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ПРЕДИСЛОВИЕ
В настоящее время ощущается острая нехватка учебников и 

учебных пособий по математическим дисциплинам, в частности, по 
основам высшей математики. Особенно болезненно это отражается 
на студентах, обучающихся в вузе без отрыва от производства, для 
многих из которых учебник является основным источником учебной 
информации. Именно этим студентам в первую очередь адресована 
настоящая книга.

Учебник написан в соответствии с требованиями государствен­
ных общеобразовательных стандартов в области математики для спе­
циалистов с высшим образованием по экономическим специально­
стям. Он соответствует Примерной программе дисциплины “ Мате­
матика” , утвержденной в 1996 г. Минобразованием РФ. и включает 
следующие разделы: “Линейная алгебра с элементами аналитической 
геометрии” , “Введение в анализ” , “Дифференциальное исчисление” , 
“Интегральное исчисление и дифференциальные уравнения”. “ Ря­
ды ”, “Функции нескольких переменных”.

При написании курса высшей математики для экономических ву­
зов авторы руководствовались принципом повышения уровня фунда­
ментальной математической подготовки студентов с усилением ее 
прикладной экономической направленности. При введении основных 
понятий отдавалось предпочтение классическому подходу: гак. на­
пример, понятие непрерывности функции рассматривается после по­
нятия предела, определенный интеграл определяется как предел ин­
тегральной суммы и т.п. Всюду, где это возможно, даются геометри­
ческий и экономический смысл математических понятий (например, 
производной, интеграла и т.д.), приводятся математические форму­
лировки ряда экономических законов (закона убывающей доходно­
сти, принципа убывающей предельной полезности, \словия опти­
мальности выпуска продукции), рассматриваются простейшие при­
ложения высшей математики в экономике (балансовые модели, 
предельный анализ, эластичность функции, производственные функ­
ции, модели экономической динамики и т.п.). Такие приложения 
рассчитаны на уровень подготовки студентов I курса и почти не тре­
буют дополнительной (экономической) информации.
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Известно, что новый учебный материал усваивается студентами 
(особенно имеющими значительный перерыв и пробелы в довузов­
ской математической подготовке) значительно легче, если он сопро­
вождается достаточно большим числом иллюстрирующих его приме­
ров. Поэтому авторами сделана попытка соединить в одной книге 
учебник и краткое руководство к решению задач.

Такое построение книги потребовало сделать и изложение тео­
ретического материала более кратким, отказаться без сущ ествен­
ного ущерба от малозначащих, громоздких или повторяющихся 
по своим идеям доказательств утверждений, отличающихся от ра­
нее проведенных лиш ь техническими деталями. Вместе с тем ав­
торы стремились к более тщательной проработке ведущих п оня­
тий и доказательств положений курса. Д ля лучшего усвоения 
учебного материала приводятся учебные алгоритмы (схемы) ре­
шения определенного круга задач.

Задачи с решениями (в том числе с экономическим содержанием) 
рассматриваются на протяжении всего изложения учебного материа­
ла. Более сложные, комплексные, а также дополнительные задачи с 
решениями приводятся в большинстве глав в последнем (или пред­
последнем) параграфе “Решение задач”. А задачи для самостоятель­
ной работы даются в конце каждой главы в рубрике “Упражнения” 
(нумерация задач единая -  начинается в основном тексте главы и 
продолжается в этой рубрике). Ответы задач приведены в конце 
книги.

Во в т о р о е  и з д а н и е  включена новая глава “Комплекс­
ные числа” , что, в частности, позволило более полно изложить раз­
дел “Интегральное исчисление и дифференциальные уравнения” . В 
главу “Функции нескольких переменных” дополнительно включен 
параграф “Условный экстремум”. Изложенный в нем метод множи­
телей Лагранжа имеет важное значение в решении оптимизационных 
задач. Существенно расширен учебный материал глав 5, 7, 12, 15, 
касающийся простейших приложений высшей математики в эконо­
мике, в частности, рассмотрены элементы предельного анализа и 
модели экономической динамики. Испраатены замеченные опечат­
ки и неточности.

Авторы выражают большую благодарность профессорам А.С. Со- 
лодовникову и В.З. Партону за рецензирование рукописи, а также 
студентке ВЗФЭИ М.Л. Лифшиц за помощь в выявлении опечаток 
первого издания.

В книге знаком ! I обозначается начато доказательств;» теоремы, 

знаком ■  ее окончание; знаком [Г.  ̂ — начато условия задачи, 
шаком ►  — окончание се решения.
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ВВЕДЕНИЕ
Математика — наука о количественных отношениях и про­

странственных формах действительного мира. В неразрывной свя­
зи с запросами науки и техники запас количественных отнош е­
ний и пространственных форм, изучаемых математикой, непре­
рывно расш иряется, так что приведенное определение необходи­
мо понимать в самом общем смысле.

Академик А.Н. Колмогоров выделяет четыре периода разви­
тия м атем атики1: зарождения математики, элементарной матема­
тики, математики переменных величин, современной математи­
ки.

П онимание самостоятельного положения математики как 
особой науки стало возможным после накопления достаточно 
большого фактического материала и возникло впервые в Древней 
Греции в VI- V вв. до нашей эры. Это было началом периода эле­
ментарной математики.

В течение этого периода математические исследования имеют 
дело лиш ь с достаточно ограниченным запасом основных п оня­
тий. возникш их в связи с самыми простыми запросами хозяйст­
венной жизни. Вместе с тем уже происходит качественное со­
верш енствование математики как науки. Из арифметики посте­
пенно вырастает теория чисел. Создается алгебра как буквенное 
исчисление. А созданная древними греками система изложения 
элементарной геометрии — геометрии Евклида — на два ты сяче­
летия вперед сделалась образцом дедуктивного построения мате­
матической теории.

В XVII в. запросы естествознания и техники привели к созда­
нию методов, позволяющих математически изучать движение, 
процессы изменения величин, преобразование геометрических 
фигур. С употребления переменных величин в аналитической 
геометрии и создания дифференциального и интегрального и с­
числения начинается период математики переменных величин.

На первый план выдвигается понятие функции, играющее в 
д;1льнейш ем такую же роль основного и самостоятельного пред­
мета изучения, как ранее понятие величины и числа. Изучение 
ф ункции приводит к основным понятиям математического ана-

1 Колмогоров А. II. М атематика. / /  М атематический л т и к л о и е л и ч е е к и й  слодарь. -  
М.: С о и е ю к а я  л ш и к л о и е д и я .  19X8.
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мым и достаточным условием  для В. Н апример, для делимости 
числа на 6 необходимо и достаточно, чтобы оно делилось на 2 и 
3, ибо “делимость на 2 и 3 <=> делимость на 6 ” .

Таким образом, необходимые условия — те, без которых рас­
сматриваемое утверждение заведомо не может быть верным, а 
достаточные условия — те, при выполнении которых эго утвер­
ждение заведомо верно. Выражение “необходимо и достаточно” , 
можно заменить равносильными выражениями “тогда и только 
тогда” , “если и только если” , “в том и только в том случае”. Н е­
обходимые и достаточные условия обладают в математике боль­
шой познавательной ценностью.

М атематика играет важную роль в естественно-научных, и н ­
женерно-технических и гуманитарных исследованиях. Она стала 
для многих отраслей знаний не только орудием количественного 
расчета, но также методом точного исследования и средством 
предельно четкой формулировки понятий и проблем. Без совре­
менной математики с ее развитым логическим и вычислительным 
аппаратом был бы невозможен прогресс в различных областях 
человеческой деятельности.

М атематика является не только мощным сродством решения 
прикладных задач и универсальным языком науки, но также и эле­
ментом общей культуры. Поэтому математическое образование 
следует рассматривать как важнейшую составляющую в системе 
фундаментальной подготовки современного экономиста.

О сновы высш ей математики были разработаны в трудах вы ­
дающихся ученых: математика и механика Древней Греции Ар­
химеда (287—212 гг. до нашей эры); французского философа и 
математика Р. Декарта (1596—1650); английского физика и мате­
матика И. Н ью тона (1643—1727); немецкого философа, матема­
тика и ф изика Г. Лейбница (1646—1716); математика, механика и 
ф изика Л. Эйлера (1707—1783); французского математика и ме­
ханика Ж. Лагранжа (1736—1813); немецкого математика К. Гаус­
са (1777— 1855); французского математика О. Кош и (1789— 1857) 
и многих других крупнейш их ученых.

Большой вклад в развитие математики внесли выдающиеся 
русские математики — Н.И. Лобачевский (1792— 1856), М.В. Ост­
роградский (1801 — 1861), П.Л. Чебышев (1821 — 1894), А.А. М ар­
ков (1856—1922), А.М. Ляпунов (1857—1918) и другие.

Современная российская математическая ш кола занимает пе­
редовое место в мировой математической науке благодаря трудам 
знаменитых математиков: А.Д. Александрова, П .С. Александрова,
B.И. Арнольда, С.Н . Бернш тейна, Н.Н. Боголюбова, И.Н. Векуа, 
И.М . Виноградова, В.М. Глушкова, Л.В. Канторовича, М.В. Кел­
дыша, А.Н. Колмогорова, М.А. Лаврентьева, Ю.В. Л инника, 
А.И. М альцева, П.С. Новикова. И).В. Прохорова, В.И. Смирнова,
C.Л. Соболева. А.Н. Тихонова и югих других.



Раздел I 

ЛИНЕЙНАЯ АЛГЕБРА С  ЭЛЕМЕНТАМИ 
АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Глава 1. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ
1.1. Основные сведения о матрицах

П онятие матрицы и основанны й на нем раздел математики — 
матричная а,1гебра — имеют чрезвычайно важное значение для 
экономистов. Объясняется это тем, что значительная часть мате­
матических моделей экономических объектов и процессов запи­
сывается в достаточно простой, а главное — компактной матрич­
ной форме.

Матрицей размера т  х п  называется прямоугольная таблица 
чисел, содержащая т строк и п столбцов. Числа, составляю щие 
матрицу, называются элементами матрицы.

М атрицы  обозначаются прописны ми (заглавными) буквами 
латинского алфавита, например, А, В , С,..., а для обозначения 
элементов матрицы используются строчные буквы с двойной 
индексацией: aj , где / — номер строки, j  — номер столбца.

Н апример, матрица
а п  а п  ... a xj ... а1п

а 2[ а22 ••• a2j  ... а1п

ап ai 2

\ а т I с1т 2 ■■■ a m j a n m J

n



А =
2 ■ 3

или, в сокращ енной записи, А = (ау)\ f—1, 2, nr, j  — 1, 2, ..., п. 

Например,
1 0  -  З')

2 5 8; ’
Наряду с круглыми скобками используются и другие обозна­

чения матрицы: [ ], || | | .
Две матрицы А и В одного размера называются равными, если 

они совпадают поэлементно, т.е. а9 =  by для любых / - 1, 2 , ..., т:

j  = 1, 2 , ..., п.
С помощ ью  матриц удобно записывать некоторые экономиче­

ские зависимости. Например, таблица распределения ресурсов по 
отдельным отраслям экономики (уел. ед.)

Р е с у р с ы О т р а с л и  э к о н о м и к и
п р о м ы ш л е н н о с т ь с е л ь с к о е  х о зя й с т в о

Э л е к т р о э н е р г и я 5,3 4,1
Т р у д о в ы е  р е с у р с ы 2,8 2.1
В о д н ы е  р е с у р с ы 4,8 5,1

А
3 ■ 2

может быть записана в компактной форме в виде матрицы рас­
пределения ресурсов по отраслям:

'5,3 4,1'
2,8  2,1 

\4,8 5Д,
В этой записи, например, матричный элемент яп =5,3 пока­

зывает, сколько электроэнергии потребляет промыш ленность, а 
элемент а22 = 2,1 — сколько трудовых ресурсов потребляет сель­
ское хозяйство.

Виды матриц. М атрица, состоящая из одной строки, называет­
ся матрицей {вектором)-строкой, а из одного столбца — матри­
цей {вектором)-столбцом: А = (ап аи .......а{„ ) — матрица-строка;

< Ь

В 21 матрица-столбец.

М атрица называется квадратной м го порядка, сели число ее 
строк равно числу столбцов и равно п.



f

'  2 1 4"
Н апример, А = 0 5 7

1 2 - 3 ,
— квадратная матрица третьего

порядка.
Элементы матрицы ац , у которых номер столбца равен номеру

строки (/' =  у), называются диагональными и образуют главную  
диагональ матрицы. Для квадратной матрицы главную диагональ 
образуют элементы ап ,а22 ,... ,а„„.

Если все недиагональные элементы квадратной матрицы рав­
ны нулю, то матрица называется диагональной. Например,

'5  О (Л
О - 1  

О О
диагональная матрица третьего порядка.

Если у диагональной матрицы я-го порядка все диагональные 
элементы равны единице, то матрица называется единичной мат­
рицей п -го порядка, она обозначается буквой Е.

Например, Е = единичная матрица третьего по­

рядка.
М атрица любого размера называется нулевой. или нуль-

матрицеи, если все ее элементы равны нулю: 
^0 0 ... (Л

о о

о о

о

о;

1.2. Операции над матрицами
Над матрицами, как и над числами, можно производить ряд 

операций, причем некоторые из них аналогичны операциям над 
числами, а некоторые -  специф ические.

1. Умножение матрицы на число. Произведением матрицы А на 
число ). называется матрица В-'/.А, элементы которой Ь.: / а: для

/ = 1, 2  1, 2, ..., п.
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Например, если А = Q  2) > то = (l5  К)

С л е д с т в и е .  Общий множитель всех элементов матрицы 
можно вы носить за знак матрицы.

'20  12 61 _ о (10 6 З4]Например, -  g I = 2

В частности, произведение матрицы Л на число 0 есть нулевая 
матрица, т.с. 0 • / 1= 0 .

2. Сложение матриц,. Суммой двух матриц А и В одинакового 
размера т  х /г называется матрица С = А + В , элементы кото­
рой ctJ = atj + by для / =  1 , 2 ....... т\ j  = 1, 2 .......  /г (т.е. матрицы

складываются поэлементно).

Например, Л = ( j  ^ Э ' Д = 12 5 ^ ’ С = >| + 5  = (з  10 ?)• 

В частном случае A+Q-A.
3. Вычитание матриц. Разность двух матриц одинакового раз­

мера определяется через предыдущие операции: А—В =А +(—1\В .
4. Умножение матриц. Умножение матрицы А на матрицу В 

определено, когда число столбцов первой матрицы равно числу 
строк второй1. Тогда произведением матриц А ■ В называется

т к к П

такая матрица С , каждый элемент которой сц равен сумме 
т • п

произведений элементов /-Й строки матрицы А на соответствую­
щие элементы у-го столбца матрицы В.

к
с ij -  ^ u i 2" 2j~ r ---~r u ik l'k j

[> Пример 1.1. Вычислить произведение матриц А ■ В , где

А = ( \ | I ! ; В ■= I 5 1 4 
J 1 - 2  0 1 

Р е ш е н и е  1. Найдем размер матрицы-произведения (если
умножение матриц возможно): А ■ В = С .

2*3 3 - 3  2 3

2. Вычислим элементы матрицы-произведения С, умножая 
элементы каждой строки матрицы А на соответствующие элемен­
ты столбцов матрицы В следующим образом:

I li л о м  случае м атрица Л намывается сог.шсаванной  с матрицей Н.

12



1(-1) + 0 - 5 + 2(-2) 1 • 0 + 0 • 1 + 2 • О 1 • 1 + 0 -4 + 2 • 1 
3(-1) + 1 • 5 + 0(-2) 3 -0  + 1-1+ 0-0  3 -1 + 1 -4 +  0 -1

Получаем С

М ногие свойства, присущ ие операциям над числами, справед­
ливы и для операций над матрицами (что следует из определений 
этих операций):

4) А(В+С)= АВ+АС.
Однако имею тся и специфические свойства матриц. Так, опе­

рация умножения матриц имеет некоторые отличия от умноже­
ния чисел:

а) Бхли произведение матриц АВ  существует, то после пере­
становки сомножителей местами произведения матриц В  А может 
и не существовать. Действительно, в примере 1.1 получили про­
изведение матриц 4 - ;  -В3.3 , а произведения В3 3 ■ Аг з не сущ е­
ствует, так как число столбцов первой матрицы не совпадает с 
числом строк второй матрицы.

б) Если даже произведения А В и ВА существуют, то они могут 
быть матрицами разных размеров.

!> Пример 1.2. Н айти произведения матриц АВ  и ВА:

в) В случае, когда оба произведения АВ  и ВА существуют и оба 
— матрицы одинакового размера (это возможно только при ум­
ножении квадратных матриц А и В одного порядка), коммута­
тивный (переместительный) закон умножения, вообще говоря, не 
выполняется, т.е. А ■ В ^ В ■ А .

1) А+В= В+А.
2) (А+В)+С=А+(В+С).
3) к(А+В)= ). А+ ),В.

5) (А + В )С = А С + В С .
6 ) Х(АВ)= (?.А)В=А О-В).
7) А(ВС)= (АВ) С.

Р е ш е н и е .  А2х3 • Я3х2 = С2х2

'  0 2 - 2  

$ 3*2 ■ ̂ 2x3 = ^ 3x3 = 2 16 11,  т.е. А В ^  ВА. ^
ч-2 2 U

13



[> Пример 1.3. Найти произведения матриц АВ  и ВЛ, где

Р е ш е н и е. АВ  = ( \ 2 2J )  ; BA = f 1^ ; т.е. А В ф ВА.*>
\24  47) ' 130 44j

В частном  случае ком мутативны м законом  обладает п р о и з­
ведение лю бой квадратной м атрицы  А  п -го  порядка на ед и ­
ничную  матрицу Е  того же порядка, причем  это произведение 
равно А:

А Е  = ЕА -  А.

(

A F  пхп

« 1 1  « 1 2  

«2 1  « 2 2

«1 п 
« 2 я

F  ■ АSlnxn

\а„  1 ап2 ...

f \  0  ... 0 Л /  

О 1 ... О

а„

\
( 1 0 . . (Р /

0 1 . . 0 =

J  ̂ 9 0 . . \ ) V

\ о  о ... и

ап  а12 ... d\fi

« 2 1  а 22 —  а 2п

 ̂ «л1 ап2 ■■■ апп '

«11 •
«21 ■ а2п

«н1 •• апт

"«11 ■■ а\п
«21 .. а2п

^«л1 •• апп

=  А .

А.

Таким образом, единичная матрица играет при умножении 
матриц ту же роль, что и число 1 при умножении чисел.

г) Произведение двух ненулевых матриц может равняться н у ­
левой матрице, т.е. из того, что А ■ В  =0, не следует, что А=0, или 
#=0. Н апример,; :ьч: !Ь°-но/Ч о  о о.

5. Возведение в степень. Целой положительной степенью А т (т> 1) 
квадратной матрицы А называется произведение т матриц, рав­
ных А , т.е.

А"' = А А .. . А .
т раз

Заметим, что операция возведения в степень определяется 
только для квадратных матриц.
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По определению  полагают А 0 = Е, А 1 = А. Нетрудно показать,

. и *что Ат • А к = А т+к = А тк

Р е ш е н и е .  А =

= 0  еще не

? П  2
D> Пример 1.4. Найти А , где А = I

"1 2V l  2 W 7  10

v3 4Д З 4) 115 22,
Обращаем внимание на то, что из равенства А п 

следует, что матрица А—0. ►
6. Транспонирование матрицы — переход от матрицы А к  мат­

рице А ' , в которой строки и столбцы поменялись местами с со ­
хранением порядка. М атрица А' называется транспонированной 
относительно матрицы А:

( 1.2 )

'  а п ап  . ■ а Хп ' ' <*\\ а 2 1 • ■ а т1

А =
°21 «22 ■• а 2п

, А '  =
а \2 а 22 • ■ а т2

{ а т1 а т2 ■■ а тп) \  а \п «2 п ■ а тп )

Из определения следует, что если матрица А имеет размер 
т х п , то транспонированная матрица А' имеет размер п х т .

Например, A j x 3 =
1 2 3  ̂

5 в) ' Лзх2 =

1 4
2 5
3 6,

В литературе встречаются и другие обозначения транспониро­
ванной матрицы , например, А Т .

Свойства операции транспонирования:
1 )(А ')’ = А. 3) (А + В )1 = А ’ + В'.
2) (ЛА)' = ЯА'. 4 )(А В )' = В'А'.
Рекомендуем читателю доказать их самостоятельно.
Рассмотренные выше операции над матрицами позволяю т уп­

ростить реш ения некоторых экономических задач.
[> Пример 1.5. Предприятие выпускает продукцию трех видов: 

/] , / j , /3 и использует сырье двух типов: S l и S 2 . Нормы р ас­

хода сырья характеризуются матрицей А
! 2

5 где каждый
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элемент а,-, (/ = 1,2,3; j  = 1,2) показывает, сколько единиц сырья
у-го типа расходуется на производство единицы продукции /-го 
вида. План вы пуска продукции задан матрицей-строкой С = (100 
80 130), стоимость единицы каждого типа сырья (ден. ед.) — мат- 

г, Г30!рицеи-стол бцом В  = I I.

Определить затраты сырья, необходимые для планового вы ­
пуска продукции, и общую стоимость сырья.

Р е ш е н и е .  Затраты 1-го сырья составляют 5j = 2-100 + 
+ 5-80  +1-130 = 730 ед. и 2 -го — S 2 = 3 • 100 + 2 • 80 + 4 • 130 = 980 ед., 
поэтому матрица-строка затрат сырья S  может быть записана как

(7  3̂
произведение S  = С ■ А = ( 100 80 130) 5 2 

.1 4;
(730 980). Тогда

общая стоимость сырья Q -  730 • 30 + 980 • 50 = 70900 ден. ед. м о­
жет быть запидана в матричном виде Q = S  В = (СА)В = (70900). 
Общую стоимость сырья можно вычислить и в другом порядке: 
вначале вычислим матрицу стоимостей затрат сырья на единицу

31 
2
4 ,

продукции, т.е. матрицу R = А - В = 

общую стоимость сырья

( 2
5

30^
50J

' 210'

250
2зо;

а затем

Q = CR = С ■ (АВ) = (100 80 130)
Г210
250
230у

= (70900). ►

На данном примере мы убедились в выполнении свойства 7 
(см. 13) — ассоциативного закона произведения матриц: (СА)В 
= С(АВ).

1.3. Определители квадратных матриц
Необходимость введения определителя — числа, характери­

зующего квадратную матрицу А, — тесно связано с решением 
систем линейны х уравнений (см. гл.2). Определитель матрицы А 
обозначается \А\ или Д.
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Определителем матрицы первого порядка А = (ап ) , или  опреде­
лителем первого порядка, называется элемент ап :

А, = \А \~ а п  . Н апример, пусть А=  (3), тогда Д) = Щ = 3.

лителем второго порядка, называется число, которое вычисляется 
по формуле:

П роизведения ап а22 и а12а 21 называются членами определителя

Определителем матрицы третьего порядка А —(аф, или опреде­
лителем третьего порядка, называется число, которое вы числяет­
ся по формуле:

Л 3 =  1 ^ = 0 , ^ 2 2 0 3 3  +  а \ 2 а 2 3 а 3 \  +  а 2 \ а 3 2 а \ 3  ~  а 31а 2 2 а \ 3  ~

Это число представляет ;ш геб рай чес кую сумму, состоящую из 
6 слагаемых, или 6 членов определителя. В каждое слагаемое вхо­
дит ровно по одному элементу из каждой строки и каждого 
столбца матрицы. Знаки, с которыми члены определителя входят 
в формулу (1.4), легко запомнить, пользуясь схемой (ри с.1.1), 
которая называется правилом треугольников или правилом Сарруса.

Определителем матрицы второго порядка А = (a:J) , или опреде-

а 2 \ а 22
(1.3)

второго порядка. Например, пусть тогда

Д2 |Л | = 2 ] = 2 - 5 - 3 - 1  = 7. 
1 ! 1 5

Пусть дана квадратная матрица третьего порядка:

а 12а 2 1 а 33 “  f l32fl23fl l l - (1.4)

аи а п а13

а21 #22 2̂3
а3\ а3? а33

+

Рис. 1.1
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О  Пример 1.6. Вычислить определитель третьего порядка

А =
1 - 1  1

2 1 1

1 1 2

Р е ш е н и е .  А = +1 1 ■ 2 + 2 1 1 + (-1) 1 1 - 1 1 1 -  2 - (-1) • 2 — 

-1-1-1  = 5 .►
Д ля того чтобы ввести понятие определителя более высокого 

порядка, потребуются некоторые дополнительные понятия. 
Рассмотрим квадратную матрицу и-го порядка:

«11 «12 

«21 « 2 2

«1 п 
« 2  п

\

а п1 « и 2 аПП/

Из общего числа п 2 элементов этой матрицы выберем набор, 
содержащий п  элементов, таким образом, чтобы в него входило 
по одному элементу из каждой строки и каждого столбца. Н а ­
пример, набор элементов (аи агг...апп) или (<ап\апЛ2---а1П) соот­
ветственно главной и побочной диагоналей матрицы.

Любой такой набор можно упорядочить, записав сначала эле­
мент из 1-й строки, затем из 2 -й и т.д., т.е.

(«1Л«2У2 .---.< Ч )-
Номера столбцов ( j \ ; / 2;...;  j n ) образуют при этом перестанов­

ку J  из п чисел: 1 ,2 , . • , п. Всего существует «!' различных п е­
рестановок из п натуральных чисел.

Введем понятие беспорядка, или инверсии, в перестановке J. 
Это наличие пары чисел, в которой большее число предшествует 
меньшему. Например, в перестановке из трех чисел /  = (2; 1; 3) 
имеется одна инверсия (2 ; 1), а в перестановке / =  (3; 2 ; 1) — 
три: (3; 2), (3; 1), (2; 1). Обозначим через r (J )  количество инвер­
сий в перестановке J.

Возвращаясь к наборам (1.5) из элементов матрицы А, мы 
можем каждому такому набору поставить в соответствие произве­
дение его элементов:

См. сн о ск у  на с. 157.



aUl -a2 h - - 'a"jn ( 1.6)

и число r (J), равное количеству инверсий в перестановке J  -  
=( у j ; у 2; • • -; Л  ) из номеров соответствующих столбцов.

Определение. Определителем квадратной матрицы п-го поряд­
ка, или определителем п-го порядка, называется ч и с л о равное 
алгебраической сумме п\ кленов, каждый из которых является 
произведением п элементов матрицы, взятых по одному из каждой 
строки и каждого столбца, причем знак каждого члена определяет­
ся как ( -  1)г ( /) , где r(J) — число инверсий в перестановке J  из номе­
ров столбцов элементов матрицы, если при этом номера строк 
записаны в порядке возрастания:

£± = \А\ =

а 11 а п  а \п 
а2\ а22 ••• а2п

а п\ а п2 ••• а пп

< ‘ - 7 >

где сумма берется по всем перестановкам J. Проверим, например, 
что при п=Ъ мы получаем введенный ранее определитель третьего 
порядка (1.4):

Д3 = ( -1 )° ^  ̂ 22^33 + (~1)2 а п а 23а 31 + (~ \)2 “ и ^ а ц  + ап а22ап  +

+ (-О 'а^ о з^ зз  + (-1)1а]]й23аз2, 
т.е. то же число, что и по формуле (1.4).

Заметим, что с ростом п резко увеличивается число членов 
определителя (л!), поэтому даже для п— 4 использование форму­
лы (1.7) весьма трудоемко (получим 24 слагаемых!).

На практике при вычислении определителей вдсоких поряд­
ков использую т другие формулы. Д ля их рассмотрения необхо­
димо ввести новые понятия.

Пусть дана квадратная матрица А п-то порядка.
Минором Му элемента а1} матрицы «-го порядка называется

определитель матрицы (//— 1 )-го порядка, полученной из матрицы 
А вычеркиванием /-Й строки и у-го столбца.

1 Еще раз обращаем внимание на то, что определитель — это число, характеризую­
щее квадратную матрицу, и его не"Слелует путать с матрицей — таблицей чисел.
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Н апример, минором элемента ап  матрицы А третьего порядка 
будет:

ап
ап  <*27 аггМ 12 =

а3\ &32 а33

а 21 а 23

а 31 а 33
а 2 \ а 33 ~  а З \ а 2 Ъ '

Каждая матрица »-го порядка имеет п миноров (п— 1)-го п о ­
рядка.

Алгебраическим дополнением Ау элемента aq матрицы п  -го 

порядка называется его минор, взятый со знаком ( - 1)' ’7 :

Ац = (-1 ),+J М ц ( 1 .8)

т.е. алгебраическое дополнение совпадает с минором, когда сум­
ма номеров строки и столбца (i+j) — четное число, и отличается 
от м инора знаком, когда (i+j) — нечетное число.

Например, Агъ = (-1 )и г М 1г = - М гъ\Аъх = (-1  )3+1М п  = М п .

О  Пример 1.7. Найти алгебраические дополнения всех эле­
ментов матрицы (из примера 1.6):

' 1 - 1  1 
А =  2 1 1

vl 1 2,

Р е ш е н и е .

Л ц = ( - 1)
1+1 1 1 

1 2
1; Л12= ( - 1)1+2 2 1 

1 2
= -3; АХ3 =(-1) 1+3 2 1 

1 1
=  1 :

Л21 = ( - 1)2+1 -1 1 

1 2
= 3; А22= ( -1)2+2 1 1 

1 2 = ^23 = ( - ! )
2+3 ;-2 :

А31 = ( - 1) 3+1 -1 1 

1 1
- - 2 ; Л32 - ( - 1) 3+2 1 1 

2 1
= 1; Л33 = ( - 1)3+3 1 - 1

2 1
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Важное значение для вычисления определителей имеет сле­
дующая теорема.

Теорема Л ап ласа1. Определитель квадратной матрицы равен 
сумме произведений элементов любой строки (столбца) на их алгеб­
раические дополнения:

П
А = <2,1 Л 1 + al2Ap+...+amAm = £  «к4л

■5 = 1
(разложение по элементам /-й строки; /=  1; 2 ; ...

п
А = а х jA i  j  + а2 jA 2 j  +-

я ) ;

■+anj  A nj S  a sj A  sj

(1.9)

( 1.10)
.5=1

(разложение по элементам /-го  столбца; /  =  1; 2 ; ... ; «)•
□  Убедимся в справедливости теоремы Лапласа на примере 

определителя матрицы третьего порядка. Разложим его вначале 
по элементам первой строки:

«11 « 1 2  

«21  «22  
«31 «32

«13
«23
«33

«11 ( 1)
1+1 «22

«32
«23
«33

+ «12( - 1) 1+2 «21
«31

«23
«33

+

+ « 1 з ( - 1 )
1+3>а21 «22 

«31 « 3 2 |
После преобразований (представляем их сделать читателю) н е­

трудно убедиться в том, что полученное выражение совпадает с 
определением (1.4). Аналогичный результат получаем разлож ени­
ем определителя матрицы по лю бой строке или столбцу. ■

ОПример 1.8. Вычислить определитель треугольной матрицы 2 :

5 3 0 7
0 - 1  2 3
0 0 3 1
0 0 0 1

Р е ш е н и е .  Раскладывая по первому столбцу, получаем:
5 3 0
0 - 1 2  
0 0 3
0 0 0

= 5 - ( - l ) I+1
- 1 2 3

0 3 1
0 0 1

+ 0 + 0 + 0 = 5 •■(-!) 3 1 
0 1 +  0 +  0 :

= 5 ■ (-1) -3-1 + 0 -15. ►

1 Точнее данная теорема является частным случаем теоремы Лапласа.
- Квадратная матрица называется треугольной, если все ее элементы, располож ен­
ные ниже (или выше) главной диагонали, равны нулю.
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Н а частном примере мы убедились в том, что определитель 
треугольной (и, очевидно, диагональной) матрицы равен произведе­
нию элементов главной диагонали.

Значение теоремы Лапласа состоит в том, что позволяет све­
сти вы числение определителей «-го порядка к  вычислению  более 
простых определителей (п -  1) -го порядка.

1.4. Свойства определителей
1. Если какая-либо строка (столбец) матрицы состоит из одних 

нулей, то ее определитель равен 0.
2. Если все элементы какой-либо строки (столбца) матрицы у м ­

ножить на число X, то ее определитель умножится на это число
□ Пусть определитель исходной матрицы равен Д . Для опре­

деленности первую строку матрицы умножим на получим но­
вый определитель Д ’ , который разложим по  элементам первой 
строки:

Д ' =

Лап

а 7\

а„

Лап

а 22 “ 2 п

ип1 2 *•’ и п

= Л(аи Ап  + аи Аи +...+а1пА1п) = ЛА. ■
З а м е ч а н и е .  За знак определителя можно выносить об­

щий множитель любой строки или столбца в отличие от матри­
цы, за знак которой можно выносить общ ий множитель лишь 
всех элементов.

-  ЛяцАц + ^ lnAi2+---+^\„Al„ -

2 4 6 1 2 3 1 2 3
Например, 8 0 4 = 2 8 0 4 = 2 - 2 4 0 2

- 2  2 8 - 2  2 8 - 2  2 8

1 2  3 1 2 3
2 - 2 - 2 4 0 2 = 2 • 2 • 2 • 2 • 2 0 1

-1  1 4 - 1 1 4
но

'  2 4 6 ^ '  1 2 3^
8 0 4 = 2 4 0 2

_ 2 2 8 j 1 4 у
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3. При транспонировании матрицы ее определитель не изменя­
ется: \А'\ = \а \ ,

4. При перестановке двух строк (столбцов) матрицы ее опреде­
литель меняет знак на противоположный.

□ Предположим вначале, что переставлены две соседние стро­
ки матрицы: / и / + 1. Разложим определитель исходной матрицы 
Л по элементам /-и строки, а определитель новой матрицы (с 
переставленными строками) А' - -  по элементам (/+1)-й строки. 
Разложения будут отличаться только знаком, так как в формуле 
(1.9) для А' каждое алгебраическое дополнение будет иметь про­
тивоположны й знак (множители ( 1V ' сменятся на множители

^  поэтому А '= — А .
Если переставить не соседние строки, а, скажем, /-ю и (i+k)-K>, 

то такую перестановку можно представить как последовательное 
смещение /-й строки на к  строк вниз (при этом каждый раз знак 
определителя меняется), а (i+k)-i\ строки на (£—1) вверх, что то­
же сопровождается (к - 1) изменением знака, т.е. знак поменяется 
нечетное число (2 к~ \ )  раз: А’ =  — А .

Доказательство для столбцов аналогично. ■
5. Если квадратная матрица содержит две одинаковые строки 

(столбца), то ее определитель равен 0.
□  Действительно, переставим эти строки (столбцы). С одной 

стороны, определитель не изменится, но, с другой стороны, по
свойству 4 поменяет знак, т.е. А ~= — А , откуда А =  0. ■

6 . Если элементы двух строк (столбцов) матрицы пропорцио-
на.1 ьны, то ее определитель равен 0.

П  Пусть для определенности пропорциональны первая и вто­
рая строки. Тогда, вы нося коэф ф ициент пропорциональности л, 
получаем по свойству 2: Д' = л-А, где А имеет две одинаковые 

строки и по свойству 5 равен 0. ■
7. Сумма произведений элементов какой-либо строки (столбца) 

матрицы на шгебраические дополнения элементов другой строки 
(столбца) этой матрицы равна 0, т.е.

П
^Га,:уЛ Л •--- 0 , при / j . ( 1-11)
,v 1
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12 2 4 -4 0 18 4
13 - 4 1 = 0 0 1

-  10 12 6 - 8 8 36 6

Раскладывая по элементам второй строки и вы нося общие 
множители, получаем:

-40 18 5 1
36

= (—1)(—8) • 18 •
- 8 8 11 2

1.5. Обратная матрица
Д ля каждого числа а * 0 существует обратное число а 1 та­

кое, что произведение а а л  = 1. Для квадратных матриц тоже 
вводится аналогичное понятие.

Определение. Матрица А 1 называется обратной по отноше­
нию к  квадратной матрице А, если при умножении этой матрицы 
на данную как справа, так и слева получается единичная матрица:

А А  = А А 1 = Е. (1.13)

И з определения следует, что только квадратная матрица имеет 
обратную; в этом случае и обратная матрица явлется квадратной 
того же порядка.

Однако не каждая квадратная матрица имеет обратную. Если 
а ф 0 явлется необходимым и достаточным условием сущ ество­
вания числа а 1. то для сущ ествования матрицы А 1 таким усло­
вием является требование \А \ * 0.

Если определитель матрицы отличен от нуля (|Л| * 0), то та­
кая квадратная матрица называется невырожденной, и ли  неособен­
ной; в противном случае (при (Л| = 0 ) — вырожденной, или осо­
бенной.

Теорема (необходимое и достаточное условие существования 
обратной матрицы). Обратная матрица А 1 существует (и единст­
венна) тогда и только тогда, когда исходная матрица невырожден­
ная.

□ Н е о б х о д и м о с т ь .  Пусть матрица А имеет обратную 

А 1 , т.е А А 1 = А 'А  -  Е. По свойству 10 определителей имеем
I А - А 'I = \А\ - \а  '( = |£ | -  1, т.е. \А\ * 0 и I А ' }\ * 0 .
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Д о с т а т о ч н о с т ь .  Пусть \А\ ф 0 . Рассмотрим квадратную

матрицу п -го порядка А , называемую п р и со ед и н ен н о й элементы 
которой являю тся алгебраическими дополнениями элементов 
матрицы А' , транспонированной к A: ai} = Ay = Afi (/ = 1 , 2 , ,  п\

/ = 1,2 п). Тогда элементы произведения матриц А - А -  В оп ­
ределяются по правилу умножения матриц:

п " \\А\ i = j
hv = Y , s l& j Z  'К; ■ = ' '  при (см. формулу 1. 12).

, . i  5-1 11 1

Поэтому матрица В является диагональной, элементы ее глав­
ной диагонали равны определителю исходной матрицы:

, \

В--

\А\ 0 ... О 
О \А\ ... О

V О О ... \А\

Аналогично доказывается, что произведе­

ние А на А равно той же матрице В. А ■ А = А ■ А -  В. Отсюда 
следует, что если в качестве обратной матрицы взять матрицу

А ' = Х - А  ( И |* 0 ) ,  (1.14)
j/4j

то произведения А 1 ■ А и А / Г 1 равны единичной матрице Е п-то

порядка: А 1 ■ А = А А 1 -  — ■ В -  Е.
\А\

Докажем е д и н с т в е н н о с т ь  обратной матрицы. Пред­
положим, что существуют еще матрицы X  и Y такие, что X  ф А 1 и 
Y ^  А 1 . где матрица А ' получена по формуле (1.14), и выполня­
ются равенства: АХ  = Е и YA -  Е . Тогда, умножая на А 1 слева 
первое из них, получаем: А 1 АХ = А ’£ ,  откуда ЕХ = А ХЕ , т.е. 
X  -  А '. Аналогично, умножая второе равенство на А  1 справа, 
получаем V = А 1. Единственность доказана. ■

Алгоритм вычисления обратной матрицы: !°. Находим опреде­
литель исходной матрицы. Если \А\ = 0 , то матрица А — вырож-

В Jim cp a iyp e  м рисоелинснную  матрицу н аты каю т такж е взаимной, или сонпной.
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денная и обратной матрицы А 1 не существует. Если \А\ ф 0 , то 

матрица А — невырожденная и обратная матрица существует.
2° . Находим матрицу А’ , транспонированную  к А .
3° . Находим алгебраические дополнения элементов транспо­

нированной матрицы Aj, = A M  = 1,2 n \ j  = 1,2 п) и состав-

(/

А =

ляем из них присоединенную  матрицу А : а у 
=  1,2 , ... ,л; j  = 1,2 , . . . , п ) .

4°. Вычисляем обратную матрицу по формуле (1.14).
5°. Проверяем правильность вычисления обратной матрицы

А л , исходя из ее определения А ХА = А / Г 1 = Е (п. 5° не обя­
зателен).

[> Пример 1.10. Найти матрицу, обратную к данной:

а  - 1  
2 1

л  1 2;

Р е ш е н и е .  1°. Определитель матрицы \А\ -  5 * 0 (см. п р и ­

мер 1.6), т.е. матрица А — невырожденная и обратная матрица 
А 1 существует.

2°. Находим матрицу А' , транспонированную  к А :
1 2 Г
1 1 1

1 1 2;

3° . Находим алгебраические дополнения элементов матрицы 
и составляем из них присоединенную м атриц у /!, учитывая, 

3 - 2 '
3 1 1 (см. пример 1. 6 ).

А'

что Ау = А п А

4 . Вычисляем обратную матрицу А = ]—т ■ А :

1 1 3 - 2 '  1/5 3/5 - 2 /5 '
А ~ 1 -

5
- 3 1 1 = -3 /5 1/5 1/5

v 1 - 2  3J v 1/5 - 2 /5 3/5)
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5° . Проверяем правильность вычисления обратной матрицы 
по формулам:

А _1 ■ А -  А - А 1 = Е  (рекомендуем в этом убедиться самому 
читателю). ►

Для невырожденных матриц выполняю тся следующие свой­
ства:

1. И  = д ;  3. (А тУ  = [а  ‘У"; 5. (а - 1)' = { А ' У 1.

2. ( л -1) ‘ = А; 4. ( А В ) 1 = В 1 А 1.

1.6. Ранг матрицы
Для реш ения и исследования ряда математических и приклад­

ных задач важное значение имеет понятие ранга матрицы.
В матрице А размера т  х п  вычеркиванием каких-либо строк 

и столбцов можно вычленить квадратные подматрицы к-то п о ­
рядка, где &< min (от; я). Определители таких подматриц назы ­
ваются минорами к-го порядка матрицы А.

Н апример, из матрицы А3, 4 можно получить подматрицы 
первого, второго и третьего порядков.

Определение. Рангом матрицы А называется наивысший поря­
док отличных от нуля миноров этой матрицы.

Ранг матрицы А обозначается rang А, или г (А).
Из определения следует: а) ранг матрицы Ат. „ не превосходит

меньшего из ее размеров, т.е. r(A)  < rain (/и; п) ;
б) г(А) = 0 тогда и только тогда, когда все элементы матрицы 

равны нулю, т.е. А =  0;
в) для квадратной матрицы п-го порядка г (А )=  п тогда и толь­

ко тогда, когда матрица А — невырожденная.
[> Пример 1.11. Вычислить ранг матрицы

'4  0 - 8  0Л
. 2 0 - 4 0

А —
3 0 - 6 0

Л  0 - 2  0у
Р е ш е н и е .  М атрица А имеет четвертый порядок, поэтому 

г (А) <4. О днако 1/41 = 0 , так как матрица А содержит нулевой
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столбец, поэтому г (А)< 3. Все подматрицы третьего порядка тоже 
содержат нулевой столбец и поэтому имеют нулевые определите­
ли, значит г (А) <2. Все подматрицы второго порядка либо имеют 
нулевой столбец (второй или четвертый), либо имеют пропор­
циональные столбцы (первый и третий), поэтому тоже имеют 
нулевые определители; таким образом г (А)< 1. Поскольку матри­
ца А содержит ненулевые элементы, т.е. невырожденные подмат­
рицы первого порядка, то г (А)= 1. ►

Пример 1.12. Вычислить ранг матрицы

f l  3 0 41
А = 3 2 0 1

U  - 1 0 -3 J
Р е ш е н и е .  Для матрицы А3.4 г (/4)<min (3; 4)=3.
Проверим, равен ли ранг 3-м, для этого вычислим все миноры 

третьего порядка, т.е. определители всех подматриц третьего п о ­
рядка (их всего 4, они получаются при вычеркивании одного из 
столбцов матрицы):

3 0 4 | 1 0 4 1 3 4 1 3 0
2 0 1 j = 0 ; 3 0 1 = 0 ; 3 2 1 = 0 ; 3 2 0

-  1 0 1
J  i 2 0 3 2 -  1 - 3 2 -  1 0

Поскольку все миноры третьего порядка нулевые, г (А) <2. Так 
как существует ненулевой минор второго порядка, например,

| ^  = -7  *  0 , то г (А) = 2. ►

В общем случае определение ранга матрицы перебором всех 
миноров достаточно трудоемко. Для облегчения этой задачи и с­
пользуются преобразования, сохраняющие ранг матрицы.

Назовем элементарными преобразованиями матрицы следую­
щие:

1) Отбрасывание нулевой строки (столбца).
2) Умножение всех элементов строки (столбца) матрицы на чис­

ло. не равное нулю.
3) Изменение порядка строк (столбцов) матрицы.
4) Прибавление к каждому элементу одной строки (столбца) со­

ответствующих элементов другой строки (столбца), умноженных 
па любое число.

5) Транспонирование матрицы.

30



Теорема. Ранг матрицы не изменяется при элементарных преоб­
разованиях матрицы.

□  При изучении свойств определителей было показано, что
при преобразованиях квадратных матриц их определители либо 
сохраняю тся, либо умножаются на число, не равное нулю. В ре­
зультате сохраняется наивы сш ий порядок отличных от нуля м и ­
норов исходной матрицы, т.е. ее ранг не изменяется. ■

С помощ ью  элементарных преобразований можно привести 
матрицу к так называемому ступенчатому виду, когда вычисление 
ее ранга не представляет труда.

М атрица А называется ступенчатой, если она имеет вид:

А =

«11 о \2
О а22

щ г

а 2г
а 1к

а2к

О О а Гк

(1.15)

где аи *  0 , i -  1 , 2 , . . . , г ;  г < к .
З а м е ч а н и е .  Условие г < к всегда может быть достигнуто 

транспонированием матрицы.
Очевидно, что ранг ступенчатой матрицы равен г , так как 

имеется м инор r -го порядка, не равный нулю:

а и а \2 • ■ а \г
0 а \2 • ■ a ir

= an -a22-...-arr*0

0 0 . ■ a lr

Покажем на примере алгоритм вычисления ранга матрицы  с 
помощью элементарных преобразований.

[> Пример 1.13. Найти ранг матрицы

' 0 - 1 3  0
2 - 4  1 5
4 5 7 -  10
2 1 8 - 5

Р е ш е н и е .  1°. Если аи = 0 , то при перестановке строк или
столбцов добиваемся того, что аи * 0. В данном примере поме­
няем местами, например, 1-ю и 2 -ю строки матрицы (см. ниже).

2Л
3

0

а
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2 ° .  Если аи ^ 0 , то умножая элементы 2 - й ,  3 -й  и 4 - й  строк

на подходящие числа (именно на — а21/а и = 0, - а гх/ а п = 2,

- а41/а п  = 1 )  и прибавляя полученные числа соответственно к

элементам 2 - й 1, 3 -й  и 4 - й  строк, добьемся того, чтобы все эле­
менты 1-го столбца (кроме ап ) равнялись нулю2:

{ 2
-  4 1 5 3' (2 -4 1 5 3'

0 -  1 3 0 1 0 -1 3 0 2

- 4 5 7 -  10 0 0 - 3 9 0 6
2 1 8 -  5 3) vO - 3 9 0 6/

3° . Если в полученной матрице а22 ^ 0 ( у нас а22 = - I  * 0), 

то умножая элементы 3-й и 4-й строк на подходящие числа (а 
именно, на -а321а22 = - а 42/ а22 = "3 ), добьемся того, чтобы
все элементы 2-го столбца (кроме ап  , а22) равнялись нулю. Если 

в процессе преобразований получаются строки (или столбцы), 
целиком состоящ ие из нулей (как в данном примере), то отбра­
сываем эти строки (или столбцы):

'2 - 4 1 5 3̂
0 -  1 3 0 2 (2 -4  1 5 3'|
0 0 0 0 0 Ч о -1 3 0 2)

чО 0 1) 0 0.
Последняя матрица имеет ступенчатый вид и содержит мино-

2 -4
ры второго порядка, не равные нулю, например,

О
= - 2  *  0.

Поэтому ранг полученной ступенчатой, а следовательно, и дан­

ной матрицы равен 2. ►

Для рангов матриц справедливы следующие соотношения:
1) г(А  + В )  < г(А) + г ( В ) , 2) г(А + В) г  \г(Л) - г ( В ]  ,

3) г(АВ) < m m |/ '( /!);/•(/?)} , 4) г(А'А) - г(А)  ,

5)г(АВ)  = г(А).  если В квадратная матрица и \В\ * 0 .

1 В д ан н о м  примере  -  0 , по л о м у  ш орая  строка не меняется.

2 З н ак  озн ач ает  равенство  рангов матриц.
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6) r ( A B )  > г ( Л )  + r ( B )  -  п, где п — число столбцов матрицы А 
или строк матрицы В.

Понятие ранга матрицы тесно связано с понятием линейной 
зависимости (независимости) ее строк или столбцов1.

В матрице А обозначим ее строки следующим образом:
<>, --■= (а ,, ап ... а]п). е2 = (а2, а22 ■ ■ ■ а2п) ,.. . ,

*- :■] ~ (̂ »;1 . . . Umn )■
Дне строки матрицы называются равными, если равны их со ­

ответствующие элементы: ек = es , если akj = a sj, j  = 1,2 п.

Арифметические операции над строками матрицы (умножение 
строки на число, сложение строк) вводятся как операции, прово- 
д и м ы е п о э л с м е н т н о :

Лек ■= Ш к\ Лак2. . .Л ак.„);

+ <■’, = \(ак] ^-ай )(ак2 + as2)...{a kn +asn)\.
< трока е называется линейной комбинацией строк е ,, <?2 es

\чн[л:цы. если она равна сумме произведений этих строк на про­
извольные действительные числа:

с — л jCj + Л 2е2 . ,+Лse ,̂ (1.16)

где /  j ,Л 2 А, — любые числа.

Строки матрицы eh e2 ет называются пинейно зависимы­
ми, если существуют такие числа Л1,л 2,...,Л т , не равные одно­
временно нулю, что линейная комбинация строк матрицы равна 
нулевой строке:

Л|{?[ + ?v-)C-) +.. .-\-Лтст — О, (1.17)

где 0 “ (0 {!...()).
Линейная ш сиаш ост ь строк матрицы означает, что хотя бы 

одна строка матрицы является линейной комбинацией остальных.
Действительно, пусть для определенности в формуле (1.17)
О . юг  да

1 В да ibiicHiiiu.M ч а ю р и а д  иилакклся  для строк матрицы, для столбцов матрицы
излож ение  aiULioi ично.
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ет = ( - X1А „ )еу + ( - X2А т  )<?2 +■ • •+ (-^т - 1 Л * . К г -1 , или

ет = “̂1е1 + ̂ 2е2+---+^т-1еет-1 . (1-18)
где kj = ( - X j / X my, i = l ,2 , . . . ,m - l

Таким образом, строка ет является линейной комбинацией 

остальных строк. ■
Если линейная комбинация строк (1.17) равна нулю тогда и 

только тогда, когда все коэф ф ициенты  Я,- равны нулю , т.е. 
/tj = Л2 = ...=  Лт = 0 , то строки е ,,е2, . . . , называются линейно 
независимыми.

Теорема о ранге матрицы. Ранг матрицы равен максимальному 
числу ее линейно независимых строк или столбцов, через которые 
линейно выражаются все остальные ее строки (столбцы).

□ Пусть матрица А  размера т х п имеет ранг г (г < min(/w;«)).
Это означает, что существует отличный от нуля минор г-го п о ­
рядка. Всякий ненулевой минор г-го порядка будем называть 
базисным минором. Пусть для определенности это минор

° \\ °12 ■■ a ir

д =
ап а п .. а Хг

* 0 .

а г 1 аг 2 .. ап

Тогда строки матрицы <?, ,е2,.. ,ег линейно независимы. Дей
ствительно, предположим противное, т.е. одна из этих строк, 
например ег , является линейной комбинацией остальных:

Сг — Я-jCj + Л2С2 +• • .+ЛГ \СГ | .
Вычтем из элементов г-й строки элементы 1-й строки, умно­

женные на Л1, элементы 2-й строки, умноженные на Л2 , и т.д., 
наконец, элементы (/—1 )-й строки, умноженные на Лг_1 . На ос­
новании свойства 8 (см. § 1.4) при таких преобразованиях мат­
рицы ее определитель А не изменится, но так как теперь г-я 
строка будет состоять из одних нулей, то Д =0 — противоречие, и 
наше предположение о том, что строки ех,е2, . . . , ег матрицы ли ­
нейно зависимы, неверно.

Строки <?,,<?2..... ег назовем базисными.
Покажем, что любые (/• 4 1) строк матрицы линейно зависи­

мы, т.е. любая строка выражается через базисные.
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Рассмотрим минор (г +1) -го порядка, который получается при

дополнении рассматриваемого минора элементами еще одной 
строки i и столбца j:

ап  ап  ... а 1г я 1;- 

а21 а2 2 ••• a2r а2j

Д' =
ап  а г2 ... ап  arj 

ai\ a i2 ■■■ air aij

Этот минор равен нулю, так как ранг матрицы равен г, поэто­
му любой минор более высокого порядка равен нулю.

Раскладывая его по элементам последнего (добавленного) 
столбца, получаем ci\jAXj + a2jA 2j+...+arjA rj + aitAy = 0 , где послед­

нее алгебраическое дополнение AtJ совпадает с базисным м и н о­

ром Д и поэтому отлично от нуля, т.е. Ду * 0 •
Разделив последнее равенство на Ау , можем выразить элемент 

ац как линейную  комбинацию :

где Xs asj  /  Ajj.
Ф иксируем значение / (i > г) и получаем, что для любого j  

(у = 1 ,2 ,...,/г) элементы /-й строки ct линейно выражаются через 

элементы строк ех,е2, . . . , ег , т.е. /-я сторока есть линейная комби-

5 = 1
Теорема о ранге матрицы играет принципиальную  роль в мат­

ричном анализе, в частности, при  исследовании систем лин ей ­
ных уравнений.

1.14. П редприятие производит продукцию  трех видов и и с­
пользует сырье двух типов. Нормы затрат сырья на единицу про-

Г

(1.19)
5=1

Г

нация базисных: <?, = Xse5j . Я

У П Р А Ж Н Е Н И Я
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дукции каждого вида заданы матрицей А =
2  1 3

Стоимость
Л  3 4J

единицы  сырья каждого типа задана матрицей В  = (10 15). К а­

ковы  общ ие затраты предприятия н а производство 100 единиц 
продукции первого вида, 200 единиц продукции второго вида и 
150 единиц продукции третьего вида?

1.15. Вычислить матрицу D -  (АВ) -  С 2, где

' 2  0 |̂

А =
4
0

В = С

1.16. Н айти произведение матриц A B C , где

17 5У  v 38 -126/ V2
1.17. Вычислить матрицу D = ABC -  ЪЕ, где

\

; С - ( 2  0  5); Е —  единичная матрица.
'1 2 -3 Л

А = 1 0 2 , в  = 2
v4 5 3J а

1.18. Вычислить А 3, если А = 

Вычислить определители:

(1

3

2

1

- 1

- 1

- Г |

2
oj

1.19.
1

- 3

- 1

1.20.
2  3

3 4
4 1 
1 2

1 .2 1 .

0 6 3 5 1
- 3 2 4 1 0

5 1 4 3 2
- 3 8 7 6 1

1 0 3 4 0

1.22. Определить, имеет ли матрица А обратную, и если имеет, 
то вычислить ее:

'  4 - 8  - $ )
А =  - 4  7 - 1

, - 3  5 L
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1.23. Вычислить матрицу В  = 11 • (А  *)' + А ' , где
(1 2 ~3Л

А = 0 1 2 .
а 0 4,

каких значениях X матрица
( х 4 Г

А = 2 5 - 1
vO X h

Найти ранги матриц: 

1.25.

1.27.

1.29. Определить максимальное число линейно независимых 
строк матрицы

(2  0 3 5 1
4 3 1 7  5
О 3 - 5 - 3  3

V2 3 - 2  2 4,

'2 5 6Ч / 1 3 7 2
51

4 -  1 5 1.26. 1 0 4 8 3
,2 -  6 - J V 3 6 10 - 4 У

с 0 5 - 1 1 5)'  1 2 1 4 '
2 3 0 1 6

0 5 - 1  4 . 1.28.
1 - 3  1 3 0

Ч- 1 3 6,
к 3 - 1  0 4 6J

А =



Глава 2. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

К системам линейных уравнений приводит множество п ри ­
кладных, в том числе и экономических задач.

2.1. Основные понятия и определения
С истема т линейны х уравнений с п переменными имеет вид1:

О цХ \ +  ClyjXi + .. ,+С1ХпХп — Ьу'.

а 2 \ х \ +  а 2 2 х 2 + ' ■ -+ a 2 j x j + - ■ -+ а 2 п х п =  ^

(2 . 1)anx i + “n x2 +---+aijXJ+...+ajnx„ = 6,.; 

а т \ х \  +  а т 2 х 2 +•  • -+ a m j x )  +■ ■ ■+ а п т х п ~  Аи  '

где atJ ,b,(i = 1 ,2 ,...,т\ j  = 1 ,2 ,...,п) — произвольные числа, назы ­
ваемые соответственно коэффициентами при переменных и свобод­
ными членами уравнений.

В более краткой записи с помощью знаков суммирования си с­
тему можно записать в виде:

' Z “ijXJ = bi(i = 1,2....... т ). (2.2)
] и

Решением системы (2.1) называется такая совокупность п чисел 
(х\ = кх, х7 = к2, . . . ,х„ = кп) у при подстановке которых каждое 
уравнение системы обращается в верное равенство.

1 В линейной алгебре обычно обозначают переменные одной буквой с соответ­
ствующими индексами, т.е. Ху, х2. X} ..., вместо принятых в школе обозначений 
х. у, z   которые в данном случае не очень удобны.
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С истема уравнений называется совместной, если она имеет хо­
тя бы одно реш ение, и несовместной, если она не имеет реш ений.

Совместная система уравнений называется определенной, если 
она имеет единственное реш ение, и неопределенной, если она 
имеет более одного реш ения. Например, система уравнений 

2хг + х г = 10,
— совместная и определенная, так как имеет един-

х, -  х 2 =10

ственное реш ение (10;0); система
2xj + х 2 = 10, 
2xj + х 2 =15

несовместная;

а система уравнении
2хх + х 2 =10,

20
— совместная и неопреде-

+ 2х2
ленная, так как имеет более одного, а точнее бесконечное множ е­
ство реш ений ( X! = c , x 2 = 10 — 2с, где с — любое число).

Две системы уравнений называю тся равносильными, или  экви­
валентными, если они имею т одно и то же множество реш ений. 
С помощ ью  элементарных преобразований системы уравнений, 
рассмотренных в гл.1 прим енительно к  матрицам (например, 
умножение обеих частей уравнений на числа, не равные нулю; 
сложение уравнений системы), получается система (2.1), равно­
сильная данной.

Запиш ем систему (2.1) в матричной форме. Обозначим:

А =

а п  а п  • 
а2 [ а22

а1пЛ
.. а2„

■,Х =

" V

* 2
; в  =

h

' а т\ ат1 •■■ amJ \ b m )

где А — матрица коэффициентов при переменных, или матрица 
системы, X  — матрица-столбец переменных; В — матрица-столбец 
свободных шенов.

Так как число столбцов матрицы Атхп равно числу строк 
матрицы 1 „ . | , т о и х  произведение

А Х  =

( ап х х + а 12х2+...+а1ихи Л 

а21*1 +«22^2+.. .+а2„Х„

\ atnlx  1 + а т2х 2+- ■ -+amnx nJ 
есть матрица-столбец. Элементами полученной матрицы являю т­
ся левые части системы (2.1). На основании определения равен­
ства матриц систему (2.1) можно записать в виде:

АХ=В. (2.3)
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2.2. Система л линейных уравнений 
с п переменными. Метод обратной матрицы 

и формулы Крамера
Пусть число уравнений системы (2.1) равно числу перем ен­

ных, т.е. т = п. Тогда матрица системы является квадратной, а ее 
определитель Д = \А\ называется определителем системы.

Рассмотрим реш ение системы двух уравнений с двумя пере­
менными:

аххх х + а х2х 2 = />,;12л 2

a2lx x + а22х 2 = Aj,
(2.4)

в которой хотя бы один из коэффициентов при переменных от­
личен от нуля.

Д ля реш ения этой системы исклю чим переменную х 2 , умно­
жив первое уравнение на а22, второе — на (— а 12) и слож ив их. 
Затем исклю чим переменную х х , умножив первое уравнение на 
(— а2х), второе — на аи и также сложив их. В результате получим 
систему:

{а\\а22 ~ a2\a\l)Xl ~ Ь[а22 ~ Ь а\Ъ 
(« 11«22 - а 2\а п ) х 2 = а \ А  -

(2.5)

Выражение в скобках есть определитель системы

Д -  Я ц а 22 -  вг\а\2

Обозначив

Д1 = Ь\а22 -  Ь2аХ2 =

-*12

■*12

f h  а 22

система (2.5) примет вид:

b\ Q\

а 2 \  а 22  

, Д2 = й\ \Ь2 -  а2хЬх
а,

*21

(2 .6 )

Из полученной системы следует, что если определитель сис­
темы Д * 0 , то система (2.4) имеет единственное решение, опре-

К ^ 1  ^ 2деляемое по формулам: х х = —- , х 2 = —
Д Д
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Если Д = 0, а А, ф О (или Д2 * 0 ), то система (2.4) несовмест-

(0 -х , = А,;
ная, так как в этом случае приводится к виду: { „

[0 • х2 = Д2.

Если А = Д, = Д2 = 0 , то система (2.4) неопределенная и имеет

бесконечное множество реш ений, так как в этом случае приво-
{0 -х , = 0; 

дится к виду: \
[0 • х2 = 0.

Для получения решения системы (2.1) при т = п в общем виде 
предположим, что квадратная матрица системы Ап „ невы рож ­

денная, т.е. ее определитель \А\ *  0. В этом случае существует

обратная матрица А 1.
Умножая слева обе части матричного равенства (2.3) на матри­

цу А ' ,  получим А ~1(АХ} = А ЛВ. Так как A~l(AX) = ^A~lA j X  =

= EX  = X  , то реш ением системы методом обратной матрицы 
будет матрица-столбец

X  = А ЛВ. (2.7)

Теорема Крамера. Пусть Д — определитель матрицы системы 
A, a A j — определитель матрицы, получаемой из матрицы А заме­

ной j -го столбца столбцом свободных членов. Тогда, если А ф 0 , то
система имеет единственное решение, определяемое по формулам:

* у = —  (У = 1,2,...,«). (2.8)
А

Формулы (2.8) получили название формул Крамера.

N  В соответствии с (1.14) обратная матрица А 1 -  ,-*-- /1, где
И!

А — матрица, присоединенная к матрице А . Так как элементы 

матрицы А есть алгебраические дополнения элементов матрицы 
А , транспонированной к  А, то запиш ем равенство (2.7) в раз­
вернутой форме:
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*1
х 2 1

~\а \
U J V

> 1А = А , I

А п  A 2 \  ... A „ i  

A\2 ^22 ••• An2 h

^2n ••■ Ann ) \ b nj  

Учитывая, что \A\ = Д , получим после умножения матриц

' V
х 2 1

Д

b\An +b2A2\ + -~ + bnAnl 
b\An +b2A22 + ---+bnAn2 , откуда следует, что для

bl Ai„ + b2A22 + --+bnAnn ^

любого j ( j  = 1 ,2 ,...,я)

XJ = т ( А 4 у  + + + М Яу)

Н а основании свойства 9 определителей (см. § 1.4) ^ А у  + 
+ bjAjj +...+bnAnJ = Ду , где Д; — определитель матрицы, полу­

ченной из матрицы А  заменой j  -то столбца (у  = 1,2,..., п) столб-
Д .

цом свободных членов. Следовательно, х .  = —̂  . ■
1 Д

Заметим, что фактически формулы Крамера были получены 
нами в частном случае при реш ении системы (2.4) п = 2 урав­
нений с двумя переменными.

[> Пример 2.1. Реш ить систему уравнений
Xj ~ х2 "Ь х3 — 3,

< 2Х[ + х2 + х3 = 11,
Х1 + х2 + 2х3 = 8

а) методом обратной матрицы; б) по формулам Крамера.
Р е ш е н и е. а) Обозначим

( \  - 1  0 ' Х 1 ' з ]
/4 = 2 1 1 ; Х  = х 2 ; В  = 11

л  1 г l x 3J Ч 8у
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Тогда в матричной форме данная система имеет вид: А Х  = В. 
Найдем определитель \А\ -  5 (см. прим ер 1.10). Так как \А\ ф 0 , 

то матрица А — невырожденная, и существует обратная матрица 
А ' 1. М атрицу А 1 находим по алгоритму, приведенному в §1.5. 
Получим (см. пример 1.10):

. (  1 3 - 2 ^

J  = А ~ 1В

3 1 1

1 - 2  3,

f
1

5

Теперь по формуле (2.7)

1 3 - 2
3 1 1

1 - 2  3

\
f 3 ' 1 Г20" 4"
11

L
10 — 2

~ 5
/ ч 8 ) ч 5, ,Ь

т.е. реш ение системы (4; 2; Г).
б) Найдем определитель системы Д = \А\ = 5 (см. п. а). Так как

Д ф  0 , то по теореме Крамера система имеет единственное реш е­
ние.

Вычислим определители матриц Д],А2,Дз . полученных из 
матрицы А , заменой соответственно первого, второго и третьего 
столбцов столбцом свободных членов:

= 5
3 - 1  1 1 3 1 1 - 1 3

*1 = 11 1 1 = 20: Д2 = 2 1 1 1 1! > II 2 1 1 1
8 1 2 1 8 2 1 1 8

(рекомендуем читателю вычислить самостоятельно). 
Теперь по формулам Крамера (2.8)

Д, __ 20 A t- Л -  - -  д 2 _  10 л .— ~~ — 4, л 2 — —  — —  - 2, х-1 — —  — —
Д 5 2 Д 5 3 Д 5

т.е. реш ение системы (4; 2; 1).
В конце реш ения системы (любым способом) рекомендуем 

сделать проверку, подставив найденные значения в уравнения 
системы, и убедиться в том, что они обращаются в верные равен- 
с т в а . ^

Существенным недостатком реш ения систем п линейны х 
уравнений с п переменными по формулам Крамера и методом 
обратной матрицы является их большая трудоемкость, связанная
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с вычислением определителей и нахождением обратной матрицы. 
Поэтому эти методы представляют скорее теоретический интерес 
и на практике не могут быть использованы для реш ения реаль­
ных экономических задач, сводящихся часто к  системам с боль­
ш им числом уравнений и переменных.

2.3. Метод Гаусса
Рассмотрим реш ение системы (2.1) т линейных уравнений с п 

переменны ми в общ ем виде.
Метод Гаусса — метод последовательного исключения перемен­

ных — заключается в том, что с помощью элементарных преобра­
зований система уравнений приводится к равносильной системе 
ступенчатого (или треугольного) вида, из которой последователь­
но, начиная с последних (по номеру) переменных, находятся все 
остальные переменные.

Предположим, что в системе (2.1) коэф ф ициент при пере­
менной х х в первом уравнении ап ф 0 (если это не так, то пере­
становкой уравнений местами добьемся того, что ап ф 0 ).

Ш аг 1. Умножая первое уравнение на подходящие числа (а 
именно на - а 21 / ап - а гх / аи , . . . , - а т1 / а п ) и прибавляя получен­
ные уравнения соответственно ко второму, третьему, ..., т-му 
уравнению  системы (2.1), исклю чим переменную х, из всех п о ­
следующих уравнений, начиная со второго. Получим

а \ \ х \ +  а п х г  +  ••• + а \п х п = Ь \,
(1) (1) .(1) 

а22х 2 + — +а2пх п ~ 1>2 '

я а > у  , . _ ( ! ) „  _ А(1) ( 2 -9 >
a t 2 х 2 +  ••• + a in х п ~  Щ 1

а т2х 2 + ■■■ Jranmx n ~ b l n \

где буквами с верхним индексом (1) обозначены новые коэф ф и ­
циенты, полученные после первого шага.

Шаг 2. Предположим, что а $  ф 0 (если это не так, тс соствет• 
етвующей перестановкой уравнений или переменных с изм ене­
нием их номеров добьемся того, чтобы а ^  ф 0).
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Умножая второе уравнение на подходящие числа (-аз2 * /а22> 

- а ^  / aJ2 * •••, а 22 ) и прибавляя полученные уравнения

соответственно к третьему, четвертому, ..., /я-му уравнению  сис­
темы, исклю чим переменную х 2 из всех последующих уравне­
ний, начиная с третьего.

Продолжая процесс последовательного исклю чения перем ен­
ных х3, х4, ..., Xr-i, после (г -  1) -го ш ага получим систему

ап х 2 + • 

а22Х2 + •

. +а1гх г + 

. +а$}хг +
а1,г+\х г+\
гАХ) У“2,r+l-V+l

+ . 
+ .

• + « 1 Л  = 
+ail)х  -+и2 Пл п -

К

< # - 4  + n<-r~Urar,r + lXr + l + . +а^г —• /71 ЛП ь ? - ' \

0 =

0 = ит
(2.10)

Число нуль в последних т ~г  уравнениях означает, что их ле­
вые части имею т вид О-Xj + 0 • х 2+...+0 ■ х„. Если хотя бы одно из

чисел не равно нулю, то соответствующее равенст­

во противоречиво, и система (2.1) несовместна.
Таким образом, для любой совместной системы числа

е , 11.........  b V ' e  системе (2.10) равны нулю. В этом случае по­

следние т - r  уравнений в системе (2.10) являются тождествами 
и их можно не принимать во внимание при реш ении системы
(2.1). Очевидно, что после отбрасывания “лиш них” уравнений 
возможны два случая: а) число уравнений системы (2.10) равно 
числу переменных, т.е. г = п (в этом случае система (2.10) имеет 
треугольный вид); б) г < п (в этом случае система (2.10) имеет 
ступенчатый вид).

Переход системы (2.1) к  равносильной ей системе (2.10) назы­
вается прямым ходом метода Гаусса, а нахождение переменных из 
системы (2.10) — обратным ходом.
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П реобразования Гаусса удобно проводить, осущ ествляя преоб­
разования не с самими уравнениями, а с матрицей их коэф ф и ц и ­
ентов. Рассмотрим матрицу

' а \\ а п —а \п bi )

А х -
а21 а 22 ...а2„

а т\ а т2 ■■■а тп и

(2.11)

называемую расширенной матрицей системы (2.1), ибо в нее, к р о ­
ме матрицы системы А  , дополнительно включен столбец сво ­
бодных членов.

[>Пример 2.2. Решить систему уравнений:

X] + 2х2 + Зх3 — 2х4 — 6,
2х, + 4 х 2 -  2х3 -  Зх4 = 18,
ЗХ] + 1х2 -  х3 + 2х4 = 4,
2х\ -  Зх2 + 2х3 + х4 = -8.

Р е ш е н и е .  Расш иренная матрица системы имеет вид:

'1 2 3 - 2 б"
2 4 - 2 -3 18
3 2 -1 2 4

,2 -3 2 1 - 8 j

Шаг 1. Так как ап  *  0 ,  то умножая вторую, третью и четвер­
тую строки матрицы на числа ( -2 ) ,  (—3), ( -2 )  и прибавляя полу­
ченные строки соответственно ко второй, третьей, четвертой 
строкам, исклю чим переменную дс, из всех строк, начиная со 

второй. Заметив, что в новой матрице а22 = 0 ,  поменяем местами 
вторую и третью строки:

Г1 2 3 - 2 б' (1 2 3 - 2 6 N
0 0 -  8 1 6 0 - 4 -10 8 -14
0 -4 -10 8 -14 0 0 -8 1 6

,0 - 7 -  4 5 20, ^0 - 7 - 4 5 -20у
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Шаг 2. Так как  теперь а $  = -4  ф 0 , то умножая вторую стро­
ку на (-7 /4 ) и прибавляя полученную строку к четвертой, и с­
клю чим переменную х 2 из всех строк, начиная с третьей:

Г 1 2 3 - 2 6 '

0 - 4 - 1 0 8 - 1 4

0 0 - 8 1 6

0 1 3 ,5 9 4 , 5 j

2 3 - 2
6]

0 - 4 - 1 0 8 - 1 4

0 0 -8 1 6
1 1 7 1 1 7

0 0 0 ------
V 16 8 J

Шаг 3. Учитывая, что a\V = - 8 ^ 0 ,  умножаем третью строку
на 13,5/8=27/16, и прибавляя полученную строку к четвертой, 
исклю чим из нее переменную  х3 . П олучим (см. последнюю  мат­
рицу) систему уравнений

2 х 4 =

8х4 =
х , + 2xi + Ъхт.

- 4 х 7 - 10х3 + 
-8 х 3 + х „  =

117
16

Х л  =

6 ,
- И ,

6,
117

откуда, используя обратный ход метода Гаусса, найдем из четвер-
6 -  Х л  6 +  2

= -1; из 
-  б

= 2 и из перво-

того уравнения х 4 = -2  ; из третьего х 3

-1 4 -8 * 4  + 10х3 -14  -  8(-2) + 10(—1)
второго х 7 = --------------------- - = ---------- -----------------

- 4  - 4
го уравнения х, = 6 + 2х4 -  Зх3 -  2х2 = 6 + 2(-2) -  3(-1) - 2 - 2  = 1, т.е.
реш ение системы (1; 2; —1; 2). ►

[>Пример 2.3. М етодом Гаусса реш ить систему уравнений:
Х[ + 2х2 -  х3 = 7,

2xj -  Зх2 + х 3 = 3,
4х, + х 2 — х3 = 16.

Р е ш е н и е .  Преобразуем расширенную  матрицу системы

Г 1 2 -  1 7 ^ ( \ 2 -  1 7 ' (1 2 - 1
7 ]

2 - 3 1 3 ~ 0 - 7 3 - 1 1 ~ 0 - 7 3 - 1 1

, 4 1 -  1 16 , v.0 - 7 3 - 1 2 J ^ 0 0 0 - l j

Итак, уравнение, соответствующее третьей строке последней 
матрицы, противоречиво — оно привелось к неверному равенству
0 = - 1 ,  следовательно, данная система несовм естн а.^
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2.4. Система т линейных уравнений 
с п переменными

Ранее было установлено, что ранг матрицы равен м аксим аль­
ному числу ее линейно независимых строк (см. § 1.6). Поэтому, 
если строки расш иренной матрицы Д , т.е. уравнения системы
(2.1), линейно независимы, то ранг матрицы Д  равен числу ее 
уравнений, т.е. г = т , если линейно зависимы, то г < т.

Вопрос о разреш имости системы (2.1) в общем виде рассмат­
ривается в следующей теореме.

Теорема Кронекера—Капелли. Система линейных уравнений со­
вместна тогда и только тогда, когда ранг матрицы системы равен 
рангу расширенной матрицы этой системы.

□  Не проводя строгого доказательства теоремы, поясним его. В 
процессе преобразования системы уравнений (2.1) к виду (2.10), 
т.е. элементарных преобразований матрицы системы А  и расш и­
ренной матрицы Д  , ранги этих матриц не изменяются. Ранее (см. 
§ 2.3) было установлено, что система (2.10) совместна тогда и 
только тогда, когда все свободные члены Ь ^ х1 ) { }  равны
нулю. В этом случае, как нетрудно проверить, ранг матрицы и 
ранг расш иренной матрицы системы (2.10), так же как и данной
системы (2.1), совпадают (оба равны г).Я

Д ля совместных систем линейных уравнений верны следую­
щ ие теоремы.

1. Если ранг матрицы совместной системы равен числу перемен­
ных, т.е. г = п , то система (2.1) имеет единственное решение.

2. Если ранг матрицы совместной системы меньше чиош пере­
менных, т.е. г < п, то система (2.1) неопределенная и имеет беско­
нечное множество решений.

Результаты исследования системы (2,1) приведем в виде схемы 
(рис.2.1):

Рис. 2.1
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(или базисными), если определитель матрицы из коэффициентов 
при них (т.е. базисный минор) отличен от нуля. Остальные п  — г  
называются неосновными (или свободными).

Решение системы (2.J), в котором все п г  неосновных пере­
менных равны нулю, называется базисным.

Так как каждому разбиению переменных на основные и неос­
новные соответствует одно базисное реш ение, а число способов 
разбиения не превосходит числа сочетаний1 С гп . то и базисных

реш ений имеется не более С/п . Таким образом, совместная сис­
тема т линейных уравнений с п переменными (т < п) имеет 
бесконечное множество решений, среди которых базисных решений 
конечное число, не превосходящее С'п , где г < т.

П риведенная на рис. 2.1 схема не означает, что для реш ения 
системы (2.1) в общем о л у чае необходимо вычислять отдельно, а 
затем сравнивать ранги матрицы системы А  и расш иренной мат­
рицы Ах . Достаточно сразу применить метод Гаусса.

Достоинства метода Гаусса по сравнению  с другими (в част­
ности, приведенными в § 2.2):

• значительно менее трудоемкий;
• позволяет однозначно установить, совместна система или 

нет, а в случае совместности найти ее реш ения (единственное 
или бесконечное множество);

• дает возможность найти максимальное число линейно неза­
висимых уравнений — ранг матрицы системы.

С-Пример 2,4, М етодом Гаусса решить систему

Пусть г<п, г переменных х1,х 2, . . . , х г называются основными

2 л [ — л j -f~ Л' з - х 4 =
х х +  2х2 - 2х, 4 Зх4 =

3.Y ,  ̂ X ;  - Х'з 4- 2 х 4 =

Р с ш е н и е. Преобразуем расширенную  матрицу системы 
(для удобства вычислений берем в качестве первой строки коэф -

(  м т ш н и яч и  ич я > имеыпън гы г  ча и.гмлюкя комбинации (соединения) из п 
м ом ентов и*> г. оаличаюншоеч гольхо составом алементов. Число Сг„ вычисляется

Ш П П .! П !■ . Siно формуле ( „ - —• ■ ..............
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ф ициенты  второго уравнения, у которого коэф ф ициент при х 1 
равен 1):
Г1 2 - 2 3 - 6 ' (1 2 -  2 3 - 6 ' (1 2 -  2 3

~ 61
2 -1 1 -1 5 0 -  5 5 - 7 17 0 -  5 5 - 7 17

,3 1 -1 2 " i j ^0 - 5 5 -  7 17J .0 0 0 0 о)
2 - 2  3

■5 5 - 7
-  6 
17

, т.е. ранг матрицы системы г = 2 .

м инор) отличен от нуля, т.е. * 0 ). Остальные неосновны е

Оставляем в левой части переменные хь х 2 , которые берем за 
основные (определитель из коэффициентов при них (базисный

1 2 
О - 5

переменны е х 3,х 4 переносим в правые части уравнений. В р е ­
зультате получим систему

Зх4,
7х4,

X, + 2х2 = 
-5х-> =

-6  + 2х3 -  
1 7 -  5хт +

откуда
17

*2 + х 3 - и
5 J 5

(  17 7
Xj = —6 + 2хз -  3x4 ~ 2 -  —  + хз -  — х4

4 1
= — -  —х4.

5 5 45 " 5
Задавая неосновны м переменным произвольные значения 

х3 = с , , х 4 = с2 , найдем бесконечное множество реш ений систе-

( 4  1 17 7 )
мы ^ 1 = - - - с 2 ; x 2 = — j + c i - ^ c 2 ’> * з = С ь  X 4 = C 2 J >

[>Пример 2.5. Найти все базисные реш ения системы, приве­
денной в примере 2.4.

Р е ш е н и е .  Ранг матрицы системы г = 2 (это следует из 
примера 2.4), следовательно, одно из уравнений системы, напри­
мер, третье, можно отбросить.

Общее число групп основных переменных не более чем 

4 3 = 6 *, поэтому возможны следующие группы ос-С  -  Г 2-  L6 1-2
новных переменных: х , , х 2; Xj, х3; х , , х4; х 2, х3; х 2, х4; х3, х4 .

! См. сноску на с. 49.
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Выясним, могут ли переменные хь х2 быть основными. Так
как определитель матрицы из коэс 

ных, т.е. базисный минор

эфициентов при этих перем ен- 

5 * 0 ,  то Х |, л 2 могут быть
1 2

основны ми переменными. Рассуждая аналогично, найдем, что из 
всех возможных групп основных переменных только переменные

- 1  1
х 2,х 3 не могут быть основными, ибо 2 ’

Найдем первое базисное реш ение, взяв в качестве основных 
переменных х и х 2 , а в качестве неосновных — переменные 
Л'з, х4 . П риравняв неосновные переменные нулю, т .е .х 3 = х4 = 0 ,

Г2xi -  х 2 = 5
' , откуда

X) + 2x2 = ~ 6
4 17

Л'| = —; х 2 т.е. первое базисное реш ение (4/5; -1 7 /5 ; 0; 0).

Если взять за основные переменные х 15х3 и приравнять нулю 
соответствующие неосновны е переменные ,v2, х4, т.е. х г = х4 - 0 . 
то получим второе базисное реш ение (4/5; 0; 17/5; 0). А налогич­
но находятся и остальные базисные решения (9/7; 0; 0; —17/7), 
(0; - 9 ;  0; 4) и (0; 0; 9; 4 ) >

получим систему уравнении в виде:

2.5. Системы линейных однородных уравнений. 
Фундаментальная система решений

Система т линейных уравнений с п переменными называется 
системой линейны х однородных уравнений, если все их свобод­
ные члены равны нулю. Такая система имеет вид:

а 11*1 + а 12х 2 + ■■■ ^1пх п ~ ^ '  
а21х \ +а22х 2 + ••• а2пх л=®' (2 . 12)

Система линейных однородных уравнений всегда совместна, 
так как она всегда имеет, по крайней мерс, нулевое (или три ви ­
альное) реш ение (0; 0; ...; 0).
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Если в системе (2.12) т = п , а ее определитель отличен от н у ­
ля, то такая система имеет только нулевое реш ение, как  это сле­
дует из теоремы и формул Крамера. Ненулевые реш ения, следо­
вательно, возможны лиш ь для таких систем линейных однород­
ных уравнений, в которых число уравнений меньше числа пере­
менных или при их равенстве, когда определитель системы равен 
нулю.

