three
points x,y, and z in Rn, we have, for each / = 1,... ,n,

\xl - zl\ = \(xl - yl) + ( y - zl)\ =S W - yl\ + \yl - A < \\x - y\\s + \\y - z\

Therefore,

\\X-Zl<\\X-yl+\\y-Zl •

Problem 1.9. Show that \\-\\s and the Euclidean norm ||-||£ are Lipschitz-
equivalent norms by proving that for any n-vector x, \\x\\s < \\x\\E < V«||x||s.

\\x\\s = max,|x'| = max,-
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•

Problem 1.11. Show that dK is a metric.
Let z = 0, y), z' = (*', /), and z"= (x", y") be arbitrary points i n l x Y , and let

dn be defined by

[dAz,z')f =[d,{x,x')f+[d2(y,y')f (1')
We want to check that the triangle inequality holds for dK, i.e., that

dK(z,z")<dAz,z') + dAz',z") (2)

or, equivalently, that

K (z, z")f < [dK (z, z') + dn (z\ z")f = K (z, z')f + K (z', z")f +24,(z, zOrf, W, z")
(2')

Because the triangle inequality holds for both dx and d2, we have

[dAz, z")f = [di(x, x")]2 + [d2(y, y")f

< [d,(x,x') + d,{x', x")f +[d2(y, y') + d2(y', y")f

^[d^xf +d2(y,y')2] + [d1(x',x"f +d2(y',y"f]
+ M x , x')dx{x\ x") + d2(y, y')d2{y', y")]

= z, z'f + dAz', z"f +2[dx{x, x')dx(x', x") + d2(y, y')d2{y\ y")]
(3)

Applying the Cauchy-Schwarz inequality to the expression within brackets in
the last term of (3), we have

dx(x9 x'Hix', x") + d2(y, y')d2{y\ y")

,x'f +d2(y,y')24d,{x\x'f +d2(y
\y")2

= dn{z,z')dK{z\z") (4)

Using (4) in (3), we obtain the desired result:

[dx(z, z")]2 < dK(z, zf + dAz', z'f +2dAz, z')dAz\ z") = [dAz, zO + dAz', z")f
n

Problem 1.13. Prove that the union of any finite collection of bounded sets is
bounded. (Prove it for two sets; the result then follows by induction.)

Let Si and S2 be bounded sets in a metric space (X, d), and let xx and x2 in X
and mi and m2 in R be such that d(xh st) < mt for all s( e St. (These numbers exist
by the boundedness of Si and S2.) Let x = xu and m = max{mi, m2 + d(xu x2)}. Then
for every s e Sx u S2, either

(i) 5 6 Si and d(s, x) - d(s, x{) <mx<m, or
(ii) s e S2 and d(s, x) = d(s, x{) < d(s, x2) + d(x2, *i)<m2 + d(xu x2) < m.

Hence, Si u S2 is contained in Bm(x)- D

Problem 1.14. Using the triangle inequality, show that for any x, y, and z in a
normed vector space, the following are true:

(i) ||x-)4|>||;c||-M and (ii) \\x - z\\ < \\x - y\\ + \\y - z\\
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(i) |M| = ||(JC - y) + y\\ < \\x ~ y\\ + \\y\\ =» \\x - y\\ > \\x\\ - \\y\\
(ii) ||x - z\\ = \\(x -y) + (y~ z)\\ < ||* - Jll + ItV - z\\ •

Problem 1.15. Show that the set of bounded real sequences is a metric space,
with the norm defined by d(x, y) = supjxn - yn\.

Once more, we only need to check the triangle inequality:

d(x, z) = supn|xn - zn\ = supn|(xn -yn) + (yn- zn)\ £ supn{|xn - yn\ + \yn - zn\}

< |xn ~yn\ + supn\yn -zn\ = d{x, y) + d(y, z)

The first inequality holds by the triangle inequality for real numbers, and the
second holds because taking separate suprema for \xn-yn\ and \yn-zj may allow
us to do better, but never worse, than taking a single supremum for the sum. •

Problem 1.16. Let (X2, d2) be a metric space, Xt a set, and / : X\ —> X2 a one-to-
one function. Define a function di{) by

4(x, y) = d2[f(x), f(y)] \/x,yeX1

Show that (Xu dt) is a metric space.
First, dfc, y) = d2[f(x)J(y)\ > 0, with equality if and only if fix) =fiy). Because /

is one-to-one, fix) - fiy) if and only if x2 = y.

di(x, y) = d2[f(xl f(y)] = d2[f(yl /(*)] = <k {y, x)

d,(x, z) = d2[f(x\ f(z)] < d2[f(x), f(y)] + d2[f{y\ f(z)] = dx(x, y) + dx(y, z) U

Problem 1.17. Give an example of two sets A and B in a metric space such that
A n B = 0 , but d(A9 B) = 0.

The intervals (a, b) and (6, c), with a < b < c, in the real line with the usual
metric. •

Problem 1.18. Prove that the set C[a, b] of continuous real functions defined on
the interval [a, b] is a metric space when the distance between two functions / and
g is defined by

d(f9g)= p|/
xe[a,b]

We verify that the triangle inequality holds:

d(f,h)= mp\f(x)-h(x)\=

g(x)| + |g(;t)-M*)|}< sup |/(je) - g(*)| + sup \g{x) - h(x)\
xe[a,b] xe[a,b] x&[a,b]

= d(f,g) + d(g,h)
D

Problem 1.19. Show that the following inequality holds for any x e Rn:

Assume that n = 2. Then we have

and taking the square root of this expression,

|*!|+\X21 > *s}xl+X22 = \ \ x

as desired.
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For n > 2, we proceed by induction. Let x e Rn+1, partition x = (y, z) with
y e Rn and z = x e R, and assume that

Then we have

=(|z|+||yU2

Taking the square root of this expression, using (1), and recalling that z - xn+1, we
have

+|Z| < x ; , i v,i+k\=XB
H w

•which is the desired result.

Problem 2.2. Using the formal definition of limit, show that

(i) l im- = 0, (ii) lim-7= = 0, (iii) lim —-—- = -

Imagine you are given some arbitrarily small e. You must produce a positive
integer N such that.. . .

(i) Fix some arbitrary e > 0. We want to find some N(e) such that for all n > N(e),

- - 0
1

= — < £

Clearly, this inequality holds for n > lie, so it is sufficient to choose N(e) - lie.
(ii) In the same manner,

1
- 0 = -F= < £ o n > —-, so N(e) = —

A/ M P P

(iii)

n2+2
3n2+4 3

w2+2 1
3n2 + 4 3

3(n2+2)-(3»2+4)
3(3n2 + 4)

2 A 2 2 2 4
+4> — <=> n >

3e > <

3(3n2 + 4)
r2 4

3

<e

(For e sufficiently small, the right-hand side is positive; otherwise the penultimate
inequality is always true.) •

Problem 2.4. Let {xn} be a convergent sequence with limit x. Show that every
subsequence of {xn} converges to x.

Assume {xn} -> x, and let p(k) be a strictly increasing function from N to N. We
want to show that any subsequence {xp(k)} of {xn} converges to x. Because {xn} —>x,
we have

V e > 0, 3 N{e) s.th. w > N(e) => d{xn, x)<e

Because p( ) is strictly increasing, p(n) > n for all n (by induction). Hence, given
some e > 0, n > N(e) implies p(n) > N(e), and therefore

d(xpinhx)<e
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The result is intuitively obvious: If all xn with n > N(e) are within a distance e of x,
the same is true for all xp(n), provided that p{n) > N(e), for, since p() is increasing,
these terms are "farther along" in the sequence. •

Problem 3.4. We want to show that every real sequence {xn} contained in [a, b]
has a subsequence that converges to a point x in the interval. Because {xn} is
bounded, the Bolzano-Weierstrass theorem ensures that it does indeed have a
convergent subsequence. Assume that the limit of this subsequence lies outside
[a, b] (e.g., x > b). Show that this leads to a contradiction. (First, draw a picture.)

Intuitively, if JC>ft, then whenxn gets sufficiently close to x the sequence must
leave the interval. Formally, assume {xn} -*x>b. Then there exists some N such
that

k>N =>\x-xn\ = x~xn<x-b

But thenxn> b for all n>N, which contradicts the assumption that xn< b for all
n. •

Problem 3.9. Prove Theorem 3.8: Let {xn} be a sequence of positive real numbers.
Then {xn} -> oo if and only if {l/xn} -> 0.

To show that {l/xn} -> 0, fix some arbitrary e> 0. Because {xn} -> <*>, we know
that there exists some N such that n>N=>xn> lie. Thus, 0 < l/xn < s for all n > N.
For the converse, the same argument will work in reverse. •

Problem 3.11. Convergence in product spaces. Let (X, dx) and (Y, d2) be metric
spaces, and consider the product space (Z = XxY, cQ, with the product metric dK
defined by

dAz, z') = d«[{x, y),(x', / ) ] = Mix, x')f + [d2(y, /)f (1)
Show that the sequence {zn} = {(xn, yn)} converges to z = (x, y) in ( I x Y, dn) if and
only if {xn) converges to x in (X, d) and [yn] converges to y in (Y, d).

• (—>) First, assume \zn) -> z, and fix some e > 0. Because {zn} -> z, there exists
some N such that dK(zm z) < e for all n> N. That is,

n >n =» , z) = ^I\d1(xn,x)f+[d2(yn,y)f
Now observe that

d,(xn, x) = M ( x n , x)f < M (xn, x)f + [d2 (yn, y)f = dK (zn, z)
and by a similar argument, d2(ym y) < dK{zn, z). Hence, for n > N we have

d1(xn,x)<e and d2(yn,y)<e

That is, the component sequences {xn} and {yn} converge to x and y, respectively,
in the original spaces.
(<—) Now assume {xn} ~ >x in (X, dt) and {yn} -> y in (Y, rf2), and fix some e> 0.
By the convergence of these sequences, there exist positive integers iVi and ^2
such that

n>N1=>di(xn,x)<e/^2 and n>N2 => d2(yn,y)< e/^2 (1)

If we now define N = max{Nu iV2}, (1) holds for both sequences, provided that n
> N. We have, then,

d, (zn, z) = VW (xH, x)f + [d2 (yn ,y)f < 42e2ll =e\/n>N
Hence, [zn] —> z in ( J x Y, dn), as was to be shown. •
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Problem 3.12. Show that every bounded sequence in Em contains at least one
convergent subsequence.

For simplicity, we will work in E2. Let [xn] = {(yn, zn)} be a bounded sequence of
2-vectors. Then the first component sequence {yn} is a bounded sequence of real
numbers, and it follows by the Bolzano-Weierstrass theorem (Theorem 3.3) that
this sequence has a convergent subsequence, say {ynJ with limit y. Consider now
the corresponding subsequence of the second component sequence, {znj. Because
this is also a bounded sequence of real numbers, it too has a convergent
subsequence, say {zHk} with limit z. Going back to the first component
sequence, the corresponding subsequence [yHk} is still convergent to y (because
any subsequence of a convergent sequence is Itself convergent). By Theorem 3.10,
the subsequence [xHk} = [(yHk, znk)} of the original sequence converges to (x, y).
The argument can proceed in the same manner for vectors of any finite
dimension. •

Problem 3.14. Prove the Bernoulli inequality by induction: For each positive
integer n and any x > - 1 , (1 + x)n > 1 + nx. Where in the proof do you need the
assumption that x > -1?

For n = 1, the inequality holds trivially. Now suppose (1 + x)n > 1 + nx and
1 + x > 0; then we can multiply both sides of the first inequality by 1 + x without
reversing its direction, and we get

I + nx){l + x) = 1 + (n + l)x + nx2 > 1 + (n + l)x D

Problem 3.15. Prove Theorem 3.13: Let a be a real number, and consider the
sequence {an}. As n —> », we have the following: (i) If lal < 1, then {an} —> 0. (ii) If
a > 1, then {an} -» <*>. (iii) If a < - 1, then {an} diverges.

Assume Id < 1. If a = 0, then the result is immediate; otherwise we can write
\a\ = 1/(1 + x) for some x > 0. By the Bernoulli inequality, (1 + x)n > 1 + nx > nx, and
hence

J_

Finally, fix some e > 0, and observe that

\an\< — < e provided that n > —
nx ex

If a > 1, we can write a = 1 + x for some x > 0. Then

an = (1 + x)n > 1 + nx > nx

Given any B > 0, we have an>nx> B for all n > Blx. •

Problem 3.19. Consider the sequence {an; n = 0,1,.. .}, where 0 < a < 1, and define
SN as before. Verify that (1 - a)SN = 1 - aN+1. Use this to show that

Notice that

Hence,
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Taking limits as N —> «>,

Problem 3.20. Given the function

m-^ a)
define a sequence {xn} of rational numbers by

xt = l and xn+1 = /(xn) V n > l (2)

We have, then,

x2 = 1.5, x3 = 1.417 . . . (3)

(i) Prove that if {xn} converges, then its limit is x = V2. (Complete the following
expression: x = limn^Mjtn+i = limn_»o/(xn) = . . . )

We have

x 2 + 2 x2+2
x = lim xn+1 = lim /(xn) = lim — =

„->= „_*» „_*» 2 x n 2x

from which

2x2 = x2 + 2 => x2 = 2 => x = -^2

(ii) Prove that for n > 2 we have xn > V2. (Show that /(x) > V2 using a2 + b2 > 2ab.
Why?)

(a-bf =a2 + b2-2ab>0=*a2+b2 >2ab

Using this, we have

2x ~ 2x

(iii) Calculate the value of (xn+1-xn) as a function of xn and xn_i. Use the
resulting expression to prove that for n > 2, {jcn} is decreasing (by induction).

By the analogue of Theorem 3.1 for decreasing sequences bounded below,
{xn} converges to a real number. Hence, there is a real number x such that
x2 = 2.

_ t(v \ f(v \ %n +2 xn_\ +2 __ xn_i(x,, +2) — xn(xn^ +2)
Xn+1 -Xvn — J\xn)~ f{XnA) — —~ Z — 7.

LXn ^Xn-l ^XnXn~l

n — xnxn_i — 2 x n (xn_-iXn)(xn — xn_j) — l j x n — x n A )

= (xn-xnA)\2* --

Because xn > V2 for n > 2, we have

1 1
|>0 forn>2

and therefore
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n+1 -xn) = sign(xn -x n A )

Because x3 - x2 = 1.417 - 1.5 < 0, the sequence is decreasing. •

Problem 4.4. Prove Theorem 4.3: (i) 0 and X are closed in X. (ii) The
intersection of an arbitrary collection of closed sets is closed, (iii) The union of a
finite family of closed sets is closed.

(i) Because X is open, its complement 0 is closed, and vice versa,
(ii) and (iii) The proof is almost immediate using De Morgan's laws:

~(u/A) = r \(~A i) and ~(n,At) = u,(~At)

Consider the union of a finite number of closed sets, u t iC By definition, the
complement of each Q is open, and therefore so is the intersection

Hence its complement, u?
=iCh is closed. A similar argument can be used to

prove (iii). •

Problem 4.7. Prove that dA = c\An cl(~A).
Pick an arbitrary boundary point of A, x e dA. By definition, any open ball

around x interesects both A and -A. Hence, a boundary point of A is a closure
point of both A and -A, and it follows that cl An cl(~A) 3 dA.

Let y be an arbitrary point in cl A n c\{~A). Because y is a closure point of
both A and ~A, we have, by definition, that for any e> 0,

£e(x) n A* 0 and B£(x) n (~A) * 0

Thus, any point y in cl A n cl(~A) is a boundary point of A, that is, <9A 3 cl A n
cl(~A). •

Problem 4.9. Prove parts (iii) and (iv) of Theorem 4.8:

(iii) cl A is the smallest closed set that contains A.
(iv) A is closed if and only if A = cl A.

First, we show that cl A is closed. It is obvious from the definitions that the
interior, exterior, and boundary of a set are disjoint sets, and

int A u ext A u dA = X, cl A = int A u <?A, ext A = int(~i4)

Hence,

cl A = ~(ext A) = -(int ~A), and so ~(cl A) = int(~A)

and because int is open, so is —(cl A).
Next, we show that cl A is the smallest closed set that contains A. Let B be a

closed set containing A. Then ~J3 is open, and because B 3 A, we have ~A 3 ~#,
that is, ~Z? is an open set contained in -A. Now, int(~A) is the largest open subset
of ~A; it follows that int(~A) 3 ~B. Moreover, we know that int(~A) = ~(cl A),
from where ~(cl A) 3 ~B; this, in turn, implies B 3 cl A. Hence, any closed set £
that contains A also contains cl A.

Given this, it is obvious that if A is closed, the smallest closed set that contains
A is A itself. And if A = cl A, then A is closed, because cl A is closed. •

Problem 4.14. Show that in a metric space the closed ball Br[x] is a closed set.
(Take a limit point a of Br[x] and consider an arbitrary sequence {xn} in Br[x] with
limit a. Use the triangle inequality to show that a must be in Br[x].)
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672 Appendix: Solutions to the Problems

Let a be an arbitrary limit point of Br[x]. We will show that a e Br[x]. By the
definition of limit point, there exists a sequence {yn} in Br[x] that converges to a.
Because yn e Br[x], we have d{ym x)<r for all n. Using the triangle inequality,

d(a, x) < d(a, yn) + d(yn, x) < d(a, yn) + r

Because {yn} -> a, d(a, yn) -» 0, and, taking limits, d(a, x) < r, i.e., a e Br[x], Hence,
Br[x] contains all its limit points and is therefore closed. •

Problem 4.15. Let B be a_nonempty set of real numbers bounded above. Let
s = sup B. Show thatj e B. Notice that this implies that s e B if B is closed.

If s € B, then se B. Suppose s€ B.Then for every £>0 there exists some point
xG B such that s-e<x<s,for otherwise s-ewould be an upper bound of B
smaller than s^and s could not be the supremum. Thus, s is a limit point of B, and
therefore s e B. •

Problem 4.16. Let A be a set in a metric space (X, d). Show that if A is closed
and x £ A, then d(x, A) > 0.

We will prove the contrapositive statement: Let A be a closed set, and x a point
such that d(x, A) = 0. Then x e A. Because d(x, A) = 0, for any given e > 0 there
exists some point a e A such that d(x, a) < e.That is, Be(x) nA&0 for every
£ > 0. Hence, either x e A (if x = a) or x is a limit point of A (otherwise). Because
A is closed (and therefore contains all its limit points), x € A in any event. •

Problem 5.6. Use the definition of the limit of a function to show that if
lim f(x) = a and lim g(x) = b
x->x° x->x°

then linv«o[/(;t) + g(x)] = a + b. Prove the same result using the analogous
theorem for limits of sequences.

(i) Direct proof: Fix some e > 0. Because / has limit a and g has limit b as x —> x°,
we can find positive numbers Sf and Sg such that

|/(JC) -a\<£J2 whenever JJC-x°|< Sf and

\g(x) -b\< £J2 whenever \x - x°\ < Sg

Put S= min{<5/, Sg}. Then for all x such that \x - x°l < <5, we have

[/(*) + g(x)] - (a + b)\ = I f(x) -a] + [g(x) - b]\ < I/to -a\ + \g(x) -b\<e

which shows that limx^xo[f(x) + g(x)] = a + b.
(ii) Because limx_>xof(x) = a and lim^o^x) = b, we must have {/(xn)} —> a and

fg(xn)} -> b for any sequence {xn} with {xn} -> x° and *n * x° for all n (Theorem
5.2, necessity). By Theorem 3.6, {f(xnnn) + g(xnn)} —> a + b for any such sequence,
implying

\im[f{x) + g(x)] = a + b
x->x°

by Theorem 5.2 (sufficiency). •

Problem 6.2. Preservation of sign. Let / be a continuous function from a metric
space (X, d) to R, with the usual metric. Prove (directly) that the set {x e X\
f(x) > 0} is open. Intuitively, this result says that a continuous function that is
strictly positive (or negative) at a point will maintain its sign within a sufficiently
small ball around the original point.

Let x be such that f(x) > 0. By the continuity of / for every £ > 0 there exists
some S> 0 such that
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\f(y)-f(x)\<eVyeBs(x)

In particular, if we choose £=/(x)/2, continuity ensures that we can find some
S> 0 such that for y e B£x)

fix) - f(y) < f(x)/2 =* f(y) > f(x)/2 > 0

Hence, f~l(0, °°) is open.
The robustness of the sign of a continuous real-valued function to small

perturbations of its arguments is a property we will use quite often. •

Problem 6.5. Let / : R —> R be the function defined by f(x) = 1 for x rational
and by /(x) = 0 for x irrational. Show that / is discontinuous everywhere. (Recall
that any interval in the real line contains both rational and irrational numbers.)

Choose an arbitrary point x° in R, and let e< 1. Then, for any S> 0, the interval
(x° - <5,x° + S) contains both rational and irrational numbers and, in particular,
some x of the type opposite to x°. For this x, we have l/(x°) -f(x)\ = 1 > £. D

Problem 6.6. Given a function / : R —> R, define g: R —> R2 by g(x) =
(x,f(x)). Use the sequential characterization of continuity to show that if/is
continuous at some point x°, then so is g.

Consider an arbitrary sequence {xn} convergent to x°. Because / is continuous,
{/(**)} ^ / ( A But then

{g(x)} = {(*„, /(*„))} -> (x, /(x0)) = g(x«)

so g is continuous at x°. •

Problem 6.7. Consider the finite-dimensional Euclidean space En. For any k e {1,
2 , . . . ,n}, the /rth projection mapping,pk:R

e —> R,is defined for x = (xly . . . ,x n)
by pk(x) = X/c- Show that pk() is a continuous function.

Let x= (xu .•. ,xn) and y = (j^,... ,yn) be points in Rn. For each k = 1 , . . . , n
we have

\Pk(y)-Pk(x)\=\xk -yk\=vu, -yk)2 < Yj
To establish continuity, we have to show that for any given e > 0, there exists a
S> 0 such that dE(x, y) < 8implies \pk(y) ~pk(x)\ < £. By (1), it is enough to take
S=e. •

Problem 6.8. Show that in any normed vector space (X, ||-||) the norm is a
continuous function from X to R.

We know (Problem 1.14) that \\x - y|| > ||x|| - ||y||. Reversing the roles of x and y,
we have ||X - y\\ = \\y - x\\ > \\y\\ - \\x\\, and therefore l||x|| - ||y||l < ||x - y\\. Using the
same argument as in the preceding problem, continuity follows directly. •

Problem 6.9. Prove that if/is a continuous function, then for any set A,f(c\A) c

We want to show that if y e /(cl A), then it also belongs to c\f(A), that is, for
any e > 0, B£(y) n f(A) * 0 . Take an arbitrary y e /(cl A) and fix some e > 0.
Because y e /(cl A), we have y =/(x) for some x e clA, that is,

V<5>0, B6(x)nA*0 (1)

By the continuity of/ we can choose some d\e) such that f[Bg(£)(x)] c ())
Because (1) continues to hold for this o\s), B^x) n A is not empty, and
therefore neither is its image, f[Bs(e)(x) nA]. Using Theorem 4.3 in Chapter 1,
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f[B5i£)(x) n A] cz f[BM(x)]n f(A) e Be(f(x)) n f(A)
so Be(f(x)) nf(A) ^ 0 , which is what we wanted to show. •

Problem 6.11. Let /and g be functions R —> R, and assume that / i s continuous
at / and that g(x) -> / as x -» oo. Show that lim^/fgC*)] = / ( / ) .

Fix an arbitrary £ > 0. By the continuity of / at y°, there exists some Se > 0 such
that

(1)

Because g(x) —» y° as x -> <», we can find some number B(S£) such that

\g(x)-y°\<SeVx>B(de)
For any x > B(8e) we have, then, \g(x) - y°\ < S& and therefore \f[g(x)] - / ( / ) l < £,
by (1). That is, f[g(x)] -> / ( / ) as x -> ~. D

Problem 6.15. Using Theorem 6.13, prove Theorem 6.14: Let (X, d) and (Y, p) be
metric spaces, and / a function X —> Y. Then / is continuous if and only if for
every set A open in (Y, p) the set f~\A) is open in (X, d).

Let A be an arbitrary open set in Y, and / a continuous function. Then Ac is
closed, and by the continuity of/ so is f~l(Ac). But then the complement of this
set, ~f~l(Ac) =/"x(v4), is open (see Problem 4.5 in Chapter 1). Conversely, le t /be
a function such thatf~\A) is open for every set A open in Y, and consider an
arbitrary closed set B. The complement of B, B\ is open, and, by assumption, this
implies that f~\Bc) is open. But then ~f~\Bc) =f~\B) is closed. Because B is
arbitrary,/is continuous, by Theorem 6.13. •

Problem 6.16. Let (X, d) be a metric space, and (Y, ||-||) a normed vector space
with zero vector 0. Given a continuous function f: X —> Y, adapt the proof of
the characterization of continuity in terms of the inverse images of closed sets to
show that the set /"'(Q) is closed.

We shall show that if / i s continuous, then f~\Q) is closed in (X, d), by verifying
that it contains all its limit points. Let x be an arbitrary limit point of/^(O); then
there exists a sequence {xn) in/"](0) that converges to x. Because/is continuous,
the sequence {/OO} converges to f(x). By construction, f(xn) = 0 for all n, and
therefore {/(xrt)} -> 0. Thus, f(x) = 0, i.e., x e f~\Q). •

Problem 6.19. Show that a Lipschitz function is uniformly continuous (and
therefore continuous).

Let X and Y be normed spaces, and f:X —> Y a function with Lipschitz
constant K on some subset E of X. We want to show that / i s uniformly
continuous on E, that is, that for all x, y e E and for any € > 0 there exists some
number S(£) > 0, independent of x, such that

Fix some arbitrary e > 0 and let

8(e) = e/K

Then for any y such that

\\y-x\\<S(e) = £/K (1)

we have

\\f(y)-f(x)\\<K\\y-x\\<£
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where the first inequality holds by the definition of Lipschitz function, and the
second follows from (1). Because S(e) is independent of x, we have shown that/is
uniformly continuous on E. D

Problem 6.25. We will now give an alternative proof for the intermediate-value
theorem. Let / be a real function of one variable defined and continuous on an
interval [a, b]. Assume that f(a) < 0<f(b). To show that there exists some point c
in {a, b) such that f(c) = 0, we construct two sequences {/„} and {un} in the
following way:

1. Put lx - a and ux = b.
2. For each n, let mn = (ln + un)l2 and evaluate / a t mn. Then

(a) if f(mn) > 0, put ln+1 = ln and un+1 = m
(b) if f(mn) < 0, put ln+1 = mn and un+1 = un, and
(c) if/(mn) = =

(i) Prove that {/„} and {un} converge, and call their limits c' and c": {/„} is an
increasing sequence bounded above by b, and {un} a decreasing sequence
bounded below by a. Hence, both converge: {/„} —> c' and {un} —> c", and
therefore \un - ln] —> c" - c'.

(ii) We will now show that \un - ln) -> 0, implying d = d' = c. If f(mn) > 0, then
un+i - 4+i = mn- lm and if f(mn) < 0, then un+1 - ln+1 = un - mn. In either case,
un+i - ln+i = K - ln)l2, and iterating, we get

un - l n unA - l n A _ _ b-a
U < un+1 - ln+i = - = - - . . . = —^r

Taking limits, (b - d)IT —> O as n —o ° , and therefore \un - ln) -» 0.
(iii) It remains to show that f(c) = 0. By continuity, both {/(/„)} and {f(un)}

converge to /(c). But /(/„) < 0 for all n, so \imn^f{ln) =f(c) > 0, and f(un) < 0
for all n, so limn^f(un) = f(c) > 0. It follows that /(c) = 0. D

Problem 7.6. Prove Theorem 7.5: Any Cauchy sequence is bounded.
Let {xn} be a Cauchy sequence. Then

V £ > 0, 3 N(e) s.th. m, n > N(e) => d(xm, xn) < e

Because this holds for all £, it will hold for 6 = 1; hence, for all m,n> N(l), we
have d(xm, xn) < 1, and all the terms of the sequence of order higher than N(l) fit
inside an open ball of radius 1. The number of terms of the sequence that lie
outside the ball is finite, and therefore these points must also lie within a ball of
finite radius. Hence the sequence is bounded. •

Problem 7.7. Prove that the sequence {xn}, defined in Problem 3.20, is Cauchy.
We have

Because the sequence is decreasing and x2 = 3/2, for n > 3 we have

and therefore
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From now on, we can use the same argument as in the proof of the contraction
mapping theorem. •

Problem 7.17. Let (X, d) be a complete metric space, and T.X —> X a function
whose nth iteration V is a contraction. Show that T has a unique fixed point.

If Tn is a contraction, there exists some ft e (0,1) such that

d(Tnx,Tny)<pd(x,y)Vx,yeX (1)

and by the contraction mapping theorem, Tn has a unique fixed point that we will
call x*. Now, Tnx* = x*, and, using (1),

d(Tx% x*) = d[T(Tnx*), Tnx*\ = d[Tn{Tx*\ Tnx*\ < jid(Tx% x*)

Because /J < 1, we must have d(Tx*, x*) = 0, and therefore Tx* = JC*, that is, x* is a
fixed point of T. Moreover, any fixed point of T is a fixed point of Tn. It follows
that T has a unique fixed point, for if it had more than one, so would Tn, and we
know that is not the case. •

Problem 8.17. Show that a compact set in a metric space is complete.
Let A be a compact set, and let [xn] be an arbitrary Cauchy sequence in A. To

establish completeness, we need to show that {xn} converges to some point in A.
Now, by the sequential compactness of A, {xn} has a convergent subsequence
with limit x in A. That x must be the limit of the entire sequence follows by
Theorem 7.8. •

Problem 8.18. Let A be a compact set, and let {An} be a "decreasing sequence" of
nonempty closed subsets of A such that An c An+l. Show that Un=iAn is not empty.

Let [xn] be a sequence constructed by taking a point in each An, i.e., xn e An c
A Because A is compact, {xw} has a convergent subsequence fxwJ with limit x in
A Consider the subsequences {x%} of {xn}, with {xf} = {xw; n > q}. Each such
subsequence is contained in Aq and has a convergent subsequence (the
appropriate portion of fxwj) with limit x. Hence, x is a limit point of Aq for
each q. But because A9 is closed by assumption, we have x e Aq for all q, i.e.,
x e <X=\An.

Problem 8.23. Give an alternative proof for Theorem 8.21 (the continuous image
of a compact set is compact) using directly the definition of compactness.

Let {£/,; / e /} be an open cover of f(C). Because / i s continuous, each of the
setsf~l(Ui) is open. The collection {f (Ut); i e /} is an open cover of C. (Why?)
Because Cis compact, there is a finite subcollection, say I/"1(£/*); k = l,...,n],
that still covers C, that is,

Hence,

f(C) e f[f-\U{) u ... u t\Un)} = firm] u ... u f[f-\Un)} c Ut u ... u Un

and we have found a finite subcover for /(C), which is therefore compact. (We are
using Theorem 4.3 and Problem 4.5 in Chapter 1.) •

Problem 8.26. Compactness of the product space. Let (X, di) and (Y, d2) be
metric spaces, and consider the product space (Z=XxY, *4), with the product
metric dn defined by

dAz, z') = dK[(x, y), (*', / ) ] = M(x,x')f +[d2(y, /)f (1)
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Show that the product space (Z = XxY, dK) is compact if and only if both (X, dr)
and (Y, d2) are compact.

We will make use of the sequential characterization of compactness (see
Definition 8.4 and Theorems 8.5 and 8.11) and of Problem 3.11 (on convergence
in product spaces).

First, assume that (Z = X x Y, dn) is (sequentially) compact, and let {xn} and \yn)
be arbitrary sequences in X and Y, respectively. We want to show that each of
these sequences has a subsequence that converges to a point in the relevant set.
By the sequential compactness of the product space, the sequence {{xm yn)} has a
convergent subsequence {(xn ,ynj\ with limit (x, v) e Xx Y. By Problem 3.11 we
have that {xnk\ - ) x e l and \yn^ - »ye Y, so both (X, d\) and (Y, dnn2) are
sequentially compact and therefore compact.

Conversely, assume that (X, d±) and (Y, d2) are sequentially compact, and let
K*n, yn)} be an arbitrary sequence in Ix Y. By the sequential compactness of
(X, di), the first "component sequence" {xn} has a convergent subsequence {xnj
with limit x e X. Consider now the corresponding subsequence of the second
component sequence, {ynj. By the sequential compactness of (Y, d2), this
sequence has a convergent subsequence [ynk } with limit y e Y. Moreover, the
corresponding first component subsequence [xnji } still converges t o x e l . By
Problem 3.11, the subsequence {{xnk , ynk)} converges to (JC, y) e XxY, which
establishes the (sequential) compactness of the product space. •

Problem 10.4. Prove Theorem 10.3: Let X b e a nonempty set, and dx and d2 two
metrics defined on it. Then a necessary and sufficient condition for di and d2 to be
topologically equivalent is the following: A subset A of X is di-open if and only if
it is d2-open.

• (<—) Assume that the metrics dx and d2 generate the same open sets in X, and
let (Y, p) be a metric space. Recall that by Theorem 6.14 a function f:X —> Y
is continuous if and only if the inverse image of any open set is open. Because
the open sets are the same in both cases, any (du p)-continuous function is
(d2, p)-continuous, and vice versa. By Theorem 10.2, this implies that dx and d2
are topologically equivalent.

• (—>) Assume that dx and d2 are topologically equivalent metrics. Then, by
Theorem 10.2, they preserve continuity, and it follows that the identity mapping
l\X —> X, with I(x) = x, being (dud x)-continuous, is also (dl9 d2)-continuous.
Now let A be a d2-open set; by Theorem 6.14, the set I'1(A) is dropen. But then
rl(A) =Ais also dropen. A similar argument will work in the opposite
direction. •

Problem 10.6. Prove Theorem 10.5: Lipschitz equivalence implies topological
equivalence.

Let {xn} be a drconvergent sequence with limit x. Given that dx and d2 are
Lipschitz-equivalent, we want to show that [xn] converges to x in (X, d2). Fix some
£ > 0. Then, by the dj-convergence of {xn}, there exists some integer N such that

d1{xn,x)<e/M Vn>JV (2)

Combining the Lipschitz condition (equation (1) in the theorem) and (2), we
have

d2 (xn, x) < Mdy Xn i X) < £ V n > N

which shows that [xn] converges to x in (X, d2). •
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Problem 11.5. Show that a closed correspondence is closed-valued.
Consider a sequence of points [yn] in *F(x) converging to some point y in Y.

We want to show that y lies in *F(x) (in principle, it could be outside this set).
Take a "constant" sequence {xn}, with xn = x for all n, and notice that {yn) is a
companion sequence of {xn}. Clearly, {xn} converges to x, and because the
correspondence is closed and {yn} —> y, we have also that y e *F(x), which is what
we wanted to show. •

Problem 11.8. Prove Theorem 11.7: Let the correspondence TiX->— » Y be
compact-valued and uhc, and let F:X—->—» Ybe closed, and assume that
*F(x) n T(x) it 0 . Then the intersection correspondence *¥ n T, defined by
(*F n F)(x) = *?(*) n F(x), is compact-valued and uhc.

The set *F(x) n T(x) is compact because it is a closed subset of a compact set
(Theorem 8.12). Let {xn} be a sequence converging to x, and {yn} an arbitrary
companion sequence with yn e *F(xn) n T(xn) for each «. To establish the desired
result we have to show that {yn} has a convergent subsequence with limit in
¥(x) n F(x).

Because *F is by assumption compact-valued and uhc, {yn} does have a
convergent subsequence \yn } with limit y in *P(x). Consider now the sequence
{Xnk, ynk}> By construction, this sequence is contained in Gr, the graph of F, and
converges to (x, y). Because Gr is closed by assumption, we know further that
(x, y) e Gr, i.e., that y e F(x). Hence, y e *F(x) n F(x), as was to be shown. •

Problem 11.10. Prove Theorem 11.9: Let the correspondence *P:X —>—> Y
be compact-valued and uhc. Then the image under *F of a compact set C,
¥(C) = UKC^OK), is compact.

Using the sequential characterization of compactness (Theorem 8.11), it is
enough to show that every sequence {yn} contained in ^(C) has a convergent
subsequence with limit in ¥(C). Let {yn} be an arbitrary sequence in ^(C). Then
for each yn there exists some xn e C such that yn e ¥(%„). Because C is compact,
{xn} contains a convergent subsequence {xnk} with limit x in C. Because *F is uhc
and compact-valued, by Theorem 11.2 (sequential characterization of uhc) the
sequence [yn } has a convergent subsequence with limit in *P(x) and hence in

() •

Problem 11.12. Prove Theorem 11.11: Let the correspondences W^X—*— » Y, with
i = 1 , . . . , n, be compact-valued and uhc at x. Then the sum correspondence *F,
defined by *F(x) = EJLI¥I(JT) for each JC, is compact-valued and uhc at x.

Let {xn} be an arbitrary sequence converging to x, and consider a companion
sequence {yn}, with yn e iH^V^x^) for each n. Notice that each yn is of the form

yn = Xili^"' withK e ^.Un)
By Theorem 11.2, each sequence [y'n} has a convergent subsequence {y^}, with
limit / in ^-(J:). By Theorem 3.10 (equivalence of convergence and cooi"dinate-
wise convergence), it follows that {yn} has a convergent subsequence {yn }, with
limit ILUy 1 Sf=1¥«(x). D

Problem 11.15. Prove Theorem 11.14: Let r : X ->-» Y, with i = 1 , . . . , n, be
compact-valued and uhc correspondences. Then the product correspondence F( ),
with F(x) = Fx(x) x . . . x Fn(x) for each x in X, is compact-valued and uhc.

Fix an arbitrary x in X. Then the set F(x) is compact because it is the Cartesian
product of compact sets (Problem 8.26). Hence, F( ) is compact-valued, and in
order to establish its upper hemicontinuity it is sufficient to show that given any
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Chapter 3 679

sequence {xn} converging to x, every "companion sequence" {yn}, with yn e T(xn)
for all n, has a convergent subsequence \yn) with limit in T(x).

To simplify a bit, suppose n = 2. Then j n e F(xn) will be of the form (yj, yj),
with yi € F 1 ^ ) and yl e T2(xn). By the upper hemicontinuity of Tl(), the
sequence {yi} has a convergent subsequence {}>y, with limit y1 e Tl(x). Consider
now the corresponding second component sequence, {ylk}. By the upper
hemicontinuity of F2(), this sequence has a subsequence {ylk} converging to a
point y2 in T2(x). Hence, the subsequence {yHk} - {(y*fc, ylk )} converges to a
point y = (y\ y2) e P(x) x T2(x) = T(x). This proves the result. •

Chapter 3
Problem 1.6. Prove Theorem 1.5: Let V be a vector space of dimension n. Then
any linearly independent family of n vectors in V, v = {vt . . . , vrt}, is a basis for V.

We want to show that v = {v1?... ,vn] spans V, that is, that each x e V can be
written as a linear combination of the vectors in v. By Theorem 1.4, {vi,... , vm x]
is a linearly dependent family for any x; therefore, there exist scalars ccu ..., an+i
not all zero such that

where, moreover, an+i * 0 (otherwise, the v/s could not be linearly independent).
Hence, we can solve for x and write it as a linear combination of the elements
of v:

Problem 1.8. Prove the following result: Let X be a finite-dimensional normed
linear space with basis {v i , . . . , vm] over the real field. A sequence {xn} in X, with
xn = YI?=ianiVi (a" real), converges to x = ZSiOi-V/ if and only if each coordinate
sequence {a?} converges to a, for each i=1,...,m.