Иначе: система линейных однородных уравнений имеет ненулевые 
решения тогда и только тогда, когда ранг ее матрицы коэффициентов 
при переменных меньше числа переменных, т.е. при г(А ) < п.

Обозначим реш ение системы (2.12) х х = кх, х 2 = к2 х п = кп

в виде строки el = (кх, к2,. ■. , к п) .
Реш ения системы линейны х однородных уравнений обладают 

следующими свойствами:

1. Если строка ех = (kx, k2, . . . , k„)  — решение системы (2.12), то 

и строка Хех = (Лкх, л к 2,... ,Лкп} — также решение этой системы.

2. Если строки ех = [kx, k 2^... Д „) и е2 = (/г, /2, — решения 
системы (2.12), то при любых сх и с2 их линейная комбинация 

схех +с.2е2 = (cxk ] + c2lx, схк2 + с212,+ ...,схк„ +с21п) — также решение

данной системы.
Убедиться в справедливости указанных свойств реш ений си с­

темы линейны х однородных уравнений можно непосредственной 
подстановкой их в уравнения системы.

Из сформулированных свойств следует, что всякая линейная  
комбинация реш ений системы линейных однородных уравнений  
такж е являет ся решением этой системы. П оэтому п редставля­
ет интерес найти  такие лин ейн о  независим ы е реш ения си сте­
мы (2.12), через которы е лин ейн о  вы раж ались бы все осталь­
ные ее реш ения.

Определение. Система линейно независимых решений ех,е2, . . . , ек
называется фундаментальной, если каждое решение системы (2.12) 
является линейной комбинацией решений ех, е2,. . . ,  ек .

Теорема. Если ранг г матрицы коэффициентов при переменных 
системы линейных однородных уравнений (2.12) меньше числа пере­
менных п  , то всякая фундаментальная система решений системы 
(2.12) состоит из п г решений
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Поэтому общее решение системы (2.12) линейны х однородных 
уравнений имеет вид:

с\е\ +с2е2 + - +СА >  (2.13)

где еь е2 ек — любая фундаментальная система реш ений,
с1,с2, . . . , ск — произвольные числа и к=п~г.

М ожно показать, что общее решение системы т линейных урав­
нений с п переменными (2.1) равно сумме общего решения соответ­
ствующей ей системы однородных линейных уравнений (2.12) и про­
извольного частного решения этой системы (2.12).

2.6. Решение задач
[ Пример 2.6. Даны матрицы

А = В = С =

(4
О

2
3

7^

1

3

4.
Решить уравнения: а) А Х  = В; б) ХА = С .
Р е ш е н и е. а) Для невырожденной матрицы А реш ение 

уравнения находится по той же формуле (2.7) X  = А ]В , но здесь 
необходимо учесть, что X  не является матрицей-столбцом (как 
это было в § 2.1), а имеет размер (2 x 3 ) , ибо А1 хгВ2 ? = Х 2, ъ.

Найдем обратную матрицу А 
ному в §1.5:

согласно алгоритму, приведен­

и е  3 • 1 -  1 ■ 2 = 1; так как \А\ ф 0 , то А Л существует. М атрица

А ’ , транспонированная к А , имеет вид А'
3 1 
2  1

, а матрица А

из алгебраических дополнений элементов матрицы А'

1-1 У

есть

Теперь А
1 1

и матрица переменных
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X  = A~lB =
1 - 2 Y l  2 7 W  1 - 6  -9 '|

v-1 3J I 0  4 8; Ч - 1  1 0  1 7 /
б) Полагая матрицу А  невырожденной, умножим обе части 

уравнения ХА = С справа на обратную матрицу /Г ' 1: (ХА)А~1=
САг 1

Так как ( Х А ) А  л = Х ^ А А  = Х Е  = X  , то X  -  СА  1 и размер 

матрицы переменных ( 4 x 2 ) ,  так как С4х2 х А г ' 2 = Х 4 , 2 ■ Следо­
вательно,

'4 / ' - 3 13"
0 1 ( 1 - 2V -1 3
2 3 1-1 3 ) -1 5

1з 4J 1-1 6 у

Х  =

ОПрнмер 2.7. Решить уравнение

: к  I 5
-2

Р е ш е н и е .  Обозначив А = | ’ I , В = ,
Л lJ 12
4 3

С = 4)
о/

представим уравнение в виде АХВ = С . Умножим обе части 
уравнения слева на обратную матрицу А 1 и справа на обратную 
матрицу В 1, учитывая, что А и В  — невырожденные матрицы: 
\А\ = 1 * 0, |Д| = -10 * 0 .

Получим А 1(АХВ)В 1 = А ЛСВ~Х. Учитывая, что 

А Л(АХВ)В  1 = [ А  ЛА ) ( Х В ) В 1 = Е ( Х В ) В 1 = (ХВ)В  1 =

= Х{В В ~ 1̂  = Х Е  = X ,  получим X  = А 1С В 1.

| 1 - 3 )
Теперь найдем А =

Х  =

Поэтому
1 - 3 '

Л 4

_1_ [ 3 -  64"| 
10V5 80J

5 4
2 0  

0,3 
0,5

-1 4 /

i f
1 0 V- 2

- м ] ►
8 ,о ;

В ~ 1 =-~ —  
10

'  1
v-2 б)

8У 1 ( 11 4
10V-13 -4 ,
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[>Пример 2.8. Обувная фабрика специализируется по выпуску
изделий трех видов: сапог, кроссовок и ботинок; при этом и с ­
пользуется сырье трех типов: .S’, , S 2, ^  . Нормы расхода каждого 
и з них на одну пару обуви и объем расхода сырья на 1 день зада­
н ы  таблицей:

Вид сырья Нормы расхода сырья на одну пару, 
усл.ед.

Расход сырья на 
1 день, уел. ед.

Сапоги Кроссовки Ботинки
5 3 4 2700

^2 2 1 1 800

^3 3 2 2 1600

Найти ежедневный объем выпуска каждого вида обуви.
Р е ш е н и е .  Пусть ежедневно фабрика выпускает х, пар са­

пог, х 2 пар кроссовок и х 3 пар ботинок. Тогда в соответствии с 
расходом сырья каждого вида имеем систему:

5 х г + Зх2 + 4х3 = 2700,
• 2Х] + х2 + х3 = 900,

3xj + 2х2 + 2х3 = 1600.

Решая систему любым способом, находим (200; 300; 200), т.е.
фабрика выпускает 200 пар сапог, 300 — кроссовок и 200 пар
б о ти н о к .^

[ Пример 2.9. С двух заводов поставляются автомобили для 
двух автохозяйств, потребности которых соответственно 200 и 300 
машин. Первый завод выпустил 350 машин, а второй — 150 м а­
ш ин. И звестны затраты на перевозку машин с завода в каждое 
автохозяйство (см. таблицу).

Завод Затраты на перевозку в автохозяйство, ден. ед.
1 2

1 15 20
2 8 25

М инимальные затраты на перевозку равны 7950 ден. ед. Найти 
оптимальны й план перевозок машин.
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Р е ш е н и е .  Пусть Хд — количество маш ин, поставляемых с 

/-го завода j -му автохозяйству ( / , /  = 1,2). Получаем систему

'  * 1 1 + х 12 = 350,

* 2 1 + * 2 2 = 150,

* 1 1 + * 2 1 = 200,

* 1 2 + * 2 2 = 300,
1 5a'i j + 20*12 + О

О

£ + 25*22 = 7950,
Реш аем систему, например, методам Гаусса. (Рекомендуем 

сделать это читателю самостоятельно.) Найдем х п = 50, х п  = 
=  300, х 21 = 150, х 22 = 0 (Обращаем внимание на то, что ранг м ат­
рицы  системы г = 4 , т.е. г = п , и система имеет единственное 
р еш ен и е ).^

2.7. Модель Леонтьева многоотраслевой 
экономики (балансовый анализ)

Ц ель балансового анализа — ответить на вопрос, возникаю ­
щ ий в макроэкономике и связанны й с эффективностью  ведения 
многоотраслевого хозяйства: каким должен быть объем производ­
ства каждой из п отраслей, чтобы удовлетворить все потребности 
в продукции этой отрасли? При этом каждая отрасль выступает, с 
одной стороны, как производитель некоторой продукции, а с 
другой — как  потребитель продукции и своей, и произведенной 
другими отраслями.

С вязь между отраслями, как правило, отражается в таблицах 
межотраслевого баланса, а математическая модель, позволяю щ ая 
их анализировать, разработана в 1936 г. американским эконом и­
стом В.Леонтьевым.

П редположим, что рассматривается п отраслей пром ы ш ленно­
сти, каждая из которых производит свою продукцию. Часть п р о ­
дукции идет н а внутрипроизводственное потребление данной 
отраслью и другими отраслями, а другая часть предназначена для 
целей конечного (вне сферы материального производства) л и ч н о ­
го и общ ественного потребления.

Рассмотрим процесс производства за некоторый период вре­
мени (например, год).
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Введем следующие обозначения: л-, — общий (валовой) объем

продукции / -  й отрасли (/ = 1,2 п ) ;
Ху — объем продукции /-й отрасли, потребляемой у'-й отрас­

лью в процессе производства (/, у = 1,2,
y t — объем конечного продукта /-й отрасли для непроизвод­

ственного потребления.
Так как валовой объем продукции любой /-й отрасли равен 

суммарному объему продукции, потребляемой я отраслями, и 
конечного продукта, то

П

Xi = Yu XV + У‘' (‘ = 1'2’ ■ ■ ■ П) ■ (2•14^
i =1

У равнения (2.14) называются соотношениями баланса. Будем 
рассматривать стоимостный межотраслевой баланс, когда все 
величины, входящие в (2.14), имеют стоимостное выражение. 

Введем коэффициенты прямых затрат

aij = У = 1,2,..., я ), (2.15)
x j

показы ваю щ ие затраты продукции /-й отрасли на производство 
единицы  продукции у'-й отрасли.

М ожно полагать, что в некотором промежутке времени ко эф ­
фициенты  ау будут постоянными и зависящ ими от сложивш ейся

технологии производства. Это означает линейную  зависимость 
материальных затрат от валового выпуска, т.е.

х(/ = a ‘j x J ’ О ’ J " 1)2’ • • • >п) > (2•16)
вследствие чего построенная на этом основании модель межот­
раслевого баланса получила название линейной.

Теперь соотнош ения баланса (2.14) примут вид:

х , = j^ a y Xj, + > - , ( / =  1,2,. . . ,я).  (2.17)
1 -1

57



( х  'У Х1 4 i ап  ■•• а\п

О бозначим X  = *2
,А  =

а п а22 •■ ■ а2п
, Г  =

У2

Уап\ ап2 ••• апп' { y j
где X  — вектор1 валового выпуска, Y  — вектор конечного продук­
та, А — матрица прямых затрат (технологическая или структур­
ная матрица).

Тогда систему (2.14) можно записать в матричном виде:

X  = А Х  + Y. (2 .18)

Основная задача межотраслевого баланса состоит в отыска­
нии такого вектора валового выпуска X, который при известной 
матрице прямых затрат А обеспечивает заданный вектор конеч­
ного продукта Y.

П ерепиш ем уравнение (2.18) в виде:

(Е  -  А )Х  = Y. (2 .19)

Если матрица (Е  -  А) невырожденная, т.е. \Е -  А\ ф 0 , то п о  
формуле (2.7)

X  = ( Е -  A) lY. (2 .20)

М атрица S  = ( Е -  А ) 1 называется матрицей полных затрат. 

Чтобы выяснить экономический смысл элементов матрицы 
.S’ = (stJ) ,  будем задаваться единичными векторами конечного

продукта2 Yx = (1,0,...,0) ,Y2 = (0,1,...,0) ,Y„ = (0,0,...,1) . Тогда п о  

(2.20) соответствующие векторы валового выпуска будут

^ l = ( 5l l .  521> ^ l )  » ^ 2 = ( 512> s22 > •••’ ^ 2) .•••>

X п  =  ( 5 1л ’ s 2n > • • • s nn ) •

Следовательно, каждый элемент Sy матрицы S  есть величина 
валового выпуска продукции /-й отрасли, необходимого для

1 Строгое определение вектора дано в гл. 3.
2 Используем для краткости зн ак  “штрих” — транспонир^. "ш ия матрицы.
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обеспечения выпуска единицы  конечного продукта у-й отрас­
ли = 1 (у = 1 ,2 ,...,я),

В соответствии с экономическим смыслом задачи значения х; 
должны быть неотрицательны при неотрицательных значениях 
y t > 0 и atj > 0, где i , j  = 1 ,2 ,...,л .

М атрица А > 0 называется продуктивной, если для лю бого век­
тора У > О существует реш ение X  > 0 уравнения (2.19). В этом 
случае и модель Леонтьева называется продуктивной.

Существует несколько критериев продуктивности матрицы А . 
Один из них говорит о том, что матрица А продуктивна, если 
максимум сумм элементов ее столбцов не превосходит единицы, 
причем хотя бы для одного из столбцов сумма элементов строго 
м еньш е еди ни ц ы , т.е. м атрица А  п родукти вн а, если  > 0 для

ft
любых i , j  = 1 ,2 ,...,я и max < 1, и существует номер j

j~  1,2,..,,л
n

такой , что ^  ay < 1.
i=i

-Пример 2.10. В таблице приведены данные об исполнении 
баланса за отчетный период, уел. ден. ед.:

Отрасль Потребление Конечный
продукт

Валовой
выпускэнергетика машино­

строение
Про­ Энергетика 7 21 72 100
извод­ Машино­ 12 15 123 150
ство строение

Вычислить необходимый объем валового выпуска каждой от­
расли, если конечное потребление энергетической отрасли уве­
личится вдвое, а маш иностроения сохранится на прежнем уров­
не.

Р е ш е н и е .  Имеем 
X] = 100,х2 = 150,Хц = 7,х12 = 21,*21 = 12,х22 = 1 5 ;^  = 72, у 2 = 123.

П о формуле (2.15) находим коэф фициенты  прямых затрат: 
а п  = 0,07,<2 i2 = 0Д4,a 2i = 0,12,аь2 = 0Д0 > т е матрица прямых за-

, ГО,07 0,14)
трат ^  = q jqJ имеет неотрицательные элементы и удовле­

творяет критерию  продуктивности:
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max{0,07+0,12; 0,14+0,10} = max{0,19;0,24) = 0,24 <1.

Поэтому для лю бого вектора конечного продукта Y  можно 
найти необходимый объем валового выпуска X  по  формуле
(2.20):

X  = { Е -  A)~l Y.

Найдем матрицу полных затрат S  = {Е -  А)  1:

(  0 93 — 0 24̂ 1
Е - А  = \ ’ ’ . Так как \Е -  А  = 0 ,8 2 0 2 * 0 , п о  формуле

V—0,12 0,90 J 1 1
(1.14)

s - ( e - a Y 1  - f 0,90 0 Д 4 |
1 ’  0,82021о,12 0,93;

П о условию  вектор конечного продукта Y  = ̂ 2з) ' ^ огда п о

формуле (2.17) получаем вектор валового выпуска:
1 ("0,90 0,14 Y 1 4 4 W 1 79,0

0,8202 ^0,12 0.93Л123; U60,5j 
т.е. валовой выпуск в энергетической отрасли надо увеличит!, до 
179,0 усл.ед., а в маш иностроительной — до 160,5 уел. е д .^

У П Р А Ж Н Е Н И Я
Реш ить системы уравнения методом обратной матрицы и по  

формулам Крамера:
*! + 2х 2 + *з = 8,

—2jCj + 3*2 -  Зл'з = -5,
3*j - 4х2 + 5х3 = 10.

2xi + х 2 -  х 3 = 0,
3*2 + 4*3 + 6 = 0,

x i + *3 = 1.

2*, - 3*2 -  *3 + 6 = 0,
3jCj + 4*2 + З*3 + 5 = 0,
*, + *2 + *3 + 2 = 0.
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-2x l + x 2 + 6 = 0 ,
2.14. xi -  2 x 2 - Х з = 5 ,

3xi + 4x 2 -  2x3 = 13.
Реш ить системы уравнений методом Гаусса:

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

X] + 2х2 + Зх3 = 6,
2хх + Зх2 - х3 = 4,

3xj + х2 - 4*з = 0.

2xj + Зх2 - х3 + х4 = -з ,
3xj - *2 + 2х3 + 4х4 = 8,

+ х2 + Зх3 - 2х4 = 6,

г х \ + 2х2 + Зх3 + 5х4 = 3.

+ 2х2 + Зх3 = 6,
2хх - Зх2 + х3 = о,
Зх, - 2х2 + 4х3 = 5,
Xi - *2 + Зх3 = 3.

2xj + Зх2 - *3 + х4 = 5,
Зх] - *2 + 2х3 + х4 = 1
X, + 2х2 + Зх3 + 4х4 = 6,

6х, + 4х2 + 4х3 + 6х4 = 1.

3xj - 2х2 + Зх3 - Зх4 = о,
Зх, - 2х2 - *3 + х4 = 0,

, x l - х2 + 2хз + 5X4 = 0.

2xj + х2 + *3 + х4 = 1,
х2 - х3 + 2х4 = 2,

2xj + 2х2 + Зх4 = 3.
Реш ить матричные уравнения: 

2.21.

2.23. АХВ  = С, если /1 =

2. 22. X

2  3
, В  =

'5  4 Г'
1 1 7

16 5 9.

61



Н айти базисные реш ения системы уравнений:

2.24.

2.25.

2.26.

Г X! + 2 х 2 - *3 = 5,
[2X1 - х2 - Зх3 = -4.

|3х , + х2 - *3 -

и -4 ,

1 * 1 + *2 - х3 4- 2 х 4 = 1.
X, + *2 + х3 + х4 = 2 ,

2xt + 2 х 2 - х3 + 2 х 4 = -2,

x i - *2 - х4 = 2.

'3xj - х2 + 2х3 + 2 х 4 = 18,
■ - X i - *2 + 2 х 4 = 0,

. *1 + *2 + *3 " нЯ
1.

2.27.

2.28. Имею тся три банка, каждый из которых начисляет 
(свой для каждоговкладчику определенный годовой процент 

банка). В начале года 1/3 вклада размером 6000 ден.ед. вложили в 
банк 1 ,1 /2  вклада — в банк 2 и оставшуюся часть — в банк 3 и к 
концу года сумма этих вкладов возросла до 7250 ден. ед. Если бы 
первоначально 1/6 вклада положили в банк 1, 2/3 — в банк 2 и 
1/6 вклада — в банк 3, то к концу года сумма вклада составила бы 
7200 ден. ед.; если бы 1/2 вклада положили в банк 1, 1/6 — в 
банк 2 и 1/3 вклада — в банк 3, то сумма вкладов в конце года 
составила бы вновь 7250 ден. ед. Какой процент выплачивает 
каждый банк?

2.29. В таблице приведены данные об исполнении баланса за 
отчетный период, уел. ден. ед.:

Отрасль Потребление Конечный Валовой
1 2 продукт выпуск

Производ­ 1 100 160 . 240 500
ство 2 275 40 85 400

В ычислить необходимый объем валового выпуска каждой от­
расли, если конечный продукт первой отрасли должен увели­
читься в 2 раза, а второй отрасли — на 20%.



Глава 3. ЭЛЕМЕНТЫ МАТРИЧНОГО АНАЛИЗА

3.1. Векторы на плоскости и в пространстве
Обобщим некоторые сведения о векторах, известные в основ­

ном из ш кольного курса геометрии.
—̂

Вектором называется направленны й отрезок АВ  с начальной 
точкой А  и конечной точкой В  (который можно перемещать 
параллельно самому себе (рис.3.1)).

В Векторы могут обозначаться как  дву­
мя прописны ми буквами, так и одной 
строчной с чертой или стрелкой, либо 
выделяться жирным шрифтом, напри-

—» —>   ___
мер: а =АВ, а = АВ  или а = А В .

 ̂ —>
Дайной (или модулем) \АВ\ вектора АВ  называется число,

равное длине отрезка А В  , изображаю щ его вектор.
Векторы, лежащие на одной прямой или на параллельных 

прямых, называю тся коллинеарными.

Если начало и конец вектора совпадают, например, АА  , то

такой вектор называют нулевым и обозначают 0 = АА . Д лина ну-

левого вектора равна нулю: |0| = 0 . Так как направление нулевого
вектора произвольно, то считают, что он коллинеарен любому 
вектору.

—>
Произведением вектора а на число Л называется вектор

-» -> —►
b = Л а , имею щ ий длину \b\ = |л[ \а\ , направление которого сов­

падает с направлением вектора а , если А > (), и противополож ­
но ему, если Л < 0 (рис.3.2).
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Противоположным вектором - а назы-

X а (л<0) л а (>.>0) вается произведение вектора а на число Г I ).

Рис.3.2 т.е. -  и -  ( - ! )  ^ .

Суммой двух вектором а и b на шшает- 

ся вектор с -  а т b , начато которого coww- 

дает с началом вектора а . а конец -  с кон ­

ном вектора Ь при условии, что начало

вектора Ь совпадает <• концов вектора а
(рис.3.3) (правило треугольников).

Рис. 3.3 Очевидно, что вектор с и ггом случае
представляет диагональ параллелограмма.

построенного на векторах и н b (рие.З. -i.) {г.рави-ю параллело­
грамма).

А налогично определяется сумма нееко.чькпх иекторок. Гак,

например, сумма четырех векторов a .  h с а и -не '■ 4. с!) есть
» - * > > ^

вектор е = а + b \  с \ d  , начало которого соьцлт.к.' i начало*’
■ >

вектора а , а конец — с концом вектора d  (чртыло мчтоугояыш- 
ка) (рис. 3.4, о).

Нетрудно убедиться, что вектор d а - b • с определяемый
1;!Kii Ч o6{')aiu.\i, ПрСЛ-
(. гаиляет чна) ональ па -
р а г к м е т ш е д а  нос тро

енно! о НО i:e- I. рач , 

h и ,■ не +..i!;ur< п
ОД ПОЛ! И М Ч Л . О е Т ) !  И I и  в

параллельных илооко-
1 K v l f l l  i i > а

ПЧПСОи) ! [)ИС.Рис. 3,1
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- г  >

а)
Рис. 3.5

- Ь

б)

Разностью двух век- 
—> —>

торов а и b н азы ­
вается сумма вектора

а и вектора -  b , 
противополож ного

b (рис. 3.6).
Легко убедиться в 

том, что в параллело­
грамме, построенном

А I' а
Рис.3.6

н а векторах а -  АВ  и  b = AD , одна диа-

гональ — вектор с = А С  — представляет 

сумму векторов а и Ъ , а другая диаго­

наль — вектор d  = DB  — их раз­
ность (рис.3.7).

-»
Перенесем вектор а параллель­

но самому себе так, чтобы его нача­
ло совпало с началом координат.

->
Координатами вектора а 
называются координаты его 
конечной точки.

Так, координатами век- 
-> —>

тора а = ОМ  на плоскости 
Оху являются два числа х  

—►
и у  ( а  = (х ,у)  — рис.3.8.), а

в пространстве Oxyz — три числа х , у  и z  ( а  -  ( x , y , z ) — р и с .3.9). 
В соответствии с определениями, приведенными выше, не-

трудно показать, что суммой и разностью векторов а = (jcl , y l , z i ) 
—>

и b = (х2, Д'г' z2) являю тся соответственно векторы.
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С = а + Ь = (*! + х 2, у х + у 2, z x + z 2),
—> —> —>
</ = a -  b = (*! -  *2 , J/j -  У2, z, -  z2),

—►
a произведение вектора a = {xb y x, z^  на число Я есть вектор

Н а рис. 3.8 и 3.9 видно, что длина вектора равна корню  квад ­
ратному из суммы квадратов его координат:

Определение. Скалярным произведением ( а , Ь )  двух векторов 
—> —>
а и Ь называется число, равное произведению длин этих векторов 
на косинус угла  ср между ними:

Выразим скалярное произведение через координаты векторов 

а и b .
И з треугольника ABD  (рис.3.7), сторонами которого являются 

—> —> —> —> —> 
векторы а = (xb y l , z l ) , b = (x2, y 2,z2) и d -  а -  Ь =

= (xj -  х 2, у х -  y 2, z x - z 2), по теореме косинусов следует, что
2 2 —> —> —» —>

\d2\ = |я| + 1£| -  2 |д| |£| cos ф , откуда

\а\ = \ОМ\ = yjx2 + у 2
или

\а\ -  \ОМ\ = tJx 2 +у2 +z2 . (3.1)

/
(3.2)

V
Учитывая формулу длины вектора (3.1), найдем 

->2 >2
И  = Х \  + У \  + , \ь\ = х22 + Я  + * 1 ,
- 2
|</| = (х ] -  х 2)2 + (>’j -  >’2)2 + (zj — z2)2 и после преобразования вы

раж ения (3.2) получим
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т.е. скалярное произведение двух векторов равно сумме произведений 
соответствующих координат этих векторов.

—> —>
Заметим, что при а = b угол <р = 0, cos <р =1 и

a, b j  = |a||£|cos<p = x xx 2 + У\У2 + ziz i* (3.3)

( а , а )  = а =\а\ = х 2 + у ,2 + z 2 , (3 .4)

т.е. скалярный квадрат вектора равен квадрату его длины.
В частности, расстояние d  между двумя точками плоскости 

А (х1, у 1) и В(х2, у ^) мож но рассматривать как дайну вектора 
-»

АВ =  (х2 -  А ',, у 2 -  У\) ■ Поэтому

d  = ]\AB\ = J ( x ^ - x x)2 + (у 2 - у х)2. (3 .5)
- —>

Угол между векторами а и b определяется по формуле

= , Х Л + У М + Ю  . (3.6)
|д| |*| V*? + z i2 V*? + } j  + 4

—> >
[>Пример 3.1. Д аны  векторы а = (2; -  1; -  2) и А = (8; -  4; 0).

Найти: а) векторы с - 2 а  и d -  Ь -  а \ б) длины векторов с

и d  ; в) скалярны й квадрат вектора d  ; г) скалярное произведе- 
-> -> > • > 

ние векторов ( с , ); д) угол между векторами с и d .

Р е ш е н и е. а) По определению  с = 2 а = (4; - 2 ;  -4 ) ;

d = Ь -  а =  (6; —3; 2).

б) П о формуле (3.1) найдем длины векторов с и d :

|с| = у1л2 + (-2 )2 + ( ^ ) 2 = 6, |</| = + 22 =7.
в) По формуле (3.4) скалярны й квадрат равен квадрату модуля

вектора, т.е. ( d , d ) -  d 2 =| d  |2 = 72 = 49.
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г) П о формуле (3.3) скалярное произведени 

( c , d )  = 4 ■ 6 + (-2 )(-3 ) + (-4 )• 2 = 22
—>

д) П о формуле (3.6) угол между векторами с и d  определяет­
ся равенством:

( c , d ) 22cos ср = —̂- = ------- « 0,52 , откуда

йй
Ф = arccos 0,52 « 58° .►

3.2. л-мерный вектор и векторное пространство
М ножества всех плоских или пространственных векторов, 

рассмотренных выш е, в которых определены операции сложения 
векторов и умножения вектора на число, являются простейш ими 
примерами векторных пространств. Ниже обобщается понятие 
вектора и дается определение векторного пространства.

Определение, п-м ерны м  вектором называется упорядоченная 
совокупность п действительных чисел, записываемых в виде 
х=  (х1, х 2, . . . , х „ ), где х, — i-я компонента вектора х 1.

П онятие «-мерного вектора ш ироко используется в эконом и­
ке, например, некоторы й набор товаров можно охарактеризовать 
вектором х  = (х1, х 2, . . . , х „ ), а соответствующие цены — вектором

У=(УиУг>-->Уп)-
Д ва  п-мерных вектора равны  тогда и только тогда, когда равны 

их соответствующ ие компоненты , т.е. х=у, если х, = , / =
= 1,2,. , . ,п.

Суммой двух векторов одинаковой размерности п  называется 
вектор z=x+y, ком поненты  которого равны сумме соответствую­
щих ком понент слагаемых векторов, т.е. z, = х, + у (, i = 1,2

Произведением вектора х  на действительное чисю Л назы вает­
ся вектор и = Х х , компоненты  и, которого равны произведению

1 Компоненты  «-мерного вектора удобнее обозначать одной буквой, но с р аз­
ными индексами (в отличие от двух и трехмерных векторов, компоненты которых 
мы обозначали выше разны м и буквами), а сам вектор — той же буквой (без ном е­
ров и стрелки), выделенной жирны м шрифтом.
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Я на соответствующие компоненты  вектора X , т.е. щ = Ах 
/ = 1 ,2 ,...,я.

Л инейны е операции над лю быми векторами удовлетворяют 
следую щ им свойствам:

1. — коммутативное (переместительное) свойство
суммы:

2. (jt+j)+z=x+CH+z)— ассоциативное (сочетательное) свойство 
суммы;

3. а(рлг) = (оф)л; — ассоциативное относительно числового
множителя свойство;

4. a ( jt+ j)=  а х + а у  — дистрибутивное (распределительное) от­
носительно суммы векторов свойство;

5. (а  + Р)дг = (хх + рх — дистрибутивное относительно суммы
числовых множителей свойство;

6. Существует нулевой вектор 0=(0, 0, ... , 0) такой, что х+0=х 
для лю бого вектора х  (особая роль нулевого вектора);

7. Для лю бого вектора х  существует противоположный вектор 
(-jc) такой, что х + (-х )= 0 ;

8. I • х  — х  для лю бого вектора х  (особая роль числового м н о ­
ж ителя 1).

Определение. ■ Множество векторов с действительными компо­
нентами, в  котором определены операции сложения векторов и 
умножения вектора на число, удовлетворяющее приведенным выше 
восьми свойствам (рассматриваемым как аксиомы), называется 
векторным пространством.

Следует отметить, что под х, у, z можно рассматривать не 
только векторы, но и элементы (объекты) любой природы. В этом 
случае соответствующее множество элементов называется линей­
ным пространством.

Л инейны м пространством является, например, множество всех 
алгебраических многочленов степени, не превыш ающей нату­
рального числа п. Легко убедиться, что если х  и у  — многочлены 
степени не выш е я, то они будут обладать свойствами 1—8. Заме­
тим для сравнения, что, например, множество всех многочленов 
степени, точно равной натуральному числу я, не является л и н ей ­
ны м  пространством, так как в нем не определена операция сло­
ж ения элементов, ибо сумма двух многочленов может оказаться 
многочленом степени ниже я. А множество многочленов степени 
не выше я, но с положительными коэффициентами также не
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является линейны м  пространством, поскольку в этом множестве 
не определена операция умножения элемента на число: такие 
многочлены нельзя умножать на отрицательные числа.

Из определения векторного (линейного) пространства, в част­
ности из аксиом 1—8, вытекает существование единственного 
нулевого вектора, равного произведению  произвольного вектора 
х  на действительное число 0 и существование для каждого векто­
ра х  единственного противоположного вектора ( -* ) ,  равного 
произведению  этого вектора на действительное число (— 1).

3.3. Размерность и базис векторного пространства
П онятия линейной  комбинации, линейной зависимости и н е­

зависимости векторов вводятся аналогично тому, как это было 
сделано в § 1.6 для строк матрицы.

Определение. Вектор ат называется линейной комбинацией 
векторов а\, а2, ..., ат векторного пространства R, ест  он равен 
сумме произведений этих векторов на произвольные действительные 
числа:

а„, = Лха^ + Л2а2+...+Лт_ЛатЛ. (3.7)

где Л1,Л2, . . . ,Лт_1 — какие угодно действительные числа.
Определение. Векторы а\, а2, ..., ат векторного пространства 

R называются линейно зависимыми, если существуют такие числа 
Лл ,Л2, . . . ,Лт , не равные одновременно нулю, что

Лхй\ + Л2а2+...+Лтат ~ 0 . (3.8)

В противном случае векторы щ, а>. .... ат называются линейно 
независимыми.

Из приведенных выше определений следует, что векторы а\, 
а2, ..., ат линейно независимы, если равенство (3.8) справедливо 
лиш ь при Л1 = Л2 = ...=  Лт = 0 , и линейно зависимы, если это 
равенство выполняется, когда хотя бы одно из чисел 
ЯД; =1,2  т) отлично от нуля.

М ожно показать (аналогично § 1.6), что если векторы а \ , а?, ..., ат 
линейно зависимы, то по крайней мерс один из них линейно выража­
ется через остальные. Верно и обратное утверждение о том, что
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если один из векторов выражается линейно через остальные, то все 
эти векторы в совокупности линейно зависимы.

П римером линейно независимых векторов являю тся два н е- 
коллинеарных, т.е. не параллельных одной прямой, вектора а{ и 
а2 на плоскости. Д ействительно, условие (3.8) Лх а \+ Л 2а2 = О 
будет выполняться лиш ь в случае, когда Лх = Л2 -  0 ,  ибо если,

X,
например, Х2 ф  0 , то а2 =  и  векторы а\ и а2 коллинеарны.

^2
Однако лю бые три вектора плоскости линейно зависимы.

О тметим н екоторы е свойства векторов ли н ейн ого  п р о стр ан ­
ства.

1. Если среди векторов а\, а2, ■ ■■, ат имеется нулевой вектор, то 
эти векторы линейно зависимы. В самом деле, если, например, а\ =  
=0, то равенство (3.8) справедливо при Лх = 1, Л2 =...= Лт = 0 .

2. Если часть векторов а\, а2, ..., ат являются линейно зависи­
мыми, то и все эти векторы — линейно зависимые. Действительно, 
если, наприм ер, векторы а2, •••, ат линейно зависимы, то сп ра­
ведливо равенство Л2 а2+ Лт ат=0, в котором не все числа
Х2, ■■■, равны  нулю. Н о тогда с теми же числами Х2, ■ ■■,'Хт и 
Л1 = 0 будет справедливо равенство (3.8).

О Пример 3.2. Выяснить, являю тся ли векторы a i = ( l ,  3, 1, 3), 
а2 = (2 , 1, 1, 2) и а3 = (3 ,—1,1,1) линейно зависимыми.

Р е ш е н и е .  Составим векторное равенство Лхах + Л2а2 + 
+Л3а3 =0. Записы вая а2, а3 в виде вектор-столбцов, получим

Г Г '  зл
3 1 - 1 0

■+■ X j + X 'l
1 L 1 J 1 0

чЗ, л , v L v d

Задача свелась, таким  образом, к реш ению  системы:

+ 2,Х2 + ЗХ-з = 0,

3Xj + %2 ~~ "̂3 = 0,

^ 1  ^ 2  ^ 3  =

ЗХ-^ + 2 Х 2 + Х% — 0.
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Решая систему методом Гаусса (см. § 2.3), приведем ее к  виду:

Я, + 2Я2 -  3 Я3 -  О,
Л: + 2Я3 = О,

0 = 0 ,
0 = 0 ,

откуда найдем бесконечное множество ее реш ений (Лх = с, 
Л2 = -2 с, Я3 -  с ) , где с — произвольное действительное число.

И так, для данных векторов условие (3.8) выполняется не толь­
ко при Я, -  Я2 = Я3 = 0 (а, например, при Л} = 1, Л2 = ~2,Л3 -  1
( с  = 1); при Лх -  2 ,Л2 -  - 4 ,Л3 -  2 (с -  2) и т.д.), следовательно, 

эти векторы — линейно зави си м ы е.^
Определение. Линейное пространство R  называется п-мерным, 

если в нем существует п линейно независимых векторов, а любые из 
(и +1) векторов уж е являются зависимыми. Другими словами, 

размерность пространства — это максимальное число содержа­
щихся в  нем линейно независимых векторов. Ч исло п называется 
размерностью  пространства R и  обозначается d im (/?).

Определение. Совокупность п линейно независимых векторов 
п-мерного пространства R называется базисом.

Справедлива следующая теорема.
Теорема. Каждый вектор х  линейного пространства R можно 

представить и притом единственным способом в виде линейной 
комбинации векторов базиса.

□Пусть векторы е1,е2,.. .,е„ образуют произвольный базис 
«-мерного пространства R. Так как любые из (п + 1) векторов 
«-мерного пространства R зависимы, то будут зависимы, в част­
ности, векторы ех<е2, .. . ,е„  и рассматриваемый вектор х. Тогда
существуют такие не равные одновременно нулю числа 
Л1,Я2, . . . , Л„,Л , что

Лхе, f Л2е2+...+Лпе, + Лх =0.

При этом Я ф 0 , ибо в противном случае, если Л 0 и хотя 
бы одно из чисел Я.( ,А.2 , . . .Д „  было бы отлично от нуля, то век­
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торы е , , е2, • • •, е„ были бы линейно зависимы. Следовательно,

X j  Х 2 ~Хпх  =  е 1  в2 . е„
X X  X

или
х = x tej + х2е2 +.. ■+х„е„ , (3 .9)

где, х, = - — ■ (i = 1 ,2 ,...,«).
А

Это выражение х  через е1,е 2,- • единственное, так как если 
допустить какое-либо другое выражение, например,

х  = У\е \ +У2е2+---+У„еп , 
то, вычитая из него почленно (3.9), получим

(У\ - + (У7 - х 2)е2+...+(у„ - Хп)е„ = О,
откуда из условия линейной независимости векторов ех,е2,.. . ,е„ 
следует, что

У\ -*1 = у 2 - х 2 =...= у п - х п = О
или

Л = x i , y 2 = х 2 , . . .у„ = х„ .и
Равенство (3.9) называется разложением вектора х  по базису 

ех, е2, . . . ,  еп , а числа х х, х2,.. .,  х„ — координатами вектора х  отно­
сительно этого базиса. В силу единственности разлож ения (3.9) 
каждый вектор однозначно может быть определен координатами 
в некотором базисе.

Очевидно, что нулевой вектор имеет все нулевые координаты, 
а вектор, противоположный данному, — противоположные по 
знаку координаты.

Важное значение имеет следующая теорема.
Теорема. Если е\ ,е2,.. . ,е„ — система линейно независимых век­

торов пространства R  и любой вектор а  линейно выражается через 
еи е2, . . . , еп , то пространство R является п-мерным, а векторы 
ех,е2, . . . ,е„ — его базисом.

П Возьмем произвольные т векторов пространства R, где
т >  п . П о условию каждый из них можно линейно выразить 
через еи е2, . . . , е„:

«1

II + а П е 7 + .... + « 1  пе п

« 2 = «2 1 *1 « 2 2 * 2 +  .... + а г „ е п

Ят = а т\е \ 4- « и 2 « 2 + .. . + а тпе„
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Рассмотрим матрицу А  = (а у )  (/ = 1 ,2 ,...,т;j  = 1 ,2 ,...,л ). Ранг 

этой матрицы не превосходит п:r(A)  < min{/w,n j  = п ,  следова­
тельно, среди ее строк не более п  линейно независимых. Так как 
т >  п , то т строк этой матрицы, а значит и т  векторов 
а1,а2, . . . , ат линейно зависимы. Таким образом, пространство R

п -мерно и е1,е2, . . . , е„ — его базис.■

[>Пример 3.3. В базисе еь е2,е 3 заданы векторы ах = (1; 1; 0), 
а2 = (1 ; —1; 1) и в3 = ( —3; 5; —6). Показать, что векторы щ , а 2, а 3 
образуют базис.

Р е ш е н и е .  Векторы ах,а2,а ъ образуют базис, если они л и ­
нейно независимы. Составим векторное равенство: Ххах + Я2а2 + 
+ А3а3 =0. Реш ая его аналогично примеру 3.2, можно убедиться в 
единственном нулевом его реш ении: = Л2 = Л3 -  0 , т.е. векто­
ры  в ], а2, а3 образуют систему линейно независимых векторов и, 

следовательно, составляю т б ази с .^

3.4. Переход к новому базису
Пусть в пространстве R  имею тся два базиса: старый

е1,е2, . . . , еп и новы й е1,е2, . . . , еп . Каждый из векторов нового 
базиса мож но выразить в виде линейной комбинации векторов 
старого базиса:

е\
*

ег
а 11е 1

°21е1

+ а12е2 
+ а22е2

+
+

+
+

a\rfin > 
аг пеп, (3.10)

е п -  а п \е \ +  а п2е 2 +

П олученная система означает, что переход от старого базиса 
е \,е 2 ,...,еп к новому е *,«2 ,• • •,е*п задается матрицей перехода a j ju  т.д.

А =

а п  а 21  

а 12 а 2 \

ап1
ап2

п а21
причем коэф ф ициенты  размножения новых базисных векторов 
по старому базису образуют с т о л б ц ы  этой матрицы.
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М атрица А — неособенная, так как в противном случае ее 
столбцы (а следовательно, и базисные векторы) оказались бы 
линейно зависимыми. Обратный переход от нового базиса 
ех,е*,. . . ,е*  к  старому базису е^,е2  еп осуществляется с помо­

щью обратной матрицы А 1.
Найдем зависимость между координатами вектора в разных 

базисах. Пусть рассматриваемый вектор х  имеет координаты 
(л,, л'2 , .... х„)  относительно старого базиса и координаты

( x j \  Xj ,  .... х* )  относительно нового базиса, т.е.

* * * *
х  = х ^ е 1 + х2е2 +---+хпеп = х хех + х 2е2+---+хпеп (3.11)

Подставив значения из системы (3.10) в левую
часть равенства (3.11), получим после преобразований:

Х1 ^ а 1\х \ + а21х 2 + +ап\х п'
Л'2 = U[2X{ + {J22X2 + +ап2х п'

Х п =  а \п х \ +  «2 п х п +

т.е. в матричной форме

+а„„х„

f  Y \ Л 1
Х7

Кхп,

(  *\
*1*
х 2

\ Х П )

или

*1*
х 2

\X„J

= А'

( х ^
х 2

, Х п )

(3.12)

Г-Пример 3.4. По условию примера 3.3 вектор й=(4; —4; 5), за­
данный в базисе е ^ е 2,е3 , выразить в базисе а х,а г ,а у . 

Р е ш е н и е .  Выразим связь между базисами:

Я] = + ,

а2 = «1 -  *2 + е ,,

(«3 = -Зв, + 5<Г2 -  be.
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М атрица перехода от базиса еь е2,е3 к  базису а1,а 2,а 3 имеет 
вид

( \  1 -3^
, 1

. Вычисляем А = —
(1 3 21

А = 1 -1 5 6 - 6 - 8
10 1 -6/ 4 I 1 -1 - у

( х * Л*1 1
' \  3  2 (  4^ 1 f  2 '

Г 0,5)
Теперь по ( 3 .1 2 ) Х 2 А 6 - 6  -8 - 4 л 8 = 2

1 * 3  >
4

Л - 1  - 2 ) v 5;
4

v - 2 ;

«Оo
’1

т.е. новые координаты вектора b в базисе а \ , а2, «з есть 0,5; 2 и 
—0,5 и вектор Ь может быть представлен в виде:

b =  0,5а! + 2а2 -  0,5«з. ►

3.5. Ев к л и д о в о  п р о стр ан ств о

Выше мы определили линейное (векторное) пространство, в 
котором можно складывать векторы и умножать их на числа, 
ввели понятие размерности и базиса, а теперь в данном п р о ­
странстве введем метрику, т.е. способ измерять длины и углы. 
Это можно, например, сделать, если ввести понятие скалярного 
произведения.

Определение. Скалярным произведением двух векторов 
х  = (л-,, х 2, • • •, х„ ) и = O '], у 2, • • ■, УП) называется число

П
(х,у) = х гу г + х 2у 2 +.. ,+х„ул = £  х ,у { . (3.13)

/=1

Скалярное произведение имеет экономический смысл. Если 
х=  (х {, х 2, . . . , х п) есть вектор объемов различных товаров, а
у  = (_v’j , у 2 у„) — вектор их цен, то скалярное произведение (х,у)
выражает суммарную стоимость этих товаров.

С калярное произведение имеет следующие свойства:
1. (х,.у) =  Q>„x) — коммутативное свойство;
2. (x,y+z) — (j,Jt)+(*,2) — дистрибутивное свойство;
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3. (<xjc,_y)= a(x,y) — для любого действительного числа а ;
4. (*,*)>(), если х — ненулевой вектор; (лг,лг)=0, если х  — нуле­

вой вектор.
Определение. Линейное (векторное) пространство, в котором 

задано скалярное произведение векторов, удовлетворяющее указан­
ным четырем свойствам (рассматриваемым как аксиомы), называ­
ется евклидовым пространством.

Д линой (нормой) вектора х  в евклидовом пространстве называ­
ется корень квадратный из его скалярного квадрата:

|jc| = j ( x , x )  = -Jxf + x f +•••+*I . (3.14)

Имеют место следующие свойства длины вектора:
1. |х| = 0  тогда и только тогда, когда х  =  0;

2. \Лх\ = |a| jc| , где Л — действительное число;

3. |(jc, ,у)| < |jc|y| (3.15)
(неравенство Кош и—Буняковского);
4. |jc + < |jc| + |,у| (неравенство треугольника).

Угол ф между двумя векторами х  и у  определяется равенством

(3.16)

где 0 < ф < к .
Такое определение вполне корректно, так как согласно нера­

венству Коши—Буняковского (3.15) |(дс,.у)| < |дс||̂ | , т.е. совф < 1.
Два вектора называю тся ортогональными, если их скалярное 

произведение равно нулю. Очевидно, что нулевой вектор ортого­
нален любому другому вектору. И з определения следует, что если 
два ненулевых вектора ортогональны, то угол между ним и равен 
л/2 (ибо cos л/2 = 0).

Векторы е1,е2, . . . , еп //-мерного евклидова пространства обра­
зуют ортонормированньш базис, если эти векторы попарно ортого­
нальны и норма каждого из них равна единице, т.е. если 
(eh e j )  = 0  при i * j  и \е\ = 1 при / = 1 ,2 ,...,п.

Для установления корректности приведенного определения 
необходимо убедиться в том, что входящие в него векторы

C O S ф
(х,У
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е\, е2 , . еп образую т один из базисов рассм атриваем ого
«-мерного пространства R  (т.е. RP). Для этого достаточно п ока­
зать, что векторы еь е2 еп линейно независимы, т.е. равенство

Лхех + Л2е2 пеп 0 (3.17)

справедливо лиш ь при Лх = Л2 =...= Л„ = 0 .
Действительно, умножая скалярно равенство (3.17) на лю бой 

вектор е,(/ = 1 ,2 ,...,/г), получим

Я j (ех, е,-) + Я2 (е2, е ,)+...+Я „ (ея, е ,) =0,

откуда, учитывая, что (е, ,е ; ) = 0 при / * j  и (е, , е , ) * 0 при всех 
/' = 1 ,2 ,...,я , вытекает, что Я, = 0 при всех i -  1 ,2 ,...,и .

Сформулируем теперь (без доказательства) о с н о в н у ю  теорему. 
Теорема. Во всяком п-мерном евклидовом пространстве сущест­

вует ортонормированный базис.
П римером ортонормированного базиса является система п 

единичных векторов et , у которых /-я компонента равна едини­
це, а остальные компоненты равны нулю: е\ =(1, 0 ,...,0)', е2 =((), 
1,...,0)',..., еП =(0,  0 ...... 1)'.

3.6. Линейные операторы
Одно из фундаментальных понятий матричной алгебры — п о ­

нятие линейного оператора.
Рассмотрим два линейных пространства: R n размерности п и 

R m размерности т.
Определение. Если задан закон (правило), по которому каждому 

вектору х  пространства R” ставится в соответствие единствен­
ный вектор у  пространства R m, то говорят, что задан оператор 
(преобразование, отображение) А{х), действующий из R n в R m , и 

записываю т j  = Д(дс).
Оператор (преобразование) называется линейным, если для л ю ­

бых векторов х  и у  пространства R ” и любого числа Я выпол- 
нются соотнош ения:
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1. A(x + у) = А(х)  + M y )  — свойство аддитивности оператора;

2. А{Ах) = АА(х) — свойство однородности оператора.

Вектор _у =  А(х)  называется образом вектора х, а сам вектор
х  — прообразом вектора у.

Если пространства R n и  R m совпадают, то оператор А  ото­
бражает пространство R n в себя. Именно такие операторы мы 
будем рассматривать в дальнейшем.

Выберем в пространстве R n базис ех,е2,.. .,е„ и , учитывая
(3.9), запиш ем разложение произвольного вектора jc по данному 
базису:

х  = х хех + х 2е2...+х„е„.

В силу линейности оператора А  получаем
А(х) = х 1А(ех) + х 2А(е2)+...+хпА(еп).

П оскольку А(е,)  ( /  = 1 ,2 ,...,я )  — также вектор из R n , то его 
можно разложить по базису ех,е2, . . . , е„.  Пусть

A(ei) = auel + a 2ie2+...+a„le„ ( i  = 1,2,..., л ). (3.18)

Тогда
Л(х) = х х(ахуех + а2Хе2+...+а„хе„) + х 2(ах2ех + а22е2+...+а„2е„ )+...+

+ x n ( a l n e \  +  a 2 n e 7 + - " + a n n e n )  -  («11  *1 +  а \ 2 х г + - - - + а \ п х п ) е \ +

+(а2Л  +а22х 2 +• • -+ а 2 п х п )«2 +• • -+(а„{х х +ап1х 2 +.. ■+ат1х„ )е„ . (3.19)

С другой стороны, вектор д>=у4(л:) , имею щ ий в том же базисе 
ех, е2,■ • • ,е„ координаты У\,Уг,---,У„ , можно записать так:

А(х)  = у хех + у 2е2+...+упе„. (3.20)

Ввиду единственности разложения вектора по базису равны 
правые части равенства (3.19) и (3.20), откуда

i

У \ = а Пх \ +а\2х 2+  • • + а 1 ПХ П’

Уг ~ а 2 \ х \ + а 22х 2 +  • ■ + а 2п х т

Уп=а п1х 1 + а „ 2 х 2 +  • ■ + а ппх п '
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М атрица А = (йу) ( / , /  = 1 ,2 ,...,л) назьшается матрицей опера­

тора А в базисе еи е2,. . . , е„  , а ранг /-матрицы А — рангом опера­

тора А .
Таким образом, каждому линейному оператору соответствует 

матрица в данном базисе. Справедливо и обратное: всякой матри­
це п-го порядка соответствует линейный оператор п-мерного про­
странства.

Связь между вектором х  и его образом у  = А(х)  мож но вы ра­
зить в матричной форме уравнением

У = А Х , (3.21)

где А — матрица линейного оператора, X  = (х1, х 2,... , х„) ' , 

Y  = ( у {, у 2 , . . . , у п )' -  матрицы-столбцы из координат векторов х  и  у. 

[>Пример 3.5. Пусть в пространстве R 3 линейны й оператор А

[  3 2 4'
в базисе е, , е2, еу задан матрицей А=  -  1 5 6 .

( 1 8 2)

Н айти образ у  = А(х)  вектора х  = 4ej -  Зе2 + е3 .
Р е ш е н и е .  П о формуле (3.21) имеем

( \ 
У1 < 3 2

4 )

/
4 1

( 1<Л
Уг = - 1 5 6 - 3 = -1 3

\Ут.) 1  1 8 2) V 1 ) 1 - ш

Следовательно, у  = 1 Ое, -  13е2 — 18е3. ►
Определим действия над линейны ми операторами.
Суммой двух линейных операторов А и  В  называется оператор 

(Л + В ),  определяемый равенством: (А  + В)(х)  = А(х) + В(х).

Произведением линейного оператора А на число Л называется 

оператор ?.А , определяемый равенством (ЛА)(х) = Л(А(х)).

Произведением линейных операторов А и  В  называется опера­
тор А В  , определяемый равенством: (АВ)(х)  = А(В(х)).

М ожно убедиться в том, что операторы (А + В),  ХА, А В  , п о ­
лученные в результате этих действий, удовлетворяют отмеченным
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выше свойствам аддитивности и однородности, т.е. являю тся 
линейны ми.

О пределим нулевой оператор О , переводящ ий все векторы 
пространства R ” в нулевые векторы О(х)  =0, и тождественный

оператор Е  , действующий по правилу: Е(х) = х.
Зависимость между матрицами одного и того же оператора в 

разных базисах выражается теоремой.
Теорема. Матрицы А и А* линейного оператора А в базисах 

^ , е2, . . . ,  е„ и  ех, е2,■ ■ ■,е ’„ связаны соотношением

А ' = С ЛА С ,  (3.22)

где С  — матрица перехода от старого базиса к новому1.
□При воздействии линейного оператора А вектор х  простран­

ства R" переводится в вектор у  этого пространства, т.е. справед­
ливы  равенство (3.21) (в старом базисе) и равенство

7* = Л'Х  (3 .23)

(в новом базисе). Так как С — матрица перехода от старого бази­
са к  новому, то в соответствии с (3.12)

X  = СХ‘ , (3.24)
Y = CY* . (3.25)

Умножим равенство (3.24) слева на матрицу А, получим 
АХ = АСХ* или с учетом (3.21) Y = А С Х * . Заменив левую часть 

полученного выражения в соответствии с (3.25), имеем: 
CY* = АСХ* или 7* = С лА С Х ' . Сравнивая найденное выраж е­
ние с (3.23), мы получим доказываемую формулу (3.22).И

“ Пример 3.6. В базисе ех,е2 оператор (преобразование) А 

имеет матрицу А = . Найти матрицу оператора А в базисе

ef = ву - 2 е 2 ,^2 = 2 г1 +е2 ■

1 Квадратные матрицы одного порядка А п  А* называю тся подобными, если для них 
найдется такая невырожденная матрица С такого же порядка, что верно равенство 
(3.22). Следовательно, матрицы линейного оператора в разных базисах при

(с| * 0 являю тся подобными.
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Р е ш е н и е .  М атрица перехода здесь С = > а обрат-

3.7. Собственные векторы и собственные 
значения линейного оператора

Определение. Вектор х  ф 0 называется собственным вектором
линейного оператора А , если найдется такое число X , что

Число X называется собственным значением оператора А 
(матрицы А), соответствующим вектору х.

Из определения следует, что собственный вектор под действи­
ем линейного оператора А переходит в вектор, коллинеарный 
самому себе, т.е. просто умножается на некоторое число. В то же 
время несобственные векторы преобразуются более сложным 
образом. В связи с этим понятие собственного вектора является 
очень полезным и удобным при изучении многих вопросов мат­
ричной алгебры и ее приложений.

Равенство (3.26) можно записать в матричной форме:

где X  — матрица-столбец из координат вектора х, или в разверну­
том виде

А(х) = Х х . (3.26)

А Х  =  XX, (3.27)

а2\х \ +а22х 2 + ■■■+а2пх п =^х 2ь

a n l x l + а п 2 х 2 +  ■■■+ а пп х п ~'Хх п '
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П ерепиш ем систему так, чтобы в правых частях были нули: 
'(йГц-Я.)*! + а п х  2 + ... + а и х„ = О,

а 2\х \ + (а22~^)х 2 + ••• + а2пх п ~ О’

а п1х \ +  а п 2 х 2 + +  (a n n ~ t y x n  =  ®

или в матричном виде
(А ~  Х Е )Х  = 0.

Полученная однородная система всегда имеет нулевое реш е­
ние х  = 0 = (0,0,...,0). Д ля сущ ествования ненулевого реш ения 
(см. § 2.5) необходимо и достаточно, чтобы определитель системы

\А -  ХЕ\ =

ап  - X  
а 2 \

а \2
®22 ~~ ^

а\п 
а2п

ап1 ап2

= 0 . (3.28)

Определитель | А -  ЛЕ\ является многочленом п -й степени от­
носительно X. Этот многочлен называется характеристическим 
многочленом оператора А  или матрицы А , а уравнение (3.28) —
характеристическим уравнением оператора А или матрицы А.

Характеристический многочлен линейного оператора не зависит  
от выбора базиса. В самом деле, преобразуем характеристический

многочлен А* -  ХЕ \ , полученный в новом базисе е \ , е \ , . . . е *п , ес ­

ли известна матрица С перехода от старого базиса eh e2,...e„ 
новому. С учетом (3.22) получим

|А'  -  ЛЕ\ = |С 1 А С  -  ЛЕ\ = |С 1А С  -  Л С АЕС\ = |С ' (А  -  ЛЕ)С\.

Учитывая, что определитель произведения квадратных матриц 
одинакового порядка равен произведению  определителей этих 
матриц (см. § 1.4), получим

|А'  -  ЛЕ\ = \С 'Х\\А -  ЛЕЩ = \С-'ХС^А -  ЛЕ\ = \ А -  ЯЕ\, т.е.

I А* -  ЛЕ\ = j А -  ЛЕ\ независимо от выбора базиса.
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ОП ример 3.7. Н айти собственные значения и собственные

1 4)
9 1

векторы линейного оператора А  , заданного матрицей А = 

Р е ш е н и е .  Составляем характеристическое уравнение

| А -  ХЕ\ = 1 - Х 4
1 - Х = О или X -  2Х -  35 = 0 ,

откуда собственные значения линейного оператора А X | = -5  ,
А. 2 = 7 .

Находим собственный вектор = (xj, х 2) , соответствующий 
собственному значению  -  - 5 .  Д ля этого решаем матричное 
уравнение

( А - Х ^ Е ) *1
Кх2

= 0 или 6 4 ¥ * i
9 6, *2

откуда находим х 2 = - l ,5 jtj .  П оложив х\ = с , получим, что векто­
ры дгО) = (с; -  1,5с) при любом с ф 0 являю тся собственными

векторами линейного оператора А с собственным значением
Ху = -5 .

Аналогично мож но убедиться в том, что векторы х^2> = ( —ct ,q
V3

при лю бом Cj ф 0 явлю тся собственными векторами линейного 
оператора А  с собственным значением Я2 = 7 .►

Н аиболее простой вид принимает матрица А  линейного опера­
тора А , имею щ его п линейно  независимых собственных векто­
ров е1,е2, . . . , еп с собственными значениями, соответственно рав­
ными Я1,Я2,. . . ,Я П . Векторы е],е2, . . . ,е„ примем за базисные. 

Тогда A(et ) = l lel ( /  = 1,2,..., л ) или с учетом (3.18)

А (е ,)  = a ue1 + a 2te2+ . . .+ a llei + . . .+ a Hie„ = Я ,е ,, 
откуда Ujj = 0, если / ф j , и аи = Я ,, если i = j . Таким образом,

матрица оператора А в базисе, состоящем из его собственных 
векторов, является диагональной и имеет вид:

%  0 ... 0 Л
0 X, ... о

А =

V 0 0
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Верно и обратное: если матрица А линейного оператора А в не­
котором базисе является диагональной, то все векторы этого бази­
са — собственные векторы оператора А .

М ож но доказать, что если линейный оператор имеет п  попарно 
различных собственных значений, то отвечающие им собственные 
векторы линейно независимы, и матрица этого оператора в соот­
ветствующем базисе имеет диагональный вид.

(1 4̂1
[>Пример 3.8. П ривести матрицу /1 = 1 \ линейного опера­

тора А к  диагональному виду.
Р е ш е н и е .  В примере 3.7 были найдены собственные зна­

чения матрицы Я 1 =  —5, Я2 = 7 и соответствующие им собст­

венны е векторы  х (|) = (с;-1,5с) и лг(2) = q  ;q  j  . Так как коорди­

наты векторов jc(I) и дг(2) не пропорциональны , то векторы дг(1) и 
*<2) линейно  независимы. Поэтому в базисе, состоящем и з лю -

Г2бых пар собственных векторов д:(1> = (с;-1,5с) ид:(2)=  —q ;  q
v3

(т.е. при  любых с ф 0 , q  * 0 ,  например, при  с = 2 , q  = 6 и з  век­

торов х <]) = (2; -  3) и х {2) = (4; 6) и т.д.) матрица А будет иметь 
диагональный вид:

' ■ с э — ' - к ;

Это легко проверить, взяв, например, в качестве нового базиса 
линейно независимые собственные векторы  дг(1) = (2; -  3) и 

х (1] = (4; 6 ). Действительно, матрица С  перехода от старого бази­
са к новому в этом случае будет иметь вид

С = (дг^\дЛ2*) = { ^ ^j  . Тогда в соответствии с (3.22) матрица А в 

новом базисе х (1), х (2) примет вид:
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или после вы числений (которые мы опускаем) А* = у ^ ^J , т.е.

получим ту же диагональную матрицу, элементы которой по 
главной диагонали равны собственным значениям матрицы А .►

3.8. Квадратичные формы
П ри реш ении различных прикладных задач часто приходится 

исследовать квадратичные формы.
Определение. Квадратичной формой Ь(хь х 2, . . . , хп ) от п пере­

менных называется сумма, каждый член которой является либо 
квадратом одной из переменных, либо произведением двух разных 
переменных, взятых с некоторым коэффициентом:

П  ft

L{xx, х2,.. . ,  х„ ) =  £  £  avx ,x j  . (3.29)
/=1 J - \

Предполагаем, что коэф ф ициенты  квадратичной формы at] —

действительные числа, причем а^ = . М атрица А =  (atJj  (/', j  =

=  1 , 2 ,  ..., «), составленная из этих коэффициентов, называется 
матрицей квадратичной формы1 .

В матричной записи квадратичная форма имеет вид:

L  = Х'АХ,  (3.30)

где X  = (х1, х 2,... , х п)' — матрица-столбец переменных.
В самом деле

4 i a l2 . •• a u (  x  \  X1

L  =  ( X i , X 2 , . . . , X „ )
а21 a 22 . •• a 2n *2,

' a n\ an2 • ■ ann' U J

1 Матрица, у которой все элементы а,у = а , называется симметрической.
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/''ZaljX jS'
YOijXj

^ anjXjJ

= Y , a\jX\Xj + ' L a2jX2xj+ -  +Z  anjXnXj =
j=i /=1 J=i

= X  X w  и эквивалентность формул (3.29) и (3.30) установ-
/ = 1 7 = 1

л ен а1.
[>Прнмер 3.9. Д ана квадратичная форма L ( x \ , х 2 , х 3) = 4х^ -

-1 2 x jx 2 -Ю х ^ з  + х !  - 3 x f . Записать ее в матричном виде.
Р е ш е н и е .  Найдем матрицу квадратичной формы. Ее диа­

гональные элементы равны коэфф ициентам  при квадратах пере­
менных, т.е. 4, 1, —3, а другие элементы — половинам соответст­
вующих коэф ф ициентов квадратичной формы. Поэтому

f 4
- 6 - 5 ' (  \ 

х \
L  = (x 1,x 2 ,x 3) - 6 1 0 х 2

ч-5 0 - У vX3y
Выясним, как изменяется квадратичная форма при невы рож ­

денном линейном  преобразовании переменных.
Пусть матрицы-столбцы переменных X  = (х1,х 2, . . . ,х л)' и 

Y  = (ух, у 2, . . . , у„) '  связаны линейны м соотношением X  = СУ,  где
С = (су) ( / , у  = 1,2 п ) есть некоторая невырожденная матрица
/г-го порядка. Тогда квадратичная форма2

L  = Х 'А Х  = (СУ)'А(СУ) = (У'С')А(СУ) = У'(С'АС)У.
Итак, при невырожденном линейном преобразовании X  = СУ 

матрица квадратичной формы принимает вид:

А ' = С ' А С .  (3.31)

[>Пример 3.10. Дана квадратичная форма 1 ( х х, х 2) = 2хх + 

+4ххх 2 - 3 х 2. Найти квадратичную форму L (y x, y 2),  полученную 
из данной линейны м преобразованием х, = 2у х -  3 vs, х 2 = у х + у 2.

П
1 Выше под знаком  Z  понимается X -

/=!
2 Транспонирование произведения матриц проводим по формуле (C Y ) '= Y ' С ' (см.
свойство на с. 15).
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Р е ш е н и е .  М атрица данной квадратичной формы

(
2  - 3  

1 L
Следовательно, по (3.31) матрица искомой квадратичной формы

а квадратичная форма имеет вид L{yx, у 2) -  13>’2 -  34у ху г + Ъу\. ►
Следует отметить, что при некоторых удачно выбранных л и ­

нейны х преобразованиях вид квадратичной формы можно сущ е­
ственно упростить.

Квадратичная форма L  = I  I  aijx ix J называется канониче-
< 1 ./ I

ской (или имеет канонический вид), если все ее коэффициенты  
ау = 0 при i * j :

а ее матрица является диагональной.
Справедлива следующая теорема.

Теорема. Любая квадратичная форма с помощью невырожден­
ного линейного преобразования переменных может быть приведена к 
каноническому виду.

>П рим ер 3.11. Привести к каноническому виду квадратичную

Р е ш е н и е .  Вначале выделим полный квадрат при перем ен­
ной х , , коэф ф ициент при квадрате которой отличен от нуля:

П

L = ап х \  + a22xl+...+a„nx l  = £ аих ,2 ,

форму
Z (x ,,x 2.x 3) = х 2 -  3xjx2 + 4х,х3 + 2х2х3 + х2.
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Теперь выделяем полный квадрат при переменной х 2 , ко эф ­
ф ициент при которой отличен от нуля:

3 .  f  9 f  32 256 2I~ -  *2 + 2*3 J -  — \ х 2 -  —  Л-2Х3 + *3 J +

Л . ̂  х? - 3,5. L л  жг ♦ 2.,V1 - ’ и - ,  Н 4
4 81 3 3 I  1 2 2 3) 4 \  2 9 V  9 3

Итак, невырожденное линейное преобразование
3 _ 16у  j = *1 -  -- х 2 + 2х3 , У2 = х 2 ~ у х  з, у 3 = х 3

приводит данную квадратичную форму к каноническому виду

А (У \ , Уъ>У*) = У? -  |  Уг + у  у 1  ►
К анонический вид квадратичной формы не является одно­

значно определенным, так как  одна и та же квадратичная форма 
может быть приведена к каноническому виду многими способа­
ми. О днако полученные различными способами канонические 
формы обладают рядом общих свойств. Одно из этих свойств 
сформулируем в виде теоремы.

Теорема (закон инерции квадратичных форм). Число слагаемых 
с положительными (отрицательными) коэффициентами квадратич­
ной формы не зависит от способа приведения формы к этому виду.

Н апример, квадратичную форму L  в примере 3.10 можно было 
привести к виду

i t  \ 37 2 2 2
k  O i  • > '2  - > ’з )  =  " г  У\ +  У< "  '4

прим енив невырожденное линейное преобразование

-> 7у  1 -  X,, у 2 -  2ЛГ] х2 + *3 , у 3 = -  х } + х 2 .

Как видим, число положительных и отрицательных коэф ф и ­
циентов (соответственно два и один) сохранилось.

Следует отметить, что ранг матрицы квадратичной формы, н а­
зываемый рангом квадратичной формы, равен числу отличных от 
нуля коэффициентов канонической формы и не меняется при линей­
ных преобразованиях.

Квадратичная форма L(x], x 2.......х„ )  называется положительно
(отрицательно) определенной, если при всех значениях перем ен­
ных,  из которых хотя бы одно отлично от нуля.
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Ц х ъ х2, . . . , х„)  > 0 ( L(xu x2, . . . , x„ ) < О).

Так, например, квадратичная форма Ц = 3*, + 4 х \  + 9 х | явля­

ется положительно определенной, а форма 1^ = - х х + 2хгх 2 -  х \  
— отрицательно определенной.

Теорема. Д ля  того чтобы квадратичная форма L  = Х 'А Х  была 
положительно (отрицательно) определенной, необходимо и доста­
точно, чтобы все собственные значения Я,- матрицы А были поло­
жительны (отрицательны).

В ряде случаев для установления знакоопределенности квадра­
тичной формы удобнее бывает применить критерий Сильвестра.

Теорема. Д ля того чтобы квадратичная форма была положи­
тельно определенной, необходимо и недостаточно, чтобы все глав­
ные миноры матрицы этой формы были положительны, т.е 
Д! > О, Д2 > О, . . . ,Д„ > 0 ,  где

аи а\2 • ■ а\п

К  =
а2\ а22 •.. а2„

ап\ ап2 • • апп
Следует отметить, что для отрицательно определенных квадра­

тичных форм знаки главных миноров чередуются, начиная со 
знака “м инус” для минора первого порядка.

[>Пример 3.12. Доказать, что квадратичная форма L  = 1 Ъх\ -  

— 6xjx2 +  5 х 2 является положительно определенной.
Р е ш е н и е .  Первый способ. М атрица А  квадратичной формы 

'13 -3^
имеет вид А  =

-3  5
. Для матрицы А характеристическое

уравнение

| А -  ХЕ\ или Я -  18Я + 56 = 0.
1 3 - Я  -3

-3  5 - я
Реш ая уравнение, найдем А, = 14 , А2 = 4 . Т а к  как корни ха­

рактеристического уравнения матрицы А положительны, то на 
основании приведенной теоремы квадратичная форма L  — поло­
жительно определенная.
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Второй способ. Так как главные миноры матрицы А

к,.! = 13,
аи аи 13 -3

а7\ а22 -3 5
56

положительны, то по  критерию  Сильвестра данная квадратичная 
форма L полож ительно определенная.^

3.9. Линейная модель обмена
В качестве примера математической модели экономического 

процесса, приводящ ейся к понятию  собственного вектора и соб­
ственного значения матрицы, рассмотрим линейную модель обмена 
(модель международной торговли).

Пусть имеется п стран .S',, .S',........S'„ , национальный доход каж ­
дой из которых равен соответственно х 1, х 2, . . . , х „ . Обозначим 
коэф ф ициентам и ai} долю национального дохода, которую страна 
Sj  тратит на покупку товаров у страны S, . Будем считать, что

весь национальный доход тратится на закупку товаров либо внут­
ри страны, либо на импорт из других стран, т.е.

Х * ,  = 1 ( У  = и . . . . . и ) .  ( 3 .3 2 )
1=1

Рассмотрим матрицу А -

( а п  а п  ... < 0  
а21 а22 ■■■ а2п

а п2 a nnJ

которая получила название структурной матрицы торговли. В 
соответствии с (3.32) сумма элементов любого столбца матрицы А 
равна I.

Для лю бой страны 5, (/ = 1,2 п) выручка от внутренней и
внеш ней торговли составит:

Pt = + а,'Л+---+я,„А-„.
Для сбалансированной торговли необходима бездефицитность 

торговли каждой страны S, , т.е. выручка от торговли каждой 
страны должна быть не меньше ее национального дохода:
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Р, — X, (/ = 1,2,- ,л).

[итать, что Pi > X, (1 = 1,2,- . ,л ) ,  то получаем

ацХ1 + аи х 2 + ... + d\nx n > *ь
«21*1 + а22х 2 + ... + a2nx n > *2,

ат х 1 + ап2х 2 + ... + annxn > xn-

(3.33)

Слож ив все неравенства системы (3.33), получим после груп­
пировки

(an + a2l+...+anl) + x 2(al2 +а22+...+ап2)+ ...+
+xn(aln + а2и+...+а„) > х х + х 2+...+хп .

Учитывая (3.32), выражения в скобках равны единице, и  мы 
приходим к  противоречивому неравенству

Л] + х 2 +•.-+Xn > X] + х 2+...+хп .

Т аким  образом, неравенство p t > х,- (/ = 1 ,2 ,...,л) невозможно, 
и условие > х, принимает вид р, = ху (/ = 1,2,..., п ) . (С  экон о­
мической точки зрения это понятно, так как  все страны не могут 
одновременно получать прибыль).

Вводя вектор х  = (х\, X j ,  ..., х„) национальных доходов стран, 
получим матричное уравнение

АХ=Х, (3.34)
где X  — матрица-столбец из координат вектора х; т.е. задача све­
лась к  оты сканию  собственного вектора матрицы А, отвечающего 
собственному значению  Л = 1.

[>Пример 3.13. Структурная матрица торговли трех стран 
5 1 ,5 2 ,^ 3  имеет вид:

П/3 1/4 1/2'
А =  1/3 1/2 1/2 . 

а / з  i/4  о ,

Н айти национальные доходы стран для сбалансированной тор­
говли.

Р е ш е н и е .  Находим собственный вектор х, отвечаю щий 
собственному значению  Л = 1, реш ив уравнение (А - Е ) Х  =0 или 
систему
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-  2/3 1/4 1/2
1/3 -1 /2  1/2
1/3 1/4 - 1

л /  л 
*1
*2

V*3 У
методом Гаусса. Найдем = (3/2 )с,

'0 )
о

vd
*2 = 2 с, т.е.

дг= i — с; 2с; c j .

П олученны й результат означает, что сбалансированность тор­
говли трех стран достигается при  векторе национальных доходов

j c = ^ c ; 2 c ; c j ,  т.е. при соотнош ении национальных доходов

стран 3/2:2:1 или 3:4:2>-

У П Р А Ж Н Е Н И Я
3.14. Вычислить ( а -  Ь)2 , если \а\ = 2>/2; \b\ = 4, а л Ь = 135°.

3.15. Построить параллелограмм н а векторах ОА = (1; 1; 0) и 
—> —>

О В  = (0; -  3; 1) и определить диагонали параллелограмма ОС  и
—>

АВ  и их длины.

3.16. Д аны  векторы а = (4; -  2; 4) и b -  (4 ;-2 ;-4 ). Найти угол
—► —> —► 2 —̂  ̂ > —>

между векторами e n d ,  если с = — а , d  = 2 а+  Ь.

3.17. Н айти угол между диагоналями параллелограмма, по-
—> —>

строенного н а векторах а = (2; 1; 0) и b = (0; -  2; 1).
Выяснить, являются ли векторы а17а2,щ  линейно зависимыми:
3.18. ах = (2; -1 ; 3 ), «2 = (1; 4; -1 ) , я3 = ( 0 ; - 9 ; 5 ) .
3.19. а, = (1; 2; 0) ,  а2 = (3; -1 ;  1), «3 = (0; 1; 1).
3.20. Показать, что векторы а  = (1; 2; 0 ), b = (3; -  1; 1), 

с = (0; 1; 1), заданные в базисе ех,е2,ег , сами образуют базис.
3.21. Д аны  векторы а = + е2 + е3 , Ь = 2ег + Зе3, с = е2 + 5е3 ,

где е1,е2,е3 — базис линейного пространства. Доказать, что век­
торы а,Ь,с образуют базис. Найти координаты вектора d  = 
=  2е{ -  е2 + е3 в базисе а,Ь,с.

3.22. Векторы е1,е2,е3,е4,е5 образуют ортонормированный ба­
зис. Найти скалярное произведение и длины векторов 
х  = е{ -  2е2 + е5 , у  = Зе2 + е3 - е 4 + 2е5 .
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3.23. Н айти матрицу перехода от базиса el t e2, e 3 к  базису
е2 > е3 > е \ ■

3.24. Л инейны й оператор А в базисе ех,е2 задан матрицей 
3 2)
 ̂ . Н айти образ у  = А ( х ) , где х  = 4е} -  Зе2 .

3.25. Л инейны й оператор А в базисе е , , е2, е3 задан матрицей 

( - 1  0 2)
. Найти у  = А ( х ) , где х  = 2ех + 4е2 -  е3 .1 1

0 - 1 .

3.26. В базисе е , , е2 оператор А  имеет матрицу А =
2 4 

■3 3,

3.27. А

3.29. А

3.28. А 1 0

Н айти матрицу оператора А в базисе е[ = е2 -  2е{, е2 = 2е, -  4е2 .
Н айти собственные значения и собственные векторы лин ей ­

ных операторов, заданных матрицами:

Г 2 41 П 2 ~ 2)

- з ) ' U 3 0J
П ривести к  диагональному виду матрицы линейного операто­

ра:

- ( 1 3 -  М0- Ч 2 з ) -
3.31. Квадратичную форму
L = 2x1 + ^ х 2 ~ х з + ^ х \х 2 ~ 6х,х3 +1 0х2х3 записать в матричном 

виде.
3.32. Н айти матрицу квадратичной формы

Г-1 0 2^ ( \ 
х \

Ц х  1 , х 2 , х 3) = (хь х 2,х 3) 2 4 1 х 7
3 0 - 1 U 3;

3.33. Д ана квадратичная форма L(x l , x 1) = Зх/ -  х 2 + 4хгх 2 . 
Найти квадратичную форму, полученную из данной линейны м 
преобразованием Xj = 2у\ -  у 2 , х 2 = У\ + у 2 ■

Исследовать на знакоопределенность квадратичные формы:
3.34. х 2 + 4 х2 + Зх32 + 2х ,х2.

3.35. -  2 х | -  X)2 -  XjX3 + 2х2х3 -  2х3 .
3.36. Найти соотнош ение цен трех товаров, если наборы этих 

товаров Jti=(6; 2; 4), х 2 =  (1; 8; 9), *3 =  (3; 5; 9) имеют одинако­
вую стоимость.



Глава 4. УРАВНЕНИЕ ЛИНИИ

4.1. Уравнение линии на плоскости
У равнение линии  является важ нейш им понятием аналитиче-

ется уравнение, которому удовлетворяют координаты х  и у  каж ­
дой точки данной линии и не удовлетворяют координаты любой 
точки, не леж ащей на этой линии.

В общ ем случае уравнение линии  может быть записано в в и ­
де F(x, у) =  0 или (если это возможно) у = / (х), где F(x, у ) и у = / ( х )  — 
некоторые ф ункции (функции будут рассмотрены в гл. 5).

Если точка М  (х, у)  передвигается по  линии, то ее координа­
ты, изм еняясь, удовлетворяют уравнению  этой линии. Поэтому 
координаты  М (х,у) называю тся текущими координатами (от слова 
“текут” , меняю тся).

О П ример 4.1. Н айти уравнение множества точек, равноуда­
ленных от точек А  ( -4 ;  2) и В  ( - 2 ;  -6 ) .

Р е ш е н и е .  Расстояние между двумя точками М х( х х, у х) и
М 2 ( х 2 , У2 ) определяется по формуле (3.5):

Если М  (х, у) — произвольная точка искомой линии , то со ­
гласно условию  имеем A M  = В М  (рис. 4.2.) или, учитывая (3.5),

У ской геометрии.
Пусть мы имеем на плоскости н е­

которую линию (кривую) (рис. 4.1). 
Координаты х  и у  точки, лежащей на 
этой линии, не могут быть произ­
вольными, они должны быть опреде­
ленным образом связаны. Такая связь

^  аналитически записывается в виде 
некоторого уравнения.

Рис. 4.1 Определение. Уравнением линии  
(кривой) на плоскости Оху называ-

>1(х + 4)2 + (у  -  2)2 = V(* + 2)2 + ( y W  •
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M r  43)

iK-2 -6 ) 6:

Возведя обе части уравнения в  квадрат, получим после преоб­
разований уравнение х  — 4у  — 5=0

1 5или у  = — X -  — .
4 4

Очевидно, это уравнение п р я­
мой MD — перпендикуляра, в о с­
ставленного из середины отрезка 
А В  (см. рис. 4.2). ►

Любую линию  в принципе можно 
выразить соответствующим уравне­
нием (хотя н а практике это не всегда 
просто сделать). Однако не всякое 
уравнение определяет на плоскости 
некоторую линию.

Например, уравнение х 2 + у 2 = 0 определяет только одну точ­

ку (0; 0), а уравнение х 2 + у 2 + 7 - 0  не определяет никакого 
множества точек, ибо левая часть уравнения не может равняться 
нулю.

Чтобы убедиться, лежит ли точка М  {а; b) на данной линии  
F  (х, у) =  0, надо проверить, удовлетворяют ли координаты этой 
точки уравнению  F  (х, у )  =  0.

Рис. 4.2

4.2. Уравнение прямой
y t 1

М(х,у)

Вф:Ь) Мх,Ь)
b

0 А(х;0) 1с

Рис. 4.3

Пусть прямая пересекает ось Оу в 
точке В  (0; Ь) и  образует с осью  Ох

7tугол а  (0<а<  —) (см. рис. 4.3).

Возьмем на прямой произвольную  
точку М  (jc, у). Тогда тангенс угла а  
наклона прямой найдем и з прям о­
угольного треугольника MBJV:

M N  у  — Ь
t g a  N B  х  ‘ 

Введем угловой коэф ф ициент прямой к  =  tg а; получим
к = У _ ±

(4 .1)
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у  =  k x +  b. (4.2)

М ож но показать, что формула (4.2) остается справедливой и

для случая — < а  < п.
2

И так, мы доказали, что координаты каждой точки прямой 
удовлетворяют уравнению (4.2). Нетрудно показать, что коорди­
наты лю бой точки, не лежащей на прямой, не удовлетворяют 
уравнению  (4.2).

У равнение (4.2) называется уравнением прямой с угловым коэф­
фициентом.

Рассмотрим частные случаи уравнения (4.2).
y i i 1

У=1а\ Л=кх ЩОФ) У= ь г -0
а

х— а

/ Г Г  * . 0 ,
Й 0 X 0 А(а:0)  £

Рис. 4.4 Рис. 4.5 Рис. 4 .6
1. Если b =  0, то получаем у  = кх  — уравнение прямой, п ро­

ходящей через начало координат и образующей при к=  tg а  > 0  
острый угол а  с осью Ох, а при к=  tg а  < 0 -  тупой угол (см. 
рис. 4.4). В частности, уравнение биссектрисы I и III координат-

п
ных углов имеет вид у  =  х  (так как  к = tg — =  1), а уравнение

4

биссектрисы  II и IV координатных углов у  = ~ х ( к  — tg
Зл

-1 ) .

2. Если а  =  0, то к  =  tg 0 =  0, и уравнение прямой, парал­
лельной оси Ох, имеет вид у  = Ь, а самой оси Ох -  вид у  =  0 (см. 
рис. 4.5).

л
3. Если а  =  — , то прямая перпендикулярна оси Ох (см. рис.

2
п

4.6) и к  =  tg — не существует, т.е. вертикальная прямая не имеет 
2

углового коэф фициента. Предположим, что эта прямая отсекает 
на оси Ох отрезок, равный а. Очевидно, что уравнение такой 
прямой х  = а (так как абсцисса любой точки прямой равна а), а 
Уравнение оси Оу есть *  =  0.
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Уравнение прямой, проходящей через данную точку в данном 
направлении. Пусть прямая проходит через точку М х ( х х , ух) и

71
образует с осью Ох угол а  * — (рис. 4.7).

Рис. 4.7 Рис. 4.8
Так как  точка М х( х х, у х) лежит н а  прямой, то ее координаты 

удовлетворяют уравнению (4.2), т.е.

^1 =  к х х + Ь. (4 .3)

Вычитая равенство (4.3) из равенства (4.2), получим уравнение 
иском ой прямой

У ~  У\ =  к (х -  х х).  (4 .4)

Уравнение пучка прямых. Если в уравнении (4.4) к  — п роиз­
вольное число, то это уравнение определяет пучок прямых, прохо­
дящ их через точку М х( х 1, у х), кроме прямой, параллельной оси 
С ^ и н е  имею щ ей углового коэф ф ициента (рис. 4.8).

ОПример 4.2. 1. Составить уравнение
прямой, проходящей через точку А  (3;—2):
а) под углом 135° к  оси Ох\ б) парал­
лельно оси Оу. 2. Найти уравнение пучка 
прямых.

Р е ш е н и е .  1. а) угловой к о эф ф и ­
циент прямой k  = tg  135° =  -1 .

Уравнение прямой, проходящей через 
точку А  (3; —2) (см. рис. 4.9), по формуле 
(4.4) имеет вид у  + 2 =  — 1 (х - 3 )  или у  =  

Рис. 4.9 = - * + ! .

98



б) Уравнение прямой, параллельной оси Оу, х =  3.
2. Уравнение пучка прямых, проходящ их через точку А  (3; —2),

имеет вид у  +2 =  к  (х —З ) .^
Уравнение прямой, проходящей через две данные точки. Пусть 

даны две точки М х ( х , , у , ), М 2 ( х 2 , у2 ) и х, * х2 , у х * у 2 ■
Д ля составления уравнения прямой 

М х М 2 (рис. 4.10) запишем уравнение
пучка прямых, проходящих через точ­
ку М х:

у  -  Ух = к (х -  х , ).
Так как точка М 2 ( х 2 , у 2 ) лежит на 

данной прямой, то чтобы выделить ее 
из пучка, подставим координаты точки 
М 2 в уравнение пучка у 2 — у\ =к( х 2 -

- х х) и найдем угловой коэф ф ициент прямой

к  = Уг~У1
Х 2 -  X j

(4.5)

Теперь уравнение искомой прямой примет вид
-  - У 2  -  У\

У\ Х2 -  Xj
(х -  X, )

или
У - У \ (4.6)

у2 -  У\ х 2 -  X,

[>Пример 4.3. Составить уравнение прямой, проходящей через 
точки А ( - 5 ;  4) и В (3; -2 ) .

Р е ш е н и е .  П о уравнению (4.6):

еле преобразований у

у  -  4 _  х  + 5 

1
- 2 - 4

, откуда по-

-Х + - >  
4 4

Уравнение прямой в отрезках. Найдем 
уравнение прямой по заданным отрезкам а ф 0 
и 6 * 0, отсекаемым на осях координат. И с­
пользуя (4.6), уравнение прямой, проходя­
щей через точки А (а; 0) и В (0; Ь) (рис. 

у  -  0 х -  а
Ь -  0 0 -  а

4.11), примет вид или после
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преобразований

-  + ^  = 1. (4.7)

Уравнение (4.7) называется уравнением прямой в отрезках.
D-Пример 4.4. Составить уравнение прямой, проходящей через

точку А  (2; —1), если эта прямая отсекает от положительной п о­
луоси Оу отрезок, вдвое больший, чем на положительной полу­
оси Ох (рис. 4.12).

Р е ш е н и е .  П о условию b = 2а (а  > О, b > 0). Подставляя 
это выражение в уравнение (4.7), получим

— + —  =  1. Т ак как точка А (2; —1) ле- 
а 2 а

жит на прямой, то ее координаты удовле-

2 1 -1творяют этому уравнению, т.е. — —-------1,
а 2 а

откуда а =  1,5.
Итак, уравнение искомой прямой им е­

ет вид + у  =  1 или у  = ~2х + 3 .^

Общее уравнение прямой и его исследование. Рассмотрим 
уравнение первой степени с двумя переменными в общем виде

А х+  Б у +  С =  0, (4.8)
в котором коэф ф ициенты  А и В  не равны одновременно нулю, 
т.е. А 2 + В 2ф 0.

1. Пусть В ф  0. Тогда уравнение (4.8) можно записать в виде
А С

у  —  л: — — .
В  В

Обозначим к = ~А/В , b =  -С /В .  Если А ф 0, С ф 0, то получим 
у~кх+Ь  (уравнение прямой с угловым коэффициентом); если АфО, 
С =  0, то у  =  кх (уравнение прямой, проходящей через начало коор­
динат); если А = 0, С ф Q, то у  = b (уравнение прямой, параллель­
ной оси Оу)\ если А =  0, С =  0, то у  =  0 (уравнение оси Ох).

2 .  Пусть В = 0, А ф  0. Тогда уравнение (4.8) примет вид 
С

х  = -  — . Обозначим а = —С/А. Если С ф  0, то получим х  = а
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(уравнение прямой, параллельной оси Оу); если С = 0, то х  =  О 
(уравнение оси Оу).

Т аким образом, при любых значениях коэффициентов А, В  (не 
равных одновременно нулю) и С уравнение (4.8) есть уравнение не­
которой прямой линии на плоскости Оху.

Уравнение (4.8) называется общим уравнением прямой. Заме­
тим, что в отличие от уравнения пучка прямых (4.4) общее урав­
нение (4.8) вклю чает и уравнение любой вертикальной прямой, 
параллельной оси Оу.

4.3. У сл о ви я  параллельности и 
перпендикулярности прямых. 

Расстояние от точки до прямой
Угол между двумя прямыми. Пусть за­

даны две прямые 
у  =  k xx  + b] (1), 
у  = к2х  + (2)

и требуется определить угол ср между 
ними.

И з рис. 4.13 видно, что ср = а 2 —а х , 
причем кх = t g a j ,  к2 = t g a 2 , 

a j  * п/2,  а-2 * п/2.
Тогда

* / \ t g a 2 - t g a 1
tg Ф =  tg ( a 2 - a i ) =

1 +tg a j  tg 0-2
или

tg Ф
k2 -  k x

(4.9)
1 + k xk 2

где стрелка означает, что угол <р получается поворотом прямой (1) 
к  прямой (2) против часовой стрелки.

Условия параллельности и перпендикулярности прямых. Если 
прямые у  = кхх  + l\ (1) и у  = к2х  + ^  (2) параллельны, то угол 
ф = 0 и tgcp= 0, откуда из формулы (4.9) к х = к2 . И наоборот, 
если кх =  к2 , то по формуле (4.9) tgcp =  0 и ср =  0. Таким обра­
зом, равенство угловых коэффициентов является необходимым и 
достаточным условием параллельности двух прямых.
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Если прямые перпендикулярны, то ц>=п/2, при этом ctg ф =

или к \к 2 = ~  1- Справедливо также и обратное утверждение. Та­
ким образом, для перпендикулярности прямых необходимо и доста­
точно, чтобы их угловые коэффициенты были обратны по величине 
и противоположны по знаку.

Если прямые заданы общими уравнениями А\х + В\у + С, =  0 (1) 
и А2х  + В2 у  + С2 = 0  (2), то учитывая, что их угловые ко эф ф и ­

циенты ку — —А х/ В х и к2= —А 2/ В 2 , условие параллельности

прямых к\ — к2 примет вид —  =  . Следовательно, условием
А 2 В2

параллельности прямых, заданных общими уравнениями, является 
пропорциональность коэффициентов при переменных.

Условие перпендикулярности прямых k\ к2 =  —1 в этом случае

примет вид -4-j =  - 1  или А {А2 + ВХВ2 =  0, т.е. условием

перпендикулярности двух прямых, заданных общими уравнениями, 
является равенство нулю суммы произведений коэффициентов при 
переменных х  и у.

[>Пример 4.5. Составить уравнения двух прямых, проходящих
через точку А (2; 1), одна из которых параллельна прямой Ъх — 
— 2у +2 =  0, а другая перпендикулярна той же прямой.

Р е ш е н и е .  Уравнение пучка прямых, проходящих через 
точку А (2; 1), имеет вид у  — 1 =  к  (*—2). Из этого пучка надо 
выделить две прямые (2) и (3) — параллельную и перпендику- 

У лярную данной (рис. 4.14). Угло­
вой коэф ф ициент прямой (1) кх =

1 1 + к  к
=ctg(7i/2) =  0 или ctg ф =  ------=   —  =  0, откуда кг = -

1§ф ^2 -  1̂

1

х ности угловой коэф ф ициент пря­
мой (2) к2 = кх = 3/2 и ее уравне-

=  3/2 (так как уравнение прямой 
(1) можно представить в виде у  =

Рис. 4.14 ние имеет вид у  — I = — (х — 2)
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или Ъх — 2у ~ 4  =  0. П о условию перпендикулярности угловой
1 2

коэф ф ициент прямой (3) к3 —------ =  —  и уравнение этой прямой
к{ 3

2
у  — \ = -  — {х — 2) или 2х +3у  — 7=0.

Задачу можно решить и другим способом. Прямая Ах + By + 
+С = 0 будет параллельна прямой Зх — 2у + 2 =  0, если ее коэф -

фнциенты при * „ ,  пропорциональны, т.е. ±  ±  ■ Взяв Л  -  1,

В = — 2 (при коэф ф ициенте пропорциональности, равном 1), п о ­
лучим уравнение Ъх — 2у  + С =  0. К оэф ф ициент С найдем с уче­
том того, что координаты точки А (2; 1), лежащей на прямой, 
должны удовлетворять ее уравнению , т.е. 3 -2  — 2 1  +  С =  0, от­
куда С = 4 и уравнение прямой (2) Зх — 2у — 4 — 0.

Уравнение прямой, перпендикулярной данной Зх — 2у +  2 =0, 
будет иметь вид: 2х  + Зу +  С — 0 (ибо в этом случае сумма п роиз­
ведений коэф ф ициентов при переменных х  и у  равна нулю , т.е. 
3 -2 +  (—2) -3 =  0). Теперь подставляя координаты точки А (2; 1) в 
уравнение прямой, получим 2 -2 +  3 • 1 + С =  0, откуда С = — 1 и
уравнение прямой (3) 2х — Зу — 7 =0. ►

Точка пересечения прямых. Пусть даны две прямые А1х + В 1у+  
+ С, =  0 и А2 Х+В 2 у+ С 2 =  0. Очевидно, координаты их точки 
пересечения должны удовлетворять уравнению каждой прямой, 
т.е. они могут быть найдены из системы

j  А хх  + В]У + С, -  0,
[ А 2х  + В2у  + С2 = 0.

Если прямые не параллельны, т.е. 
А ] By— -  * —L , то решение системы дает 
Aj  В2

единственную  точку пересечения п ря­
мых.

Расстояние от точки до прямой.
Пусть даны  точка Л/( л'( |, >’0 ) и прямая
Ах + By +С  =  0. Под расстоянием от 

точки М  до прямой АВ  понимается 
длина перпендикуляра d  — M N, опу­

щ енного из точки М  на прямую АВ  (рис. 4.15). Для определения
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расстояния d  необходимо: а) составить уравнение прямой MN, 
перпендикулярной данной и проходящей через точку Л/0 ( х 0 , у п);
б) найти точку пересечения прямых, решив систему
уравнений этих прямых; в) по формуле (3.5) определить расстоя­
ние между двумя точками, т.е. найти d  = MN. В результате пре­
образований получим

^  _  1^о  + Вур + С\

42 +  в 2
(4.10)

(доказательство формулы (4.10) опускаем).
[>Пример 4.6. Найти расстояние ме­

жду параллельными прямыми
Зх +  4у — 24 =  0 и Зх +  4у + 6 =  0. 
Р е ш е н и е .  Возьмем на одной из 

прямых, например, прямой Зх+4у  — 24= 
=  0, произвольную  точку А (0; 6) (рис. 
4.16). Тогда искомое расстояние равно 
расстоянию от точки А до прямой Зх + 
+4у  + 6  =  0:

|3 • 0 + 4 • 6 + 6|
d  =  -----^== - 1  =  6 >

№ + 4

4.4. Окружность и э л л и п с

Изучение кривых второго порядка, описываемых уравнениями 
второй степени с двумя переменными, начнем с окружности.

Пусть дана окружность радиуса R с 
центром О ' ( х 0 , у 0 ) (рис. 4.17). Найдем 

OfaijJf)) \  ее уравнение. Д ля произвольной точки
М  (х, у) окружности выполняется ра- 

' М(х,у) венство ОМ  =  R. Используя формулу
______________  (3.5) расстояния между двумя точками,

х  получим ^ (х  -  х0)2 + (у  -  у0)г = R или
Рис. 4.17 после возведения в квадрат (двух поло­

жительных частей уравнения) получим
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равносильное уравнение

( х - * 0)2 + ( у - у 0)2 = R 2. (4.11)

Итак, координаты каждой точки окружности М  (х, у)  удовле­
творяют уравнению  (4.11). Нетрудно показать, что координаты 
лю бой точки, не лежащей на окружности, этому уравнению  не 
удовлетворяют.

У равнение (4.11) называется нормальным уравнением окружно­
сти. В частности, уравнение окружности с центром в начале ко ­
ординат ( А'о =  >’0 = 0 )  имеет вид

х 2 + у2 =  R 2. (4.12)

Рассмотрим уравнение второй степени с двумя переменными в 
общем виде

А х 2 +Вху + С у 2 +Dx +Еу + F =  0, (4.13)

в котором А, В  и С не равны нулю одновременно, т.е. А 2 + В 2 +
+ С 2 ф 0. Выясним, при каких условиях это уравнение является 
уравнением окружности. С этой целью  представим уравнение 
(4.11) в виде

х 2 + у 2 -  2х0х  -  2у0у  + Хд + Уо -  R 2 = 0. (4.14)

Чтобы уравнения (4.13) и (4.14) представляли одну и ту же л и ­
нию , коэф ф ициент В  должен равняться нулю, т.е. В=0, а все ос­

тальные коэф ф ициенты  — пропорциональны , в частности у  =

=  у  , откуда А -  С* 0 (ибо А 2 + В 2 +  С 2 *0, а В = 0). Тогда полу­

чим уравнение

А х 2 + А у 2 +Dx +Ey + F =  0, (4.15)

называемое общим уравнением окружности.

105



Поделив обе части уравнения на А  * 0 и дополнив члены, со­
держащ ие х  и у, до полного квадрата, получим

D_
2А

2 2 D 2 + E 2 -  4A F
х  +

4 А 2 (4.16)

С равнивая уравнение (4.16) с уравнением окружности (4.11), 
мож но сделать вывод, что уравнение (4.13) есть уравнение дейст­
вительной окружности, если 1) А = С; 2) В  =  0; 3) D2 +  Е 2 — 
—4A F  > 0. П ри выполнении этих условий центр окружности

(4.13) расположен в точке О -  — , а ее радиус R =

_ 4 d 2 + Е 2 - 4 A F  
2 А

ОПример 4.7. Найти координаты центра и радиус окружности

х 2 + у 2 + 16у  -  9 =  0.
Р е ш е н и е .  Дополнив члены, содержащие у, до  полного 

квадрата, получим
х 2 + ( у 2 + 16у  + 64) -  64 -  9 =  0, или
х 2 + (у  + 8)2 =  73, т.е. центр окружности в точке 0(0; —8), а ее 

радиус R  = л/73 .►
Рассмотрим уравнение кривой второго порядка (4.13), в кото­

ром по-преж нему будем полагать 5 = 0 .  Перепиш ем уравнение в 
виде

Будем предполагать для простоты исследования, что центр 
кривой находится в начале координат, т.е. х 0 = у0 =0. Тогда
уравнение кривой примет вид

А \ х  + —  
I  2 А

или
А ( х -  х о ) 2 +  С (у -  у 0 ) 2 =6,

где
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А х 2 + С у 2 = 5. (4.17)

К ривая второго порядка (4.17) называется эллипсом  (точнее 
кривой эллиптического типа), если коэф ф ициенты  А и С  имею т 
одинаковые знаки.

Д ля определенности будем полагать, что АХ), С>0 (в против­
ном случае обе части уравнения можно умножить на (—1). 

Возможны три случая: 
а) 5 > 0; б) 5 =  0; в) 5 < 0.
Очевидно, что в третьем случае (при 5<0) кривая (4.17) не 

имеет действительных точек, а во втором случае (при 8=0) кривая
(4.17) представляет собой одну точку 0(0; 0). Поэтому остано­
вим ся на первом случае (5>0).

Получаемое при этом уравнение

называется каноническим уравнением эллипса с полуосями а =

са. О чевидно, что 0<е<1, причем для окружности е=0.
Точки А1( - а ;  0), ^ ( - а; 0), В1(0; b), ^ ( 0 ;  - b) называю тся

вершинами эллипса.

1 Полагаем а  > Ь (этого всегда можно добиться путем надлежащего выбора осей
О х  и Оу).

(4.18)

(рис. 4.18). При а - b  уравнение (4.18) представляет

частный случай — уравнение окружности
Точки Fx(~c;  0) и 

Р2 (с; 0), где1

Ч - а Я ) На:  0) ^ эллипса, а отнош ение

его эксцентриситетом. 
Эксцентриситет харак­
теризует форму эллип-

называю тся фокусами
с = ^ а 2 -  b2 , (4.19)

а
(4.20)

|Й2(0;-Л)

Рис. 4.18
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Найдем сумму расстояний от лю бой точки эллипса М  (х, у) до 
ее фокусов, используя формулу (3.5):

d  = F2M  +  MFX = J ( x  + c)2 + y 2 + -J( x-  с)2 + у 1 . 

С учетом (4.18) — (4.20)

F2M  = -Jx2 + 2сх + с 2 + у 2 =  J x 2 + 2сх + (а2 -  Ь2) + (Ь2 — ^-х2)

(1 -  —у )х 2 + 2 сх  + я 2
*

(—х  + а) =  а +  ex. 
а

А налогично можно получить, что MFX =а — sx. В результате d=  
=F2M  +  MFX = (a +sx) +  (а — ex) =  2а, т.е. для любой точки эл ­
липса сумма расстояний этой точки до фокусов есть величина по­
стоянная, равная 2а. Это характеристическое свойство эллипса 
часто принимается за определение эллипса.

[>Првмер 4.8. Определить 
вид и расположение кривой

х 2 + 2 у2 -  4х + 16>» = 0 . (4.21)

Р е ш е н и е .  Так как  А=  1 
и С=2 — числа одного знака, 
то данное уравнение кривой 
— эллиптического типа. Д о­
полняя члены, содержащие х 
и у, до полного квадрата, по-

Рис. 4.19 лучим (х -  2)2 + 2(у + 4)2 =  36
или

(х -  2)2 (у  + 4)2 _
62 (Зу[2)2

Следовательно, кривая (4.21) представляет эллипс с полуосями 
а=6 и Ь=Ъл[2 , центр которого находится в точке О' (2: —4) 

(рис. 4 .1 9 ).^
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4.5. Гипербола и парабола
К ривая второго порядка (4.17) называется гиперболой (точнее 

кривой гиперболического типа), если коэф ф ициенты  А и  С имеют 
противоположные знаки, т.е. АС<0.

Пусть для определенности А  > 0, 
С < 0. Возможны три случая: 1) 5>0; 
2) 5=0; 3) 5<0.

В первом случае (при 8>0) имеем 
гиперболу, каноническое уравнение 
которой

Z 1
ь 2

1, (4.22)

где а = Л— — действительная полу- 
V А

ось; Ь= — мнимая полуось

(рис. 4.20).
Ф окусы гиперболы — точки /J (с; 0) и F2 (~с;  0), где с=

=л1а2 + b2 , а ее эксцентриситет е=  — принимает любые значе-
а

ния, больш ие 1. Вершины гиперболы — точки А х {а; 0), А^ (~ а ; 0).
М ожно показать (аналогично тому, как  мы поступали при  и с ­

следовании эллипса), что для любой точки гиперболы абсолютная 
величина разности ее расстояний до фокусов есть величина посто­
янная, равная 2а : d  =  \F2M  -  MFX\ =  2а. Это характеристическое
свойство гиперболы часто принимается за определение гиперболы. 

П ерепиш ем уравнение гиперболы (4.21) в виде

=  ± — у1х2 -  а 2 . (4.23)

П ри достаточно больш их х •Jx2 -  а 2 * -Jx2 = х  и уравнение

(4.23) примет вид у  * ± — х, т.е. при х
а

оа ветви гиперболы как
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угодно близко подходят к  прямым у  =  ± — х, называемым асим-
а

птотами гиперболы.
Для равносторонней гиперболы (а = Ь) х 2 -  у 2 = а2 асимптоты 

у  = ±х взаимно перпендикулярны и представляют биссектрисы 
координатных углов.

Во втором случае (при 5=0) уравнение кривой (4.17) примет
2 2 X у

вид -у- — = 0 ,  т.е. получаем пару пересекаю щ ихся прямых
а 1 Ь1

а а
У - = 0 . 
ь

В третьем случае (при 
8<0) получим гиперболу

* L - Z = _ i
а 2 Ъ2

с полуосями а= л1~~^ и

Ь = I называемую

Рис. 4.21

сопряженной с гипербо­
лой (4.22) (на рис. 4.20 
она изображена пункти­
ром).

[>Пример 4.9. Н аписать уравнение гиперболы с асимптотами

х у —± — х, проходящ ими через

ние между ее вершинами.
Р е ш е н и е .  Так как  точ­

к а  (6; 3/2) лежит на гиперболе, 
то  ее ко о р д и н аты  д олж н ы  
удовлетворять уравнению (4.22)
36 9 , „  Ь 3
- у  -  —j  =1. Кроме того, -  =  - ,  
а 2 4 Ь1 а 4

так как асимптоты гиперболы

/
/ х —ОВ’

% X J ) / у -0 .4 '
✓ х^О В

у —ОА

S i r —

Рис. 4.22
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у = ± ^ х .  Решая полученную систему двух уравнений, найдем

2 2
a=4-j2  , b=  Зл/2 , т.е. уравнение гиперболы ^  — =  1 (рис.

4.21). Расстояние между верш инами гиперболы равно 2а=  8 V2 .► 
Рассмотрим обратную пропорциональную зависимость, задава- 

темую уравнением у  = — или
• X

ху=т. (4.24)
Выбрав в качестве новых осей Ох' и О у' биссектрисы коорди­

натных углов (рис. 4.22), представим уравнение (4.24) через н о ­
вые координаты  х '  и у ' .  Пусть О М  -  г, тогда

х  = г cos ( 4 5 ° + а ) = - ^  (/• cos а ~r sin а ) = - ^  (х '~у ' ) ,
V 2 л/2

у  = г  sin (45°+ а)=  (г cos а +  /sin а )=  -JL (х '+ у '),

так как  из А О M B ' г cos а  = х\ г sin а  =у'.
Теперь уравнение (4.24) в новой системе координат О х у

2 2примет вид х ’ -  у ’ = 2т, т.е. график обратной пропорциональной 
зависимости есть равносторонняя гипербола с асимптотами — 
осями координат.

П ри т > 0 ветви гиперболы расположены в I и III квадрантах, 
при //г < 0 — во II и IV квадрантах. Нетрудно установить, что 
координаты лю бой вершины гиперболы равны (по абсолютной

величине), т.е. I х  I =  I у  I =  yj\m\, а их знаки определяются в зави­

симости от квадранта, в котором расположена каждая верш ина. 
Рассмотрим график дробно-линейной функции

ах + Ь
У = ------ -г, (4.25)сх + а

где №0, b<^ad*0.
Преобразуя (4.25), получим

b
а\ х  + — 

а
У =

d \  b dх  + — + --------
с )  а с =  ± + ( bc ~ aci) /  с

С[Х + Сс )  V  + dc ) С х  + ~с
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Введем новые координаты
, d  ах + — = х  , у —— = у  . 

с с
Обозначим m=(bc—ad)/c2. 

Тогда в новой системе коорди­
нат О х 'у ' , полученной парал­
лельным переносом осей коор­
динат, с новым центром в точке

О' ) (см. рис. 4.23)
с с

туравнение примет вид у  =  —
х '

или х ’у ’ =т.
Итак, график дробно-линейной 

функции (4.25) есть равносторонняя гипербола с асимптотами 
d a

х -  ; у = — , параллельными осям координат.
с с

[>Пример 4.10. Найти координаты центра, вершин и уравне-
3 - 2 *ния асимптот гиперболы у=-
х  +1

Р е ш е н и е .  Преобразуем уравнение, выделив целую часть 
дробно-линейной функции:

_  -2 ( х  + 1) + 5 „ , 5
У 1

~— 2+-
х  +1

1
\У

0Г-1:-2) !
X  . . ! \ В  ш4 Ь 81 1 14+"̂ '

. _ - - Л « 2 ^ " ——__-2 - ---------------
N f' 1 :_4 дЛ I:“4 

—6\ 1 ' \ |11
1

или у +2=-

Рис. 4.24

1
откуда (х+1)

(у+ 2)=5.
Полагая х+1 =  х ' , у+ 2 = у ' , п о ­

лучим х ' у '=  5, т.е. заданное урав­
нение есть уравнение равносто­
ронней гиперболы с центром 
0 ' ( —1;—2) и асимптотами х+1=0, 

у+ 2=0 (рис. 4.24). Так как 
т=  5>0, то гипербола располага­
ется в I и III квадрантах, а новые

координаты ее вершин (±л/5; 
±>/5).  Переходя к старым коор-
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динатам по  формулам х = х ' —1, у = у '—2, найдем старые координа­
ты верш ин гиперболы А(— V5 — 1, — V5 —2), 5 (^ 5  — 1, л/5 — 2 ) .^  

Пусть в уравнении кривой второго порядка (4.13) В  = 0, а 
также один из коэфф ициентов А  или С равен нулю; для опреде­
ленности А=0, СфО, т.е.

(4.26)

Пусть также D ф  0 (в противном случае мы имели бы пару п а­
раллельных горизонтальных прямых у= у\ и  у = у 2 , где ух и у2 —

корни уравнения С у 2 + Еу + F  = 0  или отсутствие каких-либо 
линий и точек вообще). Дополним члены, содержащие у, до п о л ­
ного квадрата

С \ у  + 2 С
=—D x—F+ :

F  Е
Полагая хп = -------+ -------

0 D 4DC > Уо =

(У~Уо)2 = 2Р ( х - х 0 ). (4.27)

К ривая (4.27) называется параболой, а точка О ' ( х 0 , у 0) — вер­
шиной параболы, р  — параметром параболы. При р  > 0 ветви п а ­
раболы направлены  вправо, при р  < 0 — влево (рис. 4.25). П р я­
мая у  = Уо является осью симметрии параболы.

Если верш ина параболы находится в начале координат, то 
уравнение (4.27) принимает вид

у 2 =  2рх. (4 .28)
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х = —у  — ее директрисой.

Д ля произвольной точки М  (х, у) параболы расстояние до ф о ­
куса по  формуле (3.5) равно

Точка F  0) называется фокусом параболы, а прямая

х 2 - р х  + ^ -  + 2рх  =  ̂ х  + = х + ^

(так как  х  + у  > 0). С другой стороны, расстояние до директрисы

M N  =  х  + у  (рис. 4.26).

Таким образом, парабола представляет множество всех точек 
шоскости, равноотстоящих от данной точки (фокуса) и от данной 
прямой (директрисы). Это характеристическое свойство параболы 
часто принимается за определение параболы.

Если в уравнении (4.28) поменять местами х  и у, то получим 
х 2 =  2р у  — уравнение параболы с верш иной в начале координат, 
симметричной относительно оси ординат. Это уравнение обычно

,  1
записываю т в виде у  = А х  , где А = — . П ри А > 0 ветви пара-

2 р
болы направлены  вверх, при А < 0 — вниз (рис.4.27).

Рассмотрим квадратный трехчлен у  = А х 2 + Вх + С (А *  0).
2 В СОгсюда у = А ( х  + — х + — ). Д ополнив выражение, стоящее в 

А А
скобках, до полного квадрата, получим

у = А
В ) 2 С В 2х  + —  +

2 А ) А 4 А
В \ 2 . 4 А С - В 2

= А '-Х + ы )  + 4Л ' (4-2 , )

В 4 А С  -  В 2
Обозначив х  + —  = х ' , у —---------------=  у' , в новой системе ко-

2А 4А
В 4 А С  -  В 2

ординат О’х 'у ' с центром О' ( -  — , --------------- ) уравнение (4.29)
2 А 4 А

примет вид у '  = А х ' 2 .
Таким образом, график квадратного трехчлена у  = А х 2 +Вх+С

« - В  4 А С - В 2 ^есть парабола с верш инои в точке О (— — , ----------------) и осью
2А 4 А

g
симметрии х = ------- , параллельной оси Оу.

2 А
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[>Пример 4.11. Построить кривую у = —З х  +10х~3.
Р е ш е н и е .  Вынося коэф ф ициент 

при л 2 и дополняя правую часть уравне­
ния до полного квадрата, получим

_ , 2
ЛУ = ~ 3 ( х

10
х + 1 )= —3 5 У  . 25х —  + 1 -------

3 J 9

=  - З у х  -  ■ 

Полагая

2 16 16 J  5 ^2
+ —  или у  — = —3 х —  .

3 ^ 3 \  3)

5 _  , 16 ,X  X , У  =  V ,
3 ^ 3

получим
у ' = - 3 х ' 2 .

Таким образом, заданная кривая есть парабола с верш иной в 

точке О ' (j ; ^  ) и осью симметрии О'у' , параллельной оси Оу 

(ри с.4 .28 ).^

4.6. Решение задач
Пример 4.12. Даны уравнения сторон треугольника Зх—4>'+ 

+24=0 (АВ), 4х+3у+32=0 (ВС), 2х—у~4=0(АС). Составить уравне­
ние высоты, медианы и биссектрисы, проведенных из верш ины 
В, и найти их длины.

Р е ш е н и е .  1. Найдем к о ­
ординаты верш ин треугольни­
ка, реш ив соответствующие 
системы уравнений сторон. 
Так, координаты верш ины  В 
определим из системы уравне­
ний прямых АВ  и ВС.

Зх -  4>> + 24 = 0,
4х + Зу + 32 = 0,

откуда х = —8, >’=0, т.е. В ( - 8; 0).
Аналогично находим коор­

динаты верш ин А и С, реш ив 
системы уравнений прямых АВ
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и АС, А С  и ВС: А  (8; 12), С ( -2 ;  - 8 )  (рис. 4.29).
2. Пучок прямых, проходящих через точку В  (—8; 0), по ф ор­

муле (4.4) имеет вид:

у= к  (х + 8 ). (4.30)

И з уравнения прямой А С  следует, что ее угловой коэф ф ициент 
кАС =2. Н а основании условия перпендикулярности двух прямых

квв = ——  = — — . Уравнение высоты BD  примет вид у = ~ — (х+8) 
к ас 2 2

или х+2у+8=0.
3. И з ш кольного курса математики известно, что координаты 

середины отрезка равны полусуммам соответствующих координат 
его концов, т.е.

_ Х А + х с _ Уд + Ус
y F -  — — .

„  8 +  (-2 ) - 12+ (-8) - ..
Поэтому x F = -----^ 1 =  3, ур  = ----- j — - =  2, т.е. F ( 3; 2).

П о формуле (4.5) угловой коэфф ициент
к  =  Ур - У в _  2 - 0  _  _2

BF х F ~ x B 3 -  (-8 ) 11'
2

Подставляя к  = — в формулу (4.30), получим уравнение м е­

дианы BF:

у  = ^  (л: + 8) или 2л: -  11 у  + 16 =  0

(уравнение B F  м ож но было получить и п о  формуле (4.6) как  
уравнение п рям ой , проходящ ей через две точки: В  (—8; 0) и
F  (3; 2)).

4. И з уравнений прямых Зх~4у+24=0 (АВ) и 4х+3_у+32=0 (ВС) 
следует, что они перпендикулярны, так как их угловые коэф ф и ­

циенты к АВ = ^  и квс  = -  у  обратны по  величине и противопо­

ложны по знаку. Поэтому биссектриса B E  образует с каждой из 
этих сторон угол 45°. П о формуле (4.9)

к  ^~ -^к  /Г ~ ^ ВЕ
tg 45° =  -r̂ r  I е =  - Ц   =  1,

1 + к АВ-кВЕ х + 1 квЕ
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откуда к ВЕ = v  —. Теперь по  формуле (4.30) получим уравнение 
7

биссектрисы  В Е

у  = -  у  (х +  8 ) или х  + Ту + 8 =  0 .

(Если “не заметить” , что АВ±ВС, то угловой коэф ф ициент 
биссектрисы  кВЕ можно найти из равенства tgZ СВЕ = tgZ.EBA,
т.е.

^  ^  Ъ - к  к  + 4
к-лв ~ к ВЕ - к ВЕ -  к вс  или 4 ВЕ -  ВЕ 3

1 + кА В -к ВЕ \ + kB E - k BC \ + ~ к ВЕ \ - ~ к ВЕ

Реш ая уравнение, найдем два корня (кВЕ\  =  - у  и (кВЕ)2 = 1 ,

из которых чертежу задачи удовлетворяет первый корень).
5. Д лину медианы B F  найдем по  формуле (3.5) расстояния м е­

жду двумя точками А (—8; 0) и F  (3; 2):

dBF = V(3 + 8)2 + (2 -  О)2 =  Vl25 =  5л/5* 11,2.
6. Д ля нахождения длины биссектрисы найдем вначале к о ­

ординаты ее точки пересечения Е  со стороной АС,  реш ив систему 
уравнений

2х -  у  -  4 = 0, 4 4 4 4 .
, откуда х  = —; у  = —— , т.е. Е  (— ; - - г ) .  

х  + 7у + 8 = 0. 3 3 3 3
Теперь по  формуле (3.5)

4 _  f  20V2
3 J 3dBE = ill т  + ° I  + | - - - 0 | =  — 7— « 9,4.

7. Д лину высоты BD  мож но было найти аналогично тому, как  
находили длину биссектрисы. Н о прощ е это сделать по  формуле
(4.10) расстояния от точки В  (—8 ; 0) до прямой 2х—у —4=0 (АС):

-  P ( - 8 ) t ( - 1 ) - 0 - 4 |

V2 + И )
1>Пример 4.13. Н айти расстояние от начала координат до прямой,

4х — 4
проходящ ей через центр гиперболы у  = ---------  и верш ину пара-

2х +1
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болы у  = - х 2 + 2 х — . Составить уравнение окружности, касаю - 
3

щ ейся гиперболы в ее вершинах.
Р е ш е н и е .  1. В уравне­

нии гиперболы выделим целую 
часть; получим

j _ 4 ( х - 1 )

2(1 + i )  2(.v + ^1

3 3
  г  , откуда у —2 = ~ ------ г

л : +  -

или (х + —) (у —2)=—3.

Полагая х + ^  = х ' ,  у —2= у ' ,

получим в новой системе координат О’х 'у ' с центром О’ (— j ; 2)

гиперболу х 'у ' = —3, ветви которой расположены во II и IV квад­
рантах (рис. 4.30).

2. Выделив полный квадрат, представим уравнение параболы в 
виде

у  =  - х2 +2 х- | = - ( х - 1 ) 2- | + 1 = - ( х - 1 ) 2 + | ,

откуда следует, что верш ина параболы находится в точке А (1; 
2 ,
— ), а ветви ее направлены вниз.

3. Составляем уравнение прямой О' А по формуле (4.5)
1т X + —У - 2  = ____2
1

или 8х+9у—14=0.
- - 2  1 +
3 2

4. Находим расстояние от точки 0 (0; 0) до прямой 8х+9у— 
-14=0 по  формуле (4.10)

0 + 9 - 0 -  14| _  14

V 82 + 92 •у/145
1,2.
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5. Очевидно, что центр иском ой окружности должен совпасть 

с центром гиперболы О' (— ; 2) и иметь радиус R, равный р ас­

стоянию  от точки О' до лю бой из верш ин гиперболы. Для ги ­
перболы х 'у ' =  т  координаты лю бой верш ины (по абсолю тной

величине) I х '  I =| у '\  — у |/w[ , поэтому расстояние ее от нового н а ­

чала координат (0; 0) по формуле (3.5) равно yj2\m\ . Следователь­

но, R=,j2\m\ = ^ 2 |-3 | = ->/б . Итак, уравнение искомой окружности

1 ? ?по формуле (4.11) есть (л: + —) +  (у  -  2) =  6 .^

4.7. Понятие об уравнении 
плоскости и прямой в пространстве

Общее уравнение плоскости. Пусть плоскость Q проходит че-
—)

рез точку M 0 ( x 0 , y 0 , zQ) перпендикулярно вектору п =(А,В,С)  
(рис. 4.31).

Этими условиями определяется единственная плоскость в про- 
—̂

странстве Oxyz. Вектор п называется нормальным вектором п лос­
кости Q. Возьмем в плоскости Q произвольную  точку М  (х, у, z  ).

 >
Тогда вектор М 0М  = ( х ~ х 0 , у —у 0 , z  ~ z 0 )

—>
будет перпендикулярен вектору п =  (А, 
В, С). Следовательно, скалярное произве­
дение этих векторов равно нулю, т.е.

( п  , Щ М )  = 0.
Полученное уравнение представим в 

координатной форме:

А { х - Х ъ ) + В ( у - у ц ) + С ( г ~ г й )=0. (4.31)
Уравнение (4.31) представляет уравнение плоскости, перпенди-

—>
кулярной данному вектору п =(А,В,С) и проходящей через дан ­
ную точку M 0 ( x 0 , y Q, z0 ).
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У равнение плоскости, записанное в виде

A x + B y + C z + D ^ O  (4.32)

(где D = ~ А х 0 —B y 0 — Cz0 ), называется общим уравнением плоскости.
М ожно доказать, что всякое уравнение первой степени с тремя 

переменными есть уравнение плоскости.
Если D  =  0, то уравнение Ах  + By +Cz =  0 определяет плос­

кость, проходящую через начало координат. Другие частные слу-
—>

чаи определяю тся расположением нормального вектора л =  (А, 
В, Q . Так, наприм ер, если А  =  0, то уравнение By +  Cz + D  =  О 
определяет плоскость, параллельную оси Ох, если А = D — 0, то 
уравнение By +Cz = 0  определяет плоскость, проходящую через 
ось Ох; если А = В  = 0, то уравнение Cz +  D = 0 определяет 
плоскость, параллельную  плоскости Оху; если А = В — D  =  0, то 
уравнение Cz = 0 (или z  =  0) определяет координатную плоскость 
Оху.

У словия параллельности и перпендикулярности плоскостей 
определяю тся условиями коллинеарности и перпендикулярности

—> —►
нормальных векторов пх = {А{, ВХ,СЛ) и п^ =  (А^ , В2 , С2 ).

Условием параллельности двух плоскостей является пропорцио­
нальность коэффициентов при одноименных переменных

А  _ В\ _ Q  
^2 В2 С2

а условием их перпендикулярности

А^А2 + ВХВ2 + CjCj = о .

Прямая в пространстве может быть задана как линия пересе­
чения двух плоскостей, т.е. как множество точек, удовлетворяю ­
щ их системе

J Ахх  + Вху  + CjZ + Dx = 0, 
j/ijX  + В2у  + C2z  + D2 = 0.
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Если прямая параллельна вектору

м  (a'j.v,,2|) ^ ^  s =(т,п,р) (называемому направляю-
с ~ щим вектором) и  проходит через точ­

ку М х ( ,  у х , z , ) (рис. 4.32), то ее
уравнения могут быть получены из 

—̂
условия коллинеарности векторов \M \M \ =  (х—х 1? у —у 2 , z —zx), 

(где М  (х, у, z) — произвольная точка прямой) и s = (т,п,р):
X  -  Xj у  -  У! _  Z  -  Zj

т п р
Эти уравнения называю тся каноническими уравнениями прямой 
линии в пространстве.

У П Р А Ж Н Е Н И Я
4.14. Н айти уравнение множества точек, равноудаленных от 

оси Оу и  точки F  (4; 0).
4.15. Составить уравнение прямой, проходящей через точку А  

(2; 3): а) параллельно оси Ох; б) параллельно оси Оу; в ) состав­
ляю щ ей с осью Ох угол 45°.

4.16. Составить уравнение прямой, проходящей через точки:
а) А (3; 1) и В  (5; 4); б) А  (3; 1) и С  (3; 5); в) А (3; 1) и D  ( - 4 ;  1).

4.17. Стороны АВ, ВС  и  АС  треугольника ABC  заданы соответ­
ственно уравнениями 4 x + 3 j—5=0, х~3_у+10=0, х —2=0. Определить 
координаты  его вершин.

4.18. Составить уравнения прямых, проходящих через точку 
пересечения прямых 2х—3>>+1=0 и З х - у —2=0 параллельно и  п ер­
пендикулярно прямой у  = х  + 1.

4.19. Н айти длину и уравнение высоты BD  в треугольнике с 
верш инами А ( - 3 ;  0), В  (2; 5); С (3 ; 2).

4.20. Найти уравнение прямой, проходящей через точку А  (4; 3) и 
отсекающей от координатного угла треугольник площадью 3 кв. ед.

4.21. Дан треугольник с вершинами А  (—2; 0), В  (2; 4) и С (4; 0). 
Найти уравнения сторон треугольника, медианы АЕ, высоты AD  и 
длину медианы АЕ.

4.22. В треугольнике ABC  даны уравнения: стороны АВ  Зх+2у — 
-12=0, высоты ВМ  х+2_у-4=0, высоты AM  4х+у~6=0, где М  — точка 
пересечения высот т1аши уравнения сторон АС, ВС  и высоты СМ.
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4.23. Две стороны параллелограмма заданы уравнениями у= х—2 
и  х —5.У+6 =  0. Диагонали его пересекаю тся в начале координат. 
Н айти уравнения двух других сторон параллелограмма и его д и а­
гоналей.

4.24. Составить уравнение прямой, проходящей через центры 
окружностей х 2 + у 2 = 5 и х 2 + у 2 + 2х + 4 у —31 =  0. Н айти отно­
ш ение радиусов окружностей.

4.25. Ординаты всех точек окружности х 2 + у 2 = 36 сокращ е­
ны  втрое. Н аписать уравнение полученной новой кривой.

4.26. Эллипс, симметричный относительно осей координат,
проходит через точки М х (4; 4 ^ 5 /3 )  и М 2 (0; 4). Найти полуоси, 
координаты фокусов и эксцентриситет эллипса.

4.27. Д ля гиперболы Зх2 -  4у 1 — 12 найти действительную и 
мнимую  полуоси; координаты фокусов; эксцентриситет; уравне­
ния асимптот.

4.28. Н аписать уравнение гиперболы, имеющей верш ины  в
х 2 у 2

фокусах, а фокусы — в вершинах эллипса —  + —  -  1.

4.29. Н айти координаты центра, верш ин и уравнения асим -
4 — 5хптот гиперболы у  = ------ — .
х  -  I

4.30. Составить уравнение параболы, проходящей через точки:
а) (0; 0) и ( - 1 ;  - 3 )  симметрично относительно оси Ох; б) (0; 0) и 
(2; —4) симметрично относительно оси Оу.

4.31. Найти уравнения параболы и ее директрисы, если известно, 
что парабола имеет вершину в начале координат и симметрична 
относительно оси Ох и что точка пересечения прямых у=  
= х  и х+ у—2 =  0 лежит на параболе.

4.32. Н айти расстояние от начала координат до прямой, п р о ­

ходящей через центр гиперболы у  -  Х +— , и вершину параболы
JC -1

у = - 2 х 2 +5х~2.



Раздел II 
ВВЕДЕНИЕ В АНАЛИЗ

Глава 5. ФУНКЦИЯ
5.1. Понятие множества

П онятие множества принадлежит к числу первичных, не оп ­
ределяемых через более простые.

Под множеством  понимается совокупность (собрание, набор) 
некоторых объектов. Объекты, которые образуют множество, н а­
зываю тся элементами, или точками, этого множества.

Примерами множеств являются: множество студентов данного 
вуза, множество предприятий некоторой отрасли, множество н а ­
туральных чисел и т.п.

М нож ества обозначаю тся прописны ми буквами, а их элемен­
ты — строчными. Если а есть элемент множества А, то использу­
ется запись а е А. Если b не является элементом множества А, то 
пиш ут Ь е А.

М ножество, не содержащее ни  одного элемента, называется 
пустым и  обозначается символом 0 .  Н апример, множество дей­
ствительных корней уравнения х 2 +1=0 есть пустое множество.

Если множество В  состоит из части элементов множества А 
или совпадает с ним , то множество В  называется подмножеством 
множества А и обозначается BczA.

Если, например, А — множество всех студентов вуза, а В  — 
множество студентов-первокурсников этого вуза, то В есть под­
множество А, т.е. ВсЛ.

Два множества называются равными, если они состоят и з од­
них и тех же элементов.

Объединением двух множеств А  и В называется множество С, 
состоящее из всех элементов, принадлежащ их хотя бы одному из 
данных множеств, т.е. С =  A (J В.

Пересечением двух множеств А и В называется множество D, 
состоящее из всех элементов, одновременно принадлежащ их ка­
ждому из данных множеств А и В, т.е. D =  АП В.

Разностью множеств А и В называется множество Е, состоящее 
из всех элементов множества А, которые не принадлежат м нож е­
ству В, т.е. Е =  А \  В.
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 ̂ Пример 5.1. Д аны  множества А = {  1; 3; 6; 8}, В = {2; 4; 6; 8}.
Н айти объединение, пересечение и разность множеств А  и В.
Р е ш е н и е .  О чевидно, что объединение двух данных м н о ­

жеств — A \JB = {  1; 2;  3; 4; 6; 8}, их пересечение Л П # = {6 ; 8}, а

разность =  {1; 3} .►

Дополнением  множества А<^В называется множество А 1 , с о ­
стоящее из всех элементов множества В, не принадлежащих А.

М ножества, элементами которых являю тся действительные 
числа, называю тся числовыми. И з ш кольного курса алгебры и з ­
вестны множества: R  — действительных чисел, Q — рациональ­
ных, /  — иррациональных, Z  — целых, N  — натуральных чисел. 
Очевидно, что NaZczQczR, I c R  и R=Q\J I.

Геометрически множество действительных чисел R  изображ а­
ется точками числовой прямой (или числовой оси) (рис. 5.1), т.е. 
прямой, н а  которой выбрано начало отсчета, положительное н а ­
правление и единица масштаба.
-------------------------------------     М ежду множ еством  д ей -

0 1 х  ствительны х чисел и точка-
р ис 5 j ми числовой  прям ой  сущ е­

ствует взаим но однозначное 
соответствие, т.е. каждому действительному числу соответствует 
определенная точка числовой прямой, и наоборот, каждой точке 
прямой — определенное действительное число. Поэтому часто 
вместо “число х ” говорят “точка х ”.

М ножество X, элементы которого удовлетворяют: неравенству 
а<х<Ь, называется отрезком (или сегментом) [а\ Ь]\ неравенству 
а<х<Ь — интервалом (а; Ь)\ неравенствам а<х<Ь или а<х<Ь, назы ­
ваются полуинтервалами соответственно [а\ Ь) и (а; Ь]. Наряду с 
этим рассматриваю тся бесконечные интервалы и полуинтервалы 
(—оо; а), (Ь\ +оо), (—00, +оо), (—оо; а] и [Ь\ +оо). В дальнейшем все 
указанные множества мы объединяем термином промежуток X.

5.2. Абсолютная величина действительного числа. 
Окрестность точки

Определение. Абсолютной величиной (или модулем) действи­
тельного числа х  называется само число х, если х  неотрицательно, и 
противоположное число —х, если х  отрицательно:

I ,  f х , если х > 0 ,
I х | =  <

[ -х ,  если х < 0 ,
Очевидно, по определению, что I х | >0.
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Р е ш е н и е .  Если х > 0 ,  т о |х |  =  х и |х Ч х  I 
Если х  < 0, то I х  I = —х  и  I х~\ х  I I =  I х —(—х  ) 
Отметим свойства абсолютных величин:

ОПример 5.2. Найти I хЧ х I I.
х —х  I =  I О I =  0. 
2х I = —2х.а

х | +  \у \ ху  1 =  1x1 
|х|

х<а \х~ а \

Абсолютная величина разности двух чисел \х  — а \ означает 
расстояние между точками х н а  числовой прямой как для случая 
х  < а, так и для х  > а (см.рис.5.2).

Поэтому, например, реш ениями 
неравенства I х  — а I <  е (где е > 0 )  
будут точки х  интервала ( а ~  е , а  +  е ) 
(рис. 5.3), удовлетворяющие н ера­
венству а — е  < х  <  а +  е.

Всякий интервал, содержащий 
точку а, называется окрестностью 
точки а.

Интервал (а — е , а + е ) ,  т.е. м нож е­
ство точек х таких, что I х -  а I < е 
(где е > 0), называется г-окрест ­
ностью точки а.

5.3. Понятие функции.
Основные свойства функций

Постоянной величиной называется величина, сохраняю щ ая 
одно и то же значение. Например, отнош ение длины окружности 
к  ее диаметру есть постоянная величина, равная числу п.

Если величина сохраняет постоянное значение лиш ь в усло­
виях данного процесса, то в этом случае она называется парамет­
ром.

Переменной называется величина, которая может принимать 
различные числовые значения. Н апример, при равномерном 
движении S  =  vt, где путь S  и время t — переменные величины , а 
v — параметр.

Перейдем к  понятию  функции.
Определение. Если каждому элементу х  множества X  (х  е X) 

ставится в соответствие вполне определенный элемент у  множ е­
ства Y  (у е Y), то говорят, что на множестве X  задана функция 
У = /(*)■

При этом х  называется независимой переменной (или аргумен­
том), у  — зависимой переменной, а буква /  обозначает закон соот­
ветствия.
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М ножество X  называется областью определения (или существо­
вания) ф ункции, а множество Y  — областью значений функции.

Если множество X  специально не оговорено, то под областью 
определения ф ункции подразумевается область допустимых зна­
чений независимой переменной х, т.е. множество таких значений 
х, при которых ф ункция у  = / ( х )  вообще имеет смысл.

Например, область определения ф ункции у  = х 2 + ^ 1 0 - х  
есть полуинтервал (—оо; 10], так как 10 — х  > 0; если же перемен­
ная х  обозначает, предположим, время, то при естественном д о ­
полнительном условии х  > 0 областью определения ф ункции бу­
дет отрезок [0; 10].

Способы задания функций. Существует несколько способов за ­
дания функции.

а) Аналитический способ, если функция задана формулой вида 
y —f  (х). Этот способ наи более часто встречается на практике. Так, 
функция у - х 2 + VTo -  х  , рассматриваемая выш е, задана аналити­
чески.

Не следует смешивать функцию  с ее аналитическим выраже­
нием. Так, например, одна функция

_  (х2, если х< 0 ,
^  }х+3, если х > 0 ,

имеет два аналитических выражения: х 2 (при х  < 0) и х  + 3 ^при 
х  > 0).

б) Табличный способ состоит в том, что функция задается таб­
лицей, содержащей значения аргумента х  и соответствующие 
значения ф ункции / ( х ) ,  например таблица логарифмов.

в) Графический способ состоит в изображении графика ф у н к­
ции — множества точек (х, у) плоскости, абсциссы которых есть 
значения аргумента х, а ординаты — соответствующие им значе­
ния ф ункции y —f ( x ) .

г) Словесный способ, если функция описывается правилом ее 
составления, например, ф ункция Дирихле: /  (х) =  1, если х  — 
рационально; / (х) =  0, если х  — иррационально.

Рассмотрим основные свойства функций.
1. Четность и нечетность. Ф ункция у  = / ( х )  называется чет­

ной, если для любых значений х  из области определения / ( —х) =  
= /  (х) и нечетной, если /  (—х) = —/  (х). В противном случае ф у н к­
ция у  —f i x )  называется функцией общего вида.

Например, ф ункция .у ,= х 2 является четной (так как f  (~х) = 
=  ( -х )2 = х 2 и /  ( -х )  =  /  (х), а ф ункция у  =  х 3 — нечетной (так 
к а к / ( —х) =  ( -х )3 = - х 3 и / ( —х) =  - f i x ) .

В то же время, например, ф ункция у  = х 2 + х 3 является ф ун к­
цией общего вида, так как / ( —х) =  ( -х )2 + ( - х )3 =  х 2 -  х 3 и / ( —х)* 
? f { x )  и / ( - х )  * - f { x ) .
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График четной ф ункции симметричен относительно оси ор ­
динат (см., например, график ф ункции у = х 2на рис. 5.6.), а гра­
ф ик нечетной ф ункции симметричен относительно начала ко о р ­
динат (см., например, график ф ункции у = х г на рис. 5.5.)

2. Монотонность. Ф ункция f = f  (х) называется возрастающей 
(убывающей) на промежутке X, если большему значению  аргумен­
та из этого промежутка соответствует большее (меньшее) значе­
ние функции.

Пусть хх, х 2 е X  и  х 2 > х х. Тогда ф ункция возрастает на п р о ­
межутке X, если f  ( х 2 ) > f  ( х {), и убывает, если / ( х 2 ) < / ( х , )  
(см. рис. 5.4).

Рис. 5.4
Ф ункции возрастающие и убывающие называются монотон­

ными1 функциями.
Так, например, функция у = х 2(см. рис. 5.6) при х е (—оо; 0] 

убывает и при х  е  [0; оо) возрастает.
3. Ограниченность. Ф ункция /  (х) называется ограниченной на 

промежутке X, если существует такое положительное число М  >0, 
что | /  (х) I < М  для любого х е X. В противном случае ф ункция 
называется неограниченной.

Н апример, ф ункция у=  sin х  ограничена на всей числовой оси, 
ибо I sin х  I < 1 для любого х  е R.

4. Периодичность. Ф ункция у  = / ( х )  называется периодической 
с периодом Т  ф 0, если для любых х из области определения 
функции / ( х  + 7) = /  (х).

Например, функция у=  sin х  имеет период2 Т  -  2л, так как для 
любых х sin (х +2л) =  sin х.

1 Если говорить точнее, то строго монотонными; к  монотонным функциям, на­
ряду с возрастаю щ ими и убывающими, относятся неубывающие и невозрастающие 
функции, т.е. такие, для которых при x t , х 2 еХ. удовлетворяющих условию х 2 > х х . 
соответственно / ( х 2 ) > / (  х х ) или f  ( х 2 ) < f  ( х j ).

2 Под термином “период” подразумевается наименьший плюж ительныи период 
Функции, равный 2тг; лю бой период функции у  = s in  х, как известно, равен Inn, где 
« е  Z.
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5.4. Основные элементарные функции
В таблице приводятся наиболее важные свойства и графики основных элементарных функций.

№
п/п

Обозна­
чение
функ­
ции

Область 
опреде­
ления X

Область
значений

Y

Четность,
нечет­
ность

Монотон­
ность

Перио­
дичность

Графики функций

1 2 3 4 5 6 7 8
1. Степенная функция

У = х П 
n eN

( —оо, оо) (-о о , оо), 
если п — 
нечетно; 
[0; оо), 
если п — 
четно

нечетная, 
если п — 
нечетно; 
четная, 
если п — 
четно

возрастает на 
( —оо, оо), если 
п — нечетно; 
убывает на 
(-*>, 0], 
возрастает на 
(0, оо), если 
п - четно

неперио­
дическая

у  = х п (~°С,0) и ( -о о , 0) U нечетная, убывает на непери­
neN U (0 , оо) U (0,со), если п — ( —эо, 0) и на одичес­

если п — нечетно; (0 , оо), если кая
нечетно; четная, п — нечетно;
[0; °°), если возрастает на
если п — п — (—оо; 0) и
четно четно убывает на

(0 , оо), если
п — четно

Рис.5.5 Рис.5.6

Рис.5.7 Рис.5.8

Продолжение
1 1 2 3 4 5 6 7 8
1 32

§
ОXс2
н

У = V* 
n eN  
п> 1

(-00,00), 
если п— 
нечетно; 
[0; оо), 
если п— 
четно

( - 00, оо),
если п — 
нечетно; 
[0; оо), 
если
п — четно

нечетная, 
если п — 
нечетно; 
общего 
вида, если 
п — четно

возрастает на 
(—оо; оо), если 
п — нечетно; 
возрастает на 
[0; оо), если 
п — четно

неперио­
дическая

У 1

г . >• t 9 

Рис.5

' И *  у ,  
■ у----------- -----
■1. 1 )—► -+-Т1 х 0

.9 Ри

' L I  1 1 »
'-l

с.5.10
2.Показательная функция

4 XS3II ( -о о , оо) (0; оо) общего возрастает на неперио­
\  л 1 J y = a x

& V о вида (—оо; оо), если дическая V
д*1) а> 1; убывает 0<а<1 V /а > \

на (-о о ; со), ___^ ^---
если 0<д<1 l - l  1 0

Рис.5.11
3. Логарифмическая функция

5 У= (0 ; оо), ( - 00, оо) общего возрастает на неперио­ У\ !. у=
= l o g ,X вида (0 ; оо), если дическая

(а>0, 
аФ 1)

а> 1; убывает Л у  я>1
на (0; оо), 
если 0<я<1

1 0 /1 \Р < а< 1  *
1 Рис.5.12

4. Тригонометрические функции
6 y=$iwc (—со, ос) l - l ;  1] нечетная возрастает на 

[—к/2+2кп, 
ж/2+2ж и);

Период
Т=2к Ч

1  ̂у= Sinx

убывает на -2л -я
А ! 1 1 1 1 ^,0j я 2л *

[ic/2+2icn,3Tc/2-J
+2жя], neZ Рис.5.13
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5.5. Элементарные функции. 
Классификация функций. Преобразование графиков

Ф ункция называется явной , если она задана формулой, в ко ­
торой правая часть не содержит зависимой переменной; н ап ри ­
мер, ф ункция у = х 2 +5х +1.

Ф ункция у  аргумента х называется неявной, если она задана 
уравнением F=(x,y)=0, не разреш енным относительно зависимой 
переменной. Например, ф ункция у(у>0), заданная уравнением 
х 3 + у 2 - х  =0. (Заметим, что последнее уравнение задает две

ф ункции, y = ijx  -  х 3 при у  > 0, и У=—^ Х  -  х 3 при у  < 0).
Обратная функция. Пусть у -  /  (х) есть функция от независи­

мой переменной х, определенной на множестве X  с областью 
значений К Поставим в соответствие каждому y e  Y  единственное 
значение хе Х ,  при котором f{x )—y. Тогда полученная ф ункция 
х=ф(у), определенная на множестве Y  с областью значений X , 
называется обратной.

Так как традиционно независимую  переменную обозначают 
через х, а ф ункцию  через у, то ф ункция, обратная к ф ункции 
y=f(x), примет вид у=ср(х). Обратную функцию  ^=tp(x) обозначают 
так же в виде у = / “' (х) (аналогично с обозначением обратной
величины ). Н апример, для ф ункции у = а х обратной будет ф ун к­
ция х=  loga у  или (в обычных обозначениях зависимой и незави­
симой переменных) у= loga х  .

М ожно доказать, что для любой строго монотонной функции 
>’=ф(х) существует обратная функция.

Графики взаимно обратных ф унк­
ций  симметричны относительно б ис­
сектрисы первого и третьего коорди­
натных углов (на рис. 5.17 показаны 
графики взаимно обратных функций 
у = а х и y= lo g a х  при а> 1).

Сложная функция. Пусть ф ункция 
у = А и) есть ф ункция от переменной и, 
определенной на множестве V  с обла­
стью значений Y, а переменная и в 
свою очередь является функцией 

и=<р(х) от переменной х, определенной на множестве X  с обла­
стью значений U. Тогда заданная на множестве X  ф ункция

Рис. 5.17
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y = f [ cp(x)] называется сложной функцией (или композицией ф унк­
ций , суперпозицией ф ункций, функцией от функции).

Н апример, у  =  lg sin х — сложная ф ункция, так как ее можно 
представить в виде у=  lg и, где и = sin х.

Понятие элементарной функции. Из основных ф ункций новые 
ф ункции могут быть получены двумя способами при помощи:
а) алгебраических действий; б) операций образования сложной 
функции.

Определение. Функции, построенные из основных элементарных 
функций с помощью конечного числа алгебраических действий и ко ­
нечного числа операций образования сложной функции, называются 
элементарными.

Н апример, ф ункция

является элементарной, так как здесь число операций сложения, 
вычитания, умножения, деления и образования сложной функ-

П римерами неэлементарных ф ункций являются функции 
у=  I х | (см.рис. 7.5), у=  [х] — целая часть х  (см. рис. 6.9).

Классификация функций. Элементарные функции делятся на 
алгебраические и неалгебраические (трансцендентные).

Алгебраической называется функция, в которой над аргумен­
том проводится конечное число алгебраических действий. К  чис­
лу алгебраических ф ункций относятся:

• целая рациональная функция (многочлен или полином):
у= а 0х '’ + а1х П~1+...+а„_1х  + ап ;
• дробно-рациональная функция —  отношение двух многочле­

нов;
• иррациональная функция (если в составе операций над аргу­

ментом имеется извлечение корня).
Всякая неалгебраическая ф ункция называется трансцендент­

ной. К  числу трансцендентных ф ункций относятся функции: п о ­
казательная, логарифмическая, тригонометрические, обратные 
тригонометрические.

Преобразование графиков. В разделе III “Дифференциальное 
исчисление” будет показано, как проводить исследование ф унк­
ций и построение их графиков с помощью производной. Вместе

ции (sin2 х, 52*3 , lg3 х  , -)Jlg3 x -1  ) конечно.
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с тем актуальными остаются приемы  построения графиков ф унк­
ц и й  с помощ ью  преобразования графиков основных элементар­
ных функций.

Пусть задан график ф ункции у  = /  (х).

»' у 
' '  /

\У=Жх)1

Х = / «

Ж  0
/ п  / / /  '  s

/  / /  '  4 
/ /  '  '

/  \

/  /  ' / \
/  /  ' / \
I I  ' у=-2Лх) '

Рис. 5.18 Рис. 5.19

Тогда справедли­
вы следующие ут­
верждения.

1. График функ­
ции y=flx+a) есть гра­
фик y=f{x), сдвинутый 
(при а>0 влево, при 
а<0 вправо) н а  I а  I 
единиц параллельно 
оси Ох (рис. 5.18).

2. График функ­
ции y=j(x)+b есть гра­
фик y=f(x), сдвинутый 
(при Ь>0 вверх, при

К О  -  вниз) на I b I единиц параллельно оси Оу (см. рис. 5.18).
3. График ф ункции y=mj{x) (т*0) есть график у -fix ) ,  растяну­

тый (при т>\)  в т  раз или сжатый (при 0<ти<1) вдоль оси Оу (см.
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рис. 5.19). П ри — оо<ю<0 график ф ункции y~ m fix)  есть зеркальное 
отображение граф ика y ——mf{x) от оси Ох.

4. График ф ункции y = f  (кх) (к  *  0) есть график у=Дх), сж а­
тый (при к>\ ) в  к  раз или растянутый (при 0</с< 1) вдоль оси Ох 
(см.рис. 5.20). П ри -сс<к<() график ф ункции y=J{kx) есть зер­
кальное отображение граф ика y=f{—kx) от оси Оу.

[>Пример 5.3. П остроить график функции _y=-3cos 2х.
Р е ш е н и е .  Стро­

им график функции 
у-- 3cos 2х следующим 
образом (рис. 5.21).

1. Строим график у  
=  COS X.

2. ;y=cos x  -» сж а­
тие графика в ? раза 
вдоль оси Ох - > у  =  
=^05 2х.

3. >,=cos 2х  -» зеркальное отражение графика от оси Ох -> у=  
cos 2х.
4. y = -c o s  2х-> растяжение графика в 3 раза вдоль оси Оу

у= —Ъсо$ 2 х ^

5.6. Применение функций в экономике. 
Интерполирование функций

Ф ункции находят ш ирокое применение в экономической тео­
рии и практике. Спектр используемых в экономике функций 
весьма ш ирок: от простейш их линейных до функций, получае­
мых по  определенному алгоритму с помощ ью  так называемых 
рекуррентных соотнош ений, связываю щих состояния изучаемых 
объектов в разные периоды времени.

Наряду с линейны м и, используются нелинейные ф ункции, 
такие, как дробно-рациональны е, степенные (квадратная, куби­
ческая и т.д.), показательные (экспоненциальные), логарифмиче­
ские и другие функции. Периодичность, колеблемость ряда эко­
номических процессов позволяет также использовать тригоно­
метрические функции.

Наиболее часто использую тся в экономике следующие ф унк­
ции:
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1. Функция полезности (функция предпочтений) — в ш ироком 
смысле зависимость полезности, т.е. результата, эффекта некото­
рого действия от уровня (интенсивности) этого действия.

2. Производственная функция — зависимость результата про­
изводственной деятельности от обусловивших его факторов.

3. Функция выпуска (частный вид производственной ф ункции)
— зависимость объема производства от наличия или потребления 
ресурсов.

4. Функция издержек (частный вид производственной функции)
— зависимость издержек производства от объема продукции.

5. Функции спроса, потребления и предложения — зависимость 
объема спроса, потребления или предложения на отдельные товары 
или услуги от различных факторов (например, цены, дохода и т.п.).

Учитывая, что экономические явления и процессы обуслов­
ливаю тся действием различных факторов, для их исследований 
ш ироко использую тся функции нескольких переменных. Среди этих 
ф ункций выделяются мультипликативные функции, позволяю ­
щие представить зависимую переменную  в виде произведения 
факторных переменных, обращающего его в нуль при отсутствии 
действия хотя бы одного фактора.

И спользую тся также сепарабельные функции, которые дают 
возможность выделить влияние различных факторных перем ен­
ных на зависимую  переменную, и в частности, аддитивные ф унк­
ции , представляю щ ие одну и ту же зависимую переменную  как 
при суммарном, но раздельном воздействии нескольких ф акто­
ров, так и при одновременном их воздействии.

Ф ункции нескольких переменных рассмотрены в гл. 15.
Если действием побочных факторов можно пренебречь или 

удается зафиксировать эти факторы на определенных уровнях, то 
влияние одного главного фактора изучается с помощью ф ункции 
одной переменной, рассматриваемой в данной и последующих 
главах. П риведем примеры.

1. Исследуя зависимости спроса на различные товары от дохода
b ^ x - а , )  Ь2{ х - а ,)

у  =    (х > а,) ,  у  = (х  > а , ) ,
X -  С, X -  с2

„ Ь3х ( х - а 3) _
у  -  (а > я3)

.х -  с3
(iфункции Л.Торнквиста), мы можем установить уровни доходов 
а1, а г , а ъ, при которых начинается приобретение тех или иных 
товаров и уровни (точки) насыщ ения t \ ,  для групп товаров 
первой и второй необходимости (с,м. рис. 5.22).
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Предметы 
оскоши 

Товары второй 
еобходимости

Коли
4ecTBq \ 
товара

Товары первой 
н еобходи мости

а\ а2 йз

Рис. 5.22

Кривая спроса
W )

Кривая
предложения

/ s ip )

, Равновесная 
I цена Цена

Рис. 5.23
2. Рассматривая в одной системе координат кривые спроса и пред­

ложения, можно установить равновесную (рыночную) цену данного 
товара в процессе формирования цен в условиях конкурентного рынка 
(паутинообразная модель) (см.рис. 5.23).

3. Изучая в теории потребительского спроса кривые безразличия 
(линии, вдоль которых полезность двух благ х м  у  одна и та же), напри­
мер, задаваемые в виде ху = U, и линию бюджетного ограничения р^с + 
+  руУ = /  при ценах благ рх и ру и доходе потребителя /, мы можем уста­
новить оптимальные количества благ л<) и jfo, имеющих максимальную 
полезность Щ (см. рис. 5.24).

Рис. 5.24
4. Рассматривая функции издержек (полных затрат) c(q) и дохода 

фирмы r(q), мы можем установить зависимость прибыли n(q)= 
=  c(q) — r(q) от объема производства q (см. рис. 5.25) и выявить 
уровни объема производства, при которых производство продук­
ции убыточно (0<q<q2) и приносит прибыль (Я2<Я<Я4,)̂  Дает м ак­
симальный убыток (q=q\) и максимальную прибыль (q2 <q<q4 ), 
дает максимальный убыток (q=q\) и максимальную прибыль 
(q=q3), и найти размеры этих убытков или прибыли.
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Очевидно, что перечень подобных примеров применения функций 
в экономической теории и практике можно было бы продолжить 
(о них, в частности, пойдет речь в последующих главах учебника).

О становимся еще на одном важном аспекте использования 
ф ункций в экономике — применении таблиц функций, которые 
позволяю т сделать возможными различные расчеты, исклю чить 
или упростить громоздкие вычисления.

При вычислениях с помощью таблиц мы часто сталкиваемся с си­
туацией, когда аргумент функции задан с большей точностью, чем по­
зволяет таблица В этом случае мы должны прибегнуть к  интерполирова­
нию (интерполяции) — приближенному нахождению неизвестных значе­
ний функций по известным ее значениям в заданных точках.

Наиболее простым является л и ­
нейное интерполирование, при кото­
ром допускается, что приращ ение 
функции пропорционально прира­
щению  аргумента. Если заданное 
значение х  лежит между приведен­
ными в таблице значениями х 0 и 
* i= x 0 +h, которым соответствуют зна­
чения функции у  о =  Д х 0 ) и у х = f ( x {)= 
= / ( х 0 )+Д f  то считают, что (рис.5.26)

Д х ) * / ( х 0) + ^ °  V .  (5.1)
h

Величины —— —  Д/  называются интерполяционными поправ- 
h

коми. Эти величины  вычисляю тся с помощью таблицы или п ри ­
водятся в дополнении к  таблице.

Если по заданным значениям функции необходимо найти 
приближ енное значение аргумента, то необходимо произвести 
обратное интерполирование.

[>Пример 5.4. Ф ункция >’=Дх) задана таблицей:

X 2 2,04 2,08

У 2,42 2,88 3,38

а) Используя линейное интерполирование, н ай ти /(2 ,0 0 8 ).
б) Чему равен х, еслиД х)=3,1?
Р е ш  е н и е: а) И меем х 0 =2; Д х 0 )=2,42; Xj =2,04; Д х х )=2,88; 

h= Х| -  х 0 = 2 ,04 -2 ,0= 0 ,04 ; Д / =  Д  х х ) -Д  х0 )= 2 ,88-2 ,42=0,46.

У, 1Х-Х„ ,
h

( Л

У==/(х)

=f W xУо = /(* )) ’ У1
0 х о х  X \ = X Q + h

Рис. 5.26
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Теперь по интерполяционной формуле (5.1) получим

у = А 2 ,т > 2 ,А 2 +  . 0,46=2,512.
0,04

б) Обратное интерполирование можно провести по той же 
формуле, в которой поменять местами переменные х н у :

ф 0 > )= ф  ( У о )  +  А (Р’ ( 5 -2 )

где х=ср(у) — неизвестное значение обратной функции.
И меем >>0 =2,88; срО>0)= 2 ,04 ; у х =3,38; ср0 0  =2,08; h = y l ~ y 0 =

=3,38-2 ,88= 0 ,50 ; Дф= ф О>,) ~ ф (л ) = 2,08-2 ,04=0,04.
Теперь по интерполяционной формуле (5.2) получим

ОО
Л^Ф(3,1)«2,04+ -0,04=2,0576*2,0 5 8 >

В ряде случаев точность нахождения неизвестных значений с 
помощ ью  линейного интерполирования оказывается недостаточ­
ной и использую тся другие методы интерполирования, например 
квадратичное интерполирование.

5.7. Решение задач
[>Пример 5.5. Н айти область определения функций

а) у= ~Jx -lg(2^r-3); б) у=  log3 sin х  + yj4 -  х 2 ; в) ^=arccos 2х
^ э ш  л  т  Y * t  -  а  ,  и /  у  m u w u d -------------г  .

1 + х
Р е ш е н и е ,  а) Область определения функции X  найдем из 

I х  > 0 .
системы неравенств < откуда х>Ъ/2 или AM 3/2; оо).

[2л: -  3 > 0,

\ sin л: > 0 „
о) Имеем систему < , . Решая первое неравенство, по-

[4 -  л: > 0
лучим 2пп<х<п+2пп; решая второе, найдем х 2 <4, откуда |х |< 2  и 
~2<х<2. С  помощью числовой оси (рис.5.27) находим реш ение 
системы неравенств: 0<х<2, т.е. область определения функции 
*= (0 ; 2].

-2л —п —2 о 2 п 2%

Рис.5.27

138



в) Область определения найдем из неравенства 

2а

2х
1 + х '

< 1, от­

куда —1< <1. Так как при любом х  1 + х 2 >0. то перейдем к
1 + х

равносильному неравенству — 1 —а 2< 2х<1 + х 2 , откуда

2х  > -1 Л' '
Л или 1(1 + А')2 > О,

2 а < 1  +  а / , [ ( 1 - - а ) 2 >  0.

Очевидно, что полученные неравенства справедливы при лю ­
бом х, т.е. область определения функции Х=(—х \  +«:).►

>Пример 5.6. Найти область значений функции:
6х

а) у=  sin x+cos а; б) у= .2

Р е ш  е н и е. а) Преобразуем функцию

у= 42 {-^= sin а  + -!=  cos а  | =  42 \ sin — sin а  + cos — cos а  
Ку[2 V2 ) V 4 4

:л/2 sin! а + , .
v 4)

Так как синус любого утла по абсолютной величине не п ре­

восходит т.е. • f  ''Оsm а + — < 1 , то
lv 4 J

V 2  S1I1| А  +  —

- 4 2  < у  < 42 . Итак, область значений функции У=[ - 4 2 , ^ 2  |.
б) Область значений может быть найдена с помощью п роиз­

водной, рассматриваемой в разделе III. Но можно поступить и н а­
че: найти обратную функцию  А = ср(}>), ее область определения Y, 
которая совпадает с областью значений У данной функции.

Выразим а  через у. Получим обратную функцию  А ^ с р ( у ) ,  за­
данную неявно квадратным уравнением х 2у  - 6 а +>’=(). Очевидно, 
область определения этой функции найдется из условия, чтобы 
дискриминант квадратного уравнения D= Ъг -  4ас был неотрица­
телен, т.е. 62 - 4 у 2 > 0  или у 2 <9, ! >’ | <3 и -3<><3. Итак, область

значений данной функции 7=[~3; 3].>-

“ Пример 5.7. Выяснить четность (нечетность) функций:

2х + 1
а) у ~ х  ctg а  ; б) у = х - ~ -; в) у=  (а  -  I)2 s in 2 х
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Р е ш  е н  и е: а) Д —х)= —х — ctg3 (—х )= —х+ ctg3x .
Так как Д —х)= — Дх), то данная функция нечетная;

2 х +1 2* +1б) Д —х )= (—х) -^—х— - =  х —— -  (после преобразований).

Так как  Д —х)=Дх), то данная функция четная.
в) Д - х )  =  ( -х  -  I)2 sin2( -x )  =  (х + I)2 sin2 х .
Так как Д —х)* Дх) и Д —х)*-Д х), то данная функция общего 

'вида, т.е. ни четная, ни н еч етн ая .^

У П Р А Ж Н Е Н И Я
Н айти область определения функций:

5.8. у= л[х  + lg(2x-5). 5.9. у = — I— - + Ух + 2 .
lg(l -  х)

5.10. y= arcsin (2x2 + х ) .
Н айти область значений функций:

5.11. у= ^Ъ  sin xH-cos х. 5.12. у=
х

Выяснить четность (нечетность) функций:
1 + х 2

5.13. у = х 3 sin х. 5.14. у= х~ х*  + бх3.

5.15. у=  lg — . 5.16. у = х 2 +sin х.
1 -  х

Н айти наименьш ий период функций:

5.17. у= tg x+ctg х. 5.18. ,y=cos2 у .

Построить граф ики функций:
5.19. а) у = - 2 х 2 ; б) у = -2  (х + З)2 ; в) у = -2  (х + З)2 +1; 
г) у= - 2 х 2 + 5х -  2 .

5.20. а) у = - \  б ) у = - - ;  в ) у = - ^ — ; т ) у = —^— ~2;
х  х  х  -1  х  -1

, 4х -  3
Д ) у = ------- г -х - 1
5.21. а) у=  lo g ! (2х); б) у=  log { (~2х); в) у=  log j (3 -  2х)2 .

2 2 2

5.22. a) y=sin 2х; б) у = —3sin 2х; в) .y=sin^x -  y j  ;

г) y=sin r+ co s  х.



Глава 6. ПРЕДЕЛЫ И НЕПРЕРЫВНОСТЬ
6.1. Предел числовой последовательности

Определение. Если по некоторому закону каждому натурально­
му числу п поставлено в соответствие вполне определенное число 
ап , то говорят, что задана числовая последовательность {я„ j :

а\ > аг > ■■■> ап > ■■■ ■

Другими словами, числовая последовательность — это функция 
натурального аргумента: ап =j[n).

Ч исла ах, а7 , ап называю тся 4J'ieH0MU последовательности, 
а число ап — общим или п-м членом данной последовательности.

Примеры  числовых последовательностей1:
2, 4, 6, 8, ..., 2п, ...(м онотонная, неограниченная),
1, 0, 1, 0, ... (не монотонная, ограниченная),

3 2 5 ГО- — — —

’ 2 ’ 3 ’ 4 ’ ■
1 + (6 . 1 )

(не монотонная, ограниченная).
Рассмотрим числовую последовательность (6.1). И зобразим ее 

члены точками числовой оси (рис. 6.1).

а \ Оз а\0а^аь &4 а2
-•----------------------------------- 1---- 1—К ------ • -----И—I— I------------1---- ►
О 2 1  68 1 1097 5 3 аИ

3 5  7"5 9 8 6 4  2

Рис. 6.1

/
М ожно заметить, что члены последовательности ап с ростом п 

как угодно близко приближаю тся к  1. При этом абсолю тная ве­
личина разности \а„ -  1| становится все меньше и меньше. Д ейст­
вительно:

1 Определение монотонной и ограниченной функции рассмотрено в т .5 .
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\ax - l |= l , | f l 2 -1 | = ^ .И з  -1 | = |> |« 4  -1 | = | , . . . , | л я -1 | = ... ,

т.е. с ростом и |в„ -  1| будет меньше любого, сколь угодно малого
положительного числа.

Определение. Число А называется пределом числовой последо­
вательности {а„ }, если для любого, даже сколь угодно малого по ­
ложительного числа е>0, найдется такой номер N  (зависящий от е, 
N =  Ms:)), что для всех членов последовательности с номерами n>N  
верно неравенство

I а„ - А  | <8. (6 .2)

Предел числовой последовательности обозначается lim а„ = А
П

или а„ ->А при п->ос. Последовательность, имеющая предел, н а ­
зывается сходящейся, в противном случае — расходящейся.

И спользуя логические символы: квантор общности V (вместо 
слова “для лю бого”) и квантор сущ ествования 3 (вместо слова 
“найдется” ), символ равносильности <=>, определение предела 
можно записать в виде

(А=  lim а„ )с=>(\/е>0)(ЗЛг=Л г(в))(\/л>Л) | а„—А \ <е.
П—>г-0

Смысл определения предела числовой последовательности со ­
стоит в том, что для достаточно больших п члены последователь­
ности \ап } как угодно мало отличаются от числа А (по абсолю т­
ной величине меньш е, чем на число е, каким бы малым оно ни  
было).

[>Пример 6.1. Доказать, что для последовательности (6.1) 
lim а„ =  1.

> Р  е ш е н  и е. Пусть, например, е=0,1. Тогда неравенство

-1 <е, т.е. — <е выполнется при 
п

I <0,01 при «>100.

I ( (-1 )"Л(6.2) ! аП- 1  ! <0,1 или 1 + -— —
\ п .

л>10. Аналогично для s=0,01 I а

Для любого е>0 неравенство (6.2) I а„— 1 |< е  или — <е выпол-
п

1няется при // ■ -  .
S
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Итак, при лю бом в>0 существует такой номер N=  — (или рав-
е

ный целой части - ) ,  что для всех n > N  (при е=0,1 для «>10, при
s

е=0,01 для п> 100 и  т.д.) выполняется неравенство I а„— 1 |< е , а 

это и означает, что lim =  1 .►
П—>йС

Выясним г е о м е т р и ч е с к и й  с м ы с л  предела число­
вой последовательности.

Располож им члены последовательности щ, а2 , ..., ап , ... , на
числовой прямой. Н еравенство (6.2) \ ап ~ А  |< е  равносильно 
двойному неравенству А—е< а„ < А+е, соответствующему попада­
нию  членов последовательности а„ в е-окрестность точки А 
(рис.6.2).

2е
А —̂ >----  ’""■'Х'4+Б

 1--------1— |— С—|— (_#— |— -------- 1--------------(-------------
а х аъ а 5 а-, ач А а* а ь аА а г ап

Рис.6.2

Итак, число А есть предел числовой последовательности {ап }, если
для любого в>0 найдется номер N, начиная с которого (при n>N) все 
члены последовательности будут заключены в г-окрестности точки А, 
какой бы узкой она ни была. Вне этой s-окрестности может быть лишь 
к о н е ч н о е  ч и с л о  членов данной последовательности.

6.2. Предел функции в бесконечности и в точке
Предел функции в бесконечности. С понятием предела число­

вой последовательности а„ —J{n) тесно связано понятие предела 
ф ункции у — f{x)  в бесконечности. Если в первом случае пере­
менная п, возрастая, принимает лиш ь целые значения, то во вто­
ром случае переменная х, изменяясь, принимает любые значения.

Определение. Число А называется пределом функции y = f ( x )  при 
х, стремящемся к бесконечности, если для любого, даже сколь 
угодно малого положительного числа в>0, найдется такое положи­
тельное число S  >0 (зависящее от  е; 5=5(6)), что для всех х  таких, 
что I х( >S, верно неравенство:
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Этот предел ф ункции обозначается lim f { x )  = А или  Д х )-ь4
*->°0

при Х->ас.
С помощ ью  логических символов определение имеет вид:

А  = lim  / ( х ) )  <=> (\/е  > 0 )(3^  = S(e)  > 0)(Vx:|xl > 5 ) |Д х )—А\  <е.
Х->°° у

Смысл определения остается тем же, что для предела числовой 
последовательности: при  достаточно больших по модулю значе­
ниях х  значения ф ункции Дх) как  угодно мало отличаются от 
числа А  (по абсолю тной величине).