It is sufficient to consider the case in which x — 0.

(i) Show that if {a?} -> 0 for all /, then {xn} -» 0.
Suppose that each coordinate sequence {a?} converges to zero, and fix

some E > 0. For each i, there exists some integer Nt such that

(1)

Putting N = max/iV/, (1) holds for all n > N and all i = 1 , . . . , m. Now, by the
triangle inequality and the defining properties of the norm,

= e

for all n > N, that is, {*„} -> 0.
(ii) To prove the converse implication, suppose that {xn} —» 0, but for some k the

coordinate sequence {a£} does not converge to O. Then there exists a
subsequence of {xn} (for convenience of notation, still referred to as {xn}) and
some r > 0 such that lo$

l > r for all /t. For each n e N, write

Mn = max/ {|af |; 1 \ i < m}
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680 Appendix: Solutions to the Problems

and consider the sequence {yn}, with yn = xnIMn). We will show that {yn} -> 0.
Because Mn> r for all n e N, we have

= |k||<|ki|
Mn r

and therefore \\yn\\ —> 0.
(iii) Use the Bolzano-Weierstrass theorem to show that from {yn} we can choose

a subsequence that converges coordinate-wise, but to a nonzero element. By
the first part of the theorem, we have a contradiction.

Observe that for each n, the coordinates of yn lie between -1 and +1, and
at least one of them is equal to -1 or +1. The coordinate sequences {a"}
are therefore all bounded, and at least one of them has a convergent
subsequence whose terms are all equal to +1 or -1 (there are infinite
numbers of +l's or - l ' s or both to allocate among a finite number of
coordinate sequences, so at least one contains an infinite number of one of
these). For convenience, suppose this is the first coordinate sequence {a"},
and call the constant subsequence {afl(/:)}.

Consider the corresponding subsequence of {yn}, {y qi(k)}> and its second
coordinate sequence, {a|l(/:)}. By the Bolzano-Weierstrass theorem (B-W),
this bounded real sequence has a convergent subsequence that we call
{ap(k)}. Note that the corresponding first coordinate subsequence, {aq/k)}, still
converges (any subsequence of a convergent sequence converges). Next,
consider the corresponding subsequence of {yn}, \yq2(k)}, and its third
coordinate sequence, {af2 }. By B-W, it too has a convergent subsequence,
say [aq/k)\, and {a\i{k)} and {af3**'} still converge. Continuing in this way for
each of the m coordinate sequences, we construct a subsequence {yq{k))
whose coordinate sequences {afm(A)} are all convergent, but at least erne of
them (the first one) does not have limit zero. Hence, the coordinate-wise
limit is not the zero vector, and by the first part of the theorem it follows
that {ynk\ -y>0, which contradicts (ii). •

Problem 1.9. Using the foregoing result and the completeness of R, we will show
that every finite-dimensional normed vector space over R is complete.

(i) First, show that if {xn} is Cauchy, then every coordinate sequence {a?} is
Cauchy. (Prove the contrapositive statement: If some coordinate sequence
{at} is not Cauchy, then neither is {xn}. Use the result in Problem 1.8.)

(ii) Using (i), Problem 1.8 again, and the completeness of R, show that the
desired result holds.

(i) Let X be a normed vector space with a basis {vh..., vm}. Let [xn] be a
sequence in X. Write it xn = SSiOjv,- (a ! real), and suppose that some
coordinate sequence {at} is not Cauchy. We will show that {xn} cannot be
Cauchy. If {at} is not Cauchy, then there exists some r > 0 such that for each
q s N, there exist mq,nq>q such that

Hence, the subsequence {ap - ap] does not converge to zero. But then, by
Problem 1.8, the subsequence {xm -xn } does not converge to the zero vector,
implying that {xn} is not Cauchy.

(ii) Let {xn} be a Cauchy sequence in X. From part (i), each coordinate sequence
{a?} is a Cauchy sequence of real numbers, and by the completeness of R,
each converges to some real limit, say at. By Problem 1.8, {xn} converges to
x = IZiOPi. •
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Chapter 3 681

Problem 2.2. Show that for any linear function T, T(0) = 0.
Because Ox = 0 for any vector x, we have, by the linearity of T, that T(0) = T(0x)
= 0T(x) = 0. •

Problem 2.4. Show that the composition of two linear functions is linear.
Let R: X —> Y and 5: Y —> Z be linear mappings, and let T - S ° R be their

composition. Given any two vectors x and y in X and arbitrary scalars a and /3,
we have, exploiting the linearity of S and T,

T(ax + py) = S[R(ax + 0y)] = 5[OR(JC) + j8/?(y)] = aS[R(x)] + jSS[/?(y)] = aT(x) + pT(y)

•
Problem 2.8. Prove Theorem 2.7: Given a linear transformation T:X —> Y,
ker r is a vector subspace of X.

Let *! and x2 be two vectors in ker 71, that is, such that r(Xi) = T(x2) = Q. Given
any scalars a and j3, we have, by the linearity of T,

T(axt +px2) = aT(x1) + pT(x2) = aO + pO = 0

Hence, axr + px2 e ker T. D

Problem 2.12. Prove Theorem 2.11: Let Te L(X, y) be an invertible linear
function. Then the inverse map T~l: Y —> X is linear; that is, T~l e L(Y, X).

Let y and y' be two arbitrary points in Y. Because T is invertible, there exist
points x and x' in X such that

y = T(x\ x = T-\y\ y' = T(x% x' = T~\y') (1)

Then, using the linearity of T, the definition of inverse, and (1), we have

T'1(ay + /?/) = T1 [aT(x) + pT(x')} = T 1 [T(ax + jfo')]

= ax + jftc' = aT1 (y) + PT'1 ( / )

which shows that T~' is linear. •

Problem 2.14. Prove Theorem 2.13: A linear transformation T:X —> Y is one-
to-one if and only if T(x) = 0 =$ x = 0, that is, if ker T= {0}.

Recall that for any linear mapping T we have T(0) = 0 (Problem 2.2). If ker
Tt- {0}, then there is at least one other element x ̂  0 in the kernel, and it follows
that T is not one-to-one, because it maps two different vectors into the zero vector.

Conversely, suppose ker T= {0}, and let x and x' be two distinct elements of X.
Then x - x' * 0, implying x - x' € ker T, and therefore T(x - x') * 0. But then, by
the linearity of T,

T(x)-T(x') = T(x-x')*0

from where T(x) * T(x'). •

Problem 4.4. We will prove the following theorem: Given normed linear spaces X
and Y and a linear function T: X —> Y, the inverse function T1 exists and is a
continuous linear mapping on T(X) if and only if there exists some m > 0 such
that m\\x\\ < \\Tx\\.

(i) Using Theorem 2.13, show that if there exists some m > 0 such that
m\\x\\ < 117*11, then T is one-to-one (and therefore invertible on T(X)).

(ii) Use Theorem 4.3 to show that T1 is continuous on T(X).
(iii) Using Theorem 4.3, show that if T1 is continuous on T(X), then there exists

some m > 0 such that m\\x\\ < ||7x||.
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682 Appendix: Solutions to the Problems

(i) If x * 0, then ||x|| > 0 and ||7JT|| > m\\x\\ > 0, so Tx * 0, implying that T is one-to-
one (Theorem 2.13). Hence, 71"1 is defined on T(X) and is linear (Problem
2.12).

(ii) To show that T~l is continuous on T(X), write x = T~\y). For any y in T(X),
we have

m\\x\\ = m\\T-l (yi = m\\x\\ < \\Tx\\ = \\y\\ => flr- 'OOll < M V y e T(X)

Hence, T~l is bounded and therefore continuous (by Theorem 4.3).
(iii) Conversely, if T1 is continuous on T(X), then by Theorem 4.3 there exists

some M > 0 such that

\\T-l(y)\\<M\\y\\VysT(X)

Now, y - Tx, so

I?-1(Tx% < M\\Tx\\ =» M < flr.,11 V x € X

and the result follows with m = 1/Af. •

Problem 5.1. Show that the matrix P that represents a coordinate change is
invertible.

Let x be an arbitrary vector in V, with coordinate vector a= ( a u . . . , <Xn)T

in basis a, and j8= (/?i,..., pn)
T in basis b. We have seen that there is a matrix

P such that a = P/5. By the same argument, there is also a matrix Z such that
P = Za. Hence,

for any vector with (arbitrary coordinates) a. Hence, PZ = I, and by the same
argument ZP = I. Hence, Z = P x, and P is invertible. •

Problem 5.3. Show that similar matrices have the same determinant.

|JB| = \P-XAP\ = \PA | \A\ \P\ = \A\ IP"1 ! |P| = W, because P~XP = I, |p-x| |P| = |I| = 1 D

Problem 6.2. Show that the eigenspace of A corresponding to an eigenvalue A is
a vector space.

Let x and y be any two vectors in the eigenspace of A corresponding to A. Then
Ax = Ax,Ay = Ay, and we have, for any scalars a and /?,

A(ax+Py) = a(Ax) + /JUy) = a(Ax)+p(Xy) = X(ax + py)

so ax + /Jy lies in the eigenspace of A, which is therefore a vector (sub-) space. •

Problem 6.3. Show that if A is an eigenvalue of A, then (i) A" is an eigenvalue of
An, and (ii) A"1 is an eigenvalue of A'1.

(i) We proceed by induction. First, consider the case where n = 2. Let A be an
eigenvalue of A, and x an eigenvector belonging to it; then Ax = Ax, and

A2x = A(Ax) = A(AJK) = A(AJC) = A(Ax) = X2x

so A2 is indeed an eigenvalue of A2, and x an eigenvector. Next, suppose that
An is an eigenvalue of An, and x an eigenvector belonging to it (i.e., Anx = A£).
Then
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Chapter 4 683

An+1x = AnAx = An(Xx) = X(Anx) = X{Xnx) = Xn+1x

(ii) Observe that Ax = Xx implies x = Ix = A"1 Ax = A~lXx, and therefore
A~1x = X~lx. •

Problem 6.4. Find the eigenvalues and eigenvectors of the matrix

3 -2 0]

A = - 2 3 0

0 0 5.

The characteristic equation of A is of the form
[ 3 - X -2 0

-AI| = det -2 3-X 0
0 0 5-A.

= (5-A)(5-6A + A2) = 0

= (3-A) (5-A)-4(5-A)

Hence, Xx = 5, and

We have one repeated eigenvalue (5) and a second eigenvalue (1) with
multiplicity 1.

By definition, e - (eu e2, e3)
T is an eigenvector of A belonging to the eigenvalue

A if it is a nonzero solution of the equation

'3 -X - 2

- 2 3 - X

0 0

0

0

5-A_

e\

e =

"0"

0

.0.

With X= 1, we have the system

2ex - 2e2 = 0, -2ex + 2e2 = 0, 4e3 = 0

Clearly, the first and second equations are not linearly independent. This leaves us
with an undetermined system of two equations in three unknowns, and we have

e3 = 0 and = e2 = r
where r is an arbitrary number different from zero. Hence, the eigenvectors of A
corresponding to the eigenvalue X = 1 are the nonzero vectors of the form

e = e

« 3

=

r

r

_0_

= r
"1"

1

0_

with r * 0 •

Chapter 4

Problem 1.2. Let / and g be functions R —> R, and assume that they are both
differentiable at the point JC°. Using the elementary properties of limits and
the continuity of/and g at x, show that the product function /?, defined by
p(x) =f(x)g(x), is differentiable at x° and that
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684 Appendix: Solutions to the Problems

p'(x°) = f(xo)g'(xo) +
 r(x°)g(xo)

Observe that

f(x)g(x)-f(x°)g(x°) = f(x)g(x)-f(x°)g(x)+f(x°)g(x)-f(x°)g{x°)

= g(x) [fix)-f(xa)] + f(x°) [g(x)-g(x°j\

Taking the limit of this expression as x approaches x°,

f ( g 4 f y fw{ m
X-X° W « 6 V \x-+x° X-X° ) JK \x-+x» X-X°

Problem 1.3. Let f(x) = xn. Show by induction that f'(x) = nxnl.
Letf(x)=x2. Then

t , t s ,• f(x + h ) - f ( x ) ,. ( x + Z i ) *
f'(*) = lim — J J = hm = hm (2x + h) = 2x

/no h h^o h *->o

Next, suppose that dxnldx = nxn~l\ we want to show that then dxn+1ldx = (n + l)xn.
Observe that

h)n+1 -xn+1 =(x + h)n(x + h)- xnx = x[(x + Hf-xn] + h(x + Kf

Hence,

)n-x"] + h(x
h m = hm

dx h-^o h >»->o h

+ h)n =x—+xn =xnx"-A+xn ={n+\)xn U
dx

Problem 1.8. Let / : R —> R be a differentiable function on an interval /. Show
that (i) if f(x) = 0 for each x e /, then / i s constant on the interval, and (ii) if
f(x) > 0 on (a, fc), then / i s strictly increasing on /.

Let x and y, with x < yy be two arbitrary points in /. We will use the mean-value
theorem to show that/(x) =f(y) (or f(y) >f(x)). Because x and y are arbitrary, the
desired result follows.

By the mean-value theorem, there exists some point z e (x, y) c / such that

y-x

In (i),f\z) = 0, implying that fly) =flx). In (ii),f\z) > 0, implying that

/Ov) >/(*)• •
Problem 1.10. A sufficient condition for a local maximum. Le t / :R —> R be
twice differentiable on some interval containing x°. Assume, moreover, that f'(x°)
= 0, f"(x°) < 0, and /" is continuous at *°. Use Problem 1.8 to show that x° is a
local maximizer of /.

Because f' (xQ) < 0 and / " is continuous, / " is negative on some interval /
containing x° (by the sign-preservation property of continuous functions, see
Problem 6.2 in Chapter 2). By Problem 1.8, a negative second derivative implies
a decreasing first derivative. Thus, f{x) > 0 for x to the left of x° in the interval /,
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and f(x) < 0 for x to the right of x° in the same interval. By Problem 1.8 again,
/( ) decreases to the left of xQ and increases to its right, which proves the
result. •

Problem 1.11. Let / : R —> R b e m + 1 times differentiable on an interval
around the point JC°. Assume that for some m > l,/(m)(x°) is the first nonzero
derivative of / at x°, that is,

/'(jco) = / V ) = /(3)(*°) = -- = /(ffl"1)(*0) = O and fim)(
Use Taylor's theorem to show that

(i) if m is even andf{m)(x°) < 0, then/has a local maximum at jr°,
(ii) if m is even and /(m)(x°) > 0, then /has a local minimum at JC°,
(iii) if m is odd, then / has neither a local maximum nor a local minimum at x°.

To simplify the notation, suppose x° = 0. By assumption, f(m) is differentiable
and therefore continuous at x° = 0; hence, by the sign-preservation property of
continuous functions, there exists some open interval / around 0 in which /(m)

does not change sign.
Next, by Taylor's theorem, we have, for each x in /,

•LmJk"1 k\ ml ml

where X e (0,1), and therefore Ax e L Hence, for any x e /, we have

where the sign of f{m\Xx) is the same as that of/(m)(0). Consider the sign of the
right-hand side of this expression. If m is even, xm > 0 for all x e I and different
from zero. If/(m)(0) < 0, we have fm)(Xx) < 0, and therefore /(%) -/(0) < 0 for all x
in / distinct from zero, implying that x is a local maximizer of /. By a similar
argument, the rest of the cases follow. •

Problem 1.12. Cauchy's mean-value theorem. Prove the following result: Le t /
and g: [a, b] —> R be differentiable on (a, 6), and suppose that g'(x) * 0 for all x
in (a, b). Then there is a point z in (a, b) such that

f(b)-f{a)_f'(z)
g(b)-g(a) g'(z)

Define 0( ) by

t(x) = [g(b) - g(a)]f(x) - [ffl - f(a)]g(x)

and observe that 0() is differentiable, with <j>(a) = g(b)f(a) -f(b)g(a) - <j>(b)-
Applying Rolle's theorem to 0(), there exists some point z in (a, b) such that

¥(z) = {gib) - g(a)}f\z) - [/(&) - f(a)]g'(z) = 0 (1)

By assumption, g'(z) * 0. Moreover, g(a) - g(b) & 0, for otherwise Rolle's theorem
applied to g( ) would show that g'(x) = 0 for some x in (a, b), and that would
contradict our assumption. Hence, we can divide by these two terms and
rearrange (1) to get

f(b)-f(a)_ f'(z)
g(b)-g(a) g'(z)
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686 Appendix: Solutions to the Problems

Problem 1.13. L'HopitaPs rule. Suppose/and g are continuous real-valued
functions defined and differentiable on some open interval containing the point a
and such that f(a) = g{a) - 0. Show that if f(x)lg'(x) tends to a limit as x —> a, so
does f(x)/g(x), and

limUm
*->« g(x) *->« g (X)

Assume that f{x)lg\x) —> L as x —> a, and fix some arbitrary e > 0. Then there
exists some S> 0 such that

\g'(x)
e V x e Bs{a) = (a-8,a (1)

Choose some x in (a, a + 8) and apply the Cauchy mean-value theorem to / and g
in the interval [a, x] to show that there exists some number z in (a, x) such that

f'(z)_f(x)-f(a)_f(x)
g'(z) g(x)-g(a) g(x)

Because z e (a, x) c (a - 8, a + S), we have, by (1),

fix)
g(x)

f'(z)
g'(z)

-L<£

Because x was an arbitrary point of (a, a + 5), we have shown that

fix)
g(x)

-L <£

for all x e (a, a + 5), and because e was arbitrary, this establishes that f(x)/g(x) ->
L as x approaches a from above. A similar argument then yields that f(x)/g(x) ->
Lasx~> of, and the result follows. •

Problem 2.2. Let flxu x2) = xtx2, u = (3/5, 4/5), and x° = (1, 2). Compute D/(x°; U)
directly by taking the appropriate limits, and verify that the result is the same if
you use the formula Df(x°; u) = VF(X°)U.

3a

a a
3x2

Therefore,

On the other hand,

= (2,l)(3/5,4/5)r=2

M

D
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Problem 2.4. Given the functions

y = f(xux2) = sin(x!X2 + x \ \ y = f(x u x2) = x\x2 + x2 In xu

y = f(x u x2) = ln(x2 + efx2)

compute, for each of them, the partial derivatives dyldxx and dyldx2.

• i i\ dy , 0 . dy , , . .
>' = s in(* i * 2 +x \ \ —r—= cos(x!X2+x2)x2, •— = cos(xxx2+x \){x i + 2x2)

oX\ dx2

? 1i dy „ x l dy ? „ ? t
y = x{x2+x2\nxu —- = 2x x x 2 +—, —— ^xf+Sx^ln*!

axi Xi ox2xxx2

y = ln(x2+x2e j : i), - ^ - = , —<— = D
o'Xi x2+x2ex i dx2 x2+x2e

xl

Problem 2.5. Find the points where all the partial derivatives of the function

f{xl,x2) = x\x2-x\x\

are zero.
We have to solve the following system of equations:

df(x)
•xl) = O (1)

ii

"T\X) 4 -3,,2..2 _ ,.2/-..2 -J«2\ Q /2s)

5x2

Therefore,

(i) if xx = 0, then df(x)/dxx - df(x)/dx2 = 0 for all x2, and
(ii) if X\ * 0 , then

(a) df(x)ldxx = 0 if x2 = 0 or 2x2x - x\ = 0, and
(b) df{x)ldx2 = 0 if x2 - 3x2

2 = 0

so we have to consider two cases:

• If x2 = 0, then (b) reduces to x\ - 0.
• The other possibility is to have

2x2 = x2 and xx = *x2

at the same time. Substituting the first expression into the second, x\ = 3(2xi),
which holds only if xx = 0, so there are no other solutions. •

Problem 3.6. Let w =f{x, y, z) = xy2z, where

We have

x = r + 2s +1,

e to calculate

dw 2

dx
dw
xy

ds 2

dz

y = 2r + 3s

dw/dr, dwlds,

dx

dr

dx
ds ~ '

ds
dt" '

s +t,

and

dy

dr

dy
ds

ds
dt

z
dwldt.

— 2

= i,

= 3r + s

dz
dr

dz
ds

ds
dt

+ t

3

i
-3

1
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688 Appendix: Solutions to the Problems

Hence,

dw dw dx dw dy dw dz ~/

= 2(2r + 3s+t)2 (3r + s+t) + 6(r + 2s+t)(2r + 3s + t)(3r + s + t)

+ l(r + 2s+t)(2r + 3s + tf, etc. •

Problem 3.8. Prove the following theorem: Let / : Rn —> Rm be differentiable
on an open subset X of Rn, and let x and y be two points in X such that L(x, y) is
contained in X. Then for each vector a in Rm there exists a vector z in L(%, y)
such that

a[f(y)-f(x)] = a[Df(z)(y-x)] (2)

Put h = y - x. As X is open and contains L(x, y), there exists some 5 > 0 such
that x + AA G X for X e (-5,1 + 5). Fix an arbitrary vector a = (au ..., am) e Rm,
and define a real-valued function <pa on the interval (-S,1 + 5) by

By construction, 0fl( ) is differentiable on (-5,1 + 5), with derivative

Applying the mean-value theorem for univariate real functions to <j>a(), we have

(j)a (1) - fa (0) = fa (0) for some 6 e (0, 1)

which is equivalent to

a[f(y) - fix)] = [0.(1) - 0.(0) = pM] = a[Df(x + 9h)h]

Putting

z = x + 0h

we obtain the desired result. Note that the value of z depends on the chosen
vector a. •

Problem 4.5. Prove Theorem 4.4: Let / : Rn —> R b e a C 2 function defined on
an open and convex set X.Ifx,x + he X, then

f(x + h) = f(x) + Df(x)h + (l/2)hTD2f(x + M)/i (1)

for some A e (0,1).
We apply the univariate version of Taylor's formula to the function g defined

by

Observe that because X is open and convex and both x and x + h are in X, there
exists some 5 > 0 such that x + ah e X for a e (-5,1 + 5) and such that g is twice
continuously differentiable on this interval. By Taylor's theorem for univariate
real functions, we have
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for some X e (0,1). Computing the derivatives of g, we can generalize the
univariate result for any n. To obtain a formula with quadratic remainder, we set
n = 2 and observe that

= XL /*
"iJv(x + hi) = hTD2f(x + ah)h

Substituting these expressions in (2), we obtain the desired result:

f{x + h)- f(x) = Df(x)h + il/2)hTD2 fix + Xh)h for some X e (0, 1) D

Problem 4.7. Let / : R DX —> W be a continuously differentiable function on
the open set X. Show that / i s locally Lipschitz on X.

Recall that the function / is said to be locally Lipschitz on the set X if for each
point x0 in X there exists some £Q > 0 and some Ko > 0 such that B%(x0) c X, and
for all x and y in J5£o(xo),

\\fix)-fiy)\\<K0\\x-y\\ (1)
Let x0 be an arbitrary point in X. Because X is open, there exists some £Q > 0

such that B2£oixo) c X Because / i s continuously differentiable and the norm is a
continuous function, the function X —> R defined by ||£)/(x)|| is continuous, and
it therefore achieves a maximum on the compact set 5%[X0] e X. Let Xo be this
maximum, that is,

Ko = max§Dfix)\\;xeBeo[xo]}

Let x and y be two arbitrary points in B^XQ). Because BSJXQ) is a convex set,
it contains the line segment L(x, y). By Theorem 3.9, there exists a vector z in
L(x, y) c /^(JCO) such that

x|| (2)

Now, because z e L(x, y) c Z?EO(XO), we have

\\Dfiz)\\<K0 (3)

and using (3) in (2),

) - f(x)\\ < \\Df(zi\ \\y - xH < K0\\y-x\\

Because x and y are arbitrary, Ko is a Lipschitz constant for / o n Beo(xo), which is
the desired result. •

Problem 5.3. Show that if / is homogeneous of degree k and is "sufficiently
differentiable," then its first partial derivatives are homogeneous of degree k — 1.

By the homogeneity of / f(Xx) = Xkfix) for all X > 0. Keeping X fixed,
differentiate this expression with respect to xh obtaining

Dividing through by A, we obtain the desired result. •

Problem 5.4

(i) Show that the Cobb-Douglas function f(x) = AH'Uxf1 is homogeneous of
degree HUok-

(ii) Show that the CES function g(x) = A(Sr=i§*rp)~v/p
> where A > 0, v > 0, p > -1

and p * 0, 5/> 0 for all z', and £li<5/ = 1, is homogeneous of degree v.
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f{hc) = =

-v/p

lj.x-? y!p= r / p"'p r / p =
Chapter 5

Problem 4.1. Given the IS-LM model

y = E0+ ay — pr+G (A)

where y is national income, r is the interest rate, G is public expenditure, MSIP is
the money supply divided by a price index, and all the Greek letters are positive
parameters.

(i) Analyze graphically the effects of increases in (a) government spending and
(b) the price level on the equilibrium values of national income and the
interest rate.

(ii) Write the model in matrix form. Use Cramer's rule to solve the model,
writing the equilibrium values of (y, r) as functions of the parameters (G,
Ms/P, Eo, and Mo), and show that the result is compatible with the conclusions
of the graphical analysis.

• GT => IS shifts to the right. For any given level of r, planned expenditure (y)
increases, as can be seen in equation (A). Hence, the equilibrium level of
national income increases, and so does the interest rate (Figure A5.1).

• pT => (Ms/P)i => the real money supply decreases, so LM shifts up (for any
given y, the interest rate must increase in order to preserve the equality of
money demand and supply, now reduced). Equilibrium income falls, and the
interest rate increases.

Analytically, rewriting (A) and (B) with the endogenous variables (y, r) on
one side and the parameters on the other, we have

MS

y yi y

Figure A5.1. Effects of increases in G and M.
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-Sr = (M°/P)-M0

(A')

(BO

or, in matrix form,

- W E+G

{M
s/P)-M0

<=> Ax ~ d

Using Cramer's rule, we can solve for the equilibrium values of the
endogenous variables. For each xh we have

' 14
where A, is obtained by replacing the ith column of the coefficient matrix A by
the vector on the right-hand side of the equation. Using this formula,

Eo+G P
{MS/P)-M0 -8

\A\y* = -
-8-p[(Ms/P)-M0]

1-a
y -8

(l-a)S+p

from where

dv* S
dG ~(1-•>0

Similarly,

>0 and
dy* d(Ms/P) -Ms

__
dP ~d(Ms/P) dP ~(l-a)S+py <0

<0

G + En

. J A , L 7 {Ms/P)-M0 y(G+EoHl-«)[(M7P)-Mo]
\A\

implying

dr* _ Y
~dG =

1-a p
y -s

(l-a)8+Pr

>0 and dr* dr* d ( M s /P) - ( 1 - a ) -Ms

dP d{Ms/P) dP {l-a)8 + Py ,

The signs of the partials give the same comparative-statics results as the
graphical analysis.

>0

•
Problem 4.2. The seller of a product pays a proportional tax at a flat rate 6 e
(0,1). Hence, the effective price received by the seller is (1 - 6)P, where P is the
market price for the good. Market supply and demand are given by the
differentiable functions

withZ r ( )<0

Qs =S((l-6)Pl withS /()>0

and equilibrium requires market clearing, that is, Qs = Qd.
Analyze, graphically and analytically, the effects of a decrease in the tax rate on

the quantity transacted and the equilibrium price.
Market clearing requires

(i)
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Q Q1

Figure A5.2. Effect of a tax reduction.

This equation implicitly defines the equilibrium price as a function P* = P(0) of
the parameter 6. Substituting the solution function P( ) back into (1), we have the
identity

(2)

Differentiating with respect to the parameter and solving for P\6),

S'() [(1 - 0)P'{0) -P] = D\) P\6) => P\0) = K } = ( ) >

Next, the quantity transacted in equilibrium is given by 2* = D[P(0)], and
therefore

dQ*
dO

= D'(P*)P'(8) < 0

Graphically, a reduction in the tax rate increases the effective price received by
sellers for any given market price; these are therefore willing to sell any given
quantity at a lower market price. Hence, the supply curve shifts down. The
equilibrium price falls, and the equilibrium quantity increases, as shown in
Figure A5.2. •

Problem 4.3. A competitive firm chooses the quantity of labor L to be hired in
order to maximize profits, taking as given the salary w and the value of a
productivity parameter 6. That is, the firm solves

max(9f(L)-wL)

Assume that the production function / ( ) is twice continuously differentiable,
increasing, and strictly concave (i.e., /7 > 0, /" < 0).

(i) Write the first-order condition for the firm's problem, and verify that the
second-order sufficient condition for a maximum holds.

(ii) Interpret the first-order condition as an equation that implicitly defines a
labor demand function of the form L* = L(w, 0). Show, using the implicit-
function theorem, that
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dL*/dw<0 and dL*/d0>0

Putting

n{L) = Of{L)-wL

we have

n'(L) = w and n"(L) = 6f"{L)<0

Therefore, TZ(L) is strictly concave, and the first-order condition n\L) = 0
characterizes a maximum. Write the first-order condition in the form

and observe that

FL=Qf"{L)<0, Fw=-1<0, and Fe = f\L)>0

By the implicit-function theorem, the derivatives of the solution function
L* = L(w, 6) are given by

d F () d6 F ()

Hence, the demand for labor decreases with the wage rate, and increases with the
productivity parameter 0. •

Problem 4.4. Consider an individual who lives for two periods and consumes a
single good ("output"). The agent is endowed with yx units of output in youth,
and y2 units in old age. There exists a perfectly competitive market for output
loans in which the agent may borrow or lend at an interest rate r that he takes as
given. Call cx and c2 his consumption levels during the first and second periods of
life, and let s denote his first-period savings, s = yx — cx (note that s will be negative
if the agent is a net borrower).

The agent's preferences are represented by a utility function of the form

where U is a strictly increasing and strictly concave C2 function that satisfies the
following "corner" conditions:

U\c) —> 0 as c —» oo and U\c) —> °° as c —> 0

Suppose also that

yuyi>0, j3e(O, l), and # = l + r>0

The individual solves the following problem:

maxCLC2 {U{d) + /ft7(c2) subject to ct=yi- s, c2 = y2 + sR}

Substituting the constraints into the objective function, we obtain a maximization
problem in a single decision variable, s.

(i) Write the first-order condition for this problem and check that the second-
order sufficient condition for a maximum holds.

Substituting the constraints into the objective function, the agent solves

max.vv(j) = £/(y, -s) + pU(y2 +sR)

The first-order condition for this problem is

v'(s) = -£/'(y, -s) + pU'(y2 + sR)R = 0 (1)
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Differentiating again,

v"(s) = U"{yi -s) + t5U"{y2 + sR)R2 < 0

we see that the second-order condition holds by the strict concavity of U( ).
We will interpret the first-order condition as an equation that implicitly

defines a savings function of the form s* = s(yu y2, R). We fix the values of
(yu yi) and study the behavior of s* as a function of R.

(ii) Show that for a given value of R, the first-order condition has a unique
solution s*. (Use the intermediate-value theorem, and think of what will
happen in extreme cases, e.g., if the agent decides not to eat during one of
the periods.)

Fix (yu y2, R), with 0 < R < oo? and write the first-order condition in the
form

F(s) = /3RU'(y2+sR)-U\y, ~s) = pRU'{c2)~U\cx) = 0 (1')

To apply the intermediate-value theorem, we will use the assumption that
U'(c) —> oo as c -> 0, that is, the marginal utility of consumption goes to
infinity as consumption approaches zero.

If the consumer does not eat during the first period {c\ = 0 and s = y1), then
(abusing the notation somewhat)

F(yi) = pRU'(y2+yiR) - £/'(0) = - ~

On the other hand, if the consumer is willing to eat nothing during the
second period, he can borrow an amount s = -y2/R in the first period, and we
have

F(-y2/R) = /3RU'(0) - U\yx + (y2/R)) = +~

Hence, taking s" close to yx and $' close to -y2/R, and using the continuity of
£/'(), we can invoke the intermediate-value theorem to conclude that there
exists a solution s* of (1') for any bounded R > 0 (Figure A5.3).

Moreover, we know that F( ) is a monotonic function, because

F'(s)=pR2U"(y2 + sR) + U"{yi -s)<0 (2)

Hence, the intersection is unique, and it follows that for each R there exists a
unique optimal level of savings,

(iii) From (ii), we know that s(R) is a well-defined function for R>0. The
implicit-function theorem guarantees that s(R) is also differentiable. (Why?
Which of our assumptions are we using here?) Substituting s(R) back into
the first-order condition, we have an identity. Hence, we can differentiate
both sides of it with respect to R, and the equality will continue to hold.
Differentiate implicitly with respect to R, and solve for s'(R) in the resulting
expression.

What can we say about the sign of s'(R)1? That is, does 5* increase or
decrease with the interest factor RI Does it matter whether or not the agent
is a net borrower? (It should. In one of the cases you should not be able to
sign the derivative. Why?)

Expression (2) guarantees that we can apply the implicit-function theorem.
Substituting the solution function 5* = s(R) in the first-order condition, we
obtain the identity

0R U'\y2 + s(R)R] = U'[yx - s(R)] (3)

Differentiating with respect to R,
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Figure A5.3. Existence and uniqueness of the optimal level of savings.

and solving for s'(R),

s'(R) =

The denominator is negative, but the sign of the numerator is ambiguous,
because s* may be positive or negative. We have

sign s'(R) = sign[/3U'(c2) + pRU"(c2)s *] = (+) + (-)sign(s*)

Hence we have the following:

• If s* < 0, then s'(R) > 0. That is, if the agent is a net borrower, then an
increase in the interest rate makes him borrow less. In this case, the
income and substitution effects of the change in R work in the same
direction. An increase in R (which can be interpreted as the premium the
market pays for postponing consumption) makes consumption in the
second period relatively cheaper, which tends to reduce the agent's
borrowing. Moreover, the same increase in R makes the agent (who is a
net debtor) poorer. In response, the agent will tend to reduce his level of
consumption in both periods, thus increasing his savings (or, rather,
reducing the amount of his dissaving).

• If 51* > 0, then the sign of s'(R) may be positive or negative. Now the
substitution and income effects work in opposite directions. As before, the
change in the relative prices of current consumption and future
consumption tends to favor the second alternative (and hence induces
higher savings). On the other hand, because the agent is now a net saver,
the increase in the interest rate makes him richer, pushing his consumption
level up in both periods and lowering savings. The net result of these two
effects is uncertain.
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IC

Figure A5.4. Determination of the autarkic interest factor.

(iv) Show that there exists some value of R (say R°) for which the agent neither
borrows nor lends, but consumes precisely his endowment each period. We
say that R° is the agent's autarkic interest factor.

(Go back to the original formulation of the agent's decision problem and
think in terms of indifference curves and budget constraints in the (cu c2)
plane. Plot the indifference curve that goes through the endowment point
(yu yi)- What value of R will make the agent "happy" eating precisely his
endowment each period?)

Let us return to the original formulation of the problem:

cl>C2{E/(ci) + /M7(c2) s . t . d = y x - s , c 2 = y2

Solving for s in one of the constraints, and substituting the result in the
other, we can consolidate the two restrictions into a single lifetime budget
constraint:

c2 + ctR = y2 + y^R (4)
That is, the future value of lifetime consumption is equal to the future value
of total income. Plotting the budget constraint (4) and the indifference
curves on the plane (cu c2), the optimal solution corresponds to a tangency
point, as shown in Figure A5.4.

Observe that for given values of (yl9 y2), changes in R make the budget
line rotate about the point (yly y2), which is always feasible (you can always
eat your endowment during each period). Hence, for the agent to decide to
remain at this point, it is enough to rotate the budget line until it is tangent
to the indifference curve through (yu y2). Because the slope of the budget
line is -R, we need R° = -slope of IC at (yu y2).

An indifference curve is the locus of all combinations (ci, c2) that yield the
same utility level u0; hence the equation of an indifference curve is
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C/(Cl) + j3C/(c2) = Mo

Differentiating implicitly with respect to cu

dc, dcX l c pU' (c2)

and therefore, evaluating this expression at the endowment point,

(v) Show that on one side of R° the agent is always a net saver in youth, and on
the other always a net borrower. (What is the sign of /(i?0)? Note that this
does not imply that s() is always monotonic.)

We have seen before that if s* < 0, then s'(R) > 0. In particular, if R = R°,
then s* = 0, and therefore s'(R°) > 0. Hence, the savings function s(R) crosses
the horizontal axis with strictly positive slope and therefore can cross it only
once. Although s() may very well not be monotonic in the region in which it
is positive, it is true that

• if R < R°, the agent is a net borrower (s* < 0), and
• if R > 7?°, he is a net saver (s* > 0). •

Problem 4.5. Consider now an economy in which there are two different types of
agents who face the decision analyzed in Problem 4.4, but may have different
endowment streams, discount factors, or utility functions. To simplify, assume that
there is only one agent of each type, but they both behave competitively (i.e.,
taking the value of R as given).

Let £i(i?) and s2(R) be the savings functions for the two agents. In equilibrium,
the credit market must clear (i.e., if one is a net borrower, the other must be a net
lender), and aggregate savings must be zero. That is, we must have

s2(R) = 0 (1)

Show that under the assumptions of Problem 4.4 there exists at least one
competitive equilibrium, that is, a value of R for which (1) holds. (Let R® and R2

be the autarkic interest factors for the two agents. Without loss of generality, we
can assume that #? > R°2. What happens when R = R°u /?§?)

If R = R" > R°u both agents want to save, and therefore Z(R") > 0. With
R = R' < R°2j both want to borrow, and Z(R') < 0. By the intermediate-value
theorem, there exists at least one R* e (R\ R") such that Z(/?*) = 0. That is, there
exists at least one equilibrium interest rate (Figure A5.5).

Chapter 6

Problem 1.3. Prove Theorem 1.2: Any intersection of convex sets is convex.
Let [Xi] be a collection of convex sets, and consider two points in their

intersection: xf and x" e n, Xt. Because x' and x" belong to each of the Xt% and
these are convex sets, we have, for any X e [0,1], that

implying that xx e n^ , , as was to be shown. •
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698 Appendix: Solutions to the Problems

Z(R)

Figure A5.5. Existence of an equilibrium interest factor.

Problem 1.7. Prove Theorem 1.6: A set X is convex if and only if every convex
combination of points of X lies in X.

The sufficiency result is obvious. If any convex combination of points in X lies
in X, then, in particular, any convex combination of two points of X lies in X,
which establishes the convexity of the set.

To prove the necessity part, observe first that the convexity of X implies that
any convex combination of two points of X lies in X. We will now assume that
this property holds for all convex combinations involving k or fewer points of X
and show that the result follows for the case of k + 1 points.

Consider a convex combination of k + 1 points of X, xu ..., xk+h

with Xt € [0,1] for all i and I&1 A,- = 1. We want to show that y e X. If Xk+l = 1,
then Ztx X\ = 0, and because all A,'s are nonnegative, it must be that X•, = 0 for all
i=1,... ,k. Hence, y = xk+t e X, and we are done. Otherwise, Xk+i < 1, and

We can then write (1) in the form

y=

Now, because

+ Xk+i

(2)

(3)

the point

z = (4)
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is a convex combination of k points of X and therefore lies in X (by assumption).
Using (2) and (4), equation (3) reduces to

k+} (5)

Hence, y is a linear combination of two points in X, and it follows (again by
assumption) that y e l This concludes the proof. •

Problem 1.12. Show that the closure of a convex set is convex.
Let X be a convex set. Given two points x and y in cl X, let z = he + (1 - A)y for

some A G (0,1). We will show that z is a closure point of X, that is, that for any
e> 0 the ball 5e(z) contains at least one point of X.