1Д х)-л |< е. (6.3)

Выясним г е о м е т р и ч е с к и й  с м ы с л  предела функ­
ции у=  Да) в бесконечности. Неравенство (6.3) |Д х )-Л |< е  равно­
сильно двойному неравенству Л-е<Дх)< А+г, соответствующему 
расположению части графика в полосе шириной 2е (см. рис. 6.3).

И так, число А есть предел функции у=  Дх) при х-»оо, если для 
любого б >0 найдется такое число <5>0, что для всех х  таких, что 
1 х |>5, соответствующие ординаты графика функции f ix )  будут 
заключены в полосе А —е<у<А+е, какой бы узкой эта полоса ни  
была.

ОПример 6.2. Доказать, что

.. 5х + 1 с l im  =5.
х ->® х

Р е ш е н и е .  Д ля лю бого е>0 неравенство (6.3)

1 ^  I К  1или г-г <е выполняется при I х  | > — .
X е

5х +1
- 5 < Е
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Итак, для лю бого е>0 существует такое число S = — >0, что для
е

всех х, таких, что I х | >5, будет верно неравенство 1Дх)—5 | <в, где 
5х  +1А х ) -  ; а это и  означает, что lim  / ( х ) = 5 > -

X Х-»оо
З а м е ч а н и е .  Приведенное выше определение предела при 

х—ух  предполагает неограниченное возрастание независимой пере­
менной х  по абсолютной величине. В то же время можно сформули­
ровать понятие предела при стремлении х  к  бесконечности о п ­
р е д е л е н н о г о  з н а к а ,  т.е. при х  + »  и при х  -»  —оо. В 
первом случае основное неравенство (6.3) должно выполняться для 
всех х  таких, что х > S, а во втором — для всех х таких, что х  < —S.

Предел функция в точке. Пусть ф ункция y=fix) задана в  н еко­
торой окрестности точки х 0 , кроме, быть может, самой точки х 0 .

Определение. Число А называется пределом функции Д х) при х,
стремящемся к  хо (или в точке хо ), если для любого, даже сколь
угодно малого положительного числа е>0, найдется такое положи­
тельное число 8>0 (зависящее от е, 8=5(е)), что для всех х, не р а в­
ных х0 и удовлетворяющих условию

I х  — х 0 | <5, (6.4)
выполняется неравенство

\fix)—A | < 6. (6*5)
Этот предел функции обозначается Lim Д х ) =  А или Дх)-»/4

при  х-> х 0 .
С  помощ ью  логических символов определение имеет вид:

( А = lim  / ( х ) |  о  (Vs > 0)(Э8 = 5(e) > 0)(Vx * х 0: |х -  х0| < 5 )
V х - > х 0 J

\f ix )-A \< z .
Смысл определения предела ф ункции Д х) в точке х0 состоит в 

том, что для всех значений х, достаточно близких к  х0 , значения 
ф ункции Д х) как угодно мало отличаю тся от числа А (по абсо­
лю тной величине).

Рассмотрим г е о м е т р и ч е с к и й  с м ы с л  предела 
ф ункции  в точке. К ак отмечалось выш е, неравенство I Д х)—̂ 41 <е 
равносильно двойному неравенству A~b<j(x)<A+z, соответствую­
щему расположению  части граф ика в полосе ш ириной >2г (см. 
рис.6.4.). Аналогично неравенство I х~  х 0 |< 5  равносильно двой­
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ному неравенству х 0 —5<х<х0+5, соответствующему попаданию
точек х  в 5-окрестность точки х0 .

Число А есть предел функции fix )  при х -» х 0 , если для любого е>0
найдется такая 6-окрестность точки х 0 , что для всех х  ф х {) из
этой окрестности соответствующие ординаты графика функции 
f ix )  будут заключены в полосе A~s<y<A+s, какой бы узкой эта 
полоса ни была.

Е>Пример 6.3. Доказать, что lim(2x + 3) =5.
*->1

Р е ш е н и е .  Пусть е=0,1. Тогда неравенство (6.5) I (2х+ 3)— 
—5 1 <0,1 будет выполняться при I х—1 1 <0,05. Аналогично при 
е= 0 ,01 то же неравенство (6.5) будет верно при |х~1 | <0,005.

Д ля любого е>0 неравенство (6.5) I (2х+3)—5 1 <е будет вы пол-
I 1 I е няться при I дг—1 I < — •

g
И так, при лю бом е>0 существует такое число б= —(для е=0,1

5=0,05; для е=0,01 5=0,005 и т.д.), что для всех х*1 и удовлетво­
ряю щ их условию I jc—1 1 <5 верно неравенство |Д х)—5 |< е , где 
f ix )= 2 x f 3; а это и означает, что lim f i x )  = 5 .^

X->1
З а м е ч а н и е  1. Определение предела не требует сущ ество­

вания ф ункции в самой точке х 0 , ибо рассматривает значения 
х * х 0 в некоторой окрестности точки х 0 . Другими словами, рас­
сматривая lim f i x ) , мы предполагаем, что я: стремится к  х 0 , но

не достигает значения х 0 . Поэтому наличие или отсутствие п р е­
дела при  х -л  х 0 определяется поведением ф ункции в окрестности 
точки х 0 , но  не связано со значением ф ункции (или его отсутст­
вием) в самой точке х 0 .

З а м е ч а н и е  2. Если при стремлении х к х () переменная х  
принимает лиш ь значения, меньшие х0 , или наоборот, лиш ь значе­
ния, большие х 0 , и при этом функция f ix)  стремится к  некоторому 
числу А, то говорят об односторонних пределах функции Дх) соответ­
ственно слева lim f i x )  и справа lim / ( х ) =  А. Очевидно, что

x->xo-0 дг->хо+0
определение этих пределов будет аналогично рассмотренному выше
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при х -» х 0 , если вместо значений х, удовлетворяющих условию (6.4), 
при которых верно неравенство (6.5), рассматривать значения х  та­
кие, что х 0 — 8<х< х 0 при х -» х 0 —0 (слева), или значения х такие, что 
х0 <х< х0 +5 при х-> х 0 +0 (справа).

Разумеется, если lim / ( х ) =  lim / ( х )  =Л, то lim f ( x ) = A .
л: — 0  x ~ > x q + 0  x - > xq

6.3. Бесконечно малые величины
Определение. Функция а(х) называется бесконечно малой вели­

чиной при х ^ у х о , или при jc—>оо, если ее предел равен нулю:
lim а (х ) =0.

Х-*Х0(оо)
Зная определение предела функции при х ->х0 и при х-*», мож­

но дать развернутое определение бесконечно малой величины:
Функция а(х) называется бесконечно малой величиной при

х-> xq , если для любого, даже сколь угодно малого положительного
числа еХ), найдется такое положительное число 6Х) (зависящее от 
s, 8=8(sJ), что для всех х, не равны хх{) и удовлетворяющих условию

I х— х0! <8, (6 .6)
будет верно неравенство

I а(х) I <в. (6 .7)
С помощ ью  логических символов приведем это определение к 

виду:
/
а ( х )  -  бесконечно

малая при х  х0 

при lim а (х )  = 0

<=> (V s> 0)(38= 8(e )> 0 )(V ;c*x0 : jx -  x 0j <5)

I а(х) | <е.
х-*х0

Аналогично можно сформулировать определение бесконечно 
малой при х->оо, если основное неравенство (6 .7 ) рассматривать 
для достаточно больших х. П риводим его в краткой форме:

сх(х) -  бесконечно  
м алая при х

при lim а (х ) = О
*->*о

<=> (\/е>0)(3^9=5 (s)>0)(Vx: ! х | >S) 
I а(х) | <е.
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Н апример, ф ункции y=cos х  при х-> — и у =  при х-*ю
2 2х - 7

есть бесконечно малые величины, ибо их пределы равны нулю.
Не следует путать бесконечно малую переменную величину а(х) с 

очень малым, но постоянным числом е>0, ибо по мере приближения 
значений х к х0 (при х—» х ()) или по мере увеличения по модулю 
значений х  (при х-юо) функция а(х) в соответствии с (6.7) окажется 
меньше этого числа е (по абсолютной величине).

Связь бесконечно малых величин с пределами функций. Теоре­
ма. Если функция f ix )  имеет при х—> л'0 (х->оо) предел, равный А, то 
ее можно представить в виде суммы этого числа А и бесконечно 
малой a(.v) при х-> x t) (х-»оо)

fix)= A+ a(x). (6.8)

□  Докажем теорему для случая х -* х 0 К П о условию lim f ( x )  =
X- >Х0

—А. Это означает, что для любого е>0 существует такое число 
5>(), что для всех х  *  х 0 и  удовлетворяющих условию I х -  х0 | <6
будет верно неравенство 1Дх)—А \ <е, или, обозначив ос(х)= Д х)—А, 
справедливо неравенство I а(х) | <е. Это и означает, что а(х) есть
бесконечно малая при х -» х 0 .■

Верна и обратная теорема:
Теорема. Если функцию f i x )  можно представить как сумму числа 

А и бесконечно малой а(х) при х—>х0 (х-*оо), то число А есть предел 
этой функции при х-> х 0 (х-»ос), т.е. lim f ( x ) = A .

X->X0(cr)

□ По условию fix)= A + a(x). Пусть, например, х —> х (|.
Так как ф ункция а(х)=Д х)—А  есть бесконечно малая при 

х -> х 0 , то для лю бого числа s>0 существует такое число й>0, что
для всех х  ^ х 0 и удовлетворяющих условию |х — х0 |<8 верно н е­
равенство I сх(х) | - i f i x ) ~ A  | <£.

1 Здесь и далее доказательство основных свойств бесконечно малых и бесконечно боль­
ших величин, пределов функций проводим для случая х  —> .% рассматривая поведение
функции в некоторой окрестности точки лф, т.е. для х  е -  S. х {) + <i), где Я>0. Дока­

зательство тех же утверждений для случая „V ->°с полностью идентично, если рассматри­
вать повеление функции при достаточно больших (по модулю) значениях х  т.е. при | х |

Л'(гдс S >  0) или при х e (-o c ;- .S ’) u ( ‘S'; + '«).
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\
Это и означает, что lim f ( x ) = A . о^Ш

х ^ х 0
Свойства бесконечно малых величин:
1. Алгебраическая сумма конечного числа бесконечно малых вели­

чин есть величина бесконечно малая.
2. Произведение бесконечно малой величины на ограниченную 

функцию  (в том числе на постоянную , на другую бесконечно м а­
лую) есть величина бесконечно малая.

3. Частное от деления бесконечно малой величины на функцию, 
предел которой отличен от нуля, есть величина бесконечно малая.

□ В качестве примера докажем свойство 1 для двух бесконечно 
малых а(л) и р(х) при х -> х 0 . Покажем, что ф ункция (а(х)+р(х)) 
также является бесконечно малой при х-> дг0 .

По условию а(х) и р(х) есть бесконечно малые при х -» х 0 .
, е

Это означает, что для любого е = — >0 найдутся такие числа
2

§1 >0, >0, что для всех х * х 0 и удовлетворяющих условиям

|х — x 0 l<5i (6 .9)
и

I jc— jc0 I <82 (6.10)

выполняю тся соответственно неравенства

I а(х) ] < — ( 6 . И )
2

и

I (3(х) | < — . (6.12)
2

Если взять в качестве числа б минимальное из чисел 8[ и 52 ,

т.е. 5=m in{51,5 2} , то неравенству I х—х 0 |<5 будут удовлетворять

реш ения обоих неравенств (6.9) и (6.10), а следовательно, одно­
временно будут верны неравенства (6.11) и (6.12). Складывая 
почленно неравенства (6.11) и (6.12), получим, что

I а(х) I +1 (3(х) | < |  1  =е.

Используя свойство абсолютных величин (см. §5.2), т.е. 
|а(х)+р(х) I < I а(х) I +1 р(х) | , придем к  более сильному неравенству

I а(х)+р(х) | < е. (6.13)
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Итак, для лю бого s>0 существует такое 8>0, что для всех х * х 0 
и удовлетворяющих условию |х —х 0 ! <8 верно неравенство (6.13). 
А это и означает, что ф ункция а(х)+р(х) есть величина бесконеч­
но малая.И

Пусть, например, а(х )-'5х—10, p (x )-lg (x M ) есть бесконечно
малые величины при х-»2 (ибо lira a ( i ) = 0 ,  lim p (x )= 0 ), функ-

х —>2 х ~ > 2 ,

ция /(x)=sin  х  есть ф ункция, ограниченная при х->2 (точнее 
ф ункция f ix )— sin х ограничена в любом промежутке, а не только 
в окрестности точки х=2, ибо всегда I sin х |<1). А функция 
ф (х )= х 2 - 5  при х-»2 имеет предел (~1), не равный нулю. Тогда 
ф ункции сх(х)+ р(х)=5д—10±lg(x—1) (по свойству 1), сх(х)Дх)=(5л- 
— 10)sin х, 6a(x)=30j*r~60, a (x )P (x )= (5 x -1 0 )lg (x -l) (по свойству 2), 
а (х ) 5х -  10 „
 =  —г (по свойству 3) есть величины бесконечно малые
Ф(х) х -  5

при х-»2.
3 а м е ч а н и е. Свойство 3 не рассматривает предел отнош е­

ния двух бесконечно малых а(х) и р(х) из-за его неопределенно­

сти. Этот предел lim может быть равен: нулю; числу
Л-->Х0(=с) Р(Х)

Аф0\ символу эс. В этом случае бесконечно малая а(х) называется 
соответственно: бесконечно малой более высокого порядка мало­
сти, чем р(х); одного порядка малости; более низкого порядка мало-

а ( )
сти, чем р(х). В частности, если lim ——  =1, то бесконечно

(К * )
малые а(х) и Р(х) при х -» х 0(х > ос)называются ж вивешнтными: 
в этом случае пиш ут а(х)«р(х). Тот факт, что а(х) есть бесконечно 
малая более высокого порядка, записывается так:

а(х)=0(Р(х)) при х—* х 0 (х->х) (читается “а(х) есть о малое от 
Р(х)” при Х->Х0 (Х->эс).

6.4. Бесконечно большие величины
Определение. Функция f ix )  называется бесконечно большой ве­

личиной при х—> Хо, если для любого, даже сколь угодно большого 
положительного числа Л/>(), найдется такое положительное число 
8>0 (зависящее от М, 8=8(Л/)), что для всех х, не равных х0 и 
удовлетворяющих условию \ x ~ x (J | <8, будет верно неравенство
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IЛ*) I > M-
Запись того, что ф ункция Дх) бесконечно большая при х -> х 0 ,

следующая: lim  / (х) =оо или Дх)->оо при х-> х0 .
х-^х0

Это же определение можно записать в виде:

/ ( х ) -  бесконечно 

больш ая при х -> х 0

при lim  /(х )= с

<=> (VA/>0)(35=S(A/)>0)(Vx/ x 0: |x -  x 0| <5) 

I Дх) | > M.

Если в приведенном определении f [x)>M  (или f [x)<—M),  то 
пиш ут lim / ( х )  =+00 (или lim / ( х )  = -<х>).

X—̂ -X X—>х{}

Аналогично можно было определить понятие бесконечно боль­
шой величины при х—>оо. Приведем его в краткой форме:
( . , '\

о  ( у м  >Q)(3S=S (Af)>0)(Vx: I х I >S)
I Дх) | > M.

/ ( x ) -  бесконечно 

больш ая при x —>oo 

при lim  / ( х )  = оо

Так, например, функции у=  tg х  при < У= ^ 5 х  -  7 при

х->оо являю тся бесконечно большими.
Не следует путать бесконечно большую переменную величину 

Дх) с очень больш им, но постоянным числом А/>0, ибо по мере 
приближ ения значений х  к х0 (при х -> х 0 ) или по мере увеличе­
ния по модулю х (при х—>со) в соответствии с (6.14) функция Дх) 
превзойдет это число М  (по абсолютной величине).

З а м е ч а н и е .  В § 5.3 было дано определение ограниченной 
ф ункции на некотором промежутке X. Следует иметь в виду, что 
бесконечно большая величина есть функция неограниченная при 
х —>х 0 (х->ос). В то же время неограниченная функция не обязательно 
бесконечно большая. Например, функция у= х  sin х  является неог­
раниченной (ее значения могут быть как угодно больш ими), но 
не бесконечно большой при х->ос, так как с ростом х  ф ункция 
все время колеблется, переходя от положительных к отрицатель­
ным значениям (и наоборот) и обращаясь в нуль при сколь угод­
но больших значениях х.

Отметим свойства бесконечно больших величин:
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1. Произведение бесконечно большой величины на функцию, пре­
дел которой отличен от нуля, есть величина бесконечно большая.

2. Сумма бесконечно большой величины и ограниченной функции 
есть величина бесконечно большая.

3. Частное от деления бесконечно большой величины на функцию, 
имеющую предел, есть величина бесконечно большая.

Например, если ф ункция fix )=  tg x  есть бесконечно большая
71величина при х-> — (ибо lim /(х )= о о ), ф ункция ср(х)=4л^3 при
2 Я

71
имеет предел (2л—3), отличный от нуля, а ф ункция у (х )=

=sin х  — ограниченная ф ункция, то функции /(х)ф(х)=(4х—3) tg x
/ ( * )(по свойству 1), fix)+\\i(x)= tg x+sin х (по свойству 2), ------- =
фО )

tg x
=  (по свойству 3) являю тся бесконечно большими величи-

4 х -3
71нами при х-> — .

Связь между бесконечно малыми и бесконечно большими вели­
чинами. Теорема. Если функция ос(х) есть бесконечно малая величи­

на при х -» х 0 (х-»оо), то функция f ix )  =-------- является бесконечно
а(х)

большой при х -» х 0 (х->оо). И  обратно, если функция f ix )  бесконечно

большая при х -> х 0 (х-»оо), то функция f ix )= ------- есть величина бес-
а (х )

конечно малая при х -» х 0 (х-»оо).

□  Докажем первое утверждение для случая х-> х0 , т.е. если а(х) —

бесконечно малая, то Д х )= —-— есть бесконечно большая при х-> хп .
а(х )

По условию а(х) — бесконечно малая при х—> х0 , следовательно, 
для любого е>0 найдется такое 8>0, что для всех х*х0 и удовлетво­
ряющих условию |х ~ х 0| <5 будет верно неравенство |а (х ) |< е . П о­
следнее неравенство (в предположении, что в некоторой окрестно­
сти точки х0 при х * х 0 а(х)*0) равносильно следующему
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> — или I Дх) | >М, где Дх)= —-—  и М=  — . А это и означает, что 
к ос(х) е

при х-> х0 функция Дх) является бесконечно большой. 

Доказательство второго утверждения аналоги чно.И

Например, если функции y^cos х  при х-> — и у = — -—  при х->оо
2 2х -  7

есть величины бесконечно малые, то функции у —  при х-> — ,
cos х 2

2х -  7
у = — -—  при х—>оо есть бесконечно величины большие. И наоборот,

если функции у= tg х  при х -> ^  , у —У5х -  7 при х->оо есть величины

бесконечно большие, то функции у  = ——  =ctg х  при х-> — и
tg x  2

у=  . =  при х->оо есть величины бесконечно малые.
V5x -  7

6.5 Основные теоремы о пределах. 
Признаки существования предела

Пусть Д х) и ф(х) — функции, для которых существуют преде­
лы при х -> х 0 (или при х—>х); lim / ( х )  —A, lim ф(х) =В.

х -+ х 0 (а>) Л :~ > Х (|(оо)

Сформулируем основные теоремы о пределах.
1. Функция не может иметь более одного предела.

□  П редположим противное, т.е. что функция Дх) имеет два
предела А и D, А фБ .  Тогда на основании теоремы о связи беско­
нечно малых величин с пределами функций в соответствии с 
формулой (6.8) Дх)=/4+а(х), Д х)= /)+ р(х), где а(х) и р(х) — беско­
нечно малые при х -> х0 (х->оо). Вычитая почленно эти равенства, 
получим 0 = /1 -/)+ (а (х )-р (х )) , откуда а (х )—р(х)= /)-Л . Это равен­
ство невозможно, так как на основании свойства 1 бесконечно 
малых а (х )—р(х) есть величина бесконечно малая. Следовательно,
предположение о сущ ествовании второго предела неверно.И

2. Предел алгебраической суммы конечного числа функций равен 
такой же сумме пределов этих функций, т.е.

lim [ Д х )  +  ф (х )1  —А +В.
Л' —

1
а (х )
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3. Предел произведения конечного числа функций равен произве­
дению пределов этих функций, т.е.

lira Г/(х)ф(х)1 =АВ.

В частности, постоянный множитель можно выносить за знак 
предела, т.е.

lim (cf{x))—cA.
ЛГ-»*()(»)

4. Предел частного двух функций равен частному пределов этих 
функций (при условии, что предел делителя не равен нулю), т.е.

lim 4 ^  = 4 X->Xo(oc) ф(Х) В
5. Если lim f ( u )  =А, lim cp(x) = и$ , то предел сложной функции

"-►«о
lim У[ф(лг)] = А.
х -> х 0

6. Если в некоторой окрестности точки х 0 (т а  при достаточно 
больших х) fix )< ф(х), то

lim / ( х )  < lim ф (х ).
ДГ~>ДС0 ( л )  X  > х 0 (св)

□ Докажем в качестве примера теорему 2. По условию 
lim / ( х )  —А и lim ф(х)=В,  следовательно, на основании

Х - > Х $ ( а у )  ДГ -» ДГ 0 ( о с )

теоремы о связи бесконечно малых величин с пределами ф ун к­
ций в соответствии с (6.8) Д х )= ^+ а(х ), ф(х)=5+Р(х), где а(х) и 
Р(х) — бесконечно малые величины при х -» х 0 (х-кж). П еремно­
жая почленно оба равенства, получим

f{x)<$(x)=AB+ Ва(х)  + Лр(х) + а (х )р (х ).
•/(*)

Н а основании свойств бесконечно малых последние три сла­
гаемые представляют величину, бесконечно малую у(х) при х- > х0 
(х->оо). Итак, ф ункция Дх)ф(х) представляет сумму постоянного 
числа АВ  и бесконечно малой у(х). На основании обратной тео­
ремы о связи бесконечно малых с пределами функций это озна­
чает, что lim f ( x )  <р{х)=АВ.Ш

Х - - > Х 0 О г )

З а м е ч а н и е .  В теоремах о пределах предполагается сущ е­
ствование пределов функций /(х) и ф(х), из чего следуют заклю ­
чения о значениях пределов суммы, произведения или частного
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функций. Но необходимо учитывать, что из сущ ествования п ре­
дела суммы, произведения или частного ф ункций еще не следует, 
что существуют пределы самих слагаемых, сомножителей или 
делимого и делителя.

Н апример, lim (tg xc tg  х)=  lim 1 =1, но отсюда еще не следу-
П П
2 2

ет сущ ествование пределов lim tg х и lim  ctg х. И действитель-
п л

х -> — х->  —
2 2

но, в данном случае первого из этих пределов не существует.
Признаки существования предела. Д ля выяснения вопроса о 

сущ ествовании предела использовать определения предела, сф ор­
мулированные выш е, не всегда удобно. Проще это сделать с п о ­
мощью п р и з н а к о в  сущ ествования предела.

Теорема 1. Если числовая последовательность } монотонна и

ограниченна, то она имеет предел.
Возможны два случая: а) последовательность неубывающая и 

ограниченная сверху а{ < а2 <...< ап <...< М  (см. рис. 6.5а); б) 
последовательность невозрастающая и ограниченная снизу 
О] > а-, > ...>  ап >...> М  (см. рис. 6.56).

Рис. 6.5. иллюстрирует наличие предела А числовой последо­
вательности.

А а
 1 1-------- 1— | »  « « |— 1--------1---------------1— ►

я , а 2 Д3 аь м  ап М  а3 а 2 а , ап

а) б)
Рис.6.5

Теорема 2. Если в некоторой окрестности точки х 0 (или при 
достаточно больших значениях х) функция fix )  заключена между 
двумя функциями ср(х) и \|/(х). имеющими одинаковый предел А при 
х -» х 0 (или х  > /  ), то функция f ix )  имеет тот же предел А.

□  Пусть при х -> х 0 lim ф(х)=Л , lim \\i(x)=A.
X— X—

Это означает, что для любого е>0 найдется такое число 5>0, 
что для всех х * х 0 и удовлетворяющих условию ! хг- х(| j <ъ будут 
верны одновременно неравенства

! ф(х)—А  | <с, I \\t(x)-A  | <к
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или

Так как по условию ф ункция Дх) заключена между двумя 
ф ункциями, т.е.

ср(х)<Дх)<у(х), 
то из неравенств (6.14) следует, что As< J[x)< A+ e, т.е.

I А х ) - А  |<е.
А это и означает, что lim f ( x )  =А.я  

х->х0

А —Е<(р(х)<А~Ы, А~е<ц)(х)<А+е. (6.14)

6.6. Замечательные пределы.
Задача о непрерывном начислении процентов

Первым замечательным пределом называется
s in xlim

дг->0 X
= 1. (6.15)

Рис. 6.6

□  Для доказательства формулы
(6.15) рассмотрим круг радиуса R  с 
центром в точке О. Пусть ОБ — под­
виж ный радиус, образующий угол х

71
(0<х< — ) с осью Ох (см. рис. 6.6.). Из

геометрических соображений следует, 
что площадь треугольника АО  В  м ень­
ше площади сектора АОВ, которая в 
свою очередь меньше площади п рям о­
угольного треугольника АО С, т.е.

.УM O B  ^  S сект. АОВ '  *-’ да о с  •< s А

Так как S = ^ R R s i n x  = i R2 s in x  , S еект, A0B = \ r 2x  .

1 1 1
S a a o c  AO  ■ A C  = — AO  ■ (AO  tg x ) = — R 4 g  x  , то имеем

2 2 2
1 2 1 1— R  sin x  < — R 'x  < — R h g  x , откуда, разделив части двойного не-

1 ") v 1
равенства на — R  sin х  > 0 , получим 1 < <

sin X COS X
или

. s in x  cos X < --------< 1.
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Так как ф ункции cos х  и ------- четные, то полученные нера-
х

венства справедливы и при -  у  < х  < 0. Переходя к  пределу при 

х-ИЗ, получим lim 1 = 1, lim cos х  =1 (обоснование этого факта
х-»0 *->0

см. в примере 6.7). Н а основании признака сущ ествования п р е­

дела промежуточной функции lim Sin * =1.И
x->0 X

ОП ример 6.4. Найти:

, .. sin 6х  . 1 -  cos хa) l im -------- ; б) l im --г— .
*->о 4 х  -*->0 х

п  . . .  sin 6х 3 sin 6 x  3 , 3
Р е ш е н и е: a) l im ---------- =  — lim — ----- =  — -1 = —;

*->о 4х  2 х-»о 6х 2 2

S in  X

б) lim
1 -  cos х 2 sin

*->0
: lim -

х->0

(
sin

X
v 2 j

= ± .1 2 = I >  
2 2

второй замечательный предел. Рассмотрим числовую последова-

(  О "тельность ап =\ \ + —j  . Если вычислять значения членов после­

довательности, то получим = 2,0, а2 = 2,25 , а3 = 2,37 , а4 = 2,441, 
а5 = 2,488, ..., и можно предположить, что последовательность 

{ап}является возрастающей. Действительно, воспользуемся ф ор­

мулой бинома Н ью тона1 (см. § 14.2):

а п = 

или

'  I' 
1+ - = 1 + И- — +

п

I п (п —1) I

ап -  2+  1 — +.. .+
1-2 V п)  1-2...п

1-2 и 

1 п
1 - -

п)
А

1—
п)

\-2...п 

п - 1
1 - -

п
(6 .16)

С ростом п увеличиваются как  число положительных слагае­
мых (их в формуле п + 1), так и величина каждого слагаемого, т.е. 
ау < а 2 <  . . . < а п < . . .

1 Стоящее в знаменателе общего члена произведение и первых чисел натурального ряда 
называется факториалом (обозначается л!, читается “эн факториал”): л!=1-2-3...(и-1)л.
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Последовательность {ап } является ограниченной. Это следует из 

(6.16), если дать оценку а„ :
1 1  1 1  

а„ < 2  + ■+...+ + ...< 2 +  +...+ z~~r,
” 1-2 1-2 . . .п 2 2

(полученную после освобождения от скобок, каждая из которых 
меньш е 1, и замены каждой из дробей большей дробью с двойка­
ми в знаменателе:

1 1  1 1

1-2-3 < 22 ’ 1-2...я  < 2п~1 ^
1 1 сСумма представляет сумму л л_!членов геометриче-
2 2

1 1
зогрессии с первым членом а =

Имеем

I

a(qn~l -  1) _ 2

ской прогрессии с первым членом а = — и знаменателем q = —.

Т - ‘)=  V = _ !  j _  < j
Я -  1 1  _ j 2" 1

2

1

Так как S n_x < 1, то а„ = 1̂ + —j  <2+1=3.

Согласно признаку сущ ествования предела монотонная и ог-

С1 П "раниченная последовательность а„ = 1̂ + —j  имеет предел.

Определение. Числом е (вторым замечательным пределом)
называется предел числовой последовательности

Г ”e =  lim  1 + -  . (6.17)
W —>сО \  n j

Выше мы фактически установили, что 2<е<3. Более точно 
е»2,718281..., т.е. число е — иррациональное число.

Можно показал», что функция ,у=^1 + —j  при -юо и при —оо

(где х  в отличие от натурального числа п “пробегает” все значения чи­
словой оси — не только целые) имеет предел, равный числу е.

е =  lim f l  + —1 • (6.18)
X-»ooV xJ
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Полагая у = — , найдем х=  — ; при оо >'-> 0 . 
х у

В результате получается еще одна запись числа е:
1

е= lim (l + у )у .
V-->0

(6.19)

Число с (число Эйлера, неперово число) играет весьма важную 
роль в математическом анализе. График функции у = е х (см. рис. 
7.8) получил название экспоненты. Ш ироко используются лога­
рифмы по основанию  е , называемые натуральными. Натуральные 
логарифмы обозначаются символом In: log(, х  = In х.

[ Пример 6.5. Найти:
, Зх 2

; б) lim(l -  3y) v .
v-»0

a) lim 1 +
* - > < Л  x j

Р е ш е н и е .

a) l im 11 + —j
Зх

: l im Д У!X J

■Зх

6) lim (l -  З у )1 =  lim
v̂ >0 v->0

(1 -  Ъу) 3>'

-3v-

=  lim
X

lim
v->0

A) !xJ

(1 -  3y)

J 5  .

= r - 6 >

К числу e приводят решения многих прикладных задач статисти­
ки, физики, биологии, химии и др., анализ таких процессов, как 
рост народонаселения, распад радия, размножение бактерий и т.п.

Рассмотрим задачу о непрерывном начислении процентов. П ер­
воначальный вклад в банк составил (?0 денежных единиц. Банк 
выплачивает ежегодно р% годовых. Необходимо найти размер 
вклада Qt через t лет.

При использовании простых процентов размер вклада ежегод­

но будет увеличиваться на одну и ту же величину ——■Q o ,
100

, С?2 =1 \- + ~ \  Qt =£?о \ + ~ ~  • На практике
iooJ 2 V 100̂  V НХУт.е.01 =О 0 1 +

значительно чаще применяю тся сложные проценты. В этом случае 
размер вклада ежегодно будет увеличиваться в одно и то же число

(1+ ) раз, т.е.
100
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a  =  G b(1+ To o h 6 l  = a ( l + w o ) 2 ....... 100 ) '.

Если начислять проценты по вкладам не один раз в году, а « 
раз, то при том же ежегодном приросте р%  процент начисления

за —-ю часть года составит — %, а размер вклада за t лет при nt  
п п

начислениях составит

(6.20)

Будем полагать, что проценты по вкладу начисляю тся каждое 
полугодие (« =2), ежеквартально («=4), ежемесячно («=12), ка­
ждый день (лг —365), каждый час («=8760) и т.д., непрерывно 
(«->оо). Тогда размер вклада за / лет составит

Q, =  lim Оо 1 + 100«
(?„ lim

100/1

или с учетом (6.18) при х=
1 00/7

Q, =  С?0 <?100 (6.21)
Ф ормула (6.21) выражает показательный (экспоненциальный) за­

кон роста (при р>0) или убывания (при /КО). Она может быть 
использована при непрерывном начислении процентов.

Чтобы почувствовать результаты расчетов в зависимости от 
способа начисления процентов, в таблице в качестве примера 
приводятся размеры вкладов Qt , вычисленные при Q{] =  1 ден.ед.,
/7=5 %, /=20 лет.

Формула
простых
процен­

тов

Формула сложных процентов
Формула 

непрерывного 
начисления 
ПрОЦеНТО !5п= I п=2 /7=4 /7 = 12 /7=365

Размер
вклада,
ден.ед.

2,0000 2,6355 2,6851 2,7015 2,7126 2,7181 2.7182

Как видим, погрешность вычисления суммы вклада по форму­
ле (6.21) непрерывного начисления процентов по сравнению  с
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формулой (6.20) сложных процентов, начисляемых ежегодно 
(и=1), при одной и той же процентной ставке (р=5%) оказалась 
незначительной (около 2,5%).

З а м е ч а н и е .  Хотя в практических финансово-кредитных 
операциях непреры вное начисление процентов применяется 
крайне редко, оно оказывается весьма эффективным при анализе 
сложных ф инансовы х проблем, в частности, при обосновании и 
выборе инвестиционны х решений.

6.7. Непрерывность функции
П онятие непрерывности ф ункции, так же как и понятие пре­

дела, является одним из основных понятий математического ана­
лиза.

Определение 1. Функция fix) называется непрерывной в точке
х 0 , если она удовлетворяет следующим трем условиям: 1) определе­
на в точке х 0 (т.е. существует Д х , , )); 2) имеет конечный предел 
функции при х  >л0 ; 3) этот предел равен значению функции в точ­
ке х0 , т.е.

lim f ( x )  = f ( x 0) . (6.22)
Л- >л-(1

!>Пример 6.6. Исследовать непрерывность в точке л—0 задан­
ных ф ункций:

1 f А' + 1 При Х >0. ( V2 При X * 0.
а) у  = -  ; б) у  =  4 в) у  = < г) у  = л"

х [х -  1 при х  < 0; 1 при х - 0:

г)
Рис. 6.7

Р е ш с н и с. а) В точке х =  0 функция у  =/(х) (см. рис. 6.7а) 
не является непреры вной, так как нарушено первое условие н е­
прерывности — сущ ествование / (0 ) .
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б) В точке х  =  0 ф ункция у  = Дх) (см. рис. 6.76) не является 
непреры вной — первое условие непрерывности выполнено, ДО) 
существует (ДО) =  1), но нарушено второе условие — отсутствует 
lim / ( х )  (точнее говоря, здесь существуют односторонние преде-
л:~>0
лы ф ункции слева lim / ( х )  = —1 и справа lim / ( х )  =1, но обще- 

х->0- *-><)■*
го предела при х-*0 не существует).

в) В точке х  =  0 ф ункция у  =  Дх) (см. рис. 6.7в) не является 
непрерывной — первые два условия непрерывности выполнены 
— существуют ДО) (ДО) =1) и конечный предел lim / ( х ) = 0 ,  но

Л'->0
наруш ено третье основное условие: lim /(х)^Д О ).

.V ->0
г) В точке х  =  0 функция у  = Дх) (см. рис. 6.7г) непрерывна, 

так как выполнены  все три условия непрерывности — lim f ( x )  =
X -><)

= /(0 )= 0 >
Определение непрерывности функции (6.22) в точкех0 может 

быть записано и так:
lim / ( х )  =  /  (lim х ) , (6.23)

*->.*0 * >*0 
т.е. для непрерывной функции возможна перестановка символов 
предела и функции.

Очевидно, что непрерывность функции в данной точке вы ра­
жается непрерывностью  ее графика при прохождении данной 
точки (без отрыва карандаша от листа бумаги).

Сформулируем еще одно, второе определение непрерывности.
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Дадим аргументу х0 приращ ение Дх Тогда ф ункция у=Дх) п о ­
лучит приращ ение Ду, определяемое как разность наращ енного и 
исходного значения функции: Ау= Д х0 + Д х)-Д  х 0 ) (см .рис.6.8). 

Определение 2. Функция у  =  Дх) называется непрерывной в
точке х0 , если она определена в iriiou точке и бесконечно малому 
приращению аргумента соответствует бесконечно малое прираще­
ние функции:

lim Л у=  0. (6.24)
Л*—>0

□ Убедимся в равносильности двух приведенных определений
непреры вности. Из первого определения согласно (6.22) при 
х = х 0+Дх следует lim / ( л 0 + Ах) = / ( х 0) , так как стремление

.\jr-»0
х -» х 0 равносильно условию Дх->0.

На основании теоремы о связи бесконечно малых величин с 
пределами ф ункций можно записать / ( xq + Ах) = / (x q )  + сх(Дх), 
где а(Дх) = / (x q  + Дх) -  / (x q )  =Ау есть бесконечно малая при

Дх->0, т.е. lim :\у = 0 .■
Лдс->0

Точка х0 называется точкой разрыва функции Дх), если эта 
ф ункция в данной точке не является непрерывной. Различают 
точки разрыва: первого рода (когда существуют конечные одно­
сторонние пределы ф ункции слева и справа при х -» х 0 , не рав­
ные друг другу) и второго рода (когда хотя бы один из односто­
ронних пределов слева или справа равен бесконечности или не 
существует). Так, точка х 0=  0 на рис. 6.76 — точка разрыва пер­
вого рода, а на рис.6.7а — точка разрыва второго рода. К  точкам 
разрыва первого рода относятся также точки устранимого разры­
ва, когда предел функции при х -» х 0 существует, но не равен 
значению  ф ункции в этой точке. Так, точка х0 =  0 на рис. 6.7в
является точкой устранимого разрыва.

Свойства функций, непрерывных в точке:
1. Если функции Д х) и  ф ( х )  непрерывны в точке х 0 , то их сумма

f  (- )̂Дх)+ф(х), произведение Дх)ф(х) и частное  (при условии
Ф(х)

ф (х0 )*0) являются функциями, непрерывными в точке х0 .
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Доказательство теоремы следует из определения непреры вно­
сти и аналогичных свойств пределов функций.

2. Если функция у  — fix )  непрерывна в точке х () и / ( х 0 )>0, то 
существует такая окрестность точки х0 , в которой/(х)>0.

Доказательство этого свойства основывается на том, что при 
малых приращ ениях аргумента Дх—>0 в соответствии со вторым 
определением непрерывности функции (6.24) можно получить 
как угодно малое приращ ение функции Ду, так что знак функции 
y= fix) в окрестности ( х 0—Дх, х 0+Дх) не изменится.

3. Если функция y= fiu) непрерывна в точке щ  , а функция и=<р(х) 
непрерывна в точке Uq =ср( х0 ), то сложная функция _r /  [<p(.v)] не­
прерывна в точке х 0 .

Доказательство состоит в том, что малому приращ ению  аргу­
мента Дх->0 в силу второго определения непрерывности (6.24) 
ф ункции u=ip(x) соответствует как угодно малое приращ ение 
Ди-»0, приводящ ее в свою очередь в силу того же определения 
непрерывности функции y=fiu)  к как угодно малому приращ е­
нию  Ау—>0.

С войство 3 может быть записано в виде

lim / [ ф ( л-)] = / j  lim ср(х) (6.25)

т.е. под знаком непрерывной функции можно переходить к пределу.
Ф ункция у  =  f ix )  называется непрерывной на промежутке X , 

если она непрерывна в каждой точке этого промежутка. М ожно 
доказать, что все элементарные функции непрерывны в области их 
определения.

>П рим ер 6.7. Доказать непрерывность функции >’=cos х.
Р е ш е н и е .  Найдем lim Ay — lim (cos(x + Лх) -  cos x) =

лх~>0 лл' ->0
_ .. 2x + Ax . Ax „2 lim co s ----------- sin —  =1), так как

лл- >() 2 2

2x -+■ Дх co s-------- 1, a

. Дх 1 f  sini \ x  2) I sin(Ax 2)lim sin — - = — lim —   Дх = -  lim —   lim Дх =
iv *0 2 2 *°V Ax 2 J 2 Лх -0 Ax. 2 лт •"

=  — •1-0 = 0 , т.е. lim \y = 0 , и по второму определению непре-
2 vr >o

рывности (6.24) ф ункция ,y=cos х является непрерывной на всей 
числовой о с и .^
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З а м е ч а н и  е. Еще раз подчеркнем, что непрерывность 
ф ункции в лю бой точке области определения гарантируется лиш ь 
для элементарных функций. Рассмотрим в качестве примера 
функцию  fix) =  [х] (читается равно антье х ” ), где [х] — целая 
часть числа х, т.е. наибольшее целое число, не превосходящее х

3
(например, [2,6] =  2, [—2,6] = -3 ) .  В точке х =  -  функция .Дх)-

=[х] непреры вна, ибо lim / ( х )  = / ' 3 '
2/

2

= 1, а в точке х = 1 эта

ф ункция определена — /(1 ) =  1, но терпит разрыв, ибо lim / ( х )
X > 1

не существует (точнее существуют неравные между собой конеч­
ные пределы функции слева lim / ( х )  =0 и справа lim / ( х )  =  1)

А' ->1 — 0  Л > ] ■ ( )

(см .рис.6.9).

У

4 "

3 "

2 "

у = \А

Это связано с тем, что ,Дх)= 
=[х] не является элементарной 
ф ункцией, и, хотя и определена 
на всей числовой прямой, раз­
ры вна во всех целых точках.

Свойства функций, непрерыв­
ных на отрезке:

1. Если функция у  =  fix) не­
прерывна на отрезке [а , />], то 
она ограничена на т ом  отрезке 
(см. рис. 6.10).

2. Если функция у  =  Дх) не­
прерывна на отрезке [а, й], то она достигает на этом отрезке 
наименьшего значения т и наибольшего значения М (теорема Вей- 
ерштрасса) (см.рис. 6.11).

-1  о 3 4
ft ic . 6.9

5 *

Рис. 6.11 Рис. 6.12
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3. Если функция у  =  f ix )  непрерывна на отрезке [а, Ь] и значения 
ее на концах отрезка Д а) и fib ) имеют противоположные знаки, то 
внутри отрезка найдется точка %е (а, Ь) такая, что f i t )  — О 
(теорема Больцано-Коши) (см. рис. 6.12).

6.8. Решение задач

ОПример 6.8. Найти: a) lim + ^ ; б) lim - Х + ^ ; в) lim S‘]—
х->7 Х - 5  X-*5 Х - 5  X

г) lim х  cos —
■f ->oV x

P e ш с н и e. а) На основании непрерывности функции в 
точке х=7 искомый предел равен значению  функции в этой точ-

.. Зх + 5 3-7  + 5 .ке, т.е. h m  = -----------=  13.
-V *7 Х - 5  7 - 5

б) При х->5 числитель (Зх+5) стремится к 3-5+5=20 (т.е. явля­
ется ограниченной ф ункцией), а знаменатель (х— 5) — к нулю 
(т.е. является бесконечно малой величиной); очевидно, их отно­

шение есть величина бесконечно большая, т.е. lim — — - = х .
* >5 X -  5

в) lim --11-1 — =0, ибо отнош ение ограниченной функции sinx
х

( |s in x |< l )  к бесконечно большой величине х  (при х—>х) есть в е ­
личина бесконечно малая.

г) lim х  cos —=0, так как произведение бесконечно малой ве-
Л- >0 X

личины  х (при х->0) на ограниченную  функцию  co s— ( | c o s— |<
X X

<1) есть величина бесконечно малая.
Заметим, что этот предел нельзя вычислять с помощью теоре­

мы о пределе произведения, поскольку lim c o s — не существует
-V - >0 X

(при х-»0 аргумент косинуса — изменяется непрерывно вдоль
X

числовой оси до бесконечности, при этом значения co s— колеб-
X
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лю тея о т —1 до 1 й о т  1 д о —1, не стремясь ни  к  какому числу 
(п ределу).^

В рассмотренных примерах предел находился сразу: в виде 
числа или символа оо. Н о чаще при вычислении пределов мы 
сталкиваемся с неопределенностями, когда результат нахождения 
предела неясен: например, в случае отнош ения двух бесконечно

О
малых ф ункций  (условное обозначение

О
) или бесконечно

больших ( ). Кроме отмеченных неопределенностей вида

и в математическом анализе рассматриваю тся также н еопре­

деленности вида [оо—оо], [0-ос], |Yx j , [ оо Ч  [0°1  

[ Пример 6.9. Найти:

, .. 2 х 2 - х - 1  с . tJx + 2 -  J 6 -  х  . . .  V *  - 1a) l im — -----^ — ; б) l im -------- ^— ;--------- ; в) lim
х->2 х 2 -  4 х-+1 З /х  - 1

Р е ш е н и е ,  а) Д ля раскры тия неопределенности вида

разложим числитель на множители и сократим дробь на м нож и­
тель (jc— 1): сокращ ение возможно, так как при х—>1 (х— 1) стре­
мится к  нулю , н о  не равен нулю.

lim
2х -  х  -  1

(х -1 )"

2(* + - К *  -1 )  2х +1
= ц т ----------2— ----- = цт £ ± ± 1

х->1 (х  -  1)^ X—>1 X -  1

б) Д ля раскры тия неопределенности вида умножим ч и с­

литель и знаменатель на выражение, сопряж енное к  числителю , 
получим:

' 'О '.. -Jx + 2 -  V6 -  х 
lim -
х—>2 х 2 -  4

=  lim

О
2(х -  2)

lim + 2 ~ >/б -  x)(V X + 2 + V6 -  х )  _
х~>2 (х 2 -  4)(V* + 2 + >/б -  х )

х~>2 (х -  2)(х + 2)(>/х + 2 + yj6 -  х) 
2 1

=  lim
х~>2 (х  + 2)(4х  + 2 + ^ 6 -  х) 8
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в) Д ля раскры тия неопределенности вида удобно предва­

рительно сделать замену t = У х  (тогда У х = ^ . У х = t 2 , при х -»1 , 
/->1), а затем полученные многочлены разложить на множители:

. .  Ух - I
m  ч т =  

*-»» У х  -  1
=  lim / 3 -1

=  lim
t->i t —1 t->i (t -  1)(/ +1)

=  lim t 2 + t  + 1 3

|>Пример 6.10. Найти: a) lim
Зх + 2

х->'с 4х  + х  + 1

.. а х "  + Лх"~л +...+кхх  + /. . У х9 + 1
б) lim  —*--------^ ! ; в) hm7 m » -т- \  • * ’ 'tf,xm + Ь-,хт +.. ,+ ^ х  + /?

г) lim / ( х )  и lim / ( х ) , где Дх) 2,r+1 + Ъх+Х 
2х + У

Ух

д) lim 4 х  + sin х
Х-+оо х  — cos х  

Р е ш  е н и е. а) Имеем неопределенность вида . Учиты­

вая, что поведение числителя и знаменателя при х-»ос определя­
ется членами с наибольш ими показателями степеней (соот­
ветственно Зх2 и 4х5 ), разделим числитель и знаменатель на х 5 , 
т.е. на х  с наибольш им показателем степени числителя и знам е­
нателя. И спользуя теоремы о пределах, получим

3 2
Зх + 2 М  х 3 х 5 0 + 0l im — ;-------------=  — =  l i m— , = - — -— - =  0.

4х5 + З Х  + 1 (_ оо J х >« 4 3 ^  4 + 0 + 0
4 5X X

б) И спользуя тот же прием, что и в п.а), можно показать, что

ахх  + Ьхх п +...+кхх  + 1х 
х ^ ^ а 2х т + Ь2х тХ +...+к2х  + /2
lim

0, если п < т.
ОС

ах / а 2.— — если п = т,
00

ОС', если п> т,

т.е. предел отношения двух многочленов lim рЛ х ) равен 0, отно-
-*->* Qm(x)

шению коэффициентов при старших степенях х  или х , если показа-
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телъ степени числителя п соответственно меньше, равен или Поль­
ше показателя степени знаменателя т.

Рекомендуем запомнить это правило.
ос

в) Имеем неопределенность вида
оо

Здесь выражению  в

числителе условно можно приписать степень п =  —, а в знамена­

теле степень т =2; так как п >т, то на основании правила, сф ор­
мулированного в п.б, искомый предел равен оо.

4Г[ч"Д ействительно, разделив и числитель и знаменатель на \ х  
получим

lim 1
lim Y

i
X _

Ч х1

г) При х-»ос имеем неопределенность вида при этом по­

ведение числителя и знаменателя определяется вторыми слагае­
мыми, которые возрастают быстрее первых. Разделив числитель и 
знаменатель на 3* и используя теоремы о пределах, получим

2х ' 1 + 3* 
2х + 3х

lim

поскольку lim | — I =0.
X > г\ 3 >

= lim
X - + W  (  1 \  х

i !  + |

0 + 3 
0 + 1

=3,

П ри л'-»—ос имеем неопределенность вида при этом пове­

дение числителя и знаменателя определяется первыми слагаемы­
ми, которые убывают медленнее других. Разделив числитель и 
знаменатель на 2х и используя теоремы о пределах, получим



д) Д ля раскры тия неопределенное™  вида 

литель и знаменатель на х, получим 

4 x  + sin х

разделим чис-

S1I1 х

lim
л ->00 X -  COS X

4 +
l im   — = 4 + 0

j _ co sx  1 -  О
4,

так как lim Sm Х = 0, lim cosx  =  0 (см. пример 6.8 в ) .^
x - w  х  х-> « ' X

Г-- Пример 6.11. Найти:

a) lim (у! х 1 + 1 -  Vx2 -  1 ); б) lim (V*2 + 2 + х ) ;

в) lim
1

*-> iVl-x  1 - х 2- 
Р е ш е н и е ,  а) Д ля раскрытия неопределенности вида [сс —со] 

умножим и разделим выражение в скобках на сопряженное вы ­
ражение, получим

lim (Vx2 + 1 -  V*2 -  1 ) =  [ос —оо]=

с2 +1 -  V*2 - 1  x V * 2 +1 + V*2 _ -: lim
Х-+ОС Vx2 + 1 + Vx2 -  1

= lim = 0 .
* >r/ V*2 + 1 + Vx2 - 1

б) При x  ̂ ос имеем неопределенность вида [oc-x], ибо квад­
ратный корень из неотрицательного числа всегда неотрицателен. 
Реш ение аналогично примеру 6.11а.

lim Vx2 + 2 (Vx2 + 2  + x)(Vx2 + 2 - x )-[ос —c c ] -  Inn —
V *2 + 2 - x

=  lim
0 Vx2 + 2 -  x

= 0 .

Обращаем внимание на то, что при х -> -о с  в знаменателе нет 
неопределенности, так как он представляет сумму бесконечно 
больших положительных величин — величину, бесконечно 
большую.
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в )  l i m
i v l - x  1 -  x 1

=[oo — oo]= lim (1 + x) -  2

*-»l 1 -  x

lim
X-»l (1 -  x)(l + x)

=  l i m  —
x —>1\ 1 +  X

П ростейш ие примеры с использованием первого замечатель­
ного предела (6.15) были рассмотрены в примере 6.4. Рассмотрим 
несколько более сложные задачи.

1 sin Ах
[>Пример 6.12. Найти: a) lim  х  sin — ; б) l im  —  ;

лг->°° х  *^0  sin 8х
. s in x 6 ч . лхв) l im — ;— ; г) lim (l -  x)tg —  . 

х->° sin х  х->1 2

Sill
Р е ш е н и е ,  lim х sin — =[оо-0]= lim —т-

* --> 0 0  х Х - > «  1
X — =  l i m ^  =  l

у-* О у

(сделали замену у = — при х-юо у->0). 
х

б) lim sin 4х 
о sin 8х

в) lim sin X
sin х

* ,. ( sin 4x sin 8x=  — lim  —1
2 4x 8x

=  lim
x-»0

S111X
x 6 J

sill X =(0-1): l5 =0.

г) П ри х->1 имеем неопределенность вида [0-оо]. Сделаем заме­
ну 1—х =  у, тогда х  = \ —у  и при  х->1 

Получим

lim (1 -  x)tg ~  =[0-оо]= lim у -  tgf^- -  =  lim у ■ ctg Ц - =
х —>1 2 ^->0 V2 2 J _у->о 2

=  lim
>>-> о

/ . пу^
S1I1 —  лу  2cos — : ------ —

2 У
— 0 пу

— lira cos —  :
л

0 v-»o 2 2

S1I1
лу

l im  *
у-»0 пу

2

я
П ростейш ие примеры с использованием числа е при раскры ­

тии неопределенности вида [V' j мы уже фактически встречали в 

примере 6.5. Прежде чем рассмотреть более сложные задачи, об-
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ратим внимание, что нет неопределенности при вычислении пре­

делов типа lim | * + М  =  lim [ 4г] (так как  выражение в
Х^>*К2Х ~ \ )  Х->со\2)

скобках стремится к — , а не к 1) или lim
2 X—>со

- 2 x 1
lim Iх =1

х(х  - 2 )) х ->сп

(так как единица в любой степени равна единице). Поэтому под 
неопределенностью  вида JY' J понимается функция, основание

степени которой с т р е м и т с я  к 1 ( н о  н е  р а в н о  тож­
дественно 1), а показатель степени стремится к бесконечности.

>П рим ер 6.13. Найти: a) l im f— — -1 ;
2х -  \ )

б) lim [x(ln(l + х) -  In х )1 ; в) lim(l + 2x )Y-  ̂rX д: >0

s in  X 
2 ч V'

Р е ш е н и е: а) Имеем неопределенность вида [l ] ,  так как 

lim — — -  =  1, lim (4x) =  оо.
X -><*■ 2.V -  1 Л > '

2х -  3 (2х -  1) -  2 , 2Выделим у дроби целую часть --------- =    =1 —-
2х -  1 2х -  1 2х -  1

Обозначим у = —— - — ; при х  ->  оо у  ->■ 0, причем х= -  — + — .
2х -  1 у  2

Теперь используя определение числа е (6.19), теорему о пределе 
произведения и свойство (6.25) непрерывности сложной ф унк­
ции, получим

(1  --+2 
lim — ----- =  lim (l + у) у = lim (1 + у) у ■ lim (1 + у ) 2 =
х - > Л 2 х  -  I /  v-»o у-у о v-»o

lim(l + y Y
,v~>  0 ■l=e'

б) Имеем неопределенность вида [ос-0]. Это отчетливо видно, 
если с помощ ью  свойств логарифма представить предел в виде

lim[x(ln(l + х) -  In х)| = lim [х  In  ̂+ Х I =  lim х • lnl 1 + —
■1 1 х  ) л >•/ V х

: [сс • 0] =  lim In 1 +
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Н а основании непрерывности логарифмической функции 
(6.25) перейдем к  пределу под символом логарифма, т.е.

lim In 1 + — | =  In
V X

lim 1 + —
X -» cc \ X

=  ln<?=l.

в) Имеем неопределенность вида 1“ , так как lim(l + 2х2) =  1;
L J х->о

.. s in x  
lim — — =  Inn

х - > 0

(ибо при х->0

х^О X2
sin х  , 1

s in x )  1
X У X

-» 1, а  > о о ) . Преобразуя выражение и ис-
х

пользуя непрерывность степенно-показательной ф ункции, полу­
чим

2 s in x

I =  lim (1 + 2x)2x 
>0

sinx
lim(l + 2x) =
x —>0

lim (l + 2x)2x
x->0

2 lim-

= e 2 l = e 2>

О П ример 6.14. Доказать непрерывность функции y=fix)  в точ­
ке х=0 или установить характер точки разрыва функции в этой
точке:

ч S111 х 
а ) у = --------; б) у

S111 X
X
1,

если х  ф  0 ,  _  1

если х  = 0; У \ + 21/л

г ) у =  21/х .
Р е ш  е н и е. а) При х=0 ф ункция Дх) не определена, следова­

тельно, она не непрерывна в этой точке. Так как lim Sill X
=  1 и

х - > 0  X

соответственно пределы ф ункции слева и справа от точки х  =  0
.. s in x

конечны  и равны, т.е. lim -------
х-»0- X

SU1X . пlim ------- =  1, то х =  0 — точ-
х->0+ X

ка устранимого разрыва первого рода.
б) По сравнению  с п. а) ф ункция доопределена в точке х=0 

так, что lim Кх)— ДО) =  1, следовательно, данная ф ункция не-
х ->0

преры вна в этой точке.
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в) При х =  0 ф ункция Дх) не определена. Так как пределы
ф ункции слева и справа от точки х =  0 конечны, т.е.

lim = -----*тт-- =  —!— = 1, lim — — = 0 (ибо 2*/Л -»• эс при
х -> 0 -  1 +  2 / х  1 + 0  л-,о- 1 +  2 1'"  F

х-> 0 + ), то в точке х =  0 функция / (х) имеет разрыв первого рода.
г) При х =  0 функция / ( х )  не определена:

lim 2] / х =(),  lim 21/х =  ос. 
х-»0- х->0+
Так как один из односторонних пределов бесконечен, то х =0 

есть точка разрыва второго р о д а .^

У П Р А Ж Н Е Н И Я
Доказать, используя определение предела, что:

6.15. l im — — -= 2 . 6.16. lim(3x -  4) =11. 6.17. l im(x2 - 3 ) :
л - f '  П +  3  -V >5 V >2

Найти пределы.

6.18. l i m — — -  6.19. l im(х — 5) sin
X  -  8 х >5 д- - 5

6.20. И т ^ Ц - 6. 21.  l im ^ 1 + j r  1
, 1 2х -1  ' д- >о .,Сг
* *> Vx2 + 1 6 - 4

6.22. lim V . v . 6.23. lim 1 + v lv
v x  -  1 ' ♦ ' 1 A' f  3x

*  r  V x 2 + 1 + V a  ,  I х -  36.24. lim — —-------. 6.25. lim
Vx ’ + x -  x v ”' 2х + 3 '

6.26. lim .y(Vx‘ +1 - x ) .  6.27. Iim(^/(.v ■+■ 1)' -  :yj(x - l)2
\ > • >' . '

a i d  i -  1 _  C O S  4 a _ ,  . 1 .6.28. In n  -̂-----. 6.29. I i m ( x - b ) s m ;  .
.< >0  v -  л  >■- A  '

, sin(x -  л  /' 6) . . .  sin 4x
6.30. l i m^ =^  -— . 6.31. limmil —= --------------- . U.JI,  Ш11 —f= = ----

Д • "  \ 3  /  2  -  C O S  A  -T  > °  ylx +  1 -  1

6.32. lim! 2 . v t g . v  K— 1 6.33. l imfl  + — ] .
V , ” ,у- C O S  x )  X  > ' \  А  У
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6.34. lim 1 +
5x f  2

6.35. lim
X-»co

x  +1
U

6.36. l im f——t) 2x.
x->ovx + 1/

I
>.37. lim (l + tg2V *)2*-

Какие из данных ф ункций являю тся непреры вны ми в точке 
х=1? В случае наруш ения непреры вности установить характер 
точки разрыва:

f x 2 - l
6.39. у  =6.38. у

6.40. у

х 2 - 1
X - 1

1
1 +  2 1/ ( * - 1>

6.41. у  =-

х  - 1  
2 ,

1

если х  *  1, 
если х  = 1.

1
6.42. П ервоначальный вклад, полож енны й в банк под 10% го­

довых, составил 6 млн.руб. Н айти размер вклада через 5 лет при 
начислении процентов: а) ежегодном; б) поквартальном; в) н е ­
прерывном.



Раздел III 
ДИФФЕРЕНЦИАЛЬНОЕ 

ИСЧИСЛЕНИЕ

Глава 7. ПРОИЗВОДНАЯ

7.1. Задачи, приводящиеся к понятию производной
1. Задача о касательной. Пусть на плоскости Оху дана непре­

ры вная кривая у=Дх) и необходимо найти уравнение касательной
к этой кривой в точке 
Л/о(*01 Уо) (Ри с - 7Л)- 

Прежде всего необхо­
димо выяснить, что мы 
будем понимать под каса­
тельной к кривой. К аса­
тельную нельзя опреде­
лить как прямую, им ею ­

щую с кривой одну об­

щую точку. В самом деле, 
прям ая (1) на рис. 1.2а 
имеет одну общую точку 
с кривой (2), но не явля­
ется касательной к ней. А 
прямая (3) на рис. 1.26, 
хотя имеет две общие 
точки с кривой (4), оче­
видно, касается ее в точке 
А. Поэтому для определе­
ния касательной к  кривой 
должен быть реализован 
другой подход.

176



Д адим аргументу х0 приращ ение Дх и перейдем на кривой 
y=f{x) от точки Л/0(х0; Д х 0)) к  точке AT^Xq + Д х ;/(х 0 + Дх)). 
Проведем секущую (см.рис. 7.1).

Под касательной к кривой y =f{x) в  точке Л/0 естественно п о ­
нимать предельное положение секущ ей М 0М Х при приближ ении 
точки М х к  точке М 0 , т.е. при Дх-»0.

Уравнение прямой, проходящей через точку М 0 , в соответст­
вии  с (4.4) имеет вид

У- f  (*0) = k ( x  -  х0) .
Угловой коэф ф ициент (или тангенс угла ср наклона) секущей

может быть найден из A M 0M lN : k M()Mi =  tg Ф (см -

рис. 7.1). Тогда угловой коэф ф ициент касательной

к  =  lim  к м м = lim  ^ . (7.1)
Лх->0 и 1 Лх-»0 Дх

Оставим на время задачу о касательной и рассмотрим другую 
задачу.

2. Задача о скорости движения. Пусть вдоль некоторой прямой 
движется точка по закону s=s(f), где s — пройденный путь, t  — 
время, и необходимо найти скорость точки в момент /0 .

К  моменту времени /0 пройденный путь равен sq = s ( t g ) ,  а к 
моменту (Г0 + At) — путь Sq + As -  s (tQ + At) (рис.7.3.).

j(/„) xs s(t0+At) Тогда за промежуток At
---------------* ~ — средняя скорость будет vc =

t<} A t  t 0+ A t  t

р ис -j ^  ~  ~  • Ч ем  м еньш е A t , тем

лучш е средняя скорость характеризует движение точки в момент 
tQ. Поэтому под скоростью точки в момент t(j естественно п они ­
мать предел средней скорости за промежуток от /0 Д° А) + АЛ 
когда At ->0, т.е.

v =  lim vcp =  lim —  . (7.2)
Д/-»0 СР At->0 At

3. Задача о производительности труда. Пусть ф ункция и =  u(t) 
выражает количество произведенной продукции и за время t и 
необходимо найти производительность труда в момент tQ.
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За период времени от t0 до /0 +  A t  количество произведенной 
продукции изменится от значения щ, = u(t0) до значения
«о + Аи =и( ?0+  А?);  тогда средняя производительность труда за

этот период времени zcp =  —  . Очевидно, что производительность
At

труда в момент t0 можно определить как  предельное значение 

средней производительности за период времени от t() до t{] +  A t 

при A t  ->0, т.е.

z  = lim zCD — lim — . (7.3)
д«->о p д«-»о At '

Рассматривая три различные по характеру задачи, мы приш ли
к пределу (7.1)—(7.3) одного вида. Этот предел играет чрезвычай­
но важную роль в математическом анализе, являясь основным 
понятием дифф еренциального исчисления.

7.2. Определение производной. 
Зависимость между непрерывностью 
и дифференцируемостью функции

Пусть ф ункция у  = Дх) определена на промежутке X. Возьмем 
точку хеХ.  Дадим значению  х приращ ение Дх * 0, тогда функция 
получит приращ ение Ау =  Дх+Дх)—Дх).

Определение. Производной функции у  — Дх) называется предел 
отношения приращения функции к приращению независимой пере­
менной при стремлении последнего к нулю (если этот предел суще­
ствует)'.

Г  = lira ^  = lira А *  ч- Ах) -  / М  (М )
Л х-> 0  Дх Ддг-->0 Дх

П роизводная функции имеет несколько обозначений: у', / ' ( х ) ,

Су- , ^ . Иногда в обозначении производной используется
их ах

индекс, указываю щ ий, по какой переменной взята производная, 
например. у'х .
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Нахождение производной ф ункции называется дифференциро­
ванием этой функции.

Если функция в точке х  имеет конечную производную, то функ­
ция называется дифференцируемой в этой точке. Ф ункция, диф ­
ференцируемая во всех точках промежутка X, называете я диффе­
ренцируемой на этом промежутке.

ТеперС вернемся к  рассмотренным выше задачам.
И з задачи о касательной вытекает геометрический смысл про­

изводной: производная / ' ( х й)есть угловой коэффициент (;тангенс 
угла наклона) касательной, проведенной к кривой у=Дх) в  точке 
х0 , т.е. k = f ' ( x 0).

Тогда уравнение касательной к  кривой у=Дх) в точке х 0 п ри ­
мет вид

,У-Л*о)= / ' (* о) ( * ~ * о)- (7.5)

И з задачи о скорости движ ения следует механический смысл 
производной: производная пути по времени s'(to) есть скорость 
точки в момент t0: v( t0 )=  s ' fa ) .

Из задачи о производительности труда следует, что производ­
ная объема произведенной продукции по времени и' ( t 0) есть произ­
водительность труда в момент t0 .

[>Пример 7 .1 . График ф ункции у =  Дх) есть полуокружность 
(см. рис. 7.4). Используя геометрический смысл производной, найти 
значения производной / '  (х) в точках А, В, С, D, Е, делящ их полу­
окружность на четыре равные части.

Р е ш е н и е .  В точках В и D 
углы наклона касательных к  гра­
ф ику составляют соответственно 
45° и 135°, поэтому у ’в = tg 45°=1, 
y'D = tg  135°=—1.

В точке С касательная парал­
лельна оси t t t ( a —0), поэтому Ус = 
= tg 0=0. В точках А и Е касатель­
ные перпендикулярны к  оси Ох, 
a= 90°, tg 90° — не существует, т.е. 

ф ункция Дх) недифф еренцируема в этих точках, точнее — произ­
водная в этих точках бесконечна: f ’A = + о о ,  / / •  =  —со (знаки, стоя­

г ,

/с \

У ' ч
и \ ч 5°

/  Л 0 Е \  *

Рис. 7.4
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щие перед символами бесконечности, определяются тем, что в 
окрестности точки А  производная f ' ( x )  полож ительна (острый 
угол наклона касательных), а в окрестности точки Е  — отрица­
тельна (тупой угол н ак л о н а).^

|>Пример 7.2. Доказать, что ф ункция у= \х  | недиф ф еренци­
руема в точке х  =  0.

Р е ш е н и е .  П роизводная функция (если она существует)
равна

Ау |х + Д х |- |х |
у ' = lim  —  =  lim  J---------!— L_L.

Дх->0 Ax Длг-»0 Ax
Очевидно, что при х=0 п роиз­

водная не существует, так как от-
|0 + Axj — |0| |Дх|

нош ение '--------- '■— — = ] равно 1
Ах Дх

при Дх>0 и —1 при Дх<0, т.е. не 
имеет предела при Дх->0 (ни к о ­
нечного, ни  бесконечного). Геомет­

рически это означает отсутствие касательной к  кривой в точке х=
= 0 (рис. 7 .5 ) .^

Зависимость между непрерывностью функции и дифференци­
руемостью. Теорема. Если функция у  = Дх) дифференцируема в  
точке х 0 , то она в этой точке непрерывна.

□ П о условию функция у  = Дх) дифференцируема в точке х 0 , 
т.е. существует конечны й предел

lim —  = f ' ( x 0) , 
лг->0 Ах

где / ' ( х 0) -  постоянная величина, не зависящ ая от Дх.
Тогда на основании теоремы о связи бесконечно малых с п р е­

делами ф ункций (см. § 6.3) можно записать

7 ^  =  / '(* o )+ a(A x ), Дх
(7 .6)

где а(Дх) — бесконечно малая величина при Дх-»0 или

A j^  / '( * о )  Дх+а(Дх)-Дх. (7 .7)

При Дх-*0 на основании свойств бесконечно малых устанав­
ливаем, что Ду-»0 и, следовательно, по определению (6.24) ф ун к­
ция у  = Д х ) в точке х 0 является непреры вной.»
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Обратная теорема, вообщ е говоря, неверна, т.е. если функция 
непреры вна в данной точке, то она не обязательно диф ф еренци­
руема в этой точке. Так, например, ф ункция у -  I х | непреры вна в 
точке х=0, ибо ]imjjc| = |0| =0 (рис. 7.5), но, как было доказано в

примере 7.2, недифференцируема в этой точке.
Таким  образом, непрерывность функции — необходимое, но не­

достаточное условие дифференцируемости функции.
В математике известны непрерывные функции, недиф ф ерен­

цируемые ни  в одной точке.
З а м е ч а н и е .  П роизводная непреры вной ф ункции не обя­

зательно непрерывна. Если функция имеет непрерывную п роиз­
водную на некотором промежутке X, то ф ункция называется 
гладкой на этом промежутке. Если же производная ф ункция до­
пускает конечное число точек разрыва (причем первого рода), то 
такая ф ункция н а данном промежутке называется кусочно гладкой.

7.3. Схема вычисления производной. 
Основные правила дифференцирования

Производная ф ункции у  =  Дх) может быть найдена по  сле­
дующей схеме:

1°. Дадим аргументу х  приращ ение Дх ф 0 и найдем наращ ен­
ное значение ф ункции у+Лу =  Дх+Дх).

2°. Находим приращ ение ф ункции Ду =  ДхН-Дх)— Дх).

3°. Составляем отнош ение —  .
Дх

4°. Находим предел этого отнош ения при Дх-»0, т.е.

у ' = lim  —  (если этот предел существует).
Дл- > 0  Дх

ОПример 7.3. Найти производную  функции у = х 3 .

Р е ш е н и е .  1°. Дадим аргументу х  приращ ение Дх*0 и н ай ­
дем наращ енное значение ф ункции у+Лу= (х  + Дх)3 .

2°. Находим приращ ение ф ункции Д ^=(х + Дх)3 ~ х 3 = х 3 + 

+3 х 2 Дх+ ЗхД х 2 +Д х 3 —х 3 =Д х(Зх2 +ЗхДх+Дх2 ).
Ду  2 2

3°. Составляем отнош ение — =  З х  +ЗхДх+Дх .
Дх
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ч л
4°. Находим предел у '  = lim —  =  lim (З х  +ЗхДх+Дх )=

Лх->0 Дх Дл->0
= 3 х 2 .►

Итак, мы получили, что ( х 3 ) '= 3 х 2 . М ожно доказать (см. 7.5), 
что для лю бого (не только натурального) п

(х")' = пх л- 1 (7 .8)

П олезно знать частные случаи этой формулы при п= — и п=—1:

(V*)' =
2>/х ’

(7 .9) 

(7.10)

[>Пример 7.4. Н айти производную функции у = х 2 ■ у[х^ .

, 4  _
Л

Р е ш е н и е .  Представим функцию  в виде у= х

11 -Теперь по формуле (7.8) у ' = — х 4 .►
4

[>Пример 7.5. Составить уравнение касательной к кривой у -

1 .=  — в точке х  =  1. 
х

Р е ш е н и е .  В соответствии с 
(7.5) уравнение касательной к кр и ­

вой >’=/(х)=  — в точке х  =  1 у —Д 1)= 
х

=^г’'( 1 )(лг— 1). По формуле (7.10) н ай ­

дем производную f '( x )=  -  -Хг .
X

Ее значение при х=1 
Значение функции при ^ 1  /(1 )= 1 . 
Уравнение касательной у —1=— 1(х~

— 1) или х+> ^2= 0 (рис. 7 .6 ).^
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П равила дифференцирования.
1. Производная постоянной равна нулю, т.е.

с '= 0.
П равило очевидно, так как  любое приращ ение постоянной 

ф ункции  у=с равно нулю.
2. Производная аргумента равна  1, т.е.

х ’= \.
П равило следует из формулы (7.8) при /1=1.
В следующих правилах будем полагать, что и=и(х) и v=v(x) — 

диф ф еренцируемые функции.
3. Производная алгебраической суммы конечного числа дифферен­

цируемых функций равна такой же сумме производных этих ф унк­
ций, т.е.

(u+v)’= u '+ v '. (7.11)

4. Производная произведения двух дифференцируемых функций равна 
произведению производной первого сомножителя на второй плюс произ­
ведение первого сомножителя на производную второго, т.е.

(u v )'= u 'v+ u v '. (7.12)

С л е д с т в и е  1. Постоянный множитель можно выносить за 
знак производной:

(.с и ) ' = с и (7.13)

С л е д с т в и е  2. Производная произведения нескольких диффе- 
ренцируемх функций равна сумме произведений производной каждого 
из сомножителей на все остальные, например:

(,uvw)'=u'vw+uviw + u v w (7 .14)

5. Производная частного двух дифференцируемых функций м о­
жет быть найдена по формуле

"У  (7.15)
v )  у

(при условии, ЧТО V ^0).
□  В качестве примера докажем правило 4, т.е. формулу (7.12).

Пусть и=и(х) и v= v(x) — дифференцируемые функции. Найдем 
производную ф ункции y=uv, используя схему, приведенную  в 
начале § 7.3.
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1°. Дадим аргументу х  приращ ение ДхгО. Тогда ф ункции и и  v 
получат наращ енные значения и+Аи и у+Ду, а ф ункция у  — зна­
чение y + A y = { u + A u ) ( v + A v ) .

2°. Найдем приращ ение функции
A y = ( u + A u ) ( v + A v ) —u v = u v + A u - v + u - A v + A u A v - u v = A u v + u A v + A u A v .

Ду3°. Составим отнош ение —  , которое представим в виде
Ах

А у  Д« Ду Ди  Ду 4—  =  у+м + ----------Ал: .
Дх дх Ах Дх Дх:

4°. Найдем предел этого отнош ения при Дх-»0, используя тео­
ремы о пределах

А у  .. А и . . .  Ду .. Д и .. Ау ..lim  —  =  l i m ------- v +и lim —  + l i m  l i m  lim  Ax .
Лх->0 Ax AX-yO A x  Ax-yO A x  Ax - уО Ax Ax-yO Ax Дх->0
Н а основании определения производной получили, что 
y ' = u ' v + u v ' + u ’v '- 0 или y '= u 'v + u v 'M

О Пример 7.6. Н айти производную ф ункции у —fix )  и вы чис­
лить ее значение в точке х= 1:

а) y = x \ i f x  + 1); б) у = 1 5 (х 4 - 1 ) ;  в ) у = х  .
Vx

Р е ш  е н и е. а) По формулам (7.12), (7.11) и (7.8)
I  I  |  _з

у ’= ( х 3У (х4 + 1) + х 3( х 4 + 1)' = Зх2(х 4 + 1) + х 3(^-х 4 + 0) =

= х 2( ^  + 1).
4

13Значение производной в точке х =  1 есть y ' ( l )  =  1 (—  1 + 1) =  

=4,25.
б) С начала вынесем постоянный множитель за знак производ­

ной:
>>'=15 (х 4 -  1)' = 15 -4 х 3 = 60х3 ; ^ '(1 ) =  60.
в) По формуле (7.15)

>= (-*3 -  1)'У* ~ (* 3 ~ 1)(Ух)' _  Зх 'J* ^  2урс =  5х3 + 1
(>/х)2 х  2 х у [ х

У'( 1 )= 3 >

У
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7.4. Производная сложной и обратной функций
Пусть переменная у  есть ф ункция от переменной и (у=Аи))> а 

переменная и в свою  очередь есть ф ункция от независимой пере­
менной х, т.е. задана сложная ф ункция у  =/[<р(х)] (см. § 5.5).

Теорема. Если у  = Д м ) и и = ср(х) — дифференцируемые функции 
от своих аргументов, то производная сложной функции существует 
и равна производной данной функции по промежуточному аргументу 
и умноженной на производную самого промежуточного аргумента 
по независимой переменной х, т.е.

y '= f'(u )-u '.  (7.16)

□ Дадим независимой переменной х  приращ ение Ах ф  0. Тогда

ф ункции и = ф(х) и у  = Ди) соответственно получат приращ ение 
Аи и Ау.

Предположим, что А и  ф  0. Тогда в силу дифференцируемости 
ф ункции у  = Д и ) можно записать

Ш п ^  = / '(« ) ,
ди-»о Аи

где / ' ( « )  — величина, не зависящ ая от А и.
Н а основании теоремы о связи бесконечно малых с пределами 

функций

^ L = f(u )+ a (A u ) ,
Аи

где а(Ди) — бесконечно малая при Ди-»0, откуда

А у= f'(u)Au+a(Au)Au. (7.17)

Это равенство будет справедливо и при А и = 0, если полагать, 
что а(Дм=0)=0 (т.е. доопределить таким образом функцию  а(Дк) 
при Ди=0).

Разделив обе части равенства (7.17) на Аг*0, получим

Ду Аи Аи
7 ^  = Л и )  —  +а(А«) —  ■ (7.18)
Ах Дх Дх

Так как по условию ф ункция м=ф(х) дифференцируема, то она
непреры вна в точке х, следовательно, при Дх->0 Дм—>0 и а(Ди)->0.
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Поэтому, переходя к  пределу при Дх->0 в равенстве (7.18), п о ­
лучим

у '=  lim ^ - =  / '(« )•« '.
Дд:->0 А Х

З а м е ч а н и е .  Если ограничиться случаями, что при Дх*0, 
Дн*0, доказательство теоремы можно провести прощ е, исходя из

Ау Ау А иочевидного равенства —  = ---------- и переходя в нем  к  пределу
Ах Аи Ах

при Дх-»0.И

П равило диф ф еренцирования сложной функции (7.16) может
с л. , , , dy dy duбыть записано и в других формах: v = у  ' и' или —  =  —--------.

dx du dx
Выше мы привели формулы для производной степенной

ф ункции у = х ” и ее частных случаев (формулы (7.8) — (7.10)).
С учетом полученного правила дифф еренцирования сложной 

ф ункции (7.16) для функции у  = и " , где и =  и(х), можно записать
(и")’ =  п и " 1 ■ и' , (7.19)

(^ ) '  =  _ L  (7. ?0)
2 ыи 

1 '-  = - — « • (7.21)
uJ и

г>Пример 7.7. Найти производные функций:

a) y = ( y f x + 5 f ; 6 )  у  = \\—.— \ ; в  ) у =  122 i ’ '  2 1 ‘I JC +1 X  + Х  + 1

Р е ш  е н и е. а) Ф ункцию  можно представить в виде у = и 3 , 
где и=л[х + 5 . Поэтому на основании формулы (7.19)

у '= Ъ и 2 и' = 3 (у[х + 5)2(у[х + 5)' =  3(V^ t -'5)2 .
2>[х

■г!— X 2 — 1
б) Имеем у  = у и  , где и ——z---- , поэтому по формулам (7.16) и

х  +1
(7.19)

( У  ? , \

х 2 + 1 \ х 2 + 1,
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=  — 31 If x 2 + l |  2x(x2 +1) -  (x 2 -  1) • 2x _  4x
l \ X 2 -  1J ( x 2 + l)2 3(x 2 + l)3/(x2 + \){x2 -  l)2

в )  В ы н о с я  п о с т о я н н ы й  м н о ж и т е л ь  12 з а  з н а к  п р о и з в о д н о й  и  
и с п о л ь з у я  (7.21), п о л у ч и м

г=12Ь т Ы  =12(“ ( T T T T f )  <-х2 + х + 1)'
_  -12(2 jc +1)

(х 2 + х  + I)2

Перейдем к рассмотрению  производной обратной функции.
Пусть у  =  f ix )  — дифференцируемая и строго монотонная 

функция на некотором промежутке X. Если переменную у  рас­
сматривать как аргумент, а переменную х как функцию , то новая 
ф ункция х  =  ф(у) является обратной к данной (см. § 5.5) и , как 
можно показать, непрерывной на соответствующем промежутке Y.

Теорема. Д ля дифференцируемой функции с производной, не ра в­
ной нулю, производная обратной функции равна обратной величине 
производной данной функции, т.е.

К = ~ -  (7.22)
Ух

□ П о условию функция у=Дх) дифференцируема и у '(х )  = 

= / '(х )  *0.
Пусть Д>^0 — приращ ение независимой переменной у, Дх — 

соответствующее приращ ение обратной ф ункции х  =  ф(у). Тогда 
справедливо равенство

—  = -----\— . (7.23)
Ду  А у  /  Дх

Переходя к  пределу в равенстве (7.23) при Ду->0 и учитывая, 
что в силу непреры вности обратной ф ункции Дх-»0, получим

,. Ах 1 1lim —  = ------     , т.е. х ' = —  .■
д.у->о Ду lim (Ду /  Дх) Л у'х

hx~>0

Ф ормула (7.22) имеет простой геометрический смысл. Если у'х 
выражает тангенс угла наклона касательной к кривой у=Дх) к  оси
Ох, то х|, — тангенс угла  р наклона той же касательной к оси Оу,
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причем а+ р = — (если а и р  — острые

3itуглы) (рис.7.7) или а + р = —  (если а и р

— тупые углы). Д ля таких углов tg р =

=ctg а  или tg р= —— . Этому равенству и 
tg a

равносильно условие х' = — .
• Ух

7.5. Производные основных элементарных функций. 
Понятие производных высших порядков

Выведем формулы производных основных элементарных 
функций.

Производная логарифмической функции, а ) у -  In х. Воспользу­
емся схемой нахождения производной, приведенной в § 7.3. 1

1°. у+Ау=1п (х+Ах).

2°. Ау=  In (х+Дх)—In xf= Inf ̂  + = ln^l + — j  .

ДУ 1 . ( . Ax3°. —  =  —  In 1 + —
Дх Ax  v x

4°. у  '= lim —  =  lira —  I nf  1 + —
Лл:->0 Дх А*—>0 Дх V X

Обозначив —  = у , найдем Дх =  ху  и 
х

у '=  lim —  ln (l+ y )=  — lim 1п(1 + у )у .
л*->о ху  х  v->0

В силу непреры вности логарифмической функции, используя 
(6.25), меняем местами символы предела и  логарифма, а затем 
используем определение числа е (6.19); получим

у '= - 1 п
х

lim (l + у )у0
1 . 1=  — In е = —.
X X
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Итак,

(In х )'=  — и (In и)'=  — • и' . 
X и

б) у=  log0 х  . Найдем у  '=  (loga л:) =
In л:
In a )  In а

т.е.

 ̂ (In л:)' =  *
х  In д ’

' 1  ' 1
(loge x) = — —  И (loga и) = - г — -и' 

х  In а и т а

Производная показательной функции, а) у  = е х . П рологариф ­
мируем обе части равенства по основанию  е, получим In у  =  х  
Д иф ф еренцируя обе части по переменной х  и учитывая, что In у
— сложная ф ункция, получим с учетом (7.16) (In у)'= х ’ или
у'
—  =1, откуда у '= у ,  т.е.
У

(ех ) '= е х и (еи)' = е“ и’ . (7.24)

Заметим, что кривая у= ех , называемая экспонентой, обладает 
отличаю щ им только ее свойством: в каждой точке х  ордината 
кривой у = е х равна угловому коэф ф и ­
циенту (тангенсу угла наклона) каса­
тельной к  кривой в этой точке: 
ех = tg a  (рис.7.8). 

б) у=  ах .

у '= ( в * ) ' = [(e toe)*] = (ехЬ а)' и по

правилу диф ф еренцирования сложной 
ф ункции (7.16)

У
, .x ln  а (х In а)' = а х In а . Итак,

(7.25)(ах )' = ах In а и (аи)’ = а и In a  • и' .

Производная степенной функции. Теперь мы можем доказать 
формулу производной степенной ф ункции у = х п для лю бого п. 
Действительно, Ы у  In х  Д иф ф еренцируя обе части равенства,

1 1* 1получим — у' = п ■ — е? откуда у ' —п у — = л х "
у 3 2 4 u х

(х")' = п хп Х и (и"У = пип 1 и

1 я -1 — = п х  , т.е. 
х

(7.26)
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Производная степенно-показательной функции. y= fix) ф(х). 
Найдем In _y=cp(.x) In f ix ). Д ифференцируя, получим

у  = ф'Ос) In f i x )  + ф(х)[1п Д х )]  = ф'(х) In f i x )  + .

Учитывая, что y= fix) , получим после преобразований

у ’ = q> ix)fix)tf(x)~x ■ f i x )  + f i x y (x) In Д х )ф '(х ) , (7 .27)

т.е. для того чтобы найти производную степенно-показательной 
ф ункции, достаточно дифференцировать ее вначале как степен­
ную, а затем как  показательную, и полученные результаты сл о ­
жить (напомним, что («")' = пи"~х -и' и (а“ )' = а и 1 п а и  .

З а м е ч а н и е .  Производная логарифмической ф ункции

(In у)= —  называется логарифмической производной. Ее удобно и с- 
У

пользовать для нахождения производных функций, выражения 
которых сущ ественно упрощаются при логарифмировании. Jlora-

У'рифмическую  производную  (1пу)'=—  называют также относи-
У 1

тельной скоростью изменения функции или темпом изменения 
функции.

Пример 7.8. Найти производные функций: а) у = х  д: .

6) | (* + 1 ) ( ^ - 2 )
Y 3 - х

Р е ш  е н и е. а) П о формуле (7.27) дифференцируем функцию  
вначале как степенную , а затем как показательную и полученные 
результаты складываем: у  '=х- х*-1 + х* In х  = х*(1 + In х ) .

б) Производную  можно найти, используя правила диф ф ерен­
цирования (7.9) — (7.15). Но проще это сделать с помощью лога­
рифмической производной. Действительно,

1 п , =  1  [ln(x + 1) + 1п(х2 -  2) -  1п(3 -  х) . Д ифф еренцируя, находим

У л
У 2

- Ц -  (х +1)' + - J L - . (х2 -  2)' -  (3 -  х)'
х +1 х -  2 3 - х

или

У '= -У
1 Г 1 2х  1

2 Vx + 1 х 2 - 2  3 - x J
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П одставив выражение для у, окончательно получим
jc3 -  4х2 -  Зх + 4

У'=-
(3 -  x )tJ(x  + 1)(х2 -  2)(3 -  х )

Производные тригонометрических функций, a) v=sin х. 
Воспользуемся схемой нахождения производной (см. § 7.3):
1°. _y+Ay=sin (лН-Дх).

Ах Ду
2°. Ay=sin (дН-Дх)—sin х  =  2sin —  cos (х + — ).

„ . Дх . Дх.. 2 sin —  cos(x + — -)
3° .  У 2 2

Дх Дх

sin
4°. у '=  lim —  = lim — -—2 -- lim  cos(x + 4 ^ )  =  cos x  (учли nep-

Дл->0 ЛX Дх-»0 Дх Лх-»0 2
" T

вый замечательный предел (6.15) и  непрерывность ф ункции 
cos х).

Итак,
(sin x)'=cos х  и (sin h ) '= c o s  u-u '. (7.28)

б )  у  =  COS X.

(cos x ) '= -s in  x  и (cos « ) '= -s in  u-u ' (7.29)

(доказательство аналогично п .a).
в) у  =  tg х.

(  sin x 4) _ (sin x)' cos x  -  sin x(cos x)' _  cos2 x  + sin2 x  _
'  =   J ~  2 2V COS X  J  COS X COS X

1
=  2 ’ T'e ‘COS X

( t g x ) ' =  — ~  и ( tg  u)'= ■ u ' . (7 .30)
COS X COS и

г) y=  Ctg X.

( c tg  x ) ' =  -  J -  ; ( c tg  и) -  -  • U'  (7.31)
s in  x  s in  и

(доказательство аналогично п. в).

д) у  = a r c s in  х ,  где — 1<х<1 и ~п/2<у<п/2.
Обратная ф ункция имеет вид х  =  s in  у, причем х'у =  c o s  у  ф 0, 

если ~п/2<у<п/2.
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Используем правило дифференцирования обратной функции (7.22)
, = J _ = _ i _ =  L _  = ____\____

х ’у cos у  + ^ i _ sin2 у  yjl -  х 2

П ри х=±1 производной не существует.
Итак,

(arcsin х)' =  ..  ̂ — и (arcsin и)’ =  1. • и' . (7.32)
V 1 - х 2 y l l - u 2

е) у  =  arccos х, у  =  arctg х, у  =  arcctg х.
Вывод формул аналогично п. д) — формулы соответствующих 

производны х приведены  в таблице.

Таблица производных

№
п/п

Функция у Производная
У'

№
п/п

Функция J Производная
У'

1 с 0 12 Ги 1
2 4и

2 X 1 13 1
и

1
2'и

3 U+V и ' +V' 14 еи еи ■ и'
4 UV u'v+ uv ' 15 а и аи In а и'
5 u\nv u'vw+uv'w+

+UVW'
16 In и 1 , — • и 

и
6 си си' 17 loga и 1---------и

и In а
7 и

V
u'v -  uV  

v2
18 s in  и c o s  и-и'

8 и
с

и'
с

19 c o s  и - s i n  и-и'

9 с
V

с 20 tg и
2 'И'c o s  и

10 Дм), и=ц>(х) f \ u ) - u ' 21 ctg и
■2 U’ s in  и

11 и п пипЛи' 22 a r c s in  и 1
—j = =  ■ и’
V i - v
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№
и/п

Функция у Производная
У

№
п/п

Функция у Производная
У

23 а гс с  os и 1 24 a r c tg  и
1 ■«'/-------  м

v 1 — и 2 1 + и2

25 a r c c tg  и
1 + и

Производная неявной функции. Выше было рассмотрено д и ф ­
ференцирование явных функций, заданных в виде y=f(x). Рас­
смотрим диф ф еренцирование неявной функции, заданной урав­
нением F ix , .у)—О (см. §  5.5).

Для нахождения производной функции у, заданной неявно, нуж­
но п р о д и ф ф е р е н ц и р о в а т ь  обе части уравнения, рассматривая у  как 
функцию от л\ а затем из полученного уравнения найти производ­
н у ю  у  Фактически этим методом мы пользовались при выводе 
производной функции у  = ех , у  -  х п , у  = f { x f (x) и в примере 7.86 
после логарифмирования рассматриваемых функций.

/  Пример 7.9. Найти производную функции у, заданную урав­
нением л 2 - ху + In v =  2, и вычислить ее значение в точке (2; 1).

Р е ш е н и е. Д ифференцируя обе части равенства и учиты-
У*пая, что у  есть функция от х, получим 2 х ~ у ~ х у '+ —  =0, откуда
У

, 2ху -  v2
V = -------- :— .

ху -  1

Значение производной при х  = 2, у  = 1 у ' ( 2)= 3 .^
Производные высших порядков. До сих пор мы рассматривали 

производную / ' ( х )  от ф ункции Дх), называемую производной пер­
вого порядка. Но п р о и зв о д н а я /'(х )  сама является ф ункцией, ко ­
торая также может иметь производную.

Производной п-го порядка называется производная от п роиз­
водной («—1)-го порядка.

Обозначение производных: f " ( x )  — второго порядка (или вт о­
рая производная), f " ' i x )  —- третьего порядка (или третья произ­
водная).

Д л я  обозначения производных более высокого порядка и с­
пользуются арабские цифры в скобках или римские цифры , н а­
пример, f (4)( x ) , . . . , f (n)( x)  или / ,У(х)  и т.д.
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Выясним механический смысл второй производной. Выше было 
установлено, что если точка движется прямолинейно по закону 
s=s{t) (где .у — путь, t — время), то 5 '(0  представляет скорость 
изменения пути в момент /0 . Следовательно, вторая производная

f

пути по времени s "(*о)“ [‘у,Оо)] -  v'(?o) есть скорость изменения 
скорости или ускорение точки в  момент /0 .

D-Пример 7.10. Найти производные до »-го порядка вклю чи­
тельно от ф ункции у=4п л;

, 1 ( 1) 1 f j У 2Р е ш е н и е ,  у  -  — , у -  —   у = ------- г- = —г ,
х  V.W Л-2 V х  j  Xs

2 • 3
>,(4) = ----- 4-  и т. д. Очевидно, что производная n - v o  порядка

(- Г)«-1(н-1>!у(„) =......... ...

7.6. Экономический смысл производной. 
Использование понятия производной в экономике

В § 7.2. было установлено, что производительность труда есть 
производная объема произведенной продукции по времени.

Рассмотрим еще одно понятие, иллюстрирующее экономиче­
ский смыог производной.

Издержки производства у  будем рассматривать как функцию  
количества выпускаемой продукции х  Пусть Дх — прирост про-

. Дудукции, тогда Ау — приращ ение издержек производства и --------
Ах

среднее приращ ение издержек производства на единицу продук­

ции. П роизводная у ' -  lim —  выражает предельные издержки
лх->о Ах

производства и характеризует приближенно дополнительные за ­
траты на производство единицы дополнительной продукции.

Предельные издержки зависят от уровня производства 
(количества выпускаемой продукции) х  и определяются не п о ­
стоянны ми производственными затратами, а лиш ь переменными 
(на сырье, топливо и т.п.). Аналогичным образом могут быть о п ­
ределены предельная выручка, предельный доход, предельный про­
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дукт, предельная полезность, предельная производительность и 
другие предельные величины.

Применение дифференциального исчисления к исследованию 
экономических объектов и процессов на основе анализа этих пре­
дельных величин получило название предельного анашза. Предель­
ные величины характеризуют не состояние (как суммарная или 
средняя величины), а процесс, изменение экономического объекта. 
Таким образом, производная выступает как скорость изменения неко­
торого экономического объекта (процесса) по времени или относитель­
ного другого исследуемого фактора. Следует учесть, однако, что эко­
номика не всегда позволяет использовать предельные величины в 
силу неделимости многих объектов экономических расчетов и пре­
рывности (дискретности) экономических показателей во времени 
(например, годовых, квартальных, месячных и т.д.). Вместе с тем в 
ряде случаев можно отвлечься от дискретности показателей и эф­
фективно использовать предельные величины.

Рассмотрим в качестве примера соотношения между средним и 
предельным доходом1 в условиях монопольного и конкурентного 
рынков.

Суммарный доход (выручку) от реализации продукции г м ож ­
но определить как произведение цены единицы продукции р  на 
количество продукции q , т.е. г = pq.

В условиях монополии одна или несколько фирм полностью 
контролируют предложение определенной продукции, а следова­
тельно, цены на них. При этом, как правило, с увеличением цены 
спрос на продукцию падает. Будем полагать, что это происходит по 
прямой, т.е. кривая спроса p(q) — есть линейная убывающая функ­
ция р -  aq + й, где а<(), ЬХ). Тогда суммарный доход от реализован­
ной продукции составит г = (aq + b)q = aq2 + bq (рис. 7.9). В этом

г
случае средний доход на единицу продукции /-ср = — = aq + Ь, а

Я
предельный доход, т.е. дополнительный доход от реангзации едини­
цы дополнительной продукции, составит r'q = 2aq + h (см. рис. 7.9).
Следовательно, в усювиях монопольного рынка с ростом количества 
реализованной продукции предельный доход снижается, что приводит к 
уменьшению (с меньшей скоростью) среднего дохода.

1 В экономической литературе п р с л е л ь н ы е величины называют также 
маржинальными. При их записи к обычному обозначению величин добавляется 
буква А/: при записи с р е л н и х величин добавляемся буква А (от англ. Average —
средняя). Например, M R  -  предельный доход, AR -  средний доход.
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В условиях с о в е р ш е н н о й  к о н к у р е н ц и и ,  когда 
число участников рынка велико, и каждая фирма не способна 
контролировать уровень цен, устойчивая продажа товаров воз­
можна по  преобладающей рыночной цене, например, р  = Ь. При 
этом суммарный доход составит г = bq и соответственно средний 

г
доход гср = — = b и предельный доход r'q = b (рис. 7.10). Таким 

Я
образом, в условиях свободного конкурентного рынка в отличие от 
монопольного средний и предельный доходы совпадают.

Монопольный
рынок

%. г (суммарный 
доход)

П  Свободный конкурентный 
рынок

г  (су м м ар н ы й  
доход)

(предель- ь 
ный 2 а 
доход)

Рис. 7.9 Рис. 7.10

Для исследования экономических процессов и реш ения дру­
гих прикладных задач часто используется понятие эластичности 
функции.

Определение. Эластичностью функции Ех О') называется предел 
отношения относительного приращения функции у  к относительно­
му приращению переменной х  при Дх->0:

Ех (у) = lim — :
Ay _  х

= — lim —  =  — • у'  
У Лдг—>0 Ах у

(7.33)
_vt->ov у  х

Эластичность функции показывает приближенно, на сколько 
процентов изменится ф ункция у  = Дх)  при изменении независи­
мой переменной х н а  1%.

Выясним геометрический смысл эластичности функции. По
х ( х

определению  (7.33) Ех (у) = —у'  = — tgoc, где tg а  — тангенс угла
У У

наклона касательной в точке М(х,у) (см. рис. 7.11). Учитывая, что 
из треугольника М  В N  M N  = x t g  а, МС= у, а из подобия греуголь-
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l r n . r , M N  MB  „  , . MBников M B N  и A M C  = ------, получим EJj>)=-— , т.е. эластич-
M C  МА МА

ность функции (по абсолютной величине) равна отношению рас­
стояний по касательной от данной точки графика функции до т о­
чек ее пересечения с осями Ох и Оу. Если точки пеерсечения каса­
тельной к  графику функции А и В  находятся по одну сторону от 
точки М, то эластичность Ех(у) положительна (рис. 7.11), если по 
разные стороны, то Ех(у) отрицательна (рис. 7.12).

Отметим свойства эластичности функции.

1. Эластичность функции равна произведению независимой пере­

менной х  на темп изменения функции Ту =  (In у)' — -- - ,  т.е.
У

Е х ( у ) = х Т у . (7.34)

2. Эластичность произведения (частного) двух функций равна  
сумме (разности) эластичностей этих функций:

Ex (uv) = Ех(и) + Ex (v) , (7.35)

£ , ( " ]  =  £ > ) - £ > ) •  (7.36)

3. Эластичности взаимнообратных функций — взаимно обрат­
ные величины:

Ех (у) = - Х - .  (7.37)
* Еу (х) V '

Эластичность функций применяется при анализе спроса и по­
требления. Например, эластичность спроса у  относительно цены х
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(или дохода х) — коэффициент, определяемый по формуле (7.33) и 
показывающий приближенно, на сколько процентов изменится 
спрос (объем потребления) при изменении цены (или дохода) на 1 %.

Если эластичность спроса (по абсолютной величине) 
Ех(у)\ > 1, то спрос считают эластичным, если |£ х(>')| < 1 — неэла­

стичным относительно цены (или дохода). Если (^(.у)) = 1, то

говорят о спросе с единичной эластичностью.
Выясним, например, как влияет эластичность спроса относи­

тельно цены на суммарный доход г =  pq  при реализации продук­
ции. Выше мы предполагали, что кривая спроса р = p(q) — л и ­
нейная функция; теперь будем полагать, что р  = p{q) — произ­
вольная функция. Найдем предельный доход

Гд = ШУд = P'q-Q + P - l  = p{ l  + -^P'q = /»(l + E q(p)).

Учитывая, что в соответствии с формулой (7.37) для эластич­
ности взаимнообратных функций эластичность спроса относи­
тельно цены обратна эластичности цены относительно спроса,

т.е. Ед(р) = -у-  , а также то, что Ер (<7)<0, получим при п р о -
ЬрКЯ)

и з в о л ь н о й  кривой спроса
f  \

гя 1 - (7.38)
| Е р(я).

Если спрос неэластичен, т.е. \Ep{ q i < \ ,  то в соответствии с
(7.38) предельный доход Гд о т р и ц а т е л е н  при любой цене;

если спрос эластичен, т.е. \Ep{q) \>\ .  то предельный доход rq

п о л о ж и т е л е н .  Таким образом, для неэластичного спроса 
изменения цены и предельного дохода происходят в одном н а­
правлении, а для эластичного спроса — в разных. Это означает, 
что с возрастанием цены для продукции эластичного спроса суммар­
ный доход от peajimanuu продукции увеличивается, а для товаров 
неэластичного спроса — уменьшается. На рис. 7.9 на кривых дохо­
дов выделены области эластичного и неэластичного спроса.
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ОПример 7.11. Зависимость между издержками производства у  
и объемом выпускаемой продукции х  выражается ф ункцией у  =  
= 5 0 х ~ 0 ,0 5 х 3 (ден.ед.). Определить средние и предельные и з ­
держки при объеме продукции 10 ед.

Р е ш е н и е .  Ф ункция средних издержек (на единицу п ро­

дукции) выражается отношением у с„ = — = 50 -  0,05х2 ; при х =  10
х

средние издержки (на единицу продукции) равны у ср(Ю) = 

=  5 0 -  0,05-102 =  45 (ден.ед.). Ф ункция предельных издержек вы-
j

ражается производной .у'(а') = 50 — 0,15х ; при х =  10 предельные 

издержки составят у'(Ю) = 5 0 -  0,15-102=  35 (ден.ед.). Итак, если 
средние издержки на производство единицы продукции состав­
ляю т 45 ден. ед., то предельные издержки, т.е. дополнительные 
затраты на производство дополнительной единицы продукции 
при данном уровне производства (объеме выпускаемой продук­
ции 10 ед.), составляю т 35 д ен .ед .^

ОПример 7.12. Зависимость между себестоимостью единицы 
продукции у  (тыс.руб.) и выпуском продукции х  (млрд.руб.) вы ­
ражается функцией у — — 0,5х+80. Найти эластичность себестои­
мости при выпуске продукции, равном 60 млн. руб.

Р е ш е н и е .  По формуле (7.33) эластичность себестоимости

£  ( ,\=  ~ 0 ' 5 х  _  х

* ~~ -ОД* + 80 ”  х -  160 '

При х =  60 £ x=60(>’) -  -0,6 , т.е. при выпуске продукции, рав­
ном 60 млн. руб., увеличение его на 1% приведет к сниж ению  
себестоимости на 0 ,6 % .^

7.7. Решение задач

> Пример 7.13. Найти производные функций:

а) у=л[1п х  +1 + \п(у[х + 1);
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б) у  = 5х In х  ; в) у  = log2 (х -  2) .
(х + З)2

; г) у  =
sin2x 

Vcos2х
X I 1 • 2

д) у  = a rc tg -7 =  + In V* + 3 ; е) у  =  x sm *; ж) еу + е х + ху = 0.
V3

Р е ш  е н и е. а) При дифф еренцировании следует учесть, что 

первое слагаемое представляет степенную функцию  (у = 4 й ), ее 
аргумент — логарифмическую  функцию  плюс постоянную (и = 
=1п х + 1), а второе слагаемое — логарифмическую  функцию  (у =

=1п и , где и =  Vx + 1):

У' =

+  -

1
2Vln х +1 

1 1 1

(In X + 1)'
Vx + 1 

1

(Vx + 1)' = 1 1
2-v/ln х + 1 х

V^ + 1 2y/x 2y[x V Vх (In x  + 1) Vx + 1. 

б) Д анная ф ункция представляет произведение двух функций
„3 л

5 и In х , каждая из которых является сложной функцией 
(у=  5" , где и= х 3 ; у х = и\ , где щ = In х ).

Поэтому

у ' = (5*3)' In2 х  + 5^3 (In2 х )' = [5*3 In 5(x3) '] ln 2 х  + 5х , [2 In x(ln х)'] =

=  5Х In 5 -З х 2 In2 х  + 5х -2 1 п х -— = 5* In х(3 In 5 • x z In х + —).
х  х

в) Прежде чем дифф еренцировать функцию , целесообразно 
упростить ее выражение, применяя формулы логарифмирования: 

у=  5 log2 (х -  2) -  2 log2 (х + 3). Теперь

5

1

У' = 5(log2(x -  2))' -  2(log2(x + 3))' =

(х + 3)'

(х -  2) In 2
(х  -  2)'

(х + 3) In 2 In 2 х -  2 х + 3
Зх + 19

In 2(х -  2)(х + 3)
г) По правилу диф ф еренцирования частного двух функций

_ (sin2 x )'V cos2х -  s in2 x(V cos2x)'
(Vcos 2х )2
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У читывая, что (sin х)' = 2 s in x (s in x ) ' = 2 sin х cos х = sin 2х ,
1 _ ч 1 . . л . . .  s in 2 x

(л/ c o s  2 х )' =  — г . ( c o s  2 х ) '  =  — . ( -  s in  2 х ) ( 2 х ) '  -  .-------------,
2 v c o s 2 x  2 v c o s 2 x  V c o s 2 x

получим после преобразований
sin 2 xcos2 х

У ='
I cos 2х

д) Представим функцию  в виде у=  arctg —j= + — ln(x + 3).
\ 3  2

Теперь у  = + 1 . - j L - + ЗГ

1 1 2х  х  + л/3
■ +  —

1 + 1 I—

х ‘ +3 л/3 2 (х2 +3) х 2 + 32

е) П о правилу дифференцирования степенно-показательной 
ф ункции (7.27)

■ “ 1 ‘ - 1 у ' = sin х  -х мп X_1+ x sm AJnx(sin  х ) ' .

Учитывая, что (sin2 x)' = 2sin x(sin х)' =sin х cosx = sin 2 x , полу­
чим после преобразований

у ,  _  x sm- x |^Sin__X +  ^  ^  _

ж) При дифф еренцировании неявно заданной ф ункции учи­
тываем, что у  есть ф ункция от х, получим

еу • у ’ + е х ( -х) '  + х'у  + ху'  =0 или

, е~х - у
еУ . у  - е -v + y + xy =0, откуда у  = -------— .►

х  + еу

^П р и м ер  7.14. Вычислить значение производной ф ункции у  =

=fix) при х=л/4: а) у = In у 1 + ctg2x ; б) у= 1п4 sin х .

Р е ш е н и е. а) Вначале найдем производную функцию ,

предварительно заметив, что j '= ^ -ln (l + ctg2x ). Теперь
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у' = \ -  Т~~Г^ ~ + ^ g 2-*)' = ■2 ct g* (c t gхУ2 1 + ctg х  2(1 + ctg х)

ли вначале преобразовать функцию  у = —1п[ — ) = -  In sin х .

1 I 1----------;— ctgx    у— |= - c t g x .  Решение можно упростить, ес-
(1+ctg х )  V sin х )

Ы А2 vsin xv
Н аходим  значение производной  при х  =  я /4 : у ' ( п / 4 ) =  

= -c tg (rc /4 )=  - 1 .

б) П роизводная функции у  = 4 (ln  sin x )3(ln sin х)' =

. ,  , . 1 . . 41nJ s in x c o s x  з ■= 4 In" sin х  (sin х) = -----------------------= 4 In sin х  • ctg x .
sin x sin x

Значение производной при х= п/4 

у  '(л /4 )=  4 In3sin(Ti/4) • ctg(n/4) = 4 ln 3(l/> /2)■ 1 = -0 ,5 In3 2 >

v2г Пример 7.15. Дана кривая y ~ —- - x .  Составить уравнения

касательных: а) в точках пересечения ее с прямой Зх+2>>—4=0;
б) параллельной и перпендикулярной этой прямой; в) проходя­
щих через точку (2; —5).

Р е ш е н и е. а) 1. Найдем точки пересечения двух линий, 
реш ив систему уравнений:

х 2
~Г  -v’ , откуда

л гл ш  = ~li = 8.[Зх + 2у  -  4 = 0 11 1 '  1

2. Найдем производную функции у ' ~ ~ х ~  1. Значения п ро­

изводной в найденных точках у ’ (2)=0, у '  (—4 )= -3 .
3. Уравнения касательных по формуле (7.5) >’-1-1=0 и v~8= 

= —3(х+4) или Зх+>’+4 =  0 (см. прямые 1 и 2 на рис. 7.13).

3
б) У гловой ко эф ф и ц и ен т  заданной прямой к =  - - .  а пря- 

мой, параллельной и перпендикулярной заданной, соответственно

У = — ~  х , j *1 = 2’ 1*2 = ” 4,
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3 1 2
к? = к  = —  и кд = —  = = —.

2 к  3
Поэтому точки, в которых каса­
тельная к  кривой параллельна и 
перпендикулярна данной п р я­
мой, находятся из уравнений

откуда соот- 

10
ветственно х,  = -1  и х 7 =

1 3
Найдем ординаты кривой в п о ­

лученных точках Д — 1) =  ^  и

\ \ ! \  ! 
\ N v  1о-

\
\ \ Ч  6 ‘ 1 >\ \  .1 ^  \1 Л \

' V\2-
—8 -6  —[4

у

У

К. ? . 4 X 6  . 8

1\ 3

Рис. 7.13

/ ^ . Соответствующие уравнения касательных будут:

5 3 5 2 10
У -  — = -  — (х + Х) или 6х+4у+ 1 =  0 и .у + — = у ( х -  — ) или 6хг~9у-

—25=0 (см. прямые 3 и 4 на рис. 7.13).
в) Угловой коэффициент искомой касательной может быть 

найден, с одной стороны, как значение производной в точке
Г

Мс
Y 2  *0

*0 ’ , _ х04
(рис. 7.14), т.е.

1
k  = f ’(xQ) = - X Q - l ,  а с другой 

2
стороны, по формуле (4.5) как 
угловой коэф ф ициент прямой, 
проходящ ей через точку

М,
„2хо

X q ,  XQ
4

и заданную

точку М\  (2; —5), т.е.

к  =
■ -  Xq + 5

хо

Рис. 7.14
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И так, имеем уравление — х 0 -  1 = ----------------- , откуда после
2 х 0 -  2

преобразований получим: х$ - 4 х 0 -1 2  = 0 и (*o)i = -2  и  (хо)2 = 6.

Учитывая, ч то / ( —2) =3, /  ( -2 )  = -2  и Д 6)= 3 , / '( б )  = 2, по фор­

муле (7.5) найдем уравнения касательных соответственно у — 3= 
——2 (х+2) и у — 3 =  2 (х -  6) или у = —2х -  1 и ^  =  2х  — 9 (см. 

прямы е 1 и 2 н а рис. 7.14). ►

1>Пример 7.16. Тело, выпущенное вертикально вверх, движет­

ся по закону s(t) =  4+8/—5/2 , где высота s(t) измеряется в метрах, 
а время / — в секундах. Найти: а) скорость тела в начальный м о­
мент; б) скорость тела в момент соприкосновения с землей;
в) наибольш ую  высоту подъема тела.

Р е ш е н и е ,  а) Скорость тела в момент / равна производной 
s '(t), т.е. v(/)=5 '( /)= 8—10/; в момент /= 0 v(0) =  s '(0) =  8 м /с.

б) В момент соприкосновения с землей s(t) = 0, т.е. 4+ 8/— 5/2 = 
=0, откуда t{— 2; /2 = —0,4 (не подходит по смыслу, ибо />0). С ко­

рость тела в момент /=2 v(2) =  s '(2) =  8—10-2=—12 м /с  (минус 
указывает на то, что скорость тела в момент t = 2 противополож ­
на направлению  начальной скорости).

в) Н аибольш ая высота подъема %аИб (/) будет в момент, когда 
скорость тела равна 0 и происходит переход от подъема к опус­
канию  тела, T.e.v(/)=8—10/=0, откуда /=0,8.

Н аибольш ая вы сота подъема 5наиб (/)= 5 (0 ,8 )= 5 + 8 '0 ,8 -

-5 -0 ,82 = 8 ,2  м >

^П р и м ер  7.17. Объем продукции и, произведенный бригадой

рабочих, может быть описан уравнением и = - ~ / 3 + — / 2 + 100/+
6 2

+50(ед.), 1 < / < 8, где / — рабочее время в часах. Вычислить про­
изводительность труда, скорость и темп ее изменения через час 
после начала работы и за час до ее окончания.

4
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Р е ш е н и е .  Производительность труда выражается п роиз­
водной

z(t )=u' (t )  = - ^ - / 2 + 15/ + 100 (ед./ч),

а скорость и темп изменения производительности — соответст­
венно производной z'(t) и логарифмической производной

71(0 = [hi z(t)]

г ’(/)= ~ 5 /+ 1 5 (ед ./ч 2 ),

71(f) = = —  — + - --------=  -  21 -  -(ед ./ч).
- 5 ^  + ]5? + 100 / - 6 / - 4 0

2

В заданные моменты времени / j= l  и /2= 8 —1=7 соответствен­

но имеем: z ( l)  =112,5 (ед./ч), z '(1 )= Ю (ед./ч2 ), 71(1)= 0,09(ед./ч) 

и z(7)=82,5 (ед./ч), z '(7 )= -2 0 (е д ./ч 2 ), 71(7)=—0,24 (ед. ч).

Итак, к концу работы производительность труда сущ ественно 
снижается; при этом изменение знака z ’(t) и 71(/) с плю са на

минус свидетельствует о том, что увеличение производительности 
труда в первые часы рабочего дня сменяется ее снижением в п о ­

следние ч асы .^

ОП ример 7.18. Опытным путем установлены функции спроса

Р + % сq = -------  и предложения 5 =  /7+0,5, где p s  -  количество това-
р  + 2

ра, соответственно покупаемого и предлагаемого на продажу в 
единицу времени, р — цена товара. Найти: а) равновесную цену, 
т.е. цену, при которой спрос и предложение уравновешиваются;
б) эластичность спроса и предложения для этой цены; в) изм ене­
ние дохода при увеличении цены на 5% от равновесной.

Р е ш е н и е. а) Равновесная цена определяется из условия q=s'. 
/7 + 8
 = /7+0,5 , откуда /7 =  2, т.е. равновесная цена равна 2 ден. ед.
/7 + 2
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б) Н айдем  эластичности  по  спросу и предлож ению  по ф о р ­
муле (7.33):

Е М - —,— i p  ; Е Л з ) =  2р(р + 2)(р + 8) 2р + \

Для равновесной цены р = 2 имеем Е р=2 (q) = -0,3 ; Е р=2 (л) = 0,8 .

Так как  полученны е значения эластичностей  по абсолю т­
ной величине меньш е 1, то и спрос и предлож ение данного 
товара при равновесной  (ры ночной) цене неэластичны  о тн о ­
сительно цены. Это означает, что изм енение цены  не приведет 
к  резком у изм енению  спроса и предлож ения. Так, при увели­
чении  цены  р  на 1% спрос уменьш ится на 0,3%, а п редлож е­
ние увеличится на 0,8%.

в) П ри увеличении  цены  р  на 5% от равновесной  спрос 
уменьш ается на 5-0,3=1,5% , следовательно, доход возрастает
на 3 ,5 % .^

[>Пример 7.19. К ак связаны предельные и средние полные за­

траты предприятия, если эластичность полных затрат равна 1?
Р е ш е н и е .  Пусть полные затраты предприятия у  выражаю т­

ся ф ункцией y=f[x), где х  — объем выпускаемой продукции. То­
гда средние затраты уср на производство единицы продукции 

у
у ср = —. Найдем предельные издержки предприятия у ’. По усло- 

х
х  Увию  Ех(у)=  1, т.е. учитывая (7.33), —у ' = 1, откуда у ' = —. Итак,
У ' х

у ' — у Ср, т.е. предельные издержки равны средним издержкам 
(заметим, что полученное утверждение справедливо только для 
линейны х ф ункций издержек).

У П Р А Ж Н Е Н И Я
Найти производные функций:

7.20. i X -  -  1
x z + 1

7.21. у  =  х 4(8 In2 х -  4 In х + 1).

206



7.22. у  = л[х(еЪх -- 5 ) . 7.23. у  =  t / l T T 7  +  у[5 .

s la lW  гм . v=.nf£±i!>.7.24. , =  In . 7.25. >■ - I n ^

7.26. у =  Зх ln(l -  x 2) . 7.27. у  =  x ? In2 x .

7.28. у =  | . 7.29. у =  (xe2x + 3)5.

7.30. у  = ( x 2 ~ l)ln  J i — £  . 7 .3 1 . у  — sin(x2 + 2X).  
V 1 + X

7.32. у =  4eJ]nx(l -  л/ b i^ )  • 7-33. у  - ln ° ° S *
cosx

J Y7.34. у =  COS X  + ln  tg

7.35. у =  ln(Vl + -  1) -  !n(Vl + e v + 1).

7.36. у  = e x ln sin x . 7.37. r ~  ^  ln tg — — C(? ^ —.
2 2 2 sin x

>7-10 I 2 3 1 • -Tin aicctg x7.38. у  =   j— f  5— | sin x  . 7.39. у -  -T_ ^ = - .
Vcos X COS X'/' V l+ X 2

7.40. у  = V T - x 2 arccos x . 7.41. у  =  arcctg — + • — ln (x2 + a 2).
a 2

Найти производные функций и вычислить их значения при х = х 0 :

7.42. у  = yj 1 + 1п2 х; х 0 =  1. 7.43. у = 1п(х + Vx2 + 12); х 0 =2.

7.44. у =  sin х  • <?cosjr; х 0 =  -  . 7.45. у =1п 4| 1 ± М £ ; х 0 =0.
2 \  1 -  tg х

g
7.46. Составить уравнение касательной к кривой у =  т \

4 + х
а) в точке х ~  2; б) в точке пересечения с осью Оу.
7.47. Дана кривая у “ х 3 --2.V. Составить уравнения касатель­

ных: а) в точках пересечения ее с прямой 3xf y 2_ 0;
б) параллельной и перпендикулярной этой прямо]'!;
в) проходящих через точку (1; —5).
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7.48. Составить уравнения общих касательных к кривым у= х2 
и у= —2х2+4хг~4.

4t + 37.49. Тело движется прямолинейно по закону s(t) = --------- , где
t + 4

s измеряется в метрах, а / — в секундах. Найти скорость и уско­
рение тела в момент t = 6.

Найти производные функций, заданных неявно:
7.50. х 2 +х у  + у 2 = 6 .  7.51. ех sin у  -  е ~у cosx  =0.
Н айти производную я-го порядка функций:
7.52. у = х ” . 7.53. у= а х .
7.54. Объем продукции и (уел. ед.) цеха в течение рабочего дня 

представляет ф ункцию  и =  - / 3 -  512 + 15t + 425 , где t — время (ч). 
Найти производительность труда через 2 ч после начала работы.

7.55. Зависимость между издержками производства у  (ден. ед.) 
и объемом выпускаемой продукции х (ед.) выражается функцией

_у=10х-0,04х3 . Определить средние и предельные издержки при 
объеме продукции, равном 5 ед.

7.56. Ф ункции спроса q и предложения s от цены р  выражают­
ся соответственно уравнениями q = 1—р  и s = р + 1.

Найти: а) равновесную цену; б) эластичность спроса и пред­
ложения для этой цены; в) изменение дохода (в процентах) при 
увеличении цены  на 5% от равновесной.



Глава 8. ПРИЛОЖЕНИЯ ПРОИЗВОДНОЙ

Прежде чем перейти к наиболее важным приложениям п роиз­
водной при исследовании функций и построении их графиков, 
рассмотрим несколько основных теорем.

8.1. Основные теоремы дифференциального исчисления
Теорема Ферма. Если дифференцируемая на промежутке X  

функция y= f(x) достигает наибольшего ш и  наименьшего значения во 
внутренней точке х 0 этого промежутка, то производная функции 
в этой точке равна нулю, т.е. / '  (xq) = 0.

Пусть ф ункция > -/(х ) дифференцируема на промежутке X  и 
в точке х () е Х  принимает наименьш ее значение (рис. 8.I).

Тогда Д х0 +Лл)>Дл'()), если х 0 +Ахе 
еХ  и, следовательно, величина 
Aj ^ X xq +Ах)~Хх0 ) > 0 при достаточ­
но малых Дл независимо от знака Дх

Отсюда —-  > 0 при Дх>() и —  < О 
Дл- Ах

при Дл<0. Переходя к пределу при
Лл-->() 1 (справа) и при Л л » 0 -  (слева),

получим lim —  > 0 и lim —  < 0.
л.г >0 , Дх \х >0- Ах

Рис. 8.1 По условию функция у  = Дл') диф­
ференцируема в точке х 1}, следовательно, ее предел при Д.т-»0 не 
должен зависеть от способа стремления Лл->0 (справа или слева),

т.е, lim lim —  . откуда следует, что f ‘ (xq) = 0.
Лл >0- Дл' W .(! Дл'

Аналогпчно рассмагринается случай, когда ф ункция Д а-) п ри ­
нимает к точке х> наибольшее значение.!!
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Геометрический смысл теоремы Ф ерма очевиден: в точке наи­
большего или наименьшего значения, достигаемого внутри проме­
ж утка X, касательная к графику функции парсьиельна оси абсцисс.

Теорема Ф ерма может быть использована для доказательства 
так называемых теорем о среднем, к рассмотрению которых мы 
переходим.

Теорема Ролля. Пусть функция у  =f ( x )  удовлетворяет следую­
щим условиям'.

1) непрерывна на отрезке [а, Ь]\
2) дифференцируема на интервале (а, />);
3) на концах отрезка принимает равные значения, т.е. Д а )=  Дй).
Тогда внутри отрезка существует по крайней мере одна такая

точка %е(а, Ь), в которой производная функция равна нулю: 
/ ' ( ? )  = 0.

i i Н а основании теоремы Вейерштрасса (см. § 6.7) функция,
непрерывная на отрезке, достигает на нем своего наибольш его М  
и наименьш его т значений. Если оба эти значения достигаются 
на концах отрезка, то по условию они равны (т.е. т=М), а это 
значит, что функция тождественно постоянна на отрезке [а, Ь\ 
Тогда производная равна нулю во всех точках этого отрезка. Если 
же хотя бы одно из этих значений — максимальное или м и н и ­

мальное — достигается внутри от­
резка (т.е. т < М), то производная в 
соответствующей точке равна нулю
в силу теоремы Ферма.И

Отметим г е о м е т р и ч е с к и й  
с м ы с л теоремы Ролля (см.рис. 
8.2): найдется хотя бы одна точка, в 
которой касательная к графику 
функции будет параллельна оси абс­
цисс, в этой точке производная и 
будет равна пулю (заметим, что на 
рис. 8.2 таких точек две: qj и %2 )-

Если J{a)~ j{b)=0, то теорему Ролля можно сформулировать 
гак: между двумя последовательными нулями дифференцируемой 
функции имеется хотя бы один нуль производной.

Следует отметить, что все условия теоремы Ролля сущ ествен­
ны и при невыполнении хотя бы одного из них заключение тео­
ремы может оказаться неверным. Так, для функций, приведенных
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на рис. 8.3 наруш ено только одно условие: на рис. 8.3а — непре­
рывность на отрезке [а, Ь], на рис. В.36 — дифференцируемость 
на интервале (а , Ь), на рис. 8.3в — равенство значений f ia )=  fib).

В результате не существует такой точки £ е  (а,Ь). в которой
/ Ч 0 = о . '

У к

/(о) т

б) в)
Рис. 8.3

Теорема Ролля является частным случаем теоремы Лагранжа.
Теорема Лагранжа. Пусть функция у -  fix) удовлетворяет сле­

дующим условиям'.
1) непрерывна на отрезке [а. Ь).
2) дифференцируема на интервеие (а, Ь);
Тогда внутри отрезка существует по крайней мере одна такая 

точка qe(a, b ), в которой производная равна частному от деления 
приращения функции на приращение аргумента на этом отрезке, 
т.е.

f ( b ) - f  (а)

Ь- а
(8. 1)

L Введем новую функцию  g(x) следующим образом:

Ь - а
Ф ункция g(.x) удовлетворяет условиям теоремы Ролля: она н е ­

прерывна на отрезке [a, b], дифференцируема на интервале (а, Ь) 
и принимает на его концах равные значения:

g(a)=fia),
. f i b )  -  f ( a ) ,

g(b)=f(b)~- (b -  a) ~ f(a) .

Следовательно, существует точка ze(a.  b) такая, что g'(z) — О

„л „  М  откуда/ ' ( 4 ) -  я  '
о -  а о -  а

211



Заклю чение (8.1) теоремы Лагранжа может быть записано и в 
виде:

т - т = / ' Ш Ь - а ) .  (8.2)

Выясним м е х а н и ч е с к и й  и г е о м е т р и ч е с к и й  
с м ы с л  теоремы Лагранжа.

П риращ ение Д Ь)~Д а) — это изменение функции на отрезке

[а, Ь\, — -------- —  - средняя скорость изменения ф ункции на
о -  а

этом отрезке; значения же производной в точке — это 
“м гновенная” скорость изменения функции. Таким образом, 
теорема утверждает: существует хотя бы одна точка внутри от­
резка такая, что скорость изменения функции в ней равна средней

скорости изменения функции на 
этом отрезке.

Геометрическая интерпретация 
теоремы Лагранжа приведена на 
рис. 8.4.

Если перемещать прямую АВ  па­
раллельно начальному положению, 
найдется хотя бы одна точка се (а,
Ь), в  которой касательная к  графику 
fix ) и хорда АВ, проведенная через 
концы дуги АВ, паралле,1ъны (ибо в 
соответствии с (4.5) угловой коэф-

~ , f i P)  -  f ( a )  фициент секущей к АВ = — —— ,
b -  а

а касательной —- к = / '( : ) ) .  
С л е д с т в и е .  Если производная функции Д х) равна нулю на 

некотором промежутке X, то функция тождественно постоянна 
на этом промежутке.

: ] Возьмем на рассматриваемом промежутке X  отрезок [а , х].
Согласно теореме Лагранжа Д х ) —Да)=/ ' ( ^ ) ( х—а), где а<%<х. По
условию / ' (%)=§,  следовательно, Д х)—Да)=0, т.е. Jix)=jirt)=const.e

8.2. Правило Допиталя
Теорема. Предел отношения двух бесконечно мсиых или беско­

нечно больших функций равен пределу отношения их производных 
(.конечному или бесконечному), если последний существует в указан­
ном смысле.
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Итак, если имеется неопределенность вида

,• / ( * )  ,• / '( * )  lim = lim

‘0 ' оо
— или -----

.0 . 00
то

(8.3)
Х->*0 £(*) *->*0 S ’iX)(*_»oo) (x->co)

□ Рассмотрим доказательство теоремы для неопределенности

вида При X—► Xfj .

Для простоты будем предполагать, что функции / ( х )  и  g(x), а 
также их производные непрерывны в точке х0 , причем lim  / (х) =

= f ( x o ) - 0  И lim  g{x)  = £(*о)=0.
х->х0

/ ( х )  .. f ( x ) - f ( x 0)
В этом случае lim = lim .

х->х0 g(x)  x^xo g ( x ) - g ( x 0)
П рименяя теорему Лагранжа для функций Дх) и gix) на отрез­

ке [х, х0 ], получим

   ши n w
х-»х0х ^ х 0 g(x)  х ^ х 0 g ’i ^ i x - x o )  ’

где х  <  < xq  , x  < %2 < x o-

При x ^ -x 0 в силу непрерывности производных f i x )  и g' (x)  

имеем f i q ])->  / ' ( * о )  и S '(ъ2 ' ( х о )■ Используя теорему о 
пределе частного двух функций, получаем равенство (8.3).и

З а м е ч а н и е .  Обращаем внимание, что в правой части 
формулы (8.3) берется отношение производных, а не производная 
отнош ения.

[> Пример 8.1. Найти:

a) lim — ; б) lim — ; в) lim log0 *
* - > 0 0  С *->оо Q д: —>00 J£'v

Р е ш е н и е ,  а) Имеем неопределенность вида П рим е­

няя правило Лопиталя, получим:
00

lim —  =
д: - >оо gx

= lim
X' 1

 =  lim —  =0.у У_/*̂*

б) Имеем также неопределенность вида

» е 
00
00

П рименим пра­

вило Л опиталя [£]+1 раз, где [к] — целая часть числа к:
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lim  —  =
д:->оо q x

00 k x k l  
= l im --------- =

00
=  lim

к { к - \ ) х к 2  _
V . 0

00

00 х->«> а х In а оо x —>w a In а 00

= lim
X —>oo

k ( k  -  \) ...{k  -  (&])x '-[*]-

a* ln [*l+1 a
При каждом применении правила Лопиталя степень числите­

ля будет уменьшаться на единицу и через [&]+1 раз станет отри­
цательной, т.е. числитель обратится в бесконечно малую величи­
ну (если к — не целое число; если к  — целое, то в постоянную  
величину). Знаменатель же будет оставаться бесконечно большой

х квеличиной. Таким образом, lim —г-—0.
*->оо ЦК

1
!<«*_* , M = |im t t y ?  =  ш „ x M j l = Um 1 = 0 >

Y Y—krri V*в) lim
*-><* k x K l к  1п а дг->“> х " 

П равило Л опиталя дает возможность сравнения бесконечно 
больших величин: степенная функция х ” — бесконечно большая 
более высокого порядка, чем логарифмическая loga х  , а показа­
тельная ах — бесконечно большая более высокого порядка, чем

степенная х п ; это означает, что lim 

[> Пример 8.2. Найти:
loga *

lim —  = ао. 
*->* х п

a) lim е +е

Р е ш е н и е. а)

lim
*~>о X

X

- lim
jc—>0

; б) lim х In х .
*-->0

(ех + е~х - 2 ) ' 
( х2У

lim -
*-►0 2х

Неопределенность вида по-прежнему сохраняется. П ри ­

меним правило Лопиталя еще раз:
ех _ е -х (е* 

lim —  ■ -  =  lim 1
*->0 2 Х  *->0

C)' =  l i m ^  =  l.
(2х)' *->о 2

б) Имеем неопределенность вида [0-оо]. Переписывая данное 
выражение в виде

In X
lim (х In х) =[0-оо]= lim — — , получим неопределенность ви-

дг-»0-

да

х->0+  1
х

. П рименяя правило Лопиталя, получим
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lim
ln x = lim

x - > 0 +

1
X

1 : lim (-x ) =0. ►
x~>0*-»0+ 1

x x ‘
Правило Лопиталя является эффективным методом раскрытия 

неопределенностей. Однако применение его не всегда приводит к  цели. 
[> Пример 8.3. Найти:

ч .. Vx +1 ^  .. x + sinx
a) lim . — ; б) l im -------------.

*->°°Vx-l Jt->«>x-sinx
Р е ш  е н и е. а) Если применить правило Лопиталя, то полу­

чим
1

Vx -  1 _[~0
lim f—
■*̂ °° Vx

Vx + 1
1

= lim 2 4  x  +1
1

2Vx -1

= lim .------
Vx +1

т.е. числитель и знаменатель просто меняю тся местами; неопре­
деленность же сохраняется. Если применить правило Лопиталя 
вторично, то ф ункция под знаком предела примет первоначаль­
ный вид. Таким образом, применение этого правила в данном 
случае не позволяет раскрыть неопределенность. В то же время 
легко установить, что

lim _  
Vx
Vx + 1 : lim

1 + 1
х

б) Если прим енить правило Лопиталя, т.е.

lim x + sm x (x + s in x ) ' .. 1 + cosx
=  lim  ---------- — =  l im ----------- ,

(x -  s in x ) ' *->cr, 1 -  cosx*->«> x  -  sin x
то можно сделать ош ибочный вывод о том, что предел данной 
ф ункции не существует, так как не существует lim cos х .

х + sin х
Н а самом деле lim  -------;------= lim

х —>со х  -  sin х  x->oc

1 +
sin X

sin X

так как lim sin X =0 (см. пример б .8 в ).^
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8.3. Возрастание и убывание функций
Н апомним (см. § 5.3), что ф ункция у  = / ( х )  называется воз­

растаю щей (убывающей) на промежутке X, если для любых 
X j , х2 еХ,  х 2 >  х, верно неравенство / ( х 2 )  > / (  X j ) ( Д  х2 ) < / (  х , ).

Теорема (достаточное условие возрастания функции). Если 
производная дифференцируемой функции полож ительна внутри  
некоторого промеж утка X, то она возрастает на этом проме­
ж утке.

О Рассмотрим два значения х, и х 2 на данном промежутке X. 
Пусть х 2 > Xj, X], х 2 еХ. Докажем, что / ( х 2 ) > / (  х , ).

Д ля ф ункции / (х) на отрезке [ х , , х2 ] выполняю тся условия 
теоремы Лагранжа, поэтому

/ ( х 2 ) ~ - Л х 1) = / ' Ш х 2 - х 1), (8.4)

где x j < |< x 2 , т.е. с, принадлежит промежутку, на котором произ­
водная полож ительна, откуда следует, что /'(%)> О и правая часть 
равенства (8.3) положительна. Отсюда Д х 2 )—Д х ,)> 0  и Д х ,  )>

Аналогично доказывается другая теорема.
Теорема (достаточное условие убывания функции). Если произ­

водная дифференцируемой функции отрицательна внутри некото­
рого промежутка X, то она убывает на этом промежутке.

Геометрическая интерпретация условия монотонности ф унк­
ц и и  приведена на рис. 8.5.

Рис. 8.5 
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Если касательные к  кривой в некотором промежутке направ­
лены под острыми углами к  оси абсцисс (рис.8.5а), то ф ункция 
возрастает, если под тупыми (рис. 8.56), то убывает,

[> Пример 8.4 . Н айти интервалы  м онотонности  ф ун кц ии  у=  

= х 2 —4х+3.
Р е ш е н и е .  Имеем у ' — 2 х-4 . Очевидно у ’> 0 при х  > 2 и 

у' <0 при х <  2, т.е. ф ункция убывает на интервале (—ос, 2) и воз­
растает на интервале (2, оо), где х0=2 — абсцисса верш ины пара-

б о л ы .^
Заметим, что необходимое условие монотонности более слабое. 

Если функция возрастает (убывает) на некотором промежутке X, 
то можно лиш ь утверждать, что производная неотрицательна 
(неположительна) на этом промежутке'. / '  (х)>0 ( f ' ( x ) < 0), хеХ , 
т.е. в отдельных точках производная монотонной функции может 
равняться нулю.

11ример 8.5. Найти интервалы монотонности функции у  = х 3 .

Р е ш е н и е .  Найдем производную у ' — Зх2 . Очевидно, что у ' > 
>0 при х  ф 0. При х  =  0 производная обращается в нуль. Ф ункция же 
монотонно возрастает на всей числовой оси (см.рис.5.5).^

8.4. Экстремум функции
В определенном смысле материал этого параграфа наиболее ва­

жен для решения задачи исследования функций и построения их 
графиков. Мы выделим наиболее важные, “узловые”, точки ф унк­
ции, нахождение которых во многом определяет структуру графика. 
Это точки экстремума — максимума и минимума функции.

Определение 1. Точка х0 называется точкой максимума ф унк­
ции Дх) ,  если в некоторой окрестности точки х () выполняется нера­
венство fix )  <fi х 0 ) (см.рис. 8.6).

Определение 2. Точка х, называется точкой минимума функции 
fix ), если в некоторой окрестности точки Xj выполняется неравен­
ство f ( x ) > f ( x ] ) (см.рис. 8.6).

Значения функции в точках х0 и Х| называются соответст­
венно максимумом и минимумом функции. М аксимум и минимум 
функции объединяется общим названием экстремума функции.
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Рис. 8.6

Экстремум функции часто н а­
зывают локальным  экстремумом, 
подчеркивая тот факт, что понятие 
экстремума связано лиш ь с доста­
точно малой окрестностью точки 
х 0 . Так что н а одном промежутке 
функция может иметь несколько 
экстремумов, причем может слу­
читься, что минимум в одной 
точке больше максимума в дру­
гой, например, на рис. 8.6 
/ m i n ( * 2 ) > / m a x ( * o ) -  Н аличие м ак­
симума (или минимума) в отдель­
ной точке промежутка X  вовсе не 
означает, что в этой точке ф ун к­
ция f ix )  принимает наибольшее 
(наименьшее) значение на этом 
промежутке (или, как говорят, 
имеет глобальный максимум (м и­
нимум)).

Важность точек экстремума и л ­
люстрируется следующим прим е­
ром (см. рис. 8.7).

Предположим, график функции 
у  = fix )  имеет вид, изображенный 
на рисунке сплош ной линией. 
Допустим, мы строим его по  точ­

кам, и н а рисунок нанесены  точки 1, 3, 5, 7, 9. Тогда скорее всего 
мы получим кривую , изображенную пунктиром, которая совер­
ш енно не похожа на истинны й график ф ункции у  = fix ).

Если же на рисунок нанесены точки 2, 4, 6, 8, то качественная 
картина граф ика определена практически однозначно (по край ­
ней мере н а промежутке, содержащем эти точки).

Необходимое условие экстремума. Если в точке х 0 диф ф ерен­
цируемая ф ункция у  -  f ix )  имеет экстремум, то в некоторой о к ­
рестности этой точки выполнены условия теоремы Ф ерма (см. 
§ 8.1), и, следовательно, производная функции в этой точке рав­
на нулю, т.е. / '  ( лг0 )=0. Н о ф ункция может ил ’ть экстремум и в
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точках, в которых она не дифференцируема. Так, например, 
функция y H x l имеет экстремум (минимум) в точке х=0, но  не 
дифференцируема в ней (см. пример 7.2 и рис.7.5). А функция

у=л[х* также имеет в точке х=0 минимум (рис. 8.8), а производ-
2

ная ее в этой точке бесконечна: у' =  > У' (0)=°°.
3 \ х

Рис. 8.8 Рис.8.9

Поэтому необходимое условие экстремума может быть сф ор­
мулировано следующим образом.

Д ля того, чтобы функция у  = Д х) имела экстремум в точке х 0 , 
необходимо, чтобы ее производная в этой точке равнялась нулю  
( f ' ( x 0 ) -  0) или не существовала.

Точки, в которых выполнено необходимое условие экстрему­
ма, т.е. производная равна нулю или не существует, называю тся 
критическими (или стационарными). Обращаем внимание на то, 
что эти точки должны входить в область определения функции.

Таким образом, если в какой-либо точке имеется экстремум, 
то эта точка критическая. Очень важно, однако, заметить, что 
обратное утверждение неверно. Критическая точка вовсе не обя­
зательно является точкой экстремума.

^Пример 8.6. Найти критические точки функции и убедиться 
в наличии или отсутствии экстремума в этих точках:

а) >'=л'2 ; б) > '= * ' + 1 ; в) у = \ х  -  1 .
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Р е ш  е н и е. а) П роизводная у ' = 2х. В точке х = 0 у ' (0) =  0
и действительно в точке х  =  0 функция у  = х 2 имеет экстремум 
(см.рис. 5.6).

б) Ф ункция у  = х 3 +1 возрастает н а  всей числовой оси по 
свойству степенной функции. Производная у ' = Зх2 в точке х  =  0 
равна нулю, т.е. у ' (0) =  0, но экстремума в точке х  =  0 нет 
(см.рис. 8.9).

в) Ф ункция у=1[х - 1  также возрастает на всей числовой оси;

производная у' = — . = при х =  1 не существует, т.е. у' (1) =  
ЗЩх - I)2

=  оо, но экстремума в этой точке нет (см.рис. 8.!()).►

Рис. 8.10 Рис. 8.11
Таким образом, для нахождения экстремумов функции требу­

ется дополнительное исследование критических точек. Иными 
словами, требуется знать достаточное условие экстремума.

Первое достаточное условие экстремума. Теорема. Если при пе­
реходе через точку х 0 производная дифференцируемой функции 
y=J{x) меняет свой знак с плюса на минус, то точка х 0 есть точка 
максимума функции y=f(x), а ес/и с минуса на т ю с, — то точка 
минимума.

□ Пусть производная меняет знак с плю са на минус, т.е. в н е ­
котором интервале (д ,х 0 ) производная положительна ( / '  (х)> 
> 0),.а  в некотором интервале (х 0 , Ь) — отрицательна ( / ' ( х ) < 0). 
Тогда в соответствии с достаточным условием монотонности 
ф ункция / ( х )  возрастает на интервале (а, х 0 ) и убывает на интер­
вале ( х 0 , Ь), (см. рис. 8.11).
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По определению  возрастающей функции Д  х0 ) > f ix )  при всех 
хе(а,  х0 ), а по определению  убывающей функции f ix )  < f i x Q) 

при всех х е ( х 0 , Ь), т . е . / ( х 0) > / (х) при всех х е(а,  b), следова­
тельно, х0 — точка максимума функции у  = / ( х ) .

Аналогично рассматривается случай, когда производная м еня­
ет знак с минуса на плюс.И

Отметим, что дифференцируемость функции в самой точке х 0 
не использовалась п ри  доказательстве теоремы. Н а самом деле 
она и не требуется — достаточно, чтобы функция была непре­
рывна в точке х 0 .

Рис. 8.12
Таким образом, достаточным условием сущ ествования экстре­

мума ф ункции у=  f(x )  в точке х0 является изменение знака ее 
производной, т.е. углов наклона касательных к кривой ; ’-=Дх): 
с острых на тупые (рис. 8.12а) при переходе через точку м акси ­
мума или с тупых на острые (рис. 8.126) при переходе через точку 
минимума. Если изменения знака производной не происходит, то 
экстремума нет.

Схема исследования функции _у=Дх) на экстремум.
1°. Найти производную у  '= / '( х ) .
2°. Найти критические точки функции, в которых производ­

ная f ' ( x )= 0 или не существует.
3°. Исследовать знак производной слева и справа от каждой 

критической точки и сделать вывод о наличии экстремумов 
функции.

4°. Найти экстремумы (экстремальные значения) функции.
Пример 8.7. Исследовать на экстремум ф у н к ц и ю  '- \ ( . \  1г.
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Р е ш е н и е .  1°. Производная функции у '  = (л:—I ) 3 +3х (х— 
—1)2 =  (х—I)2 (4л:—1).

2°. П риравнивая производную к нулю, находим критические

точки ф ункции х, = ; х 2 = 1. (Точек, в которых производная не

существует, у данной функции нет — /  '(*) определена на всей 
числовой оси).

3°. Нанесем критиче­
ские точки на числовую 
прямую (рис. 8.13).

Для определения знака 
производной слева и 
справа от критической

точки х  = ~  выберем, на­

пример, значения х =  0 и х = ^  и найдем /  '(0) =  — 1 < 0 и

/ ' ( —) =  ~  >0 ;  следовательно, / '  (х) < 0 при всех х <: —и / '( х )> 0  
2 \ 4 

на интервале ( —; 1).

Аналогично устанавливаем, ч то / '  (х)>0 и на интервале (1, оо).

Согласно достаточному условию х = — — точка минимума
4

данной функции. В точке х =  1 экстремума нет.

о  1Г 1 I 3 27
4°. Находим / тш  -  = - | — 1 ---------

V4 J 4V4 > 256
Второе достаточное условие экстремума. Теорема. Если первая 

производная / '  (х) дважды дифференцируемой функции равна нулю в 
некоторой точке х 0 , а вторая производная в этой точке / " ( х 0 ) 
положительна, то х 0 есть точка минимума функции / '  (х); если 
/ " ( х 0 ) отрицательна, то х0 — точка максимума.

~ Пусть / '  (х 0 )=0, a / "  (х 0 )>0. Это значит, что / ' '  (х) =  (/'(•*))'> 
> 0 также и в некоторой окрестности точки х0 , т.е. / '  (х) возрастает 
на некотором интервате {а, Ь), содержащем точку х0 .

Н о / '( х , | ) = 0 ,  следовательно, на интервале ( а . х0 ) / ’ (х) < 0, а 
на интервате ( х0 , Ь) / ’ (х) > 0, т.е. / '  (х) при переходе через точ­
ку х(, меняет знак с минуса на плюс. т.е. х 0 — точка минимума.

222



Аналогично рассматривается случай / '  ( х 0 )=0 и / "  (х 0 )<0. ■
Схема исследования на экстремум функции у  = / (а )  с  п о м о ­

щ ь ю  второго достаточного условия в целом аналогична схеме, 
приведенной выш е (совпадают полностью п.п. 1°, 2°, 4°). О тли­
чие в п 3°, устанавливающем наличие экстремума: здесь необхо­
димо найти вторую производную f "  (х) и определить ее знак в каж ­
дой критической точке.

; Пример 8.8. Производитель реализует свою продукцию по це­
не р  за единицу, а издержки при этом задаются кубической зависи­
мостью 5(х)=шгНЪс3 (а<р, /> 0). Найти оптимальный для производи­
теля объем выпуска продукции и соответствующую ему прибыль.

Р е ш е н и е .  Обозначим объем выпускаемой продукции л'. 
Составим функцию  прибыли О х )~рх  (а х+) .v' ), где рх — доход 
от реализуемой продукции.

1°. Находим С  {х) -{р-  а) -У>. х 2 .
2°. Находим критические точки: С' (х)=(р~а)~У/ х 2 —0, откуда

i p - а , j р - а
x l = — (вторую критическую  точку x 2 = не Рас~

сматриваем по смыслу задачи).
3°. Находим С"  (л )= -6 л х  и определяем знак второй производ­

ной при х, = ^-Р-

С" А,  =
За

<0 (в данном случае С" (х)<0 при любом

а > 0 ) ,  следовательно, при x - J ——— прибыль С(х) максимальна.
V 3/.

4°. Находил» максимум функции (т.е. максимальный размер 
прибыли)

(Р ~ а ) ^ р - аСv- m и
р -  а

з Г ~m a x К

Второе достаточное условие экстремума утверждает, что если в 
критической точке л'() / " ( л 0 )/0 , го в этой точке имеется экс­

тремум. Обратное утверждение, однако, неверно. Экстремум в 
критической точке может быть и при равенстве в ней нулю вто­
рой производной.
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Рассмотрим, например, ф ун к ц и ю  _у = х 4 . Имеем у ' = 4 х \  
у " —\ 2 х 2 . В критической точке х-О вторая производная также 
обращается в нуль. Но х=0 — точка экстремума, а именно — м и ­
нимума. Так что в отличие от первого второе достаточное усло­
вие является именно только достаточным, но не необходимым. 
Поэтому, если в критической точке х0 / " ( х п )=0, то рекоменду­
ется перейти к первому достаточному условию экстремума.

8.5. Наибольшее и наименьшее значения функции

П ри реш ении прикладных задач, в частности оптим изацион­
ных, важное значение имеют задачи на нахождение наибольшего и 
наименьшего значений (глобального максимума и глобального мини­
мума) ф ункции на промежутке X.

Ссогласно теореме Вейерштрасс-а (§ 6.7), если функция у - Д х )  
непреры вна н а о т р е з к е [а, 6], то она принимает на нем наи­
большее и наименьш ее значения. Наибольшее или наименьшее 
значение функции может достигаться как в точках экстремума, 
так и в точках на концах отрезка. Так, на рис. 8,14 наибольшее 
значение ф ункции на конце отрезка х  — Ь, а наименьшее —- в точ­
ке минимума Xj.

Д ля отыскания наибольшего и наименьшего значений на отрезке 
рекомендуется пользоваться следующей схемой:

на отрезке

1°. Найти производную / '(х ) .
2°. Найти критические точки 

ф ункции, в которых / '(х )--0  или 
не существует.

3°. Найти значения функции в 
критических точках и на концах 
отрезка и выбрать из них н аи ­
большее / 1аИо и наименьшее у^аим

О а х ,

Рис. 8.14

Р о ш е н и е.

Пример 8.9. Найти наиболь­
шее и наименьшее значения функ­
ции v= (x  - 2)ге х на отрезке [0; 5].

r ;. / '( x ) - 2 ( Y  ?.k> л (х 2 ) V A \  X  -  . : } \ Х  '  4 )
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2°. /  '(*)=0, откуда критические точки х, =2 и х2 =4.

3°. Значения ф ункции в критических точках Д 2)=0, Д 4 )= —j- и
е

9
на концах отрезка ДО) =  4 и / ( 5 ) = - ^  Итак, /„аиб=Л 0)= 4,

е
/н а и м = /(2 )  =  0 >

З а м е ч а н и е .  Если ф ункция у  = /(х )  непреры вна н а и н ­
т е р в а л е  (а, Ь), то она может не принимать на нем наиболь­
шее и наименьш ее значения. В частном случае, если дифференци­
руемая функция на интервале (а, Ь) имеет лишь одну точку макси­
мума {или одну точку минимума), то наибольшее (или наименьшее) 
значение функции совпадает с максимумом (или минимумом) этой
функции. Например, на интервале (1; 2) ф ункция у  = х  - 6 х  + 5 
имеет один минимум _ymin =  _у(3)=—4, следовательно, это и есть
наименьш ее значение ф ункции у  наим=—4. Заметим, что н аи ­
большего значения данная функция на указанном интервале не 
имеет.

8.6. Выпуклость функции. Точки перегиба
Ранее мы подробно изучали точки экстремума, нахождение 

которых во многом определяет структуру графика функции. О п­
ределим теперь другие “узловые” точки функции, которые также 
следует найти, чтобы качественно построить ее график.

4

Рис. 8.15

8  В ы сш а я  м атем атика для эко но м ней  i 225



Рассмотрим функцию, график которой изображен на рис. 8.15а.
Эта ф ункция возрастает на всей числовой оси и не имеет экс­

тремумов. Очевидно, однако, ее отличие от функций, изображ ен­
ных на рис. 8.156 и 8.15в. В точках х , , х2 , х3 , х4 , х5 график как 
бы “перегибается” . Поэтому такие точки называются точками 
перегиба, к строгому определению которых мы и переходим.

Прежде всего определим различие поведения ф ункции по раз­
ные стороны от точек х, , х 2 , х 3 , х4 , х 5 .

Определение 1. Функция y = f ( x )  называется выпуклой вниз на 
промежутке X, если для любых двух значений x t , х 2 е Х  из этого 
промежутка выполняется неравенство

+ * 2 j  < / ( * l )  + /(*2> (g ^

Определение 2. Функция называется выпуклой вверх1 на проме­
жутке X,, если для любых двух значений X j, х2 е Х  из этого проме­
жутка выполняется неравенство

А х \ + х г к  f ( x i) + f ( x 2) (8.6)
2 )  2

Графики ф ункций, выпуклых вниз и вверх, изображены на 
рис. 8.16. Очевидно, что если ф ункция выпукла вниз, то отрезок, 
соединяю щ ий любые две точки графика, целиком лежит над гра­
фиком (см. рис. 8.16а), если — выпукла вверх, то весь такой от­
резок целиком  лежит под графиком ф ункции (см. рис. 8.166).

У>
У=Кх)/

У>

/ ( * Р )

/ ( * i)+/(X j)

у ^ А * у

Д х^+Д хз) /71
2

Л Х  ,+х2\ /  ( /
\ т

2 Г/ 1  i
Л  2 1

т \
У  ! I / W

т \  ! i „
0 X[+Xj Xj ^  

2
0 X] x t+x2 х2 X 

2
а)

Рис. 8.16
б)

Теорема. Ф)>нкция выпукла вниз (вверх) на промежутке X  тогда 
и только тогда, когда ее первая производная на этом промежутке 
монотонно возрастает (убывает).

1 Иногда выпуклой называют только функцию выпуклую вверх, а функцию  вы пук­
лую вниз — вогнутой.
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Геометрический смысл теоремы состоит в том, что если f ' ( x )  
возрастает (убывает) на промежутке X,  то возрастает (убывает) 
угол наклона касательных к  графику (см.рис. 8.17 а, б). Это и 
означает выпуклость ф ункции вниз (вверх).

Рис. 8.17
И спользуя условия монотонности, мы можем определить сле­

дующее достаточное условие выпуклости функции вниз (вверх).
Теорема. Если вторая производная дважды дифференцируемой 

функции положительна (отрицательна) внутри некоторого проме­
жутка X, то функция выпукла вниз (вверх) на этом промежутке.

С Если f " ( x )=( f ' ( x ) ) ’>0, хеХ,  то f ' ( x )  возрастает на промежутке
X , следовательно, на основании предыдущей теоремы функция 
выпукла на промежутке X. А налогично рассматривается случай
/ " ( * ) < 0 ,  х е Х  Я

Необходимое условие выпуклости слабее: если функция вы ­
пукла на промежутке X,  то можно утверждать лиш ь, что f"(x)>() 
(или / ”(х)<0), хеХ.  Н апример, ф ункция у = х 4 выпукла на всей 
числовой оси, хотя вторая производная у " = \ 2 х 2 не всюду поло­
жительна: при х=0 / ”(0)=0.

Определение. Точкой перегиба графика непрерывной функции 
называется точка, разделяющая интервалы, в  которых функция 
выпукла вниз и вверх.

И з выш есказанного следует, что точки перегиба — это точки 
экстремума первой производной. Отсюда вытекают следующие 
утверждения.

Теорема (необходимое условие перегиба). Вторая производная 
/ ' ' ( х) дважды дифференцируемой функции в точке перегиба х,( равна 
нулю, m. e . f " ( x ) =0.
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Теорема (достаточное условие перегиба). Если вторая производ­
ная f " { x )  дважды дифференцируемой функции при переходе через 
некоторую точку х0 меняет свой знак, то х0 есть точка перегиба 
ее графика.

Нужно иметь в виду следующую геометрическую интерпрета­
цию  точек перегиба (см.рис. 8.18).

руемой функции не является точкой экстремума, то она есть точ­
ка перегиба.

Схема исследования функции на выпуклость и точки перегиба:
1°. Н айти вторую производную  ф ункции f " (x) .
2°. Н айти точки, в которых вторая производная f " ( x ) = 0 или не 

существует.
3°. Исследовать знак второй производной слева и справа от 

найденны х точек и  сделать вывод об интервалах выпуклости и 
наличии точек перегиба.

4°. Н айти значения ф ункции в точках перегиба.
[>Пример 8.10. Н айти интервалы выпуклости и точки перегиба 

граф ика ф ункции у - х ( х  -  I)3 .

Р е ш е н и е .  1°. у ' = ( х  -  1)2(4х -  1) (см. пример 8.7).

У н В окрестности точки Xj функ­
ция выпукла вверх и график ее 
лежит ниже касательной, прове­
денной в этой точке. В окрест­
ности точки х 2 , на которой
ф ункция выпукла вниз, картина 
обратная — график лежит выше 
касательной. В точке же переги­
ба х0 касательная разделяет гра- '
ф ик — он лежит по  разные сто­
роны касательной.

Рис. 8.18 Следует отметить, что если 
критическая точка дифференци-

2°. >>''=2(х—1)(4х—1)+ (х -  I)2 • 4= 1 2  х( * - • £ )  ( ^ о .

У

у " = 0 при х х = -  

(рис. 8.19).

и х 2 =1

Рис. 8.19
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3°. у " > 0 н а интервалах (-с», —) и (1, оо), следовательно, на 

этих интервалах  ф ун кц и я вы пукла вниз; у '< 0  на интервале 

( ^ ,  1), следовательно, ф ун кц ия на нем  вы пукла вверх, а

Xj =  ^  и х2 =1 есть точки  перегиба.

4°. Значения ф ункции в точках перегиба/ ( — )= — —  , / ( 1  )=().►
2 16

1

8.7. Асимптоты графика функции
В предыдущих параграфах мы изучали характерные точки 

функции. Теперь рассмотрим характерные линии. Важнейшими 
из них являю тся асимптоты.

Определение. Асимптотой графика функции y= fix) называется 
прямая, обладающая тем свойством, что расстояние от точки (х, 
f ix ))  до этой прямой стремится к нулю при неограниченном удале­
нии точки графика от начала координат.

Рис. 8.20
Н а рис. 8.20а изображена вертикальная асимптота, н а  рис. 

8.206 — горизонтальная асимптота, а на рис. 8.20в — наклонная. 
Очевидно, этими тремя случаями исчерпываю тся все возможные 
расположения асимптот.

Нахождение асимптот графика основано на следующих утвер­
ждениях.
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Теорема 1. Пусть функция у  = /(х ) определена в некоторой окрест­
ности точки х0 (исключая, возможно, саму эту точку) и хотя бы один 
из пределов функции при х -> х0 — 0 (слева) или при х ->хс +0 (справа) 
равен бесконечности, т.е. lim  f ( x )  = х  или lim / ( х )  = оо. То-

х - > л г о - 0  ;с -> л :о + 0

гда прямая х  =  х0 является вертикальной асимптотой графика
функции у  = /(х ) .

Очевидно, что прямая х  =  х0 не может быть вертикальной
асимптотой, если функция непрерывна в точке х 0 , так как в
этом случае lim f ( x ) = J ( x 0 ). Следовательно, вертикальные асим-

птоты х = х 0 следует искать в точках разрыва функции y= f(x) или 
на концах ее области определения {а, Ь), если а и  b — конечные числа. 

Теорема 2. Пусть функция у  =Дх) определена при достаточно
больших х  и существует конечный предел функции lim f ( x ) = b .  То-

*-><*•
гда прямая у  = b есть горизонтальная асимптота графика функции 
У =Лх).

З а м е ч а н и е .  Если конечен только один из пределов 
lim f ( x ) =  bn или lim f ( x ) = b u, то функция имеет лиш ь лево-

Х - У - о о  Х - * + ° с

стороннюю у  =  Ь:1 или правостороннюю у  = Ьп горизонтальную 
асимптоту.

В том случае, если lim f ( x ) = ° с, функция может иметь на-
Х->*>

к л о н н у ю  а с и м п т о т у .
Теорема 3, Пусть функция y=f(x) определена при достаточно боль­

ших х  и существуют конечные пределы lim = к  и lim Г / ( х )  -

Ах] = Ь. Тогда прямая у=кх+Ь является наююнной асимптотой гра­
фика функции у=Дх).

□  Если y= kx4rb — наклонная асимптота, то очевидно, что

1й п [/(х ) ~ (к* + Ь)\ =0 и тем более lim f -  к -  —) =0. Поэтому
х->оо1 1 х ->«л х  х /

f ( x )A ^ l im —■— . Теперь из равенства l im f /(x )  -  (кх + />)]=0, учиты-
*->00 х  X̂><X>L J

в а я , ч т о  к  —  к о н е ч н о е  ч и с л о ,  п о л у ч а е м :  b =  l i m [ / ( x )  -  Ал'] .■
X -юо1 J

Н аклонная асимптота, так же, как и горизонтальная, может 
быть правосторонней или левосторонней.
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[> Пример 8.11. Найти асимптоты графика дробно-линейной

а b
ф ункции y =C DC +-~- , где сфО и 

сх + d с d
ф0 .

Р е ш е н и е. И з области определения выпадает точка х=  -  — ,
с

Найдем пределы функции Дх) при х—> -  — .
с

ах + Ь ах + b
В силу того, что

a b 
с d

n d^0 ч и с л о  не
сcx + d  с(Х + d- )  

с
d

является корн ем  числителя, т.е. при  —  числитель не
с

„  ах + b dстрем ится к нулю . О тсю да lim --------- =  ±оо и прямая х  = ----
d c x + d  с
С

„ а х + Ь
является вертикальной  асим птотои . Далее lim

а
= lim — ,d

х-> ±сс сх + d
Ь
X -O'

X

Отсюда следует, что прямая у  = — является горизонтальной
с

асимптотой. (Заметим, что ранее в § 4.5 уравнения асимптот 
дробно-линейной ф ункции были найдены путем параллельного 
переноса осей координат в центр ее графика — равносторонней 
гиперболы).

Так, например, асимптотами функции у -  -— —  являю тся
Л- + 1

прямые х = — 1, у = —2 (график ф ункции приведен на рис. 4 .2 4 ).^

X
>  Пример 8.12. Найти асимптоты графика функции —------.

х ~  +1
Р е ш е н и е .  Очевидно, график функции не имеет ни верти­

кальных асимптот (нет точек разрыва), ни горизонтальных
1X( Jim —г —со). Найдем наклонную  асимптоту.

х  + 1
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X  —>± ос X  X —»±°CJ£ 1
: х  = lim —^—  =  1; 

x  +1

b=  lim \ f ( x )  -  \ ■ x \ =  lim
+1

—̂-------- x =  lim
X + 1 )  X^±oc

Таким образом, наклонная асимптота графика функции имеет 
вид у = х .^

8.8. Общая схема исследования функций 
и построения их графиков

При исследовании ф ункций и построении их графиков реко­
мендуется использовать следующую схему:

1 °. Найти область определения функции.
2°. Исследовать функцию  на четность—нечетность.
3°. Найти вертикальные асимптоты.
4°. Исследовать поведение функции в бесконечности, найти 

горизонтальные или наклонные асимптоты.
5°. Найти экстремумы и интервалы монотонности функции.
6°. Н айти интервалы выпуклости функции и точки перегиба.
7°. Найти точки пересечения с осями координат и, возможно, 

некоторые дополнительные точки, уточняющие график.
Заметим, что исследование функции проводится одновремен­

но с построением ее графика.
1 4  V '

;>Пример 8.13. Исследовать функцию  у = — —  и построить
1 -  х ‘

ее график.
Р е ш е н и е .  1°. Область определения ( - х ,  — 1)U (— 1, DU 

U (1, +ос), т.е. х *  ±1.
2°. Ф ункция четная, так как / ( ~ х ) = / ( х ) ,  и ее график симмет­

ричен относительно оси ординат.
3°. Вертикальные асимптоты могут пересекать ось абсцисс в 

точках х = ± 1 .  Так как пределы функции при х 1 —0 (слева) и 
при х->1+() (справа) бесконечны, т.е.

1 + х 2 .. 1 + х 2 .l i m  г-=—ос и l i m  г~=+х, то прямая х=т сеть верти-
• -I ‘ 1 Л V .1 : 1 д

кальная асимптота. В силу симметрии графика /(.v) .v -  - 1 также
вертикальная асимптота.
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4°. Поведение функции в бесконечности. Вычислим lim
1 + х,2

-1. В силу четности имеем также lim
1 + х

Л -1, т.е. прямая

>>=-1 — горизонтальная асимптота.
5°. Экстремумы и интервалы монотонности.

4х
Найдем у'=

2 х (1  -  а 2 ) — (1 +  х 2) ( - 2х ) 

( 1 - л 2)2
т . ; v '=() при л =  0

( 1 - А 2)2 '
и у '  не существует при х  = ± \.

Однако критической является только точка л, =  0 (так как 
значения л = ± 1  не входят в область определения ф ункции). П о­
скольку при jc< 0 / '(л )< 0 , а при л>() f ( x )>0 (рис.8.21), то х= 0  —

  ______ точка минимума и
У — _  .fxmn _  минимум
у  —1 0 1 х  функции. На интервалах

( - 00, - 1) и ( -1 ,  0) функция 
убывает, на интервалах (О, 
1) и (1, х )  — возрастает.

- 1  0 „ 

Рис. 8.21

6°. Интервалы выпуклости и точки перегиба. 
Найдем

4(1 -  а 2 ) 2 -  4л- 2(1 -  л-2)(-2л-) _  4(1 + За 2 )
У

(1 -  л'2)4 ( 1 - х 2) ’

Очевидно, что у">() на интервале (—1, 1) и функция выпукла 
вниз на этом интервале. _>’"<() на интервалах (—ос.— 1), (1, ж), и на

этих интервалах ф ункция 
выпукла вверх. Точек пере­
гиба нет.

7е. Точки пересечения с 
осями. /{())= 1, т.е. точка пере­
сечения с осью ординат (0, 1). 
Уравнение /(*)=() решений не 
имеет, следовательно, график 
функции не пересекает ось 
абсцисс.

График функции изобра­
жен на рис. 8.22. ►
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Пример 8.14. Исследовать функцию  у= 2хе  2 и построить ее 
график.

Р е ш е н и е .  1°. Область определения (—■оо, оо).

2°. Ф ункция нечетная, так как Д —х )= —/(х) и график ее сим ­
метричен относительно начала координат.

3°. Вертикальных асимптот нет, так как функция определена 
при всех действительных значениях х.

4°. Поведение функции в бесконечности:

2хlim f ( x )  =  lim
Х-> + =с + X

г (2хУ гlim  г=  lim
Х-> + оо (  Л'2 ^ х -у  + ос

е 2

- = 0 .

хе 2

В силу нечетности функции lim / ( х )  =0, т.е. прямая ^ = 0
сс

(ось абсцисс) — горизонтальная асимптота.
5°. Экстремумы и интервалы монотонности:

-х}
у ' = 2 е  2 +2хе 2 ( - х )  = 2е 2 ( 1 - х 2); 

у '  = 0 при х  = ± 1 ,  т.е. критические точки х ^ — 1, х — 1. Знаки 
производной изображены на рис. 8.23.

Таким образом, х = —1 есть точка минимума; л
симума и

= 1 точка мак-

/ т  т = Д - 1 ) = -
Ге

-1 . 2 1 ,

/ т ах= Л О = - Г *1,21.
\ е

Ф ункция убывает на интервалах (-ос,—1) и (—1, х )  и возраста­
ет на интервале (—1. 1).