Fix an arbitrary e > 0. Because x and y are both closure points of X, Be(x) n X
and Be(y) n X are both nonempty. Take two points, x' e B£(x) n X and / e
B€(y) n X, and define

z' = Ax' + ( l - A ) /

Then z' € X, by the convexity of X. Moreover, z' e 5e(z), for

||z-z1| = ||Ax + a - A ) y - A x ' - ( l - A ) / | | = ||A(x-x') + (l

Hence, Be(z) n X is nonempty for any e > 0, establishing that any linear
combination of closure points of X is also a closure point of X. •

Problem 1.14. Using Theorem 1.13, show that given a convex set X and an
interior point x of X, any ray emanating from x contains at most one boundary
point of X.

Suppose there are two boundary points of X on this ray, say y and z, with z
farther away from x than y. Then y e [x, z), and because x is an interior point and
z a closure point of X, y is an interior point of X, by Theorem 1.13, contrary to
our assumption. •

Problem 1.17. Let X b e a convex set with a nonempty interior. Show that
int(cl X) = int X.

Because X c cl X, it follows immediately that int X c int(cl X) without any
further assumptions. Conversely, suppose X is convex, with a nonempty interior,
and let x be an interior point of cl X. Then x is not a boundary point of cl X, so
by Theorem 1.16 it is not a boundary point of X either. But x is a closure point of
X, and because cl X = int X u bdy X, it must be an interior point. •

Problem 1.22. Show that a point xt in a convex set Xis a relative interior point of
X if and only if either or both of the two following (equivalent) conditions hold:

(i) For any line L in aff X, with xt e L, there exist points x' and x" in L n aff X
such that xt e (x \ x").

(ii) For any point x' e X, with x' & xh there is a point x" e X such that xt e (x\ x").
That is, the segment [x\ y] in X can be extended beyond xt without leaving
the set.

It is obvious that xt e rint X implies (i) (because X contains a ball in aff X
around xt) and that (i) implies (ii). We show that (ii) implies that xt is a relative
interior point. We know that rint X is not empty, so there exists some point
y e rint X. If y = xh there is nothing further to prove. Otherwise there exists a
point z in X such that xt e (y, z), by (ii). But then xt e rint X, by part (i) of
Theorem 1.20. •
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700 Appendix: Solutions to the Problems

Problem 1.23. Let X be a convex set in Rn, with int(cl X) * 0 . Show that int X is
nonempty.

We prove the contrapositive statement. Suppose int X is empty. Then, by
Theorem 1.19, the affine hull of X is contained in an (n - l)-dimensional
hyperplane H. Because H is a closed set that contains X, it also contains cl X.
And because H has an empty interior, so does cl X. Hence, int(cl X) is empty
whenever int X is empty. •

Problem 2.6. Prove Theorem 2.5: Given a function/:Rn3X —> R, where Xis
a convex set, define for each pair of points x' and x" in X the function 0 by

Then / is concave if and only if 0( ) is concave for all x' and x" in X.

• First assume that <j) is concave, and fix two arbitrary points x' and x" in X. Then
for each X e [0,1], we have

0(A) - #A1 + (1 - A)0] >

but then

= f[Xx' + (1 - A)*"] > A/(x') + (1 - A)/(x") = X<j>(l) + (1 - A)0(O)

for all A e [0,1]. That is,/() is concave.
Assume that / i s concave, and fix two arbitrary points xf and x" in X. We have
to show that for any pLu ji2 e R and all A € [0,1],

(1 - X)/i2) > A0(W) + (1 - A)0Oz2) (1)

To verify that this expression holds by the concavity of / put

t =A/i1+(l-X)n2

Then

but notice that

= Xntx' + (1 - X)n2x' + (1 - A + X)x" - X^x" - (1 - X)fi2x"

' + x" -

Hence, (1) becomes

which holds by the concavity of f. •

Problem 2.9. Prove Theorem 2.8: Let / : l n D l —> R be a concave function and
g: R —> R an increasing and concave function defined on an interval /
containing/(X). Then the function g[f(x)] is concave.
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Because / is concave on X, we have

for any x' and x" in X and any A € [0,1] (1)

Using the facts that g is nondecreasing and concave, we have

g[f{x1)] > g[(l - A)/0O + A/(x")] > (1 - A)g[/(x')] + Ag[/(x")]

which shows that g[/(x)] is concave. •

Problem 2.11. Prove Theorem 2.10: Let /and g be concave functions R D D I
—> R. Given arbitrary scalars a and j3 > 0, the function h = a/+ fig is concave.

Take any two points x' and x" in X By the concavity of / and g, we have

h{xl) = af(xk) + j3g(x") > a[(l - X)f(x') + Xf(x")] + p[(X - A)g(x') + Ag(x")]

= (1 - X)[af(x') + pg(x')] + X[af(x') + /3g(x')] - (1 - X)h{x') + Xh{x")

for any A e [0,1], which establishes the concavity of h. •

Problem 2.13. Prove Theorem 2.12: Let {/*; s1 e S) be a (possibly infinite) family
of concave functions R" 3 X —> R, all of which are bounded below. Then the
function / defined on X by f(x) = infseSf

s(x) is concave.
Because each f is concave, its hypograph

hyp f = {(y, x) E Rn+1; x e X, y < f (x)}

is a convex set. Now, the hypograph of/=infie//
f is the intersection of the

hypographs of all the /"s, because y <f(x) if and only if y <f(x) f°r all i. By the
preceding result, hyp/is a convex set, and by Theorem 1.2,/is concave. •

Problem 3.3. Prove Theorem 3.2: Let / : Rn 3 X —> R be a real-valued function
defined on a convex set X c Rn. Then / is quasiconcave if and only if the upper
contour sets of / are all convex, that is, if for any a e R the set Ua = {x e X\
f{x) > a] is convex.

• Assume Ua is convex for all a. Given any two points x' and x" in X, put
m = min{/(x/),/(x//)}. By assumption, Um = {x e X\f(x) > m] is convex, so
(1 - X)x' + Ax" G Um for all A e (0,1), but this means that

/[(I - A)*' + Ax"] >m= min{/(xO, /(*")} (i.e., / is quasiconcave)

• Let / be quasiconcave, and fix some arbitrary real number a. If Ua is empty or
consists of a single point, then it is convex by definition. Otherwise, choose x'
and x" in Ua. Then f(x') > a and f(x") > a, and the quasiconcavity of / implies
that for any A e (0,1),

/[(I -A)*' + Ax"] > min{/(xO, /(x'O) > a

Hence, for any x' and x" in Ua,

(l-X)x' + Xx"eUa

which says that Ua is a convex set. •

Problem 3.5. Prove Theorem 3.4: Let / : R a X —> R be a quasiconcave
function defined on a convex set I c Rn, and let g: R —> R be a weakly
increasing function defined on an interval / that contains f(X). Then the
composite function g|/(x)] is quasiconcave in X.

By the quasiconcavity of / in X we have, for any two points x7 and x" in X,

/(x') > f(x") => / [ ( I - A)x' + Ax"] > fix") VAG (0,1)
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Because g is nondecreasing, it does not reverse rankings, that is,

f(x')>f(x") ^g[f(x'))>g[f(x")]

Now,/(x') >f{x") implies /[(I - X)x' + kx"] >/(*")> and this in turn implies that

g[/[(l -X)x* + Ax"]] > g[/(*")] V A € (0,1)

so g(f) is quasiconcave. D

Problem 3.6. Show that the Cobb-Douglas function

f(x) = Af[ xfi, where a, > 0 V i

is quasiconcave for x » 0.
Consider the function

g(x) = In f(x) = hi A + £ ^ a, In xt

Then

gi(x) = —, gu{x) = —~, and gik(x) = 0 for k*i
xt xf

Hence, the Hessian of g, D2g(x), is a diagonal matrix with entries of the form
-at/x2< 0, and its leading principal minors are of the form

X X\X2 X1X2A3

Thus, g is (strictly) concave, by Theorems 2.18 and A.4, and f(x) = e8^ is a
monotonically increasing transformation of a concave function and therefore
quasiconcave, by Theorem 3.4. •

Problem 3.9. A C1 function that has no critical points (i.e., such that Df(x) * 0 for
all x) is said to be nonstationary. Show that a nonstationary C1 quasiconcave
function is pseudoconcave.

Let x' and x" be any two points in the domain of/such thatf(x') >f(x"). We
will show that if

Df{x")(x'-x")<0 (1)

then we arrive at a contradiction. By the nonstationarity of/, at least one of the
components of Df{x") is nonzero. For concreteness, suppose that fi(x") > 0, and
define the point x by

Xi=x[~e and xt = x- fori = 2,...,n

For £> 0 and sufficiently small, we have, by continuity, that/(x) >/(JC"), but, using
expression (1),

Df(x")(x - x") - /!(*")(*, -x{') + XiL2 fi(x")(xi -xH

= fi(x")(x! - xT- e) + Y^2 Mx")W-x?)

Df(x")(x'-x")< -£/!(x") + 0< 0
(using assumption (1)). Hence,/(i) >f(x"), but £>/(*") (i- x") < 0, which

i
g p ( ) / ( ) / ( ) ( )

contradicts the quasiconcavity of /. •
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Problem 3.10. Suppose / : RJ+ —> R is C1, homogeneous of degree 1, and
positive-valued. Show that / i s concave if and only if it is quasiconcave.

Concavity always implies quasiconcavity. To prove the other part of the
theorem, let x' and x" be two points in R£.. Because /> 0, we can define X by
X= f(x')/f(x") and X> 0. Because / i s homogeneous of degree 1, we have

and quasiconcavity therefore implies that

Df{Xx"){x'-~Xx")>®

(1)

(2)

Exploiting the properties of homogeneous functions, we will show that (1) implies
D/(x'')(x'- x") >/(x') -/(x") and therefore the concavity of/

First, notice that because / i s homogeneous of degree 1, its partial derivatives
are homogeneous of degree 0. Hence,

Df(Xx") = Df(x") (3)

Moreover, by Euler's theorem,

£>/(x")x" = /(*") (4)

Using (1), (3), (4), and the definition of A, expression (2) can be rewritten in the
form

Df(Xx")(x'-Xx") = Z)/(x")(x'-Ax") = Df{x")xf-A/(x") = D/(x")x'-f(x') >0
from where

Df{x")x'>f{x>) (5)

Finally, subtracting (4) from (5),

Df(x")(x'-x")>f(x')-f(x")

Because xf and x" are arbitrary points in the positive orthant, / is concave in this
set. •

Problem 3.12. L e t / : R 2 D I —> R be a C2 function defined on an open and
convex set X c Rn, with fx(x9 y) > 0 and fy(x9 y) > 0 for all (x, y) in X. Show that
/(x, y) is quasiconcave in X if and only if

First, notice that

|S| =

0

ff
xy

fx

fxx

Jxy

\B\ =
0

/ ,

fy

fyy

= 0H- ( -

fx
fxx

fxy

fy
Jxy

Jyy

fx

Txy

fy

Jyy

1xeX

( 1)3+l f fx

fxx

fy

fxy

~ ~Jx\JxJyy ~ Jyfxy) "•" JyKjxJxy ~ Jyjxx) = ^-Jxyjxjy ~ Jx Jyy ~ Jy Jxx

Now, recall that the function / is quasiconcave if and only if its upper contour
sets, Ua = {(x, y) e X;f(x, y) > a}, are convex. Applying the implicit-function
theorem to the equation f(x, y) = a, we obtain a function y = g(x), whose graph
coincides with the a level set of /. Because the function / ( ) is increasing, y > g(x)
implies that (x, y) lies in Um and vice versa. Hence, the level set Ua is precisely
the epigraph of the function g(). By Theorem 2.2, epi g = Ua is convex if and only
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704 Appendix: Solutions to the Problems

if g( ) is a convex function. Because g( ) is twice differentiable under our
assumptions, we can check its concavity by computing its second derivative.

Substituting the function y - g(x) into the equation of the level set, we obtain
the identity f(x, g(x)) = a. Differentiating with respect to x,

fx(x,g(x)) + fy(x9g(x))g'(x) = 0

from where

gW fy(x,g(x))

Differentiating this expression again,

g \X) - f 2

J y

-fyfxx + fyfM/fy) + Ufxy ~ fxfMlfy)
fy

_ -fyfxx+Ufx + fxfxy-fxfyyifx/fy) fy
fy fy

Because fy > 0, g"(x) has the same sign as 151. Hence, g() is convex (and / i s
therefore quasiconcave) if and only if 151 > 0. •

Problem 3.15. Show that the function f(x) = x3 cannot be concavified in any set
that has zero as an interior point.

Let h be a C1 and strictly increasing function, and define the function g() on
some interval /= {-2a, 2a), with a > 0, by g(x) - h(x3). We will show that for any
such function, there exist two points in /, x and x0, such that

g(x)>g(xo) + g'{xo)(x-x0) (1)

(This inequality implies that g( ) is not concave, by Theorem 2.17.)
In particular, let x° = 0 and x = a. Then

and (1) becomes

g{a) = h{a3)>h(0) + 0a = h(0)

Because a3 > 0 and h() is strictly increasing, this inequality holds. •

Chapter 7

Problem 1.5. Let/ :Rn —> R be a C2 function. Show that if/achieves a local
maximum at x*, then the Hessian of / a t x* is negative semidefinite, that is,

hTD2f{x*)h<0\/he¥Ln

Fix an arbitrary h e Rn. For any given a > 0 we can use Taylor's theorem to
write

a2

ah)-f(x*) = Df{x*)(ah) +—AxTD2f(x*+Xaah)h (1)
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for some Xa e (0,1). If x* is a local maximizer, we have D/(x*) = 0, and (1)
reduces to

(2)

Moreover, it must be true that for any sufficiently small a we have

fix* + ah) < fix*)

Hence,

YhTD2f(x*+

for any sufficiently small a. Taking limits as a —> 0, we obtain the desired result.

•
Problem 1.7. Let / : Rn —> R be a C1 concave function. Show that if x* is a
critical point of /, then it is a global maximizer of /

Let x* be a critical point of / ( ) , and consider an arbitrary point x in Re. By the
concavity of / we have

/(x)</(x*) + D/(x*)(x~x*) (1)

Because x* is a critical point, D/(x*) = 0, and (1) reduces to

f(x*)> f(x)

Because x is an arbitrary point in Rn, x* is a global maximizer of/(). •

Problem 1.8. Let / : Rn —> R be a concave function. Show that if x* is a local
maximizer of / then it is also a global maximizer.

By contradiction. Assume that / attains a global maximum at x' & x*. Then
/(x') >/(x*), and the concavity of/( ) implies

fix") - /[(I - X)x' + Xx*] > (1 - X)fix') + Xfix*) > fix*) V A e (0,1)

Now, for any given e > 0 we can choose X small enough that xx = (1 - X)xf + Ax*
e Be(x*), and we still have that /(xA) >/(x*). Hence, x* cannot be a local
maximizer. •

Problem 1.10. Let A = [aik] be an n x n matrix, and consider the quadratic form
hTAh = JLiLkhiUikhk. Using the Cauchy-Schwarz inequality, show that

where ||*|| is the Euclidean norm. Using this result, verify that the function Q(a) in
the proof of Theorem 1.9 is continuous at zero (provided/is C2) by showing that
l<2(a)-0(0)1-»0 as a->0.

Let at and f}h i = 1,... ,n, be real numbers; then, by the Cauchy-Schwarz
inequality (taking roots of both sides), we have

Using this inequality twice, and the triangle inequality, we can write

\hTAh\ = |XA-(X* a>khk)\ ^ I

^ IWI X , M A ' X I ^ * - II"" V Z^ini \',
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Next, for any fixed h we have

0 < \Q(a) - <2(0)| = \hT [D2/(x* + Xaah) - D2f(x*)]h\

Because / i s C2, the partial derivatives are continuous functions. As a —» 0,
x* + Xaah —> x* (because 0 < A«a < a), and by the continuity of the second partials,
\ftk(x* + Aaorfz) -ftk(x*)\ -> 0, implying that Q(a) -> <2(0), that is, 2 is continuous
at zero. •

Problem 1.12. Derivation of factor demand functions. Consider a competitive
firm that produces a single output y using two inputs xx and x2. The firm's
production technology is described by a Cobb-Douglas function

y = F(XX,x2) = xx2, where/3 + a < 1, /? > 0, and a>0

Taking as given the price of its output p and input prices wx and w2, the firm
maximizes its profits, given by

Write the first-order conditions for the firm's problem, and check that the
sufficient conditions for a maximum are satisfied. Using the first-order conditions,
solve for the firm's optimal factor demands xj as functions of input and output
prices.

The first-order conditions (FOCs) for the firm's problem,

m a x l l = px?Xy — wxxx — w2x2

are given by
dn „_, .0 r\ /-I \

*2-Wi=0 (1)

dn „ „ p-i n ,
2 ~ W2 = 0 (2)dx7

To establish that (1) and (2) actually characterize a maximum rather than a
minimum, we show that the production function / ( ) is strictly concave provided
that a + /?< 1, as assumed. As discussed elsewhere,/() will be concave provided
its Hessian is negative definite. One way to check this is to show that the leading
principal minors, dx and d2, alternate in sign, with dx < 0 and d2 > 0.

The first and second partial derivatives of / ( ) are given by

J\ — CXXl X2 —

x1

— aya - i)x1 x2

xf

X
2

V2

f _ f _ fyfiYa-\ v ^ l _ aPy
f\i — fi\ — ocpxx x2

XiX2
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We can now check the sign of the leading principal minors:

J21 22
= /ll/l2

provided a + fi< 1.
Hence, the production function is concave, and this implies that the objective

function

H=pf{xl,x2)-wlxl -w2x2

is also concave (why?), which guarantees that the FOCs characterize a maximum.
To derive the input demand functions we need to solve the FOCs for xx and x2

as functions of input and output prices. From (1) and (2) we have

(4)
x2

Dividing (3) by (4),

— — => x 2 —
w2 pxi ocw2

Substituting (5) back into (1),

r1*£ =pax?1

(aw2f
V(1-<H3)

pa1" " '

which is the demand for xx. The demand for the other input can be obtained in
the same way. •

Problem 1.15. Prove Theorem 1.14: Le t / ( ) be pseudoconcave, and all g;(x)
quasiconcave. If (x*, A*) satisfy the Lagrange condition, D/(x*) + A*rDg(x*) = 0,
with X* feasible and A * > 0, then x* is an optimal solution to the Lagrange
problem (P.L).

Assume that / is pseudoconcave, the constraint functions are all quasiconcave,
and A* > 0. We will show that if x* is not optimal, then it cannot satisfy the
Lagrange condition.

Suppose x* is not an optimal solution of (P.L). Then there exists some feasible
x=£x* such that /(x) > /(x*). By the pseudoconcavity of /,

f(x)>f(x*)=>Df(x*)(x-x*)>0 (1)

Because x and x* are both feasible, g;(x) = g;(x*) = 0 for all / = 1 , . . . , c. By the
quasiconcavity of the constraint functions, this implies

Dg'(x*)(x - x*) > 0 V / => Dg(x*)(x - x*) > 0 (2)

Now we form the expression that appears in the Lagrange condition and evaluate
it at x*. From (1) and (2) we have, for any A* > 0,
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0 < Df(x*)(x - x*) + A*R Dg(x*)(x - x*) = [Df(x*) + A*R Dg(x*)](x - x*)

from where

Df(x*) + A*TDg(x*)*0

Hence, the Lagrange condition does not hold at x*.

Problem 1.17. Solve the problem maxw{2x - 2y + z s.t. x2 + / + z2 = 9} by the
method of Lagrange multipliers. Use the sufficient second-order conditions for a
strict maximum to determine which of the two solutions to the system of first-
order conditions yields a maximum. Verify that this is correct by comparing the
values of the objective function in both cases.

The Lagrangian is

+ [x2+y2+z2-9]

•

Differentiating £ with respect to the choice variables and the multiplier, we obtain
the first-order necessary conditions for the problem:

dx 4
A

(1)

(2)

(3)

dX

Substituting (l)-(3) into (4),

1 1

(4)

Hence, we have two candidate solutions:

1
= -2, yi—2, Z \=-1

x = 2, 2 = 2, z = l

(i)

(ii)

Substituting them into the objective function,

f(xljyuZi) = - 4 - 4 - l = -9 and f(x2, y2, z2) = 4 + 4 + 1 = 9

so the second point is the maximizer we seek.
To apply Theorem 1.16 (sufficient conditions for a strict local maximum), we

have to check the leading principal minors of the bordered Hessian:

0

£>>
gz

gx

£xx

£

£x £xZ

£ £
£ £

0
2x

2>-

.2*

2x

2A

0

0

2x

0

2A

0

2z
0

0

2A

For a maximum, we need this matrix to be negative definite subject to the
constraints Dg(x*)h = 0. This requires that the last three principal minors of H
alternate in sign, with (-l)rHr > 0 for r = 1,2, 3.
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0 2x
2x 2A

= 4x2>0

0 2 y
2x 2X 0 = -8Ay2 -8Ax2 = -8A(*2 + y2) > 0, with A2 = - -
2y 0 2A

2x 2y 2z
0 2A 0
0 0 2A

+ (-l)42;y2A 0 0
0 0 2A

2x
2A
0

2y
0

2A

2z
0

2y(-8yA2)-2z(8zA2)j = 16A2(X2 +y2 + z2) > 0

Problem 1.21. Integral objective and constraint functions. Let / : Rn+1 —> d
g:Re+1 —> R be C1 functions, and consider the problem

max jl f[x(s),s] ds s.L\ g[x(s), s] ds > 0 [
x(s),se[a,b] Va Ja J

(i) Let x*(s) be an optimal solution function for (P.I), and let us consider a
feasible variation from this function. In particular, we will consider a
two-parameter family of functions of the form

•

and

(P.I)

where y(s) and z(s) are arbitrary functions from R to Rn, and the parameters
a and /? will be chosen so that, given y() and z(), the constraint holds.

Now consider the problem

max \F(a, p) = f f[x(s\ s] ds subject to G(a, j3) = f g[x(s\ s] ds > o\ (P.F)
a,/i I *a Ja J

and observe that the solution of the transformed problem involves setting a
and /? equal to zero. Introducing a multiplier A, we define the Lagrangian

£(«, A A) = f £s [i(j), A, s) ds = f (f[x(s), s] + Xg[x(s), s]) ds
*a Ja

Use the Kuhn-Tucker theorem to derive the following first-order conditions:

Dx £s [x* W, A, J] = Dx/[x* (5), s] + XDxg[x* (5), j] = 0 (K-T)

f£[x*(5),5]ds>0 and I*g[jt*(5),,s] ds = 0 ifX>0

A > 0 and A = 0 if ?g[x*(s), s]ds>0 (C-S)

Applying the Kuhn-Tucker theorem to (P.I') and evaluating the resulting
conditions at a - J5 = 0, we have

Da£(«, p, A) = IDx£s(xf, A, s)y(s) ds

= f[D,/(jcf, 5) + XDxg(xf ) ds = 0

Dp£(a, p, A) = £DX£,(X*, A, 5)2(5) ds

= [[Dxf{xf, s) + Wxg(xf, s)]z(s) ds - 0

(1)

(2)
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710 Appendix: Solutions to the Problems

fag(xf,s)ds>0 and fg(x*9s)ds = 0 if X>0

A>0 and A = 0 if fg(xf,s)ds>0 (C-S)

Notice, moreover, that (1) and (2) must hold for any functions y(s) and z(s).
This implies that the terms inside the brackets must be zero for each s.

(ii) Assume that f(x, s) and g(x, s) are concave in x for each s, and let x*(s) be a
choice function that satisfies the first-order conditions for the problem. Show
that x*(s) solves (P.I).

Let xs be an arbitrary feasible choice function. By the concavity of /( ) and
g( ), we have, for each s,

;(*fX*. -x*)=>f,(x*)-f,(x,)Z-Dxf,(x*){x, -xf) (3)

gs(xs)<gs(xf)+Dxgs(xf)(xs -xf)=>Dxgs(xf)(xs -x?)>gs(xs)-gs(xt) (4)

Integrating (3) between a and b, and using (4) and (K-T), we have

f[fs(xf)- fs(xs)] ds >~fDxfs(xf)(xs - xf) ds = x f Dxgs(xf )(xs - xf) &
•itx Ja Ja

> xf[gs(xs)-gs(xf)] ds = Xfgs{xs)ds - X\bgs{x*) ds = kfgs(xs) ds - 0 > 0

Notice that XJb
ags(xf) ds = 0, by (C-S), and that the last inequality follows

because X > 0, by (C-S), and Jb
ags(xs) ds > 0, by the feasibility of xs. Hence we

conclude that

ffs(xs*)ds>ffs(xs)ds
Ja Ja

for any feasible but otherwise arbitrary choice function xs. This establishes the
desired result. •

Problem 2.5. Extend the proof of Lemmas 2.3 and 2.4 to the case of several
constraints.

• Lemma 2.3: We know that there exists some x' € C(oP) such that gi(x', oP) = m,
> 0 for each i. Let m = min,{w/}, and choose X so that

(l-X)m-Xs>0 (1)

Construct the sequence {yn} as before, with

yn =(l-X)x' + Xxn

and use the concavity of g*'( ) in x to establish that

,a0) + Xgl(xn, a
0) >(1 - A)m, -Xe > (1-X)m-Xe> 0

for all / = 1 , . . . , c. Hence yn e C(o°) for all n, and the rest of the argument is as
before.
Lemma 2.4: Conditions (l)-(3) in the proof of Lemma 2.4 now become

g ' (x n , a J>0 (1')

£'(*„, a0) < -£ (2')

g'(*',a°)>0 (3')
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for all n and all / = 1 , . . . , c. As before, (3') implies that there exists some N
such that

gl(x\an)>0\fi and Vw>iV (4')

Define the function

g(x) = minig
i(x,a°)

and observe that g( ) is continuous and concave, by the continuity of the g"( )'s
and their concavity in x, and that (2) and (3) imply that

g(xn)<-£Vnandg(x')>0 (5)

Using this expression, the continuity of g() implies that for each n there is a
point yn of the form

yn=(l-Xn)x
t + Xnxn, with An € (0,1) (6)

such that

g(yn) = miriig'Xy,,, a0) = -e

Hence,

/ = l, . . . ,c (7)

which implies that yn e C£(oP) for all ny and for each n there exists some
;„ e { 1 , . . . , c] such that

Because we have only a finite number of constraints, moreover, at least one of
the Vs will be repeated an infinite number of times in the sequence \jn). Hence,
there exists some j e { 1 , . . . , c] and a subsequence [ynk] of {yn} with the property
that

g>(ynk, cc°) = -eVnk (8)

Consider next the subsequence {(yne c^ )̂}. The concavity of g*( ) in x implies
that

gl(ynk ,ank) = g%l - Kk )x
f + Xnk xnk ,ank)>(l~ Xnk )g

i(xf
J ank) + Xng

\xnk, an k) > 0

(9)

for all i and all nk > N, and it follows that

ynk eC(ank)V nk>N
Now, because {ynk} is contained in C£(a°) and this set is compact, by Lemma 2.3,
it follows (by Theorem 8.5 in Chapter 2) that this sequence has a convergent
subsequence {ynk } with limit y in C£(a°).

Finally, consider the limit of this subsequence. By (8) and the continuity of
gj( ), we have

gl(y, a0) = lim g(y a0) = -e

On the other hand, (9) implies that

g\y, a0) = lim g(yn k ank ) > 0 V i (including/)

which contradicts the previous statement. •
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712 Appendix: Solutions to the Problems

Figure A7.1.

Problem 2.6. We will give an alternative proof of the lower hemicontinuity of
C( ) under the assumptions of Theorem 2.2.

• One constraint: Let {an} —» a, and consider an arbitrary point x e C(a). We want
to show that there exists a companion sequence {xn; xn e CicQ} that converges
to x

We will construct a sequence {xn} of the form

_(x if xeC(an) i.e., ifg(x,an)>0
lxn e C(an) s.th. g(xn, an) = 0 if g(x, an) < 0

for n larger than some N9 and set xn equal to an arbitrary point in €(00 for
n < N. To set N, recall that by assumption there exists a point x' e C(a) such
that g(a, x') > 0. Because {an} —» a and g( ) is continuous in a for given x, there
is some N such that g(x\ oQ>0 for all n> N. We will now show that for n > N
we can construct a sequence of the form (1).

Given some x, suppose g(x, oQ < 0 for n > N. For each such n define the
function fa : [0,1] —> R by

and observe that this function is continuous (because it is the composition of
two continuous functions) and satisfies

and 0

By the intermediate-value theorem (Theorem 6.24 in Chapter 2), for each n
there exists a number Xn e [0,1] such that fa(Xn) = 0 (Figure A7.1). Hence, we
can put

in (1) whenever g(x,
C(an).

X n ) x + Xnx'

< 0, for then g(xm oQ = 0, and this implies that
xn e

To complete the proof, we have to show that {xn) -» x. Suppose first that
there exists some integer M such that g(x, oQ > 0 for all n> M. Then, according
to (1), we have xn = % for all n> M, and the sequence clearly converges to the
desired point. If this is not the case, then {oCn} must have a subsequence {an j
with the property that g(x, anfc) < 0 for all nk, and because g() is continuous and
{(Xnk} -> of, we have

lim g(x, ank) = g(x, a)<0
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Chapter 7 713

Because x e C(a) implies g(x, a) > 0, moreover, it must be the case that

g(x9a) = 0 (2)

To show that {x{()}q{}n = (1 - Xn)x + XnX'} -» x, consider the sequence {A,,}, and notice
that \x\){} —> x if and only if {A,*} —> 0. We will assume that {Xn} -/» 0 and obtain a
contradiction. If {A,,} -/>0, then there exists some s> 0 and a subsequence {A« }
of {A«} such that Xn > s for all np. Because { A« } is a bounded sequence of real
numbers, it will contain a convergent subsequence, say {Xn }, with limit /i>e>
0. Using the concavity of g( ) in x, we can then write Pq

0 = g(xnPq, anpq) = g[(l - Anpff )x + A*,, x', anpq ] > (l - Xnpq )g(x, anpq ) + Xnpq g(x', anpq)

(3)

where the first equality holds by the definition of xn . Taking limits of this
expression and using (2), we have q

(1 - //)g(x, a) + ng(x\ a) = 0+fig(x', a) < 0

which is a contradiction, because both \i and g(x', a) are strictly positive.
Several constraints: We will prove the result for c = 2, and the general case will
then follow by induction on c. Notice that we can write C(a) = Cl(a) n C\d),
where

Ci(a) = {xeRm;gi(a,x)>0}

Let {cQ -» a, and consider an arbitrary point x e C(a) = Cl(a) n C2(a). We
want to show that there exists a companion sequence {xn; xn e C(<4) = Cl(On) n
0{an)} that converges to x. Proceeding as in the proof of the preceding
theorem, we can construct two sequences {xl; x\ € Cl(an)} and {xl; xl € C\an)}
that both converge to x. (See the proof of Theorem 2.2 for the construction of
these sequences.) We will use these two sequences to construct a sequence {xn}
contained in C(a) = O{a) n C2(a) with limit x.

Recall that 4 is of the form (1 - Xn)x + XlnX
\ with Xn e [0,1], and refer to

Figure A7.2. Notice that both x\ and xl lie on the line segment [x, x'], and
consider the intersections of this segment with Cl(an), C2(oLn), and C(an). By the
concavity of g1 in x for given a, both Cl(oQ and C^a,,) are convex sets, and
therefore so is C(an) = C\cQ n C?{an). Moreover, we have xl € C 1 ^ ) and
x2 e C2((Xn) by construction, and x' e Cx(an) n C2(an), for n sufficiently large,
by the continuity of gl{ ) and gz( ) and the fact that gi(x', a) > 0 for i = 1,2
(and {an} —> a). By the convexity of C{an)j the line segment [xn, x'] is contained
in C(an), because both of its end points lie on this set, and the segment
[xl, x'] n [x2, x'] is contained in the intersection C(oQ.

Using these facts, we can now construct a sequence {x«}, with xn e C((Xn) and
converging to x. Let Xn = max{A4 A2}, put xn = (1 - X^x + XnX\ and notice that
[xi, x'] n [JĈ , x'] = [xM, x'] c C(an). Hence xn € nC{an) for each n. It remains to
show that {xM} -> x.

For this, define the function g( ) by g(x, a) = minjg1^, a), g2(x, a)}, and
observe that this function is concave in x and continuous (by the concavity
and continuity of the g's). Next, notice that if there exists some N such that
g(x, an) > 0 (i.e., gx(x, an)>0 and g2(x, On) > 0) for all n> N, then we have xn = x
for all n> N, and the sequence converges trivially to the desired point. If this is
not the case, we can proceed exactly as before, exploiting the concavity in x of
g(x, a) to obtain a contradiction if {xrt}-/>x. •

Problem 2.7. Given sets X c R n a n d O c Rp, let g(x, a):XxQ —> R be a
continuous function for all i = 1 , . . . , c, and define the correspondence C:O ->-»
Xby
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714 Appendix: Solutions to the Problems

Figure A7.2. Construction of {xn}.

C(a) = {xeX; ||x|| < B and gl{x, a) > 0 V * = 1,..., c}

Show that C() is uhc at each a.

• First, we show that C(a) is compact-valued (i.e., that the set C(a). is compact
for each a). Fix an arbitrary a in O. Because C(a) is contained in a ball of
radius By it is bounded. To establish that it is also closed (and therefore
compact), observe that C(a) is defined as the intersection of closed sets,
namely, a closed ball and sets of the form fx € X; g*(x, a) > 0} that are inverse
images of a closed set under a continuous function.

• Because the correspondence C( ) is compact-valued, to establish its upper
hemicontinuity at a it suffices to show that given any sequence {an} converging
to a, every companion sequence {xn}, with xn e C(an) for each «, has a
convergent subsequence with limit in C(a).

Let {an} —> a, and consider a companion sequence {xrt}, with xn e C(oQ for
each n. Because all the sets C(an) are contained within a ball of radius B, the
sequence {xn} is bounded. By the Bolzano-Weierstrass theorem (see Problem
3.12 in Chapter 2), {xn} has a convergent subsequence, say [xn}, with limit z.
Because \\xn || < B and ^{xnj,<Xn ) > 0 for all i and &, we can take limits, and,
using the continuity of the Euclidean norm ||-|| and g { ), we conclude that

gl{z, a) = limg'C*,,*, ank) > 0 V / = 1,..., c

Hence, z e C(a), and this establishes the desired result. D

Problem 2.8. Given sets I c R n a n d O c W, with IxO convex, let g(x, a ) :
£2 —> R be a continuous and concave function (in (x, a)) for all / = ! , . . . , c, and
define the correspondence C:Q —»-» Xby

Fix a value a0 of the parameter vector and assume that C(a°) is bounded. Let {an)
be an arbitrary sequence converging to a0, and consider a companion sequence
{xn}, with xn e C(an) for each n. Show that {xn} is bounded.

By contradiction. Suppose {xn} is unbounded. Then it has a subsequence that
diverges to infinity in norm. To simplify the notation, assume that the sequence
itself diverges in norm (i.e., that f||xn||} -> °°). Consider the sequence {Xn} =
{(x n,On)}. Because {\\xn\\} -» ~, it follows that {py|} -> «.

We will construct a new sequence {Yn} by projecting {Xn} onto the boundary of
a ball in Xx O that contains the set C(oP) x {oP}. The resulting sequence will be
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Bd(X)

Figure A7.3. Construction of {Yn}.

bounded and therefore will have a convergent subsequence. Taking the limit of
this subsequence, we will obtain a contradiction.

Let

max

For a fixed a, ||(% a°)|| is a continuous function of x, and because C(oP) is compact
(bounded by assumption and closed by the continuity of gl()), the function
achieves a maximum in the set. Let

be this maximum.
Fix an arbitrary xe C(a°). Let X- (x, a0), and observe that for any X- (x, a°),

with x e C(a°), we have

d(X9 X) < d(X, 0) + d(0, X) = \\x\\ + \\X\\ < 2\\X\\ = 2M

Hence the set C(a°) x {a0} is contained in the interior of the closed ball Bd[X],
with d = 2Ma + 1, and any point in the boundary of this ball lies outside
C(a°) x {a0}.

We will now use {Xn} to construct a new sequence {Yn} = {{ym /5n)} that will lie
in Bd[X]. We proceed as follows: If Xn e Bd[X], then we set Yn = Xn. Because
{IMQI} —» °°, there will be some N such that Xn lies outside Bd[X] for all n > N. For
these points, we obtain Yn by "projecting" Xn onto the boundary of the ball Bd[X]
(Figure A7.3). For n> N, the terms of {Yn} will be of the form

Xn-X), withAn €[0,1] (1)

We will, moreover, choose A« so that Yn lies on the boundary of I ? . That is, we
want

\\Yn-X \\ = d\/n>N (2)
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716 Appendix: Solutions to the Problems

Because \\Yn - X\\ = Xn\\Xn - X\\9 by (1), we need to set

Notice that {Xn} -» 0. By the concavity of g{), and using the fact that Xe
and xn e C(oCn), we have

n>N (4)

Because the sequence {Yn] is bounded by construction, it has a convergent
subsequence {YMJ = {(ynfc, &,)}. Observe that {ft, = (1 - Kk)a

a + Kkank\ -» a0,
because {A,,} —> 0 and {ĉ } —> a0. Hence, the limit of {YnJ is of the form Y = (y, a0).
By (4), and using the continuity of g'( ), we have

gi(y, ao) = limg i(j ,jB*) > O V i = l,. . . , c (5)

which implies that y e C(a°). On the other hand, using (2) and the continuity of
the norm, we see that

\\Y-X\\ = ]xm\\Ynk-X\\ =
k—>°°

which implies that Y = (y9 a
0) lies on the boundary of Bd[X] and therefore outside

C(a°) x {a0}. It follows that y € C(a°)9 which contradicts our previous statement. •

Problem 2.9, For each a and each e> 0, define the set Ce(a) by

Ct(a) = {x e X; gl{x,a)-e>0 V i = 1,..., c]

Show that, under the assumptions of Theorem 2.2, for every e > 0 there exists
some S> 0 such that C(a) a C£(a°) for all a e B£a °) .

Notice that if e is sufficiently large, Ce(a) will be empty, but the result still
holds, because the empty set is a subset of every set, by convention.

We will prove the result under the assumption that there is a single constraint
of the form g(x, a) > 0. The extension to the general case is straightforward (see
the solution to Problem 2.5).