6°. Интервалы выпуклости и точки перегиба:
5 т - х2-х~ Л- Л

у " = 2 е  2 (-х)(1 -  х 2) + 2е 1 =  ~2 х е  2 ( 3 - х 2 );

>’"=0 при х=() и х= ±Уз . Знаки второй производной изображены 
на рис. 8.24.

Таким образом, ф унк­
ция выпукла вниз на и н ­

Рис. 8.24
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тервалах (—ч/З , 0) и (V3 , эо) и выпукла вверх на интервалах (—эс, 
— л/З ) и (0, л/3 ), а а', = -  л/3 , д:2 =  л/З — точки перегиба.

7°. _Д0)=0. Уравнение 
/(х)=() имеет единствен­
ное решение .х=0, т.е. 
график функции пере­
секает оси в начале 
координат (0; 0).

График ф ункции изо-

Рис. 8.25 бражен на рис. 8.25-►

8.9. Решение задач
Пример 8.15. Найти пределы:

lim (л/Г+Л'2 -  y l +л:3 );  б) lim 1 -  Л'.А '

V * i  1 -  х
Р е ш е н и е. а) Имеем неопределенность вида [ас—ос]. Вынося

ГО"
VI + л'2 , придем к неопределенности вида j — j:

L° J

lim (л/Г+"л  ̂ -  VT+Л"') —[ x  x ] — lim Vl + л VT+ л-’ i

Vi T l

_

1 L » J
y[\ + x 2

Далее применим правило Лопиталя:



После преобразования (рекомендуем их провести читателю) 
получим

lim —- — Ц - =0,
X—>оо _

(1 + х 3)3
так как  степень старшего члена числителя (единица) ниже степе­
ни знаменателя (равного двум).

б) Имеем неопределенность вида ^
О

П рименим правило Л о­

питаля:

=  0
1 -  л; О

= lim = lim(x*)' =  lim х А(1 + In х)  = 1
„г-»1  (1 — Х ) '  х -> 1  х-> 1

(нахождение производной ( хх )' см. в примере 7 .7 а ) .^

’ Пример 8.16. Капитал в 1 млрд. рублей может быть размещен в 
банке под 50% годовых или инвестирован в производство, причем 
эффективность вложения ожидается в размере 100%, а издержки 
задаются квадратичной зависимостью. Прибыль облетается налогом 
в р%.  При каких значениях р  вложение в производство является 
более эффективным, нежели чистое размещение капитала в банке?

Р е ш е н и е .  Пусть х  (млрд. рублей) инвестируется в произ­
водство, а 1 х  — размещается под проценты. Тогда размещенный

,, . . .  50 3 3
капитал через год станет равным (1-х)(1  + у—  )=  — -  — х , а к а п и ­

тал, вложенны й в производство: + ) = 2х. Издержки соста-

вят а л  (а>1),  т.е. прибыль от вложения в производство С = 2 х ~

- а х 2 . Налоги составят { 2 х ~ о х 2 ) — - ,  т.е. чистая прибыль ока-
100

жстся р а н н о й

Общая сумма через год составит:

А ( х ) =^-  -  —х  + f l  -  - ^ - )  (2х~ах2 ^   ̂ ^
2 2 I 100У 2 211 т >  2

- a l l - - — |л"2, и требуется найти максимальное значение этой
10()J

ф ункции на отрезке [0; 1].
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Имеем А'(х) =  2 1 1 - | -------2а( 1 - | х и
100/ 2 - I 100V

3 

2А'(х) =0 при Х() = -
2  1 -

100^

2а 1 —
lOOJ

А "(х)= -2а^1 -  <0, т.е. согласно второму достаточному усло­

вию  экстремума х0 — точка максимума.
Чтобы х 0 принадлежало отрезку [0; 1], необходимо вы полне-

Р
ние условия 0 < 2| 1 — y ^ - j  -  -  ̂< 2а| 1

100.

, откуда р  < 25.

Таким образом, если р  > 25, то выгоднее ничего не вкладывать 
в производство и разместить весь капитал в банк. Если р <  25, то 
можно показать, что при х  = х 0

-,2
Р

А(х0) = -  + 
2

2 1 -

100

4а 1
-> -= Ж 0 ) ,

2
iooJ

т.е. вложение в производство является более выгодным, чем чи с­
тое размещ ение под проценты. ►

[> Пример 8.17. Исследовать функцию  у = \ 1  -  1п2 х и постро­
ить ее график.

Р е ш е н и е .  1°. Область определения функции задается си с­
темой

> 0,
.2

реш ение которой отрезок

1 — In х > 0 ,
1
— ,е  
е

2°. Ф ункция общего вида — ни четная, ни нечетная.
3°. Вертикальные асимптоты. Ф ункция непрерывна на всей 

области определения. Граничными точками области определения 
1

являю тся точки х = -  и х=е.
е
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lim Vl -  In2 x =0; lim Vl -  In2 x =0,

т.е. вертикальных асимптот нет.
4°. Поведение функции в бесконечности. Так как ф ункция не

определена при х>е  и л< -  , понятие горизонтальной или на-
е

клоннои асимптоты для нее не имеет смысла.
5°. Экстремумы и интервалы монотонности.

-2  In х  In х
У ~

xVT In2 X

Рис. 8.26

2 x v b ^ ln 2 х  хд 
0 при х =  1, т.е. критическая точка х  =  1. Заметим, что на и н ­

тервале ( —,<?) это единст- 
с

х венная критическая точка. 
Знаки производной ука­

заны на рис. 8.26.
Таким образом, х =  1 — 

точка максимума функции и / ш  = /(1  )= 1 .
6°. И нтерваты  выпуклости и точки перегиба.
Получим после преобразований (рекомендуется читателю най ­

ти самостоятельно)
In 3 х  -  In х + 1 

х 2(1 -  In2 х )3//2

Очевидно, что при f In х| <1 величина ln ' x - l n x + 1  полож и­

тельна, т.е. г" <0 при - < х <  с и ф ункция выпукла вверх на всей
е

области определения. Точек 
перегиба нет.

График функции изображен
на рис. 8.27. ►

Пример 8.18. Исследовать

функцию  }’=  yjx'' -  Зх2 и п о ­
строить ее график.

Р е ш е н и е .  1°. Область оп­
ределения — (—зо, эс).

2°. Ф ункция общего вида
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(ни четная, ни  нечетная), так к а к / ( —х) ^ ± /(х ) .
3°. Вертикальных асимптот нет, так как функция определена и 

непреры вна на всем множестве действительных чисел.
4°. Поведение функции в бесконечности:

lim yfx3 -  Зх2 =  lim х  з |1 ------=  ± ос.
X  —> ±  се .X ±  оо V X

Следовательно, горизонтальных асимптот ф ункция не имеет. 
Найдем наклонны е асимптоты:

к =  lim / ( х )  _
>±оо X

хШ -
=  Jim

X ->±оо X
-=  lim 1 1 ------=1,

х _ > ±  со у  X

b =  lim ( / ( х )  -1  • х) =  lim ( \ х 3 -  Зх2 -  х) — [ос —со]—

=  lim
X—>± 00

(л /х3 -  З х 2 -  х ) ( ^ 3 -  З х 2 )2 +  i jx3 -  З х 2 + х 2 ) 

^ /(х3 -  З х 2) 2 +  Vx3 -  Зх2_ + х 2

lim
х 3 -  Зх2 -  х 3

00 yj(x3 -  Зх2)2 + ^/х3 -  Зх2 + х 2

(так как в числителе старший член — Зх2 , в знаменателе ф актиче-
т 2 \ 3ски  2х ). у  ~  х  — есть наклонная асимптота.

2
5°. Экстремумы и интервалы монотонности:

у = } - ( х 3 - З х 2) ЦЗх2 - 6 x )  =  - j j L z M =  = ----- ^ = = L = ,

>>'=0 при х =  2 ,  у '  — не существует при х=0; х=3, т.е. критиче­
ские точки X j = 2 ,  х2 =0, х 3=3.

Знаки производной укатаны на рис. 8.28.
Таким образом, х =  О 

— точка максимума и 
О V *  2 ^ 3  * / тах — / ( 0 )  =  0, х  =  2 —

Рис. 8.28 Точка минимума и / тп =
= У ( 2 ) = - ^ 4 .  а х = 3  не

является точкой экстремума.
6°. Интервалы выпуклости и точки перегиба. После преобра­

зований получим
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X3 (х
5

■3)3
т.е. у  " = f" (x )  нигде не обращается в нуль и не существует в точ­
ках х  = 0 и х =  3. Знаки f" ( x )  указаны на рис. 8.29.

Таким образом, интерва­
лы выпуклости вниз ( —со; 

\ у  3 / Л  х  0) и (0; 3), интервал вы ­
пуклости вверх (3; оо), а 

Рис. 8.29 х =  з _  точка перегиба.
7°. Точки пересечения с осями. Д 0)=0, следовательно, ось ор ­

динат пересекает график в точке (0; 0). Уравнение Д х)=0 имеет
два реш ения х = 0  и х = 3 .  
Следовательно, граф ик п е­
ресекает ось абсцисс в двух 
точках х =  0 и х =  3.

График ф ункции изо­
бражен на рис. 8.30.

Обратим внимание на то, 
что в точке экстремума х=0 
и в точке перегиба Лг=3 соот­
ветственно первая и вторая 
производные не обращаются 
в нуль — они не существуют

в этих точках. ►

8.10. Приложение производной в экономической 
теории

Рассмотрим некоторые примеры приложения производной в 
экономической теории. Как мы увидим, многие, в том числе 
базовые, законы теории производства и потребления, спроса и 
предложения оказываются прямыми следствиями математических 
теорем, сформулированных в настоящей главе.

Вначале рассмотрим экономическую интерпретацию теоремы 
Ферма.

Один из базовых законов теории производства звучит так: оп- 
пкшсиьныи для производителя уровень выпуска товара пПредслястся 
равенством предельных издержек и предельного дохода.
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То есть уровень выпуска х 0 является оптимальным для п роиз­
водителя, если M S (x(j )= M D (xq ), где M S — предельные издержки,
a M D — предельный доход.

Обозначим функцию  прибыли за С(х). Тогда С(х)=: D(x) -S(x). 
Очевидно, что оптимальным уровнем производства является тот, 
при котором прибыль максимальна, т.е. такое значение выпуска 
х 0 , при котором функция С{х) имеет экстремум (максимум). По

теореме Ф ерма в этой точке С '(х)=0. Но С'{х)= D '(x) -  S ’(x). п о ­
этому Z>'(x0 )= lS,'( x 0), т.е. M D (x 0 )= M S (x 0 ).

Другое важное понятие теории производства — это уровень 
наиболее экономичного производства, при котором средние и з­
держки по производству товара минимальны. Соответствующий 
экономический закон гласит: уровень наиболее экономичного про­
изводства определяется равенством средних и предельных издержек. 

Получим это условие как следствие теоремы Ферма. Средние
А С! Чиздержки AS(a') определяются как ——  , т.е. издержки по произ-

х
водству товара, деленные на произведенное его количество. М и ­
нимум этой величины достигается в критической точке функции 
y= AS(x), т.е. при условии

Сч- _  С С
/45"(х)=-----г— =0, откуда S 'x r ~^ 0  или S '= — , т.е. MS{x) =

х 2 ' X
=AS(x).

Понятие выпуклости функции также находит свою интерпре­
тацию  в экономической теории.

Один из наиболее знаменитых экономических законов — за­
кон убывающей доходности — звучит следующим образом: с уве­
личением производства дополнительная продукция, полученная на 
каждую новую единицу ресурса (трудового, технологического и 
т.д.), с некоторого момента убывает.

Ау
Иными словами, величина —  , где Дх — приращение ресурса, а

Дх
Ау — приращение выпуска продукции, уменьшается при увеличении 
х. Таким образом, закон убывающей доходности формулируется так: 
функция у —fix), выражающая зависимость выпуска продукции от вло­
женного ресурса, является функцией, вынутой вверх.

Другим базисным понятием экономической теории является 
функция полезности U=U(x). где х —- товар, a U — полезность. Эта 
величина очень субъективная для каждого отдельного потребителя,
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но достаточно объективная для общества в целом. Закон убывающей 
полезности звучит следующим образом: с ростом количества товара 
дополнительная полезность от каждой новой его единицы с некоторого 
моменпш убывает. Очевидно, этот закон можно переформулировать 
так: функция полезности является функцией, выпуклой вверх. В такой 
постановке закон убывающей полезности служит отправной точкой 
для математического исследования теории спроса и предложения.

У П Р А Ж Н Е Н И Я
Вычислить пределы, используя правило Лопиталя:
„ х 3 + х 2 - 6 х  0 _п .. х 3 + х 2 - 5 х  + 38.19. l im — -̂------------. 8.20. lim

х" - х  + 16 *->1 х 3 - 4 х 2 + 5х  -  2
In (х 2 -  3) х з _ j

8.21. lim —;--------------- . 8.22. lim ---------.
х~>2 х  + Зх -  10 х->\ 1пх

-> ") 
с х 4- с х — 28.23. l im —  2

.v ->0 X 2

П рименяя правило Лопиталя, вычислить пределы (предвари­

тельно преобразовав их к неопределенностям вида jj или — ):

8.24. lim [  ------- —̂ 1 . 8.25. lim (х In х -  Vx + х 2 ).
ех -  1' х-ж

Найти точки экстремума функций:
3

— v-3 , л o n  ---  х8.26. у = х  -  2х -  7х + 4 . % .11.у=
1 + х 2

8.28. у = х  In2 х . 8.29. у = 4 In2 х -  1 .

8.30. >’= In (2 -  c o s x ) . 8.31. y = — .
x

Найти наибольшее и наименьшее значения функций:
8.32. у - З х 2 -  6х на отрезке [0; 3].

8.33. у —л Н -^ -  на промежутке (1; е].
V In х

8.34. Требуется выделить прямоугольную площадку земли в 
512 м2, огородить ее забором и разделить загородкой на три рав­
ные части параллельно одной из сторон площадки. Каковы
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должны быть размеры площ адки, чтобы на постройку заборов 
пош ло наименьш ее количество материала?

8.35. О кно имеет форму прямоугольника, заверш енного полу­
кругом. При заданном периметре окна найти такие его размеры, 
чтобы оно пропускало наибольшее количество света.

Найти точки перегиба и интервалы выпуклости функций.
8.36. у  = 2х3 -  Зх2 +15. 8.37. у  =  2х2 + In х  .

8.38. у  = х 3 -  6 л 2. 8.39. у  = х  ех . 8.40. у  = е  *2 .
Н айти асимптоты графиков функций:
о л * 3 -  4л: „ 1 - х 2 0 _1 + х 28.41. у  =  - — —  . 8.42. у  = ------- 8.43 . у — ------------------- f .

2 + 5х i + x z 1 -  x z
о АЛ _  Зх5 й _  2х3 In х8.44. у  — ---- - j .  8.45. у ------.

2 ■+■ х  х  + 1
Исследовать функции и построить их графики:

, 1  (jc -  I)3
8 .46 , у = х ' + х .  8.47. у  = х  + . 8.48. у  = ---------

X2 (х + 1)

8.49. у  = х 3 -  12х2 + 36х . 8.50. у  = х  + -Ц-.
х 3

8.51. у  =( 2  + х ) е х . 8.52. у  = < ? ^ \ 8.53. у = ~ .
In х

8.54. Расходы а на рекламу влияю т на валовой доход R(a) по 

полученному эмпирически закону R (u) = j, где R ~  доход

в отсутствие рекламы. При каких значениях R оптимальные рас­
ходы на рекламу могут превысить весь доход в отсутствие рекла­
мы?

8.55. И звестно, что прогнозная цена акции имеет вид
8Гг  - Г  - __________и р о г н - v '0  /  \

[re -r)+ gr

где Q) — начальная цена, г — относительная прибыль корпора­
ции, g ~  доля прибыли, выделенная на выплату дивидендов, ге -  
наиболее эффективная ставка, по которой можно реинвестиро­
вать дивиденды. Рассматриваются две акции с начальной ценой, 
равной единице, и следующими характеристиками: /'1=0,2, /'2=0,4. 
g\=g2=g■ И звестно, что ге- 0,5. Инвестор продал первую акцию  и 
купил вторую. При каких значениях g  эта операция принесет 
наибольшую ожидаемую прибыль?



Глава 9. ДИФФЕРЕНЦИАЛ ФУНКЦИИ
9.1. Понятие дифференциала функции

Пусть ф ункция y —f(x )  определена на промежутке X  и  диф ф е­
ренцируема в некоторой окрестности точки х е Х .  Тогда сущ еству­
ет конечная производная

lim —  = f(x ) .
ajĉ o Ах

Н а основании теоремы о связи бесконечно малых величин с 
пределами ф ункций можно записать

“  =/'(*)+<*( Дх),
Ах:

где а  (Ах) — бесконечно малая величина при Дх-»0, откуда

А у = /'(х )А х  + а (А х)А х . (9.1)

Таким образом, приращ ение ф ункции А у  состоит из двух сла­
гаемых: 1) линейного относительно Дх; 2) нелинейного (представ­
ляю щ его бесконечно малую более высокого порядка, чем Ах, ибо

. а(Дх)Дх
(см. замечание в § 6.3) l i m ------------ =  lim а (А х )  =0).

Л х-» 0  Д х  Лх~>0

Определение. Дифференциалом функции назы вает ся гла вн а я , 
ли н ей н а я  от носит ельно  А х  част ь приращ ения ф ункции , р а в н а я  п р о ­
изведению  производной  на  приращ ение независим ой  перем енной

dy= f{x)A x. (9.2)

Пример 9.1. Н айти приращ ение и дифференциал ф ункции
у = 2 х 2 -  Зх при х=10 и Дх=0,1.

Р е ш е н и е .  П риращ ение функции

А у  =  Д х  + Дх) -  Дх) =  |2(х + Ах)2 -  3(х +  Дх)] =  Дх(4х + 2Дх -3 ) . 

Д ифф еренциал функции dy = f  (х) Ал̂ = (4л—3)Дх 

При л—10 и Av=0,l имеем Ду=3,72 и й^=3,70. Различие между 
А у  и dy составляет всего 0,02, или 0 ,5 % .^
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и Пример 9.2. Н айта дифференциал функции у = х .  

Р е ш е н и е .  d y = d x = x ’-A x ,  откуда

d x = А х ,

т.е. дифференциал независимой переменной равен приращению этой 
переменной.►

Поэтому формулу для диф ф еренцирования функции можно 
записать в виде

d y = f ' ( x )  d x . (9.3)

откуда f ' ( x ) — —  . Теперь мы видим, что — не просто символиче- 
d x  d x

ское обозначение производной, а обычная дробь с числителем d y
и знаменателем d x .

Геометрический смысл дифференциала. Возьмем на графике 
ф ункции y~f{x) произвольную  точку М(х, у). Дадим аргументу х 
приращ ение Ах. Тогда ф ункция у  =  Дх) получит приращ ение 
Лу—/(х+ А х)—/ ( х ) (см.рис. 9.1)

Проведем касательную к  кривой у  = Дх) в точке М, которая 
образует угол а  с положительным направлением оси Ох, т.е. 
f '{ x )  = tg а . Из прямоугольного треугольника M KN

KN~M N-tg  а=А х tg а= /'(х)Д х,

т.е. в соответствии с (9.2) dy=KN.
Таким образом, дифференциал функции есть приращение орди­

наты касательной, проведенной к  графику функции у  =Дх) в данной 
точке, когда х  получает приращение А х .

Не следует думать, что всегда d y < A y .  Так, на рис. 9.2 показан 
случай, когда d y > A y .
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Свойства дифференциала. Свойства дифференциала в основ­
ном аналогичны свойствам производной. Приведем их без дока­
зательства:

3. d(u±v)=du±dv.
О становимся теперь на важном свойстве, которым обладает 

диф ф еренциал ф ункции, но не обладает ее производная.
Инвариантность формы дифференциала. Рассматривая выше 

как ф ункцию  независимой переменной х, мы получили, 
что dy= f'(x)dx. Рассмотрим функцию  y=f(u), где аргумент и=ц>(х) 
сам является функцией от х, т.е. рассмотрим сложную функцию  
У = /[ф(*)]- Если y=fiu) и и=<$(х) -  дифференцируемые функции 
от своих аргументов, то производная сложной функции в соот­
ветствии с теоремой, приведенной в §7.4, равна y '= f'(u )-u '.

Тогда дифференциал функции

Последнее равенство означает, что формула дифф еренциала не 
изменяется, если вместо функции от независимой переменной х  
рассматривать функцию  от зависимой переменной и. Это свойст­
во диф ф еренциала получило название инвариантности (т.е. неиз­
менности) формы (или формулы) дифференцшиа.

О днако в содержании формул (9.3) и (9.4) все же есть разли­
чие: в формуле (9.3) дифференциал независимой переменной 
равен приращ ению  этой переменной, т.е. dx—Ax, а в формуле
(9.4) дифф еренциал ф ункции du есть лиш ь линейная часть п ри ­
ращ ения этой ф ункции Аи и только при малых Ах du Аи.

Из изложенного выше следует, что Д>-г/>+а(Ал) Ал, т.е, п ри ­
ращение ф ункции Ау отличается от ее дифф еренциала dy на бес­
конечно малую величину более высокого порядка, чем dy--f'(x)Ах.

1. dc= 0.

2. d(cu)=c du.

4. d(uv)=v a m u  dv.

d y= f(x ) d x = f(u )u  'd x= f(u ) du,

ибо по  формуле (9.2) u'dx=du. Итак,

dy~ f'(u ) du. (9.4)

9.2. Применение дифференциала 
в приближенных вычислениях
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Поэтому при достаточно малых значениях Ах Ay ~ dy или  f(x+  
+Ах)~ f(x)* f'{x)A x, откуда

/(х +  Лх)«/(х) + / '  (х)Лх (9.5)

Чем меньше значение Ах, тем точнее формула (9.5).
Ф ормула (9.5) может оказаться полезной в приближенных вы ­

числениях.
С>Пример 9.3. Вычислить приближенно: а) ^/16^64 ; б) tg 46°.
Р е ш е н и е. а) Получим вначале приближенную  формулу для 

вы числения корней любой w-й степени. Полагая f ix )=!ifx  , най­

дем f ' ( x ) = —x n в соответствии с (9.4) tfli~+~Ax a tfx  +
п пх

, $ х - А х  „I —  п1—( л ДхЛ 0+ --------   или Щх + Ах х  Цх 1 + —  . В данном примере
их V tixJ

л/х + Ах « ^

В качестве л' возьмем число, наиболее близкое к 16,64, но что­
бы был известен л[х , при этом Ах должно быть достаточно м а­
лым. О чевидно, следует взять х =  16, Дх =  0,64 (но, например, не

х =  9, Ах =7,64!). Итак, ^16,64 *16^1 + =  2-1,01=2,02.

б) П о л агая /(x )= tg  х, найдем f ' ( x ) = — ^— и в соответствии с
cos х

/\ у
(9.4) tg(jc + Дх) * tg x  +  г— . Учитывая, что tg46° =  tg(45° +  1°)=

cos х
f  л  л  ) л  л  ( л  л

=tg — + ----- , возьмем х = — и А х= ----- . Тогда tg46°=tg — + ------
U  180J 4 180 U  180
л  1 л  л

*tg -  + -----------------=  1 +  —  =  1 + 0 ,0349а 1,0 3 5 >
4 c o s2 -  180 90

Используя диф ф еренциал, по формуле (9.5) легко получить 
формулы, часто используемые на практике при а<<1:

и / ------------ а  1( 1±а)"& 1±па  ; \ П± а ~1± — ; -------» 1 + а ,  еа » 1+а , 1п(1±а) % +а;
п 1 ± а

а "sin а  « а , cos а  * 1------и т.д.
1
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С помощ ью  диф ф еренциала может быть реш ена задача опре­
деления абсолю тной и относительной погрешностей ф ункции по 
заданной погреш ности нахождения (измерения) аргумента.

Пусть необходимо вычислить значение данной ф ункции у=Дх) 
при некотором значении аргумента х х, истинная величина кото­
рого неизвестна, а известно лиш ь его приближенное значение х с 
абсолютной погрешностью  I Ах! =1 х -  Х] | . Если вместо истинного
значения Д Х[) возьмем величину /(х), то мы допустим ошибку, 
равную I Л х )-Л  Х |) i =! А>' i *dy=f'(x)Ax.

АУПри этом относительная погреш ность функции v = —  

жет быть вы числена (при достаточно малых Ах) по формуле:

мо-

5У =
АУ dy f '( x )A x x f '( x ) Ax

У У f i x ) Д х ) X
или

<9 -6)

где jЕх (у^  — эластичность функции (см. §7.6) (по абсолютной 

Дх
величине); =

х
относительная погрешность нахождения

(измерения) аргумента х.
[>Пример 9.4. Расход бензина у  (л) автомобиля на 100 км пути 

в зависимости от скорости х  (км /ч) описывается функцией 
.у=18—0,3х+0,003х2 . Оценить относительную погрешность вы ­
числения расхода бензина при скорости х=90 км /ч , определен­
ной с точностью  до 5%.

Р е ш е н и е .  Найдем эластичность функции (по абсолютной 
величине)

\ЕХ(У)\
x f '( x ) x(-0,3 + 0,006x)
f i x ) 18 -  0,3x + 0,003x2

. При д?=90 \Ех^ ( у ) \ ~ \ А \

и по формуле (9.6) относительная погрешность 8,, =1,41-5*7,1 %.►

1 Пример 9.5. С какой точностью может быть вычислен объем 
шара, если его радиус измерен с точностью до 2%?
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Р е ш е н и е .  Объем шара радиуса х  равен fix )=  —лх3 . Найдем
3

/ '( * ) =  4 ях2 , \Ex ( f) \  = x f '(x )
f ( x )

х Л п х 2

~ 4 " Т
—71X3
3

=3 и по  формуле (9.6) б.

=3 5 Х =3-2=6%.►
Сущ ественным недостатком прим енения диф ф еренциала в 

приближ енны х вычислениях является невозможность вы числе­
ния значений ф ункций с наперед заданной точностью. Этого 
недостатка лиш ено использование рядов в приближенных вы чис­
лениях (см. § 14.3).

9.3. Понятие о дифференциалах высших порядков
Для дифференцируемой функции у=/(х) согласно (9.3) dy=f'(x)dx, 

т.е. дифференциал функции есть функция от двух аргументов: х  и dx.
Будем полагать, что дифференциал независимой переменной 

имеет произвольное, но ф иксированное значение, не зависящее 
от х. В этом случае dy есть некоторая ф ункция х, которая также 
может иметь дифференциал.

Дифференцитом второго порядка (или вторым дифференциа­
лом) d 2y  ф ункцйи }'=Дх) называется дифференциал от диф ф е­
ренциала первого порядка этой функции, т.е.

d 2y = d (d y ) .  (9.7)
Аналогично дифференциалом п-го порядка (или п-м дифферен- 

циалом) d ny  называется дифференциал от дифференциала (п— 1)-го 

порядка этой ф ункции, т.е. d ny  = d (d f!~ly  ).

Н айдем выражение для d 2y .  П о определению d 2y= d(dy)=
—d(f'(x)dx). Так как dx не зависит от х, т.е. по отнош ению  к  п е­
ременной х является постоянной величиной, то множитель dx 
можно вынести за знак дифференциала, т.е.

d 2y  = dx-df'(x)=dx-[ / '(x)] 'dx= f"(x) (dx)2 .
Итак,

d 2y = f" (x )d x 2 , (9.8)
где d x2 — (dx)2 , а в общем случае

d nу  = f {K)(x)dxn , (9.9)
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т.е. дифференциал второго (и вообще п-го) порядка равен произведе­
нию производной второго (п-го) порядка на квадрат (п-ю  степень) 
дифференциала независимой переменной.

И з формул (9.8) и (9.9) следует, что

dx
и вообщ е

/ < ” > м  =
dxn

В заклю чение отметим, что дифференциалы второго и более 
высоких порядков не обладают свойством инвариантности ф ор­
мы (или формулы) в отличие от дифф еренциала первого порядка.

У П Р А Ж Н Е Н И Я
Н айти выражения приращ ений функций и их диф ф еренциа­

лов и вычислить их значения при заданных л: и Дх
9.6. у= х '}‘ -  Зх2 + Зх , х=2, Дл=0,01.

9.7. у=  Vl + х 2 , х=0, Дд=—0,01.

Используя понятие дифференциала, вычислить:

9.8. 64 б 1 М  . 9.9. 5/255,15 .

9.10. е 103. 9.11. 1п(е + 0,272).

9.12. ln(0,l + + D  • 9.13. .

9.14. Используя понятие дифференциала, выяснить, с какой 
точностью должен быть измерен радиус круга, чтобы его площадь 
можно было определить с точностью до 10%?

9.15. Используя понятие дифференциала, определить, на 
сколько процентов изменится величина степени 2,131 при изм е­
нении основания степени на 5%.



Раздел IV 
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ 

И ДИФФЕРЕНЦИАЛЬНЫЕ 
УРАВНЕНИЯ

О сновной задачей дифф еренциального исчисления является 
нахождение производной или дифф еренциала данной ф ункции. 
Интегральное исчисление решает обратную задачу — нахождение 
самой ф ункции по  ее производной или дифференциалу.

Глава 10. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
10.1. Первообразная функция 
и неопределенный интеграл

Определение. Функция F(x) называется первообразной функцией
для функции fix )  на промежутке X, если в каждой точке х  этого 
промежутка F'(x)--fix).

чX'тН апример, F(x)~ является первообразной для ф ункции

Д х)=  х 2 , так как
х ..2

П о геометрическому см ы с­
лу производной F '(x) есть уг­
ловой коэф ф ициент касатель­
ной к кривой .! -"/■(х) в точке с 
абсциссой х. Геометрически 
найти первообразную для 
Дх) -• значит найти такую кри­
вую г /i.Y>. что угловой ко ­
эф ф ициент касательной к ней в произвольной точке х  равен зн а­
чению  Д х) заданной ф ункции в этой точке (ем. рис. 10.1).
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Следует отметить, что для заданной функции Дх) ее первооб­
разная определена неоднозначно. Д ифф еренцируя, нетрудно убе-

некоторое число, являю тся первообразными для функции

вообразная дляД х), то, поскольку (Д х)+  С) '= F'(x)= /(x), функции 
вида Д х )+  С, где С — произвольное число, также являю тся п ер ­
вообразными для fix ).

Геометрически это означает, что если найдена одна кривая 
y=F(x), удовлетворяющая условию F '(x)= tg а=Д х), то, сдвигая ее 
вдоль оси ординат, мы вновь получаем кривые, удовлетворяющие 
указанному условию (поскольку такой сдвиг не меняет углового 
коэф ф ициента касательной в точке с абсциссой х) (см. рис. 10.1).

Остается вопрос, описывает ли выражение вида F{x)+C  все 
первообразные для ф ункции Дх). Ответ на него дает следующая 
теорема.

Теорема. Если F} (х) и Е2 (х) — первообразные для функции Дх)
на некотором промежутке X, то найдется такое число С, что бу­
дет справедливо равенство

□ П оскольку (F 2 (x)—Fx(x))'= F{ (х)~  F{ (x )= f(x)-f(x)= 0, то, по 
следствию из теоремы Лагранжа (см. § 8.1), найдется такое число 
С, что F2 (х)— Д  (л')= С или F2 ( х ) =  F{ (х)+ С.Я

Из данной теоремы следует, что, если Д х) — первообразная 
для ф ункции Дх), то выражение вида Д х)+ С , где С — произволь­
ное число, задает все возможные первообразные для Дх).

Определение. Совокупность всех первообразных для функции Дх) 
на промежутке X  называется неопределенным интегралом от 
функции Дх) и обозначается J / (х) dx, где J — знак интеграла,

Дх) — noдынmeгpaJlънaя функция, fix )d x  — подынтегральное выра­
жение. Таким образом,

где Д х) — некоторая первообразная для Дх), С — произвольная 
постоянная.

.3

3
+ С , где С

Д х )= х 2 . Аналогично в общем случае, если Д х) — некоторая пер-

F2 (x)=Fl (x)+C.

J f(x )dx= F (x)+ C , (10.1)
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Н апример, поскольку —  — первообразная для ф ункции
з

Д х)=  х 2 , то |  х 2 dx= ^ -  +  С.

Отметим, что в определении неопределенного интеграла не 
исклю чается, что х  сама, возможно, является функцией н екото­
рой перем енной, однако при проверке правильности нахождения 
первообразной это несущ ественно, так как  дифф еренцировать 
следует лиш ь по  переменной х  (по переменной, стоящей в ф ор­
муле (10.1) под знаком дифференциала).

О перация нахождения неопределенного интеграла от некото­
рой ф ункции называется интегрированием этой функции.

В гл. 11 будет показано, что достаточным условием интегри­
руемости ф ункции  на промежутке X  является непрерывность этой 
ф ункции н а  данном промежутке. (Заметим, что для диф ф еренци­
руемости ф ункции ее непрерывность является лиш ь необходи­
мым, но  недостаточным условием (см. § 7.2)).

10.2. Свойства неопределенного интеграла. 
Интегралы от основных элементарных функций
Рассмотрим основные свойства неопределенного интеграла.
1. Производная от неопределенного интеграла равна подынте­

гральной функции, т.е.

({/(x)aEv) = /(* ) .

□  Д иф ф еренцируя левую и правую частьи равенства (10.1), п о ­
лучаем:

( j  Д х )  dx)'={F{x)+ C)'=F\x)+C>=Ax).U

2. Дифференциал неопределенного интеграла равен подынте­
гральному выражению, т.е.

d( j  Д х )  dx)=Ax)dx. (10.2)

□ П о определению  диф ф еренциала и свойству 1 имеем

d (d { j f (x )d x ^ = { j f ( x ) d x j dx = f(x )d x . Ш

3. Неопределенный интеграл от дифференциала некоторой  
ф ункции равен этой функции с точностью до постоянного сла­
гаемого, т.е.
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где С  — произвольное число.
□ Рассматривая функцию  Д х) как первообразную для некото­

рой ф ункции  Дх), мож но записать
J / ( х )  dxr= Д х )+  С 

и на основании (10.2) дифференциал неопределенного интеграла 
f(x)dx= dF\x), откуда |  dF (x)  =  J / ( х )  dx~F{x)+ С.Ш

С равнивая между собой свойства 2 и 3, можно сказать, что 
операции нахождения неопределенного интеграла и диф ф ерен­
циала взаимнообратны (знаки d  и J взаимно уничтожают друг

друга, в случае свойства 3, правда, с точностью до постоянного 
слагаемого).

4. Постоянный множитель можно выносить за знак интеграла,
т.е.

J a / (x ) c &  = a j  f ( x ) d x , (М .4)

где a  — некоторое число.
□Найдем производную  функции g(x)=  J a / ( x ) d k - a j  f ( x ) d x  :

g '(x )= (  J  a /  (x )d x  - a  J  f ( x ) d x  )'=  (J a f  (x )d x ) ' - a ( J  f { x )d x ) '  =

=аД х)—аД х)=0 (см. свойство 1). По следствию из теоремы Л а­
гранжа найдется такое число С, что g(x)=C  и  значит
j a f ( x ) d x  = a f f ( x ) d x  + С. Так как  сам неопределенный интеграл 

находится с точностью  до постоянного слагаемого, то в оконча­
тельной записи свойства 4 постоянную С можно опустить.И

5. Интеграл от алгебраической суммы двух функций равен такой 
же сумме интегралов от этих функций, т.е.

J (/(■*) ± g(x))dx = J f ( x ) d x  ±  f  g(x)dx . (10.5)

Доказательство аналогично свойству 4.
Нетрудно видеть, что свойство 5 остается справедливым для 

лю бого конечного числа слагаемых.
П еречислим интегралы от элементарных ф ункций, которые в 

дальнейш ем мы будем называть табличными:

JO d x= C ,  (10.6)

\dF{x )=F{x )+ C,  (10.3)
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л̂+1
f x n d x   --------- +  С, п ф — \ ,
J я +1

f — = 1 п Ы  +  С,
J х

(10.8)

(Ю.7)

для произвольного интервала, не содержащего точки х = 0 ,

f a x d x  = —— + С, а>0, о ф \ ,  (Ю .9)
J т а

J  e xdx = ех + С,

J  sin х  d x  = -  cos х  + С,

|  cos x  d x  = sin x  + C,

d x

J
X= arcsin — + C, —a<x<a, a >  0, 
a

(1 0 .9 )

(10.10) 

(10.11)

( 10.12)

dx
= — arctg — +  С, аФ 0, 

a L +  x z  a  <31
f ^  -  _L
J x 1 -  a 1  2<2

In x  -  a
x  + a

J dx

4x2
r = ln  pc+Vx2 + a

+ a

+ С, о ф 0 ,  

+ С, йФО,

(10.13)

(10.14)

(10.15)

d x

cos2 x
- = tgx+C ,

r  d x
I  = -c tg x + C .
J s in 2 x

Справедливость приведенных формул проверяется непосред­
ственно диф ф еренцированием (см. определение неопределенного 
интеграла). Н апример, формула (10.7) верна, так как производная

правой части (10.7)
V +1

п  +  1
+  с

( п  + 1)х" „ ------------ = х равна подынте-
п  + 1

гральной ф ункции левой части (10.7).
Докажем равенство (10.8). Пусть х>0. Тогда |х |= х  и (In 1

+  С)’=(1п х + С ) '= — . Если х<0, то S  х | — —х и (In ! х I +  СУ=(1п(~х)+ 
х
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-1  1+ С )'=  —  =  — , т.е. в обоих случаях производная правой части
—X X

(10.8) равна подынтегральной ф ункции левой части. Аналогично 
доказываю тся остальные формулы.

Пример 10.1. Н айти интегралы: 

dx  г-»/— , , г dx

Р е ш  е н  и е. Во всех трех случаях нам придется воспользо­
ваться одним и тем же табличным интегралом (10.7) от степенной 
ф ункции, но  при разных значениях я.

а) П ри я = —4: f x~4dx = ——  + С = — L  + С .
3 -3  Зх3

Н/з
б) П ри «= 1/3 : |  x 1/3dx = + С = -  — х 4/3 + С .

. „ 1/2
в) П ри п=—1/2: J x~ l/2dx = ——  + С = 2-Jx + С .►

1 / 2

[>Пример 10.2. Н айти интегралы:

a) f ^ ; 6 )  f 23-x-l dx ; в) f - f —  ; г) f -  ; д) f ■
J 3* J J 9x2 - 1  J 4x2 + 25 J /̂4x2 + j

J
3

при a  =-i/3, получаем:

P e ш  e н  и e. а) Учитывая, что —  =  | — ] и используя (10.9)

J ч* и з ;  1П(1/з> зл 1пз 
1- =  /-■•. i  •=

при а - 8, получаем

3* П З ;  1п(1/3) 3*1пЗ

б) Так как  23х 1 = 23 х -2~1 = ^ 8 Х , то используя (10.4) и (10.9)

f 23д~xdx = \ - 8 x dx = -  f  8Xdx = -  —  + C.
J J 2 2 J 2 ln 8

в) П оскольку — j —  =  -!- —=— \-~ r r  , то воспользуемся (10.4) и 
9x  -  1 9 x 2 -  (1/3)2

(10.14) при о=1/3:
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г dx  _  г 1 dx  1 г  с
J 9 х 2 - 1  •> 9 х 2 -  (1/3)2 9 J х 2 -

dx

Ш 2
1 3 .  
9 2

■1/3
х  + 1/3

+  С= = - j ln  
6

Зх - 1
Зх + 1

+ с.

г) Так как  4 х 2 + 25 = 4 (х 2 + (5/2)2) , то используя (10.4) и 
(10.13) при  а=5/2 , получаем

г flfcc _  г 1 dx  _  1 г dx  __ 1 2х „  
J А х2 + 25 ' 4 х 2 + (5/2)2 4 J х 2 + (5/2)2 Ю ® 8 ‘ ’

д) Т ак как  ^ 4 х 2 +1 =  2yjx2 + 1 /  4 , то (см. 10.4) и (10.15) при 

<2=1/4:
г dx  _  j_ г
J д/4.^2 , 1 2 J

dbc

x z +1 i jx 2 +1/4
-In x  + -у/х2 + 1/4 +  C >

М етод интегрирования, основанны й на применении свойств 4 
и  5, называется методом разложения.

ОПример 10.3. Используя метод разложения, найти интегралы:

а) J
(2у[х +1)3 

x-Jx
dx ;б) J х 2 -  16 

■Jx +2
d x ;

2
в) f (sin (х /2 ) + cos (x /2 ))2d x ; г) f —Д—  d x . 

J J x  + 4x  + 4
Р е ш е н и е .  Нахождение каждого из интегралов начинается с 

преобразования подынтегральной функции. В задачах а) и  б) 
воспользуемся соответствующ ими формулами сокращ енного ум ­
нож ения и  последую щ им почленным делением числителя на 
знаменатель:

а)1
(2>/х + 1)3 ^  =  j  8х3,/2 +12х + 6х]/ 2 +1 ^

с>/х гЗ/2

=  J(8 + 12x 1//2+6-  — + х )flbc = 8jflfcc + 1 2 |х  1/ 2о!х: + б |  —  +
л

+J x ^ ^ d x  = 8х + 24Vx + 6 In |х| -  + С

(см. табличные интегралы (10.7) и (10.8)). Обращаем внимание на 
то, что в  конце реш ения записываем одну общую постоянную  С, 
не вы писы вая постоянных от интегрирования отдельных слагае­
мых. В дальнейш ем мы будем опускать при записи постоянные

9  В ы с ш а я  Т и ате м а ти ка  д л я  э к о н о м и с т о к 257



от интегрирования отдельных слагаемых до тех пор, пока вы ра­
жение содержит хотя бы один неопределенный интеграл. В окон ­
чательном ответе тогда будет одна постоянная.

f  * 2 ~ 16 d r - f  (V* -  2)(Vx + 2)(х + 4)
' J yfx + 2  J &  +  2

= j  ( x 3/2 + 4 x ^ 2 -2x - 8 ) d x  =

= J x^^dx + 4 j x lt 2dx -  2 j x  dx -  8 j dx =  - |x 5/2 + | * 3/2 -  x2 -  8x +C.

в) П реобразуя подынтегральную функцию , получим 
J (sin(x/2) + cos(x/2))2abc =

=  J (sin2(x/2) + 2 sin(x/2) cos(x/2) + cos2(x/2))dx =

=  J (1 + sin x) dx  =  J dx  + J sin x dx —x  — cos x  + С

(см. табличный интеграл (10.10)).
г) Выделяя и з дроби целую часть, получим

= 1  -  ,Т о г а а

х + 4 jc + 4Ч х 2 + 4 
2

f -г?—  d x =  f  dx -  4 f  —̂ — - x  -  4-^  arctg — +  C=3e-2arctg — + C 
J x 2 + 4  j  J x  + 4  2 2 2

(cm. (10 .13))>

10.3. Метод замены переменной
Одним из основны х методов интегрирования является метод 

замены переменной (или метод подстановки), описываемый сле­
дую щ ей формулой:

J f { x )  dx= |  /  (Ф(/)) Ф'(/) dt, (10.16)

где х = ф ( / )  — ф ункция, дифференцируемая н а рассматриваемом 
промежутке.

□  Н айдем производные по переменной t от левой и правой 
частей (10.16):
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(J f ( x )  dx}' =  (J f {x )  dxjx x't =Дх) ф'(0, 

( j  Д ф ( / ) М О  dt)'t = Д ф (/)) Ф '(0

(см. свойство 1 неопределенного интеграла).
Так как  х  =  ф ( / ) ,  то эти производные равны , поэтому по  след­

ствию  из теоремы Лагранжа левая и  правая части (10.16) отлича­
ю тся на некоторую  постоянную . П оскольку сами неопределен­
ные интегралы определены с точностью до неопределенного п о ­
стоянного слагаемого, то указанную постоянную  в окончательной
записи мож но опустить.■

Ф ормула (10.16) показывает, что переходя к  новой перем ен­
ной, достаточно вы полнить замену переменной в подынтеграль­
ном выражении. Действительно, по  определению диф ф еренциала 
подынтегральные выражения левой и  правой частей равенства 
(10.16) совпадают.

Удачная замена переменной позволяет упростить исходный 
интеграл, а в простейш их случаях свести его к  табличному 
(табличным).

г dx
ОПример 10.4. Н айти — — .

J 1 -  2х

Р е ш е н и е .  П оложим t - \ —2х. Тогда х  -  \ ^ t ,

(см. (10.4) и  табличный интеграл (10.8))>-
Следует отметить, что новую переменную  можно не вы писы ­

вать явно (в таких случаях говорят о преобразовании функции под 
знаком дифференциала или  о введении постоянных и переменных 
под знак дифференциала).

ОП ример 10.5. Найти J cos(3x + 2) dx .

Р е ш е н и е .  Используя свойства диф ф еренциала (см. §9.1), 
получаем

d t= - \ - d t  и 
2 2 ) 2

f — = fJ 1 - 2jc  J
(-1 /2) dt _  1 r d t  _  1

t  2 J  t 2J i  In |l -  2x\ + С

<& =  |j ( 3 x ) = j< / ( 3 ;c  + 2).
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Тогда

J cos(3x + 2) dx =  J i  cos(3x + 2) d(bx  + 2) =  

=  ^  |  cos(3x + 2)d(3x + 2) = у  sin(3x+2)+ С

(см. (10.4) и ( 1 0 .1 1 ) »
В примерах 10.4 и  10.5 для нахождения интегралов была и с ­

пользована линейная подстановка t — kx+b, где к  и b — некото­
рые числа к  ф  0. В общем случае справедлива следующая теорема.

Теорема. Пусть Д х) некоторая первообразная для функции Д х). 
Тогда

Н о d (k x  + b) = (kx + b)'dx =kdx. Вынося постоянный множитель 
к  за знак интеграла и деля левую и правую  части равенства н а к, 
приходим к  (10.17).И

Д анная теорема утверждает, что если в (10.1) вместо аргумента 
х  подынтегральной ф ункции Дх) и первообразной Д х ) подставить 
выражение (к х  + Ь) , то это приведет к  появлению  дополнитель­
ного множителя 1 / к  перед первообразной.

D> Пример 10.6. Н айти интегралы:

Р е ш е н и е .  И скомы е интеграла однотипны: каждый из них 
может быть найден путем прим енения формулы (10.17) к  одному 
и з табличных интегралов.

а) И з (10.7) и (10.17) следует, что

где к  и b — некоторые числа, к ф  0.

□ П ерепиш ем (10.1) в виде J f ( k x  + b) d (k x  + b)== F (kx  + b) + C .

е 2x+1 dx .

[ ( k x  + b ) n d x  =  - ^  + + С , п ф -
J к  п +1

+ С , п Ф - \ , к Ф 0 .  (10.18)

Тогда, полагая «= 1/3 , к = - 1, Ь=Ъ, получаем

|  Цъ -  х  dx =  -  ^  (3 -  х )4//3 + С .

б) И з (10.8) и (10.17) следует, что

(10.19)

Полагая к= 4, Ь= 3, получаем
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[ e kx+bdx = - e kx+b + С . (10.20)
•> к

П олагая в (10.20) к  = —2, b = 7 ,  имеем

f e~2x+1dx = -  e~2x+1 + С >
J к

Рассмотрим примеры  нахождения интегралов с помощ ью  н е­
линейны х подстановок.

Г -У2ОПример 10.7, Н айти I хе dx .

Р е ш е н и е .  Положим t = - x 2 . Продолжение реш ения может 
быть аналогично реш ению  примера 10.4: следует выразить х  че­
рез t, затем найти выражение для dx. Это позволит реализовать 
замену переменной в искомом интеграле. Н о здесь мы поступим 
по-другому.
Н айдем диф ф еренциал от левой и правой частей формулы t = - x 2 : 
d t= d (-x 2 ) = ( - x 2 )'dx, т.е. dt=—2 x d x .  И з полученного равенства 
удобно выразить х  dx, поскольку это выражение является сом но­
жителем подынтегрального выражения искомого интеграла: х

dx—~ — d t .  Тогда j хе~*2dx = j ^ - ^ - j e tdt = -  — j e fdt = ~ ^ e ‘ +C = 

1 2
= ~ ~ e~ + c  (см. (Ю.9)). ►

1>Пример 10.8. Н айти интегралы:

а) f  7 Г 7 ; б) ^  Л ; B) r) * •x V *i' 1 Л ;
д) J  ^ x  dx;  e) J t g x d x .

P e ш e н и e. а) П оложим t =  1—x 2 . Тогда dt =  d (  1 -  x 2) =

=  (1 -  x 2)' dx = ~2x dx, x  d x - - ^ d t  и, следовательно,

Г -  f ( - Г) *  = - 1 f г  V'A = -/•« + С = - + С .
J Y iT ^  v  -ft 2 I

б) Положим t ~ 4 x  . Тогда dt=d( л[х )= — dx , =2dt и
2 \ x  s x

в) Из (10.9') и (10.17) следует, что
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p ~ j ^ d x = j e , 2dt =  2^e‘dt =  2et + С  =  2 е ^  + C .

в) И спользуя введение переменной под знак дифференциала,
1 ,

получаем х  d x -  —  d ( 3 - 2 x  ) .  (Н еявная замена переменной Р= 
4

= 3 -  2х2). Тогда

Г {-Г ) W s J S l  = Л  t W z * h = _ iln|3-2^UC
J 3 -  2x2 J V 4^ 3 _ 2 x 2 4 J 3 _ 2 x 2 4 1 1

г) И спользуя введение переменной под знак дифференциала,
? 1 ,

получаем х  d x  =  --- d ( 3  + 5 х  ) (Н еявная замена переменной t=  

= 3 + 5 х 3 ). Тогда
С Х 2 е 2 +5 х ъ f a  =  Г ^ З + б * 3 d ( 3  +  5 х 3у =  i _  г е 3 + 5 х 3 ф  +  5д-3 )  =

J -1 5  1 5 1

- * 3+5*3 + С .
15

d x
д) Так как —  ~ d  lux, то

х

J —lil-— d x  =  j  (In x ) 1/2d  ln x =  (ln x )3/2 + C .

е) Так как sin x  d x = — d  cos x, to

f tg x dx  =  f < ■'■> / cos-£  = -  f £ ^ i £  ,  in |cos Х| + с  >
J J COS X j  COS X 1

П риведенные примеры являются простейш ими. Однако даже в 
тех случаях, когда замена переменной не приводит искомый и н ­
теграл к табличному, она часто позволяет упростить поды нте­
гральную функцию  и тем облегчить вычисление интеграла.

г х 2 +1£>Пример 10.9. Найти |  d x  .
* х -f 2

Р е ш е н и е .  Положим t  -  х+2. Тогда d t = d  (х+2 ) = d x .
Так как х  J— 2, то

б// ^
=  J t  d t  -  4 f d t  + 5 j —  =  y - 4 r  + 51n |/|+C, = ------- 2x + 5 In |x + 2| + C,

где С =C] — 6.
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10.4. Метод интегрирования по частям
Пусть и -и (х ) и  v=v(x) — дифференцируемые функции. П о 

свойству диф ф еренциала (см. § 9.1)

d(uv)=v du+u dv
или

и dv= d(uv)-v  du.

Интегрируя левую и правую  части последнего равенства и 
учитывая (10.5) и (10.2), получаем

j  и d v= u v  — j v  d u . (10.21)

Ф ормула (10.21) называется формулой интегрирования по час­
тям  для неопределенного интеграла. П ри ее прим енении ф и кси ­
руется разбиение подынтегрального выражения искомого инте­
грала на два сомнож ителя (и и dv). П ри переходе к  правой части 
(10.21) п ервы й - из н и х  диф ф еренцируется' (при нахож дении- диф ­
ференциала: du=u'dx), второй интегрируется ( v = |  dv + C (см. (10.2)).

Возможности прим енения (10.21) связаны с тем, что диф ф ерен­
цирование может сущ ественно упростить один из сомножителей 
(при условии, что интегрирование не слиш ком  усложнит другой).

О Пример 10.10. Н айти интегралы:

а) |  х  e~2xdx ; б) J  (2 + Зх) ex ^ d x  .

Р е ш е н и е ,  а) Так как x ’-Y ,  а ф ункция е 1х при интегриро­
вании  практически не изменяется (согласно (10.20) появляется 
лиш ь постоянны й множитель), то данны й интеграл можно найти 
интегрированием по  частям, полагая и = х, dv =  е 2х dx. Найдем 
необходимые для записи правой части (10.21) v и du.

Так как  и=х, то du=dx. Согласно (10.3) и  (10.20) при  к= —2, 
Ъ= 0, имеем

v = J dv =  J e~2xdx = - ^ e 2x + С .

Теперь, прим еняя формулу интегрирования по  частям (10.21), 
получаем

|  х  e~2xdx = х ( -  i  е~2х + С ) -  е~2х + C )d x  .
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И спользуя метод разложения, убеждаемся, что полученный 
интеграл — сумма табличного и интеграла, который был опреде­
лен при нахождении v. Таким образом, окончательно

|  х e ~ 2 x d x  =  -  ~  хе~2х + Сх + ~jje~2x ~ Сх + С] ~

З а м е ч а н и е .  Анализ полученного реш ения показывает, 
что постоянная С, возникш ая при нахождении v (по заданному 
dv), не входит в запись окончательного ответа. Аналогично в об­
щ ем случае постоянная С, возникаю щ ая при нахождении v, и с ­
клю чается в процессе реш ения. Поэтому в дальнейш ем, п рим е­
няя формулу интегрирования по частям и найдя v, будем полагать 
С  =  0, что несколько упрощает запись реш ения,

б) Пусть 2+3х - и ,  eX; Jdx -  dv . Тогда

du=d  (2+3x)~(2+3x)'<abc - 3 dx
и

v =  j d v  -~ |  е х /*dx ~  Зех/3

(см. (10.20)). П рим еняя формулу интегрирования по частям, п о ­
лучаем

J (2 + 3x)ex/3dx = (2 + Зх)Зе*/3 -  j 3ел /3 3 dx -

= (6 + 9 x )e x /i  -  9je-*/3dx = (6 + 9x ) ex -  9 3<’ ‘ + С =

— (9x  -  2 1]ех/ 3 + С .►

D> Пример 10.11. Н айти интегралы:

а) |  х  In х  dx  ; б) J  (х 3 + 1) In х  d x .

Р  е ш  е н  и е. а) “П репятствием” к нахождению данного и н те­
грала является присутствие сомножителя In х в записи поды нте­
гральной функции. Устранить его в данном случае можно и нтег­
рированием по частям, полагая « ' i n  х. Тогда dv=x dx. (С ущ ест­
венно, что при интегрировании ф ункции Д х)=х получается

ф ункция того же типа (степенная)). Так как du - d  In х ~ —  и
х

_Г Г х 2v - j d v  — j x d x  = (С=  0, см. замечания в примере 10.10), и с ­

пользуем формулу интегрирования по частям; получаем
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f x  In x  dx =  —  In x  -  f  4 r  — dx — ~  In x  -  f x  dx 
J 2 J 2 x  2 2 J2 x

j
„1 x —

2 4
* 2- In X - —-  + C .

6) Пусть u=ln x, d v  -  (x 3 +1) d x .  Тогда d u ^  —  и v= j d v  =

г 1 x 4J (x  + 1) dx  —  + x  . П рименяя формулу интегрирования по
4

частям, получаем
/ . Ч /  . \

dx
х

|  (х 3 + 1) In х  dx =  + х j In х  -  J X
T * x,

X A ' l , 1 г Я , r J f  X 4 1 . x 4x In x ----- 1 x 3dx  -  J dx =  —  + x  [ In x  -■• —— -  x  + С .►
4 + "J  "  4 -5" ' J " '  I 4 ' " j   16

В некоторых случаях для нахождения искомого интеграла 
формулу интегрирования по частям приходится применять более 
одного раза.

Г>Пример 10.12. Найти j  х 2 sin х  d x .

Р е ш е н и е .  П оложим и = х 2 , sin х  dx=dv. Тогда du—d x2 =2xdx

и v = J  dv = j  sin x  dx = ~ cos x  (см. формулу (10.10)). П рименяя 

формулу интегрирования по частям, получаем

|  х 2 sin х  dx — - х 2 cos х  -  J ( -  cos х)2х dx = - х 2 cosх  + 2 [ х  cos х  d x .

Возникший интеграл не является табличным, однако видно, что 
мы на правильном пути: по сравнению с исходным интегралом сте­
пень переменной х  в подынтегральном выражении уменьшилась на 
единицу, при этом второй сомножитель cos х  того же типа, что и в 
исходном интеграле. Повторное применение формулы интегрирова­
ния по частям приводит к  табличному интегралу. Действительно, 
положим теперь и -х, cosx dx=dv. Тогда du~dx,

v = j  dv -  j  co sx  dx ~ sin x  (cm. (10.11)) и

J x 2 sin x  dx = -x2 cos x  + 2(x sin x -  J sin x dx) =
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=  - x 1 cos x  + 2x  sin x  + 2 cos x  + С  .►
А нализируя разобранные примеры, можно указать следующие 

типы  интегралов, для нахождения которых используется формула 
интегрирования п о  частям:

1. j  x newcdx , |  х п sin тх dx , j  x n cos m x d x .

2. J x k In" x  d x , ^ x k arcsin x  d x , J x k arccos x  dx ,

|  x^arctg x d x , J x^arcctg x  d x ,

где a, m, к  — действительные числа (к*— 1), я — целое полож и­
тельное число.

Д ля нахождения интегралов из первой группы формулу интег­
рирования по  частям придется применить я  раз (при первом 
прим енении полагаю т и= х п , остальные сомножители поды нте­
грального вы раж ения задают dv), пока степень я переменной х  не 
станет равной нулю , а сам интеграл — табличным (см. примеры
10.10, 10.12). Д ля нахождения интегралов второй группы полага­
ют х кdx -  dv (оставш иеся сомножители подынтегрального вы ра­
ж ения задают тогда выражение для и). Отметим, что для нахож ­
дения J х к In” л: dx  формулу интегрирования по частям придется

прим енять п раз (при каждом прим енении степень ф ункции In х  
уменьшается на единицу, пока не станет равной нулю, а сам и н ­
теграл — табличным).

Н а практике метод интегрирования по  частям часто ком бини­
руется с другими методами интегрирования.

О Пример 10.13. Н айти J l n 2(2x + 3) d x .

Р е ш е н и е .  Выполним сначала замену переменной: поло­
жим t=2x+ 3.

Тогда dt=d (2x±3)= 2dx  и d x = ^ d t . Следовательно,

J 1п2 ( 2 х  + 3) dx =  J In 2 /  \g lt =  ^  |  In2 t d t .

Пусть In 2 / = и , dt=dv. Тогда d u = d ln 2 t= 2 ln  t ^ d t ,

v = J  dv = j  d t=  t  и, прим еняя формулу интегрирования n o  частям, 

получаем:
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J In2 (2л: + 3) dx = ^ ( t \ n 2 t -  J f - 2 1 n /  ~ dt) = ^ t h \ 2 t -  Jin / d t .

П олагая в формуле интегрирования по частям и =1n i, dv-d t, 
получаем J  In / dt = t In / - 1 + С . Окончательно имеем

f In2 (2л: + 3) d x ~  - t  In2 t  -  t i n t  + t  + C =
J 2

= - ( 2 x  + 3) In2(2л: + 3) -  (2x  + 3) In (2л + 3) + 2л + С.  ►
2

10.5. Интегрирование простейших 
рациональных дробей

Н апомним, что многочленом степени п называется выражение
вида + ахх+...+апх п , где а0  ап — действительные числа
ап Ф0, п>0. Н апример, 3 + 2л :—многочлен первой степени, ~ х4 + 
+Зл'+2 — многочлен четвертой степени и т.д. Рациональной дро­

бью называется отнош ение двух многочленов. Например, —,
х  + 1

2 х 2 4л:3------------------ , ... — рациональны е дроби.
л: +1

Нас интересуют интегралы от рациональных дробей. В случае, 
когда степень многочлена знаменателя дроби равна нулю (т.е. в 
знаменателе стоит число), дробь является многочленом. Интеграл 
от многочлена находится с использованием метода разложения 
(см. § 10.2). Далее будем предполагать, что степень знаменателя 
дроби больше нуля. Примеры таких интегралов встречались нам 
выше (см., например, табличные интегралы (10.7) при целом 
отрицательном п , (10.8), (10.13), (10.14)). В этом параграфе мы 
наметим общ ий подход к интегрированию  рациональных дробей.

Прежде всего отметим, что достаточно рассмотреть лиш ь пра­
вильные дроби, т.е. такие, у которых степень числителя меньше 
степени знаменателя. В самом деле, если это не так, то, исполь­
зуя алгоритм деления многочленов “углом” , известный из 
ш кольного курса, мы можем представить исходную дробь в виде 
суммы многочлена и правильной дроби. Например,

х~ -  Зл + 4 2 6
: X + 2х + 1 +--------  ,

Л' -  2
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4 х  -  4 х  + 5 2 о п  12л: — 7-4х + 8х + 12 +
х 2 -  2х + 1 х 2 -  2х + 1

и т.д. Тогда интеграл от исходной дроби сведется (с помощью 
метода разложения, см. §10.2) к сумме интегралов от многочлена 
и правильной дроби.

Если степень знаменателя равна 1, то искомый интеграл имеет 
г dxвид -------  , и для его нахождения достаточно воспользоваться

кх + Ь '
формулой (10.19) (см. пример 10.66) или заменой переменной 
t=kx+b (см. пример 10.4).

Пусть степень знаменателя равна 2, т.е. искомым является и н ­
теграл вида

Г J *  + f  .. ^  t (10.22)
J ax + bx + с

где a, b, с, e, f  — действительные числа, a*0. Рассмотрим сначала 
один важный частный случай: интеграл вида

Г ex + f
а х2 + с

d x , (10.23)

а затем укажем, как общ ий случай свести к  данному. Если с=0, 
то интеграл (10.23) представляет сумму двух табличных интегра­
лов (с точностью  до множителей; см. метод разложения). Пусть 
сф0. Тогда для нахождения интеграла (10.23) достаточно найти 
интегралы

00.24)
“ ах + с

и
xdx

I а х2 + с
(10.25)

Интеграл (10.24) сводится (вынесением множителя) либо к 
табличному интегралу (10.13), если ас>0, либо к интегралу
(10.14), если ас<0 (см. пример 10.2в, г).

Для нахождения интеграла (10.25) используем замену пере­
менной t=ax  + с (подобно тому, как это было сделано в частном

случае, см. пример 10.8в). Тогда dt=2ax dx, х  d \ - - ~ d t  и
2 а

г х  dx г  dt 1 г dt 1 . 1 1 ^
 =  — -  =  - -  — =  --- In /| + С. .

3 ах + с 2а/ 2а J t 2а 1 1
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О кончательно имеем 
г х  dx

ах + с 2а 1П
ах + с + С] (10.26)

где аФ 0.
Возвращ аясь теперь к  интегралу (10.22), заметим, что его мож­

но привести к  виду (10.23), если сначала выделить полны й квад­
рат в знаменателе подынтегральной функции, а затем использо­
вать соответствующую (линейную ) замену переменной.

ОП ример 10.14. Найти интегралы:

. г 2х +1 г х  + 1 р 8 - х
а) — ------------- dx ; б) — х------------- dx \ в) -

X + 2 х  + 1 J Дг + 4 х  -  т, J х  -  4х +13
d x .

Р е ш е н и е. а) П оскольку х 2 + 2х + 1 =  (х + 1)2 , то используем 
замену переменной t =  х + 1. Тогда dt = dx, х  = t— 1 и

Г 2x̂ . L ^ d x = [ ^ L z l d t  = 2 \ ~  ~ ( t ~ 2dt = 2 1 n W  + -  +  C?=
J x 2 + 2x +1 J t 2 J t J 1 1 t

—2 In x + 1 +  • + C.
x +1

б) Так как 4x2 + 4x -  3 =  (2x + l)2 -  4 , то положим t 2xM .

Тогда x  =  ^  (/— 1), dx =  -j d t и

x +1
4 x 2 + 4x -  3 
, r + 1

dx •
r ( l /2 ) ( / - l ) + l  1 „
J  — ------- dt/ 2 - 4

= i r + i r  <*
' J -  4 4 J ?4 J ?2 -  4 4 J t 2 -  4 4 J  t 2 - 4  ’

Для нахождения первого интеграла воспользуемся формулой 
(10.26) при а =1, с = —4. Второй интеграл — табличный (см. (10.14)).

х  +1
Теперь имеем J

4х + 4 х ■
— dx  =  -  In / 2 -  4 +  —  In

t - 2
+ C

3 8 16 t + 2

-  In 4 x 2 + 4x -  3 +  —  In
2x -1

+ C.
8 16 2x + 3

в) Так как х  -  4х + 13 =  (х -  2) + 9 , то положим t =  х—2. Тогда

dt~dx, x=t+2 и
х 4х +13

d x :
J г  + 9  J г  + 9  J t

t dt

+ 9
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П ервый из интегралов — табличный (см. (10.13)), для нахожде­
ния второго воспользуемся формулой (10.26). Тогда получаем

f т  8-  *— - dx  =  2 arctg ̂  ^  ln (/2 + 9) +  С=2 arctg ~
J х~ -  Ах +13 3 2 \ / 3

:2 - 4 х  + 13| + С >

Рассмотренный прием интегрирования правильных дробей, 
знаменатель которых имеет вторую степень (выделение полного 
квадрата в знаменателе с последующей заменой переменной) 
имеет сущ ественный недостаток: он не обобщается на случаи, 
когда степень знаменателя больше двух. Наметим поэтому также 
другой возможный подход.

Пусть требуется найти [ - (получим другой вывод фор-
J х  -  а

мулы (10.14)). Представим подынтегральную функцию  искомого 
интеграла в виде:

1 1 ( 1  1
х 1 -  а 1 2а \ х  -  а х  + а)

Тогда, используя метод разложения и формулу (10.19), получаем:

j  2~~ j =  { [ ~ — ~ f ( 1п|х - а \ -  Injx + а \)+  С=J х  - а  2й U  x - а  J x  + aJ 2а 1 1 1 1
х  -  а + С.
х  + а |

Аналогично, в общем случае можно доказать, что если поды н­
тегральная f ( x ) /g ( x )  — правильная дробь, знаменатель g(x) кото­
рой — многочлен степени я, имеющий я попарно различных дей­
ствительных корней x i ,x 2 , . . . ,x „ ,  то существует представление 
подынтегральной ф ункции в виде

/ ( х )  = А х | А 2 i | А„  
g(x) X -  Xj X -  х 2 X -  х„

где А [ , А 2 А „, — некоторые числа. Тогда исходный интеграл
сводится к сумме табличных.

" Пример 10.15. Найти f d x .
х  + 2х -  8х

Р е ш е н и е .  Так как х 3 + 2х2 -  8х =х (х+4)(х+2), то
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х 2 -  2х + 2 А  А, А,=  - 1 + — —  + — —
х  + 2х -  8х х  х  -  2 х  + 4 

И з последнего равенства найдем постоянные Ai , А2 , А3 . 
Приводя дроби правой части к общему знаменателю, приходим к 
равенству

Ах (х—2)(х+4)+ А% (х+4)х+- А3 (х -2 )х = х 2 -  2х + 2.

Если х  = 0 , то имеем — 8 Ai =2 и А\ = —1/4. Если х=2, то 12 А^ =2
13

и А1= 1/6. Если х = —4, то 2 4 ^ = 2 6 ,  т.е. (Обратим вн и ­

мание читателя, что прием нахождения постоянных \  , ...
нетрудно обобщ ить и использовать для доказательства сущ ество­
вания указанного разложения в общем случае).

Тогда

х 2 -  2х + 2 , =  1 cd x  13 г Л  I f  dx
x 3 + 2 x 2 -  8x 4 j x + 12 J x  + 4 6 J x -  2

=  — — In Ixl +  —  In |x +  4| +  — In [x -  2|  +  С 
4 12 1 6 1 1

(см. (10.19)). (Рассмотренный метод интегрирования называется
методом неопределенных коэффициентов).►

10.6. Интегрирование некоторых видов 
иррациональностей

Рассмотрим случаи, в которых замена переменной позволяет 
интегралы от иррациональных ф ункций свести к интегралам от 
рациональных ф ункций, рассматриваемых в §10.5 (т.е. рациона­
лизировать интеграл).

Обозначим через R(u, v) функцию  от переменных и, v и н еко­
торых постоянных, которая построена с использованием лиш ь 
четырех арифметических действий (сложения, вычитания, умно­
жения и деления).

_ < и + 3 \ ’
Например, R(u, v)=u  + 2v , R(u, v )=  г- и т.д.

2 - м
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Рассмотрим интегралы вида j  R (x ,^ x )dx . Такие интегралы 

рационализирую тся заменой переменной t= l[x .

[>Пример 10.16. Найти
J \ Х  + \ Х

Р е ш е н и е .  Подьштегральная функция искомого интеграла 
записана как ф ункция от радикалов степеней 2 и 3. Так как  н аи ­
меньшее общее кратное чисел 2 и 3 равно 6, то данный интеграл

является интегралом типа /  R (x,$[x) dx и может быть рационали­

зирован посредством замены переменной i fx  =t. Тогда x ^ t 6 , 
dx= 6 t5d t , V* = t3 , Ifx  = t2 , Следовательно,

J -Jx + ^[x j t + t J / + 1

П оложим t+ 1 —z. Тогда d  z= d(t+ \)= dt и

= 2z 3 -  9z2 + 18z -  6 In \z\ + С = 2(Vx + l)J -  9(V* + 1)2 + 18(^/x + 1) + О  

=  2-Jx -  Ъл[х + 6 i fx  -  6 ln(^/x + J) + C ,, 

где Ci =  C - l l >

Интегралы вида |  R(x,'4x) dx являются частным случаем и н ­

тегралов от дробно-линейны х иррациональностей, т.е. интегралов

вида J R(x, + ̂ ) d x , где ad—сЬф0, которые допускают рацио-

„ „ ах + bнализацию  посредством замены переменной t=m ---------
сх + d

ОПример 10.17. Найти J у — Х ^
+ д: 1 + х

2
и -  х  1 - 12Р е ш е н и е .  Положим t =  J  . Тогда х  =  ------

V 1 + *  1 + 1
, 4tdt , ,  2 1 1 + t 2dx  --------- г- y ,  l + x =  r-, ------ = --------- .

(1 + t2)2 1 + / 2 x + 1 2
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Следовательно,

I t

1 - х  dx
+ х 1 + х !

41
2\2

V (1 + n
-21 dt +

+  2 f - — —-2 t+ 2  arctg t + C= - 2 j l — -  + 2 a r c t g — -  + С .► 
J 1 + tl  V 1 + x 1 + x

Рассмотрим интегралы вида J  R (x ,4 a x 2 +bx + c) d x .

В простейш их случаях такие интегралы сводятся к табличным 
(см. (10.12), (10.15)). (Необходимая замена переменной усматри­
вается после выделения полного квадрата в квадратном трехчлене 
а х1 +Ьх + с ).

[>Пример 10.18. Найти интегралы: 
dx

a) J- ;б )  j
х  dx

Vx2 + 4 х  + 5  ̂ Vs + 4х - 4х2
Р е ш е н и е .  Учитывая, что х 2 + 4х + 5 =  (х + 2)2 + 1, положим 

t=x+ 2. Эта замена переменной позволяет свести искомый инте­
грал к табличному (см. (10.15)):

dx dt

Vx2 + 4 х  + 5  ̂ V ^TT

=  ln

In t + J t 2 +1 + C =

x  + 2 + V x + 4 x  + 5 + C.

б) Так как 8 + 4x -  4 x 2 = 9 — (1 -  2x)2 , то положим 1 —2x=t.

Тогда x  = -— - , d x = - — dt и, следовательно,
2 2

J
x  dx

V 8 + 4x  -  4 x 2 i f
( 1 - 0  

V 9  - 1 1

dt = ~ —
V9 -  f2

t dt

\ 9 - '
Первый из интегралов данной суммы — табличный (см. 

(10.12)), второй сводится к  табличному интегралу (10.7) заменой
z = 9 — t 2 :

I
1 . / I f  ,-------------------=  -  — arcsin -  -  -  ;

V8 + 4x -  4 x 2 4 3 8 -*

- 1 / 2 dz =

=  —  arcsin 
4

-— —  -  — V^+ 4x -  4 x 2 + C >
3 4

В более сложных случаях для нахождения интегралов вида 

J R (x ,4 a x 2 + &е + с) аЬс использую тся подстановки Эйлера.
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10.7. Интегрирование тригонометрических функций
Рассмотрим интегралы вида J R  (sin х, cos х) d x . Такие инте­

гралы могут быть сведены к  интегралам от рациональных функ-
х

ций заменой переменной ^ 8  у  > гДе < х  < п.

Действительно,

2 tg (x /2 ) 21 l - t g 2 (x/2) l - ^ 2s m x =  =  r- , cos x=  — — - -  -
l + tg (x /2 ) l + t2 1 + tg (x /2)  1 + t2 ’

x~2arctg t, d x = ~ ~  . Тогда 
1 + Г

J R  (sin x, cos x) dx = J R , L - L j  = J Ri (t) d t .

[>Пример 10.19. Найти f .
J sm x

XР е ш е н и е .  Положим t =  tg —. Тогда, используя выражения

через t для dx и sin х, указанные выше, получаем, что искомый 
интеграл равен

(1 + t 2)2dt _  г dt
=ln| t \ +С=1п » *

~2
+ С >

J (1 + / 2)2/
Если ф ункция R(u, v) обладает свойствами четности или не­

четности по переменным и или v, то для рационализации и н те­
грала могут быть использованы также и другие подстановки.

Так, если R(u, v) — дробь, числитель и знаменатель которой 
многочлены по переменны м и и v и R(~u, v)=—R(u, v), то рацио­

нализация интеграла J" 7?(sin х, cos х) dx достигается заменой п е­

ременной r=x'os х.
_  г sin 3 х

>П рим ер 10.20. Найти  d x .
J COS4 X

Р е ш е н и е .  В данном случае R(u, v)=u3/ v 4 , а потому R (-u ,  v)= 
~ —R(u, i’)- Положим тогда cos x~ t, d t= —sin x  dx. Следовательно, 
учитывая, что sin2 x = 1 -  t 1 , получаем
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1 1 + с >
3 cos3 л: COS х

Если R(u - v) = - R (u ,v) ,  то рационализация интеграла 

J /?(sin х , cos х) dx достигается заменой переменной t -  sin х.

ОПример 10.21. Найти J sin2 х  cos3 х  dx .

Р е ш е н и е .  В данном случае R(u, v)=u2v 3 . Положим t =  sin х. 
Тогда dt =  cos x d x v i ,  следовательно,

С  помощ ью  известных формул для преобразования произведе­
н ия тригонометрических ф ункций  в сумму такие интегралы сво­
дятся к  сумме Табличных.

|  sin2 х cos3 х dx = |  / 2(1 -  t 2) dt = *—  -  -у  + С =

sin3 х sin5 х

ОПример 10.22. Н айти J s in 3 x c o s 5 x  d x .

—  f sin 8x rf(8x) -  sin 2x d (2x)  =  i  cos 2x -  cos 8x + С .►
16 J '  4-> 4 16

10.8. Решение задач

ОПример 10.23. Н айти интегралы:

275



dt г e^x
P e ш  e н  и e. а) Положим ex =f. Тогда dx= —  и —z dx =

t i  e2 x + \

=  f ~ f ~ ~ ~  =  J  ~ T ~  =  f f l  — 2^—'1 dt = f  dt -  { =t ~arct g t + O  J (t2 +i)t J t2 + 1 Д  t2 +\)  j м  + /
=  ex -  arctg e x + С .

Отметим, что замена переменной /  = е* позволяет рационали­
зировать произвольны й интеграл вида J  R(ex ) d x .

б) И спользуя замену переменной, сведем данны й интеграл к  
интегралу, который может быть найден методом интегрирования 
по частям.

П олож им x 2 =t. Тогда \-d t  = х  dx  и  j x 3e*2dx = j  х 2ех х  dx —
2

=  f t e ' ± d t  =  ± f t e ' d t .

Пусть теперь t —и, е!dt -d v .  Тогда du—dt, v = J  etdt = e t и

=  ~ f e tdt )  =  j t e t - ^ e , +C =  j X 2e x2 ~ ^ e x2 + C >

О П ример 10.24. Н айти интегралы:

a) J  V1 + x 2dx  ; 6) j" ex sin x  d x .

Р е ш е н и е ,  а) Воспользуемся формулой интегрирования по 
частям.

Пусть и = 4 1 + х 2 , dv= —dx. Тогда du= ,

v = j  dv =  |  dx =  x  и 

/ =  JV T+ x 1 dx  =  xVl + x 2 -  dx = x-Jl + x 2 ~ Г- -  j - d x  =
3 j VTT7 J v t t ?

=  xVl + x 2" -  J  Vl + x 2 dx + J  *
\1 -. + x 2

= xVl + x 2 -  J ^ d x  + In X + Vx2 +1 + c.
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Н о  в т о р о е  с л а га ем о е  в п о с л е д н е м  в ы р а ж ен и и  с о в п а д а е т  с  и с ­
к о м ы м  и н т е г р а л о м  J, т .е . и м е е м  р а в ен ст в о

J= x V l +  х 2 -  J  + In х  + ylx2 +  1 + С ,

от к у д а

2 /=  xVl + х 1 + 1п х  + ух ?  +1 

/ = —xVl + х 2 + — In х  + yjx2 + 1

+ С ,  

+  С,

где Сх = —С .

Следует отметить, что данны й интеграл принадлежит к  сем ей­

ству интегралов вида j  R ( x , \ a 2 + х 2 ) d x , каждый из которых

может быть найден с помощ ью  тригонометрической подстановки 
х=а  tg t.

б) Воспользуемся методом интегрирования по частям. Пусть 
sin х=и, exdx = dv .Тогда du—cos х  dx. v= ex ,

/ =  J  ex sin x  dx = ex sin x  -  J  e x cos x  dx .

Еще раз применим формулу интегрирования по частям, пола­
гая cos х=и, exdx = d v . Тогда d u =~sin х  dx, v= ex и

J  = ex sin x  -  (ex cos x  + J  ex sin x  dx) + С ,

т.е. /  = ex sin x -  ex cos x  -  J  + C .
И з последнего равенства (по аналогии с реш ением примера 

10.24а) получаем

2J  = e* (s in x  -  cosx) + С , J  = ^ e * (s in x  -  cosx) + C1; 

где Cj = i  С .

Аналогичный прием используется для нахождения интегралов 

вида j e axc o s b x d x , j"еах sin bx d x , где а  и b — некоторые дейст­

вительные числа.►
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ОПример 10.25. Найти: J х 3 -  2х2 + 4 d x .
х 2 + 2х — 3

Р е ш е н и е .  Выполняя деление “углом” , имеем

или

*3 _ 2 х 2
х 3 + 2 х 2 -  Зх

-  4 x 2

х 3 - 2 х 2 + 4  
х 2 + 2х -  3

ь

11х

= Х —4 +

х 3 -  2х2 + 4
х  + 2х -  3

+ 4 X2

+ 4
+ 12
-  8

И х  --8
х 2 + 2х -

х = \ х  dx -

х 2 + 2х -  3
х  -  4

. Тогда

11х — 8 
х 2 + 2х -  3

dx

х 4 х  + 11х -  8 
х 2 + 2х -  3

dx .

Т ак как  х 2 + 2х -  3 =  (х + I)2 -  4 , то для нахождения оставш е­
гося интеграла используем сначала замену переменной /= я+1, а 
затем формулы (10.26) и (10.14) (см. §10.5). Тогда получаем

г х 3 -  2х + 4 , х~ . г i ш  „ .
—г-------------- dx =  —  -  4х + —Ц — ------dt =

J v2 J- Tv _ т, 2 j t 1
11(г -1 )  - :

х 2 + 2х -  3 

~ 2

- 4

4х +11Г —19 Г — 
•w -  4 h

dt

~ х  и 11 , 12 л\ 19 . Н - 2 4х  + — In г  -  4  In ------
2 2 I I 4 / + 2

+ С =

~  ~ 4 х  + 4г 1п|х2 + 2х -  з| -  —  In 
2 2 I 1 4

1 + ^

х  -1
х + 3

+ С >

О Пример 10.26. Найти f i l m i c .
J х  + Vx

Р е ш е н и е .  Положим х  -  t4 (см. §10.6). Тогда dx= 4t3dt и
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Первый и третий интегралы табличные. Для нахождения вто­
рого используем формулу (10.26). Тогда получаем

f * + ^  dx =4М-21п (t 2 +1) -  4arctg t + C —
J X +  \ X

= 4ifx  + 2 ln(l + Vx) -  4arctg Vx + С .►

ОПример 10.27. Найти J ^(4 * -3 d x .

Р е ш е н и е .  Известно, что каждый интеграл семейства 

J  Л ( х , \д 2 -  х 2 ) dx  может быть найден заменой переменной

х  =  a sm /.
Положим x=2sin t. Тогда dx=2cos t dt и

г Л  =  Г cos ( Л  =  I г £ ® * 1 Л  =

J х 64 sin ? 4 J  sin /

= 1 г ctg_tdt_ =  _  1  J c t 4^ c t  f =  _  1 c t 5, + c  =  _ V<4 L  + с  j  
4 J  s in2 ? 4 J 20 20x

f tgx
ОПример 10.28. Найти I ----------- d x .

J l-c tg 2 x

Р е ш е н и е .  Положим ?=tg x. Тогда dx= ^  ■ и
1 + ?2

Г _ Ч ^ Л _ Г  < f
J l - c tg 2x J (1 -  1/7 )(1 + r )  J / 4 - l  4 J

+ C >

t4 - 1

> / 4 - l + С = — In 
4

tg4x -1

Отметим, что с помощью подстановки t=  tg х  может быть ра­
ционализирован произвольный интеграл вида j  R (tg x )d x  .
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10.9. Об интегралах, “неберущихся” 
в элементарных функциях

И з основны х правил дифф еренцирования следует, что производ­
ная произвольной элементарной функции вновь является ф унк­
цией элементарной. Существенно, что операция нахождения пер­
вообразной (неопределенного интеграла) таким свойством не 
обладает, т.е. существуют элементарные функции, первообразные 
которых элементарными функциями уже не являются. По этой 
причине соответствующие неопределенные интегралы называю т­
ся “неберущимися ” в элементарных функциях, а сами функции —

неинтегрируемыми в конечном виде. Например, [е  ' dx  . Js iii x 2dx ,

Г г sin л: , г co sx  , г dx .. rcosx  dx ,  dx  ,  dx .  неберущиеся , т.е. не
J J x J x  J ln x

существует такой элементарной ф ункции Дх), что f ' ( x )  = с ~х~ , 

f ’(x) = sin х 2 и т.д.
Все методы интегрирования, рассмотренные в данной главе, 

применяемые для нахождения интегралов от элементарных ф ун к­
ций, вновь приводят к элементарным функциям. Поэтому ука­
занные “неберущ иеся” интегралы, по крайней мере, не могут 
быть найдены с помощью методов данной главы. Однако это не 
означает, что указанные интегралы не существуют или их невоз­
можно найти (соответствующие методы интегрирования будут 
рассмотрены в гл. 14).

У П Р А Ж Н Е Н И Я
И спользуя метод разложения, найти интегралы;

3.Y 2
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Используя метод замены переменной, найти интегралы:

10.33. Г - г ^ = .  10.34. f х(2х + 5)10dx .
J л/2 -  5х J

з.
10.35. f ~ ~ т . 10.36. f -

1 + х  х  _

10.37. [ x i e W + i d x  . 10.38. f .
j  J 2 + ex

ю . з Ю . 4 0 .  f - i ^ L £ L  
J W l + In x Vl + Sin2 X

10.41.\x -2 ~ * d x .  10.42.

Используя метод интегрирования по частям, найти интегралы:

In х

10.43. [ х 2* ' . 10.44. | In2 x d x  .

10.45. |  х  In j - -- dx . 10.46. J x c o sx d x  .

Найти интегралы от рациональных функций: 
jq  С dx , Л г dx.47. Г - - - . 10.48. f

* V “ V _ ") *

dx

.Y~ +  X -  2
2x - 3

d x .*>
x ‘ -  4

2x + 3

5х2 -  7
dx

—  а х . 1и.эи. | —г-
-  4 J х"

10.51. | , iv  ' 3—  dx . 10.52.
+ Зх -  10 J х 2

. 2

10.50. Г —
J х" + 2х -  3
г х  dx

х 2 + Зх -  10 ■* х 2 + Зх + 2

10.53. \ Х] 5л У ,'/х. 10.54. f - -  — ------- .
J х “ -  5л + 6 J х  + 4х + 9

Найти интегралы от иррациональных функций:

2 - dx
10 .55. J  ~j==-~ dx . 10.56. |

i - х  J 1 + V-*

10.57. f  77^ — 7= .  10.58. f dx .
' ( i + t h c p j x  J y / 7 7 1 + y f i ^ I

10.59. Г - = Д - = .  10.60. Г
J v x + yJX J 1 -  X  1 -  X 
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Н айти интегралы:

lS 3x ^  1 п * *  Гл/ x + l n x

10.69. J' —j = = — j-дЬс. 10.70. J x ln(3x + 2) d x .

dx .
x

10.63. 10.64. f
J 3 + 2x J

10.65. 10.66. f ^ ^ d x .
J yjex +1 J Vx

10.67. J sin2 |  dx . 10.68. |  4x2 ~ 1
- x 2

dx



Глава 11. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

11.1. Понятие определенного интеграла, 
его геометрический и экономический смысл

Задача о площади криволинейной трапеции. Пусть на отрезке 
[а, Ь\ задана неотрицательная функция у  = f(x ). Требуется найти 
площ адь S  криволинейной трапеции, ограниченной кривой 
у = /( х ) ,  прямы ми х  = а, х = Ь  и осью абсцисс у  -  0 (рис. 11.1). 
(Говорят также о площади S  под кривой у  = f(x )  на [а, Ь]).

Наметим общ ий подход к реш ению  этой задачи. Введем в рас­
смотрение некоторую ломаную, которая расположена достаточно 
близко к  кривой у  - f ( x )  на [а, Ь] (рис. 11.2). Фигура под ломаной 
состоит из трапеций (прямоугольников), и ее площ адь Sn (равная 
сумме площ адей этих трапеций) может быть вычислена с и сп оль­
зованием известных формул планиметрии. Поскольку ломаная 
выбрана достаточно близко к кривой y=f{x), то справедливо п р и ­
ближенное равенство S ^ S 4. Это равенство оказывается тем более 
точным, чем ближе расположена ломаная к исходной кривой. 
Поэтому естественно за искомую площадь S  взять предел площади 
»УЛ под ломаной в предположении неограниченного приближения ло ­
маной к заданной кривой.

Приведенные рассуждения носят качественный характер. Для 
того чтобы их можно было использовать на практике, необходи­

283



мо уточнить в них то, что описывалось нестрого: процедура вы ­
бора ломаной и последую щий предельный переход. Н а этом пути 
мы получим, в частности, понятие определенного интеграла.

Понятие интегральной суммы. Пусть на [а, Ь\ задана функция 
у  ~-f(x). Разобьем отрезок [а, Ь\ на п элементарных отрезков точ­
ками х 0 , л ',, ..., х„: а = х 0 < х 1< х2 < ...< х„= Ь. Н а каждом отрезке
[ х / , ,  x i ] разбиения выберем некоторую точку с, и положим
Д X f=  X j— x t_ ] , где i= 1, 2, ..., п. Сумму вида

Х д ы  Дх,-
1=1

будем называть интегральной суммой для ф ункции y = f ( x )  на [а, 
Ь\. Очевидно, что интегральная сумма (11.1) зависит как от спо­
соба разбиения отрезка [а, Ь] точками х0 , х , , ..., х„ , так и от 
выбора точек , %2 > на каждом из отрезков разбиения
[*,-_!. х, ], /=1, 2, ..., п.

Геометрический смысл интегральной суммы. Пусть ф ункция 
y = f ( x )  неотрицательна на [а, b]. Отдельное слагаемое /(£ ,. )Дх,
интегральной суммы (11.1) в этом случае равно площади .S', п р я­
моугольника со сторонами / (  с, ) и Д х , , где /=1, 2, ..., п (см.рис.

к2 — Х!=ДХ2 и т.д.). Другими словами, 5, 
— это площадь под прямой 
>’ = /(  £, ) на отрезке [ х, , , х, ].
Поэтому вся интегральная 
сумма (11.1) равна площади 
^ = 5 ) + ^ 2 + . . .+  5’„ под лом а­
ной, образованной на каждом 
из отрезков [x,_j ,  х, ] прямой
У =/ (  %i )> параллельной оси 
абсцисс (рис. 11.3).

Понятие определенного ин­
теграла. Для избранного раз­
биения отрезка [а, b] н а  части 
обозначим через max Дх, мак-

а=х:0 ^

Рис. 11.3

симальную из длин  отрезков [ х, , ,  х, ], где /=1, 2, ..., я.
Определение. Пусть предел интегральной суммы (11.1) при 

стремлении max Дх, к нулю существует, конечен и не зависит от
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способа выбора точек х , , х2 и точек с , , %2 , • ••• Тогда этот
предел называется определенным интегралом от функции у  = /(х )

ь I
на [а, Ь], обозначается j  f ( x ) d x  , а сама функция у  = /(х )  называет-

а
ся интегрируемой на отрезке [а, Ь], т.е.

ь я
f f ( x ) d x =  lim  ] Г / ( | , ) Д х г- .
J  m a x  AX: - > 0  j  !
a  i ' - I

При этом число а  называется нижним пределом, число b — его 
верхним пределом', ф ункция Дх) — подынтегральной функцией, вы ­
ражение f(x )d x  — подынтегральным выражением, а задача о нахож- 

ь
дении J / (x)dx  — интегрированием функции Д х)  на отрезке [а, Ь\

а
Следует заметить, что не имеет значения, какой буквой обо­

значена перем енная интегрирования определенного интеграла: 
ь ь ьJ f ( x ) d x  =J f { y ) d y  = |  f ( t ) d t  =... ,
a a a

поскольку смена обозначений такого рода никак не влияет на 
поведение интегральной суммы (11.1).

Несмотря на сходство в обозначениях и  терминологии, оп ре­
деленный и неопределенный интегралы сущ ественно различные
понятия: в то время как J f ( x ) d x  представляет семейство функ-

ь
ций, |  f ( x ) d x  есть определенное число.

а
b

Во введенном определении определенного интеграла J f ( x ) d x
а

предполагается, что а<Ь. П о определению  положим
Ь аJ f ( x ) d x =  -  |  f ( x ) d x . (11.2)
а Ь

П риним ая во внимание (11.2), для нас отныне будет несущ е­
ственно, какой из пределов интегрирования больше: верхний или 
ниж ний.

а а

Полагая в (11.2) b-а ,  получаем J  f ( x ) d x  = - J  f ( x ) d x
а а
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а

или 2 ^ f ( x ) d x  =0, т.е.
а

а
J  f ( x ) d x  =0. (11.3)
а

Геометрический смысл определенного интеграла. Понятие оп ­
ределенного интеграла введено таким образом, что в случае, к о ­
гда функция у  =  Дх) неотрицательна на отрезке [а, Ь], где а<Ь,
ь

рис. 11.1). Действительно, при стремлении max Дх, к нулю ло­

маная (см.рис. 11.3) неограниченно приближается к исходной 
кривой и площ адь под ломаной переходит в площадь под кривой.

Учитывая сказанное, мы можем указать значения некоторых 
интегралов, используя известные планиметрические формулы для 
площ адей плоских фигур. Например,

(Первый из интегралов — площ адь квадрата со стороной единич­
ной длины ; второй — площ адь прямоугольного треугольника, оба 
катета которого единичной длины; третий — площ адь четверти 
круга единичного радиуса; предлагаем читателю в качестве уп­
раж нения выполнить необходимые чертежи самостоятельно).

Заметим, что равенство (11.3) согласовано с геометрическим 
смыслом определенного интеграла: в случае, когда отрезок интег­
рирования стянут в точку, фигура под кривой стягивается в отре­
зок, площ адь которого равна нулю, поскольку это площ адь п р я­
моугольника, одна из сторон которого равна нулю.

Экономический смысл интеграла. Пусть ф ункция z  = Д 0  оп и ­
сывает изменение производительности некоторого производства с 
течением времени. Найдем объем продукции и, произведенной за 
промежуток времени [0, Т  ].

Отметим, что если производительность не изменяется с тече­
нием времени (Д/) — постоянная функция), то объем продукции 
Аи, произведенной за некоторый промежуток времени [/, t+Af], 
задается формулой Ди=Д/)Д/. В общем случае справедливо п р и ­
ближенное равенство Ди=Д^)ДГ, где ~e[t, t+ Д/], которое оказы ва­
ется тем более точным, чем меньше At.

численно равен площади S  под кривой y= fix) на [а, Ь] (см.
а

i  о 2 ’ Jo 4
dx = [, f x d x  = — , f V1 -  x 2 dx = Ц- и т.д.
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Разобьем отрезок [О, Т ]  на промежутки времени точками: 
0 =  t0 < tl < t2< ...< tn —T. Д ля величины  объема продукции , 
произведенной за промежуток времени [ti A , ?, ], имеем

При стремлении шах Д/, к  нулю каждое из использованных

приближенных равенств становится все более точным, поэтому

окончательно

есть объем выпускаемой продукции за промежуток [0, Т].
С равнение данной задачи с задачей о площ ади криволинейной 

трапеции (см. выш е) показывает, что величина и объема продукции, 
произведенной за промежуток времени [0, Т  ], численно равна пло­
щади под графиком функции z=f(t), описывающей изменение произ­
водительности труда с течением времени, на промежутке [0, Т \

Достаточное условие существования определенного интеграла 
(интегрируемости функции). Теорема. Если функция y=f(x) непре­
рывна на отрезке [а, Ь], то она интегрируема на этом отрезке.

Приведем прим ер нахождения определенного интеграла на о с­
новании определения.

Р е ш е н и е .  Запиш ем выражение для интегральной суммы, 
предполагая, что все отрезки [х,„_], х, ] разбиения имеют одина­

Д и ^ Д ^ Д Г , , где /, ], Д t, - /, - t ,  i , /=1, 2, . . . ,  п. Тогда
П п

и * £ д и ,  = Е а ^ ж -

п

и = |  f ( t ) d t ,

Т

о

t> Пример 11.1. Вычислить
о
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ковую  длину A X j , равную 1/я, где п — число отрезков разбиения, 
причем для каждого из отрезков [х ,. , , x t ] разбиения точка £/

совпадает с правым концом  этого отрезка, т.е. %, — x t =  —, где /=  1,
п

2, ..., я. (В силу интегрируемости ф ункции v=a'2 , выбор такого 
“специального” способа разбиения отрезка интегрирования на 
части и точек ^ 4я на отрезках разбиения не повлияет 
на иском ы й предел интегральной суммы). Тогда

1 = \ Ъ г-
t i  t i Kn) п « ы\

Известно, что сумма квадратов чисел натурального ряда равна

^  / 2 и(и +
i = L

Следовательно,
1

=lim ^  + =1 lim Г1 + 1У2 + Г) -1  >
J л->» 6 я  6  Я/V Я /  3

Анализ приведенного примера показывает, что успешное реше­
ние поставленной задачи оказалось возможным благодаря тому, что 
интегральную сумму удалось привести к виду, удобному для нахож­
дения предела. Однако такая возможность существует далеко не все­
гда, поэтому долгое время задача интегрирования конкретных функ­
ций оставалась задачей чрезвычайно сложной. Установление связи 
между определенным и неопределенным интегралами позволило 
разработать эффективный метод вычисления определенного инте­
грала, который будет рассмотрен в §11.4.

11.2. Свойства определенного интеграла
В данном параграфе мы будем предполагать интегрируемость 

всех рассматриваемых ф ункций на выделенных отрезках интег­
рирования.

Рассмотрим сначала свойства определенного интеграла, кото­
рые имею т аналоги в случае интеграла неопределенного.

1. Постоянный множитель можно выносить за знак интеграла, т.е.
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b b

^ a f { x ) d x  = a ^ f { x ) d x ,  (11.4)
a a

где a  — некоторое число.
□  Пусть ф иксированы  разбиение отрезка [а, b] и выбор точек
, ' 2 ' •••' %п на каждом из отрезков разбиения. Используя ассо­

циативный (распределительный) закон умножения чисел, имеем 
п п

]Гсх/(^)Лх,- = а £ / ( 5 / )Дх/ .
/=1 /=1

Перейдем к пределу в левой и правой части последнего равен­
ства при max Лх,- -» 0:

i
п п п

lim lim a ^ / ( ; ; )ДЛ7 = a  lim У  f i t , )  Ax, .
тах Л х ;-»0- . шахДх,-»0,-_, ш ах Л х ,--> 0 .

• /1 j  J  1  I  1 1

По определению  определенного интеграла первый из пределов 
равен левой части равенства (11.4), последний — п р ав о й .*

2. Интеграл от алгебраической суммы двух функций равен такой 
же сумме интегралов от этих функций, т.е.

ь ь ь
J ( / ( * )  ± g {x ))d x  =  J /(*)<&  ± |  g{x)dx  . (11.5)
а а а

Нетрудно видеть, что это свойство остается справедливым для
любого числа слагаемых.

Доказательство свойства 2 аналогично свойству 1.
Перейдем теперь к свойствам определенного интеграла, кото­

рые не имею т аналогов в случае неопределенного интеграла.
3. Если отрезок интегрирования разбит на части, то интеграл 

на всем отрезке равен сумме интеграюв для каждой из возникших 
частей, т.е. при любых а , Ь, с:

Ь с Ь

^ f { x ) d x = ^ f ( x ) d x  + ^ f { x ) d x .  (11.6)
а а с

Рассмотрим геометрический смысл свойства 3. Пусть а<с<Ь и 
функция J{x) неотрицательна на [а, Ь]. Согласно геометрическому

с Ь

свойству определенного интеграла \ f ( x ) d x = S x I f ( x ) d x  = S 7



(рис. 11.4), j" f ( x ) d x = S ,  где S  — площ адь под кривой y= fix) на
а

отрезке [а, b] (площадь всей заш трихованной фигуры н а рис.
11.4). Тогда при сделанных предположениях равенство (11.6) ут­
верждает наличие следующего (очевидного) соотнош ения между 
площ адями: S = S X + $ 2 .

Пусть а<Ь<с, и функция у -fix )  неотрицательна на отрезке [а, с]. 
П рименяя равенство (11.2) ко второму интегралу из правой части

(11.6), запиш ем этот интеграл так, что­
бы верхний предел был больше н иж не­
го (для остальных интегралов (11.6) 
верхний предел больше ниж него по 
предположению):
Ь с с

J  f ( x ) d x = ^  f ( x ) d x - ^  f ( x ) d x  . (11.7)
a a b

Тогда равенство (11.7) утверждает 
наличие следую щ его (очевидного) 

площ адям и кри волин ей н ы х трапеций  
где S  — площ адь под кри вой  у  = f ( x )  на

Рис. 11.4

соотн ош ени я между 
(рис. 11.5): S i = S - S 2 
отрезке [а, с].

4. Если на отрезке [а, Ь], где а<Ь, 
f ( x )< g (x ) ,  то и 

ь ь
j / ( x ) a ^ < J ^ ( x ) a b c ,  (11.8)
а а

т.е. обе части неравенства можно 
почленно интегрировать.

□ Пусть фиксированы разбиение от­
резка [а, Ь] и  уыбор точек С ],

на каждом из отрезков разбиения. 
Тогда и з неравенства /(х )< ^ (х )  вытекает аналогичное неравенство 
для интегральных сумм:

£ / ( ^ ) Д х ,  < Ё * (5 /)Л * < .
/=1 /=1

Переходя к  пределу при max Ах, -> 0 ,  получим (11.8).
i
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С л е д с т в и е .  Пусть на отрезке [а, Ь], где а<Ь, т< Дх)<М, 
где т  и  М  — некоторые числа. Тогда

ь
т (р-а)<  |  f ( x )d x  < M (b—a). (11-9)

а
□  П о свойству 4 имеем

b ь ь
j  т dx  < j f { x )  dx  < |  M  dx .
a a a

Остается заметить, что по свойству 1 и геометрическому
ь ъ

смыслу определенного интеграла J т dx = mj dx =m(b—a) и анало­

гично |  М  die =M (b~a).

5. Теорема о среднем. Если функция у=Дх) непрерывна на от ­
резке [а, Ь], (где а<Ь), то найдется такое значение ;е [а ,  Ь], что

ь
j / ( x ) d x = A O ( b - a ) .  (11.10)
а

□ П о свойству ф ункции, непрерывной на отрезке, для п роиз­
вольного значения х из [а, Ь] верно, что т<Дх)<М, где т и М  — 
наименьш ее и наибольш ее значения ф ункции на [а, Ь]. Тогда, 
согласно (11.9), имеем

1
т<  f f { x )  dx < М  .

b -  а •>

Н о функция, непреры вная на отрезке, принимает любое зн а­
чение, заклю ченное между ее наименьш им и наибольш им значе­
ниями. Поэтому, в частности, н ай ­
дется такое число %е[а, Ь], что

1 ъ
 ------- [ f ( x ) d x = A * ) -  Л
h  -  a  J

Пусть Дх)>() на [а, Ь]. Тогда теорема 
о среднем утверждает: найдется такая 
точка % из отрезка [а, Ь\, что площадь 
под кривой у -fix ) на [а, Ь\ равна ш ощ а- 
ди прямоугольника со сторонами А О  и Рис. 11.6

291



(b~а) (см. рис. 11.6 и геометрический смысл определенного инте­
грала). Еще одно возможное объяснение геометрического смысла 
теоремы о среднем см. в §11.6.

11.3. Определенный интеграл как функция верхнего
предела

Ранее, строя новые функции из известных, мы использовали
четыре арифметических действия и нахождение ф ункции от
ф ункции (см. гл. 5). В данном параграфе мы рассмотрим п р и н ­
ципиально иной способ построения новых функций из извест­
ных.

Если ф ункция у =Л х) интегрируема на отрезке [а, Ь\, то, оче­
видно, она интегрируема также на произвольном отрезке [a, jc], 
вложенном в [а, Ь].

П оложим по определению
X X

Ф ( x ) = j f ( x ) d x = j f ( t ) d t ,  (11.11)
а а

где хе[а,  Ь], а ф ункция Ф(х) называется интегралом с переменным 
верхним пределом].

Пусть f{t)>Q на отрезке [а, Ь]. Тогда 
(см. § 11.1) значение функции Ф(х) в 
точке х  равно площ ади .Я*) под кривой 
y= fit) на отрезке [а, х] (см. рис. 11.7). (В 
этом состоит геометрический смысл 
интеграла с переменны м верхним п ре­
делом).

Последнее замечание позволяет, в 
частности, по-новому взглянуть на н е­
которые известные функции. Например,

* dt
(см. § 11.4) f — = l n x , где х>1, поэтому 

. t

1 В правую часть определения (11.11) переменная х  входит трижды, но смысл 
этих вхождений не одинаков. Верхний предел интегрирования — это аргумент 
функции Ф(х), но переменная в записи подынтегрального выражения является 
переменной интегрирования, которую (см. § 11.1) можно обозначить другой бук­
вой, например л
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значение ф ункции In л в точке л: численно равно площ ади Six)

под гиперболой у = у на отрезке [1, х] (см. рис. 11.8).

Рассмотрим теперь свойства функ­
ции Ф(х) (интеграла с переменным 
верхним пределом, см. (11.11)).

Теорема 1. Если функция Д х) не­
прерывна на отрезке [а, b], то
функция Ф(Л') так же непрерывна
на [а, b].

□ Пусть Ах таково, что х+Дх п р и ­
надлежит отрезку [а, b]. Согласно 
(11.1) и (11.6), имеем

х  + Лг х  х + Дх х + Ах

Ф(х+Дх) =  J f ( t ) d t =  j f ( t ) d t  + j f ( t ) d t =  Ф(х)+  j f ( t ) d t .
а а х  х

По теореме о среднем (см. § 11.2) найдется такое значение
х+Лх

следовательно,
X

Ф(х+Дх)=Ф(х)+Д2)Ах. (11.12)

*е[х, х+Дх], что |  f { t ) d t  =Д^)Дх и,

П оскольку точка \  принадлежит, в частности, отрезку [а, 6], то 
т< Д*)<Л/, где т  и М  — наименьшее и наибольшее значения 
ф ункции Дх) на [а, Ь]. (П ри изменении Дх значение Д£), возмож ­
но, меняется, но в любом случае мы имеем дело с ограниченной 
функцией).

Переходя в (11.12) к пределу при Дх^О и используя теоремы о 
пределах, получим

lim  Ф(х +Дх) =  Ф(х) + lim / ( с )  Дх =Ф(х).
Лх->0 Л.х->0

Теперь мы докажем, что производная от интеграла с перем ен­
ным верхним пределом по верхнему пределу равна поды нте­
гральной функции. Более точно справедлива следующая теорема.

Теорема 2. Пусть функция Дх) непрерывна на отрезке [а, b]. 
Тогда в каждой точке х  отрезка [а, Ь\ производная функции Ф(х) 
по переменному верхнему пределу равна подынтегральной функции 
А х), т.е.
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Ф'(х)=
/

=Дх). (11.13)

□ В оспользуем ся равенством  (11.12) из доказательства тео ­
ремы  1. Тогда

Ф(х + Ах) -  Ф(х) 
Дх = т , (11.14)

где £е[х, х+Ах]. Переходя в (11.14) к пределу при дх->0 и учиты­
вая, что lim / ( 4 ) —Дх) (в силу непрерывности функции Дх)),

Дх ~> О

приходим к (11.13). ■
Рассмотрим геометрический смысл доказательства теоремы 2.
Пусть Д /)>0 на [а, Ь]. По геометрическому смыслу интеграла с 

переменны м верхним пределом АФ=Ф(х^-Дх)—Ф{х)=Ба^ ер -  Sabcd = 
=Sdcef (рис. 11.9), т.е. приращение функции Ф(х) равно прираще­
нию площади под кривой y=fit) при изменении абсциссы от х  до 
л~+ Ах. По теореме о среднем найдется такое значение ;е[х, х+Дх], что 
площадь S DCFF криволинейной трапеции будет равна площади 
S /)(,//!■ прямоугольника со сторонами Д5) и Ах В результате 
АФ = S DGHf =Дс)Ах и приходим к (11.14). При Дхн>-0 отрезок [х, x+Av] 
стягивается в точку, и Д !) переходит в Дх), а предел левой части

(11.14) равен Ф'(х).
С л е д с т в и е .  Если функция 

y=f{x) непрерывна на отрезке [а,
Ь], то для этой функции существу­
ет первообразная на отрезке [а, Ь].

Действительно, примером пер­
вообразной для Дх) является функ­
ция Ф(х), заданная формулой 
( 11.11).

З а м е ч а н и е .  Четыре 
арифметических действия и н а­
хождение функции от ф ункции, 
примененные к элементарным 

функциям (конечное число раз), вновь приводят к ф ункциям 
элементарным. Что же касается интеграла с переменным верхним 
пределом (11.11), то здесь элементарность функции >'=Дх), вооб­
ще говоря, не обеспечивает элементарности функции Ф(х). Н а­

V
' i

-V 
1

н

Е

G
Н

С !
в /  1 :I 1
A D\ j F

0 а х  4 х+Ах
Дх 

Рис. 11.9
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пример, ф ункции J e~f d t , |  у~у (и т п - функции, связанные с
О е

неберущ имися интегралами, см. § 10.9) неэлементарны, так как
2 1

они являю тся первообразными для ф ункций е х ,  ----- , которые
In х

не имею т первообразных в классе элементарных функций.

11.4. Формула Ньютона—Лейбница
В этом параграфе, опираясь на свойства интеграла с перем ен­

ным верхним пределом, мы получим основную формулу инте­
грального исчисления, традиционно связываемую с именами 
И .Н ью тона и Г.В .Лейбница (см. (11.15)).

Теорема. Пусть функция у  =f(x) непрерывна на отрезке [а, А] и 
Д х) — любая первообразная для / ( х )  на [а, Ь]. Тогда определенный 
интеграл от функции / ( х )  на [а, Ь] равен приращению первообраз­
ной Д х ) на этом отрезке, т.е.

ь
J.f(x)dx=F(b)~F(a)I. (11.15)
а

□ Пусть Д х) — некоторая первообразная для ф ункции Дх). Но
по теореме 2 (см. §11.3) функция Ф(х), заданная формулой 
(11.11), также является первообразной для функции Дх), и по 
теореме из § 10.1 найдется такое число С, что Д х)=Ф (х)+С .

Тогда для приращ ения первообразной имеем
Ь а

F(b)~ F (a)= (0(b)+  С) -  (Ф(а)+ С)=Ф(Ь) — Ф ( л ) = |  f ( x ) d x  - 1 f ( x ) d x
а а

(см. определение (11.11) функции Ф(х)). Для заверш ения доказа-
а

тельства достаточно заметить, что согласно (11.3) J f ( x ) d x  =0. ■
а

Нахождение определенных интегралов с использованием ф ор­
мулы Н ью тона—Л ейбница (11.5) осуществляется в два шага: на 
первом шаге, используя технику нахождения неопределенного 
интеграла, находят некоторую первообразную Д х) для поды нте­
гральной ф ункции Дх); на втором применяется собственно ф ор­
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мула Н ью тона—Л ейбница — находится приращ ение первообраз­
ной, равное искомому интегралу. В связи с этим, введем обозна­
чение для приращ ения первообразной, которое удобно использо­
вать при записи реш ений. П о определению  положим

а
F(x) = F ( b ) - F ( a ) .  (11.16)

b.
Следует подчеркнуть, что при прим енении формулы Н ью то­

н а -Л е й б н и ц а  мож но использовать л ю б у ю  первообразную 
Д х) для подынтегральной ф ункции Д х ) ,  например, имеющую 
наиболее простой вид при 0=0.

1 2
|>  Пример 11.2. Вычислить: a) j x 2dx ; б) j"23x~4dx.

о 1
Р е ш е н и е. а) П роизвольная первообразная для ф ункции

7 X3
Д х )=  х  имеет вид F \x )=  —  + С . Для нахождения интеграла по

формуле Н ью тона—Л ейбница возьмем такую первообразную, у 
которой С= О (см. замечание выше). Тогда

x 2dx = 4 -
3 3 3 ’

что совпадает, конечно, с результатом, полученным в примере 11.1.
б) Первообразную  подынтегральной ф ункции найдем, исполь­

зуя формулу (10.9). П рименяя формулу Н ью тона—Лейбница, 
получаемI2Зх~4 dx =

1 i3 x -4

3 In 2 3 In 2
1

3 In 2
4 - 1  = _ Z _ .  

2) 61n2

П ри нахождении интеграла из примера 11.26 было использо­
вано свойство приращ ения первообразной

(а/ЭД)
ь

/
ь)= а /■(*)

а к а)
(П .1 7 )

где а  — некоторое число.
Заметим, что введенное ранее определение (11.2) и его следст­

вие (11.3) согласованы с формулой Нью тона—Лейбница. Д ейст­
вительно,
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jf n x ) d x  = m ~ F ( a )  = -  -  ] т < &

J  f ( x ) d x = F { a )  ~F{a)=0.
О

Таким образом, и при применении формулы Нью тона—Л ейб­
ница несущ ественно, какой из пределов интегрирования больше: 
верхний или ниж ний.

11.5. Замена переменной 
и формула интегрирования 

по частям в определенном интеграле
П ри вычислении определенных интегралов с использованием 

формулы Н ью тона—Л ейбница предпочтительно жестко не раз­
граничивать этапы реш ения задачи (нахождение первообразной 
подынтегральной ф ункции, нахождение приращ ения первообраз­
ной). Такой подход, использую щ ий, в частности, формулы заме­
ны переменной и интегрирования по частям для определенного 
интеграла, обычно позволяет упростить запись решения.

Теорема 1. Пусть функция <р(/) имеет непрерывную производную 
на отрезке [а , (3], а=ср(а), />=<р(Р) и функция fix) непрерывна в каж­
дой точке х  вида д=ф(/), где /е [а , (3].

Тогда справедливо следующее равенство 
ъ р
f / ( x ) d x =f / ( c p Xf ) ) q > ' d t .  (11.18)
а а

Формула (11.18) носит название формулы замены переменной в 
определенном интеграле.

□ Пусть F[x) и Ф(Г) — некоторые первообразные для функций 

fix)  и /(ф(7))ф'(0 • В гл. 10 было доказано, что F(<p(t)) также явля­

ется первообразной для функции /(ф (О )ф (О - Тогда по следст­
вию из теоремы Лагранжа найдется такое число С, что 
Ф (0 = /г(ф (t ))+C,  где t e [ a , 0]. Поэтому

Ф(Р)—Ф (а)= ( Д Ф (р))+  С И /Ч ф  (а ))+  Q= F ( b )  -  F{a).
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Н о по формуле Нью тона—Лейбница Ф (р)~Ф (а) совпадает с 
правой частью (11.18), a F(b) ~F{a)  — с левой частью (11.18). ■

Подобно тому, как это было в случае неопределенного интеграла, 
использование .замены переменной позволяет упростить интеграл, 
приблизив его к табличному (табличным). При этом в отличие от 
неопределенного интеграла в данном случае нет необходимости воз­
вращаться к  исходной переменной интегрирования. Достаточно 
лиш ь найти пределы интегрирования а  и  р по новой переменной t 
как решение относительно переменной t уравнений <p (t)=a и <p (t)=b. 
На практике, выполняя замену переменной, часто начинают с того, 
что указывают выражение t=\\i(x) новой переменной через старую. В 
этом случае нахождение пределов интегрирования по переменной t 
упрощается: ot=v(/(a), р=\|/(/>).

1
П> Пример 11.3. Вычислить j x ( 2 ~ x 2 )5dx.

о
Р е ш е н и е .  Положим /= 2 -  х 2. Тогда 

dt  =  d ( 2 -  х 2) =  (2 -  х 2)' dx= —2x dx  и x c k c = -^ d t

/ = 2 - 0 ' =  2, и если х =  1, то t =  2 — 1

Jx(2 -  х 2)5d x =  j t 5  ̂ *
0 2

Если х =  0, то

1. Следовательно,

t 5d t = - l

12
У

—  ( 1 - 2 6) =  -~  
12 4

Рассмотрим теперь, как выполняется интегрирование по час­
тям в определенном интеграле.

Теорема 2. Пусть функции и=и(х)  и v 
производные на отрезке [а, Ь]. Тогда

|  и dv = uv -  J  vdu ,

(х) имеют непрерывные 

(11.19)

где uv =м ( b ) v ( b ) -  u(a)v(a).

Ф ормула (11.19) называется формулой интегрирования по час­
тям для определенного интеграла.
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uv

□ П оскольку («v)'=m 'v+«v', to  ф ункция uv является первооб­
разной для ф ункции u'v+uv'.

Тогда по формуле Н ью тона—Л ейбница и (11.5) получаем:
I Ь ь  ь

— |  (u'v + uv')dx  =  J vu’dx + J uv’dx ,
a a a a

что равносильно (11.19), поскольку по определению диф ф ерен­
циала и '(х) dx =du  и v ’( x ) d x =  dv.

1
[> Пример 11.4. Вычислить J  \n(\ + x ) d x .

о
Р е ш е н и е .  Пусть и--\п( 1 +х), dv=dx. Тогда du = d(  1п(1+х))=

=(1п(1+х))'й6с= и v= Г dv =  f dx =х (см. гл .10).
1 + х  J J

П рименяя (11.19), получаем

J ln ( l  + x)dx  = x ln (l+ x )
1 1

О О

dx
+ х

Д ля нахождения п о л н е н н о го  интеграла положим 1+х=/. Тогда 
dx=dt, x —t— 1 и если х=0, то /== 1, если х=1, то Р= 2. Следовательно,

I 2 dtJ 1п(1 + x)dx  = x ln (l+ x )  -  J —— d t= ln 2 — j d t  + J —1
0  1 !  j  f

= 1п 2-(2 -1)+ 1п 2-1п 1= 1п 4-1 .^=1п2— t + In \t\

11.6. Геометрические приложения определенного
интеграла

Вычисление площадей плоских фигур. 1. Пусть функция y=fix) 
неотрицательна и непреры вна на отрезке [а, Ь]. Тогда по  геомет­
рическому смыслу определенного интеграла (см. § 11.1) площадь 
S  под кривой у  = /(х )  на [а, Ь\ (см. рис. 11.1) численно равна оп-

ь
ределенному интегралу J f { x ) d x  , т.е.

а
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] f ( x ) d x

t> Пример 11.5. Найти площ адь фигуры, ограниченной л и ­

ниям и х=4~У > >'=4-
Р е ш е н и е .  И з чертежа (см.рис. 11.10) видно, что иском ая 

площ адь .S' криволинейного треугольника ОАВ равна разности 
двух площадей:

^  S ( ) A H C  ~  $ О В С  '

каждая из которых находится по  гео­
метрическому смыслу определенного 
интеграла. Решая систему 

У = 4, получаем, что точка В
\х  = у[у" 

пересечения прямой у= 4  и кривой 
х=т[у имеет координаты (2; 4). Тогда

2

>олвс

>овс '

2 2

: J 4dx =  4 J dx ~4 х
о о

~-^x2dx ■

= 8 ,
о

16О кончательно 5 =  8 -  — = —  (ед.2).

Отметим, что данная задача может быть также решена другим 
способом. Сделаем сначала некоторые замечания общего характера. 

П о определению  определенного интеграла 
d „
fФ (У) dy = lim У ф ( с ; ) Ay, .
J max Д у-^О ттС /  « = 1

Это равенство мож но понимать так, что при построении и н те­
гральной суммы разбиению  подвергается отрезок [с, d] оси орди­
нат. Соответственно точки ^ , £2 > •■■Ля ~  это ординаты, ф и к ­
сированные на каждом из отрезков разбиения. Поэтому, если

■х ~Ф (У) S 0 на [с, d], то интеграл j  ф( y ) d y численно равен площ а-
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ди S  криволинейной  трапеции, ограниченной кривой х=ф(у) и  
прямы ми х=0, у=с, y —d  (см. рис. 11.11). (Другими словами, в 
данном случае площ адь вычисляется посредством проецирования 
криволинейной трапеции на ось ординат). Теперь, возвращ аясь к 
задаче наш его примера, можем записать:

S = j j y d y  = 1 ^ 3 /2
3 о

| ( 4 3/2 -  03/2) =

=  16/3 (ед .2 ).►
2. Пусть ф ункция у=Дх) неполож итель­

на и непреры вна на [а, Ь\ (см. рис. 11.12).
Выясним, какая связь в этом случае сущ е­
ствует между площ адью  S  криволинейной 
трапеции “над кри вой ” у  = /(х )  н а  [а, Ь\ и 

ь
интегралом J f ( x ) d x  .

а
Отражая кривую  у —f i x )  относительно оси абсцисс, получаем 

кривую  с уравнением y  — —f{x) .  Ф ункция y=f(~x) уже неотрица­
тельна н а [а, Ь], а площ адь под этой кривой на [а, Ь\ из соображ е­
ний  симметрии равна площ ади S  (см. рис. 11.13). Тогда 

ь ь
5  =  J* ( - / (х )dx) , т.е. S = - ^ f ( x ) d x .  (11.20)

а а
Таким образом, если ф ункция у  = /(х )  неположительна н а [а, Ь], 

то площ адь S  над кривой у  = / (х) на [а, Ь] отличается знаком от
ь

определенного интеграла J f { x ) d x .

[> Пример 11.6. Н айти площ адь ф и ­

гуры, ограниченной линиям и у  = - х 2 , 
у  = х —2, у  =  0.

Р е ш е н и е .  Из рис. 11.14 видно, 
что искомая площадь S  криволинейного 
треугольника ОЛВ может рассматривать­
ся как площадь над кривой ОЛВ на от­
резке [0; 2]. Однако указанная кривая 
(ломаная) не задается одним уравне-
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ни ем. Поэтому для нахождения S = S 0AB разобьем криволинейны й 
треугольник ОАВ н а  части, проецируя точку А излома на ось абс­
цисс. Тогда S = S 0AC + S ABC (см.рис. 11.14). Абсциссы точек О, А,

В задают пределы интегрирования. 
(Проверку того, что координаты точек 
О, А, В равны (0; 0), (1; - 1 )  (2; 0), мы 
оставляем читателю в качестве уп­
ражнения).

1
s OAC = ~^{~X2)dx =

=  J  x 2dx = 
о

2

s a b c  = - \ { x - 2 ) d x  ■■

% ’

1 1 5  ?Окончательно S =  — + — = — (ед. ).►
3 2 6

3. Пусть н а отрезке [а, b] задана н е­
прерывная ф ункция у -fix )  общего вида. 
Предположим также, что исходный от­
резок мож но разбить точками на конеч- 

Рис. 11.14 ное число интервалов так, что на каж ­
дом из них ф ункция y = f ( x )  будет зна­

копостоянна или равна нулю. Выясним, какая в данном случае
ъ

существует связь между определенным интегралом J f ( x ) d x  и
а

площ адями возникаю щ их криволинейных трапеций. Рассмотрим, 
например, случай ф ункции, изображенной н а рис. 11.J5. П ло­

щадь заш трихованной фигуры S  =  
= 5 j + S2 + 5 3 , т.е. равна алгебраи­
ческой сумме соответствующих о п ­
ределенных интегралов: 

с d Ь
^ = 1  f ( x ) d x  -  J  f { x ) d x  + J  f ( x ) d x  .

a с d
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Сделанные замечания позволяю т дать еще одну геометриче­
скую интерпретацию  теоремы о среднем (см. § 11.2). Равенство 
(11.10) мож но переписать в виде 

ъ
\ { m - m ) d x =  о,

т.е. терема о среднем утверждает, 
что найдется такая точка се [а, Ь], 
что после сдвига исходной кривой 
y = f ( x )  вдоль оси ординат на ве­
личину / ( с )  для полученной кр и ­
вой y —f  {x)~f (?) площ ади частей 
криволинейной трапеции, распо- ^ ис‘
ложенных выше и ниже оси Ох, равны (например, на рис. 11.16

^  )■
4. Приведем формулу, применение которой часто упрощает 

реш ение задач на вычисление площадей плоских фигур.
Теорема. Пусть на отрезке [я, Ь] заданы непрерывные функции 

y ~ f \ ( x ) и у  =  f 2(x) такие, что f 2{x)> f\ {x) .  Тогда площадь S  фигу­
ры, заключенной между кривыми у  =  f 2(x) и у  f t( x ) , на отрезке
[а, Ь] вычисляется по формуле

ь

■ * = /( /2 (* ) " / !  (*))<&■ (1 1 2 1 )

а) г)
Рис. 11.17

П роиллюстрируем теорему графически. Возможны несколько 
случаев расположения кривых на отрезке [а, Ь].

1. / 2(х )> ^(.х )> 0  (см.рис. 11.17а).
ь ь

$^$аЛВЪ ~ S aAtBtb ~ J f l ( x )^x  " |  /1 (x )dx  .
а
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2. 0 > /г (х )>  f x{x) (см.рис. 11.176).
ь [  ь

S = S(iA\B\b -  SaABb = “ I  f \  (*) dx -  -  I  f'l (A') dx
a v a

откуда следует (11.21).
3. f 2( x ) > f ( x ) ,  f 2(x)>0, f i (x)<0 (см. рис. 1 1 . 1 7 b ).

ь ( b
S = SaABb + ^ а,\Нф = J h ( x ) d x  + -J* f\  (x)dx

a V a '

откуда следует (11.21).
4. Общий случай (см. рис. 11.17 г) сводится к частным случа­

ям, рассмотренным выш е, если разбить отрезок [а, Ь] на отдель­
ные отрезки [а, с], [с, d], [d, b).

[> Пример 11.7. Найти площадь ф и ­

гуры, ограниченной линиями у  ~ х 2 -  2 , 
у  = х  (рис. 11.18).

Р е ш е н и е .  Найдем координаты то­
чек пересечения параболы у=х~ - 2  и пря­
мой у  =х, решив систему этих уравнений: (—
1; —1) и (2; 2). На отрезке [—1, 2 ]х >
> х 2 - 2 .

Воспользуемся формулой (11.21), п о ­
лагая / 2( х )  =х, / ,  (х )  =  х 2 -  2 .

А бсциссы  точек А и В пересечения 
наш их линий  зададут пределы интегрирования:

откуда следует формула (11.21).

5=  j ( x - ( x 2 - 2 ) ) d x  = —
-1

+ 2х
-1

=  | ( 4  -  И ) 2) -  | ( 2 3 -  (-1)3) + 2(2 -  (-1)) =4.5 (е д .2 ) >

Вычисление объемов тел вращения. Пусть на отрезке [a, bJ за­
дана непрерывная знакопостоянная функция y=f (x) .  Необходимо 
найти объем Vx тела, образованного при вращении вокруг оси абс­
цисс криволинейной трапеции, ограниченной линиями y=f(x) ,  
у  = 0 , х - а ,  х =  Ь (см.рис. 11.19).
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Для реш ения задачи п р и ­
меним тот же подход, кото­
рый был использован выше 
для нахождения площади 
криволинейной трапеции.
Разобьем отрезок [а, b] на 
элементарные отрезки точка­
ми: a = x 0 < x ] < x 2 <. . . <x „ =b
и на каждом из отрезков 
разбиения [х, ,, ] некото­

рым образом выберем точку 
£,■, где /= 1 , 2, ..., п. Тогда 
некоторое приближ ение для искомого объема даст следующая 
сумма

£ л / 2(^ )Д х ,., (11.22)
/=1

/-е слагаемое которой (/=1, 2, ..., п) — это объем цилиндра с вы ­
сотой Дх, =  Xj — х,-_! и радиусом основания Д ^ , ) (см. рис. 11.19). 
Очевидно, что приближение для искомого объема Vx будет тем 
лучше, чем меньш е длина отрезков разбиения Д л', , поэтому за 
искомый объем Ух естественно взять следующий предел

Vx = lim У я / 2 ( ^ ) Д х , ,  (11.23)
т а  х Л х ;-> 0 '“; (=1

где m ax Ал;,- — максимальная из длин отрезков разбиения. Но
г

выражение, стоящее в правой части (11.23), не что иное, как пре­
дел интегральной суммы для функции <р (х)= п / 2(х) , поэтому
(см. определение определенного интеграла и формулу (11.4))
окончательно получаем

ь
Vx = n j  f 2( x ) d x . (11.24)

а

О  Пример 11.8. Вычислить объем тела, полученного от вращ е­

ния фигуры, ограниченной линиями у = е х , у =  0, х=0, л~1 вокруг 
оси Ох.

Р е ш е н и е .  По формуле (11.2.4) искомый объем
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* ( 1 
Vx = n j ( e - x )2d x = n ( - - e ~ 2x - f l . - 1,36 ( е д .3 ) >

Ф ормально заменяя в формуле 
(11.24) переменную л: на у,  получа­
ем формулу для вычисления объема 
Уу тела, полученного от вращ ения

криволинейной трапеции вокруг 
оси ординат:

d
Kv -  TtJф2{y)dy (11.25)

(на рис. 11.21 вращаемая криволи­
нейная трапеция заштрихована).

[>Пример 11.9. Найти объем тела, полученного от вращ ения
вокруг оси ординат плоской фигуры, 
ограниченной линиями у  = х 2 , у  = х 3 .

Р е ш е н и е .  Проецируя вращ ае­
мую фигуру на ось ординат (рис. 
11.22), убеждаемся, что искомый V 
равен разности двух объемов: объема 
VYi , полученного от вращения вокруг

оси ординат фигуры, ограниченной 
линиями х=1[у , х=0, >’=1, и объема 
Vv2 , для которого вращаемая фигура

ограничена линиями х=л[у  , л'=0, у = 1.
(С учетом предстоящего применения 
формулы (11.25) уравнения кривых за­
писаны  в виде x=q>(у), предполагаю ­
щем переменную у  независимой). 
Применяя (11.25), получаем:

1 I
V,vl = ( \ [ y )2dy = 2 / 3 dy

ь

о
5 /3 3

5 Л
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Уу2 = ■71J  (4 y )2dy  = ъ\у<1у = п —
о

у 2 1 71

Окончательно
3 1 , ч

K = Kv l -K v2= —л - —7i = 0,l7t (ед. ‘ )•► 
5 2

11.7. Несобственные интегралы
В предыдущих параграфах мы рассматривали интегралы от 

ф ункций, интегрируемых (и, следовательно, ограниченных) на 
конечных отрезках интегрирования. На практике возникает необ­
ходимость обобщ ения этих понятий на случаи, когда либо один 
из концов (или оба) отрезка интегрирования удален в бесконеч­
ность, либо ф ункция не ограничена на отрезке интегрирования.

Несобственные интегралы с бесконечными пределами интегри­
рования. Пусть функция у=Дх)  определена и интегрируема на

г
произвольном отрезке [а, /], т.е. ф ункция 0 ( t ) =  j  f ( x ) d x  опреде-

а
лена для произвольного t > а.

+сс
Определение. Несобственным интегралом [ / ( .v) dx от функ-

а

ции f ( x )  на полуинтерва/1е [а, + х ) называется предел функции Ф(/) 
при t, стремящемся к +сс, т.е.

+ОС Г

f f ( x ) d x  = lim [ f ( x ) d x  . (11.26)
J Г~>-Н5С J
a  a

Если предел, стоящий в правой части равенства ( 1 1 . 2 6 ) ,  сущ е­
ствует и конечен, то несобственный интеграл называется сходя­
щимся (к данному пределу), в противном случае — расходящимся.

По аналогии с теорией числовых рядов (см. гл. 1 3 )  при работе 
с несобственными интегралами обычно выделяют следующие две 
задачи:

а) исследование вопроса о сходимости заданного несобствен­
ного интеграла;
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б) вычисление значения интеграла в случае, если последний 
сходится.

В некоторых случаях реш ения этих двух задач удается объеди­
нить.

Использование несобственных интегралов позволяет придать 
смысл такому понятию , как площадь полубесконечной (бесконечной) 
фигуры (см. примеры ниже).

Для нахождения интеграла, стоящего под знаком предела, 
воспользуемся формулой Нью тона—Лейбница:

т.е. искомый несобственный интеграл сходится к 1. Аналогично, 
используя формулу Н ью тона—Лейбница, можно убедиться, что

ся, если т <  1. Геометрический смысл этого результата состоит в

том, что среди всех кривых вида у  = —  гипербола у  = — являет-
х т X

ся своеобразным “порогом”: те кривые данного вида, которые на 
[1; +сс) лежат ниже нее, ограничиваю т полубесконечную фигуру 
конечной площади; если же кривая лежит выше или совпадает с

гиперболой у = ~  , то соответствующая фигура имеет бесконечную

[> Пример 11.10. Вычислить

Р е ш е н и е .  П о определению

Тогда

является сходящ имся к  , если т >  1, и расходящим-
т -  1

площ адь (см.рис. 11.23). ►
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По аналогии с (11.26) определяется Уп 
несобственный интеграл на полуинтер­
вале (—оо, Ь\.

ъ ь

\ f { x ) d x  = lim  f f ( x ) d x . (11.27)
J t  —> — oo J

-  cc 1

Определение сходимости интеграла
ь
J  f ( x )dx  аналогично приведенному

y=\/xm{m<\)

1 S ^ l /(m - l)  x  

Рис. 11.23

выше.
Введем понятие несобственного интеграла на интервале (—оо, 

+оо). Пусть для некоторого числа а несобственные интегралы
а -кс
J f ( x ) d x  и J f ( x ) d x  сходятся. Тогда положим, что

-  со а
+ ос а  + ос

| / ( х )й 1 \ '=  J / (x )< ix +  J /(x )c b c ,  (11.28)

при этом интеграл j" f ( x ) d x  называется сходящийся. Если хотя
-  ОС'

бы один из интегралов, входящих в правую часть (11.28), расхо-
+ ос

дится, то несобственный интеграл j  f i x )  dx называется рисходя-
— се

щимся. (М ож но доказать, что введенное определение не зависит 
от выбора числа а).

+ сс
О  Пример 11.11. Вычислить J"е х d x .

— ос

о
Р е ш е н и е .  Исследуем на сходимость интегралы | е хdx и

— ос

-т<С

J exdx . (В формуле (11.28) мы полагаем а=  0).
о
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f exdx = lim I exdx= lim (e° -e?) = l,
J  t - + - o c J  t —> -  00

-  CO t

т.е. первый из интегралов сходится к 1. Но
-f СО е +ОС

Гexdx = lim Г exdx = lim (er -  1) = +oo , т.е. Г exdx расходится
J  /■—» +  cc *  t —> +  co J
0 0 0

+CC

и, следовательно, расходится несобственный интеграл j" exdx .►
В курсе теории вероятностей встречается несобственный инте- 

грал J с х ^dx , называемый интегралом Эйлера—Пуассона.
-с о

Д оказано, что

|  e~xll2dx = >/2тс , (11.29)

другими словами, площ адь S
1 2 н

под кривой y = - j = e  x (по- 
л/2л

лучившей название кривой Га­
усса) на интервале ( —ос, + с с )  
равна 1 (рис. 11.24).

Несобственные интегралы от 
неограниченных функций. Нач­
нем
с рассмотрения важного част­
ного случая: пусть функция 
у  =У(х) непрерывна, но н е  
о г р а н и ч е н а  на полуин­
тервале [а, ZO-

Определение. Несобственным интегралом J f ( x ) d x o m  функции

y=fix) на полуинтервале [а, Ь) называется предел lim f ' f (x)dx,  где
s->o+" '

8>0, т.е.
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J  f ( x )  dx — lim |  f ( x ) d x  . (11.30)

Если предел, стоящ ий в правой части равенства (11.30), сущ е­
ствует и конечен , то несобственный интеграл называется сходя­
щимся, в противном случае — расходящимся.

Аналогично вводится понятие несобственного интеграла от 
функции у  = /(х )  непрерывной, но  неограниченной на (а, Ь\.

j  f ( x )  dx =  lim j  f ( x )  dx .
a a+b

1
Г dx[>Пример 11.12. Вычислить - j = .
о

i ^  i
P e ш e н и e. По определению Г-T= =  lim | x~l^2d x .

I** ŝ i

По формуле Нью тон а—Л ейбница

j  x~>//2dx = 2х1/ 2

(11.31)

= 2(1 -  S )  ■
у а

Рис. 11.25

Тогда f - 7 = =  lim 2 (1 -V s )  = 2 ,
J J x  8->0+
0

т.е. полубесконечная фигура, огра­
ниченная осями координат, кривой

1 „ . 
у  = —j=  и прямой л: = 1, имеет конеч-

4 х

ную площ адь, равную 2 ед2. (см. рис. 11 .25).^

З а м е ч а н и е .  Если ф ункция f ( x )  не ограничена при х=с, где
ъ

с e(a,b) ,  то интеграл |  f ( x ) d x  также называется несобственным.
а

В этом случае интеграл
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b с b
J  f ( x ) d x  = |  f ( x ) d x  + J  f ( x ) d x
a a c

считается сходящимся, если сходятся два несобственных интеграла
ь

в правой Части равенства. В противном случае j  f {x ) dx  называ-
а

[• dx °r dx [• dx 
ется расходящимся. Например, — =  н —  является рас-

-1 Л Л х о х
ходящ имся, так как  расходятся оба несобственных интеграла в 
правой части равенства (предлагаем убедиться в этом читателю 
самостоятельно).

11.8. Приближенное вычисление определенных
интегралов

Важным средством вычисления определенных интегралов являет­
ся формула Ньютона—Лейбница (см. § 11.4), Однако ее применение 
на практике связано с существенными трудностями, возникающими 
при нахождении первообразной в случае усложнения подынтеграль­
ной функции. Поэтому в приложениях используют так называемые 
численные методы, позволяющие найти приближенное значение ис­
комого интеграла с требуемой точностью. Этот подход оказывается 
еще более предпочтительным в связи с возрастающими возможно­
стями современной вычислительной техники, реализующей алго­
ритмы с необходимой скоростью.

В данном параграфе мы рассмотрим одну из приближенных фор­
мул вычисления определенного интеграла — формулу трапеций.

Пусть на отрезке [а, Ь] задана непрерывная функция у  =/{х).  
Предположим дополнительно, что fix) > О на [а, b]. Тогда 
ь
j  f ( x ) d x  численно равен площади под кривой у =f (x)  на отрезке 
а
[а, Ь]. М ы получим приближенное значение искомого интеграла, 
если вместо площади под кривой возьмем площадь под ломаной, 
расположенной достаточно близко к исходной кривой (см. также 
§ l l . l ) .  Для построения этой ломаной поступим следующим об­
разом: разобьем отрезок интегрирования на п равных частей дли-
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„ . b -  аной h =  и на каждом из
п

отрезков разбиения 
где /=1, 2, п; X] = xq + i h , 
заменим участок кривой у  = /(х )  
хордой, стягиваю щ ей концевые 
точки (рис. 11.26). 

ь
Тогда |  f ( x ) d x  = 5, + S2+...+S„ ,

а
где Sl , S2,.--,S„ — площади трапеций (площади под хордами на 
каждом из отрезков разбиения), на рис. 11.26 эти трапеции за ­
штрихованы. Но
^  = f ( x 0) + f ( x ,) h . ^  = /(X ]) + Д х 2) h s  = f ( x nA) + f ( x n) h 

Тогда

J f {x )d x  * f { x '>-l, + Д х ‘>+2 + . ..+  h =
a

- f r f  /1 * 0  ) | / ( * i )  | j / ( * 2 )  , , / ( * B-l)  , / Q „ ) 'j
*v 2 2 2 2 "  2 2 / "

Вынося множитель h, заметим, что все слагаемые данной сум­
мы, отличные от / ( х 0) / 2  и f ( x n) /  2 ,  встречаются в ней дваж ­

ды. Приводя подобные члены и учитывая, что h = - — —, оконча-
п

тельно получаем

J  т dx * ^ / ( * о ) + /(*»> + /( jf i)+ __>+/(Хи_ t  ̂ ( U  32)

a
где xy =a,  X; =  x Q+ih,  i =  1, 2, ..., л. Формула (11.32) носит назва­

ние формулы трапеций. Она получена нами в предположении 
неотрицательности функции у  —f(x) ,  но можно доказать, что этот 
результат остается справедливым также и в общем случае.

Рассмотрим теперь вопрос об оценке погрешности от прим е­
нения формулы трапеций (существенно, что без рассмотрения 
этого вопроса формула (11.32) будет носить лиш ь качественный 
характер).
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Обозначим через S(n) выражение, стоящее в правой части 
формулы (11.32). Тогда

ъ
Л— I |  f ( x ) d x  —S{ri) I 

я
— абсолю тная погреш ность от прим енения формулы трапеций
(11.32). Обозначим через М 2 максимальное значение модуля 

второй производной f"(x)  подынтегральной функции у - f i x )  на 

[а, Ь], т.е. М 2 =  max \ f ’(xi  .
x^a.b]

Доказано, что абсолютная погреш ность А от применения ф ор­
мулы трапеций

А < (Ь - /  М 2 . (11.33)
12«

ОПример 11.13. Вычислить по формуле трапеций при п~ 5 

l5 dxГ — . О ценить погрешность.
J х  1

Р е ш е н и е .  П оскольку число п отрезков разбиения равно 5,
, с Ь - а  1 ,5-1то длина п отрезков разбиения равна -------= ----------=  0,1 и так как

п 5
х, =  х 0+г'/!, i—1, 2, ..., 5, х 0 =  1, имеем x t =  l , l ;  х2 —1,2; х3 =1,3;

х4=1,4; х 5 =1,5. П одынтегральная функция / ( х ) = — , поэтому
х

согласно (11.32) получаем
1,5

*0,1 -  -  + + —  + —  + —  =0,4059.
J х  12 U  1,5у 1,1 1,2 1,3 1,4 у

Перейдем теперь к оценке погреш ности. /  ” (л)=

Эта ф ункция монотонно убывает на [1; 1,5], поэтому достигает 
своего максимального значения в левой концевой точке этого

2
отрезка (т.е. при  х=1). Тогда М2 = /" (1 ) = р - = 2 и согласно (11.33) 

имеем
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А < 0,5
12 • 52

2 —0,84 10

Заметим, что по  формуле Н ью тона—Л ейбница
1,5

S dx 1.5

=  1пЫ In 1,5,

и поэтому найденное значение 0,4059 нашего интеграла является 
также приближ ением (с указанной точностью) для числа In 1,5 . 
Таким образом, формула трапеций может оказаться также удоб­
ным средством вычисления значений некоторых функций .►

11.9. Использование понятия 
определенного интеграла в экономике

Выше мы отмечали экономический смысл определенного и н ­
теграла, выражающ его объем произведенной продукции при и з­
вестной ф ункции производительности труда.

Рассмотрим другие примеры использования интеграла в эко ­
номике.

Если в функции Кобба—Д у га с а  (см. гл. 15) считать, что затраты 
труда есть линейная зависимость от времени, а затраты капитала
неизменны, то она примет вид £ (/)= (аМ -р)еу 1 ■ Тогда объем вы ­
пускаемой продукции за Г л ет  составит:

г
(? -  J (ctf + |3)<?Y rd t . (11.34)

о
t> Пример 11.14. Найти объем продукции, произведенной за 4

года, если ф ункция Кобба—Дугласа имеет вид g ( / ) = ( l + f ) e 3 r .

Р е ш е н и е. По формуле (11.34) объем Q произведенной 
продукции равен

4
Q=  j  (1 + t )e3!d t .

о
Используем метод интегрирования по частям. Пусть u = t+ 1, 

d v - e ^ d t . Тогда du=dt, v = ^ e 3rdt = ~ e 3r.

Следовательно,
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(уел. е д .)^
Исследуя кривую Лоренца — 

зависимость процента доходов 
от процента имеющего их насе­
ления (кривую ОВА, рис: 11.27), 
мы можем оценить степень не­
равенства в распределении до­
ходов населения. При равно­
мерном распределении доходов 
кривая Лоренца вырождается в 
прямую — биссектрису О А, 
поэтому площадь фигуры ОЛВ 
между биссектрисой ОА и кри­
вой Лоренца, отнесенная к  пло­
щади треугольника О АС (коэффициент Джини), характеризует сте­
пень неравенства в распределении доходов населения.

О П ример 11.15. П о данным исследований в распределении 
доходов в одной из стран кривая Лоренца ОВА (рис. 11.27) может

быть описана уравнением у  =  1 — VI -  х 2 , где х  — доля населения,
у  доля доходов населения. Вычислить коэф ф ициент Джини.

Р е ш е н и е .  Очевидно, коэф ф ициент Д ж ини (см. рис. 11.27)

к  -  S OAB -  1 -  ^О ВАС _ 1 _ т с тя1(. КЯ1г с _ 1
с ~ 1 с Лг>ОВАС ' так как •

ОАС °ДШС 1

1 I  1 1 /-------------- 1 /---
SqbaC = § \  \ -  х 2 ) dx =  j  dx -  j  \1  -  х 2dx - \  -  j  у I -  х 2dx .

О 0 0 о
1   1 --------

Поэтому к=  1 - 2 ( 1 - j  VI -  x 2dx) = 2j  VI -  x 2d x - 1 .
о о

С помощ ью  замены, например, х =  sin t можно вычислить

l \ l - x 2dx =п/4. Итак, коэффициент Джини к=  2 ——1 = — — 1 «0,57.
о 4 2

Д остаточно высокое значение к показывает сущ ественно н е­
равномерное распределение доходов среди населения в рассмат­
риваемой стр а н е .^

100(1)
% (лоля) 
населения

100(1)%(доля)х
доходов

Рис. 11.27



Определение начальной суммы по ее конечной величине, п о ­
лученной через время t (лет) при годовом проценте (процентной 
ставке) р, называется дисконтированием. Задачи такого рода 
встречаются при определении экономической эффективности 
капитальных вложений.

Пусть К, — конечная сумма, полученная за t лет, и К  — ди с­
контируемая (начальная) сумма, которую в финансовом анализе 
называют также современной суммой. Если проценты простые, то 
K t =K(\+i t ) ,  где / =  р/ \ 00 — удельная процентная ставка. Тогда

К= К,  / ( l+i t ) .  В случае сложных процентов K t =K( \+i t )  ’ и потому

K = K t / ( l + i ) ‘ .
Пусть поступаю щ ий ежегодно доход изменяется во времени и 

описывается ф ункцией fit) и при удельной норме процента, рав­
ной /, процент начисляется непрерывно. М ожно показать, что в 
этом случае дисконтированный доход К  за время Т вычисляется 
по формуле:

т
К= |  f ( t )e~hd t . (11.35)

о
D Пример 11.16. Определить дисконтированный доход за три

года при процентной ставке 8%, если первоначальные (базовые) 
капиталовложения составили 10 млн руб., и намечается ежегодно 
увеличивать капиталовложения на 1 млн руб.

Р е ш е н и е .  Очевидно, что капиталовложения задаются 
функцией J [ t ) - 10+1 -/=10+f. Тогда по формуле (11.35) дисконти-

з
рованная сумма капиталовложений К= J  (10 + t)e~(iM' d t .

о
Интегрируя (аналогично примеру 11.14), получим А=30,5 

млрд. руб. Эго означает, что для получения одинаковой нара­
щ енной суммы через три года ежегодные капиталовложения от 10 
до 13 м л н , руб. равносильны одновременным первоначальным 
вложениям 30,5 млн.руб. при той же, начисляемой непрерывно,
процентной ста в к е .^

Пусть известна функция t - t ( x ) ,  описываю щ ая изменение за­
трат времени г й'а изготовление изделия в зависимости от степени 
освоения производства, где х  — порядковый номер изделия в 
партии. Тогда среднее время tcp, затраченное на изготовление од­
ного изделия в период освоения от .v, до х2 изделий, вычисляется 
по теореме о среднем (11.10):
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*2

' с р = ^ “4 " / / ( х ) Л -х2 ~ х \ Г.Х1
(11.36)

Что касается ф ункции изменения затрат времени на изготов­
ление изделий t  =  t{x),  то часто она имеет вид

t = a x b , (11.37)
где а — затраты времени на первое изделие, b — показатель п ро­
изводственного процесса.

ОПример 11.17. Найти среднее время, затраченное на освое­

ние одного изделия в период освоения от =100 до jc2 =  121 и з­

делий, полагая в формуле (11.37) а=600 (мин.), Ь= 0,5.
Р е ш е н и е .  Используя формулу (11.36), получаем

1 121

*ср { бООх x̂ d x
121-100 100 21

121

100

400
7

=57,2 (м и н .) .^

11.10. Решение задач
ОПример 11.18. Вычислить:

5 In 3 Л  ,
x d x  f dx ч с (х  + \)dx

e - eO ' —  m 2 ‘  -  1 x 2\ 4  -  X 2

P e ш e н и e. a) Воспользуемся заменой переменной: 
t =V i + 3* .

Тогда x  =
t 2 - \

и dx =  — t d t .  Если x  =  0, t o  t = \  и, если x =  5,

то t =  4. Вьш олняя замену, получаем

x d x

J  V I+ J x  ~ 9 ,
- l u l l 0

N
4 4

3
- t

КV 1

2 f  64 -  1
3

- 4 + 1  = 4 .

Отметим, что полагая x = / 2 -1
, можно также считать, что

/ е [ - 4; —1]. При этом все условия теоремы 1 из § 11.5 выполнены
Уи, поскольку в этом случае \7  = - / ,  получаем
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4 . 2 . . .  . , - 4
 ^ — l¥ ± dL =  ~ \ { \ - t 1)dt  =  ^

4\ + Ъх J  3 ( —/ ) 3  9 Г  9

г x d x  г 

о ~ -1

4 ( - 4+1Ч И 3- (-1)3)Н -

-4 ,3

-1

б) П оложим t — ex . Тогда x  - 1м /, dx и, если x -  ln 2, to  

/=  2, и если x  = ln  3, то t =  3. Выполняя замену, получаем '
In 3 3

t - 1
t + 1

= i l n -
2 2

г obc r dt  r dt  _  1 |n

ln2 eX ~ e' X 2 ^ “ r l )  2 { 2~ l * П
в) Полагая x = 2 s in  t, получаем, что d x = 2 c o s t d t  и x e [ l;  л/З],

7t 7t

6 ’ 3_
л/3

если (одна из возможностей) /е 

^  - .3  , »  . я ( 3 Ос.-„3

. Тогда

= -2 c o s  /
л /3  J

- - c t g f

*/б 4

/6
л/3  /

=  -2
л /б

/б 

Л 1 '

г (х -(-1) cfcc f 8 sinJ t + l .  г . , l r  dt
р — L = = =  ---------г— dt =  2 sin t d t  + -  — = -
, x 2^A -  x 2 it. 4 sin  / 4 J sin2 /1 X  X  я /6  л /6

V3
2л/з

1 >

ОПример 11.19. Вычислить J  хе Xdx.

Р е ш е н и е .  Воспользуемся формулой интегрирования по 
частям (11.19): полож им и=х, e xdx=dv. Тогда du=dx,

>»=J  dv =  J е Xdx = - е  х и

jx e  Xdx -  -х е - J ( - e  X)dx =  
о о

1 е - 2
= - е - '  + f e ~ xdx =  - e - l - e ~ x

!>Пример 11.20. Найти площ адь 
фигуры, ограниченной линиями 
у  =  4 -  х 2 , у  = х 2 -  2х (рис. 11.28).

\ у ‘ _ <у 1

Л  W
\ п<"V j  ii

1 \ \ к  /

l

i 1 
j \
1 \
1 \

1  - 1 » Ч И г  х

Рис. 11.28
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Р е ш е н и е .  Координаты точек пересечения кривых у ~  4 -  х 2 
и у  =  = х 2 -  2х найдем из системы их уравнений: (—1; 3) и (2; 0). 
П роецируя фигуру на ось абсцисс (см. пример 11.7), видим, что 
иском ая площ адь — это площ адь фигуры, заключенной между 
кривы ми; при этом на отрезке [—1; 2] / 2 (х) = 4 -х 2  > / j ( x )  =
= х 2 - 2 х .

П рименяя (11.21), получаем
2 2

5 = |  ( 4 - х 2 -  (х 2 -  2x))dx =  |  (4 -  2х2 +2x) dx  =
-1 -1

: 4х 2 2 з 2
2—  X + X

-i 3 -1

= 9 (е д .2 ).►
_

1 У>
k 1

А В ( У = 4

\ у —X2
ч h  л  / 1
i \  / 1 
i \  /  i 
> \  /  i

! ) ^ L c l
l /  4  '2

0 E F H

=  4 ( 2 - ( - 1 ) ) - | ( 2 3 - ( - 1 ) 3) + 22 - ( - 1 ) 2 =

[>Пример 11.21. Найти пло­
щадь фигуры, ограниченной

у  = 4  и1 2 Л И Н И ЯМ И  у = —  , у = х  
X

чет-расположеннои в первой 
верти (рис. 11.29)

Р е ш е н и е .  Решая соответ­
ствующие системы уравнений, 
получаем, что точками пересе­
чения заданных линий являю т­
ся А (1/4; 1), В (2; 4), С (1; 1) 
(рис. 11.29). Проецируя точки 
А,В, С на ось абсцисс (см. заме­
чание в примере 11.7), видим, 

что иском ая площ адь SABC равна разности между площадью
прямоугольника АВНЕ  и суммой площ адей двух криволинейных 
трапеций ACFE и  СВ 11F. S  ^ лшп — {^acfe * ) • Вычислим:

Рис. 11.29

а̂вне — J  4dx — 4х
1 /4

1

'ACft J X
1 /4

—dx =  In х
х

1/4

2

1/4

: 4 (2 -1 /4 )  =7,

=In 1 —In 1 /  4=In4,
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’ CBHF =  j  x 2dx
X '

T =  i ( 2 3 -  l 3) = —.
3 3

Итак, S=7~  | In 4 + - J  = ~  -  In 4 « 3,28 (ед. 2 ) >

ОПример 11.22. Найти площ адь
фигуры, ограниченной линиями у  =  
=  1п х, х  =  0, у  =  0 , у  =  1.

Р е ш е н и е .  Для нахождения и с­
комой площади (рис. 11.30) использу­
ем проецирование фигуры на ось 
ординат и соответственно интегриро­
вание по переменной у  (см. пример 
11.5). Записывая уравнение у =  In х  в 
виде х =f(y) ,  получаем х = е у .

Тогда

S = \ f { y ) d y  = j ' e ydy = е} : 1—1,72 (ед .2 ).►

М ы предлагаем читателю в качестве упражнения самостоя­
тельно найти также данную площадь, используя проецирование 
на ось абсцисс.

ОПример 11.23. Найти объем тела, полученного при вращении 
вокруг оси абсцисс фигуры, ограниченной линиями х  ==у2~2, у=х.

Р е ш е н и е .  Выделим на чертеже 
вращаемую фигуру (рис. 11.31, кр и ­
волинейный треугольник ABC). За­
метим, что точно такое же тело вра­
щ ения получится, если вокруг оси 
абсцисс вращ ать криволинейны й 
треугольник О ВС. Тогда искомый 
объем равен разности двух объемов:
К  = У BCD -  vo c n . где VBCD -  объем 

тела, полученного при вращ ении 
вокруг оси абсцисс криволинейного 
треугольника BCD, аналогично VOCD — объем тела, полученного 
от вращ ения треугольника OCD. Записывая уравнения ограни­
чиваю щ их л и н и й  в виде у  = / ( х )  и используя (11.24), получаем
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PB C D  =  71J  (V F T 2 ) г&с =  7Г |  (х +  2) Л  =  п

-2  
2

Ко а) =  7iJ x 2dx -  п

( 2X
- + 2х =  8л ,

-2

X
т

1671= J71 , Vx =  871 -  -̂71 = (е д .' )•►

|>Пример 11.24. Н айти объем тела,
полученного от вращ ения вокруг оси 
ординат фигуры, ограниченной лин и я­
ми у = х 2 -  2х , у = 0.

Р е ш е н и е .  Из чертежа (рис. 11.32) 
видно, что искомый объем VY равен раз­

ности двух объемов: Vy =  Умсо~ ^всо, 
где VABC0 и VВсо ~  объемы тел, полу­
ченных от вращ ения вокруг оси орди­
нат плоских фигур АВСО и ВСО  соот­
ветственно. Д ля нахождения указанных 
объемов используем формулу (11.25). 

При этом нам потребуются уравнения кривых ОВ и АВ в виде 
x=f ( y ) .  Записывая уравнение параболы, заданной по условию в 
виде х 2 -  2х -  у  =0, решим это квадратное уравнение относительно

переменной х, считая переменную у  параметром: x l2 = 1 ± ^1 + У ■

Тогда х=1 + Л/Г+ у  — уравнение кривой АВ и х=1 — д/l + у  — уравне­
ние кривой ОВ. Используя (11.25), получаем

о о
Vy = n j ( l  + y j l + y ) 2dy  - 7t J(1 - д/l + y ) 2dy  =

-l

;jl ( o  +  V 1 + у )2 - ( l - v T T 7 ) 2 ) r fy

: 4ti j  \]\ + ydy  = ^ ( 1  + y f /2 8я , i
T "  л*
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У П Р А Ж Н Е Н И Я

Вычислить определенные интегралы:

11.25. j (y[2x + t fx)dx

11.27. J dx

о
3 /2

V 25 + Зх

4х  + 3 
\3 d x .11.29. fJ ( x - 2 ) J

n/2
11.31. J  s in 2 x cos x  dx .

0
1

11.33. J ln ( l  + 4 x ) d x .
о
2

11.35. [ x 2 lnx<&:.

11.37. J x dx
x 2 + 3x + 2

11.39. |  - M - d x .
Vx + 1

11.41. J dx
1 + V~2x + 1

11.26. j
1
2

11.28. j
e

ln8
11.30. j

1 + y[y
2

dy.
У

dx
X  ln X

dx

l n 3 \ l  + e-'

6r4 dx 
11.32. j

i J x { \ + 4 x )  

In 5

11.34. |  xe~xd x . 
о

7Г
11.36. J x sin x  dx .

о

11.38. f ^
J 3x + 2

11.40.
4 i h

11.42. =
J >/4xV5

Найти площ адь фигуры, ограниченной графиками функций: 
11.43. y = j x  , ^= 2~ х , ,v=0. 11.44. >’=1/х, >'=.v. х=2.

Л ,.-,111.45. >’= х  -  2х + 3 , у = Зх-1 . 11.46. >’= х  , у

11.47. у —2/х , у = - х / 2 - 5 / 2 .

11.48. > '= х 2 + 2 , у = \  -  х 2 , х=0, х=1.
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11.49. у = - х 2 , у = 2 е х , х=0, х=\ .  11.50. у = 4 /х 2 , х=1, у= х ~  1.

11.51. у=л/х  , _v= -л/4 -  Зх , j  =  0. 11.52. >>=1п х, х=г, ^=0.

Найти объемы тел, образованных вращением вокруг осей Ох и 
Оу фигуры, ограниченной линиями:

11.53. у = 4 -  х 2 , >'=0, х=0, где х>0.

11.54. у —ех , х=<), х=1, >'=0.
11.55. у = х 2 + 1, у=0, х=1, х=2.
11.56. >'=xJ , у —1, х=0.
Вычислить несобственные интегралы (или установить их рас­

ходимость):

11.63. Производительность труда рабочего в течение дня зада­
ется функцией z(t) =  -  0,00625fi +  0,05/ + 0,5 (ден.ед./ч.). где t ~  
время в часах от начала работы, 0 < t<  8. Найти функцию  и =  и ft), 
выражающую объем продукции (в стоимостном выражении) и 
его величину за рабочий день.

11.64. Стоимость перевозки одной тонны груза на один километр
10(тариф перевозки) задается функцией f ( x )  = ------  (ден.ед./км). О п-

х + 2
ределите затраты на перевозку одной тонны  груза на расстоя­
ние 20 км.

ОО
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Глава 12. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
12.1. Основные понятия

Дифференцисигьным уравнением называется уравнение, связы ­
вающее искомую  функцию  одной или нескольких переменных, 
эти переменные и производные различных порядков данной 
функции.

Если искомая функция зависит от одной переменной, то диффе­
ренциальное уравнение называется обыкновенным, если от несколь­
ких — то уравнением в частных производных. Мы будем рассматри­
вать только обыкновенные дифференциальные уравнения (и по этой 
причине само слово “обыкновенные” будет опускаться).

Простейш ий пример дифф еренциатьного уравнения дает зада­
ча о нахождении первообразной F(x) для заданной функции Дх)  
(см. гл. 10), поскольку ее можно рассматривать как задачу о нахо­
ждении ф ункции F(а ) ,  удовлетворяющей уравнению F ’(x)=f{x).

В общем случае диф ф еренциатьное уравнение можно записать 
в виде

С ( х . у , у   / я>)=0, ( 12. 1)

где G — некоторая функция от п+ 2 переменных, //>1, при этом 
порядок п старшей производной, входящей в запись уравнения, 
называется порядком диф ф еренциатьного уравнения. Например, 
задача о нахождении первообразной приводит к диф ф еренциать- 
ному уравнению  первого порядка, уравнение

а-2 ( } . ” ' ) 4 _ Л'О’’)'' + 8 = 0
— третьего порядка и т.п.

Д иф ф еренциатьное уравнение п-го  порядка называется разре­
шенным относительно старшей производной, если оно имеет вид

/ и) = /'(Л.г. г' г '- '•).

где Г некоторая функция от п + 1 переменной.
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Решением дифференциального уравнения (12.1) называется такая 
функция у —у(х), которая при подстановке ее в это уравнение обра­
щает его в тождество. Например, функция r=sin л- является решени­
ем уравнения у" +у=  0, так как (sin *)"+ sin л=0 для любых х

Задача о нахождении решения некоторого дифф еренциального 
уравнения называется задачей интегрирования данного дифферен­
циального уравнения. График реш ения дифференциального урав­
нения называется интегра/гьной кривой.

>П рим ер 12.1. Решить уравнение у"=х.

носильно следующему равенству дифференциалов: dy'=xdx.  В и

— произвольная постоянная. Вновь записывая производную как 
отношение двух дифф еренциалов, приходим к равенству dy---

Отметим, что без дополнительных предположений решение 
данного уравнения принципиально неоднозначно. Другими сло­
вами, диф ф еренциальное уравнение задаст семейство интеграль­
ных кривых на плоскости. Для выделения однозначно опреде­
ленной интегральной кривой (решения) в нашем случае доста­
точно указать точку плоскости, через которую проходит искомая 
интегральная кривая, и направление, в котором она проходит 
через эту точку. (Дополнительные условия такого рода обычно 
называют начальными, поскольку часто дифф еренциальные урав­
нения использую тся для описания динамических процессов 
процессов, проходящих во времени. В этих случаях независимая 
переменная .v обозначает время.) Например, если известно, что
>’(0)=1 и у ’(0) -2 ,  то приходим к решению у ~ х 3/б -> 2х + I . А нало­
гично, для выделения однозначно определенного решения диф ­
ференциального уравнения /г-го порядка следует, вообще говоря.
дополнительно задать п начальных условий.►

Общим решением дифф еренциального уравнения (12.1) «-го 
порядка называется такое его решение

Р е ш е н и е .  Поскольку у " = 0 — ,
dx

то исходное уравнение рав-

-V
1 С, , где С,полняя почленное интегрирование, получаем .у

Интегрируя почленно, окончательно получаем 

у = х ^ / в  + С\х + С2 , где С2 — произвольная постоянная.

с ,,. ..* :,,) , ( 12 .2 )
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которое является ф ункцией переменной х  и п произвольных н е­
зависимых постоянных С1)С2, . . . ,С„. (Независимость постоянных 
означает отсутствие каких-либо соотнош ений между ними).

Частным решением дифф еренциального уравнения называется 
реш ение, получаемое из общего реш ения при некоторых кон ­
кретных числовых значениях постоянных С1,С2,. . . ,С„ .

В примере 12.1 у = х 3/б  + С{х + С2 — общее реш ение, у =  

-- х 3 /6  + 2х + 1 — частное реш ение дифф еренциального уравнения
у  "=х.

Чтобы построить дифференциальное уравнение, которому 
удовлетворяют кривые заданного семейства (12.2), следует про­
дифф еренцировать равенство (12.2) п раз, считая что у  — ф унк­
ция независимой переменной х, а затем из полученных равенств 
и (12.2) исклю чить

-Пример 12.2. Составить дифференциальное уравнение се­

мейства кривых — (Cj + С2х ) е х .
Р е ш е н и е .  Дифференцируя заданную функцию, находим, что 

у  ’ =  С2ех + у  , у  ” =  2С2ех + у  .
И склю чая из этих двух равенств постоянную  С2 , приходим к

уравнению  у  " ~ 2 у ' + у = 0 .^
К дифференциальным уравнениям приводят ряд задач экономи­

ки, физики, биологии, экологии и т.п. Приведем некоторые из них.
Пример 12.3. Из статистических данных известно, что для 

рассматриваемого региона число новорожденных и число умер­
ших за единицу времени пропорциональны  численности населе­
ния с коэф ф ициентам и пропорциональности кх и кг соответст­
венно. Найти закон изменения численности населения с течени­
ем времени. (Описать протекание демографического процесса.)

Р е ш е н и е .  Пусть y~y(t )  — число жителей региона в момент 
времени t. П рирост населения Ду за время At равен разности м е­
жду числом родивш ихся и умерших за это время, т.е.

Ау= кху  A t ~k 2y  At
или

где k —ki —к2 . Переходя к пределу при Д?-^0, получаем уравнение
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У' ~ку. (12.3)

Решая это уравнение (см. § 12.4 а также пример 12.8), получа­
ем математическую модель демографического процесса

у= С е let (12.4)

где С — постоянная, определяемая начальными условиями 
(численность населения в начальный момент времени).►

>-Пример 12.4. Найти уравнения кривых, в каждой точке ко ­
торых отрезок касательной, заключенный между осями коорди­
нат, делится пополам точкой касания.