We will proceed by contradiction. Suppose the result does not hold. Then,
negating the statement, there exists some £ > 0 such that

\/S>0 3aeB s(a°)s.th. C(a) £ Ce(a°) (1)

By (1) there exists a sequence {On} —» a0 such that for each n the set C(an) does
not contain Ce(a°). Hence, for each n there exists a point xn e Qe(aQ) with the
property that xn € C{oQ. For the resulting sequence {(ĉ ,, xn)} we have:

xneCe(a°)=*g(xn9a°)>eVn (2)

xn$C(an)=*g(xn,an) < 0 \ / n (3)

Notice that xn e CJ^a0) c C(a°) for all n. Because C(a°) is compact by
assumption, {xn} has a convergent subsequence, say {xnj, with limit x e C(oP).
Using the continuity of g( ), we have

g(x,a°) = limg(xnk,a°)>e>0

by (2), and

g(x, a0) = lim g(xnk ,ank)<0

by (3), contradicting the previous statement. •
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Problem 2.10. An agent consumes two goods, X\ and x2, with prices pt and p2,
respectively. Her utility function is of the form U(xu x2) = oc(xi + xf), with a < 1.
Verify that U( ) is strictly concave. Derive the demand function of the agent. In
what direction does the demand for good 1 change if there is an increase in the
price of good 2?

To obtain the first-order conditions for the agent's problem,

max {a(xi + x2) s.t. pxxx +p2x2 = y}

we write the Lagrangian function

£ = a{x? + x%) + X[y - ptxx - p2x2 ]

and differentiate with respect to the choice variables, obtaining

| ^ = - ^ l T (1)
prx\ a

ox2 P2xr
To check the second-order conditions we compute the second-order partial
derivatives of U(xu x2) = a(x? + x2):

Ux=a2xt\ U2=a2xt1

Uu=a2(a- l)xt2, U22 = a2 (a -1)*?"2, Ul2 =U2X=0

Hence, the Hessian matrix is

L /1211=r2-l)xr2 0
Lf/21 U22\~[ 0 a2{a-l)xt

and the leading principal minors are given by

dx=a2(a- l)xf~2 < 0 (because a < 1)

H J

Hence, H is negative definite, and the sufficient conditions for a strict local
maximum are satisfied.

To find the demand function, notice that, using (1) and (2),

Pixi p2x2 \xx j p2 X\ v Pi J

Substituting (3) into the constraint,

, T " l =y

from where

x%.=xi(pi,p2,y) =

\Pz

The demand for the other good is almost identical, but with the roles of px and p2
reversed. Differentiating the demand for the first good with respect to p2,
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718 Appendix: Solutions to the Problems

dxf = y l-a{p2

dp2 px
Pi

Because 1 - a > 0, the sign of this derivative is the same as the sign of a. If a > 0,
the goods are substitutes (an increase in the price of one of them induces the
agent to switch to the other, increasing its demand), and if a < 0 they are
complements, as an increase in the price of either good reduces the demand for
both. •

Problem 2.11. A competitive firm maximizes profits, Tl(x) =pf(x) - wx, taking as
given the price of its output p and the vector we Rn of factor prices. Assume that
the production function / is C2 and strictly concave, with positive but diminishing
marginal products (/ > 0, fu < 0, / = 1 , . . . , n).

Write the first-order conditions for the firm's problem, and apply the implicit-
function theorem (IFT)to the resulting system to show that the demand for each
factor is a decreasing function of its price (i.e., that dxj/dwi < 0).

The first-order conditions for the firm's problem are

(1)

(1')

m{x)
dX;

which is the familiar condition that the value of the marginal product of each
input should be equal to its price.

In vector notation,

DxU(x; p, w) = pDf(x) - w = 0 <=> F(x; w, p) = 0

The strict concavity of/(and therefore of n) ensures that (1/) does indeed
characterize a maximum, rather than a minimum. Moreover, this automatically
ensures that we are dealing with a regular maximum, and the Jacobian of
endogenous variables of F() does not vanish, as

|/| = \DxF(x; w,p)\ = \D2U(x; p,w)\ = p"\D2f(x)\* 0

by the strict concavity of / [/ strictly concave => Hessian negative definite =>
\D2f(x)\ has sign (-l)n, and p > 0].

Since the conditions of the IFT are satisfied, we can use the determinant rule to
solve for the partial derivatives of the factor demand functions. For example,

dxx{p,w)

where

\ = \pD2f( )\ =

Pfn

Pfn

Pfn

Phi

Pfln

Pfm

Pfnl Pfn2 •••• Pfn,

= pndn
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\u=
- i Ph.

0 p/22

- . Pfln

- Pfln

0 pfn2 .... pfnn

where dr refers to the rth leading principal minor of the Hessian of the
production function D2f( ). By concavity, this is a negative definite matrix. Hence,
its rth leading principal minor will have sign (-l)r. This allows us to establish the
sign of the (own price) partials of the factor demand functions. For example

. dx{(p,w) . -\Jn\ -(-1)(-1)"
sign— = sign-r—--

(-D"
that is, the factor demand functions are downward-sloping in their own price.

In this particular case, this result can also be obtained without that much
manipulation of determinants. By the IFT, we can write the optimal input vector
as a function of input and output prices, x(p, w). This function must satisfy the
first-order necessary conditions identically, so we have

pDf[x(p,w)]-w = 0<=>F[x(p9w); w,p]=0

Differentiating with respect to w, we get

pD2f(x)Dwx(p, w) - 1 = 0 (where I is the identity matrix)

which we can solve for the "substitution matrix"

(2)

(3)

%x)\ (4)

Because the substitution matrix is the inverse of the Hessian of the production
function times p (and the inverse of a negative definite matrix is itself negative
definite), its diagonal entries must be negative, and we conclude that

-<0 (5)

Problem 2.14. Prove Theorem 2.13: Consider the following problem and the
associated value function:

V(a) = max{f(x;a); g(x)>0}
X

where a e Q,, a convex set. (Note that the parameters do not enter the constraint
function.) If the objective function is convex in the parameters a for any given x,
then V( ) is convex.

As in the preceding theorem, given two arbitrary values of the parameter
vector a' and a", let x' = x(a') and x" = x(a") be the corresponding optimal
choices of x. To establish the convexity of V( ), we need to show that for any
X e (0,1) we have

(1 - X)V{a') + XV{a") > V{ax)

Consider the optimal choice of x for a\ x(ax), where ax = (1 - X)a' + Xa" € Q,
by the convexity of Q. Because the constraint set does not depend on the
parameters, x{ax) is feasible but not necessarily optimal for a! or a". Therefore,
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f{x\a')>f[x{al\a'} and f(x",a")>f[x{ax),a"]

from where

(1 - X)V(ot) + XV{a") = (1 - A)/(x', a') + Xf{x\ a")

> (1 - l)f[x{ax\ a'] + A/[jc(aA), a"] > /[x(aA), a1] = V(ax)

where the last inequality follows from the convexity of / as a function of a. •

Problem 3.1, An agent lives for two periods and has an endowment of one unit
of a homogeneous consumption good in the first period, and /units in the second
period. His utility function is given by

In Ci + In c2

where ct is consumption in period i. The agent can store any feasible quantity of
his first-period endowment for consumption at a later time and can get an
interest-free loan of up to /? units of the good (i.e., s>-/5 and R = 1).

(i) Calculate the agent's saving function, ignoring the constraint s > -(5.
(ii) For what combinations of parameter values will the constraint be binding?

In what regions of the (/J, y) plane will we have an interior solution and a
corner solution? Write the agent's saving function, taking into account the
constraint.

(iii) Write the maximum-value function for the problem as a function of y, V(y).
Verify that V(y) is continuous at the point at which there is a regime change
(i.e., as we go from an interior solution to one in which the constraint is
binding). Is the value function differentiable at this point?

(i) Substituting the constraints cx + s = 1 and c2 = s + / into the objective
function, the agent solves

max5 f(s) = ln(l -s) + ln(/ + s)

The first-order condition for an optimum is

/'(*) = -=?- + — = 0
1-s S+Y

It is easy to check that the sufficient conditions for a maximum are satisfied.
Solving for s, we obtain the unconstrained saving function

1-y

(ii) If the unconstrained optimal solution obtained earlier does not violate the
constraint, then it is also the constrained optimum. If the agent would like to
borrow more than /3 and he cannot, then he will take the largest feasible
loan, and we have a corner solution. Hence, the solution function for the
complete problem is given by

if

and the restriction will be binding if and only if
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binding

not binding

7= 1+2P

Figure A7.4.

Saving function

(iii) To recover the value function, we substitute the optimal solution into the
objective function:

V(A y) = ln[l - s(A y)] + ln[y + s(p, y)]

Now, because s(p, y) has two different "segments," so will V(). If the
constraint is not binding, we have

'111)
2 J

and if it is binding,

= 2

The "complete function" is

V(y,p) = V(y) if r < 1 + 2/3
= Vb(y,p) if y> 1 + 2/3

To verify the continuity of V, we check that its two segments have a
common end point. Put y° = 1 + 2/3 (the point at which there is a regime
switch) and note that

Hence, V i f ) = V*(y°, /?), and V{ ) is continuous at (y°, )3), which is the only
point at which there could be trouble.

To check whether or not V{) is differentiable at (y°,j8), we compute its
right and left derivatives at this point,

dVn{f)
dy

dV"(y°,p)

111
(l + y°)/2 l + y°

1 1 2

dy f-p f-(f-l)/2 l + y°
where we have made use of the fact that y° = 1 + ip, implying /?=(7°- l)/2.
Because the two one-sided derivatives coincide, the value function is
differentiable at this point. •
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Problem 3.2. Show that if / i s strictly concave, then (P) has a unique solution for
a given price vector q.

Suppose there are two distinct optimal production plans z' = (y\ -x') and
z" - (y", -x"). Then both plans must yield the same profit, given by

We will show that if z' * z" and /( ) is strictly concave, then it is possible to
construct a feasible plan that will yield a profit strictly larger than 7t0.

For any A e (0,1), consider the input vector

(1)

xx = {l-X)

Because {x e R+; ||X|| < B} is a convex set, xx is an admissible input vector, and
(/(xA), xx) is a feasible production plan. Moreover, by the strict concavity of/( ),
we have

f(xx) > (1 - X)f(x') + Xf{x") > (1 - A)/ + Xy" (2)

where the second inequality follows by the feasibility of z' and z". This expression
implies that (f(xx), xx) yields a profit strictly larger than the supposedly optimal
plans,

pf(xx) - wxx > p[(l-X)y' + Xy"}- w[(l-X)xf + he"} = (1 -X)qzf + Xqz" = n0

so we have reached a contradiction. •

Problem 3.3. Under the assumptions of Problem 3.2, the firm's production plans
(i.e., its output level and factor demands) are well-defined functions of the price
vector q. We will show that these functions are continuous.

Fix a vector q° of prices, and consider a sequence of price vectors [qn]
convergent to q° and the corresponding sequence of optimal production plans
{zn}, with zn - z(qn) for each n. We want to show that {zn} converges to z(q°) = z'.
To establish this result, we shall proceed by contradiction. Suppose {zn} does not
converge to t' .

(i) Then {zn} has a convergent subsequence {znk} with limit z° different from z'.
Explain why this is true.

Because \zn} is bounded (by the second constraint), it has a convergent
subsequence {znk} with limit z°. Moreover, we can take z° different from z'.
Why? Fix some e > 0. Then, because \zn) does not converge to z \ for any N
there is some n > N such that zn is outside Be(z

f). In this manner we can
construct a subsequence of {zn} with the property that none of its
subsequences converge to z'. But because this sequence is still bounded, it
has a convergent subsequence that must therefore converge to some other
point.

(ii) Let {qnk} be the price subsequence corresponding to [znk}> We have that

{qnk}-*q° and {zn} -» z°* i = z(q°)

Show that we arrive at the following contradiction: Given any price vector qn
sufficiently close to q°, z' is strictly better than the optimal plan [zn }.

We will now obtain a contradiction. Because z' is optimal for qQ, out z° is
not (but it is feasible, because feasibility does not depend on prices), we have

q°z'>qY (1)

and therefore d = q°z' - q°z° > 0. Because {qn/c} -> q°, {znk} -» z°, and qz is a
continuous function, we have that
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knkZnk}-^q°Z° and {qnkz'}^q°z' (2)

We want to show that there exists some integer K such that for all k> K we
have

That is, z' is better than the optimum for qHk sufficiently close to q°. The idea
is simple: By (2) and (1), we have

qn]z' - q°z' > q°Z° ~ qnkZnk

where "~" means "very close to," and this holds for sufficiently high k.
Formally,

Now, d > 0, and by (2) there exist integers Kx and K2 such that the absolute
values of the other two terms are smaller than d/2 for k > Kt. Hence, for
k > max{i^!, J£2}> the right-hand side is strictly positive, and the desired result
follows. But this is a contradiction, for we have found a production plan z'
that is better than the optimum for prices qHk. •

Problem 3.4. Consider two price vectors qx and qQ and the corresponding optimal
production plans Z\ and z0- Because Z\ is feasible but not necessarily optimal for
q0, it must yield a lower profit than z0 at this price vector. Using this observation,
show that for any /, AqtAzi > 0 (e.g., for the first component of these vectors we
have A/?Ay > 0, i.e., an increase in the price of output must yield an increase in
supply).

We have

qQZo > q0Zi

Adding these two inequalities side by side,

from where

(qi-qo)(zi-Zo)>O

Consider changes in the price vector that affect only one component, such as

Then all terms but one in the product vanish, and we have

(q\ - tfoXzi ~ZQ) = ApAy > 0

so supply increases with output price. More generally,

AqAZi > 0

so

-AWjAxi > 0

and factor demands are downward-sloping in their "own price." •
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Problem 3.5. Show that the profit function 7t(q) is convex. Can you give an
economic interpretation of this property?

Let q' and q" be two arbitrary price vectors, and z' and z" the corresponding
optimal production plans. Define qx by qx = (1 - X)q' + Xq" for X e (0,1), and let
z = z(qx) be the corresponding optimal production plan. By definition,

7t(qx)=qxzx=(1-X)q'zx+Xqnzx (1)

Observe that zx is feasible but not necessarily optimal for prices q' and q"\ hence,

q'zx<q'z' (2)

q"zx<q"z" (3)

Substituting (2) and (3) into (1), we get

n(qA) = (1 -X)qrzx + Xq"zx < (1 - X)q'zf + Xq"z" s (1 - A)fffa') + Xn(q")

so ;r(g) is convex.
The convexity of the profit function can be given an intuitive economic

interpretation. Suppose that an optimizing firm initially faces prices q° and
chooses an optimal plan z°. We force the firm to keep its production plan z°
constant, allow the price of output to vary, and plot profit as a function of p. The
resulting "no-adjustment" profit function will be a straight line. If we now allow
the firm to adjust its production plan optimally as p changes, it certainly will do
no worse and probably will do better. Hence, the profit function will be above the
straight (no-adjustment) line. It will, however, be tangent to it at the value of p°
for which the original z° is optimal (so no adjustment is needed anyway). This
property of staying above their tangents characterizes convex functions. •

Problem 3.6. If the profit function is differentiable, the envelope theorem implies
that D7c(q) = z(q), that is, the derivative of the profit function at a point is simply
the optimal production plan (this is Hotelling's lemma). We will show that the
profit function is differentiable whenever /( ) is strictly concave.

Fix a price vector q, and consider the behavior of the profit function as we
move away from this point. By definition, for any change h in the price vector,

n{q + h) = (q + h)z(q + h)>(q + h)z{q) = qz(q) + hz(q) = 7c{q) + hz(q) (1)

Mg) = qz(q) > qz(q + h) = (q + h)z(q + h)- hz(q + h) = n{q + h)- hz{q + h) (2)

Rearranging these expressions,

n(q + h)- 7t(q) - hz(q) > 0 and hz(q + h)> n{q + h)- n{q)
and therefore, subtracting hz(q) from the right-hand side of the second inequality,
and using the first one,

h[z(q + h)- z(q)] > n{q + h)- n{q) - hz(q) > 0

Dividing through by \\h\\ and taking limits as \\h\\ —» 0, we obtain the desired result:
Because z(q + h) —> z(q), by the continuity of z() , and /I/(||/Z||) is bounded, the
left-hand side goes to zero. Hence, so does the term in the middle, but this is just
the definition of differentiability. •

Problem 3.7. Suppose the profit function is C2. Using the convexity of 7t(q) and
the fact that Dn(q) = z(q), show once more that factor demand functions are
downward-sloping.

If the profit function

?r(p, W) = max.^ {py - wx s.t. (y, -x) e Y} = py(p, w) - wx(p, w)
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is differentiable, the envelope theorem yields

dp
and —-f = Xj(p,w)

That is, the first partial derivative of the profit function with respect to the price
of output gives us the supply schedule, and differentiation with respect to the ;th-
factor price yields -1 times the corresponding factor demand function.

From before, we know that ;r(p, w) is convex on input and output prices; hence,
if ;r(p, w) is C2 (implying that y(p, w) and x(p, w) ate differentiable), we have the
following:

By convexity, the Hessian matrix D27t(p, w) is positive semidefinite, which
implies that its diagonal elements must be nonnegative. Hence

^ — = — - 1 — > o (upward-sloping supply functions)
op op

- _L_z— > o (downward-sloping factor demands) •
dWdwj

Problem 3.8. Show that the optimal contract involves no layoffs (i.e., nt = 1 for all
/). Hint: Suppose we have a contract that specifies some layoffs in certain states of
nature. Then workers face a lottery between working and being laid off in each of
these states, and, being risk-averse, they do not like it. Show that it is possible to
construct another contract with no layoffs that will yield the same profit in each
state and will be strictly preferred by workers. A contract featuring slightly lower
pay will be acceptable to workers and strictly preferred by firms. Does the
argument rely in any way on the firm's risk neutrality?

Consider a contract C that specifies layoffs in some state of nature:

In state /, each worker faces a lottery: With probability nt he will be employed and
will get (hh cf), and with probability 1 - n{ he will get (0, df). His expected utility,
before he knows whether or not he will be laid off, is given by

Wt = nt[U(cf ) + V(l- hd] + (1 - niiU(cr) + V(l)]

A risk-averse worker will strictly prefer another contract C that will guarantee
him, with certainty, the expected hours and the expected consumption level under
C, that is, a contract with

nl = 1, h[ = riihi, and c\ = titcf + (1 - nt )c
f

That is, by the strict concavity of U and V, we have

n,U(cf) + (1 - m )U{cf) < U[niCf + (1 - n, )c? ]

n,V(l - h;) + (1 - m M l ) < V[nt (1 - h,) + (1 - n, )1].

This new contract, however, will yield exactly the same profit in this state as
would the previous one, for the total number of hours worked and the total wage
bill will be exactly the same in the two cases. Because firms are indifferent
between the two contracts and workers are strictly better off, the initial contract
would not have been Pareto-optimal.

Alternatively, risk-averse workers will be willing to pay an insurance premium
(work at a lower expected wage) to eliminate layoff-related uncertainty within
each state. The firm can provide this service at no cost by allocating optimal work
hours equally among workers and make a profit in the process.
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Notice that the assumption of the firm's risk neutrality is not required for this
result: Because the new contract involves exactly the same profit in each state as
the previous one, even a risk-averse firm would be indifferent between them.
Hence, the crucial assumption is the workers' risk aversion, but we have also
made some implicit assumptions that are needed for the result. In particular, we
have assumed that men and hours are "perfect substitutes," in the sense (i) that
the only thing that matters is total hours, so that we can write the production
function in the form f(nh), (ii) that compensation per employed worker involves
no "fixed-cost" elements, and (iii) that there are no legal obstacles to varying
work hours. •

Problem 3.9, We will now investigate some properties of the optimal contract.

(i) Write the first-order conditions for (P'), and show that they imply the
following conditions:

cH = cL (efficient risk-sharing)

Xif'ihy = for each i = H9L (efficient hours)
U C)

Interpret these two conditions.
(ii) Show that hH > hL (i.e., more hours are worked when productivity is high),
(iii) Show that hH > hL (by contradiction again, suppose hH = hL).

Differentiating the Lagrangian function for (P'),

+ V(l - h,)} - Wo]

we obtain the first-order necessary conditions:

~ = qiXif' M - MV'il - hi) = 0 for each i
a hi

(1)

-r— = -qt + fiqiU'ici) = 0 for each i
dc

Notice that by (2) and the fact that U() is strictly increasing, the multiplier ji is
strictly positive, implying that the (participation) constraint is always binding.

Substituting (2) into (1), we obtain the efficient-hours condition:

That is, efficiency in employment requires that we equate the marginal product of
labor (the marginal rate of transformation of time into output) to the marginal
rate of substitution between leisure and consumption for the worker.

Next, (2) implies U\cH) = U'(cL), and by the strict concavity of U() (which
implies that U\ ) is strictly decreasing), consumption must be the same in both
states. It is efficient for risk-neutral firms to completely insure consumption for
risk-averse workers. (With a more general specification, e.g., risk-averse firms,
efficient risk-sharing would require that the marginal rate of substitution of
consumption across states be the same for all agents. Notice that if the workers'
utility function is not separable, consumption need not be the same in all states,
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even with risk-neutral firms. What is equalized is only marginal utility, but this
may vary with leisure.)

From the first-order conditions, we have JJL > 0 and

Subtracting the second expression from the first, we obtain

xHf'(hH)-xLf{hL) = v[V'(l-hH)~V'(l-hL)] (3)

To show that hH > hL, we proceed by contradiction. Using the concavity of U and
V, we will show that (3) cannot hold if hL > hH.

If hL > hH, then, by the strict concavity of/,

f{hL)<f{hH)
and because xL < x#, the left-hand side of (3) is strictly positive:

xHf(hH)-xLf(hL)>0

On the other hand, hL > hH implies 1 -hL< 1 - hH. It follows, by the decreasing
marginal utility of leisure, that

V'(l-h)>V'(l-h)

which implies that the right-hand side of (3) is strictly negative,

V[V'(l-hH)-V'(l-hL)]<0
Hence, the two sides of (3) have different signs, and the equality cannot hold. We
have reached a contradiction.

Finally, we show that hH > hL. If hH = hL= h, equation (3) becomes

implying that xH = xL, a contradiction.

Problem 3.10. Show that under the first-best contract characterized in Problem
3.9, the firm has an incentive to lie in one of the states. Which one? Why?

Under the first-best contract the firm will always announce xH and therefore
will lie in the bad state. Because compensation is the same in all states, and more
hours are worked when high productivity is announced, the firm's profits will be
higher if it announces xH even when the true state is xL. •

Problem 3.11. Show that the incentive compatibility constraints, by themselves,
imply that cH > cL and hH > hL.

Rearranging the incentive compatibility constraints, we obtain

(IGL) => c* - cL > xL \f(hH) - f(hL)] (1)

(lC.H) ̂  xH [f(hH) - f(hL )]>cH-cL (2)

Adding these two inequalities, term by term,

(cH -cL) + xH[f(hH)- f(hL)] > (cH -cL) + xL[f(hH)- f(hL)]

from where

(xH-xLlf(hH)-f(hL)]>0
implying that

f(hH)>f(hL)
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Hence, hH > hL, because /( ) is increasing. The second inequality, cH > cL, then
follows by (1). D

Problem 3.12. Write the first-order conditions for (P"). Use them and the
preceding results in the following:

(i) Show that cH > cL and hH > hL. Hint: Suppose not. Then two of the first-order
conditions imply XL = XH; use this and the other first-order conditions to
obtain a contradiction, xL > xH.

(ii) Show that both incentive constraints cannot be binding at the same time.
(If they are, hH = hL, contradicting the previous result.)

Hence, precisely one incentive compatibility constraint must be binding.
Why?

(iii) Show that the active incentive compatibility constraint is the one
corresponding to the low-productivity state,

(iv) Show that the employment level is also distorted, but only in one state.
That is, for the given ch compare the employment level in each state with
the one that would be implied by the efficient-hours condition,

)(
Differentiating the Lagrangian for (P'),

+ XLWf{hL)-cL-xLf(hH) + cH} + XH{xHf(hH)-cH -xH f(hL) + cL}

with respect to the choice variables, we obtain the first-order conditions

= qLxLf(hL) - fiqLV'(l ~hL) + XLxLf{hL) - XHxHf(hL) = 0 (EhL)

= qHxHf(hH)-MHV'(1-hH)-XLxLf(hH) + XHxHf(hH) = 0 (F.hH)

XL+XH=0 (EcL)

= -qH +fiqHUf(cH)-XH +XL =0 (FxH)

dhL

d£
dh

d£

dcL

d£
dc=

or, rearranging,

f(hL)[qLxL+XLxL-XHxH]=MLV'(l-hL) (FM)

f{hH)[qHxH -XLxL + XHXH] = IIQHV'{L- hH) (FM)

) = qL+XL- XH (EEL)

HqHU' (cH) = qH + XH - XL (FCH)
In addition, we have the incentive compatibility and participation constraints and
their corresponding complementary slackness conditions:

xLf(hL)-cL >xLf(hH)-cH with equality if XL >0 (IC.L)

x H f(hH)-cH >xHf(hL)-cL with equality if XH > 0 (IC.H)

] T , 9i VJ(C,i) + V ( l - hi)] > Wo w i t h e q u a l i t y if//>0 ( P A R T )
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XL > 0 with equality if (IC.L) is not binding
XH > 0 with equality if (IC./f) is not binding
\i > 0 with equality if (PART) is not binding

This looks like a mess, but it is not so bad. Often, the best strategy is to guess
the result and then prove it by contradiction.

(i) By contradiction (recall that the desired inequality holds, at least nonstrictly,
by Problem 3.11). Suppose cH=cL = c and hH=hL = h. Then the first-order
conditions imply

(F.cJ,)=>//C/'(c)=l+-

Hence,

XL-XH _ XH -XL .

H ~ XL

Then the other first-order conditions imply that

(F.hL)=>xLf>{h)-W'(l-h) =

(F.hH) => xHf<(h)-nV>(l-h) =

Subtracting the second from the first inequality,

{xL-xH)f'(h)>0^>xL>xH

which is a contradiction.
(ii) Next, we show that the two incentive compatibility constraints cannot both

be binding at the same time. Suppose they are. Then

cH - cL = xL [f(hH) - f(hL)]

cH-cL=xH [f(hH) - f(hL)]

and subtracting these two expressions,

(xH-xLlf(hH)-f(hL)] = 0

which implies hH = hL, contradicting the previous claim.
(iii) Hence, at most one of the incentive constraints binds. Moreover, at least one

of them does, for if it did not we would be back to the first-best contract, and
we know that the firm has an incentive to lie in the bad state.

To show that this constraint is always binding at a (second-best) optimum,
we proceed by contradiction. If (IC.L) doesn't bind, then (IC.H) must be
binding, and we have XL = 0 and XH > 0. Then
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730 Appendix: Solutions to the Problems

implying U'(cL) < U\cH). Hence cL > cH, contradicting (i).
(iv) Hence, (IC.L) is binding, and (ICH) is not, implying XH = 0, XL > 0, and

Combining these two expressions, we obtain the efficient-hours condition:

Thus, employment is efficient in the low-productivity state. In the high-
productivity state, however, we have

-XL>0 (1)

(F.hn) =»f'(hH ){qnXH - XLxL) = /JqHVf(l - hH)

Combining these two expressions,

f'(hH)[qHxH ~XL(xL +xH -xH)} = (qH -XL) "
U'(cH)

V'{l-hH)
f'(hH)xH(qH -XL) + f'(ha)XL(xH -xL) = {qH-XL)

U'(cH)

Because qu ~ XL > 0, by (1), we have

and, by the concavity of /( ), hH is higher than the efficient number of hours.
Hence, the second distortion induced by the incentive compatibility
constraint takes the form of "overemployment" in the high-productivity
state.

Different assumptions about worker and firm preferences and the nature
of the private information lead to different predictions concerning the
direction of the distortion generated by the incentive constraints. For
example, Stiglitz (1984, pp. 19ff.) notes that if firms are more risk-averse than
workers, underemployment becomes the more likely outcome. Cooper (1987,
pp. 36-9) considers a model in which the stochastic state variable has to do
with preferences rather than with output prices or productivity and is
observed only by workers. He writes worker utility as U(c, l-h,x) and
shows that if leisure is normal and Ut3 > 0, then underemployment will result
in most states. •

Chapter 8

Problem 1.5. Let ">" be a continuous and monotonic preference preorder
defined on a subset X of Rn. Show that d> = I = {(x, y) e X x X\ x ~ y}.

Take some arbitrary point (x, y) in the boundary of "fe." By continuity, ">" is
closed and therefore contains its boundary. Hence, (x, y) e 2 (i.e., x S y). If x > y,
continuity also implies that all points close enough to (x, y) will be in ">" (i.e.,

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Thu Jun 27 18:17:49 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.015

Cambridge Books Online © Cambridge University Press, 2013



Chapter 8 731

">" is open) and hence in "S." This, however, would contradict the assumption
that (x, y) is a boundary point of " >". Hence, we must have x~y, and it follows
that any boundary point of ">" lies on /, i.e., that 3^ c /.

For the converse, take (x, y) such that x ~ y. By monotonicity, there exists some
yf > y arbitrarily close to y such that yf > y ~ x. Hence (x, y') <£ >, even though it is
arbitrarily close to (x, y). Hence, (x, y) is a boundary point of "S," which implies
that / c d>, because (x, y) is an arbitrary point of /. •

Problem 1.7. Let ">" be a convex preference preorder defined on a convex set X.
Show that the better-than sets induced by these preferences, B(y) = {x e X; x > y],
are convex.

Fix an arbitrary point y in X, and consider the set B(y) = {x e X\x> y). Let x'
and x" be any two points in B(y), and (relabeling them if necessary) assume that
x' 5 x". Then, by the convexity of preferences, we have

xx = (\-X)x' + Xx">x" for any X e (0,1)

Because x" e B(y), moreover, we have x" "i, y. By transitivity,

(1-X)x' + Ax">x">y foranyAe(0,1)

Hence, (1 - A) x' + Ax" e B(y), and it follows that B(y) is a convex set. •

Problem 1.13. Let ">" be a continuous and strictly monotone preference
preorder defined o n l = R+, and let z be an arbitrary point in X. We will show
that the indifference set I(z) is connected.

A standard way to show that a set A is connected is by showing that it is
homeomorphic to another set B that is known to be connected - that is, that
there exists an invertible continuous function h() with a continuous inverse that
maps A onto B. Then A = h~1(B) is the continuous image of a connected set and
therefore is connected itself (by Theorem 9.3 in Chapter 2).

In this case, let B be the open unit simplex

where e = 1 and R^ = |X G Rn; xt > 0 V i - 1 , . . . , n}. Given an indifference set
/(z), we "project" it onto A by following a ray through the origin from each point
x in / until it intersects the simplex (Figure 8.4). Hence, the function h( ) is of the
form

h(x) = — x = xxe x >
Show that h() is a homeomorphism.

We have to show that the function h: I —> A is a homeomorphism. It is clear
that h{ ) is one-to-one, for two points x and x' in / would have the same image
only if they lay on the same ray through the origin; but then these two points
could not be on the same indifference curve, because the "higher" one would be
preferred, by the strict monotonicity of preferences. Second, h() maps / onto A
(i.e., each point y in A has a preimage in /). This is easily seen by taking an
arbitrary point y in A and considering the ray from the origin that goes through it.
The argument in the proof of Lemma 1.12 then shows that this ray must intersect
the indifference set precisely once. It is also easy to check that h{) is a
continuous function.

It only remains, then, to show that the inverse function h~l is continuous. Using
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732 Appendix: Solutions to the Problems

the sequential characterization of continuity, this means that given any y° in A and
an arbitrary convergent sequence [yn] in A, with {yn} —>y°, the companion
sequence {*„}, with xn = hrl(yn) e /, converges to x° = h~l(yQ) e I.

We will establish this result by contradiction. Suppose that {yn} —> y°, but [xn]
does not converge to x° = h~l(y°). Notice that because y and x = h (y) lie on the
same ray through the origin for any y e A, we can write

xn=h-1(yn) = Xnyn for each n and x° =h~1(y°) = X°y°

for some nonnegative real numbers Xn and A0. Notice also that {xn} and x° lie on
the same indifference set, /(z). On the other hand, we have

but because {yn} ->y°, it must be that {Â} -/> A0. Now, {Â} is a sequence of real
numbers bounded below by zero. Hence, if {Xn} ~f> A0, there are only two
possibilities:

(i) {Xn} is bounded above. Then {Xn} contains a convergent subsequence {A^},
with limit ji & A0. (Because {A*} -/> A0, there is some e > 0 and a subsequence of
{Arc} that lies outside Be(X°). Because this subsequence is bounded, it contains
a convergent subsequence (with limit ji & A0), by the Bolzano-Weierstrass
theorem (Theorem 3.3 in Chapter 2).

(ii) {Xn} is not bounded above. Then {Xn} contains a subsequence {Â  } with

We will consider each case in turn and seek a contradiction,

(i) Assume that {AnJ —» /J.&X°. Then, because {ynk} -> y° e A, we have

Observe that {xHk} is a convergent sequence contained in the set I(z) = B(z) n
W(z). Because both B(z) and I(z) are closed, by the continuity of
preferences, I(z) is also closed, and it follows that the limit of {xn }, /iy°, lies in
I(z). Hence, we have that /iy° and Xy° = x° lie on the same indifference curve
I(z) and on the same ray through the origin. Because we know that there is
precisely one point of intersection between these two sets, it follows that
H - A0, which contradicts the fact that ji # A0. Hence, if {Xn} is bounded, we
have {Xn} —> A0, implying that {xn = h^iy,,)} -> JC° = h~1(y°). Because y° was an
arbitrary point of A, this establishes the continuity of h'\ ).

(ii) Suppose now that {Xnk —> °o? and fix some e > 0. Because {ynk }> y°, there is
some N such that ynk > y° - sl for all nk > N. Because {XnJ —> «>, moreover, we
have

for all Wyt sufficiently large. Notice that xHk lies on the same indifference curve
as hrl(y°), but it also dominates the latter point, which contradicts the
monotonicity of preferences. Hence, {Xn} cannot be unbounded. •

Problem 2.2. Give a direct proof of the continuity of the budget correspondence.
Hint: Use the sequential characterizations of upper and lower hemicontinuity. For
upper hemicontinuity, consider a sequence xn e B(pm yn) converging to a point
(p, y) » 0. Show that it is bounded, and apply the Bolzano-Weierstrass theorem.
For lower hemicontinuity, construct the sequence as in Problem 2.6 in Chapter 7.

• Upper hemicontinuity. First, it is clear that for given (p, y) with (/?, y ) » 0 (i.e.,
all components of the vector must be strictly positive), B(p, y) is a compact set.
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Chapter 8 733

Hence B( ) is compact-valued, and to establish its upper hemicontinuity it
suffices to show that given any price-income sequence {(pm yn)} converging to
(p, y) » 0, any companion sequence of feasible consumption bundles {xn}9 with
xn e B(pm yn), has a convergent subsequence {xn/c} whose limit is a feasible
consumption bundle x e B(p, y).

We first show that there is some integer N such that {xn; n > N] is bounded
(which implies that the whole sequence is bounded). Let x8

n denote the gth
component of the consumption bundle xn (i.e., the consumption of the gth
good). Then, given income yn and the price of this good p8m the maximum
feasible consumption of good g is bounded by yjpl• Hence,

Now, because \(pm yn)} -> (p, y) » 0, there is some N such that for all n > N we
have

yn <y +1 and p8>p8/2>pmin /2, wherepmin = mingp8 >0

Hence, each of the components of xn is bounded by

j

for n> N. Hence, {xn} is a bounded sequence, and therefore it contains a
convergent subsequence (by Problem 3.12 in Chapter 2). Call this convergent
subsequence {xnJ, and let x be its limit. Because xnk e B(pnk, yn/), we have Pnk*nk ̂
yHk for each nk. Taking limits of both sides of the inequality as nk —> <», we have px
< y. Hence, x e B(p, y), which establishes the upper hemicontinuity of B{).
To establish that B( ) is an lhc correspondence, we need to show that given any
price-income sequence {{pm yn)} converging to (p, y) » 0 and an arbitrary
point x € B(p, y), there exists a companion sequence of consumption bundles
{xn}, with xn e B{pm yn) for all n, that converges to x.

We will construct such a sequence. Let

xn=x ifxeB(pn,yn)

Xn-^^—x otherwise
px

Notice that xn is feasible for (pm yn) by construction, because (whenever x is not
feasible) xn is defined as the largest fraction of the bundle x that the consumer
can afford with income yn and prices pn. It is also clear that {xn} —> x. If x lies in
the interior of the budget set (i.e., if px < y), then we have xn = x for n
sufficiently large. Otherwise, y = px, and

v vlimxn =lim——x - -*—x = x •
„_„ PnX px

Problem 2.4. Show that if U() is homothetic, then demand is linear in income,
that is, x(p, y) = yx(p, 1).

Recall that a function is said to be homothetic if it is a monotonically
increasing transformation of a homogeneous function (Section 5 of Chapter 4).
Because monotone increasing transformations of a utility function represent the
same preferences, we can, without loss of generality, assume that U is
homogeneous of degree k. That is,

V A > 0, U{kx) = XkU(x)
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734 Appendix: Solutions to the Problems

Let

x* e x{p, 1) = arg max{C/(x); px < 1} (1)
X

so that C/(x*) > £/(x) for any bundle x whose value does not exceed 1. Now
consider a consumer with income y, and observe that yx* is feasible for this
agent. Using the homogeneity of U(), we have

U(yx*) = ykU(x*) > ykU(x) = U(yx)

for any bundle x whose value does not exceed 1. But note that any bundle whose
value does not exceed y can be written in the form yx, where px < 1. Hence yx* is
optimal, given income y, and it follows that yx(p, 1) c x(py y). The same argument
in reverse yields the opposite inclusion. •

Problem 2.6. Roy's identity. Assume that the indirect utility function is
differentiable. Show that then

* ' " " " - dV(p,y)/dy

Recall that V is defined as

V(p, y) = max{U(x); y-px = 0}
X

The Lagrangian function for the consumer problem is

£(x, X; p, y) = U{x) + X{y - £ H ptx,)

By the envelope theorem,

dV(p,y)<?£(x*,A*) Q** 2*f

dpi dpi

dy dy

Dividing these two expressions, we get the desired result. •

Problem 2.7. Consider the following indirect utility function:

V(p, y) = jT k
 ak—, where X ak = 1

Use Roy's identity to find the ordinary demand functions.

dp>

and

dV{p,y)

By Roy's identity, the demand for the ith good will be given by
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, x -dv(p,y)/dpiu y-
dV(p,y)/dy pt

Problem 2.9. To complete the proof of Theorem 2.8, show that under the given
assumptions, we have the following:

(i) Compensated demand is homogeneous of degree 0 in prices, and the
expenditure function is homogeneous of degree 1 in p.

(ii) The solution to the expenditure-minimization problem yields no excess utility,
(iii) The expenditure function is concave in prices. Give an intuitive

interpretation of this fact.

(i) Homogeneity. Notice that the feasible set {U(x) > u) does not change with
prices. Consider an arbitrary real number ji > 0, and notice that minimizing
px or /Lipx in the same set yields the same solution. Hence h(p, u) = h{jip, u)
for any n > 0, and the compensated demands are homogeneous of degree 0.
Now let x* be a point in h(p, u) and therefore in h{fip, u). Then

e(fip9 u) = (jup)x* = fi(px)* = jue(p, u)

so the expenditure function is homogeneous of degree 1.
(ii) No excess utility. Let x be a solution of (C.E), that is, x e h(p, u). To show

that U(x) = u, we proceed by contradiction. Suppose this is not the case, that
is, that U(x) > w, and consider a consumption bundle of the form x — el, with
e > 0. By the continuity of U(), we can choose e small enough that U{x — eV)
> w, and because e > 0 and p » 0, we have p(x - el) <px. Hence, x cannot be
optimal, because we have found another consumption bundle that will yield
the required level of utility and will cost less than x.

(iii) Concavity of e(p, u) in prices. Let pf and p" be two arbitrary price vectors,
and define

px = (1 - X)p' + Ap" for k e [0,1]

Let xx, x\ and x" be optimal solutions to the expenditure-minimization
problem for a given u and prices px,p\ and p" (i.e., x' e h(p\ w), etc.). We
want to show that

E{p\ u) > (1 - X)E{p\ u) + XE(p'\ u)

Now, by definition,

E{p\ u) = pkxx = (1 - X)pfxx + Xp"xx (1)

Observe that xx is not necessarily the optimal (cost-minimizing) bundle for
prices p' or p". Hence, its value at prices other than px is not necessarily the
lowest one among the feasible bundles, and we have

p'x">p'x' (2)
p"xx>p"x" (3)

Using (2) and (3) in (1), we get

E{px, u) = (1 - X)p'xx + kp"xl > (1 - X)p'x' + kp"x"

which is what we wanted to show.
The concavity of the expenditure function has a very intuitive

interpretation. Hold utility and all other prices constant and plot E() as a
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function of one price. As pt rises, minimum expenditure would increase
linearly if the agent chose to always consume the same bundle. Generally,
however, consumers will minimize the expenditure needed to reach a given
indifference curve by rearranging purchases so as to take advantage of
substitution possibilities among goods. Through this process the consumer
cannot do worse than if no substitution were allowed, and will generally do
better. Hence, E( ) is below the linear function described earlier, except at
one point at which they are tangent; thus E is concave. •

Problem 2.10. Show that the sequence {zn/c} constructed in the last part of the
proof of Theorem 2.8 converges to x.

Choose z so that z » x, and observe that each zHk is of the form

znk =(1-Xk)x + Xkz, with Xk G [0,1]

Hence zn, » x for all Xk e (0,1], and {znj -» X if and only if [Xk] -» 0. We will
assume tnat {Xk} -/» 0 and obtain a contradiction.

Because [Xk] is contained in the compact interval [0,1], it contains a
convergence subsequence {Xk }, with limit JX e [0,1]. Suppose {Xk} -f> 0. Then JI > 0,
and the subsequence {zni(} converges to

z = (1 - /n)x + [iz » x

By the strict monotonicity of the utility function, we have U(z) > U(x) > u. On the
other hand, we have U(znk) = unk for all q, and {unk} —» u, implying that U(z) - u,
contradicting the previous statement. k n

Problem 2.14. Prove Theorem 2.13: Equivalence between utility maximization
and expenditure minimization.

• By contradiction. Let xu solve (C.U), and suppose xu does not solve (C.E) with
required utility u = U(xu). Then there exists some consumption bundle that costs
less than xu and yields at least as much utility, that is, there exists some z such
thatpz <pxu<y and U(z) > U(xu). Because z does not exhaust incomey, we
can find some real number e > 0 such that p(z + el) < y, and by the strict
monotonicity of U we have U(z + el) > U(z) > U(xu). Notice that this
contradicts the assumption that xu solves (C.U), for we have found a bundle
z + el that is feasible with income y and yields greater utility than xu. Hence, we
conclude that xu must solve (C.E) when the required utility is U(xu), and we
have e{p, U(xu)) =pxu. Finally, because xu solves (C.U) and we have, from
Theorem 2.3, that pxu = y, we conclude that e(p, U(xu)) =pxu = y.

• Let xe solve (C.E), with u e (u, it), and observe that u > U(0) implies xe & 0, and
therefore pxe > 0. Suppose xe does not solve (C.U) with income pxe. Then there
exists some consumption bundle that costs no more than xe and yields greater
utility, that is, there exists some z such that U(z) > U(xe) and pz <pxe. Consider
a bundle z = z - el. By the continuity of U( ) we can choose e> 0 small enough
that U(z - el) > U(xe); moreover, p(z - el) <pz <pxe because p > 0. This
contradicts the assumption that xe solves (C.E), for we have found a bundle
z - el that yields more than the required utility and costs strictly less than xe.
Hence, xe must solve (C.U) with income pxe. Finally, because xe solves
(C.E) and we have, from Theorem 2.7, that U(xe) - u, we conclude that
V(p,pxe) = U(xe) = u. •
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Problem 3.5. Define a mapping F: A —> A by

, x A +max[O,Zx{p)\ . . . , pG +max[O, ZG(p)]

where Z(p) = Zt(p),..., ZG(p) is an aggregate excess-demand function satisfying
Walras's law, /?Z(p) = 0 for all p. Show that any fixed point of F() is a
competitive-equilibrium price vector. That is, if p* = F(p*), then we have

Zg(p*) < 0 V g and Zg(p*) = 0 whenever /?* > 0

Let p be a fixed point of F(), that is, a point such that pg = Fg(pg) for g = 1 , . . . ,
G. Substituting this expression into Walras's law, we get

which implies that

Z,(p)max[0,Zg(p)]

=1,-+max[0,ZI-(p)D
• / - I

= 0

Because the first term in the middle part of this expression must be zero, by
Walras's law, the second term must also be equal to zero. This implies that

0 (1)

Notice that each individual term in this sum must be nonnegative. If Zg(p) > 0,
the term becomes [Zg(p)]2 > 0; if Zg(p) < 0, on the other hand, the term becomes
zero. If any of the Zg(p)'s were strictly positive, the sum in (1) could not be zero,
because there would be no negative terms to offset them. It follows that each of
the terms must be zero, and therefore we must have Zg(/?*) < 0 for all g.

Moreover, by Walras's law, we have

2_, =] PgZg(p) = 0 (2)

Now, by assumption, pg > 0, and we have just shown that Zg(p) < 0. Hence, (2) is a
sum of nonpositive terms. As before, it can be zero only if all terms are zero;
hence pg Zg(p) = 0 for all g, and it follows that

pg
= 0 and Zg(p)<0=> pg = 0

Thus, p is indeed an equilibrium price vector, as it clears all markets, except
possibly those for goods that are in excess supply when their price is zero. •
Problem 3.8. Let S be a closed and convex subset of the open unit simplex in RG,
and (f): S —>-> RG a uhc and convex-valued correspondence with the following
properties:
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(i) <j)( ) is bounded (i.e., there exists a bounded set B in RG such that (j>(p) c B
for all s € S), and

(ii) for all p e S we have pz < 0 for every z e 0(p)-

Show that there exists some p* € 5 and z* e 0(p*) such that

S

Define the correspondence /j,:B —>—> S by

/x(z) = arg max qz (1)
qeS

for each z € B. As in the proof of Lemma 3.6, /*( ) is nonempty, convex- and
compact-valued, and uhc. Consider now the correspondence JU( ) x 0( ) : B x S
—>-> B x S. By Theorem 11.14 in Chapter 2, this mapping will be compact-valued
and uhc, because it is defined as the Cartesian product of two compact-valued uhc
correspondences. Because we can take the bounded set B to be convex (if it is
not, consider its convex hull), the correspondence fi() x </>( ) satisfies the
conditions of Kakutani's fixed-point theorem.

Hence, there exists some point (z*,p*) e B x S such that z* e 0(/?*) and

p* e /x(z*) = arg max qz*
geS

This implies that

p*z*>pz*

for any p e S. But because pz ^ 0 for all z e (p(p) by assumption (ii), we have
/?*z* < 0, and it follows that

pz*<0\/pe S •

Problem 3.12. Consider an island economy populated by a representative
individual who lives for two periods and has preferences described by the utility
function

U(c, x) = 1n c + phix (1)

where c and x are first- and second-period consumptions. In period 1, the
individual has an endowment of e units of a homogeneous consumption/capital
good. He consumes part of it and uses the rest (k) as input for a production
technology of the form y = ka, with a<l. Hence, the consumption-possibilities
schedule for the economy is of the form

x<ka=(e-cf (2)

(i) Draw the consumption-possibilities frontier and indifference curves on the
(x, c) plane. Where is the optimum? Solve the planning problem

max[lnc + /Jlnxs.t. {e-cf -x>0] (p.l)

Write the first-order conditions. Is the constraint binding? Why? Or why not?
Solve for the optimal values of c and k-e-c. (Don't worry about the
second-order conditions. They hold.)

(ii) Next, consider a competitive version of the same economy. The agent now
owns all the shares of a competitive firm that has access to the same
technology as before, and he can lend part of his endowment to the firm,
which maximizes profits, taking as given the market interest factor R = 1 + r
(capital depreciates completely upon use), and then distributes its profits to
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the shareholder. We will verify that the competitive allocation coincides with
the planning optimum.

Solve the firm's profit maximization problem,

max n = ka-Rk (P.F)
k

and write the firm's maximized profit as a function of k.
Next, write the first-order conditions for the household's utility-

maximization problem,

(P.H)
s

(the agent takes as given both the market interest rate and the firm's profits),
and solve for the optimal levels of saving and consumption.

Finally, in equilibrium, the desired savings of the household must be the
same as the desired level of capital input by the firm (i.e., s = k). Solve for the
equilibrium values of saving/investment and consumption. They should be the
same as in the first part of the problem.

(i) Differentiating the Lagrangian for the planner's problem,

£(c, x, X) = Inc + plnx + X[(e - cf - x]

we obtain the following first-order conditions:

r
de

= — -Xa(e-c) = 0=>- = =
c c

(1)

= (e-cf-x>0 with equality if X >0 (2)
aX

Observe that (2) implies that X > 0 for any finite x. Hence, the constraint
holds as an equality, and we have

x = (e-c)a (3)

Substituting (2) into (1), we have

1 Pi \«-l X , .a-l

- = —a(e-c)aA or — = a(e-cfA (4)
ex (k

The left-hand side of this expression is the slope of an indifference curve for
the representative consumer (i.e., the marginal rate of substitution between x
and c), and the right-hand side is the slope of the production-possibilities
frontier (PPF) (i.e., the marginal rate of transformation between present
consumption and future consumption). Hence, equations (3) and (4) imply
that the optimum (c*, x*) must lie at the point of tangency between an
indifference curve and the PPF, as illustrated in Figure A8.1.

Substituting (3) into (4), we can solve for c:
( \a

= a(e-c)a~1 =$e-c = aBc=^c* = (5)
l + ap

= a(ec) =$ec = aBc=^c =
pc l + ap

(ii) In the competitive versionr of the economy, the first-order condition for the
firm's problem is

n'{k) = akaA -R = Q=*R = akaA (6)
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Figure A8.1. Planning optimum.

Substituting (6) into the firm's objective function, profits are given by

n(k) = ka-Rk = ka - akaAk = (1 - a)ka

On the other hand, the consumer's problem yields

, - 1
vis) = +w

pR 0 => s* =
epR - K

———

(7)

(8)
e-s sR

In equilibrium, we have s* = k. Using this expression, together with (6) and
(7), equation (8) yields

(1 + P)Rk = epR - n => (1 + P)aka~1k = ePakaA - (1 - a)ka =>

[(1 + p)a + {\- a)]ka = epakaA =*

Using this expression, we can calculate c*:

c* = e — s* — e — k* = \ 1 —

(9)

ap
ap

As expected, the result is the same as in part (i) of the problem.

Problem 4.4. Cournot duopoly. Two firms compete in the market for a
homogeneous good. The inverse demand function, which gives the price that
consumers are willing to pay as a function of the total output of the good, is of
the form

•

q2) = e-q1-q2 (1)

where B > 0 is a given parameter, and qt is the level of output of the ith firm.
Each firm maximizes its profits, taking as given the function (1) and the output

level of its competitor. For example, firm 1 solves

max P(qt + q2 )qi - c^ (2)
"71

where cx is its (constant) marginal cost, treating q2 as a given constant.

(i) Solve firm l's problem for its reaction function, that is, a function of the form
q1 = 0!(g2; cu ff) that will give the optimal level of output as a function of its
rival's output and the parameters (ci, B).
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(ii) Firm 2's reaction function will have the same form as the one you have just
derived. In a Nash equilibrium, each firm maximizes its profit, taking as given
the other's output level. To find the equilibrium, we solve the system

(3)

Draw the two reaction functions (their intersection corresponds to the
equilibrium). Solve (3) explicitly to obtain the solution mapping for the
model,

What conditions must be imposed on the parameters for the system to have
an interior solution (i.e., one in which both firms produce)? Analyze,
graphically and analytically, the effect of changes in 0 and d on equilibrium
output levels.

(iii) Compute the equilibrium price and industry output and the equilibrium
profit of each firm.

Firm 1 solves

j =P{qi+q2)qi-clql=(e-q1-q2)q^-c1q] = (0-c, -q2)q l -q\

Differentiating 7t\ with respect to the firm's choice variable, we obtain the first-
order condition

dqt

Moreover,

(1)

dql
= -2<0

so the objective function is concave, and the first-order condition characterizes a
maximum. Solving (1) for qu firm l's reaction function is of the form

(2)

By symmetry, firm 2's reaction function will be

q2 = (p2 (qt ;c2,9)~ (3)

To solve for the equilibrium, substitute (3) into (2), obtaining

and

3

Hence, q\ and q\ > 0 if

0-c2
and c <

2 2
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Figure A8.2. Cournot equilibrium.

From (4) and (5), it is clear that an increase in 6 shifts both reaction functions
upward and increases the equilibrium level of output for both firms. An increase
in cx affects only the reaction function for firm 1, which shifts down. Hence, in the
new equilibrium, the output of firm 2 increases, whereas that of firm 1 decreases.

In equilibrium industry output is given by

and the market price is

Hence, equilibrium profits are given by

9+ct+c2

d-2ci+c26~2c1+c2 (0-2d+c 2)

•

Problem 4.5. Stackelberg duopoly. We will now analyze a market much like the
one described in the preceding problem, but in which the timing of the actions is
slightly different. Instead of assuming that both firms move simultaneously, we
now assume that firm 1 moves first. This gives firm 1 a strategic advantage:
Because it knows how its rival will behave, it can maximize its own profits taking
as given firm 2's reaction function. Firm 2 then observes firm l's output choice
and behaves accordingly. Solve for the equilibrium of this game, and compare it
to the Cournot equilibrium analyzed in Problem 4.4.

Firm 1 now solves

max KX = P{qx + q2)q1 - =(0-qi-q2-
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subject to firm 2's reaction function

Substituting (jh() into firm l's objective function,

The first-order condition for this problem,

yields

2

Substituting this expression into 02(),

8-Ci-qX 9-3c2

Hence,

n*- * * - fl + c2~2ci Q-3C2+2C! 3g-2c, - c 2

(0-3c2+2ci)
1/C

Comparing these expressions with those obtained in the preceding problem, we
see that firm 1 has greater output and higher profits when it acts as a leader. •

Problem 5.1. Consider first the behavior of final-goods producers. Although firm
size is indeterminate with constant returns and perfect competition, each firm
minimizes the cost of producing its desired level of output y, taking as given the
prices p = {p(s)\ 0<s<n) of the different inputs x(s). That is, each firm solves

min I psx, ds s.t. ya = \ x"
;sEl0sz]hyS " 7 Jo

Using the first-order conditions for this problem, derive the conditional demand
for intermediate goods as a function of final output and input prices and the
firm's unit-cost function (see Problem 1.21 in Chapter 7). Verify that after
aggregating over all final producers, the market demand function is of the form

xs(j>,Y) = <pPr, where f = - ^ — ^ (4)

and Y is the aggregate output of final goods, with unit costs being given by
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\ll{l-e)

) (5)

Differentiating the Lagrangian for the firm's problem,

£ = psXs+X(ya-x?)

with respect to xs, we obtain the first-order condition
f y \ e 1

ps = Xoocf~1 => xs. =\— , where e= >1 (1.1)
KpJ I-a v '

Substituting (1.1) into the production constraint, we can solve for the multiplier,

and substituting this expression in (1.1), we obtain the conditional demand for
intermediate input x{s) as a function of input prices and final output,

xs (p, y) = (Xaf p;£ = ^^-fc (1.3)

I)
Substituting (1.3) into the objective function, the (minimum) cost of producing

output y is given by

C(p, y) = f P,x, ds = f j ;
 p .

 1/g ds = 2 (1.4)

( )

Aggregating over final-goods producers, the market demand for component s is
given by

Y
x, (p, Y) = 0/?/ e, where 0 = ^- (1.5)

Y )
and Y is the aggregate output of final goods. O

Problem 5.2. Taking the market demand schedule (4), the wage rate, and the
prices set by its competitors as given, each component producer maximizes
operating profits, given by

n, = psxs - wxs = (j>(pl-£ ~ wp~se) (6)

Solve this problem for the firm's optimal output level and the implied level of
profits.

Differentiating Yls with respect to psy the first-order condition for the firm's
problem yields a constant-markup pricing rule,

(1 - e)p;e + wepr1 = 0 => (e -1) = wsp;1 =>p*=-^- = - (2.1)

Using (2.1) and the market demand schedule (4), we can compute optimal
output,
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xf= <i)p-e = (l)aew-£ (2.2)

and the firm's operating profits,

n = (p,x5- w)x = f 1-as=
f p

n

Problem 53. In equilibrium, free entry will ensure that profits will be zero in the
perfectly competitive final-goods sector. Hence, the price of final output, which we
will normalize to 1, must be equal to its unit cost. Using this condition, together
with previous results, show that equilibrium wages and profits are given by

(l-a)Y aY
n = and w (7)

n nlx

where lx = LJn is "variable employment" in a representative component producer.
Hence, output is divided between wages and profits. Profits per firm decrease with
the number of competitors n and with the difficulty of substituting one input for
another, measured by a.

In a symmetric equilibrium, all component producers set the same price (p)
and produce the same output (x). Hence, each firm employs lx = LJn workers and
produces the same quantity of components. Hence,

Y = (JJxf ds) a = nllax = nl/alx = nil/aHLx (3.1)

where (I/a) - 1 > 0 because a< 1. Given the total variable employment, final
output is an increasing function of the number of component varieties.
Specialization improves overall efficiency.

With equal component prices, the unit cost of final output can be written

c(p) = (j; p\-£ dsf - {np^fl~£) = pn^ (3.2)

where it can be seen that for a given component price, the unit cost of final
output decreases with the number of component varieties (because s > 1). Free
entry will ensure that profits will be zero in the perfectly competitive final-goods
sector. Hence, the price of final output, which we will normalize to 1, must be
equal to its unit cost. That is,

pnl/(l~e) = 1 => p = nV<*-4> (3.3)

and therefore, using (2.1) and (3.1),

w = ap = an1^ = anil/a)~l = — (3.4)

Using (3.3), we see that

[}0P, dtj =(nple) ={nn1) - 1

implying that

Hence, using (2.1), (2.2) (w = ap% and (3.3),
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746 Appendix: Solutions to the Problems

x* = <j>aew~e = a£{onll{e-l)yeY^> n'^^Y =$x* = n^aY (3.5)

as expected, and by (2.3),

n = —0«V- = —ae(anl^f-eY =* n = ^ - ^ - (3.6)
a a « Q

Problem 5.4. We have assumed that anybody willing to pay a fixed cost of c units
of labor can set up shop and start producing a new component variety. Compute
the total demand for labor, and set it equal to the fixed labor supply L. Using this
condition and the assumption of free entry into the sector, solve for the
equilibrium number of firms n* as a function of L and c, and use (3) to derive a
reduced-form aggregate production function giving output per capita as a
function of the same variables. Verify that this function exhibits increasing returns
to labor when a < l.

Because production of a component variety requires c units of labor for setup,
the total labor demand by a representative firm is lx + c, and labor-market clearing
requires

n(lx+c) = L (4.1)

where L is the aggregate labor force. Firms will enter until total profits are zero
(i.e., until operating profits are equal to entry costs). Using (3.4) and (3.6),

( l -a )Y aY ,...
c—~ (4.2)

nl
x CW=$-—=c

n nlx

Solving for lx in (4.2), the equilibrium firm size is given by

'•"£; <«>
and substituting (4.3) into (4.1), the equilibrium number of firms is given by

(. a \ r (la)L
nc\ 1 + —— = L =» n = — (4.4)

V \-a) c
Hence, the number of component varieties increases proportionately with market
size, as measured by L. Total "variable labor" employed in production is

Lx =L-nc = L-(l- a)L = ah

Substituting this expression into (3), final output can be written as a function of
the aggregate labor supply and the entry cost,

.5)

Notice that this function exhibits increasing returns in labor when a< 1. If there
are fixed entry costs, the size of the market limits the degree of specialization and,
therefore, average productivity. Dividing (4.5) by L, we have

T^) aL0/oH (46)

All things considered, output per capita increases with L whenever a < 1. •
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Problem 5.5. Consider a free-entry equilibrium in which sector y is competitive,
and x producers compete a la Cournot. Zero profits in the competitive sector
imply that the salary will be equal to the price of y, which we have normalized to
1. Let us focus on the market for x and characterize a symmetric Cournot
equilibrium. Aggregating over consumers, the total demand for x can be written

P
where Q = LHs aggregate income. Inverting this function, and assuming that
there are n + 1 producers in this sector, we can write the inverse demand schedule
perceived by a representative producer / in the form

^ (5)P(X,)
nx-i + Xi

where XT denotes his own output level, and x_( that of an arbitrary competitor.
Producer / maximizes profits

n ( \ a X

ri; =p(xi)xi-xi-c = Xi-c
nx^i + xt

taking as given the salary (w = 1), aggregate income Q, and the outputs of his n
competitors (*_,•). Using the first-order conditions for this problem, derive a
reaction function giving optimal output for the ith producer as a function of those
of his rivals. In a symmetric equilibrium, all firms will choose the same output
level. Set xt - x^ = x, and find (i) the equilibrium level of output, (ii) the
equilibrium price of good x, and (iii) the equilibrium level of firm profits - all
written as functions of aggregate income and the number of firms in the sector.

Now, in a free-entry equilibrium, profits are zero, and it follows that aggregate
income is given by

Q = Lw = L (10)
Using this last expression and setting n=0, find (i) the equilibrium number of x
producers (ignoring integer constraints), (ii) the equilibrium price of good x, (iii)
total x output, (iv) total fixed costs, and (v) total y output - all written as
functions of "market size," measured by aL, and the fixed cost c.

The first-order condition for the problem faced by a representative producer in
the x sector,

nx_,
£ ™i (6)
Mi (nx-i+Xi) (nx-i+xt)

implicitly defines a reaction function giving optimal output for the /th producer as
a function of those of his rivals. In a symmetric equilibrium, all firms will choose
the same output level. Hence, we can set xt = x_t = x and solve (6) explicitly for the
equilibrium level of output as a function of aggregate income and the number of
firms in the sector:

~ nx aQn . .
aQ — = l =>X = —^—r (7)

(n + lfx 2 (n 2 1)
Not surprisingly, x is a decreasing function of the number of firms in the sector.

Substituting (7) back into the industry demand function (5), we obtain the
equilibrium price
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748 Appendix: Solutions to the Problems

Hence, the price (or, actually, the price/wage ratio) decreases with the number of
competitors. Notice that p —» 1 as n -» ©°, that is, the price approaches its
competitive level (= marginal cost) as the number of firms in the industry gets
very large. Finally, using (7) and (8), we see that the firm's profits are given by

. . . 1 aQn aQ
n = (p-l)x-c = ~ _ C = T~c (9

* ( + l) ( + 1)

Now, in an equilibrium with free entry, profits are zero, and it follows that
aggregate income is given by

(10)

Using this last expression and setting n- 0 in (9), the equilibrium number of x
producers (ignoring integer constraints) is given by

{n + l)*=f*l + n = Jf (11)
and is therefore an increasing function of "market size," measured by aL, and a
decreasing function of the fixed cost c.

Using (10), (11), (7), and (8), we can compute the equilibrium price,

_1

P

total industry output,

nCin rvT.« ( I r \

(13)
(n + 1

and total fixed costs,

(1 + n)c = J—c = -JccLc (14)
v C

Finally, total y output (and consumption) is given by

Y = Q-pX = L-ah = (1-a)L (15)

(the reader can check that the same result is obtained, after some manipulation,
by subtracting total employment in the X sector, including "fixed costs," from the
aggregate labor supply). Notice that the price distortion decreases with L, as do
total fixed costs per capita.

Problem 5.6. Using a diagram similar to Figure 8.8, compare the equilibrium per-
capita allocation and the social optimum, illustrating the two sources of
inefficiency we have identified. Using your results from Problem 5.5, discuss how
things change as "market size" (measured by L) increases.

The inefficiencies due to the existence of market power and excess entry are
illustrated in Figure A8.3, which compares the equilibrium (EQ) and first-best
(FB) per-capita allocations. As shown in the figure, the "true" per capita social
budget constraint (PPF) and that perceived by the representative consumer
(BCP) are different, for two reasons. First, the existence of several (N = n + 1)
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Figure A8.3. Equilibrium versus social optimum.

suppliers of x goods, with the implied duplication of fixed costs, forces the
economy to produce inside its PPF, putting it on a second-best social budget
constraint (BCS) with a lower vertical intercept and the same slope. Given the
equilibrium number of firms, the second-best optimum would correspond to the
tangency of BCS and an indifference curve (point SB). This allocation, however,
will not be attained, because oligopolistic markup pricing raises the relative price
of x above its social opportunity cost in terms of y. Hence, the private budget line
perceived by consumers (with slope lip) is flatter than the social resource
constraint, and the equilibrium allocation (EQ) involves an inefficiently low level
of x consumption.

Market enlargement tends to reduce both of these distortions. To see why,
consider the effect of an increase in the labor force L. As shown in Problem 5.5,
an increase in L leads to an increase in the number of firms, which translates into
a lower markup. Moreover, because the number of firms increases less than
proportionately with market size, fixed costs per capita are reduced. Hence, both
average costs and markups will be smaller in a larger economy. In terms of Figure
A8.3, an increase in the size of the market will shift both the social and private
budget constraints outward, by reducing per-capita fixed costs, and will rotate the
private budget line clockwise, bringing the relative price of x close to its social
opportunity cost.

Notes

1 l - e - 1

2 1 l

£

1

1-a
- a

a aiand1 =

a a
1

l - £
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Chapter 9

Problem 2.6. Let 0(/, x°) be the flow of the continuous-time system (CS), x =/(x).
Show that if

lim tp(t, x°) = x*

then x* must be a constant solution of (CS), i.e.,/(x*) = 0.
Put t = r + s for some fixed but otherwise arbitrary s. Then, using the continuity

of K ),

x* = lim 0(f, x°) = lim 0(5 + r,x°) = lim 0(5, 0(r, x0)) = 0(5, lim 0(r, x0)) = 0(5, x*)

Hence X* = 0(5, x*) for any s. This implies that 0(5, x*) is constant. i.e., /(x*) = 0.
D

Problem 3.2. When a = 0, the nonhomogeneous system is of the form x = b. Using
the method of separation of variables, find the general solution of this equation.

Rearranging the equation

dx

irb

we have

dx=b dt

Integrating both sides of this expression, we obtain the general solution

Setting t equal to zero, we have c = x(0). Hence, the general solution can also be
written in the form

x(t) = x(0) + bt a

Problem 3.3. Rewrite the general solution of the system (CN) as a function of
x(5), the value of x at some arbitrary time 5.

We have seen that the general solution of the nonhomogeneous system (CN) is
of the form

x«{t,c) = x + ceat (G.S)

Because (G.S) must hold for t = 5, we have

x(s)-x + ceas

and solving for c,

c = [x(s)-x]e~m

Substituting this expression back into (G.S), we can write the general solution in
the form

•
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Problem 4.3. Comparative dynamics for discrete systems. Let x(t, a) be the
solution function of the parameterized discrete system (DS(a)), xt+t = g(xh a),
where g() is a C1 function. Proceeding as in Section 3(c), show that the partial
derivative of the solution function with respect to the parameter

satisfies a linear difference equation. Write the solution of this equation for the
special case where x(t9 a) is a steady-state solution of (DS(a)).

As before, the solution function x(t, a) satisfies identically the original system,
i.e.?

x(t + l9a)&g[x(t9a),a] (1)

Differentiating both sides of (1) with respect to the parameter vector a, we obtain
a linear difference equation in xa:

xa (t +1, a) = gx [x(t, a), a]xa (t,a) + ga [x(t, a\ a] (2)

If x(t, a) = x* is a steady-state solution, then the coefficients of (2) are constant,
and its solution is given by

Xa(t) = XaW + [xa{0)-Xa(oo)Jgx(x*9a)]' (3)

where xa(°°) = dxlda is the solution of

X = gx(x*, tt)Xa +ga(x*, «) •

Problem 5.1. Consider the first-order difference equation

Xt = axt-i + bt-r (1)

Iterating (1) backward and forward, derive the discrete-time analogues of
equations (7) and (11) in the text.

Iterating (1) backward, we have

x = «jc_i + b - \ = a(

-a2 (fljc,_3 + 6,

after n iterations. Letting n = t, we have

*,=fl%+X^fl'"W^ (2)

which is the backward solution of the given equation.
To derive the forward solution, notice that leading (1) one period,

xt+1 = axt + bt

and solving for xt we have

xt=(l/a)xt+1-(l/a)bt (3)

Iterating (3) forward for n periods, we obtain
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xt =(l/a)xl+l -(l/a)bt = (l/a)[(l/a)xt+2 -(l/ a)bt+i]-(l/a)b,

= (l/a)2xt+2-(l/afbt+1-(l/a)bt

= (l/af[(l/a)x -(l/a)b]-(l/afb -(l/a)b,

= (I/a)3 x - (I/a)3 b - (I/a)2 b - (l/a)b,

= (I/a)" xt+n - [(1/fl)" *>,„-, + (1/ar16,«-2 + • • • + (V«)26,+i + OJa)b,]

=(l/arx,+w-(l/a)X;71(l/a) ; - '6/ (4)

Letting n —> oo? and putting 5 = n + r, the forward solution is given by

xt = a' (lim(l/a)s xs) - OAOZ", (I/a)'" 6; (5)

Now define

F(f) = - ( l / a )X ; , ( ! / « /> (6)

Using the backward solution (2), we have

O/a)'x, =xo+(l/ayjJ
S

i:y>-'b, =xo+(l/a)^a-'b, = x0 + (l/a)^ (l/a)'bt

and taking limits as s1 —» °°,

Iim(l/a)'jc,=xo-F(O) (7)

Substituting (6) and (7) into (5), the forward solution can be written

*,=H'[XO-F(0)] + JF(0 (8)

•
Problem 6.4. Show that the function f(x) = 3x2/3 is not Lipschitz in any
neighborhood of zero.

Negating the definition of (locally) Lipschitz function, we have to show that
given any K > 0 and any e > 0, there exist points x and y in B£(0) such that l/(y) -
f(x)\> K\y - x\.

Fix some arbitrary K > 0 and £ > 0, and let y > 0 be a point in BJfi). Then x = Ay
> 0 is also a point in 2?e(0) for any X e [0,1]. We have, then,

\y-x\-y-x = y-Xy~{l-X)y
and

I/GO - / M l = | 3 / / 3 - 3A2/3y2/31 = 3(1 - A2/3 )\y2/31 = 3(1 - A2/3 )y2/3

Hence, we have l/(y) -/(x)l > K\y - xl if and only if we can find a pair (A, y) such
that

3(1 - A2/3)y2/3 > K(l - X)y « g(A, y) = 3(1 - A2/3) - tf(1 - A ) / 3 > 0

Set y* > 0, so that Kym < 1, i.e., y* < K~\ Then

g(A, y») = 3(1 - A2/3) - tf(l - A)(y*)1/3 > G(A) s 3(1 - A2/3) - (1 - A) > 0

Notice that G() is a continuous function of A, with

G(0) = 3 - l = 2>0

Hence, g(A, y*) > G(X) > 0 for A* strictly positive but sufficiently small, and
it follows that x* = A*y* and y* are points in B£(0) with the property that
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l/(y*) -/(**)I > K\y* -x*\. Because K > 0 and e > 0 were arbitrary, this establishes
that / ( ) is not locally Lipschitz around zero. •

Problem 6.5. Continuous dependence on initial conditions and parameters. Let
/(x, a, t) be a continuous function defined on the set B = Bx x Ba x I, where Bx, Ba,
and / = [-a, a] are closed intervals in the real line. Assume further that / ( ) is
Lipschitz in (x, a) on B, i.e., that there exists some positive constant K such that

\f(y, P, t) - fix, a, 0| < K\\(y, p) - (x, a)\\ V (y, ft t) and (*, a, t) in B (L)

Show the following:

(i) For each (x°, a) in the interior of Bx x Ba, the initial-value problem

x = /(*,a,t\ x(0) = x° (PC(x°,0,x))

has a unique solution defined on a closed interval J(x°) c / containing zero,
(ii) The function <pt(x°, a) that gives the solution to (PC(x°, 0, a)) as a function of

initial conditions and parameters is continuous.

Because/is continuous on the compact set B, it is bounded; i.e., there exists
some M > 0 such that

|/(x,a,f)|<MV(x,a,f)e£ (1)

For each x in the interior of Bx, let r(x) be such that

} (2)
where b(x) > 0 is the distance from the interior point x to the boundary of Bx. By
the same argument as in the proof of Theorem 6.2, a unique solution to (PC(x°, 0,
a)) defined on the interval [-r(x°)9 (r(x0)] exists for any given (JC°, a), with jc°in the
interior of Bx.

Now, fix some point (JC°, a0), with x° e int Bx and a0 e int Ba. Then there is
some number e> 0 such that 52e[jc°] is contained in the interior of Bx, and
Be(a°) c Ba. Let y be an arbitrary point in £e[x°], and observe that b(y) > e.
Hence, there is some number r0 such that

—,—\<r(y) for any yeBe[x°] (3)
K M)

and it follows that solutions to (PC(JC°, 0, a)) starting in Be[x°] will be defined over
the common interval Jo - [-rQ, r0].

For each y e B£[x% let

BMh [y] = W(T) e C(/o); k - y|| < Mr,}

and define the set F by

F= U BMrQ[y]

Notice that for any cp(f) in F we have, by (3),

|(p(f)-y|<Mro<£

for some y € #e[x0]. Hence <$(t) stays inside B2e[x°] £ &x- Hence, (p(r) stays inside
B for all t in / , and it follows that /[(p(0, cc, t] is Lipschitz. Observe that (L)
implies that / ( ) is Lipschitz in x = cp for given a, because

\\(y,a)-(x,a)\\ = \y-x\
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754 Appendix: Solutions to the Problems

Define now the function T on Be[x°] x Be(aQ) xFby

T(y, a)(p(0 = y+£ f[(?(s\ s] ds for each t e Jo (4)

Then, by the argument in the proof of Theorem 6.2, T(y, a) is a contraction
mapping a closed ball in C(/o) into itself, and it follows that T(y, a) has a fixed
point that is the unique solution to the initial-value problem (PC(y, 0, a)) on the
interval [-r0, r0].

We want to show that this fixed point varies continuously with (y, a). By
Theorem 7.18 in Chapter 2, it is enough to show that T is a continuous function
of (y, a). To establish the continuity of T in (y, a), let (p(0 be an arbitrary
function in F, and consider two points (y, a) and (x,/?) in Be[x°] x 2?e(a°). Because
cp(r) stays within J5X, we have

|/(cp(O, a, 0 - /(cp(O, j8, 01 * #l« - P\ V f in Jo

by (L). Hence,

|T(y, a)q>(0 - r(x, pMt)\ = \y-x + £ [f[<?(s\ a, s] -

< |y - x| + |f|*:|a -/8|<

for all t in /0. Hence,

||7Xy, a) - T(x9 p)\\ <|y-x| + r0K\a - p\

Finally, observe that T(y, p) —> T(x, a) as (y, a) —> (JC, )3), which establishes the
continuity of T. •

Problem 6.8. Prove Lemma 6.7. By the local existence and uniqueness theorem
(Theorem 6.2) we know that <j)(i) and cp(/) coincide over some interval containing
t0. Let Jm be the largest subinterval of / = J$ n /,, over which the two solutions
coincide. To show that Jm = /, we assume that Jm is strictly contained in / and
obtain a contradiction. If Jm is strictly contained in /, then Jm has at least one end
point tx€ / that either belongs to / ~ Jm or lies in the interior of /. For
concreteness, assume that ^ is the right end point of Jm. Observe that by the
continuity of <j)(t) and cp(Y) in / we have

0(f!) = lim 0(0 = lim q>(0 = tp(f1) = x1 e X (because tx e J)
r->rf t-Hi

Hence, ^ is the "last point" for which (j)(t) - (p(0, and it follows that t\ e Jm lies in
the interiorx of /. Notice, however, that both §(t) and cp(O are solutions to the
initial-value problem

x = f(x,t), x(t1) = x1 (PC(x1,t1))

where (JC1, h) e D. It follows, by the local uniqueness of solutions, that (f>{t) = cp(f)
for all t in some interval \tx - rutx + rx\ with rx > 0. Hence, tx is not the "last point"
for which <|>(f) = (p(r), and we have reached a contradiction. •

Problem 6.15. Let c(t) be a continuous real-valued function defined on an open
interval /=(a, p) containing tQ. Consider the initial-value problem defined by the
linear system x - c(t)x and the initial condition x(t0) = x° e R. Show that the
solution to this problem is defined on the whole of /.

Under our assumptions, the function /(x, i) = c(t)x is clearly continuous and
locally Lipschitz in the open set R x /. It follows by Theorem 6.9 that the given
boundary-value problem will have a unique maximal solution </)(t) defined on
some maximal open interval (a, b) c / = (a, /3) containing t0. We will assume that
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(a, b)*l and obtain a contradiction. Assume, for concreteness, that b < /?, so that
b is an interior point of /, and c{t) is defined on [t0, b]. Because c() is a
continuous function, it is bounded in the compact set [r0, b]. Let

M = max{|c(5-)|; se[t0, b]}

and observe that for any t in [t0, b) we have

\<j)(t)\= x° + j'c(s)<p(s) ds

By GronwalFs lemma,

< |x° | + f \c(s)<j>(s)\ ds < \x I + M f s)\ ds

Hence, the solution stays within a compact set for all t in [t0, b). Because b is an
interior point of /, this contradicts Theorem 6.12. •

Problem 6.18. Prove Lemma 6.17.
Because 0(Y, y°) and 0(r, JC°) are solutions of (CS(f)) going through y° and x°,

respectively, at time t0, we have

and (1)

and because both solutions stay in X, we have (s, §(s, y0)) and (s, <|)(s, x0)) e D for
all s e /m(x°) n / « ( / ) c /. This implies that for all such s,

JC°), s]\<\(/)(s, y°)- 0(s, x°)\ (2)

by the Lipschitz condition on / ( ) .
Define the function q>(f) in Jm(x°) n Jm(y°) by

Then, using (1) and (2), we have

> xoX s]] ds

<\yo-xo\+\'K\<Ks,y°)-<l>(s,xo)\ds

for all teJm(x°)nJm(y°).
Hence, (p(?) satisfies the conditions of Gronwall's lemma, and it follows that

for all t in Jm(x°) n Jm(y°), which is the desired result. •

Chapter 10
Problem 2.3. Derive the equation

xh (t; c) = EeAtc, wheree (4)
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by diagonalizing the coefficient matrix of (CH).
Given the homogeneous continuous system

x = Ax (CH)

we premultiply both sides by the inverse of the eigenvector matrix, E1:

E1x = E~1Ax

Noting that EE'1 = / (the identity matrix), this is equivalent to

Elx = ElAEExx

Now, because E~lAE = A, we have

Elx = KExx (1)

Define y by

y = Elx (2)

and observe that

y = E~lx (3)

Using (2) and (3), the system can be written

y = Ay (4)
where A = diag(Ai,..., Xn). Because (4) is an uncoupled system, its solution is of
the form

y(t) = eA'c (5)

where c is a vector of arbitrary constants. To recover the solution in terms of the
original variables x, we premultiply (5) by E:

EeAtc •

Problem 2.4. Derive the following equation:

xj1 (c) = cxr
l (d cos Ot ~ f sin 9t) + c2r

l (f cos 8t + d sin Qt) + £ J
- 3 c,^e, (6

Because the coefficient matrix A is a real matrix, its eigenvalues and
eigenvectors come in conjugate pairs. Hence, if Xt and X2 are complex eigenvalues
of A, they are of the form1

X\ =a+in = r(cos 0+i sin 0) = rew

X2=a-iii = r(cos 0 - i sin 6) = re~w (1)

where 8 is the angle formed by the vector Xt = (a, |n) and the horizontal axis of
the complex plane. Moreover, the corresponding eigenvectors will be given by

ex = d + if and e2 = d-if (2)

where d and / are vectors. The elementary solutions associated with these
eigenvalues are then

z) = Me1 and Zt = X{e2 (3)
Using (1) and (2), the elementary solutions can be written

zj = X\ex = (reid)\d+if) = r'(cos Ot + i sin 9t)(d + if)

- rf (d cos Ot + id sin Ot + if cos 0£ + j'2/ sin Ot)

= r' (rf cos Ot-f sin 0r) + if (d sin 0r + / cos Ot)
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and

zt = X2e2 = (re'16)* (d - if) = r< (cos Ot - i sin Ot)(d - if)

= rl(d cos Ot - id sin Ot - if cos Ot + i2f sin Ot)

= rl (d cos Ot - f sin Ot) - irl (d sin Ot + / cos Ot)

Hence, the elementary solutions are complex conjugates themselves. Putting

ut = rl(d cos Ot - f sin Ot) and vt =rl(d sin Ot + f cos Ot)

we have

\ = u, + i z2
t = ut-ivt

By the same argument used in Section 2(6), it can be shown that the real
functions (sequences) ut and vt are solutions of the system (DH), xt+i = Axt. It can
also be shown that these functions are linearly independent from each other and
from the rest of the elementary solutions of the system. Hence, we can use them
to complete a fundamental set of solutions and write the general solution of the
system in the form (6). •

Problem 2.5. Given the linear system (CH), x =Ax, assume that there is one
eigenvalue £ of multiplicity 2 (X1 = X2 = £)), and the rest of the eigenvalues A3 , . . . ,
Xn of A are all different from each other. Associated with the repeated eigenvalue
we have two elementary solutions:

x1 (t) = txp(Xit)ex = e*ei and x2 (t) = exp(X2t)e2 = e*e

Clearly, if ex and e2 are linearly independent eigenvectors associated with £, the
elementary solutions xl(i) and x2(t) are also independent from each other and
from the rest of the elementary solutions x3(t), . . . , xn(t). Hence the set of
elementary solutions is still a basis for the solution space of the homogeneous
system, and we can write the general solution as before:

x*{t) = c1x
1(t)+... + cnx

n(t) (G.S)

If ex and e2 are linearly dependent, however, so are xx(t) and x2(r), and we do
not have enough independent elementary solutions to span the solution space. To
complete a basis for the solution space that will allow us to write the general
solution, we need to find an additional solution to (CH) that will be linearly
independent from the elementary solutions. We will seek a solution of the form

= (a + bt)e* = ae* + bte& (1)

that is, the product of a polynomial of order 1 (1 less than the multiplicity of £) in
t and the exponential term in the eigenvalue £ What restrictions must be placed
on the vectors a and b so that <p(t) will indeed be a solution of the system, that is,
will satisfy the equation </>'(t) = A<j)(i)l Write the general solution of the system.

We need to choose the vectors a and b so that <j)(t) satisfies the homogeneous
equation, that is, we need

> — [ae
dt

=> [<§a + b]e* + £bte*

And setting the coefficients of e^ and te^' on both sides equal to each other, we
get
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758 Appendix: Solutions to the Problems

(for te*:) & = Ab => Aft - <££ = 0

0 (2)

(fore*:) f̂l + fe = Afl

=> (A-#)<i = & (3)
That is, 6 must be an eigenvector associated with the repeated eigenvalue (e.g., b
= ei), and a must satisfy the restriction given by (3) in order for 0(f) to be a
solution to (1). If these conditions are satisfied, we can write the general solution
to the homogeneous system with one eigenvalue of multiplicity 2 (Ai = A2 = £) and
all the rest A 3 , . . . , Xn of multiplicity 1 as

=> x8 (t) = c1e*e1 + c2 [ae* + te^' ]+c3 exp(X3t )e3 + ... + cn exp(Xnt)en (4)
D

Problem 4.1. Polar coordinates. When working with planar systems it is
sometimes convenient to work in polar coordinates. Consider a point with
Cartesian (ordinary) coordinates (x, y). Its polar coordinates are (r, 0), where r is
the Euclidean distance from the origin to the point (JC, y), and 0 is the angle
formed by the line segment going from the origin to the point (x, y) and the
horizontal axis. Hence, r and 0 are defined by

r2 = x2 + y2 (1)

9 = arctan(;y/x) (2)

and 9 is such that

cos6=x/r and sin 0=y/r (3)

Differentiating (1) and (2) implicitly with respect to time, show that

rr = xx + yy (4)

r2O = xy-yx (5)

Differentiating (1) implicitly with respect to time, we have

2rr = 2xx - 2yy
=>rr = xx + yy (4)

Proceeding in a similar way with (2),

^ (xy-yx)/x2 _ (xy-yx)/x2 =xy-yx
l H y/x)2 (x2+y2)/x2 x=2+y2

=> r29 — xy — yx (5)

•
Problem 4.2. Let Abe a 2 x 2 real matrix with complex eigenvalues Ax, Xi = a ± iji
and corresponding complex eigenvectors eu e2 = u ± iv. It can be shown that the
real vectors u and v are linearly independent, so the matrix P = [u, v] is invertible.

(i) Show that

«
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Equation (8) shows that if A has complex eigenvalues, then the planar
system z=Az can be written (after a coordinate change) in the form

_y\ in a
or, equivalently,

x=ax-iay (9)

y-jjx + ccy (10)

(ii) Rewrite the system (9)-(10) in polar coordinates and solve it, leaving the
solution (r(t), B(t)) as a function of the initial values r(0) and 0(0).

(iii) Using the trigonometric identities

sin(a + b) = (sin a)(cos b) + (cos a)(sin b) (11)

cos(a + b) = (cos a)(cos b) - (sin a)(sin b) (12)

recover the solution (x(t), y(t)) of the original system, written as a function
of the initial values x(0) and y(0).

(i) Because Ai is an eigenvalue of A, and ex a corresponding eigenvector, we
have Aex = Xxeu that is,

A(u + iv) = (a+i/i)(u + 1v)

Expanding both sides of this expression,

Au + iAv = au + iav+ipai+i2jxv = (oai - /iv)+i(ocv+/M)

that is,

Au= (ecu -fiv) and Av = (/xw + av)

or, in matrix form,

H a
and because P is invertible (by the fact that u and v are linearly
independent), this last expression yields the desired result (premultiplying
both sides by P~x).

(ii) Substituting (9) and (10) into (4), we have

rr = x(ax - jiy) + y(/ix + ay) = a(x2 + y2) = ar2

from where

r = ar (13)

Similarly, using (5),

r20 = xy - yx = x(fix + ay) - y(ax - jiy) = /i(x2 + y2) = /ir2

from where

e=n (14)
We have, then, a system of two uncoupled equations in (r, 6). The solutions
of (13) and (14) are of the form

r(t) = r(0)eat (15)

(16)
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760 Appendix: Solutions to the Problems

(iii) To recover the solution in terms of the original variables, we use equation (7)
and the trigonometric identities (11) and (12). Substituting (15) and (16) into
(7), and using (11) and (12),

x(t) = r{t) cos 6{t) = r(0)eatcos(6(0) + fit)

= r(Q)eat [cos 0(0)cos fit - sin 6(0)sin /nt]

= r(0)ea' ^ | | cos pit - ̂ | sin fit j = ea< [x(0) cos fit - y(0) sin fit]

Similarly,

y(t) = r(t) sin 6{t) = r(0)eat$in(6(0) + fit)

= r(0)eat [sin 0(0) cos /tf + cos 6(0) sin fit]

= r(0)eat| ( A c o s P + ?j~ s in/tf)=
V r(0) r(0) >

Problem 43. Consider the following system of differential equations:

x = f(x,y) = y + x(c-x2-y2) (17)

y = g(x,y) = -x + y ( c - x 2 - y 2 ) (18)

(i) Show that the point (0,0) is the only steady state of the system for any value
ofc.

(ii) Linearize the system around the steady state and compute its eigenvalues.
What can we say about the stability and type of the steady state? (There are
three possible cases, depending on the value of c.)

(iii) Show that the original system can be written in polar coordinates as

r = r(c-r2) (19)

0 = - l (20)

Using these expressions, describe the behavior of the system, and compare
the results with those obtained in (ii). Linearization should give accurate
local results in two cases, but we can now "see" more things. What happens
in the third case?

(i) The steady state s = (x, y) satisfies

i = 0=$ y + x(c — x2 — y2) = 0

Clearly, (0, 0) is a solution to this system of equations. If x = 0, then y = 0, by
the first equation; similarly, if y = 0, then x = 0, by the second equation.
Finally, assume x, y * 0; then we can divide the first equation by x and the
second by y to get

-y/x = c-x2-y2 and x/y=c-x2-y2

from where

which is impossible for x,y9*0. Hence s = (0, 0) is the only steady state,
(ii) The partial derivatives of the functions /( ) and g() evaluated at the steady

state are given by
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x(-2x)+l{c-x2-y2) =

761

Hence, the coefficient matrix of the linearized system is of the form

AJ
- l c

To find the eigenvalues of A, we solve

C-A
= 0

or

By the quadratic formula,

2c±V4c2-4-4c2

= C i I

Hence, the eigenvalues of the system are complex numbers. If c < 0, the
steady state is a locally stable spiral point, and if c>0, the steady state is
locally unstable. If c = 0, the steady state is nonhyperbolic, and its stability
cannot be determined without further information,

(iii) Substituting (17) and (18) into (4),

x[y + x(c-x2 -y2)] + y[-x + y(c-x2 -y2)]

and simplifying,

r = r{c-r2)

Similarly, substituting (17) and (18) into (5),

r2$ = xy-yx=x[~x + y(c-x2 -y2)]-y[y+x(c~x2 -y2)]

(19)

from where

0 = - l (20)

Hence, the original system (17)-(18) reduces in polar coordinates to a set of
two independent first-order equations: The behavior of the system can be
determined directly by inspection of (19) and (20). First, notice that the angle
6 decreases over time. Hence, the solution trajectories rotate clockwise,
forming either spirals or circles. The exact shapes of the trajectories will
depend on the behavior of r, the distance from the origin. Using (20), we see
that if c < 0, then we have r=r(c- r2) < 0 for all r > 0, and all trajectories
converge to the origin, which is a stable spiralpoint. If c>0, things are
slightly more complicated. Notice that if r = Vc, then r = 0, and r remains
constant over time. Hence, the system has a periodic orbit or cyclical
solution. If r > Vc, then r - r{c- r2) < 0, and if r < Vc we have r = r(c- r2) > 0.
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762 Appendix: Solutions to the Problems

In either case, we approach the periodic orbit. Hence, trajectories starting on
either side of this closed curve converge to it as t —> <>°. •

Chapter 11
ries over time, our stock-pricini

(1)

Problem 2.1. When the tax rate on dividends varies over time, our stock-pricing
equation can be written in the form

where

Equation (1) is a nonautonomous linear equation of the type we studied in
Section 5 of Chapter 9. Its solution can be written in the ("forward") form

v(t) = [v(0)-F(0)]ert+F(t) (2)

where

j~er(t-rS)ds (3)

the "fundamental solution" of (1), is the discounted value of the stream of future
after-tax dividends, and [v(0) - F(0)]en is a "bubble term" capturing possible
deviations from the fundamental value of the stock. By the same logic as in our
earlier discussion, we shall rule out bubbles and assume that v(t) = F(t) for all t.
Hence, the value of the stock at each point in time will be given by (3). We shall
now show that this fundamental solution gives the same time path of stock prices
in response to a preannounced future increase in dividend taxes as the procedure
we followed earlier.

(i) Show that

rit()-b)) (4)
r

(ii) As before, assume that an announcement is made at time zero that dividend
taxes will increase at time T from R0 to TI. Then

= (l-to)d forf£[0,r)
forte[T,oo) (5)

Using (3) and (4), compute the trajectory of stock prices following the
announcement.

(i) To compute the given integral, we will make a change of variable. Let

u = u(s) = r(t - s)

Then

and
rb - 1

I C
 r

du = -

_1

r M
X i

r

ru(b)

Mt)

-

-r ds,

b

so ds =

—1
r "

r

-du
r

•U>)

_ 1
r
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(ii) We will consider two possible cases. First, let t > T. Then

v(t) = F(t) = rb(s)er{t~s) ds = (l - xx)d fV
(f-5) ds = ̂ l I l M l i m ( ! _ r{t~b)

so the two solution procedures agree for t > T.
Next, if t € [0, 1), we have

v(t) = F(t) = Jj"b(s)er{t's) ds = £ b(s)eri'~s) ds + j^b{s)eri"s) ds

1 - ro)der("s) ds + f (1 - T,)rfer('-!+r-T) d5

r r
= v*(ro)(l-e

ri'-T))+eri"T)v*(r1)

which is equation (18) in the text. Hence, the two procedures give the same
result also for the transition period. •

Problem 2.2. Cagan's model with perfect foresight. Consider the following
specification of equilibrium in the money market:

m{t)-p(t) = -Xn{t), withA>0 (1)

where m is the log of the nominal money supply, p is the log of the price level,
and 7t=p is the (both actual and expected) inflation rate (i.e., we are assuming
perfect foresight). If we are willing to assume away real-side complications (e.g.,
assume that output is fixed at the natural rate), then the full equilibrium of the
economy is determined by this equation.

Assume that the nominal money supply grows at a constant rate m= JJL

Differentiating (1) with respect to time, we can obtain a differential equation in
the inflation rate,

li-K = m-p--Xk

t = 6{7t ~iL\ where © = l/X (2)

(i) Find the steady state of this equation, and write its general solution.
Setting k equal to zero in (2) and solving for N, we see that the steady-

state rate of inflation is equal to the rate of growth of the money supply
(K = H). AS discussed in Section 3(a) of Chapter 9, the general solution of the
linear equation (2) can be written

E]e& (3)

where TT(O) is the initial inflation rate.
(ii) Assume that \i remains constant forever. From an economic point of view,

which is the most reasonable particular solution of this equation? Why?
Because the coefficient 0 is positive, the system is unstable. Thus, if initial

inflation is not equal to the rate of money growth, the inflation rate either
increases or decreases without bound. With a constant rate of money growth,
such an explosive, hyperinflationary (or deflationary) outcome does not seem
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764 Appendix: Solutions to the Problems

very reasonable. Hence, we shall assume that the equilibrium of the model
involves an immediate jump to the steady state.

(iii) Assume that we are at time zero and that JI has always been constant at
some value fa. Suddenly the government announces that at some time T in
the future the rate of money creation will increase to jUi > fa and will remain
constant forever thereafter (and people believe the announcement).
Describe the evolution of the inflation rate following the announcement and
your reasons for selecting this particular adjustment path. Write the
particular solution corresponding to this behavior, and use it to solve for the
jump in the price level at the time of the announcement. What factors
determine the size of this jump?

At the time the policy change takes place we must be in the new steady state
%i = fii. Hence, we must have

*(T) = Hi (4)

During the period between zero and T we must be on a solution trajectory of the
old system, which is of the form (2), with n = fa:

/io+WO)-^oK (5)

Using (4) as a boundary condition in (5), we can solve for the initial inflation rate

from where

Hence, the immediate jump in the inflation rate (from its initial value of fa)
depends on the increase in the rate of money creation, the time from the
announcement until the actual policy change, and the elasticity of the demand for
money. •

Problem 2.3. Construct the phase diagram for the system (L.s')-(L.p). Assume
that 1 - aa> 0. What does this assumption mean?

The system whose behavior we want to analyze is of the form

^ R * (L.s)
A-

Setting s = 0 in (L.s) and solving for /?, the equation of the first phase line is
given by

i = 0=>p = m-$y + AK* (-p) (V.s)

which is a horizontal line in phase space. Moreover,

The sign of this derivative indicates that, starting from the phase line (where i =
0), a small increase in the value of p puts us in the region in which i is positive.
Hence, s increases over time in the region above the phase line, and the arrows
of motion along the s axis point to the right, as shown in Figure All . l .
Similarly, setting p = 0 in (L.p), we have
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p<O=»p(t)l

p = 0

p>o=>P(t)T

Figure Al l . l . Phase lines and arrows of motion.

X

Thus, the p = 0 phase line is upward-sloping, with slope

dp 5

(P-P)

ds 8 + (o/X)
<1

Differentiating (L.p) with respect to p, we obtain

dp _CC[S + (G/X)]
<9p 1 - acr

In principle, the sign of this expression is ambiguous. Under the assumption
that 1 - ao > 0, however, the derivative is negative, and p is negative in the
region above the phase line. Hence, the arrows of motion along the p axis point
toward the phase line, and the output market is "stable" in the sense that prices
fall if they are too high for the market to clear. Combining the two phase lines,
we get the phase diagram shown in Figure All.2.

Recall that the parameter a measures the speed of price adjustment. Hence,
the assumption that

1 - aa > 0 or a < l /a

requires that prices not adjust "too quickly." As we will see in the next
problem, if this assumption does not hold, the system is unstable and displays
"unreasonable" behavior.

Problem 2.4. Solution of Dornbusch's model.

(i) Compute the eigenvalues and eigenvectors of the system (L.s)-(L.p), and
verify that the steady state is a saddle point.

Expressing p and s in deviations from the steady state, the system
) ( ) can be written in matrix form as
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p = 0

Figure A11.2. Phase diagram.

is
v •••

Figure A11.3. Phase diagram and saddle path.

-a[
l-aa 1-aa

0

P-P

s — s

Observe that the determinant of the coefficient matrix,

is negative under the assumption that 1 - aa> 0. Because the determinant of
the coefficient matrix is equal to the product of the eigenvalues t]i and 7]2, it
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follows that both roots of the system are real numbers and have different
signs (say r?i > 0 and r\2 < 0). Hence, the steady state is a saddle point. As we
saw in Chapter 10, the system will converge to the steady state if its initial
position lies on a straight line through this point, called the convergent
subspace of the system or saddle path. There is also an anti-saddle path to
which all other trajectories converge (Figure All.3).

To write the general solution to the model we will need to find the
eigenvectors of the coefficient matrix. Normalizing its second component to 1,
we can write the eigenvector associated with 7]t as et = (xh l )

r . By definition,
the eigenvector satisfies Aet = rjteh so we have

Focusing on the second equation in this system (recall that we can work with
whichever one is more convenient), we have

Hence, the eigenvectors of the system are of the form

ex = (Xrit, i f and e2 = (Xrj2, i f

(ii) Write the general solution of the system. Find the particular solution of the
system that corresponds to the saddle path, and discuss the equilibrium
trajectory of the system from an arbitrary initial price level. Find the equation
that describes the saddle path, and show that it has negative slope.

Because the model is linear, we can write its solution using the formulas
derived in Section 2(f)(i) of Chapter 10:

p(t) -p= kiXrk expfaf)+k2Arj2 exp(rj2r)

s(t) -s=kt expiritt) + k2 exp(rj2t) (G.S)

where kx and k2 are arbitrary constants to be definitized by choice of an
appropriate boundary condition. We rule out explosive paths and assume that
for the given value of the predetermined variable (/?), the free variable (s)
adjusts continuously so as to keep the system on the unique convergent path,
the saddle path. To impose this assumption, we set the constant k\ associated
with the explosive root {r\x > 0) equal to zero to obtain the particular solution

pit) - P = k2Xrj2 exp(7j20 and s(t) - s = k2 exp(r]2t) (G.P)

Differentiating the first equation with respect to time, we see that

p(t) = k2Xrj2 Qxp(rj2t)ri2 = % [p(t) - p] (r]2 < 0)

That is, the speed with which prices adjust toward their long-run equilibrium
level is directly proportional to the difference between the current and
steady-state values. The speed of adjustment of the system then depends on
the value of rf2, a function of the parameters of the system. By solving
explicitly for rj2, you will see that high elasticities will increase the absolute
value of 7]2 and hence the speed of the price adjustment.

From (G.P) we can obtain the equation of the saddle path. Dividing the
first equation by the second, we get

(s.p)
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Figure All.4. Effect of an unanticipated increase in government expenditures.

which describes a straight line in the phase plane going through the steady
state. •

Problem 2.5. Assume that the economy is initially (at time zero) at the steady
state So = (po, s0) corresponding to values ra0 and g0 of the money supply and
government expenditures.

(i) Suppose the government announces an immediate and unanticipated
permanent increase in its expenditure level on domestic goods to gx > go-
Discuss the impact on the steady state of the system, and describe the
adjustment trajectory from the initial position to the new equilibrium.

Recall that the steady-state values of p and s are given by

p = m-<j>y + A.R* (ss.p)

Hence, an increase in g has no effect on the price level and requires a
decrease in s, which can take place through an appreciation of the home
currency that deflects foreign demand away from domestic output. The
adjustment is immediate and is illustrated in Figure AHA

(ii) Analyze the effect of an immediate, unanticipated, and permanent increase in
the nominal money supply to mt > m0. It will be seen that the exchange rate
temporarily "overshoots" its new long-run equilibrium value. Explain in what
sense this is true, and discuss the economic mechanism that generates this
result. What determines the degree of overshooting?

Consider the effect of a one-time surprise (permanent) increase in the
nominal money supply, from m0 to ml = m0 + Am. We recall that the steady-
state values of the price level and the exchange rate are given by

p=m-<(>y + XR* (ss.p)

s=p~p*+(l/S)(y + oR* -g) (ss.s)
Using subscripts to denote the steady-state values ofp and s before and after
the policy change, it is clear that

Pi - po = mi - mo = Am = Ji - J

Hence, the steady state shifts northeast along a straight line with slope 1. The
long-run effect of a monetary expansion is simply to increase prices and
exchange rates in the same proportion, leaving real variables unaffected. In
the short run, however, a change in the money supply will have real effects.
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p
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Po
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Q

=̂0

= 0

Figure A11.5. Adjustment trajectory in response to an increase in the money supply.

Assuming that we are initially at the old steady state So and that the
exchange rate adjusts immediately to put us on the saddle path leading to the
new steady state Si, the adjustment path is as shown in Figure A11.5. The
impact effect is an immediate depreciation of the currency (s increases) with
a fixed price level; then the currency appreciates slowly, and prices rise along
the saddle-path trajectory of the system.

Observe that (because the saddle path is downward-sloping) s "overshoots"
its new long-run equilibrium level sh Overshooting occurs because output
prices are sluggish to respond, so the full burden of the adjustment falls
initially on asset prices, which are flexible. The instantaneous depreciation
produces a disequilibrium in the goods market that is eliminated slowly over
time as output prices adjust. Following the sudden depreciation, and with
output prices given, domestic goods become cheaper relative to foreign
goods, and that leads to an excess demand for them. The excess demand
leads, in turn, to a gradual upward adjustment in the domestic price level
through the Phillips relation.

Note also that with p predetermined, the increase in m is an increase in the
real money supply and leads to a reduction in domestic interest rates. This
increases demand for output and generates additional inflationary pressures.
Moreover, at the lower R, the domestic currency will be held only if it is
expected to appreciate in the future (otherwise, real returns on domestic
bonds would be less than for foreign bonds). Such appreciation is possible
only if the immediate adjustment puts s above its long-run level; hence the
need for overshooting. As the adjustment proceeds, domestic prices rise,
reducing the real money supply and increasing the interest rate. This, in turn,
leads to an appreciation of the home currency that reverses some of the
initial depreciation.

It is clear from the figure that the extent of overshooting depends on
the slope of the saddle path, which is given by Xri2. In general, an increase
in the absolute value of kr\2 makes the saddle path steeper and reduces the
overshooting. To interpret this observation, note that X is the interest
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Pl = po + Am

Figure All.6. Adjustment to an anticipated increase in the money supply.

elasticity of the demand for (domestic) money balances. A high elasticity
implies that a given reduction in the money stock will induce only a small
decline in interest rates and hence will require only a small appreciation to
compensate for it. Second, we have seen that rj2 reflects the speed of price
adjustment. This brings us back to the earlier comment that overshooting
arises because asset markets adjust rapidly relative to output markets.
Things that speed up price adjustment (high elasticities) also reduce
overshooting. •

Problem 2.6. Anticipated increase in the money supply. As before, assume that
the economy is initially (at time zero) at the steady state So = (po, s0)
corresponding to a value m0 of the money supply. Now imagine that at time zero
the government announces that at some time T in the future the money supply
will be permanently increased from the current level of m0 to m1 = m0 + Am. The
change in the steady state will be as in the preceding problem, with the long-run
equilibrium levels ofp and m increasing proportionately by Am. The adjustment
path is sketched in Figure All.6. Explain how this path is constructed, and
explain how you would go about finding the coordinates of points A and B in the
figure using the general solution of the system (derived earlier) and appropriate
boundary conditions.

The logic is similar to what we used in the Cagan model. We need a continuous
path, except for a possible jump at the time of the announcement. Discontinuities
in the path of prices are ruled out by assumption. Discontinuities in the path of
the exchange rate are possible, but only at the time of the announcement, because
any future discontinuities would imply (anticipated but) unexploited profit
opportunities. Moreover, the adjustment path must eventually converge to the
new steady state 5i and must obey the equations of motion of the "old" system
(with m = ra0) for t e (0, 7), and those of the "new" system (with m = mi) for
t>T.

Proceeding backward, there is only one path that will work: Because the path
must converge to the steady state St under the laws of motion of the "new"
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system, at the time of the actual policy change (T), the state vector (s,p) must be
on the saddle path for the new system (point B). We must get there while obeying
the laws of motion of the old system; hence the path for (0, T) must be an
apparently explosive path of the old system, starting from point A. At time zero
there is a jump in s, with p fixed at the old level, which takes the system to point
A. Notice that this initial adjustment must take the form of a depreciation of the
currency (an increase in s). Otherwise, the starting position of the system would
be to the left of the old steady state, and the arrows of motion of the system are
such that no trajectory starting in this region would intersect the new saddle path.

To characterize the adjustment path more precisely, we need to find the points
A and B. We know that the orbit segment AB must satisfy the general solution of
the old system, that is,

p(t) -p0= kiXrit exp(ijif) + k2Xr\2 expOfef)

s(t) -so=ki expfar) + k2 exp(j]2t) (G.S0)

Now let the coordinates of B be (pT, ST) (because we reach this point at time T),
and let those of A be (p0, s0). We know that B must satisfy (G.S0). Hence

pT-po= M I ? I exp(77,r) + k2Xr\2 exp(7]2T)

sT-s0= kx expfor) + k2 exp(ri2T)

Moreover, B must be on the saddle path of the new system and therefore satisfies

PT-PI= XRJ (ST - si) (S.Pi)

Similarly, we know that A must satisfy (G.S0), so we have

p0 ~Po = kiXrji exp(0) + k2Xr\2 exp(0) = kxXr\i +k2Xr/2

and that in addition

Po=Po

because prices are predetermined. This gives us a system of six equations in six
unknowns that can be solved for the coordinates of A and B and the two
arbitrary constants k\ and k2. Once we know these constants, we can determine
the initial exchange rate s0. D

Problem 3.1. The Solow model with a Cobb-Douglas production function.
Assume that the aggregate production function is Cobb-Douglas, with labor-
augmenting technical progress

Y = Ka(ALfa (1)

with A/A = g. Write the intensive-production function /(Z), giving output per
efficiency unit of labor as a function of the capital/labor ratio in efficiency units, Z
= KIAL. Derive the law of motion for Z under Solow's assumptions, and solve
explicitly for the steady state of the system. What factors determine a country's
long-term level of income?

Given the production function (1), output per worker is given by

Y Ka(ALfa {K/ALfAL

AL AL ~ AL ~ Z

Substituting this expression into equation (9) in the text, the growth rate of Z is
given by
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7
s ^ ( S + n + g) s Z ( S + n + g) (2)

Setting Z/Z equal to zero in (2), we can solve for the steady-state value of the
capital/labor ratio in efficiency units:

- ( / ( °
Z = \8+n+g)

Per-capita income in the steady-state path is given by

Q,=A,Za=A,\
a/(l-a)

\
S+n+g

where it can be seen that Qt is an increasing function of the level of technical
efficieny (At) and the investment coefficient (s) and a decreasing function of the
rate of growth of the work force (n) and thejate of depreciation (<5). An increase
in the rate of technical progress, g, reduces Q for a given value of A, but also
increases the growth rate of income. •

Problem 3.2. Suppose the production function is of the form (1): Yt =
(BtKt)

a(AtLt)
la, with both capital- and labor-augmenting technical progress at

rates BIB = gB and A! A = gA. Derive the equation of motion for the capital/labor
ratio in effective units, Z = BKIAL, under the assumptions of the Solow model.
Show that the system has a balanced-growth path (i.e., a constant-Z solution) if
and only if gB = 0 (i.e., if technical progress is only labor-augmenting).

Under our assumptions, the instantaneous increase in the capital stock is given
by

K = sY -SK = s(BK)a{ALf -8K = sALZa - 8K (2)

Given that Z = BKIAL, we have, taking logs of both sides of this expression,

and differentiating with respect to time,

Z K L
Z. & Li

Substituting (2) into this last expression and simplifying, we arrive at

Z K L , , sLABZa-8K ,

(3)

Setting Z/Z equal to zero in this expression (and introducing time subscripts), we
have

sBtZr1 = n + 8+gA-gB (4)

If technical progress is purely labor-augmenting (i.e., if gB = 0), then Bt is constant,
and (4) has a constant-Z solution. If this is not the case, however, B changes over
time, and so does the value of Z that solves (4). D

Problem 3.4. Prove Proposition 3.3 (properties of the savings function).
To sign the partials of the savings function, we will use the implicit-function

theorem. Rewriting equation (2) in the text in the form
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yl-s,y2+sR)-Uc{y1-s,y2 + sR) = 0 (3)

and differentiating F( ), we obtain

Fs = R[UCX (-D + RUXX) - [Ucc (-1) + RUa]

= -2RU + R2U +U<0 (= d2U/ds2)

Fyi =RUcx-Ucc >0

Fy2=RUxx-Ucx<0

FR = RsUxx +UX-sUcx = s(RUxx -Ucx) + Ux^0
By the implicit-function theorem, then,

* ( ) Fn ds() FR>

That is, an increase in first-period income increases savings, as part of the new
income is saved to increase second-period consumption. Similarly, an increase in
second-period income induces the agent to consume more also in the first period,
and savings fall. The sign of ds*/dR, on the other hand, may be positive or
negative. To see why, note that

^ = -FR/F, =(-l/Fs)[s(RUxx ~UCX) + ux} = s * ~ ^ - (4)
OK <7)>2 Fs

The first term in this expression measures the income effect and the second the
substitution effect of a change in the interest factor. The substitution effect is
always positive [-(UXIFS) > 0] - an increase in R makes present consumption more
expensive in terms of forgone future consumption and encourages people to
defer consumption to the second period, increasing savings. The sign of the
income effect depends on whether the individual is a saver or a borrower. An
increase in R makes borrowers (s < 0) "poorer," forcing them to reduce
consumption in both periods. As c falls, savings increase (become "less negative").
Thus income and substitution effects work in the same direction for borrowers.
Net lenders, on the other hand, become "richer" when R increases. This leads to
an increase in first-period (and second-period) consumption, and hence to a
decline in s. The overall effect of a change in R for net savers depends, therefore,
on the relative strengths of the income and substitution effects.

Similar results can be obtained by replacing

Ucc, Uxx<0 and Ucx = Uxc>0 (A.2)

with the assumption that c and x are both normal goods. A good is said to be
normal if demand for it increases as income rises. Normality of consumption in
both periods implies, therefore, that

(9c* dc* <2x* c&* n

<tyi ' dy2 ' dyx ' dy2

To see the implications of this assumption for the partials of the savings function,
observe that the optimal consumption and savings functions must satisfy the
budget constraints identically. Hence, we have

y1-c{y\,y2iR) = s(y\,y2,R) (5)

x(yi,y2,R) = y2+Rs(yx,y2,R) (6)

Combining these two expressions,
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c(^2,*)+^f^Sy1+f (7)
Differentiating (7) with respect to y1 we find that

dc*_ l_dx*_ _

dyx R dyx

It is obvious that if dc*ldyi and dx*ldyi are both to be positive, then dc*ldyi e
(0,1). But then it must be true that dsl*dyi e (0,1) as well, because differentiating
(5) with respect to yi we see that

<9c* _ ds*
(tyi fyi

Similarly, (5) implies that

dc* _ds*
dy2 dy2

so ds*/dy2 < 0 under the assumption of normality. This, in turn, implies, by (4), that
ds*/dR > 0 for s < 0.

Another assumption that is commonly made is that first- and second-period
consumptions are substitutes. Two goods are said to be substitutes if an increase
in the (relative) price of one leads to increased demand for the other. As noted, R
reflects the "price" of current consumption in terms of forgone future
consumption. If c and x are (strict) substitutes, an increase in R that makes x
cheaper should reduce c*. In other words, dc*/dR < 0. Because (5) implies that
ds*ldR =-dc*/dR, it follows that under the substitutability assumption we have
ds*ldR > 0, even for net lenders. •

Problem 4.1. Measuring the speed of convergence. The eigenvalue A of the log-
linearized Solow model provides a measure of the speed of convergence of an
economy toward its steady state. Show that the half-life of the system described
by equation (5) (defined as the time H at which half the original deviation of z
from its steady-state value has been eliminated) is given by

»-¥
To compute the half-life of the system, notice that, by definition, ZH satisfies

_ _ ZQ ~ Z
ZH - Z — -

Substituting this expression into the solution of the log-linear approximation to
the law of motion for z (equation (6) in the text) evaluated at t = H, we have

from where

Problem 4.2. Determinants of long-run income dispersion. Assume that the
evolution of income per capita in a given country can be described by the
equation
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#v + £u or A#v = xt - ffyt, + eu (1)

where yiyt = ln(<2i/Q*) denotes the logarithm of income per capita in country i in
period t (Qit) normalized by the sample mean of the same variable (Qt), and AyiJt
- >Vi ~ yu is approximately equal to the growth rate of per-capita income in
country i, measured in deviations from the average growth rate in the sample. In
this expression, eit is a random disturbance, with zero mean and variance a\
independent and identically distributed over time and across countries and
uncorrelated with yUt and xt. The term xh which summarizes the "fundamental"
determinants of growth in territory U is constant over time and is distributed
across countries, with zero mean and variance a2x.

Taking the expected values for both sides of (1), given initial income yit0, we
obtain a nonstochastic equation in expected income y*/.

withyf,0=yiS> (2)

The solution of (2) is of the form

yf,=y?+(ytf>-y?yi-tf (3)
where

is the steady-state value of yit. Equation (3) shows that the stability of the system
depends on the value of the slope coefficient p. If 0 e (0,1), the term (1 - /3)' goes
to zero as t —> «>. The system is therefore stable, and the expected income of each
nation converges monotonically to its steady state yf at a rate determined by /?.
Hence, we can interpret yf as the expected (relative) income level of country i in
a long-run equilibrium.

We want to use equation (1) to investigate the determinants of income
inequality across countries in the long run. Let o] denote the sample variance of
yit, and ct = Ex{yit the covariance between current income and country
fundamentals, and observe that if the number of countries is large, the sample
variance and covariance will be approximately equal to their population values.
Using (1), derive a system of difference equations in a] and ct, discuss its stability
properties, and compute its steady state. What determines the degree of income
inequality in the long run, measured by the steady-state value of or??

Taking the variance of both sides of (1), we obtain

aU = (l - p f a + a2 + a2 + 2(1 - 3)ct (4)

where ct = cov(yto xt). Using (1) again,

ct+1 = Extyiit+1 = Ext [XT + (1 — P)yt, +eit] = Exf + (1 - f5)EXiyi4 + Eeuxt

from where, given that EeitXi = 0 by assumption,

CT+1=A2X+(L-/3)CT (5)

The expected time path of the variance of income and the covariance of income
and country characteristics is given by the solution of a simple system of
difference equations:

^ i ] J ( l -0 ) 2 2(l-j8)¥<T?"
+1J L 0 (l-j8) J L J

L

Because the coefficient matrix is diagonal, the eigenvalues of the system are the
coefficients of the principal diagonal, (1 - fSf and (1-/3). Hence, the system is
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stable if and only if the absolute value of 1 - (5 is smaller than 1, i.e., if equation
(1) is stable.

Eliminating the time subscripts in (4) and (5) and solving for a and c, it is easy
to see that the stationary values of these variables are given by

__a2
x

C=T (6)

Hence, if the system is stable and country characteristics do not change over time,
the distribution of income per capita converges to a stationary distribution with a
constant level of inequality. Equation (6) shows that the long-run dispersion of
relative income depends on the variance of the shocks, a\, and on the dispersion
of country characteristics, summarized by c2x. During the transition toward the
stationary equilibrium, the value of a] could either increase or decrease,
depending on the relation between its initial and stationary values. •

Problem 5.1. Homogeneous output is produced using two types of capital
(private and public), K and P, according to a technology of the form

Yt=K?Pt
p, where a+j3<l (1)

Both types of capital depreciate completely upon use. In each period, the
government taxes income at a rate R and invests the proceeds in public capital for
the next period. Agents save a fixed fraction s of their after-tax income and invest
it in private capital. Hence,

KT+1=S(L-R)YT (2)

and

P»I = RYT (3)

Using (l)-(3), derive a single difference equation in Y that describes the
evolution of income. Call this equation (4). Solve for the steady-state value of Y,
and show that the system is stable. How does steady-state income vary with s and
T? What value of R should the government choose if it wants to maximize steady-
state output?

Using (1), (2), and (3), we have
p (4)

Eliminating the time subscripts in (4) and solving for Y,
yl-a-0 _ saQ _ T)<* %P _^ y _ sa/(l-a-p) ^ _ ^/(l-a-fi) Tp/(l-a-/))

and taking logs of this expression,

Notice that the slope of the phase line at the steady state is given by

^ ^ s(lr)\(a
dY,

Hence, the steady state is stable.
Differentiating (5) with respect to s and R,

_
ds 1-a-p s
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so steady-state output is an increasing function of the savings rate, and

dy a -1 p 1
dx ~ l-a-pi-r + l-a-pr

Notice that

§ >0 i f a n d o n l y i f a 1 P 1 <

or, equivalently,

(lr)<=>T

This expression shows that in order to maximize steady-state output, the
government should set the tax rate equal to public capital's "relative weight" in
the aggregate production function, i.e., r= p/(a + p). •

Problem 5.2. Consider an economy endowed with an aggregate production
function of the form

(1)

where K is the aggregate stock of physical capital, L is employment in goods
production, and H is the average stock of human capital. "Pure knowledge," A,
increases over time at a constant exogenous rate g, that is,

Pure knowledge and teacher's time and human capital are combined to
"produce" the next generation's human capital according to

(2)

^ (3)

where R is the fraction of the population employed as teachers, a variable chosen
by the government.

Suppose that population is constant, and normalize it to 1 (so that the labor
force is L = 1 - R), and suppose that capital depreciates completely upon use and
that agents save a constant fraction s of their income. Then the law of motion for
the capital stock is of the form

KHX=sK?H}-a{l-xta (4)

(i) Define Z = KIA and E = HI A. Using the previous expressions, derive a
system of difference equations in Z and E that will describe the evolution of
the economy.

Dividing both sides of (4) by At+1 = (1 + g)Ah we have

K,+1 sil-T)1-* K? H}-«

At+1 1 + g A?
from where

(5)

Similarly, dividing both sides of (3) by At+i = (1 + g)Ah

At+l 1 + g AJ A]~r
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and hence

E'-=TTg
E- (

(ii) Solve for the steady-state values of Z and E, and compute the steady-state
value of Q = YIA.

Eliminating the time subscripts in (5) and (6), we have

( 6 ) > £ £ = * £
i + g

and
(5) =» Z = - ^ - ( 1 - r)1~aZaE1-a => Z1"" = — ( 1 - rfE1-"

1+g 1+g

from where

V / ( 1" r )V

J
Steady-state output per efficiency unit of labor, Q, is given by

(iii) Find the value o i x that will maximize steady-state Q.
To maximize Q with respect to R, we take logarithms of (7) and,

disregarding the constant terms, maximize the function

T) + lnf
1-7

The first-order condition for a maximum is of the form

from where

(1 - y)T = (1 - T)y, implying r = y

(iv) Let z = In Z and e = ln E. The system derived in (i) should be linear in e and
z. Working with the system in logs, compute its eigenvalues, and discuss the
stability of its steady state.

Taking logs of (5) and (6), the system can be written

zt+1=rz+azt + (l-a)et (8)

et+1=re + yet (9)

where

-T) 1"" and r ^ l ^ '
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Aet = 0

Aet > 0 => e t T Aet < 0 =$ e t I

Figure All.7. The Aet = 0 phase line.

Hence, the Jacobian of the coefficient matrix,

/ = [ 7 °
Ll-a a

is diagonal, and the eigenvalues of the system are Xt = a and %i = y, both
positive numbers smaller than l. The steady state is therefore stable,

(v) Draw the phase diagram for the system.
Equation (9) can be written

Aet=Te-(l-y)et

Setting Aet equal to zero in this expression, the equation of the
corresponding phase line is

e =•

l - y

so the Aet = 0 phase line is a vertical line at e. Notice that

dAet

det

Hence, Aet < 0 when et > e, and the arrows of motion along the e axis point
toward the phase line (Figure All.7).

For the other phase line, we have

Az, =rz+(l-a)e,-(l—a)z,
from where, setting Azt = 0,

r7

(8')

\-a

(the phase line is upward-sloping), and

dAzt

dz=
= -(l-a) <0

Hence Azt < 0 in the region above the phase line, and the arrows of motion
are as shown in Figure All.8.
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Azf = 0

Azt > 0 => zt T

Figure Al l .8 . The Azt = 0 phase line.

Azf = 0

Figure All.9. Phase diagram.

n

Finally, combining the two preceding graphs, we obtain the full phase
diagram for the system (Figure A11.9).

Problem 5.3. A model of learning by doing. Starting from the Solow model with
exogenous technical progress, we will develop a simple model of endogenous
growth and examine some of its implications. Assume that the production
function is of the form

= Ka(AL)\-a

Then output per worker is given by

= AZa
(1)

where A is an index of technical efficiency, and Z = KIAL is the capital/labor ratio
in efficiency units. Given a constant investment coefficient s, the growth rate of Z
is given by the equation
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(2)

where n is the rate of population growth, and gA = A/A is the rate of technical
progress.

Instead of assuming that gA is a given constant, we will now assume that the
rate of technical progress gA reflects the accumulation of knowledge with
productive experience. In particular, we assume that the instantaneous increase of
A is proportional to output per worker, that is,

(3)

where the coefficient /measures the speed of learning.

(i) Show that under these assumptions the law of motion for the capital/labor
ratio is of the form

Z = (s-yZ)Za-(S+n)Z

Dividing both sides of (3) by A, the rate of technical progress is given by

gA = yZa (4)

Substituting (4) into (2) and regrouping terms, we have

Z = (s-yZ)Za-(8 + n)Z (5)

(ii) Construct the phase diagram for the system, and discuss the stability of its
steady state. What is the growth rate of income per worker along the steady-
state path?

To analyze the dynamics of equation (5), we will use Figure All.10. In the
upper panel we plot the functions Za and s - yZ. The product of these two
functions, which gives us the first term on the right-hand side of (5), is shown
in the lower panel. Because the product (s - yZ)Za must be equal to zero
when either factor is zero, and positive when both factors are positive, the
graph of this function has an inverted-U shape and cuts the horizontal axis
twice, one of those cuts being at the origin.

The lower panel of the figure shows the graph of (5+ ri)Z, which is a
straight line through the origin. By (5), the vertical distance between the
curve (s - yZ)Za and the line (<5+ n)Z gives us the instantaneous increment
of Z. Notice that there is a steady state, Z, that corresponds to the point
where the two lines cross. As in the Solow model,Jhis steady state is stable,
because Z increases when its value is larger than Z, and decreases otherwise.

Hence, the economy converges in the long run to a balanced-growth path
in which the value of Z is constant. Along this path, output per worker is
given by

Q,=A,Za

and increases, therefore, at the same rate as A. Using equation (4), the long-
run rate of growth (of A and hence of output per worker) is given by

The value of gA can also be determined graphically. If we draw, in the upper
panel^of the figure, the function yZa, the height of this curve when
Z = Z gives us the long-run growth rate.

(iii) Analyze the impact of an increase in the investment rate on the steady state
and on the time path of the system. Things are now quite different from
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(n + 8)Z

(s-yZ)Za

Figure All . 10. Dynamics of the learning-by-doing model.

(iv)

what they were in the Solow model with exogenous technical progress. In
what sense?

Consider now the effects of an increase in the investment rate. As shown
in Figure All . 11, an increase in s shifts the line (s - yZ) upward (in the
upper panel) and, therefore, also the curve (s - yZ)Za in the lower panel. The
new steady state involves a higher value of Z and a higher growth rate.

In this model (unlike the Solow model with exogenous technical progress),
changes in economic policies can have permanent effects on the growth rate
- that is, can affect not only the level of the balanced-growth path but also
its slope, as shown in Figure All.12.
Consider two countries that are identical except for their investment rates.
Discuss the predictions of the current model and the Solow model with
exogenous technical progress concerning the evolution of the relative income
levels of the two countries.
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(n + 5)Z

Figure All.11. Impact of an increase in the investment rate on the steady state.

A second important difference between this model and the ones we
studied in the preceding section involves their implications for convergence.
To illustrate this point, consider the case of two countries that differ only in
their investment coefficients s. We have seen that when technical progress is
exogenous and takes place at the same rate in both countries, they converge
to balanced-growth paths with the same slope, although with different
heights. This implies that the ratio of the per-capita incomes of the
economies eventually stabilizes at a constant value. In the present case,
however, the slopes of the balanced-growth trajectories will be different. In
the steady state, income per capita will grow faster in the thriftier country.
This implies that with the passage of time, income differences between
countries will grow without bound. Small differences in investment rates
(possibly due to differences in economic policies) can generate extremely
large income differentials in the long run. •
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qt(si)

(so)

Figure A11.12. Effect of an increase in the investment rate on the path of output
per worker.

Problem 5.4. An extended Solow model with human capital (Mankiw et al.,
1992). Suppose the aggregate production function is of the form

Y = KaEr{ALfa~Y = ALZaHr
(1)

where K and E are the aggregate stocks of physical capital and human capital, L
is the size of the labor force, and A is a productivity index that summarizes the
current state of technical knowledge. The normalized variables Z = KIAL and H =
E/AL denote the stocks of physical capital and human capital per efficiency unit
of labor.

We postulate constant rates of population growth and exogenous technical
progress (L/L = n and A/A = g) and assume that the fractions of GDP devoted to
investment in physical capital and human capital (sk and sh) remain constant over
time. Under these assumptions, the accumulation of productive factors is
described by the system

K = skY~SK and E = shY-8E (2)

where the depreciation rate S is assumed to be the same for both types of capital.
Using the fact that Z/Z = (K/K) -n-g, and HIH= (E/E) -n-g, the laws of
motion for the stocks of physical capital and human capital can be rewritten in
terms of the normalized variables,

= skZ"-1Hr-(S+g+n) (3)

(4)

(i) Find the steady-state values of Z, H, and output per efficiency unit of labor,
P=Y/AL..

Setting Z and H equal to zero in (3) and (4), we can solve for the steady-
state values of Z and H. We have
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Z = O=>skZ
alHr=(S+g + n) (5)

H = Q=>shZ
aHr-1=(8+g + n) (6)

from where

skZ
a~lHr = sZa H ? — Z

sk

Substituting this last expression into (5), we see that

(7)
{8+g+nJ

and

sk \8+g + ny

Finally, we define output per efficiency unit of labor,

AL
and compute its steady-state value:

„ W(i-«-ry

(8)

(9)

Using lowercase letters to indicate that we are taking logarithms, this
expression can be rewritten in the form

p=az + yh=—-—In—-— + 1—In——— (10)
l - a - 7 S+g+n 1-a-y S+g+n

(ii) We will now construct a log-linear approximation to the system and use it to
derive a convergence equation similar to the one obtained in Section 4(a).
Letting z = In Z and h=lnH (from where Z = ez and H - eh), rewrite the
system (3)-(4) in terms of z and h. Show that the linear approximation to the
transformed system around the steady state is given by

(11)

+ n)z-(l-p)(8+g + n)h (12)

where x= x - x denotes the current deviation of variable x from its steady-
state value. Discuss the stability of the system (11)-(12) (and hence that of
the original system).

To rewrite the system in terms of the transformed variables, notice that

Z = e\ H = eh, z = f, and h = ~

Using these expressions, we can rewrite (3) and (4) in the form
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= F(z, h) (3')

) (4')

Setting z and h equal to zero, we see that in the steady state,

ske
{a-1)zerh =8+g + n = she

{r-1)h (13)

Next, we compute the partial derivatives of the functions F() and G() with
respect to z and h, and, using (13), we evaluate them at the steady state.

Fz =(a-l)ske
ia-1)ze"h =-(l-a)(S+g + n)

Gz =ashe
aze{y-1)h = a {

Gh ={Y-l)she'aeWl = -(l
Using Taylor's formula to approximate F() and G() around the point (z, h),
and observing that

p-az+yh
we have

where x - x - x denotes the deviation of the variable x with respect to its
steady state. Hence, the linear approximation to the system is of the form

p-z) (11)

-h) (12)

The coefficient matrix is of the form

y{8+g + n) 1
A = \

a(8+g
Hence

tr A = -(2 - a - y){8 + g + n) < 0

det A = (1 - a)(l - y)(8 +g + nf - ay {8 +g + nf
= (l-a-y+ay- ay)(8 + g + n)2 = (1 - a - y)(8 + g + n)2 > 0

+ nf[l-(l-a-y)f =(8+g + n)2(a + yf >0
from where

tr±Vtr2-4det _ -(2-a-y)(8+g + n)±
2

(a + y-2)±(a+y)
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and therefore

Xl=-(S+g + n) and X2=-(l-a-y)(8+g + n)
Hence, the eigenvalues are negative real numbers, and the steady state of the
system is stable.

(iii) Using the system (11)-(12) and the fact that p = az + yh, derive a linear
differential equation in p that describes the approximate behavior of this
variable, and solve it. Rewriting the solution in terms of output per worker,
q=p + a, derive a convergence equation of che form

where d is the duration of the period, and X - (1 - a - f)(8+g + n).
Because /?= az + yh, we have

or

P = -*P (14)
where X = (1 — a- f)(S+g + n) and p -p —p. If we consider the period from
t to t + d, the final value of p is given by

pt+d=pte-*d+p(l-e-*d) (15)

Hence, output per efficiency unit of labor converges to its steady-state value
at an exponential rate X that depends on the degree of returns to scale in
reproducible factors (1 - a - y) and on the rates of depreciation, population
growth, and technical progress.

Finally, because output per efficiency unit of labor is not observable, it
will be convenient to rewrite (15) in terms of the log of output per worker,
q=p + a. We have

qt+d =Pt+d +at+d =p
M e-M) + at +gd

Subtracting qt from both sides of this expression and dividing through by the
length of the period, d, we arrive at the desired expression:

d d

Notice that this expression is almost identical with the one we derived in
Section 4(a). The only differences are that the steady state now depends
also on the rate of investment in human capital and that the speed of
convergence is now given by X = (1 - a - y)(8+g + n), rather than by
(1 - a)(S+ g + n). Hence, what matters for the speed of convergence is the
sum of the coefficients of the reproducible factors, physical and human
capital. •

Problem 5.5. Diamond's model with variable labor supply. In the basic Diamond
model, leisure does not enter the utility function of households. As a result, each
worker supplies inelastically his or her endowment of labor time, and the level of
employment is constant (on a per-capita basis). We will now relax this
assumption.
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To simplify things, we assume that the rate of population growth is zero (n = 0)
and that individuals work in youth and consume only in old age. Young workers,
on the other hand, enjoy their leisure and must therefore seek an optimal trade-
off between the disutility of working and the need for income. The utility function
of a representative worker is given by

1-7
where ye (0,1), L is labor time supplied in youth, and x is old-age consumption.
The per-capita production function is

(i) Because consumption takes place only in old age, workers save their entire
labor income wL and consume their savings plus interest earnings (wtLtRt+1)
in the second period of their lives. They solve, then

f xx~y 1
maxs U = L subject to x = wLR >
x,L { 1 - 7 J

Solve this problem for the agent's labor supply (Ls) and savings functions.
Substituting the constraint into the objective function, we get

max U = —!— (wLRfy - L
L 1-7

from where

^U=(w,Rj^)ly (1)
which is the labor supply function. The savings function is therefore of the
form

s =s(w Ri ) = wU= w (wRi f'r)h (2)

(ii) Firms maximize profits per worker, that is,

max Kt=yt- Rtkt -wtLt = {k,L,) -Rtkt- wtLt

Write the first-order conditions for this problem, solve for w and R as
functions of (k/L), and derive the firm's labor demand function.

The first-order conditions for the firm's problem are

ah

l f (3)

dk

f=>2Rt=(Ljktf (4)

These two equations can be interpreted as denning the firm's labor and
capital demands (ki, Li) or, alternatively, as denning factor prices as
functions of input use.
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(iii) In equilibrium, agents optimize, and labor and capital markets clear. Because
population is constant, market clearing requires, in per-capita terms,

U=Ld
t (5)

st = kt+l (6)

Show that the conditions for market clearing and individual optimization can
be reduced to the following system of first-order difference equations in k
andR:

kt+i = R,kt (A)

R);l = 4k]Rfv (B)

To begin, we use (3) and (4) to derive two convenient relationships;
multiplying and dividing these two equations in turn we obtain

(3)* (4) 4wtRt =l=>w, =\l4R t (7)

(3)/(4) wt/Rt=kt/Lt=>wtLt=ktRt (8)

Next, we substitute the savings function (6) into the capital-market clearing
condition and use (8) to get (making implicit use of the labor-market
clearing condition)

kt+1 = wtLt = ktRt

which is (A).
Then, labor-market clearing implies, using (3) and (1),

from where

Raising both sides of this expression to the power 7

and using (7), wt = l/4Rh

(iv) We have been able to reduce the model to a system of two first-order
difference equations that describe the sequence of competitive equilibria in
this economy. Note that if we take logs, the system becomes linear. Defining

K=lnk and p=lnR

we can rewrite (A) and (B) as

Kt+l = p t + Kt (A')

(1 - y)pt+1 = In 4 + YK, + (1 + 7)A (BO

Construct the phase diagram of the system, compute its solution, and analyze
its dynamics. What would be a reasonable initial condition for this model?

Setting pt = pt+i = p and KT = KT+1 = K in (A') and (B'), we obtain the
equations of the phase lines:
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Pt

AKt > 0 => Kt t

Appendix: Solutions to the Problems

^ Pt

AKt = 0

AKt < 0 => Kt

Apt > 0 => p t t

Apt < 0 => p t 4-
A p t = 0

Figure All . 13. Phase lines and arrows of motion.

=>p = 0

(Br) => (1 - y)p = In 4 + JK+(1 + y)p

=>p =—(ln4+yKr)
2y

(P.A)

(P.B)

The intersection of the phase lines gives us the steady state. From the first
equation,

Using this in (P.B), we get

In 4

7
k=e«

Graphically, (P.A) describes a horizontal line at p = 0. From (A') we have

AKt=Kt+1-Kt=pt dpt

Hence, an increase in pt increases AKH which is zero along the phase line. It
follows that in the region above the phase line we have AKT > 0, and K
increases over time. The arrows of motion point to the right above the phase
line (Figure A11.13).

Similarly, (P.B) is downward-sloping in K, and from (B'),

dAp, dpt+1 1 + r 1

«?P, <?p, 1-7 1-7

so Apt > 0 above the phase line, and pt increases over time in that region, as
indicated by the arrows of motion in Figure A11.13.

Combining the two graphs above, we obtain the phase diagram for the
system (Figure All.14). The pattern of motion indicated by the arrows
suggests the existence of a saddle-point equilibrium. That this is indeed the
case will be shown next.

In matrix form, the system (A')-(B') can be written
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Apt=O

Figure All.14. Phase diagram.

PT

1
7

1
l + y

H-r

0

In 4.

The eigenvalues of the coefficient matrix are therefore the solutions to the
following equation:

1-A
y

1-7 1-7

from where

and hence

-A
fl+Y \ Y 1

= (1 - A) - A — =
) 1 - y ) 1-y[( l - y

[(l-y)A2-2A + l] =

A =
2 ± V4-4(l-y) 2±V4y1+Vy

2(1-y)

l+Vy= and , i

2(1-7) " 1-7

i - V y
1 - y — z 1-y

By assumption, ye (0,1), and therefore both eigenvalues are real and
positive, with Ai > 1. Moreover, Vy > y, so Xz < 1, and the steady state is a
saddle point.

To find the eigenvectors of the coefficient matrix, we solve Ae, = A,e(, that
is, normalizing the second component of the eigenvector to 1 (ea =1),

1
7

from where

so, with

1
l + y

L i - y l - y J

e, +1 = A;e;
A,- l
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i

1-V7 .. _ 1-7
1-7 y-4y

we can now write the general solution to the system as

K( — K — C\ T=^ A\ + C2 /=• A 2 (GS.l)

y+^y y—4y

p — p = cX{ + cXt (GS.2)
where C\ and c2 are arbitrary constants. Any sequence {KT, pt} that satisfies
these two equations is a solution to the system (A')-(B'). To definitize the
solution, we have a natural initial condition, Kb = In k0, because the initial
capital stock of the economy is given. On the other hand, pt is a "free
variable," and its starting value is not constrained by an initial condition.2

This observation leaves us with too many solutions. A reasonable thing to
do, following the discussion in Section 2, is to assume that the economy does
not embark on an explosive path, but instead moves along the unique
trajectory that converges to the steady state, i.e., the saddle path of the
system.

To impose this (economic) assumption on the solution, we set the constant
Ci equal to zero in (GS.l) and (GS.2) and "kill off" the explosive root of the
system (Ai>1). This yields

K"( — fC= C2 j==' A/2 \^s

pt-p = c2X2 (10)

Dividing these two equations to eliminate c2X2, we get the equation of the
saddle path

To obtain an explicit expression for the saddle-path solution, we need to
determine the corresponding value of the arbitrary constant c2 in the system
(9)-(10). This can be done using the natural initial condition on the capital
stock. At time zero, KT is a given constant Kb, and (9) yields

KQ —K — C2 J== A2

^ C 2 { K

Substituting this result into (9) and (10), we get

(12)7 r X2{K0K)X2(K0K)(^
1-7 y4y \ 1-7

(13)

which is the solution we seek. •
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Problem 5.6. Social security in Diamond's model. Consider a Diamond economy
like the one analyzed in Example 3.6. Population grows at a constant rate n,
preferences are of the form

U(c, x) = lnc +pin x (U)

with p e (0,1), and the production function is Cobb-Douglas,

Y = KaLla

with a € (0,1).
We assume that wages are taxed at a proportional rate R and that proceeds are

used to finance a balanced pay-as-you-go social-security scheme. Hence, first-
period after-tax income for an agent born at time t is given by

yx={l-x)wt

and his second-period retirement subsidy is equal to

y2=t(l + n)wt+1

(because there are 1 + n young agents for each old agent).

(i) Maximize U(c, x) subject to the appropriate budget constraint, and solve for
the agent's savings function s* = s(yi, y2, R) and his indirect utility function
v(wh wt+u Rt+1, R). Taking factor prices as given, when is the agent's welfare an
increasing function of the social-security tax rate?

The agent maximizes U(c, x) subject to the constraints

c = yx - s and x = y2 + sR

Solving these expressions for s and substituting the result into the utility
function, the agent solves

max W(s) = lmj! - s) + P ln(y2 + sR)

The first-order condition for the problem is

^ R =0
y i s y2 + sR

Solving this expression for s, we obtain the savings function

Using (1), we have

Substituting these expressions into U(c, x), we obtain the indirect-utility
function

or

-y2)-\nR (2)

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Thu Jun 27 18:17:49 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.015

Cambridge Books Online © Cambridge University Press, 2013



794 Appendix: Solutions to the Problems

Taking factor prices as given, the agent's welfare increases with the social-
security tax whenever his lifetime income

I(R) = Ry! +y2= Rt+i (1 - t)wt + T(1 + n)wt

is an increasing function of R for given values of Rt+U wt9 and wt+1. Because

this will be the case when

wt
(3)

that is, when population growth and the rate of wage increase are sufficiently
high to guarantee the agent a "return" on his social-security payments that is
higher than the market interest factor.

(ii) Derive the law for motion of the capital/labor ratio, Z = K/L, and compute
the steady-state values of Z and factor prices as functions of r. Call these
functions

Z=Z,(r), w=ws(t\ and R=RS(R)

Under what conditions is it true that 1 + n > Rs(0)l
With a Cobb-Douglas production function, equilibrium factor prices are

given by

wt=(l-a)Z? and RHl=aZ?J (4)

The savings function (1) can be written

£ ± i l )t+l (5)

and the capital-market clearing condition requires

Kl+1 = Lft

or, dividing both sides of this expression by L,+1 = (1 + n)Lt,

z

Substituting (4) and (5) into (6) and simplifying,

Rt+\

we obtain the law of motion for Z:

a
Eliminating the time subscripts in (7), we can solve for the steady-state

capital/labor ratio,
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Z =
T(l-a)

a J J

The steady-state interest factor is then given by

and when T = 0, it reduces to

r ( l - a )

(8)

(9)

Notice that 1 + n > R5(°) if

• < 1

(iii) What are the effects of an increase in x on steady-state Z and factor prices?
Compute the following derivatives evaluated at X= 0:

Z,(T)' IV, (T)

Taking logarithms of (8), we have

, and

and differentiating this expression with respect to T,

z'Ax) =
Z'six) -1

1 - q

1-T a r ( l - a )
<0 (10)

we see that an increase in the social-security tax always reduces the steady-
state capital/labor ratio. Evaluating (10) at r= 0,

(11)

Finally, because w, = (1 - a)Z% we have

Inwr = ln( l -a)+alnZ r

and therefore

w'M d In ws(0) ,,n. a
—7-r = = aZj(O) =

ws(0) dx 1 -
and because R = aZ""1

R'M _ d In Rs(0)_(a t ) , ( 0 )

RM dx {a >Zs{
l - a

(12)

(13)
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796 Appendix: Solutions to the Problems

(iv) One of the advantages of working with a model in which individual
preferences are clearly specified is that this gives us a natural criterion for
evaluating the desirability of possible policy alternatives. Using your previous
results, and considering only its effects on steady-state welfare, when will it
be a good idea to introduce a social-security scheme? To answer this
question, compute the derivative of a representative individual's
(maximized) welfare with respect to R, taking into account both the direct
effects of the tax and its indirect effect through the induced change in
steady-state factor prices, and evaluate it at T= 0.

At a steady state we have

Ryt + y2= [R(l - T) + T(1 + n)]w (14)

Using (2) and (14), steady-state welfare can be written

t) + t(l + n)]-lnRs(t) (15)
Hence,

+ (1 + 0

and

Using (12) and (13), this expression becomes

Now, because z'(0) < 0, the second term of this expression is negative, and
F'(0) > 0 if and only if

Hence, social security may increase welfare even though it reduces savings and
lowers the steady-state capital stock. This will be the case when the no-social-
security steady-state interest factor is "too low," i.e., when in some sense the
economy has a tendency to overaccumulate capital. (To make this more precise,
consider a social planner who wants to maximize the welfare of steady-state
generations subject to a resource constraint. What will be the optimal value of Z
and the implied interest factor?) •
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Chapter 12
Problem 1.2. A violation of the principle of optimality

Consider an agent who lives three periods and maximizes a utility function of
the form

Vl = Ul + aU2 + PU3

where utility in period i, Uh is a function of current and (expected) future
consumption, i.e.,

Ui{cx,c2,e3) = ln(ctc2c3), U2(c2,c3) = ln(e2c3), and U3(c3) = In c3

and the budget constraint is of the form

At+i = At - ct (Ax given, and A4 = 0)

where A is wealth.
Notice that the return function is additive, but not separable over periods, as

the period-1 utility, for example, depends on (expected) consumption at times 2
and 3. Hence, the assumptions of Theorem 1.1 do not hold, and as we will see, the
principle of optimality fails.

(i) Compute the optimal consumption plan from the perspective of time 1,
cl = (c\, cld ) .

The objective function from the perspective of period 1 can be written

c3 (1)

Substituting the flow budget constraints recursively into each other, we obtain
a single restriction requiring the sum of consumption expenditures to add up
to initial wealth Ax:

A1 (2)

Solving (2) for c3, and substituting the result into (1), the agent solves the
following problem at time 1:

max \\icu c2) = Incx + (l + a)lnc2 +(l + a + /J)ln(A -cx-c2) (P.I)

The first-order conditions for this problem are given by

dVx 1 1 + a+p
cx A-c2-c3

cx Ax-c2-c3

dVx 1 + a

(3)

dc2 c A
l + a+p

( 4 )

c2 Ax~c2-c3

Using (3) and (4), we have
1 l + a
C 2

=>c2=(l + a)c! (5)
and substituting (5) into (3),
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=A-c -c = A -c -

Using (2), (5), and (6), the remainder of the consumption plan is given by

c\ =A, -c\ -c\ = A -(2 + a)c\=(l + a+p)j~^ (8)

(ii) Next, consider what happens as the agent begins to implement this plan.
At time 1, he consumes c\, receives utility Uu and has leftover wealth A2 =
A1 - c\. He then faces the problem of maximizing utility over the remainder
of his life,

max V2 = aU2 + f}U3

subject to c2 + c3 = A2. Compute the new optimal plan, c2 = (c|, c2), and
compare it with the last portion of c1. Has the consumer changed his mind?
How and why? Does the Bellman equation hold?

At time 2, the agent solves

max V2 (c2) = a In c2 + (a + p)\n{A2 ~c2) (P.2)

where

A -A -cl-A Al (2 + 2a-¥/i)A 1
2 1 1 1 3+2a+p 3+2a+P

The first-order condition,

c2 A2~c2

can be solved for c\ as a function of A2:

Using (9) and (7), we have

A - a

(10)

1 + a ~ (2a+P)(l +

2 V '

Hence, revised second-period consumption is lower than in the original plan.
The agent has changed his mind because once period 1 has passed, he no
longer cares about the effect of planned second- and third-period
consumption on period-1 utility. O

Problem 1.7. Prove Theorem 1.6: Let (X, d) be a complete metric space, and let
T:X -> X be a contraction with fixed point v e X Further, let Y be a closed
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subset of X, and assume that T maps points in Y into some subset Z of Y (i.e.,
T:Y -> Z). Then the unique fixed point v of T in X will be in Z.

Because (Y, d) is a complete metric space, v must be in Y. To show that it is in
the subset Z, note that, by assumption, T maps points in Y into points in Z; hence,
7V must be in Z, but because v is a fixed point, Tv = v € Z. •

Problem 1.11. Prove Lemma 1.10: Let T:C(X) -> C(X) be the operator defined
by

Tv{x) = max {F(x, U) + £v[m(x, w)]}
uer(i)

and assume that Assumption 1.9 (monotonicity) holds. Then Tmaps
nondecreasing functions into strictly increasing functions.

Let v( ) be a nondecreasing function, and x0 and xx e X two arbitrary points in
its domain, with xt > x0. Then v(xt) > v(x0), and because F is assumed to be strictly
increasing in x, F(xu u) > F(x0, u) if u is the same, and v[m(xu u)] > v[m(x0, w)], by
our monotonicity assumptions on v() and m(). Moreover, the constraint set
corresponding to xb F(xi), contains F(x0). Hence,

Tv(xt) = max {F(xuu) + f5v[m(xi,u)]} > max {F(x0,u)+Pv[m(x0,u)]} = Tv(x0)

and we conclude that Tv is strictly increasing. •

Problem 1.14. Prove Lemma 1.13: Consider the normed vector space [C(X), ||-||J,
where \\-\\s is the sup norm, and assume X is a convex set. The set of (weakly)
concave functions in C(X) is a closed subset of C(X).

We will show that any convergent sequence of concave functions in C(X) has a
concave limit. Given a sequence of concave functions {fn} convergent to /, let x0
and Xi be arbitrary points in X, and consider the sequence of real numbers

By the concavity of /„, this is a sequence of nonnegative real numbers, and
because {/„} ->/(in the sup norm and hence pointwise), the sequence has a
nonnegative limit

L = /[(I - X)x + Xy] - (1 - X)f(x) - Xf{y) > 0

This proves the lemma. •

Problem 1.17. Prove Lemma 1.16: Let T: C(X) —> C(X) be the operator
defined by

Tv(x) = max {F(x, u) + Bv[m(x, u)]}
ueT(x)

and assume that the concavity and monotonicity assumptions hold. Then T maps
weakly concave functions into strictly concave functions.

Let v be weakly concave, take two arbitrary points in its domain, x0 and JCI in X,
with x0 3* Xu and assume that u0 e F(x0) and ux € F(xi) solve the maximization
problems for x0 and xl9 respectively. Hence, u0 e F(x0) achieves Tv(x0), and
ux e F(xx) achieves Tv(xi). To simplify the notation, define

y0 = m(x0,uQ), yx = m(xt, ut)
xk=(l~X)xo + Xxu ux=(1-X)uo + Xuu yx=(1-X)yo + Xy1

The assumption that F is convex can then be written as ux e T(xx). Note that
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800 Appendix: Solutions to the Problems

Tv(xx) = max {F(x\u) + pv[m(x\u)]} >F(u\xx) + v

> [(1 - X)F(x0, Mo) + XF{xi, Mi)] + [(1 - A)v(y0) + Av(y,)]

where the first inequality holds because, by the convexity of the constraint
correspondence, ux is feasible for xx (ux s r(xA)), but is not necessarily optimal.
The second holds by the concavity of ra() and the monotonicity assumption,
which ensures that v() is increasing. The third holds by the concavity of F( )
(strict) and v( ). •

Chapter 13
Problem 2.7. Apply the implicit-function theorem (IFT) to compute the partial
derivatives of the function <p(kt, ct), defined implicitly by equation (16) in the text,
and determine their signs.

Rewriting (16) in the form

F(ct+1; kt9 ct) = pU'(ct+l)f\f(kt)-ct]- U\ct) = 0

we have, by the IFT, that provided Fct+1 * 0,

andTK dk, Fcand
 rc dc, F0

where

Fkl=pU'(cl+1)f"(kM)f'(kt)<0

Fct = pU'(ct+l)f"{kt+1)(-l) - U"(ct) > 0

and therefore

dcl+1 Fk,
37 = TT
OK, ta+x

= -(-)/(-) < 0

(/fc = = =

dc, Fct+,

Problem 2.8. Setting ct = ct+1 = c and kt - kt+x = kin equations (15) and (16) in the
text, draw the phase lines Akt = 0 and Ac, = 0 for the system. To complete the
phase diagram, determine the directions of motion along the c and k axes in each
of the four regions in which the state plane (c, x) is divided by the phase lines.

The equations of the phase lines are obtained by setting in turn Akt = kt+1 -kt=
0 and Ac, = ct+1 - c, = 0 (i.e., c, = c,+1 = c and kt = kt+1 = k) in (15) and (16):

(15)=>k = f(k)-c

, = 0:c = f(k)-k (P.I)

= pU'(c)f'[f(k)-c]

=> Act =0: BT[f(k)-c] = l (P.2)
Working with (P.I), we have
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Akt < 0 =

= 0

Figure A13.1. The Ak, - 0 phase line.

dc_

dk
= / ' (* ) -1 and

Hence the phase line c = c(k) is concave. It achieves a maximum at the point km

where f{km) = 1. In addition, /(0) = 0, so the line goes through the origin; it rises
at first to the maximum and then declines, intersecting the k axis again at the
point where f(k) = k.

This information allows us to draw the phase line. To determine the direction
of the arrows of motion, note that we can write, using (15),

Akt = kt+1 -kt = f(kt) -kt-ct

Differentiating this expression with respect to c, we find that

dAk
dct

• = - 1 < 0

that is, an increase in c reduces the value of Akt. In particular, because Akt = 0
along the phase line, an increase in c (which will put us above the line) makes
Akt negative. Hence, k is decreasing over time above the phase line, and
increasing below it, as shown in Figure A13.1. This is intuitively obvious, as a
consumption level that is "too high" must necessarily reduce the capital stock.
Similarly,

Act = 0 => G(c; fc) = pf'[f(k) - c] -1 = 0

Differentiating this equation implicitly with respect to k, we get

(P.2)

so the phase line is upward-sloping. Comparing this expression with (dc/dk)Ak=0,
we see that the second phase line is steeper than the first one in the region in
which the latter has positive slope. Differentiating again,

dzc
dk2 = f" < 0

Ac=0
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Act > 0 => c t T

Act < 0 => ct 4

Figure A13.2. The Act = 0 phase line.

so the phase line is concave. Moreover, the horizontal intercept is positive, as
with c = 0 we have

Because / ( ) is monotonically decreasing with / ( 0 ) = °°, the last expression
holds only with f(k) > 0, which in turn requires k > 0.

To draw the arrows of motion corresponding to this phase line, observe that

U\ct) = pU\ct+1)f[f(k<)~ct]« ct+1 = 4>(kt9 ct) (2)

implies that

so
<9 Ac,
dk,

= <t>k<0

This result tells us that c is decreasing over time to the right of the phase line,
as shown in Figure A13.2.

• Combining what we know about the two phase lines, we can draw the phase
diagram for the system. It is clear that the two lines will intersect in the first
quadrant, yielding a steady state (c, k). Figure A13.3 shows the intersection at a
point where the two lines are upward-sloping. To see that this is indeed the
case, recall that the slope of the first phase line is given by

fkUK

At the steady state we must have f(k) = V/5 > 1, so dc/dk\Ak=$ > 0.

•
Problem 2.9. The phase diagram you have just drawn should suggest that the
steady state is a saddle point. Check that this is true by showing that the
eigenvalues of the Jacobian matrix for the system are positive real numbers lying
on opposite sides of 1.

We have
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Ac f=0

k 1 k

Figure A13.3. Phase diagram.

kM =f(kt)-c,s(p(kt,ct)

U'(c,) = fSU'{ct+l)f\f{kt)- ct] <=> cl+l = 0(fc, c.)

From Problem 2.7, we know that

0c =

dk, Fa+1 pU"(ct+1)f'(kl+,)

dc,+1 _ Fc , pU'(ct+l)f"(kl+1)(-l)

dc, FcM pU"(cM)f'(kl+1)

(15)

(16)

At a steady state, we have kl+1 = k, = k, cl+1 = c, = c, and Pf\k) = 1. Hence we can
simplify these expressions to

_ U'{c)f"{k)f\k) U'f"
U"(c)f'(k)

pU'(c)f"(k)

U"

^ pU"{c)f\k) U"

Moreover,

<Pk = /U) and cpc = - l

The Jacobian matrix evaluated at the steady state is then

/ ' - i

+ 1

-U'f"
U" i U" J

Hence,

because /(*:) = !//? > ! at the steady state,
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XXX2 =det/=/

and

)] -4/'

Because A > 0, the eigenvalues of the Jacobian are distinct real numbers, and
because both their product and their sum are positive, they are both positive.
Finally, notice that

so Ai and X% lie on different sides of 1 on the real line; see Section 2(f)(ii) of
Chapter 10. Hence, the steady state is a saddle point, with one eigenvalue in (0,1)
and the other in (1, oo). D

Problem 2.11. Show that the function U(kh kt+1) defined in the proof of
Proposition 2.10 is concave.

From (1) and (2) in the proof of Proposition 2.10 we have

U n (kt, kt+1) = U'lffc) - kt+1 ]f"(kt) + f ' (k t )U"[f(k<) - kM ]f'(k,)

Un (k,, kt+1) = U21 (kt 9 kt+1) = -[/I/ft) - kt+1 ]f'(kt)

U22(kl,kM) = U"[f(kt)-kl+1]<0

The determinant of the Jacobian matrix is given by

U2X U-22

U'f" + U"(f) -f'U"
-f'U" U"

= [U'f" + U"(f'f ]U" - (f'f (U"f = U'f'U" > 0

Hence, the Jacobian matrix is negative definite, and U(kh kt+i) is concave (see
Theorem 2.17 in Chapter 6). •

Problem 4.1. A social planner maximizes the utility of the representative
individual,

Jo l_o-

subject to the resource constraint

Write the necessary conditions for this problem, and show that they reduce to
equations (20) and (21) in the text whenever there are no taxes or subsidies.
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Chapter 13 805

Hence, under these conditions, the competitive equilibrium will be a social
optimum.

The current-value Hamiltonian for the planner's problem is

W = £— + X{F(K, A)-SK- C}
1 —(7

This yields the following Pontryagin conditions:

dHc
 a

dc ~c ~A=

r)HC

(1)

(2)

(2')

Differentiating (1) with respect to time, and substituting (2') in the resulting
expression, we have

This expression easily yields equation (20) in the text when tr = 0. A simple
manipulation of the planner's resource constraint will similarly yield equation
(21) in the text when x = 0. •

Problem 4.2. Assuming a Cobb-Douglas production function (i.e.,/(Z) = Z°%
solve for the steady-state savings rate as a function of tr and the other parameters
of the model.

Using equations (22) and (23), the steady state savings ratio s* is given by

„. Y -LC ALZa-ALc c
Y ALZa ~ Za

from where

s* =

Hence, s* is an increasing function of the elasticity of output with respect to
capital (a), the rate of population growth (/?), and the elasticity of intertemporal
substitution (1/cr), and it is a decreasing function of the rate of discount (p) and
the tax rate on capital income (rr). •

Problem 4.3. One limitation of the approach we have followed is that it assumes
that the economy is initially at a steady state. Otherwise the coefficients of the
variational equation (the law of motion for ZT) change over time, and this makes
it difficult to evaluate V'(rr). It is still possible (and in fact much easier) to show
that a zero tax on capital income is optimal by showing that when % = 0 the
equilibrium path for the economy solves a closely related planning problem.

Consider, in particular, the problem faced by a social planner, similar to the one
described in Problem 2.1, who maximizes the utility of the representative agent
subject to the standard resource constraint and the additional restriction that he
must "throw away" an amount of output equal to xA at each point in time. Write
the planning problem, derive the necessary conditions for an optimum, and verify
that they reduce to equations (20) and (21) when xr = 0 in this system.
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806 Appendix: Solutions to the Problems

The planner maximizes

Jo hre~P'dt (1)

subject to the resource constraint

Kt = F(Kt9 At)- 8Kt - Ct - x A t (2)

where A increases over time at a constant exogenous rate g (i.e., AIA = g). The
necessary conditions for an optimum are almost exactly the same as in Problem
4.1, and in particular we have

from which it is easy to derive equation (20) with % = 0. In addition, the resource
constraint can be written in the form

K^fjZ) C/A x
K Z Z Z

which is equation (18) in the text. Equation (21) then follows easily.
Hence, the planning problem yields exactly the same system of equations we

have derived in the text, provided we set rr = 0 in the latter. Hence, we can
achieve the optimal path by eliminating taxes on interest. The equivalence to the
planning problem brings out the reason why taxes on capital are inefficient.
Because labor supply is perfectly inelastic, wage levies are, in effect, lump-sum
taxes in this model, whereas taxes on capital affect the rate of return on savings
and thus distort the intertemporal allocation of resources. •

Problem 5.1

(i) Let Ve(s) be the expected lifetime utility of an employed worker who shirks,
Ve(n) the expected lifetime utility of an employed non-shirker, and Vu the
expected lifetime utility of an unemployed worker. Write the valuation
equations defining Ve(s) and Ve(n), and explain their meaning.

Consider first a discrete-time formulation in which each period has length
h and workers solve

Then the value of an employed shirker is given by

Ve(s) = (w-0)h + p(h){(b + q)hVu +[l-(b + q)h]Ve(s)} (2)

In the stationary environment we have assumed, expected lifetime utility for
a shirker tomorrow is the same as today. Thus if the worker chooses to shirk
today, he will make the same choice tomorrow. Hence, we can define Ve(s)
recursively: If the worker shirks, today he gets the wage w times the length of
the period. There is, however, a probability (b + q)h that he will lose his job. If
that is the case, next period he will get Vu; otherwise he will remain
employed, continue to shirk, and get the same value Ve(s) again. Because this
will happen one period hence, the expression within the curly brackets
(tomorrow's expected lifetime utility) must be multiplied by the time
discount factor to get it in present-value terms.

To go to continuous time, let the discount factor be f3(h) = e~ph. Subtracting
P(h)Ve(s) from both sides of (2), dividing by h, and taking the limit as h -> 0,
we have
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lim ?-&&• V M = limu>+ p(h)(b + q\Vu-Ve {s)}

or

pVe (s) = w + (b + q\Vu - Ve (s)] (3)

p + 6 + jr

Similarly, in the case of a non-shirker, the current "dividend" is w - x, and the
probability of job separation is b. Hence,

pVe(n) = (w ~ x) + b[Vu - Ve(n)] (4)

=»V.(I,) = ^ ^ L (4')

(ii) An employed worker will choose not to shirk if Ve(n) > Ve(s). Show that this
"no-shirking" condition implies that Ve(s) > Vm so that workers prefer to be
employed, and use it to solve for the minimum wage wm at which workers will
find it optimal not to shirk. What factors determine wml

An employed worker will choose not to shirk if Ve(n) > Ve(s). Using (3)
and (4), we can write the non-shirking condition (NSC) as

VM)> Ve(s) s (fe
VM)>Ve(s) ( 5 )

p+b+q p+b

or, rearranging terms,

w>pVu+(r + b + q)(x/q) = wm (6)

Alternatively, using (3') and (4'), we have

q[Ve(s)-Vu]>x (7)
Equation (6) defines wm, the minimum wage the firm has to pay in order to
prevent shirking. Note that wm increases with the level of effort, the expected
utility of unemployed workers (which lowers the cost of job loss), the
exogenous quit rate (if one is leaving, one may as well cheat), and the
discount rate ("punishment," which comes in the future, is discounted more
heavily); it decreases with the probability of detection.

Equation (7) tells us that in order to ensure that workers will not
shirk, wages have to be high enough that workers will prefer to work. This
implies that the unemployment rate will be positive - otherwise, a worker
who was fired could get another job immediately, and Ve(s) = Vu, so (7) could
not hold. •

Problem 5.2. We will now characterize a stationary equilibrium of the model.

(i) Let wu be the unemployment benefit. Derive the expected lifetime utility of
an unemployed worker, Vm as a function of wu and the value of an employed
worker, Ve.

By the same reasoning as in Problem 5.1, the value of an unemployed
worker, Vu, must satisfy

pVu=wu+a(Ve-Vu) (9)

where a is the rate at which workers find jobs and come out of the pool of
unemployed.
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808 Appendix: Solutions to the Problems

(ii) Using the expressions for Ve (= Ve(n)) and Vu derived earlier, solve for Ve

and Vu as functions of a and the parameters of the model. Rewrite the no-
shirking condition, replacing Vu by its equilibrium value. How do
unemployment benefits and the probability of finding employment affect the
minimum non-shirking wage?

Using (4) and (9), we have

pVe - pVu = (w - x) + b(Vu - Ve) ~ wu - a(Ve - Vu)

from where

Substituting (10) into (4) and (9), we obtain

(p + a)(w-x)+bwu

p + a + b

a(x) + (+b>

p + a + b

Substituting (12) into (6), with w = wm,

T, / . v / x a(wm-x)
wm=pVu+(r + b + q)(x/q) =

p +
p + a + b

and rearranging, the no-shirking condition can be written

(12)

Hence, the critical wage increases with the size of the unemployment benefit
and the rate of flow out of unemployment, both factors that tend to increase
V.

(iii) Let N be the given labor supply. In a steady-state equilibrium, the flows into
unemployment and out of it must be equal. Using this condition, solve for
the probability of finding employment, a, as a function of 6, L, and N, and
substitute the result into the no-shirking condition. Interpret the resulting
condition. The equilibrium wage and unemployment levels are determined
by the intersection of the non-shirking condition and the labor demand
schedule f{L) = wm. Draw both functions in the (w, L) plane, and verify that
the equilibrium involves an excess supply of labor.

In a steady-state equilibrium, the flow into unemployment (bL) and out of
it (a(N— L)) must be equal; hence,

<«>

Substituting this expression into (12), the no-shirking condition can be
rewritten

wm (NSC)

This expression defines an upward-sloping curve in the (w, L) plane, as
illustrated in Figure A13A As employment increases, wages must also rise, to
prevent shirking. The reason is that a decrease in the unemployment rate
tends to lower the expected value of the "punishment" to detected shirkers.
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w NSC

Labour Supply

Labour Demand

L* N L

Figure A13.4. Equilibrium wage and employment levels.

To compensate for this, wages must rise, so that the loss of being fired
increases.

The equilibrium wage and unemployment levels are determined by the
intersection of the non-shirking condition and the labor demand schedule
/(L) = wm, as illustrated in Figure A13.4. As noted earlier, the equilibrium
will involve involuntary unemployment. In spite of the excess supply of
labor, H>* is the equilibrium wage, because firms have no incentive to either
increase (because workers are supplying effort) or decrease wages (because
they are on their labor demand schedule). Unemployed workers would be
happy to take a job, but cannot make a credible commitment not to shirk if
the wage is lowered. •

Problem 5.3

(i) Derive an expression that describes the evolution of the unemployment rate
over time as a function of the instantaneous rate of separation (s) and the
probability of finding employment, &~a. Set u = 0 and solve for the steady-
state unemployment rate as a function of the rates of flow into and out of
unemployment (assuming 9 is constant).

The instantaneous change in the unemployment rate is the difference
between the flows into and out of unemployment normalized by the total
population. At a given point in time, a fraction (1 - u) of the population is
employed. Multiplying this number by the instantaneous probability of
separation, s, we obtain the flow into unemployment. Similarly, the flow into
employment is equal to the current unemployment rate times the probability
of rinding a job, given by (3). Hence, we have

it - (1 - u)s - u9Xa (4)

Setting u equal to zero in (4), we can solve for the steady-state rate of
unemployment as a function of 9:
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810 Appendix: Solutions to the Problems

(ii) Let V be the value of a vacancy, / the value of a filled job, and r the
discount rate. Taking into account the relevant transition probabilities and
the flows of costs and benefits for an occupied job and vacant job, write the
valuation equations for these two assets, / and V. Explain their meaning.
Using the two asset-valuation equations (subtract one from the other),
derive an expression for / - V as a function of y, c, w, r, and the relevant
transition probabilities.

As in the discussion in Section 1 of the text, the general idea is the same
for all the valuation equations: The expected return on each "asset," given by
its current dividend plus expected capital gain expressed as a fraction of its
value, must be equal to the discount (interest) rate. In the case of a vacant
firm, the dividend is negative (the maintenance cost, c), and the expected
capital gain is equal to the difference between the value of a filled job, / , and
that of a vacant one, V, multiplied by the instantaneous probability that a
vacancy will be filled, given in equation (2). Hence,

ry = -c + 0~a(J-V) (6)

In the case of an active firm, the dividend is the current profit (the difference
between output and the wage), and the expected capital gain depends on the
probability (s) that the match will be exogenously destroyed:

J) (7)

Using these two expressions,

rJ-rV = y -w - s{J -V)+ c-0a(J -V)

Rearranging terms and solving for / -V,

(iii) Let E and U be the "values" of an employed worker and an unemployed
worker, respectively. Write and explain the corresponding asset valuation
equations, and derive an expression for E- U.

By the same logic as in (ii), we have

rU = b + 6ia(E-U) (9)

rE = w + s{U-E) (10)

from where

-U) = w-s{E-U)-b-0l-a(E-U) (11)

=>E-U= W~\ •

Problem 5.4. Using the results of Problem 5.3, solve for the equilibrium wage.
We have to solve

max(E-Uf (J-vf" = f w~b )'{ ^

Taking logs, this is equivalent to
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max p ln(w - b) + (1 - /3)\n(y + c-w)

Setting the derivative of this function with respect to w equal to zero,

P 1- /3
w-b y+c-w

and solving for H>,

= 0 => P(y + c - w) = (1 - p){w - b)

(12)

•
Problem 5.5. In equilibrium, new firms enter until the value of a vacant job drops
to zero, i.e., until V = 0.

(i) Using the valuation equations for V and /, show that

v — w
- = cda (13)
r + s '

With V = 0 the valuation equations (6) and (7) yield

v — w
J = c8a and J = ±

r + s

Thus

v — w1 = c0a (13)
r + s

a condition that summarizes the "supply of jobs" in equilibrium,
(ii) Using equation (13), along with the expression for the equilibrium wage

obtained in Problem 5.4 and the formula for the steady-state unemployment
rate obtained in Problem 5.3, solve for the equilibrium values of w, w, and 6.
Draw a diagram in the (w, 6) plane illustrating the determination of
equilibrium.

Collecting previous results, we have

y-w = c(r + s)9a (13')

(12)

Using the first two equations, we can solve for 0*,

eaJi-PXy-b)-Pc
c(r + s)

and equation (5) then gives the equilibrium rate of unemployment.
Graphically, equation (14) defines a vertical line in the (0, u) plane, and
equation (5) a downward-sloping line, as shown in Figure A13.5.

Notice that in order for 0* to be positive, it must be the case that

Hence, we need to impose this condition on the parameters in order to get a
sensible equilibrium.
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V
bT

s
• — • — u = : —

Figure A13.5. Determination of the steady-state unemployment rate.

(iii) What are the effects on the equilibrium unemployment rate of an increase in
workers' bargaining power (/3), an increase in the unemployment benefit (b),
and an increase in the probability of structural shocks (s*)?

Using equation (14), it is clear that an increase in b reduces the
equilibrium value of 0, shifting the vertical line to the left. Because the other
equation is not affected, an increase in the unemployment benefit increases
the equilibrium rate of unemployment. The effect on 9 of an increase in s is
similar. Moreover, this parameter change also shifts the second line upward,
which raises the unemployment rate further. Finally, it is easy to see, using
equations (14) and (15), that an increase in workers' bargaining power also
increases the unemployment rate. •

Problem 5.6. Define the variables

and R = Za (6)

(i) Rewrite the system (4)-(5) in terms of X and R. Solve for the steady-state
values of X and Z.

Notice that

= XR
Z a 1 a

Hence, we can rewrite (4) and (5) in the form

Z
Z

(40

(50

We can use these expressions to solve for the steady-state values of X and R.
Setting c and Z equal to zero, we have

R* =
p+8+go

a
(7)
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R p+5+gc
Notice that the condition for utility to be bounded, given in equation (3),
implies that S* = 1-X*<a.

Using (6), moreover, we have

— = — -a— = — ~{aR — (p + 8)} — g - a(l - X)R + a(S + g + n)
X c Z G

or

— - R( — ei YV) P + 8 + ga .

and
P 7

(10)

(ii) Construct the log-linearization of the system obtained in (i). Compute the
eigenvalues of its coefficient matrix, and show that the steady state is a saddle
point. Compute the eigenvector associated with the negative eigenvalue, and
relate the slope of the saddle path to the size of the negative eigenvalue.
Does anything look familiar?

Let x = In X and r - In R. Then the system (9)-(10) can be written in the
form

( g ) ( , )
a

r = (1 - a)(S + g + n) - (1 - a)(l -ex)er & G(x, r) (10')

Evaluating the partial derivatives of F( ) and G( ) at the steady state, we
obtain

Fx=aerex=ccR*X*

a ) a
Gx=(l- a)erex = (1 - a)R* X*

Gr = -(1 - a)(l - ex )er = -(1 - a)(l - X*)R* = »(1 - a)(S+g + n)

Hence, the Jacobian of the system is of the form

F F
Gx Gr

aR\—-(l-X*)
a)R*X* <y

and we have

tr / = aR* X*-{1- a)(l - X*)R* = -{l-X*- a)R* > 0

det / = -(1 - a)(l - X*)aX* i?*2 - (1 - a)oX* R*2 (- - (1 - X*)

(l-a)aX*R*2

a
Notice that because det / < 0, the steady state is a saddle point, as claimed.
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The eigenvalues of the system are given by

tr±Vtr2-4det

where

,2 *2 4(1- a)aX*R*2

A = tr2-4det = ( l -X*-a) R*2+—

Let ex be the second component of the eigenvector corresponding to the
negative eigenvalue, -A, and normalize the first component to 1, so that ex is
the inverse of the slope of the saddle path at the steady state. Then ex solves

-Fx F,T11 f-A
JeKtex<*

\_GX

from where
Gx+Grei=-Xex

1 -(Gr+X)
(l-a)R*X*

(11)

Hence, the slope of the saddle path depends on the sign of the difference
(1 - a)(8+ g + n)- A, where the first term, as the reader will recall from
Section 4(a) in Chapter 11, is the rate of convergence in the Solow model.
As we will see later, this difference can be either positive or negative, so in
principle the savings rate can be either an increasing or decreasing function
of the interest rate, depending on parameter values. •

Problem 5.7. Next, we will consider a special case. Assume that the following
restriction on the parameters holds:

p + S + go - aa{8 + n + g) (12)

Construct the phase diagram for the system, and compute its negative eigenvalue
and the associated eigenvector.

Given condition (12), equation (9) reduces to

x = — = aR\--(l-X)\ (13)

Hence, x > 0 if

->a-x)
a

a
(14)

Notice that, given (3), equation (12) requires that a> IIa> 1; hence X* > 0. Figure
A13.6 shows the corresponding phase line and arrows of motion.

Working with

^ (10)
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x>O=> x t

x = 0

x<0=> xi

R

Figure A13.6. The i = 0 phase line.

X

r = 0

R

Figure A13.7. The r = 0 phase line.

the equation of the r = 0 phase line is

and

S + g + n
R

(15)

Hence, the r = 0 phase line is upward-sloping, with a positive R intercept and a
horizontal asymptote at x = 1, and R decreases over time in the region to the right
of the phase line, as shown in Figure A13.7.

Combining the two phase lines, we obtain the phase diagram shown in Figure
A13.8. Notice that, given the pattern of the arrows of motion, the saddle path
coincides with the x = 0 phase line. Hence, the savings ratio remains constant over
time in equilibrium, as in the Solow model.

Downloaded from Cambridge Books Online by IP 130.102.42.98 on Thu Jun 27 18:17:49 WEST 2013.
http://dx.doi.org/10.1017/CBO9780511810756.015

Cambridge Books Online © Cambridge University Press, 2013



816 Appendix: Solutions to the Problems

X

X* * » •
^ /

17
= 0

R

Figure A13.8. Phase diagram.

To compute the eigenvalues of the system, notice that under the assumption

p + 8 + go = aa{8 + n + g) (12)

equations (7) and (8) become

(16)

(17)

a

1X >X
a a

Using these expressions and previous results, we have

tr J =-(I-X*- a)R* = -\--a)o(S +

and

R *2 = (l-X*-af+- (1-CKT) 4(l-a)al-<r

= 4-[(l-aaf -4(1-a)a(l-oj\

To simplify this expression, notice that

(1 - aaf = [(1 -a) + «(1 - o)} =(1- a) + a2 (1 - <r) + 2(1 - «)a(l - a)

Hence,

(l-

and, using (16),

Now, the negative eigenvalue is given by
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x<o=>x4.

i

x>o=>xt

~"— x = 0

r

X

a-1
o

/

I

I

x>0=>

x < 0

xt

^ - ~

=>xi

\

——' x =

' R

Case i: |i > 0 Case ii: |1 < 0

Figure A13.9. The x = 0 phase line.

and, using (11),

(l-a)R*X*

Problem 5.8. Let us now return to the general case of the model. Define the
parameter pi by

l i / x -
ao(S + n + g) (

and notice that if n - 0, then we are in Problem 5.7. Write the negative eigenvalue
of the system and the corresponding eigenvector as functions of JH, and relate the
slope of the saddle path to the sign of fx. Draw the phase diagram of the system
for ji > 0 and ji < 0.

Using (18), equation (9) can be written

or
1 -(1-X) \-na(8 + g + ri)

Hence, x > 0 if

aR
1

cT-1

(19)

(20)

Hence, the i = 0 phase line has a horizontal asymptote at X= (a-1)1 a. If ^ > 0,
the phase line lies above the asymptote and is downward-sloping, and if ji < 0 the
line lies below the asymptote and is upward-sloping. In both cases, X increases
over time in the region above the phase line, as shown in Figure A13.9.
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Case i: (J. > 0

Figure A13.10. Phase diagram.

r = 0

Combining this figure with the r = 0 phase line, which does not depend on jx, we
obtain the phase diagram shown in Figure A13.10. Notice that if fi > 0, the
consumption rate is a decreasing function of the interest factor. If the economy
approaches its steady-state capital/labor ratio from below, the interest factor
decreases over time, and the consumption rate increases. Hence, the savings rate
falls with income. If JJL < 0, on the other hand, the savings rate increases with
income as the economy approaches its steady state.

To compute the negative eigenvalue, notice that with

aa(8 + n + g)

equations (7) and (8) become
P + S + 8a

1-X* =
1

p + 8 + ga (l+n)a

Using these expressions and previous results, we have

(18)

(21)

(22)

' = -(l-X*-a)R* = -\

= -[1
and

t2 U-A -a) a

1 "{[I- - 4(1 - a ) a

To simplify this expression, notice that
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[1 - oil + fipf = {(1 - a) + oil -

= (1 - af + «2 [1 - (1 + n)af + 2(1 - a)o[l -

Hence,

(1 + l ^ A = (1 - a)2 + «2[1 - (1 + ̂ )of + 2(1 - a)a[l - (

- 4(1 -a)a[l - (1 + H)G] - 4//(l -a)a[l - ( +

= (1-a)2+a2[l-(1+ //)oi2 -2(1-a)a[l-(1

- {(1 - a) - a[l - (1 + n)a]}2 - 4^(1 - a)a[l -

= [1 - 2a + a(l + JU)<T] - 4/i(l -a)a[l -

) = M4( lo ; )« [ l ( l + / x )CT]

\ [ l 2 (l > ]

with

where the expression under the square-root radical is positive, because we know
that A > 0.

Using (21),

A=

Now, the negative eigenvalue is given by

-X = - (tr - VA ) = —-—-—— {[1 - a(l + fi)a] + [1 - 2a + a(l + yu)a][l -
2 2
—(8 + n + g)

= ~ — {2 - 2a - £(/i)[l -2a + a(l + n)a]}

or

-X = -[1 - a - D(n)](8 + n + g) (24)

where

Using (11), (21), and (22),

ex (l-a)R*X* (l-a)R*X* (l

(26)

Notice that by (22), X* > 0 requires

(l + /i)<T-l>0 (27)
Hence, the denominator of (26) is positive, and
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(1 - a) - a[l - (1 + n)a] = (1 - a) + a[(l + ifa -1] > 0

so the factor multiplying B(/u) in (25) is also positive, and it follows that the sign
of the slope of the saddle path is the same as the sign of B{ji). Now,

By (27), the expression multiplying n under the square-root radical is also
positive. Thus, the slope of the saddle path is positive if the expression under
the radical is less than 1 (i.e., if ji < 0). This agrees with our earlier graphical
analysis. •

Problem 5.9

(i) Taking as given the time path of p, write the necessary conditions for a
solution to the consumer's problem. Derive an equation describing the
evolution of consumption over time.

From the current-value Hamiltonian

Hc = ^ ~ + X{(1 - x)kl~apa - c}
1 — < 7

we obtain

dc

=>c-°=X (4)

—r-— = -A{(1- T)(1-a)k-"pa} = X-pX
dk

^>j = p~(l-t){l-a)k-apa (5)

Using (4) and (5),

- - - - - - I d

(ii) Assume that p = ry, that is, that all tax revenue is used to finance public
services. Substituting the production function in this last expression, solve for
p as a function of R and k. Substitute the result into the flow budget
constraint and the transition equation for consumption. Call / the growth
rate of consumption, obtained from this step, and let J5 be the coefficient of k
in the law of motion for k. Notice that (5 can be written as a simple function
of y.

We have p = ry = %kx~apa. Solving for p,

p-T< k (7)

and substituting (7) into (3) and (6),

k = (l-r)ra/{1-a)k-c = pk-c (3')

^ ^ 1 - a ) - p } = 7 (6')

Notice that (6') can be written
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Hence,

(iii) Observe that consumption grows at a constant exponential rate. Hence, once
we determine its initial level, we have characterized its entire path.
Integrating the flow budget constraint and imposing the transversality
condition, we obtain

ko=[c,e'ptdt (9)

Use this expression to solve for c0.
Solving the integral in (9),

Jo Jo Jo ft —v

from where

co=(P~r)ko (10)

where, by (8),

Problem 5.10

(i) Substitute the equilibrium path of consumption into the agent's objective
function to obtain utility as a function of y(or R), U(f). What condition must
we impose in order to guarantee that utility is bounded? Assume that this
condition holds.

We shall write the utility of the representative agent as a function of y.
Using (10) and (11), we have

cja _ kl
~°{p-yf° _ kt" [P-{\-a-a)ri'a

(1 - a\p - (1 - a)y] (1 - trip - (1 - a)y] (1 _ aj-° (1 - a\p - (1 - <r)y]

(12)

Hence, utility will be bounded whenever

p-(l-a)r>0 (13)

We shall assume in what follows that this condition holds,
(ii) Find the optimal value of r. Does the result "look right"? Why or why not?

Notice that we can write (12) in the form

where
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( l -«)

is a positive constant. Differentiating (12'),

U'(y)=B^°)[P~(

(l-a)2 [p-(l-a)

[-(l-a)2[p-(l-a)Y][p-(l-a-a)Y]~°](l-a-a) + [p-(l-

( l - a ) 2 [p - ( l - a )y ] 2

Hence, U'(y) > 0 provided

p - (1 - a)/ + ay > (1 - a - a)[p - (1 - a)/] <=> ay > - ( a + a)[p - (1 - cr)y]

and this last expression holds by the boundedness condition (13).
Because utility is increasing in the growth rate of consumption, 7, the

government should choose R SO as to maximize

7 = - { ( l
G

that is, so as to maximize (1 - T)?""-1^. Taking logarithms of this expression
and differentiating with respect to T, it is easy to see that the optimal policy
involves setting the tax rate equal to the coefficient of public services in the
production function (i.e., T* = a).

In some sense this is precisely what we should expect. Recall that given a
constant-returns-to-scale Cobb-Douglas technology, the share of output of
each factor in a competitive equilibrium is equal to its coefficient in the
production function. Hence, by setting T* = a, the government is essentially
selling its services at their competitive price. •

Problem 5.11. It will be convenient in what follows to work with the growth rate
of per-capita consumption, denoted by g. Assuming that the share of employment
in goods production, Lx, remains constant over time, solve for Lx as a function of
g. Keep an eye out for scale effects, that is, reasons why a larger economy (as
measured by the size of the labor force, L) may be able to grow faster.

Differentiating the reduced-form per-capita production function with respect to
time, and holding the share of industrial employment constant, we can express the
growth rate of output per worker as a function of the rate of technical progress.
Because goods-market clearing, moreover, requires per-capita consumption to
equal average output per worker, we obtain, using (2) and the labor-market
clearing condition, Ln + Lx= L,

l-ah \ - a \ - a
g = = a\-an = a(L-Lx)

a n a a

and, solving for Lx as a function of g,

L=L (3)
1-aa v '
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Notice that this expression gives us a first clue to the source of scale effects. For
the same growth rate, a larger economy can have larger employment in goods
production and therefore, given the same n, higher output. Because profit is, for
given n, a fixed fraction of output, the incentive to do R&D will be greater in the
larger economy. •

Problem 5.12. Using equations (5) and (6), together with the expressions for
equilibrium factor prices derived in Section 5(a) of Chapter 8, derive the
following relationship between the interest rate and the growth rate of
consumption:

a 1-a

Interpret this condition.
Using the results of Problem 5.3 in Chapter 8, together with equations (1) and

(3), we can compute the equilibrium values of w and v:

w = an (?)
i-'x L'x

n = ( 1 ~ a ) Y = (1 - a)n{l'2a)/aLx = (1 - a)n{l-2aM L — — ] (8)
n \ 1-aaJ

(Second clue on scale effects: Wages are independent of population size, but
profits are increasing in it, and decreasing in g, as more research reduces output
and profits.)

We will use equation (8) to compute the value of the firm, v. Notice that the
only thing in this expression that is changing over time in equilibrium is n, which
grows at the constant rate ag/(l - a). Hence,

nt+s =nt QXpij — ~ s ) (9)
V -t ~~ OC J

and, substituting (8) and (9) into (6), the equilibrium value of the firm at time t is
given by

vf = a - « K -
e

V l-a a)Jt v a 1-a

from where
/-. x (l-2a)/a( CC g

(la)n L

r-~ 8
1-a

Next, we return to the equal-compensation condition, (5). Using (7) and (10),
equation (5) implies that

l-2a)ia(

(w =) an(l a)/a = an —±- (= anv)
I — Z,(X

Simplifying and rearranging terms,
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l - 2 a a{l-a)(T a
r 8 L

and

L

This is the second relationship we wanted. The production side of the model
implies a negative relationship between the interest rate and the rate of growth.
Intuitively, the reason is the following. In equilibrium, labor must be allocated
between its two uses (goods production and R&D) in such a way that its
(private) marginal return is the same in both sectors. The rate of return on R&D
investment is determined by the present value of the stream of monopoly profits
earned by a component producer. An increase in the interest rate will reduce the
discounted value of this sum and thus the market value of the firm and the
incentive to do research. In equilibrium, the level of research employment must
fall, implying a lower rate of growth. •

Problem 5.13. Solve for the equilibrium values of g and the fraction of the labor
force employed in research (LJL). Discuss the determinants of the equilibrium
growth rate and the impact on both variables of an increase in the size of the
labor force, L. Consider also the effects of "merging" two isolated economies into
a larger, integrated one. Does anything change? To what extent is the answer to
this question sensitive to the details of the specification we have used?

Using (II) and (SS) it is easy to see that the equilibrium growth rate is given by3

1 a)Li-p
,* = _ « _ _ _ ( 1 1 )

a+ 1-a

and that the fraction of the labor force employed in research in equilibrium is
equal to

Hence, the growth rate increases with population (L), the market power of firms
(of which a is an inverse index), the elasticity of intertemporal substitution (cr1)
and the productivity of R&D (a), and it decreases with the rate of time discount
(P)-

Consider the effect of an increase in population size in the current model.
Inspection of the equilibrium conditions shows that an increase in L will shift the
II schedule upward, yielding a higher equilibrium value of g. This increase in the
growth rate comes from two sources. First, because in our specification the rate
of innovation depends on total (rather than per-capita) R&D employment (i.e.,
hln - aL), a large economy will grow faster than a small one, even if both devote
the same fraction of resources to R&D. Second, equation (12) shows that R&D
employment in the large economy will also be higher in relative terms. The
reason is that, given the number of firms, a larger market size implies larger
profits, and therefore a greater incentive to invest in research.
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SS

Figure A13.ll. Effect of market enlargement of R&D intensity.

Suppose now that we merge two isolated economies into a larger, integrated
one. In this case, both population and the number of firms will increase, and there
are two separate effects to consider. The size of the market is now larger, but so is
the number of competitors. The impact on profits and on the incentive to invest in
R&D is uncertain ex ante. In the current model, the equilibrium value of g is
independent of the number of firms, and hence the net effect will still be a higher
rate of growth, but this result depends to a large extent on the details of the
model's specification. In particular, we have assumed that n measures both the
number of firms and the stock of technical knowledge available to potential
innovators. An increase in n, then, reduces profits through lower margins, but it
also reduces the cost of developing new products. In the current specification,
both effects just cancel out. Hence, if integration implies the automatic pooling of
(nonoverlapping) national stocks of technical knowledge, the net result will be an
increase in overall R&D intensity. If this is not the case, as seems more likely, the
reduction of price markups induced by greater competition will tend to lower
profits, offsetting, at least partially, the positive effect of a larger market size.4 •
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Notes
1 Recall from Chapter 1 that a complex number c can be written as

c = a + ib = r(cos 0 + i sin 6) = reie

where the last step follows from Euler's formula. Its conjugate is defined as

c = a+ib = r(cos0-i sin 0) = [ c o s ( - 0 ) + / sin(-0)]= re~ie
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2 It is true that in equilibrium the interest factor must be equal to the marginal product of
capital and that initial capital is given. But R also depends on labor input, which is a free
variable.

3 To guarantee that the II and SS schedules cross in the positive quadrant, some
restrictions on parameter values must be satisfied. When this condition does not hold, we
have a corner equilibrium in which R&D employment is zero.

4 The impact of market structure on the rate of innovation is a complex matter. Firms
with some degree of market power may be better able to appropriate the benefits of
their research, but may also be under less pressure to innovate. The literature on the
topic is extensive and not very conclusive. See, for example, Kamien and Schwartz
(1982), Scherer (1984), and Cohen and Levin (1989).
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uniqueness of, 65

and preservation of equalities and
inequalities, 65

right-handed and left-handed, 115
of a sequence, 46

limit set, 408
linear

combination, 117
dependence, 117
independence, 117

linear function (def), 122
bounded,133
composition of, 138
continuity of, 132
inverse of, 126,140
matrix representation of, 130
norm of, 135

linearization, 487
of difference equations, 423
of differential equations, 416

line segment, 178
Lipschitz

condition, 73
constant, 73
equivalence, of metrics and norms, 43,106
function, 73,100

logical connectives, 7

manifold, smooth, 213
market socialism, 373
matching function, 646
Mathematica, 538,638
matrices

diagonalization of, 151
similarity of, 146

matrix representation, of a linear function,
130

maximal element, 19

maximal interval of existence, of the solution to
a differential equation, 437

maximization
with a convex constraint set, 277ff
without differentiability, 297
with equality constraints, 282ff
with inequality constraints, 291ff
with integral objective and constraint

functions, 296
with nonnegativity constraints, 279
in an open set, 279

maximum, 19,32
maximum principle, 567ff
mean-value theorem, 159,178

Cauchy's, 162
measure zero, 215
metrics (def), 40

C,45
equivalence of, 105
L2,44
product, 43
sup, 44

metric space, 40
minimal element, 19
modulus

of a contraction, 85
of a complex number, 36

monetary policy
in Dornbusch's overshooting model, 517
in a dynamic IS-LM model, 501

monopolistic competition, 380ff
monotonic

functions, 78
preference relations, 330
sequences, 49

Nash equilibrium (def), 376
existence of, 377

negation, of a property, 7
node, 475
nonhyperbolic steady state, 417,427
nonlinear programming, 274ff
nonstationary function, 265
norms (def), 41

equivalence of, 105
of a linear function, 135
Lipschitz-equivalence of, 43

normal form, of a game, 375
normal, to a hyperplane, 238
normed vector space, 40
nullspace, see kernel
numerical solution, of differential equations,

538ff, 635ff

objective function, 275
open sets (def), 58

characterizations of, 60
properties of, 58

operation, 25
operator, 85,139
optimal control, 566ff
optimal growth, 598ff
orbit, 396
order axioms, 31

Downloaded from Cambridge Books Online by IP 94.188.53.50 on Thu Jun 27 18:00:17 WEST 2013.
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511810756
Cambridge Books Online © Cambridge University Press, 2013



834 Subject index

order, of a differential or difference equation,
392

ordering, 18
overlapping generations, 527

Pareto
dominance, 369
efficiency, 368
optimality, 369

participation externalities, 589
partition, 5

of a set into classes, 17
perfect foresight, 507
phase diagram, 403

construction of for planar continuous
systems, 484

construction of for scalar difference
equations, 421

construction of for scalar differential
equations, 414

example of construction of, 496ff
phase line, 414, 484
Phillips curve, 495
polar coordinates, 489
policy function, 554
polynomial equations, 152
Pontryagin's conditions, 569
positive-definite quadratic form, 268
preannaounced policy changes, 517
preference relations, 327ff
preferences, 327ff

representation by a utility function, 332ff
smoothness of, 338

preimage, 20
preordering, 18

complete, 18
principal minor, 269
principle of optimality, 551
product metric, 43
product spaces, 43

compactness of, 100
convergence in, 56

production function
aggregate, 518
per capita, 519

profit function, 317ff
profit maximization, 317ff
proof

by construction, 49
by contradiction, 13
by deduction, 11
methods of, 11-15

properties, 6
composite, 7
equivalent, 11
negation of, 7

pseudoconcavity, 265
purchasing power parity, 515

q theory, see investment
quadratic form (def), 268

conditions for positive and negative
definiteness, 268

conditions for sign definiteness under
constraints, 271

quadratic formula, 153
quantifiers, 4,8-9
quasiconcavity (def), 261

characterizations, 262ff
quotient set, 18

R&D, in an endogenous growth model, 650
rank, of a family of vectors, 124
rationality, postulate of, 274,325
real number system, 29

axioms of, 30ff
regular

equilibrium, 206,214
maximizer, 280, 289
point, 175
value, 175

regular-value theorem, 213
relation, 15

order, 18-20
repeated eigenvalues, and solutions of linear

dynamical systems, 465
representation theorems, 333-34
representative agent, 360
reservation wage, 584
returns to scale, 519

and sustained growth, 523
Rolle's theorem, 159
Roy's identity, 346

saddle path, 476
saddle point, 470,476
salvage value function, 555
Sard's theorem, 215
savings function, properties of in an OLG

model, 529
savings rate, behavior of, 647
Schwarz's theorem, 166
scrap value function, 555
search models, 582ff
separability, of topological spaces, 333
separated set, 100
separating-hyperplane theorem, 244
separation theorems, 241ff
separation of variables, method of, 412, 436
sequences (def), 23

convergence of, 46
sequential compactness, 91
set, 3-6

arcwise connected, 103
boundary of, 59
bounded, 31,45
cardinality of, 24
closed with respect to an operation, 25
closure of, 60
compact, 90
complement of, 5
connected, 100
convex, 229
countable, 24
cover of, 90
dense, 217
diameter of, 45
empty, 3
exterior of, 59
finite, 24
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infimum of, 32
infinite, 24
interior of, 59
largest element of, 19
maximal element of, 19
open and closed, 58
ordered, 18
power set, 3
quotient set, 18
separated, 100
smallest element of, 19
supremum of, 32
totally bounded, 92
universal, 3

sets
difference of, 5
disjoint, 5
distance between, 45
family of, 3
intersection of, 4

properties of, 4
numerically equivalent, 24
pairwise disjoint, 5
union of, 4

properties of, 4
Shephard's lemma, 350
similarity, of matrices, 146
sink, 470
Slater's condition, 298
Slutsky equation, 353
Slutsky matrix, 345
Slutsky theorem, 345
smallest element of a set, 19
smooth function, 180
smooth preferences, 338
social security, in Diamond's model, 545
Solow model, 522ff

with human capital, 543
source, 470
specialization, increasing returns to, 380
spectrum, 146
speculative bubble, 508
spiral point, 477
stability, 410

asymptotic (def), 410
conditions for, 413,416,421,423,466,488

stable manifold theorem, 489
stable space or manifold, 470ff
Stackelberg duopoly, 379
state vector, 391
steady or stationary state, 409

hyperbolic vs. nonhyperbolic, 417,427,488
stock prices, 503ff, 617ff
strategy space, 375
subfield, 27
subrelation, 16
subsequence, 23
subset, 3
successive approximations, method of, 88,432
sum of correspondences, 113
sup norm, 83
superdifferentiability, 247
supergradient, 248

and partial derivatives, 257
supply function, 317
supporting-hyperplane theorem, 243
supremum, 32
supremum property, 32
surjective function, 21
symmetric element, 25

Tarsky's fixed point theorem, 223
tatonnement, 363
taxation of factor incomes, 625ff
Taylor's formula, 160,181
technological progress, factor augmenting, 521,

527
theorem of the maximum, 301
time consistency, 553
time-elimination method, 636
topological equivalence

of dynamical systems, 488
of metrics and norms, 105

topological properties, 74
totally bounded set, 92
transition function, see flow
transversality conditions, 572ff

in the optimal growth model, 607
transversality-density theorem, 216
triangle inequality, 35
trigonometric form, of a complex number, 36
truth-telling constraints, 321

unemployment
as a discipline device, 644
in a matching model, 646

upper contour set, 251
utility function (def), 332

construction of, 334ff
indirect, 340

properties of, 341
ordinal vs. cardinal, 333

utility maximization, relationship with
expenditure minimization, 353

value function
in dynamic programming, 550

properties of, 562ff
in static optimization problems, 275,312

variational problem, 451
vector dominance, 16
vector field, 394
vector spaces (def), 28

basis of, 119
dimension of, 119
normed, 40
isomorphic, 127

Walras' law, 359
Walrasian auctioneer, 378
Walrasian equilibrium, 355ff
Weierstrass theorem, 99
Welfare theorems, 369-70
well-ordering principle, 14

zero, of a polynomial, 152
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