Р е ш е н и е .  Пусть М(х, у) — произвольная точка кривой 
указанного типа; у=кх+Ь — касательная к кривой в точке М\ А и 
6(0, b) — точки пересечения касательной с осями абсцисс и ор ­

динат соответственно (см.рис. 12.1). 
По условию имеем А М - В М  и потому 
Ь~2у или у~кх=2у. Так как угловой 
коэф ф ициент касательной является 
производной, т.е. к = у \  то приходим к 
уравнению

2  
X

решая которое (см. § 12.5), получаем 
уравнение обратной пропорциональ­
ной зависимости

у = С /х , (12.6)
где С — некоторое число.

У' (12.5)

12.2. Дифференциальные уравнения первого порядка. 
Теорема о существовании и единственности решения

Рассмотрим вопросы теории дифференциатьны х уравнений на 
примере уравнений первого порядка, разрешенных относительно 
производной, т.е. таких, которые допускают представление в виде

У'~Ах* >'), (12.7)
где / — некоторая функция двух переменных.

Мы будем обозначать через /"множество точек плоскости Оху, 
на котором функция Дх, у) определена, дополнительно предпола­
гая, что множество Г является открытым. (М ножество точек
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У а

о
Рис. 12.2

плоскости называется открытым, если вместе с каждой своей 
точкой оно содержит некоторую окрестность этой точки).

Рассмотрим г е о м е т р и ч е с к и й  с м ы с л  уравнения
(12.7). П роизводная функции у '  
представляет угловой коэф ф ициент 
(тангенс угла наклона) касательной 
к кривой у=у(х)  в точке с абсциссой 
х. С ледовательно, уравнение (12.7) 
каждой точке (х, у)  плоскости  Оху 
сопоставляет направление tg ос=
= Д х, v) касательной к интеграль­
ной кривой у=у(х),  проходящей 
через эту точку. Говорят также, что 
уравнение (12.7) задает поле на­
правлений в области Г  (см. рис.
12.2).

Решить уравнение (12.7) — значит найти семейство кривых, от­
вечающих заданному полю направлений.

Перейдем теперь к теореме сущ ествования и единственности 
реш ения, играющей важную роль при описании реш ений диф ­
ференциального уравнения. (При формулировке этой теоремы 
нам потребуются некоторые понятия теории функций нескольких 
переменных. Необходимые определения можно найти в гл. 15).

Теорема. Пусть в дифференциальном уравнении (12.7) функция
C‘f

Дд\ у) и ее частная производная ----- непрерывны на открытом
С 'У

множество Г координатной плоскости Оху. Тогда:
1. Для всякой точки (х0, у 0) множества Г найдется решение 

у=.у(х) уравнения (12.7), удовлетворяющее условию .У0 =У(Х0 );
2. Если два решения у — у\ (х) и 

у= у 7 (л-) уравнения (12.7) совпадают 
хотя бы для одного значения х = х 0 , 
т.е. если у, (> 0 )= у 2 ( х0 ), то эти 
решения совпадают для всех тех зна­
чений переменной х, для которых они 
определены.

Геометрический смысл теоремы 
состоит в том, что через каждую точ­
ку (х ,|.уп) множества Г проходит 
одна и только одна интеграутьная кри­
вая уравнения (12.7) (см. рис. 12.3).

Приведем пример использования теоремы о сущ ествовании и 
единственности решения.
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Г>Пример 12.5. Решить уравнение

У-У-  (12.8)

Р е ш е н и е .  В данном случае fix,  у)—у,  ~ I определены и
<?У

непреры вны  при любых х и у ,  и, следовательно, условия теоремы 
выполнены н а  всей плоскости Оху.

Непосредственной подстановкой в уравнение убеждаемся в 
том, что каждая ф ункция вида

у = С е х , (12.9)

где С  — некоторое число является реш ением уравнения (12.8).
Покажем, что все реш ения уравнения (12.8) имеют такой вид при
некотором значении постоянной С. Пусть у=у(х) — некоторое 
реш ение уравнения (12.8), х = х 0 — точка, в которой это реш ение

определено, и у0 =у( Л'0 ). Положим С= у 0е~*°. Тогда реш ения

у~у(х)  и у - С е х =  у 0е х° ех =  у 0е х х° уравнения
(12.8) совпадают при х = х 0 , а потому соглас­

но п .2 теоремы совпадают. ►
Приведем пример уравнения, для которо­

го не выполняется условие единственности 
реш ения, т.е. существует такая точка плос­
кости Оху, через которую проходит более 
одной интегральной кривой. Пусть у  у 2 ' .  
Проверяем непосредственно, что у=0 и

{ x V
у= \  — — реш ения данного уравнения, про-

V 3J
ходящие через точку (0; 0) (см. рис. 12.4).

12.3. Элементы качественного анализа 
дифференциальных уравнений первого порядка
Д иф ф еренциальное уравнение (12.7) называется автономным, 

если ф у н к ц и я /за в и с и т  только от переменной у, т.е. если уравне­
ние имеет вид

У = т  (12.10)
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(Н апример, уравнение (12.8) — автономно).
У равнения такого типа часто встречаются на практике. Н а­

пример, если дифф еренциальное уравнение описывает динам иче­
ское действие некоторого закона природы, то естественно пред­
положить, что сам закон не будет изменяться с течением време­
ни, и потому в запись правой части (12.10) время х не входит 
(см., например, задачу о росте населения в примере 12.3).

Ниже мы будем предполагать, что для функции fiy )  вы полне­
ны условия, обеспечиваю щ ие существование и единственность 
реш ения уравнения (12.10) при произвольном значении перемен­
ной у, т.е. положим, что ф ункция fiy)  имеет непрерывную произ­
водную при лю бом у  (см. § 12.2). Пусть, кроме того, нули ф унк­
ции fiy )  (корни уравнения f ( j ’)-O)  не имеют предельных точек, 
т.е. все они отстоят друт от друга не менее, чем на заданную п о ­
ложительную  величину.

Будем предполагать, что уравнение (12.10) описывает процесс 
движения точки по прямой Оу, которая называется также фазовой 
прямой (переменная х обозначает время). В этом случае у  ' — это 
скорость движения точки. Согласно (12.10) она зависит только от 
координаты точки и не зависит от значения текущего момента 
времени.

Особую роль в проводимом анализе будут играть нули ф унк­
ции fiy). Убедимся в том, что если f ia )= 0 и точка в некоторый 
момент времени имеет координату v0 = а , то с течением времени 
х  она не меняет своего полож ения на фазовой прямой (оси Оу). 
(Равно как и во все предшествующие моменты времени она н а­
ходилась в этой же точке). Действительно, проверяем подстанов­
кой, что у =а  — реш ение уравнения (12.10). Но решение 
у - a--const как раз и описывает точку, не меняющую с течением 
времени своего положения. Ввиду изложенных причин нули 
ф ункции f iy)  называются также полож ениями равновесия или 
стационарными точками.

Пусть а, Ь, с,... нули функции fiy).  Прямые у---а. у=Ь, у=с\ ... 
разбиваю т всю координатную  плоскость на полосы, располож ен­
ные парачлельно оси абсцисс. Рассмотрим особенности и нте­
гральных кривых, заполняющих одну из таких полос. Так как 
ф ункция f iy )  непрерывна, то согласно (12.10) производная у '  
знакопостоянна на произвольном интервате между положениями 
равновесия. Поэтому все интеграчьные кривые, лежащие в одной 
полосе, задаются либо только возрастаю щими, либо только убы­
ваю щими функциями.
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Р е ш е н и е .  В данном случае 
f i y )=y  и единственным нулем этой 
функции является у=0. В результате 
вся координатная плоскость разби­
вается прямой у=0  на две полу­
плоскости (“полосы ” ). Решения
(12.8) описываются функциями 
вида (12.9). При С= 0 получаем ре­
шение >—0, отвечающее неподвиж ­
ной точке. Для всех С >0 имеем 
семейство монотонно возрастаю ­
щих ф ункций, для С<() — монотон­
но убывающих (см.рис. 12.5).

Рассмотрим интегральные кри ­
вые, лежащие в выделенной полосе, 
например кривые у —Сех , где С > 0. 

Поскольку Се ' Л° = Схел , где С\ = Се л" >0, то при п а р а л -
л е л ь н о м  п е р е н о с е  интегральном кривой вдоль оси 
абсцисс вновь получается интегральная кривая, причем из т о - 
г о  ж е  семейства.

Пусть у = С хе х и у = С 2ех — две интегральные кривые указанно­
го семейства и С\ > 0, Ci > 0. Перенося вторую кривую вдоль оси 
абсцисс на a<;i =  ln ( C y Q )  единиц, приходим к первой кривой.

С2С,
Действительно, у  = С2ех~хо = C2e ln(c i / c 2 )ex = —р;— ех = Ciex . Таким

образом, все интегральные кривые одной полосы получаются одна из 
другой параглельным переносом вдоль оси абсцисс.

Отметим также, что прямая >’=0, отвечающая неподвижной 
точке дифференциального уравнения, является горизонтальной
асимптотой интегральных кривых этого уравнения.►

М ожно доказать, что утверждения, сформулированные при 
реш ении примера 12.6, остаются справедливыми в общем случае.

Описывая движение точки по фазовой прямой, мы полностью 
сохраним качественную информацию  об этом движении, если 
вместо интегральных кривых изобразим лиш ь возможные траек­

р Пример 12.6. Построить семейства интегральных кривых

Рис. 12.5
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тории точки с указанием направления движения. Графическое 
изображение этих траекторий, называемых фазовыми, дает фазо­
вый портрет автономного уравнения (12.10). Например, фазовый 
портрет уравнения у ' = у  (см. пример 12.6) изображен на 
рис. 12.6.

В данном случае фазовая прямая 0 у
распадается на три траектории: интер- ^  ^  ^
валы (-ос; 0), (0; +=с) и положение р Ис. 12.6
равновесия у=0.

: Пример 12.7. Найти фазовый портрет уравнения у ' = \ — у 2 .

Р е ш е н и е .  Решая уравнение 1 —у 2 =0, получаем полож ения 
равновесия: у =  ±1. Траекторий в данном случае будет пять: интерва­
лы ( —ос; - 1 ) ,  ( - 1 ;  1), (1; + о о )  и точки у -  ±1. Из вида решаемого 
уравнения следует, что если у >  1 или > '< -1 ,т о  у'<0,  реш ение 
у=у(х)  — убывающая функция, и, следовательно, точка движется 
по фазовой прямой с уменьшением своей координаты (влево).

Если — 1 < у  <1, то >>'>0, и точка движется вправо. О кончатель­
ный фазовый портрет изображен на рис. 12 .7 .^

Н аправления движения точки вблизи ее положения равнове­
сия определяют тип полож ения равновесия. Н апример (см. 
рис. 12.7), находясь в достаточной близости от точки у  =  1, под­
вижная точка будет лиш ь приближаться к точке равновесия 
у =  1. Такие положения
равновесия называются ус­
тойчивыми. Наоборот, нахо­
дясь в достаточной близости 
от точки у  =  — 1, подвижная 
точка будет лишь удаляться 
от положения равновесия
> =  -1 . Такие положения
равновесия называются неус­
тойчивыми. Возможен также 
третий тип точек равновесия 
— так начинаемые точки по- 
луустойчивого равновесия.
(Например, точка у  — 0 урав­
нения у ' =  у 2 (см. рис. 12.8) 

или точка у  =  0 уравнения y ' = y q ~ y l (см. рис.

У
—< — •—  

-1
-*>---------------- •*—

1

Рис. 12.7

— ►

У

—»» - • —

0

Рис. 12.8

— • —
У

- 1  0 1
Рис. 12.9
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12.4. Неполные дифференциальные уравнения 
первого порядка. Д и ф ф е р е н ц и а л ь н ы е  уравнения 

с разделяющимися переменными
Д ифф еренциальное уравнение (12.7) первого порядка назы ва­

ется неполным, если ф ункция /  явно зависит либо только от х, 
либо только от у. Рассмотрим реш ения таких уравнений.

1. Уравнение y'=J{x)  или —  =Дх). П ерепиш ем уравнение в
dx

виде dy=J{x) dx, откуда его реш ение у = j* f ( x ) d x .

2. Уравнение

У= Лу) .  (12.11)

Его реш ение удобно искать в виде х=х(у), т.е. считать, что п е ­
ременная у  обозначает независимую переменную, а переменная х

— функцию . (П оскольку у ' — —  , то уравнение (12.7) можно запи-
dx

сать в виде

ах
и, ввиду инвариантности формы дифференциала, считать пере­
менные х и  у  равноправны ми). В этом случае из (12.11) получаем

dy ,=dx  и
ЯУ)

, 1 2 - , 2 )

>П рим ер 12.8. Решить уравнение (12.8):

У'-у-
Р е ш е н и е .  Найдем решение в виде х=х(у). Полагая, что >^0

из (12.8) и (12.12), получаем х=  f —
J v

х=1п|>’| +  С ,, (12.13)

откуда \ у  \ ~ е  Cle x и y —±e~Clex . Полагая, что произвольная по- 
—Сстоянная С = ± е  1 , получим у = С е х . (Заметим, что п о л н ен н о е
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общее реш ение уравнения при 0= 0  дает частное реш ение у=  О,
“потерянное” в процессе преобразований.).►

Д иф ф еренциальное уравнение первого порядка называется 
уравнением с разделяющимися переменными, если оно может быть 
представлено в виде

% - = А х Ш  (12.14)
ах

или в виде
M(x)N(y) dxJrP(x)Q(y) dy=0, (12.15)

где Дх), М(х), Р(х) — некоторые ф ункции переменной х; giy), 
N{y), Qiy) — ф ункции переменной у.

Для реш ения такого уравнения его следует преобразовать к 
виду, в котором дифф еренциал и ф ункции переменной х  окажут­
ся в одной части равенства, а переменной у  — в другой. Затем 
проинтегрировать обе части полученного равенства. Например,

из (12.14) следует, что =Дх) dx и f = [ f ( x ) d x .
giy)  J giy)  J

Выполняя интегрирование, приходим к  решению уравнения 
(12.14).

^Пример 12.9. Решить уравнение -Jy2 +7 dx =ху dy.
Р е ш  е н  и е. Разделив левую и правую части уравнения на

выражение x-Jy2 +1 (при х^О), приходим к равенству

dx у  dy—  =  . Интегрируя, получим
* yjy2 + 1

=  (12.16)
J *  J , / т т т

или

ln|xj = yjу 2 + 1 + Ct ’ (12.17)

(так как интеграл в левой части (12.16) табличный, а интеграл в 

правой части может быть найден, например, заменой \ у 2 + 1 =t,

у 2 +1 = t 2 , 2ydy=2tdt и [ - =  f 1 ^ .=  f d t = t  + Q ~ - jy 2T T  + Q  ).
V>’2 + 1
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х = С е , где C = ± eCi .►
Уравнения вида

у'=Дах+Ьу), (12.18)

где а и b — некоторые числа, приводятся к уравнениям с разде­
ляю щ имися переменными заменой z=ax+by  (или z=ax+by+c, где 
с — некоторое число).

>П рим ер 12.10. Реш ить уравнение
(х+2у)у'=1.  (12.19)

Р е ш е н и е .  Положим z=x+2y. Тогда z '= l+ 2 _ y ', откуда 

y ' = ~ ( z ' —1) и исходное уравнение приводится к виду

|z ( z '~ l ) = l ,

который допускает разделение переменных. Действительно, вы ­
ражая из последнего равенства z  \  получаем

, z + 2 z = ------
Z

и, следовательно,
zdz = dx.

I 2
Решение (12.17) перепишем в виде x = ± e Cle^y +1 или

z + 2
Выполним почленное интегрирование данного равенства: 

J  dx =  J" — или х =  z -21n I z +2 | + С,

“ =  2/  j f r  = -’ " 2!П !г  +2! + f '. >■
Возвращаясь к первоначальным переменным, получаем 

х = х+ 2^—21n I х+2у+2  | + ( ’
или

у - \ п \ х + 2 у + 2 \  = С, (12.20)
1

где С = -  — С ,.
2

Предлагаем читателю в качестве упражнения убедиться, что 
неявные ф ункции (12.20) действительно удовлетворяют исходно­
му уравнению (12 .19 ).^
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Д ифф еренциальное уравнение первого порядка называется од­
нородным, если оно может быть представлено в виде

y'=g{y/x),  ( 1 2 . 2 1 )

где g  — некоторая ф ункция (одной переменной).
у у

Например, уравнение у ' = — cos I n -------однородное.
х  х

П онятие однородного дифференциального уравнения связано 
с однородными функциями. Ф ункция >'=Дх, у) называется одно­
родной степени к (по переменным х и у), если для произвольного 
числа а  выполняется равенство

Досх, а у ) = а к/(х,  у). ( 12.22)

Пример 12.11. Выяснить, являются ли однородными сле­
дующие функции:

а) Дх, у)= х 2 -  ху;  б) Дх, у)=  ; в) Дх, у )= х у+ 1.
х -  у

Р е ш е н и е ,  а) Так как Досх, ау) =  (ах)2 — {рос){ау)= а 2(х 2 -  

-  ху) =  а 2Дх, г), то данная ф ункция однородная степени 2.
_  2(ах) + 3(ау) 2х + 3 у  0
о) Так как Досх, а  у )—----------------- ■ = -------- — ==аиДх, у ), то дан-

осх ~ осу  х  -  у
ная функция однородная степени 0.

~) L~в) Так как Досх, и.у)-и. х у+ \*  и  (ху+1) ни для какого к, то 
данная ф ункция неоднородная.^

Если ф ункция Дх, у) однородная степени 0, то уравнение

>’,=Дх, у) (12.23)

может быть сведено к однородному. Действительно, положим 

<х= 1 /х. Тогда в силу (12.22) при к=0 Дх, у)=  / ^ — • х, — • _yj =Д1,

у/х).  Полагая, что g(y/x)~f{ 1, у/х),  приводим уравнение (12.23) к 
виду (12.21).

12.5. Однородные дифференциальные уравнения
первого порядка
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И з доказанного вытекает, что если дифф еренциальное уравне­
ние первого порядка имеет вид

М(х, y)dx+-N(x, y)dy  =  0, (12.24)

где ф ункции М(х, у) и N(x, у)  являю тся однородными степени к, 
то это уравнение может быть сведено к однородному, так как из
(12.24) получаем

dy_ = М ( х , у ) 
dx N ( x , y ) ’

а ф ункция, стоящ ая в правой части последнего равенства, одно­
родная степени 0.

Рассмотрим теперь способ реш ения дифф еренциального урав­
нения (12.21). Убедимся, что введение в рассмотрение вспомога­
тельной ф ункции z  от переменной х  (замена переменной) z=y/x,  
позволяет свести это уравнение к  уравнению с разделяю щ имися 
переменными. Действительно, так как y=zx, то у  ’=z'x+z, поэтому 
уравнение (12.21) приобретает следующий вид

Z'x+z=g(z),
откуда получим, что

dz dx

g(z)
(12.25)

-Пример 12.12. Решить уравнение

, ~ х  + 2уу ~  (12.26)
х

Р е ш е н и е .  Так как * +-  — -1 + 2 у/х,  то уравнение (12.26)

имеет вид (12.21) при g(y /x ) =\ +2y / x .  Положим z=y/x.  Тогда g{z)~  
~ z = \ + 2 z ~ z = i + z  и, согласно (12.25), имеем

d z  _ d x  
1+z х

Интегрируя почленно последнее равенство, получаем 

In I 1 + г |= 1 п Ы  + С), 

откуда \l+z\ = ec i\x\ или 1 + z =  Сх, где С = ±ес \. Возвращаясь к

1 У ^первоначальным переменным, получим 1 + — = Сх, откуда
х

у  ~ ( Сх - 1)
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Д иф ф еренциальное уравнение первого порядка называется ли­
нейным, если оно имеет вид

y'+A x)y=g(x), (12.27)

где Д х) и g(x) — некоторые (непрерывные) функции переменной х. 
В случае, когда функция g(x) тождественно равна нулю, уравне­
ние называется однородным, в противном случае — неоднородным.

Рассмотрим один из возможных способов реш ения уравнения 
(12.27): будем искать реш ение в виде y=u(x)v(x) (тем самым и с­
комыми становятся ф ункции и{х) и фс), одна из которых может 
быть выбрана произвольно, а другая — должна определяться из 
уравнения (12.27).

Так как y ' = u ' v + u v ’, то из (12.27) следует u'v+uv'+fix)uv=g{x)  
или

vu ’+u(v'+Ax)v)=g(x). (12.28)

Н айдем сначала какое-либо частное решение v=v(x) уравнения

v ’+Ax) v=0. (12.29)

Тогда (см. (12.28)) ф ункция и=и(х) — решение уравнения

vu'=g(x). (12.30)

Тем самым реш ение исходного уравнения (12.27) сводится к
реш ению  двух уравнений с разделяю щ имися переменными (см.
(12.29) и (12.30)).

> Пример 12.13. Решить уравнение

12.6. Линейные дифференциальные уравнения
первого порядка

х у ’—2 у = 2 х 4 . (12.31)

Р е ш е н и е .  Разделив левую и правую части (12.31) на х,
приходим к  линейному неоднородному уравнению:

, 2  .  , 
у ' -  — у  =  2х- . 

х

339



Пусть y= uv , т.е. у '= к 'v+kv', тогда уравнение (12.31) примет вид 

u'v+uv'——uv = 2х3 или

m' v+ « ( v' — — v )= 2 x 3 . (12.32)
х

п  , 2 „ dv 2 dv dx „Положим v —— v=(J или —  — — v , откуда — =2 — . П роин- 
х dx х  v х

тегрировав, найдем какое-либо частное реш ение этого уравнения, 
например, при С-О l n |v |= 2 1 n l x |  и v = x 2 . При \’= х г равенство

(12.32) обратится в уравнение и 'х 2 =  2х3 , или —  =2х. Решая это
dx

уравнение с разделяю щ имися переменными, получаем и = х 2 + С. 
Тогда окончательно имеем y = u v = ( x 2 + С ) х 2 =  х 4 + Сх2.^-

12.7. Дифференциальные уравнения второго 
порядка, допускающие понижение порядка

В некоторых случаях решение дифф еренциального уравнения 
второго порядка может быть сведено к последовательному реш е­
нию  двух дифф еренциальных уравнений первого порядка (тогда 
говорят, что данное дифференциальное уравнение допускает по­
нижение порядка).

Если дифференциальное уравнение имеет вид

У"=Лх),

то оно реш ается последовательным интегрированием (см. пример 
12. 1).

Если в запись уравнения не входит искомая ф ункция >(х), т.е. 
оно имеет вид

G(x, у у " ) = Ъ ,

то такое уравнение можно решить, найдя сначала вспомогатель­
ную ф ункцию  z - y ' .

Пример 12.14. Решить уравнение ху "+у  '=0.
Р е ш е н и е .  Положим z ~у ' .  Тогда y " = z '  и исходное урав­

нение принимает в и д х г ' + z  -0 .
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Откуда —  = -  — . Интегрируя, приходим к реш ению z =  Q / x  .
Z  X

Возвращаясь к первоначальной ф ункции, получаем уравнение у  '=
„ , , C,dx=  С [/х , или ау= - л— , решая которое, окончательно имеем 

х
у  — С] 1п|х| + С2 .►

Если в уравнение не входит переменная х, т.е. оно имеет вид

СЦу, у \ у " ) = о,

то порядок уравнения можно понизить, если за независимую 
переменную взять у , а за неизвестную функцию  — z =  z (у)—у '. 

>Г1ример 12.15. Решить уравнение 2y y ”=( j ’’) 2 +1.

П гг / ч , Т п dz dz dyР е ш е н и е .  Положим z=z (y )=y  Тогда У = —  = — =z 'г, и
dx ay dx

исходное уравнение принимает вид
2yzz '=  z 2 + 1 .

Данное уравнение — с разделяющимися переменными:
2zdz dv d { z 2 +1) dy n = —  или — 1 : - . Выполняя интегрирование,

z +1 У Z + 1 У
получаем l n ( z 2 + 1) = l n j y |  + С или, полагая C M n Q  , z~±y j Cxy  -  1 .
Так как z = y \  то приходим к следующему уравнению относитель­
но ф ункции у(х)

^ dy  =dx.

с,
Выполняя интегрирование, получаем ±-v/rC1jT^7 = (х + С2) 

или

= <̂ ^ Х + С2)2

12.8. Линейные дифференциальные уравнения 
второго порядка с постоянными коэффициентами

Линейное дифференциа/гьное уравнение второго порядка с посто­
янными коэффициентами имеет вид

y "+ p y ’+qy=r(x), (12.33)
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где р , q — некоторые действительные числа, г(х) — некоторая 
функция. Если фс)=0, то уравнение

y" + p y '+ q y=  0 (12.34)
называется однородным; в противном случае при г(х)  Щ 0 уравне­
ние (12.33) называется неоднородным.

М ожно доказать, что существует единственное реш ение урав­
нения (12.33), удовлетворяющее начальным условиям y ( x i))=: z { , 
у ' ( х 0 )= z2 , где х 0 , Z], z 2 — некоторые (действительные) числа.

Рассмотрим сначала решение линейного однородного уравнения
(12.34) с постоянными коэффициентами.

Н апомним, что линейной комбинацией функций у х (х) и 
у2 (х) с коэф ф ициентам и С, и С2 называется выражение вида 
С\У\(х)+С2у 2 (х). Если линейная ком бинация ф ункций (?,>’[ (х)+ 
+  С2у 2 (х) равна нулевой ф ункции только тогда, когда ко эф ф и ц и ­
енты С] и С2 равны нулю, то функции ух и у2 называю тся ли­
нейно независимыми, в противном случае — линейно зависимыми.

ОПример 12.16. Убедиться в линейной независимости сле­
дующих функций:

а) е л>х и е А2Х, где Ах ф Л2 ; б) e /JC н xe /J(; в) е ^  sin fix и 

е cos рх , где р*0.

Р е ш е н и е. а) Если Сле/лХ + С2е/'1Х = 0, то = - С 2е{/'2 ~'~l)x , 
но так как Ях л 2 , то функция, стоящая в правой части послед­
него равенства, является постоянной, только если С, =0 и, следо­
вательно, С, =0.

б) Тождественное равенство Cxe ^  + Ci x e ^  =0 возможно, толь­
ко  если ф ункция С, +  С2х является нулевой, откуда следует 
Ci =  C2 =0.

в) П редположим, что С\сах sin рх + С2е ах cos рх =0.
Тогда С[ sin рх + С2 cos рх ^0. Если хотя бы один из коэф ф и ци ­

ентов С] или С2 отличен от нуля, то нетрудно подобрать такое 
значение переменной х, что ф ункция в левой части последнего

равенства отлична от нуля (например, х=0 или х=“ ~  ), П осколь­

ку это невозможно, то Сх =  С2 =().►
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Говоря о реш ениях уравнения (12.34), отметим прежде всего, 
что они обладают, как говорят, структурой линейного простран­
ства: если у, (х) и у2 (х) — реш ения уравнения (12.34), то их л и ­
нейная ком бинация

где С, и С2 некоторые числа, также является реш ением этого 
уравнения. Действительно, подставляя функцию  (12.35) в (12.34), 
получаем

У "+РУ '+ЯУ= С\ У\ +  С2 у'{ +р( С, у[ + С2 у'2 )+q( С, ух + С2 у2 )= 
=  С, ( у'{ +р у[ + д у , ) +  С2 ( у'{ +р у 2 + д у 2 )=  Q  ■ 0+ С2 • 0=0.
Другими словами, формула (12.35) задает способ построения 

новых реш ений уравнения (12.34) из уже имеющихся. Возникает 
вопрос: сколько и какие реш ения уравнения (12.34) следует за­
дать, чтобы с их помощ ью  можно было описать все реш ения это­
го уравнения? Ответ на него дает следующая теорема.

Теорема 1. Если }\ (х) и у 2 (х) — линейно независимые частные
решения уравнения (12.34), то общее решение этого уравнения явля­
ется линейной комбинацией этих частных решений, т.е. имеет вид
(12.35) для некоторых действительных чисел СЛи С2 .

Итак, чтобы найти общее реш ение уравнения (12.34), надо 
знать два его частных реш ения ^  и у2 .

Будем искать реш ение уравнения (12.34) в форме

где ?. — некоторое (действительное) число, (если такое сущ еству­
ет). Так как ( e ;jc) "+р(елх ) '+ q e ** =  (Л2 + рЛ + q ) e AX , то ф ункция
(12.36) является реш ением уравнения (12.34), если число X есть 
корень уравнения

которое называется характеристическим уравнением исходного 
уравнения (12.34).

О писание реш ений уравнения (12.34) зависит от того, имеет 
ли соответствующее характеристическое уравнение (12.37) два

У = С j у } + С2 у 2 , (12.35)

(12.36)

Л + рЛ + q —0, (12.37)

343



различных корня, один корень или не имеет действительных 
корней. Справедлива теорема.

Теорема 2. 1. Пусть характеристическое уравнение (12.37) урав­
нения (12.34) имеет действительные корни Лх и Л2 , причем
Л1ф Л2 - Тогда общее решение уравнения (12.34) имеет вид

y = C xeAlX + С ?еЛ2Х, (12.38)

где С] и С2 — некоторые числа.
2. Если характеристическое уравнение (12.37) имеет один корень 

X (кратности 2), то общее решение уравнения (12.34) имеет вид

у = С 1еЯл + С 2х е ^  , (12.39)

где С] и С2 — некоторые числа.
3. Если характеристическое уравнение (12.37) не имеет дейст­

вительных корней, то общее решение уравнения (12.34) имеет вид

y = C ie aX sin р* + С2еса cos fix , (12.40)

где а = —р/2,  р = Jq  -  /?2/ 4 , С] , С2 — некоторые числа.

□ П ринимая во внимание теорему 1 и результаты, полученные
в примере 12.16, для доказательства достаточно проверить, что 
ф ункции, линейны е комбинации которых рассматриваются в п. 
а, б, в, действительно являются реш ениями уравнения (12.34)
при сделанных предположениях. В случае функций е'лХ и е А1-х 
из п. а и ф ункции е** из п. б справедливость этого утверждения 
вытекает из замечания о функциях вида (12.36) (см. выше). П ро­
верку остальных случаев мы оставляем читателю в качестве уп­
раж нения.*

[>Пример 12.17. Найти частное реш ение следующих уравне­
ний при указанных начальных условиях:

а) у " - Ъ у ’+2у=Ъ,  ><0)=3, >-'(0)=4;
б )^ " -2 > - '+ у = 0 ,Я 0 )= 1 ,> ''(0 )= 0 ;
в) у " ~ 2 у ’+2у=0,  >-(0)=1, >''(0)=1.
Р е ш  е н и е. а) Решая характеристическое уравнение
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Я2 — ЗЯ + 2 = 0 , находим его корни Лх =1, Л2 —2. Тогда общее ре­

шение данного уравнения имеет вид у = С хе х +С 2е2х. Найдем та­
кие значения постоянных С] и С2 , при которых выполняю тся 
заданные начальные условия. Так как >'(())= Сх 4- С2 и у  '(())== С] + 
+2 С2 , то постоянные Сх и С2 находим, решая систему

JC] + С2 = 3 ,
|C j + 2С2 = 4.

Откуда С j = 2 , С2 = 1.
По теореме о сущ ествовании и единственности реш ения урав­

нения вида (12.33) найденное частное решение у = 2 е х + е 2х — 
искомое.

б) Решая характеристическое уравнение Л2 -  2Л + 1 = 0 , полу­
чаем ЛХ =  Л2 =1.  Согласно п .2 теоремы 2 общее решение диф ф е­

ренциального уравнения (12.34) имеет вид у = ( С х + С2х)ех . Так 

как.у(0)“ 1> то С, =1 и, поскольку у ' = у +  С2ех и ,у'(0)= 0> то С2 = —1. 
Таким образом, окончательно получаем частное решение

>’=(1 -  х)ех .
в) Характеристическое уравнение Л2 -  2А + 2 = 0 не имеет дей ­

ствительных корней. В этом случае согласно п.З теоремы 2 общее 
реш ение дифф еренциального уравнения имеет вид

у - С , е х sin Л' + С2е х cosx  (сс=|3=1).

Так как >’(0)= Ь то С2 =1. Найдем у ' =(С] -  С2)ех sin х +

+ (С] + С 2)ех c o s x . Учитывая, что у '(0 )= 1 , получим Сх =  0. Таким 

образом, приходим к частному решению у = е х cosx .►
Перейдем теперь к решению линейного неоднородного уравне­

ния (12.33) с постоянными коэффициентами.
Это уравнение может быть в частности решено методом ва­

риации произвольных постоянных, который состоит в следующем. 
Сначача находится общее реш ение у = С ху х + С 2у 2 однородного
уравнения (12.34), имеющего ту же левую часть, что и исходное 
неоднородное уравнение (12.33). Затем решение уравнения
(12.33) находится в виде у - С х(х)ух + С2(х)у2 , т.е. предполагается, 
что постоянные С, и С2 являются функциями независимой пе-
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ременной х. П ри этом ф ункции С ,(х )и  С2(х)  могут быть найде­
ны  как  реш ения системы

Р е ш е н и е .  Решая соответствующее однородное уравнение

Полагая теперь, что С( и С2 — ф ункции переменной х, н ай ­
дем первые производные этих функций, реш ая систему (12.41)

Найдем С { = —1, С'1 =  е х . Полученные дифф еренциальные
уравнения — с разделяю щ имися переменными. Решая эти урав­
нения, получаем С, = - х + С 3 , С2 =  - е  Х + С4 , где С3 , С4 — н еко­
торые постоянные. Таким образом, окончательно реш ение урав­
нения имеет вид

Обратим внимание на структуру полученного реш ения. П ер­
вые два слагаемых — это общее решение однородного уравнения 
(12.43), соответствующего исходному дифференциальному урав­
нению  (12.42). Последнее слагаемое, как нетрудно убедиться н е ­
посредственным вычислением, — частное реш ение исходного 
уравнения (12.42). Аналогичное утверждение справедливо и в 
общем случае, т.е. справедлива теорема.

Теорема 3. Общее решение линейного неоднородного дифференци­
ального уравнения (12.33) равно сумме общего решения соответст­
вующего однородного уравнения (12.34) и частного решения исход­
ного неоднородного уравнения (12.33).

Следует отметить, что метод вариации произвольных постоян­
ных достаточно сложен, поэтому в ряде случаев целесообразно 
использовать другие методы реш ения, основанные на теореме 3. 
Сначала, как и при методе вариации п р о т  во., чых постоянных,

(12.41)

[>Пример 12.18. Решить уравнение

у " —Ъ у ' + 2 у = е х . (12.42)

у " - 3 у ’+2у=0 (12.43)
(см. прим ер 12.17. а), находим

у = С , е х + С 2е1х.

у  =  ( - Х  + С3 ) е* + ( -е~х + С4 ) е 2х =  С3 ех +  С4 е2* + { - х  ~  \ ) е х >
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находится общее реш ение однородного дифф еренциального 
уравнения (12.34), а затем отыскивается частное реш ение неодно­
родного уравнения (12.33). При этом вид частного реш ения уста­
навливается по виду правой части уравнения (12.33), и задача 
сводится к отысканию  коэф фициентов этого частного реш ения.

Рассмотрим некоторые частные случаи.
1. Пусть правая часть уравнения (12.33) является многочле­

ном степени т , т.е. имеет вид
г (х) =  cifj + й[Х + а2х2 +  ... +  а^х"1,

где ао, а \' •••' — действительные числа и атФ 0. Тогда частное
решение уравнения (12.33) следует искать в виде

и (х) =  ( Q  +  С\х + ... + СдаХ"1) X s, 

т.е. в виде произведения многочлена той же степени т на х* 
где .v =  0, если q *  0 (см. (12.37)), 5 = 1 , если <7=0 и р ^ О  и s - 2 , 
если q — p  — 0. (Другими словами, показатель степени s равен 
к р а т н о с т и  значения х ~ 0  как корня характеристического 
многочлена (12.37)).

Пример 12.19. Найти частное решение уравнения

у" -  ЗУ =  1 + 6х. (12.44)
Р е ш е н  и е. По сформулированному правилу, частное ре­

шение уравнения (12.44) следует искать в виде

и(х) =  ( Со + С|Х) х. (12.45)
Найдем значения параметров Со и С\ в данном выражении 

для и(х). Д иф ф еренцируя (12.45). получаем

и \ х)  =  Q  + 2 С]Х, и "(х) =  2 С\.
Так как и(х) — решение уравнения (12.44), то значения Со и 

С: должны быть такими, что равенство и" —Ъи = 1 +  6х, т.е.

2 С] - 3  (С0 + 2 С ,х )=  1 + 6 х
или

(2 С, -  3 С0) -  6 С)Х = 1 + 6х, (12.46)
будет удовлетворяться тождественно, т.е. при всех х.

Поэтому уравнение (12.46) равносильно системе

J2C] -З С 0 = 1,
[ -6 С 1 = 6.

Решая эту систему, находим, что Со =  С] =  — 1 , т.е. искомое 
частное реш ение уравнения (12.44)

347



и{х) =  -X  —X2. ►

2. Пусть правая часть уравнения (12.33) имеет вид

г (х) =  А ё‘х,

где а  и А — некоторые действительные числа.
Тогда частное решение уравнения (12.33) следует искать в виде

и(х)= C0xseax, (12.47)

где показатель степени s равен кратности значения х  =  а  как 
корня характеристического многочлена (12.37).

" Пример 12.20. Найти частные реш ения уравнений:

а) у" — Зу'+ 2у =  2е3х; б) у" — 3у'+ 2у =  е2х;
в) у" — 2 у ' + у  — 6<?*.

Р е ш е н и е ,  а) В данном случае а= 3  и поскольку такого 
значения нет среди корней (>-i=l, Ху=2) характеристического 
уравнения X2 — ЗХ +  2 =  0, то 5 =  0. Таким образом, частное реш е­
ние уравнения (а) будем искать в виде и =  Q e 3*.

Тогда и '=  3 Qje3*, и" =  9 С^е3*.
Подставляя выражения и", и', и в  уравнение (а), приходим к 

равенству
9 С0е3х -  9 С0е3х +  2 С0е3х =  2е3х 

или 2 Q e ix-  2е3х,

которое должно удовлетворяться тождественно. Поэтому С0 =  1 и 
искомое частное реш ение и =  е3х.

б) Здесь а  =  2 и это значение совпадает с одним из двух раз­
личных корней (/-i =  l, л 2 =  2) соответствующего характеристи­
ческого уравнения. Поэтому 5 = 1 , и частное реш ение уравнения
(б) будем искать в виде и = Cqxc2x.

Подставляя выражения и и ее производных в уравнение (б), 
получим (после преобразований) и =  хе2х.

в) В данном случае u —1. Одновременно корнями характери­
стического уравнения X2 -  2Х + 1 =  0 уравнения (в) являю тся ?.j =  
/.2 = 1 (т.е. значение X =  1 является корнем кратности 2). П о­
этому s =  2, и частное решение уравнения (в) следует искать в 
виде и =  Q  х2е2х.

Представляя выражение для и и ее производных в уравнение
(в), получим после преобразований и =  Зх2е*. ►
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3. Пусть правая часть уравнения (12.33) имеет вид 
г  (х) =  a cos рх +  b sin рх, 

где а, Ь, р — некоторые действительные числа и (3^0.
Тогда частное решение уравнения (12.33) следует искать в виде:

и(х) =  хЦ Q) cos рх +  С] sin рх), 
где 5 = 1 , если одновременно выполнены  услови яр  =  0 (см. 12.37), 
д>0, p = V?, и 5  =  0 в остальных случаях. (Условия случая 5 = 1  

равносильны  требованию , чтобы значение р в выражении г(х) 
было таково, что комплексное число1 / р было одним из корней 
характеристического уравнения (12.33)).

[>Пример 12.21. Найти частное реш ение уравнения

у" ~  ЗУ +  2у =  sin х. (12.48)
Р е ш е н и е .  П о сформулированному правилу частное реш е­

ние в данном случае следует искать в виде и =  Q  cos х + С) sin х. 
Найдем и '= - Q  s in х + С\ cos х, и"= ~C q cos х  — С) sin х. 
Подставляя выражения и", и\ и в уравнение (12.48), приходим 

к равенству
(—3 С\ + Со) cos х +  (— С\ +  ЗСо + 2 Ci) sin х  =  sinx,

которое должно удовлетворяться тождественно.
Учитывая, что s in x  = 0 • c o s x +  1 • sinx, получим систему:

f - з  с 1+ с 0 =о
i  C i+3C 0 =1,

откуда Со =  0,3, Ci =  0 ,l и, следовательно, искомое выражение 
имеет вид и =  0,3 cos х  +  0,1 sin х.

Рассмотренные случаи различных выражений правой части 
уравнения (12.33) являются частными случаями функции вида

r(x)  =  eax(f(x) cos рх +  g (х) sin рх), (12.49)

где f{x),  g{x)  — многочлены (с действительными коэффициентами); 
а , р — некоторые (действительные) числа.
М ожно доказать,' что частное решение уравнения (12.33) с 

правой частью (12.49) следует искать в виде
и =  xseax (v (х) cos рх +  w(x) sin рх), (12.50)

где 5 равно кратности корня а  + /р характеристического много­
члена (12.37); v(x), w(x) — многочлены, степень которых равна

1 Комплексны е числа рассмотрены в гл. 16.
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наибольш ей из степеней многочленов / ( х )  и g(x) в выражении 
(12.49). К оэф ф ициенты  многочленов v(x) и w(x) находятся из 
системы линейны х уравнений, получаемой после подстановки 
реш ения (12.50) и его производных в уравнение (12.33).

З а м е ч а н и е .  Если правая часть г(х)  уравнения (12.33) яв­
ляется суммой некоторых ф ункций, т.е.

г (х) =  Г\(х) -г Ых)  + ... + гк(х), 
то для нахождения частного реш ения такого уравнения достаточ­
но сложить частные реш ения и,■ (х) уравнений

у " + р у ' +  qy=ri (x) ,  где /=  1, 2........к , т.е.
и (х) =  И|(х) +  и2(х) + ... + %(х).

Пример 12.22. Решить уравнение

у " -  3>>’+  2у =  2eix + elx +  s in x  (12.51)
Р е ш е н и е .  Найдем общее решение однородного диф ф е­

ренциального уравнения у" — Зу'+ 2у =  0. Получим (см. пример 
12.18) у  =  С \гх + С2е2х. Учитывая замечание (см. выш е), частное 
реш ение и дифф еренциального уравнения (12.51) будет равно 
сумме частных реш ений уравнений >

у 3у '+ 2у  =  2<?-Ч у"— Ъу'+ 2у  =  е2х, у"— 3у '+ 2у  =  s in х, 
найденных в примерах 12,20 (а, б), 12.21, т.е. 
и (.v) = М|(х) и2(х) + И}{х) =  е3х + хе2х+  0,3 co sx  + 0,1 s in x

На основании теоремы 3 общее реш ение неоднородного 
дифф еренциального уравнения

у  -  у  + и = Cjev+ G e 2x+ е}х +  хе2х+  0,3 co sx  + 0,1 sinx. ►

12.9 Использование дифференциальных уравнений 
в экономической динамике

Д ифф еренциальные уравнения находят достаточно ш ирокое 
прим енение в моделях экономической динамики, в которых от­
ражается не только зависимость переменных от времени, но и их 
взаимосвязь во времени.

Рассмотрим некоторые (простейш ие) задачи м акроэконом и­
ческой динамики.

Задача 1. Пусть y(t) — объем продукции некоторой отрасли, 
реализованной к моменту времени Л Будем полагать, что вся 
производимая отраслью продукция реализуется по некоторой
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ф иксированной цене р,  т.е. выполнено условие ненасыщ аемости 
рынка. Тогда доход к  моменту времени t составит Y(t) =  py(t).

Обозначим через I  (t) величину инвестиций, направляемых на 
расш ирение производства. В м о д е л и  е с т е с т в е н н о г о  
р о с т а  полагают, что скорость выпуска продукции (акселера­
ция) пропорциональна величине инвестиций, т.е.

y'(t) =  U( t ) ( 12-52)
(Здесь мы пренебрегаем временем между окончанием п роиз­

водства продукции и ее реализацией, т.е. считаем, что инвести­
ционны й лаг равен нулю).

Полагая, что величина инвестиций I(t)  составляет ф и кси ро­
ванную  часть дохода, получим

/( / )  =  mY(t) =  mpy(t), ( 12.53)

где коэф ф ициент пропорциональности т (так называемая норма 
инвестиций) — постоянная величина, ()<т< 1.

Подставляя последнее выражение (12.53) для I(t) в (12.52), 
приходим к  уравнению

у ' = к у ,  ( 12.54)
где к =  mpl.

Полученное дифференциальное уравнение — с разделяю щ и­
мися переменны ми (см. § 12.4). Решая его, приходим к функции 
y(t)  = y Qe k{t~t0\  где у0 =  y(t0).

Заметим, что уравнение (12.54) описывает также рост народо­
населения (демографический процесс, см. § 12.1), динамику рос­
та цен  при постоянной инф ляции, процесс радиоактивного рас­
пада и др.

Н а практике условие насыщаемости ры нка может быть п ри ­
нято только для достаточно узкого временного интервата. В об­
щем случае кривая спроса, т.е. зависимость цены р реализован­
ной продукции от ее объема у  является убывающей ф ункцией
р  — р ( у )  (с увеличением объема произведенной продукции ее ц е­
на падает в результате насы щ ения рынка). Поэтому модель роста 
в у с л о в и я х  к о н к у р е н т н о г о  р ы н к а  примет вид

у ' =  mlp (у)у,  ( 12.55)

оставаясь по-прежнему уравнением с разделяющимися перем ен­
ными.
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Так как все сомножители в правой части уравнения (12.55) 
положительны, то у'>  0, и это уравнение описывает возрастаю ­
щую функцию  y{t). При исследовании функции y{t) на вы пук­
лость естественно используется понятие эластичности функции. 
Действительно, из (12.55) следует, что

у" = mly'
dp

dy

\

у  + р

Н апомним, что эластичность спроса (относительно
Р dy

цены)

определяется формулой Е р ( у ) =  (см. § 7.6). Тогда выраже-
У dp

ние для у  можно записать в виде
{

у" = mly'p + 1
Ер(У)

и условие у" =  0 равносильно равенству Ер ( у ) = — 1.
Таким образом, есЖ  спрос эластичен, т.е. |^ (> ’)1>1 или 

Ер(у) < _ 1, то у" > 0 и функция y(t) выпукла вниз, в случае, если 
спрос не эластичен, т.е. \Ер(у) |<  1, или — \<Ер(у) <0, то у"< 0 и 
ф ункция y{t) выпукла вверх.

[> Пример 12.23. Найти выражение для объема реализованной
продукции у =  у { 0, если известно, что кривая спроса р(у)  задается 
уравнением р(у) =  2 ~  у, норма акселерации 1// =2, норма и нве­
стиций ш =  0,5, >’(0) =  0,5.

Р е ш е н и е .  Уравнение (12.55) в этом случае принимает вид
у ' = ( 2 - у ) у

dy
или  = d t .

(2 - у ) у
Выполняя почленное интегрирование, получаем

У - 2
In

или
>’-2

>’

-21 + С,

(12.56)

где C = ±ec i.
Учитывая, что >>(()) =  0,5, получаем, что С =  —3. Выражая те­

перь у  из (12.56), окончательно имеем
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У =
1 + Зе ■It

Граф ик данной ф ункции схема­
тично изображен на рис. 12.10. (В 
данном случае эластичность спроса

задается функцией Ег,(у)- и

р  dy у  -  2
условие Е „ (у) = -------= --------- , оп-

У dp у
ределяющее положение точки пере­
гиба н а кривой, дает у =  1.

К ривая, изображенная н а рис. 12.10, называется логистиче­
ской. П одобные кривые описываю т процесс распространения 
инф орм ации (рекламы), динамику эпидемий, процесс размнож е­
н ия бактерий в  ограниченной среде и д р .^

Задача 2. Доход Y(t), полученный к  моменту времени t н еко ­
торой отраслью, является суммой инвестиций 1(f) и величины
потребления C(t), т.е.

Y(t) =  I (t)+ C (t) . (12.57)

К ак и ранее в модели естественного роста, будем предпола­
гать, что скорость увеличения дохода пропорциональна величине 
инвестиций, т.е.

b T (t)  =  I(t), (12.58)

где b — коэф ф ициент капиталоемкости прироста дохода (что 
равносильно (12.52) при постоянной цене на продукцию  р  и 
l =  l/(pb).

Рассмотрим поведение ф ункции дохода Y(t) в зависимости от 
ф ункции C(f).

Пусть Q t) представляет фиксированную часть получаемого до­
хода: C(t) =  (\ — m)Y(t), где т — норма инвестиций (см. задачу 1). 
Тогда из (12.57) и (12.58) получаем

т
Y' = — Y, 

Ь
(12.59)

что равносильно уравнению (12.54) при  р  =  const.
В ряде случаев вид функции потребления C(t) бывает извес­

тен (из некоторых дополнительных соображений).
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[>Пример 12.24. Н айти функцию  дохода Y =  Y(t), если извест­
но, что величина потребления задается ф ункцией C —2t, ко эф ­
ф ициент капиталоемкости прироста дохода b =  1/2, 7 (0 ) =  2.

Р е ш е н и е .  Из соотнош ений (12.57) и (12.58) имеем урав­
нение

Y(t) = - Y ' ( t )  + 2t,
2

т.е. ф ункция дохода удовлетворяет линейному неоднородному 
уравнению  первого порядка. Д ля его реш ения воспользуемся 
методом, описанны м в § 12.6: будем искать реш ение в виде 
F(f) =  u(t) v(t).

Тогда имеем u(t) — 2te~2t +  е~2' +  С, v(t) =  е11. Значение посто­
янной С находим из начальных условий: поскольку К(0) =
=  и(0) v(0) =  2, то С =  1. Окончательно имеем Y(t) =  21 +  e2f +  1. ►

У П Р А Ж Н Е Н И Я
Составить диф ф еренциальны е уравнения семейств кривых:
12.25. у = С х 2 . 12.26. у 2 = 2Сх .
12.27. х 3 = С (х2 -  у 1) . 12.28. у=  Схе2х +  С2е 'х .

Реш ить диф ф еренциальны е уравнения с разделяю щ имися п е ­
ременными:

12.29. х у ’- у = у г . 12.30. у - х  у '= 1 +  х 2у ' .

12.31. ху у '= \  — х 2 . 12.32. ху dx+ (x+ \) dy=  0.

12.33. f jy 2 + 1 dx = xydy. 12.34. 2x 2yy' + y 2 —2.

12.35. у  y ’+ x = l.  12.36. у  '=10дг+у.

Реш ить уравнения, используя замену переменной;
12.37. у ' —у =  2х~3. 12.38. (2x~y)dx+(4x—2y+3) dy=0.

Решить однородные дифф еренциальные уравнения:

12.39. у '=  — ~ 1. 12.40. (х—у)у dxr~ x 2dy = 0 .
х

12.41. (х 2 + y 2) d x - 2 х у  d y= § . 12.42. у  dxr\~ (2yjxy -  x )d y  = 0 .

12.43. у  dy+ {x—2y)dx=Q. 12.44. y = x ( y ' ~ 4 ^  )■
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12.45. ^  ^  = х  12.46. у '+ —  = х 3 .
ах х  х

12.47. -(2 * 3 * 3 ) ф = 0 . 12.48. у  ' - у =  ех .

Реш ить уравнения, используя пониж ение порядка:
12.49. у'" = е 2х . 12.50. х(у " + 1)+  у  '=0.

Найти частные реш ения уравнений, удовлетворяющие началь­
ным условиям:

12.51. уу" = { y f - { y ' f ,  У(0) = 1, / ( 0) = 2.

12.52. 2у ( у ' ) 3 +  у " = 0, j<0)=0, у '( 0 )= -3 .

Решить линейны е однородные уравнения:
12.53. у "—5 у'+ 6 у= 0 . 12.54. у " + 2 у ’+у^О.
12.55. у '-у = Ъ  у" . 12.56. у" + 4  у'+13у=0.
Реш ить линейны е уравнения:
12.57. у  ' '-4  у  '+4у=  х 2 . 12.58. у  "+2 у  '+у=  е2х .
12.59. у " —8 у '+ 7 у = \4 .  12.60. у " —у = е х .

Найти реш ения уравнений, удовлетворяющие начальным ус­
ловиям:

12.61. у " —2 у '+ у =  0, Я 2)= 1. У'(2 )= -2 .
12.62. у " + у = 4 е х , у(0)=4, у '(0 )= ~ 3 .
12.63. у " - 2 у ' = 2 е х , ><1)=—1, у '(1 )= 0 .
12.64. у ”+ 2 у '+ 2 у= х е~ х , ,у(0)=  у '(0 )= 0 .
12.65. За 30 дней распалось 50% первоначального количества 

радиоактивного вещества. Через сколько времени останется 1% 
первоначального количества?

У к а з ,а  н и е. Использовать закон радиоактивного распада: 
количество радиоактивного вещества, распадающегося за едини­
цу времени, пропорционально количеству вещества, имеющегося 
в рассматриваемый момент.

12.66. Найти выражение объема реализованной продукции 
У =  У(0 и его значение при t =  2, если известно, что кривая спро­
са имеет вид р(у) — 3 -  2у, норма акселерации 1/7 =  1,5, норма 
инвестиций т =0,6 , у(0) =  1.

Решить линейные уравнения первого порядка:



Раздел V. РЯДЫ
Глава 13. ЧИСЛОВЫЕ РЯДЫ

П ри реш ении ряда математических задач, в том числе и в 
приложениях математики в экономике, приходится рассматри­
вать суммы, составленные из бесконечного множества слагаемых. 
Из теории действительных чисел известно лиш ь, что означает 
сумма любого конечного числа чисел. Задача суммирования бес­
конечного множества слагаемых решается в теории рядов.

13.1. Основные понятия. Сходимость ряда
Определение. Числовым рядом  называется бесконечная последо­

вательность чисел соединенных знаком сложения:

щ + и2+...+и„+...= ]Гил. (13.1)
л=1

Числа щ ,и2, . . . ,и п,...  называю тся членами ряда, а член и„ — 
общ им или п-м 4jienoM ряда.

Ряд (13.1) считается заданны м , если известен  его общ ий 
член и„ = / ( « ) ( «  = 1,2,...), т.е. задана ф ун кц ия f(n )  натураль-

( - 1)” 1ного аргумента. Н априм ер, ряд с общ им членом  и„ = ■■ \  -■-----
п2(п + 1)

им еет вид
1 1 1 (-1 )"-1
---------- -̂---- 1---К------ . . .Н---- -̂--------- К . . .

1 • 2 2 ■ 3 3 • 4 п2(п + 1)

Более сложной является обратная задача: по нескольким п ер­
вым членам ряда написать общий член. Эта задача имеет беско­
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нечно много реш ений, но иногда удается найти самое естествен­
ное решение.

ОП ример 13.1. Найти в простейш ей форме общий член ряда: 

ч 2 4 6 3 8 15 24
а ) Г Г й +- - ' : б ) Г 1 о  + г Г 2 б +" "

Р е ш е н и е .  Нетрудно убедиться, что для ряда а) общий член

2л ( ~ 1 ) " + 1)2 ~ l]
и„ =  ------  , а для ряда б) и„ = -- -----L-►

4п + 1 (п +1) +1
Рассмотрим суммы конечного числа членов ряда:

Sl =U1, Sj  =Щ +«2< •••> S„ -  Щ + U2+-..+U„.

Сумма п первых членов ряда S„ называется п-й частичной 
суммой ряда.

Определение. Ряд называется сходящимся, если существует ко­
нечный предел последовательности его частичных сумм, т.е.

lim S„ = S. (13.2)
П~

Ч и сло  S  н азы вается суммой  ряда. В этом см ы сле м ож но за ­
писать

00
щ + и 2+.. Y j un = S - (13.3)

п= 1

Если конечного предела последовательности частичных сумм 
не существует, то ряд называется расходящимся.

О Пример 13.2. Исследовать сходимость геометрического ряда, 
т.е. ряда, составленного из членов геометрической прогрессии

сС

a +  aq +  aq2...+aqn~1+ ...=  aqn~'L. (13.4)
П=I

Р е ш е н и е .  Необходимо установить, при каких значениях 
знаменателя прогрессии q ряд (13.4) сходится и при каких — р ас­
ходится.
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И з ш кольного курса алгебры известно, что сумма п членов 
геометрической прогрессии, т.е. п-я  частичная сумма ряда при 
q * 1 равна

а(дп - 1) 
q - l

(13.5)

Возможно несколько случаев:
1) если \q\ < 1, то Шп q n = О,

Л-^оо

lim S„ = lim
Л —

5

Л—>оо Л—Уст.

а

aq"
4 - 1

\
а , т.е. ряд сходится и  его сумма

1 - q

\ - q
2) если j<7 | > 1, то Jim q" = 30 , следовательно, iim ^  «  и ряд

Л —>«5 Л —

расходится;
3) если <т=1,то ряд (13.4) примет вид с  + а+...+а+... , его п-я 

частичная сумма Sn = а + а+...+а = па и lim  S„ = lim па = оо, т.е.
^  Я-ЮО П >со

ряд расходится;
4) если # = —1, то ряд (13.4) прим ет вид а - а + а - а +  

+ ...+(-1)л- l <2+ ...и £„ = 0 при п четном и Sn = a  -  при  п нечет­
ном, следовательно, ]im S„ не существует, и  ряд расходится.

Л —►<*>

Таким образом, геометрический ряд сходится к сумме S  =
1 - q

при  \q\ < 1 и расходит ся  при  \q\ > 1. ►

ОПример 13.3. Н айти сумму ряда

1 1 1  1т—гг + т—г + т —г +• • •+ -----• (13.6)1-2 2-3  3 -4  п (п  + 1)

Р е ш  е н и е. п -я  частичная сумма ряда

с I 1 1 1 1 , 1= —— + —— + — —-----—. Учитывая, что ------ = 1 — ,
1-2 2 -3  3 -4  л(л + 1) 1 -2  2
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1 1 1 1 1 1  1 1 1
2 ■ 3 ~ 2 3 ’ 3 -4  3 4 ’ ’ п(п + \)  п л + Г

Ч 14 ) + Й + (1 4 ) +'"+(«~тгтт) = 1 ~VT\ = V TV
п

Отсюда lim  S„ = l im    = 1, т.е. сумма ряда S  = 1. ►
Л-»оо Я->оО Н + 1

Свойства сходящихся рядов. 1. Если ряд щ +  и2+...+и„+... схо­
дится и имеет сумму S, то и ряд Лщ + Ли2 +...+Лип+... (получен­
ный умножением данного ряда на число X ) также сходится и 
имеет сумму XS.

2. Если ряды щ +  и2+...+и„+... и vj + v2+ ...+v„+ ... сходятся и их 
суммы соответственно равны S t и S2, то и ряд (и\ + V] )+(м2 +  v2)+  
+...+(ми +v„)+... (представляющий сумму данных рядов) также 
сходится, и его сумма равна .S', + S2.

С войства 1 и 2 непосредственно вытекают из свойств преде­
лов числовых последовательностей.

3. Если ряд сходится, то сходится и ряд, полученный из данного 
путем отбрасывания (или приписывания) конечного числа членов.

□  Пусть в сходящемся ряде (13.1) отброшены п членов (в
принципе мож но отбрасывать члены с любыми номерами, лиш ь 
бы их было конечное число). Покажем, что полученный ряд

ия +1 + ип+2+-..+ип+т+ ..., (13.7)

имею щ ий частичную сумму а т = ип+1 + и„+2+...+и„+т, также схо­
дится.

Очевидно, что Sn+m = Sn + а т. Отсюда следует, что при ф и к ­
сированном п конечный предел lim S„ , т существует тогда и

«•->00

только тогда, когда существует конечный предел lim <?„,■ А это и

означает, что ряд (13.7) сходится.■
Ряд (13.7), полученный из данного отбрасыванием его первых 

п членов, называется п-м остатком ряда.
Если сумму и-го остатка ряда обозначить через гп, т.е.

гп =1{п+1 ип+2~̂ ~■ ■ ■~̂ип+т+-■-= lim  (13.8)
т - >  оо
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то сумму ряда (13.1) можно представить в виде

S  = S„ +г„. (13.9)

В результате мы подош ли к  свойству 4.
4. Для того чтобы ряд (13.1) сходился, необходимо и достаточ­

но, чтобы при п х  остаток ряда стремился к нулю, т.е. чтобы 
lim г„ = 0.
Л-* QO

Это свойство вытекает из теоремы о связи бесконечно малых с 
пределами ф ункций (см. § 6.3).

Установить сходимость (расходимость) ряда путем определе­
ния S„ и вы числения Jim S„ (как это сделано в примерах 13.2,

П~>йО

13.3) возможно далеко не всегда из-за принципиальны х трудно­
стей при нахождении S„ (суммировании п членов ряда). Проще
это можно сделать на основании признаков сходимости, к изуче­
нию  которых мы переходим.

13.2. Необходимый признак сходимости. 
Гармонический ряд

Теорема (необходимый признак сходимости). Если ряд сходится, 
то предел его общего члена ип при п -» оо равен нулю, т.е.

lim = 0.
П->(Г

□ Выразим /i-й член ряда через сумму его п и (п -  1) членов,
т.е. u „ - S n -S „ _ y Так как ряд сходится, то цт  S„ = S  и

lim Sr_i = S. Поэтому
П ->0C

lim un = lim (Sn -  S„ ,)  = ]im S„ -  lim S„ -i = S  -  S  = 0. ■
П > f Г1~*У' П of: rt—

Пример 13.4. Проверить выполнение необходимого признака 
для ряда (13.6).
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Р е ш е н и е .  Выше было доказано (см. пример 13.3), что ряд 

(13.6) сходится, и действительно lim ип = Шп . , ■ = Ч т.е.
л->сг л— /?(/! + U

необходимый признак сходимости вы полняется.^
С л е д с т в и е .  Если предел общего члена ряда (13.1) при 

п -» да равен нулю, т.е. Цщ ип 0, то ряд расходится.
П ->оо

П  П редположим противное, т.е. ряд (13.1) сходится. Но в этом 
случае из приведенной выше теоремы следует lim = 0, что

П—>оО
противоречит условию, заданному в следствии, т.е. ряд (13.1) 
расходится. ■

О Пример 13.5. Исследовать сходимость ряда V  - П .
5 / 1 "  7

п 3 4 А _Р е ш е н и е .  П т = l im -------г  = -г * 0, т.е. необходимый
п к  i n  ■ i 5

признак сходимости не выполняется, следовательно, ряд расхо-
д и т с я .^

3 а м е ч а н и е. Следует подчеркнуть, что рассмотренная тео­
рема выражает лишь необходимый, но недостаточный признак схо­
димости ряда. Если lim и„ = 0, то из этого еще не следует, что

Ц-+с/
ряд сходится.

В качестве примера рассмотрим ряд

1 + -  + - U . . , (13.10)
2 3 п

называемый гармоническим.
Необходимый признак сходимости выполнен:

lim и„ -  lim — = 0. Докажем, что несмотря на это, гармониче-
П - * ̂  П > ' Н
ский ряд расходится.

Г Вначале получим вспомогательное неравенство. С этой ц е­
лью запиш ем сумму первых 2п и п членов ряда:

! 1 1 1 1



(что, естественно, не повлияет на расходимость ряда). Так как
1 1  1 1  _ 1 1 , -  , — > —, —= = > —, и вообще г- > — (ибо

4 г л  2 V3^2 з у1ф - 1)  п

л/2-1 < 2 = -J l2 , V3 ■ 2 < 3 = V3 2 ,... jn (n  -  1) < и = yfn^ ), т.е. члены 
данного ряда больше членов расходящегося гармонического ряда, 
то на основании признака сравнения ряд расходится.^

Отметим “эталонные” ряды, часто используемые для сравне­
ния:

со

1) геометрический ряд  ^  aqn X — сходится при \q\ <1, расхо-
/1=1

дится при \q\ > 1;
X  j

2) гармонический ряд V  — — расходится;
,  пП= 1

3) обобщенный гармонический ряд
^  1 1 1  1
V  —  = 1+— +— +...+— +... (13.12)
^  па 2« 3“ №

сходится при а  >  1, расходится при а  <  1 (доказательство см. в 
примере 13.10; здесь же отметим, что при а < 1  расходимость 
ряда (13.12) следует из признака сравнения, так как в этом случае

члены ряда V  —  больше соответствующих членов гармониче- 

^ 1
ского ряда У - ,  а в частном случае при а  = 2 сходимость ряда

(13.12) может быть доказана сравнением этого ряда со сходящ им­
ся (13.6)).

Н естандартность прим енения признака сравнения заключается 
в том, что надо не только подобрать соответствующий “эталон­
н ы й ” ряд, но и доказать неравенство (13.11), для чего часто тре­
буется преобразование рядов (например, отбрасывание или п р и ­
писывание конечного числа членов, умножение на определенные 
числа и т.п.). В ряде случаев более простым оказывается пре­
дельный признак сравнения.

СО 00

Теорема (предельный признак сравнения). Если
п=\ п=\

ряды с положительными членами и существует конечный предел
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отношения их общих членов lim —  = к *  0, то ряды одновременно
n->v>

сходятся, либо расходятся.

Так как Jim —  = к, то по определению предела числовой
«->*■ V„

последовательности (см. § 6.1) для любого е > 0 существует та­
кой номер /V, что для всех п >  N  выполняется неравенство

—  -  к\ < s или \ип -  kvn\ < f,v„, откуда (к -  b ) v „ < и„ < (к + e)v„.
I

/ or

Если ряд ^  vn сходится, то сходится ряд ^ ( £  + F.)V„, и в  си-
п -  1 п =  1

лу признака сравнения будет сходиться ряд ^  и„\ аналогично,
и 1f -f

если сходится ряд то сходится ряд X ( * - c ) v „  и сходится
п 1 и = 1

ряд ^  v„. Т аким  образом, из сходимости одного ряда следует 

сходимость другого. Утверждение теоремы о расходимости рядов 
доказывается ан алоги чн ой

Пример 13.8. Исследовать сходимость ряда
71 «■'

Р е ш е н и с. С равним данны й ряд с расходящ имся гарм о­

н ическим  V — (выбор такого ряда для сравнения может под-

2п1+ 5 т  г и”сказать то, что при больш их п --------- ). 1ак как  l im —  =
rfi п П->х vn

- lim
И->=с

2п2 + 5 1 2п2 +5
= l im  = 2 ^0 , то данный ряд, так же как и

гармонический, расходится.►
Весьма удобным на практике является признак Даламбера.

Теорема (признак Даламбера). Пусть для ряда ип с поло-
I

жительными членами существует предел отношения [п + 1 )-го чле-
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на к п-му члену lim !b+L = /. Тогда, если I < 1, то ряд сходится; 
п-»» и„

если I > 1, wo ряд расходится; если / = 1, /ио вопрос о сходимости 
ряда остается нерешенным.

С  И з определения предела последовательности следует, что 
для лю бого е > 0 существует такой номер N, что для всех п >  N

выполняется неравенство *п+1 < е или / -  е < < / + е.
и„

1) Пусть / < 1. Выберем г  настолько малым, что число

q = I + s  < 1, т.е. < q или  Mj)+1 < qUn_
МП

Последнее неравенство будет выполняться для всех п > N , т.е. 
для n = N + 1, N + 2,... : uN+2 <quN+i, uN + i<quN+2<q2uN+l, ... ,

< u N + k  < Я и ы + к - \  <  ••• < 4 k ~ l u N + 1-

Получили, что члены ряда мдг+2+«A'+3+"  +MAf+/t+- - меньше 
соответствующих членов геометрического ряда quN +l+q2uN+1+...+ 
+ q k- luN+l+... , сходящ егося при q < 1. Следовательно, на основа­
нии  признака сравнения этот ряд сходится, а значит сходится и

00
рассматриваемый ряд ^  ип, отличаю щ ийся от полученного на

Л = 1
первые (п + 1) членов.

2) Пусть / > 1. Возьмем е настолько малым, что / — е > 1. Тогда

из условия > / -  е  следует, что > 1. Это означает, что

члены ряда возрастают, начиная с номера N  +1, поэтому предел 
общего члена ряда не равен нулю, т.е. не выполнен необходимый 
признак сходимости, и ряд расходится.и

!>Пример 13.9. Исследовать сходимость рядов:

> 1 2  п V' Зл« !а) -  + —  +... ;б ) > ------- .
2 2 2" А  пп/2—1

Р е ш е н и е. а) Так как lim = lim \ П + ] : —  | =
к„ л->со\2” 2я /

lim < 1, то по признаку Даламбера ряд сходится.
2п 2
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б) Так как lim = lim ( Зя+1(д + 1)! Зия! 
(п + 1)я+1 пп

= lim  -------- , .
я-»® ( л + 1)"(« + 1)3" • я! я-»«>чя + 1У Л 1

lim  1 + -
л - > » 4  Я.

по признаку Даламбера ряд расходится .^

З а м е ч а н и е  1. Если lim =  оо, то ряд расходится.
Я-»«> и п

З а м е ч а н и е  2. Если lim  = 1 = 1, то, как отмечалось
л ^ о с  и „

выш е, признак Даламбера ответа о сходимости ряда не дает, и 
рекомендуется перейти к  другим признакам  сходимости.

Теорема (интегральный признак сходимости). Пусть дан ряд
со

£ « „ ,  члены которого положительны и не возрастают, т.е.
П = 1
«! > и2 > ... > ип > ... , а функция / ( х ) ,  определенная при х  > 1, 
непрерывная и невозрастающая и

/ (1 )  = и», / ( 2 )  = «2, ... , / ( л )  = ив, ... . (13.13)

оо

Тогда для сходимости ряда ^  ип необходимо и достаточно,
п=1

00

чтобы сходился несобственный интеграл J f(x)dx .
1

□ Рассмотрим ряд

2 3 л+1
J/(x)flfr + J /(x )t fr + ...+ J /(x V &  +... . (13.14)
1 2  я

Его п-й частичной суммой будет

2 3 л+1 л+1

Sn = J /(х>& + J Дх)й!х:+...+ J /(х)<& = |  /(x)flfr. (13.15)
1 2  л 1
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Сходимость ряда (13.14) означает сущ ествование предела п о ­
следовательности его частичных сумм (13.15), т.е. сходимость

00
несобственного интеграла j  / ( x)dx, поскольку

1
П+1 00

lim S„ = lim | f (x )d x  = f f(x )dx . В силу монотонности функции
1—кап И—кс*-> » *п —>00 я —» ас ^

f ( x )  н а любом отрезке [«, я + 1] f ( n ) >  f ( x ) >  f ( n  + I) или, учи­
тывая ( 1 3 . 1 3 ) ,

ип > f { x ) > u n+x. (13.16)

Интегрируя (13.16) на отрезке [я, п + 1], получим
п+1 л+1 л+1
J u„dx > J f{x )d x  > ju „ +1dx,
п п п

откуда

Л + 1
ип > j f ( x ) d x > u n+i. (13.17)

Если ряд ^  и„ сходится, то по признаку сравнения рядов в
л=1

силу первого неравенства (13.17) должен сходиться ряд (13.14), а
00

значит и несобственный интеграл J  f(x )dx . Обратно, если схо-
1

ОС'

дится |  f(x )d x , т.е. ряд (13.14), то согласно тому же признаку 
1

сравнения на основании второго неравенства (13.17) будет схо-
00

диться ряд ^ и „ +1 = и2 + и3+...+и„ + ип+1+... , а следовательно, и
л = 1
:j0

данны й ряд ^  и„ = щ + и2 + и3 +.. .+ип +... .Я
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^П р и м ер  13.10. Исследовать сходимость обобщенного гармо- 

V  ^нического ряда ^  — .
и = 1

Р е ш е н и е .  Пусть f ( x )  = — . Ф ункция f ( x )  при х > 0  (а
ха

значит и при х  > 1 ) положительная и невозрастающая (точнее 
убывающая). Поэтому сходимость ряда равносильна сходимости

00 dx 00 dx  ̂ dx
несобственного интеграла f — . Имеем /  = Г —  = lim | — .

J х “ х “1 1

Если а  = 1, то I  = 1пп^1п|х||^ = lim(lnj^j -  ln l)  

Если а  * 1, то

ОС.

I  = lim
£>—>00

г-а+1

- а  + 1

ьЛ
1 Г г и  Л при а > 1 ;

1-а*-^оо при а  <1.

И так, данны й ряд сходится при а  > 1 и расходится при 

а  < 1. ►

13.4. Ряды с членами произвольного знака
Знакочередующиеся ряды. Под знакочередующимся рядом п о­

нимается ряд, в котором члены попеременно то положительны, 
то отрицательны: и^+...+(-\)пХип+... , где и„ > 0.

Теорема (признак Лейбница). Если члены знакочередующегося 
ряда убывают по абсолютной величине щ > и2 > ... > и„ > ... и 
предел его общего члена при п -» оо равен нулю, т.е. lim и„ = 0, то

П—>оо
ряд сходится, а его сумма не превосходит первого члена: S  < и х.

□  Рассмотрим последовательность частичных сумм четного 
числа членов при п = 2т :

S2m = (И, -Н 2) + (М3 - Щ ) +  ... + (u2m_l -U 2m).

Эта последовательность возрастающая (так как с ростом 
п = 2т увеличивается число положительных слагаемых в скоб-
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ках) и ограниченная (это видно из того, что Slm можно предста­
вить в  виде

S 2m = Щ ~  (м2 -  Из) ~  (" 4  -  и 5)  ~  ••• “  ( “ 2m -2  “  и 2 т - \ ) -  и 2т>

откуда следует, что S2m < Щ )• Н а основании признака сущ ество­
вания предела (см. § 6.5.) последовательность S2m имеет предел 
Iim S2m = S.

m-> со
Попутно заметим, что, переходя к  пределу в неравенстве S2m < щ 

при т -> оо, получим, что S  < щ.
Теперь рассмотрим последовательность частичных сумм н е­

четного числа членов при п = 2т + \. Очевидно, что S 2m+[ = 
= S 2m +а2 т+\' поэтому, учитывая необходимый признак сходимо­
сти ряда, lim S2m+l = lim S2m + lim a2m+l = S  + 0  = S.

m—>«1 m~>x,

И так, при лю бом n (четном или нечетном) lim  S„ = S , т.е.
О

ряд сходится. Рис. 13.1 иллюстрирует сходимость S„ к  числу S  
и слева при четном п и справа

j при нечетном п.Ш
! ^  И з рис. 13.1 вытекает еще

53 >5, S„ °ДНа оценка для суммы S  
! сходящегося знакочередую ­

щ егося ряда, удовлетворяю ­
щего условиям теоремы 
Лейбница: при любом т

$2т ^ $  -  *̂ 2/м» 1 •

и5

Н (-
5

И,

I «б

Рис. 13.1

'■Пример 13.11. Исследовать сходимость ряда

, 1 1 И Г 11 -------+ —y +...Н----------- +... .
2 З2 « 2

Р е ш е н и е .  Так как члены знакочередующегося ряда убывают
1 1  ч 1 -Г- > > ...>  —=

2 З2 п2
по абсолютной величине ! >  —  > —  >...>  - у  >... , и  предел обще

го члена Iim = 0, то по признаку Лейбница ряд сходится. ►
л-_>со п
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З а м е ч а н и е .  В теореме Л ейбница сущ ественно не только 
условие lira и„ = 0 , но  и условие щ > и2 >..■> и„ >... . Так, на-

П~* сл
1 1  1 1  

пример, для ряда - = ---------- = ----- +...+ - 7=---------- ■=----- +... второе
V2 - 1  V2 + 1  4 п - 1 V « + l

условие наруш ено и , хотя lim и„ = 0, ряд расходится. Это видно, 
если данны й ряд представить (после попарного сложения его

л 1 2 2 J .  1 1 I )членов) в виде 2  + 1 + — + ...+ ------+ . ..=  2  1 + -  + - + . . .+ ------r+---N
3 п - 1 V 2 3 я - 1 /

т.е. “удвоенного” гармонического ряда.
С л е д с т в и е .  Погрешность при приближенном вычислении 

суммы сходящегося знакочередующегося ряда, удовлетворяющего 
условиям теоремы Лейбница, по абсолютной величине не превышает 
абсолютной величины первого отброшенного члена.

С>По формуле (13.9) сумму сходящегося ряда можно представить 
как сумму п членов ряда и суммы я-го остатка ряда, т.е. S  = S„ + г„. 
Полагая приближенно S*S„, мы допускаем погрешность, равную гп. 
Так как при четном я п-й остаток знакочередующегося ряда 
ип+{ -  иП+2 +••■ представляет ряд, удовлетворяющий условиям тео­
ремы Лейбю щ а, то его сумма г„ не превосходит первого члена ипЛ , 
т.е. г„ < и„+\. Так как при нечетном я для я-го остатка ряда —и„+ j+ 
+и„+2~ его сумма г„<0, то, очевидно, что при любом п

1 -"  (13.18)

, Пример 13.12. Какое число членов ряда V  -— =—  надо
/7=1 п

взять, чтобы вы числить его с точностью до 0 ,0 0 1 ?
Р е ш е н и е .  По условию \гп\ < 0,001. Учитывая следствие тео­

ремы Л ейбница (13.18), запиш ем более сильное неравенство
1 7ил+1 < 0 , 0 0 1  или ---------- < 0 ,0 0 1 , откуда (я + 1) > 1 0 0 0  и

(«4-1)2

«>\/Ю 0 0  - 1, или п > 30,6 , т.е. необходимо взять не менее 31 
члена р я д а .^

Знакопеременные ряды. Пусть их + и2 +...+«„+... знакоперемен­
ный ряд (13.1), в котором любой его член ип может быть как  п о ­
ложительным, так и отрицательным.

Теорема (достаточный признак сходимости знакопеременного 
ряда). Если ряд, составленный из абсолютных величин членов дан­
ного ряда (13.1)
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\ul \ + \u2\+...+\u„\+... (13.19)
сходится, то сходится и данный ряд.

□  Обозначим S n и S n суммы абсолютных величин членов
данного ряда (13.1), входящих в него со знаком “плю с” и “м и ­
н ус”.

Тогда частичная сумма данного ряда S„ = S„ -  Sn , а ряда, со ­

ставленного из абсолютных величин его членов, — Sn = S* + S „ .

По условию ряд (13.19) сходится, следовательно, существует ко ­
нечный предел lim S„ = S.

Последовательности S* и Sn являются возрастающими (так 

как с увеличением п увеличиваются S* и Sn ) и ограниченными 

( Sn < S, Sn < S  ), значит, существуют пределы lim Sn и lim Sn ,

и  соответственно предел частичной суммы данного ряда 
lim S  = lim S* -  lim Sn , т.е. ряд (13.1) сходится.И
П—>сг: 1 П—>ог.

Следует отметить, что обратное утверждение неверно. Ряд 
(13.19) может расходиться, а ряд (13.1) сходиться. Например, ряд 

1 1 (~1)л~‘1 -  — + — --------- +... сходится по признаку Лейбница, а ряд из
2 3 п

абсолютных величин его членов 1+ — + — (гармони-
2 3 п

ческий ряд) расходится.
Поэтому введем следующие определения.
Определение 1. Ряд называется абсолютно сходящимся, если 

сходится как сам ряд, так и ряд, составленный из абсолютных ве­
личин его членов.

Определение 2. Ряд называется условно сходящимся, ес,ш сам
ряд сходится, а ряд, составленный из абсолютных величин его чле­
нов, расходится.

‘ (_1)” 1
Таким образом, рассмотренный выше ряд V  -— ;—  -  абсо-

£ [  «
* (—lY11

лю тно сходящ ийся, а ряд V   — условно сходящийся.
и

Грубо говоря, различие между абсолютно сходящ имися и ус­
ловно сходящ имися рядами заключается в следующем: абсолютно
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сходящ иеся ряды сходятся в основном в силу того, что их члены 
быстро убывают, а условно сходящ иеся — в результате того, что 
положительные и отрицательные слагаемые уничтожают друг 
друга.

С войства абсолю тно и условно сходящихся рядов сущ ественно 
отличаются. Абсолютно сходящиеся ряды по своим свойствам 
напоминаю т конечные суммы, их можно складывать, перем но­
жать, переставлять местами члены ряда.

Условно сходящ иеся ряды такими свойствами не обладают.
1 1 1 ( - 1 ) " 1 Возьмем, например, ряд 1 -  — + -— -—  +... . П ереста­

вим члены местами и сгруппируем их следующим образом:

i-i_i)+fi.i.iUfi_± »к..2 4J V3 6 87 15 10 127
Перепиш ем ряд в виде:
[ I  I )  ( \  n  f  1 I )  1 Г, 1 1 1 1 1

L  4 J + v 6 8/ + U 0  1 2 / ” г 1 2 + 3 4 + 5 6 +'
т.е. от перестановки членов ряда сумма его уменьшилась в 2 раза.

М ож но показать (теорема Римана), что от перестановки чле­
нов условно сходящегося ряда можно получить ряд, имею щ ий 
любую наперед заданную сумму, и даже расходящийся ряд.

13.5. Решение задач
3 5 7

^П р и м ер  13.13. Найти сумму ряда —— + — — + +... , до-
1-4 4 -9  9 1 6

казав его сходимость.

Р е ш е н и е .  Очевидно, что общий член ряда и„ = + * .
п2(п + I)2

Представим сумму п членов ряда в виде
3 5 - 7  2п +1

= —  + ■
1-4 4 -9  9-16 я 2(и + 1)2

4 - 1  9 - 4  1 6 - 9  (« + 1)2 - « 2+  +    +...+ -
1-4 4 -9  9-16 л 2(и + 1)2

iwi-iui-±,+...+
4 ) U  9) V9 1 6
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Так как при п - > оо последовательность S„ имеет конечный 
предел, то ряд сходится, и его сумма

1
S  = lim  Sn = lim

Л—► оо П - >  оо
1 -

(л + 1 )\
>Пример 13.14. Исследовать сходимость ряда:

. ^  lg «  г ~  . 71 . 'Г ’ 4п  +  1 — л/Й
а| б>  ̂ »> I   ------- :Ы ш л  + ^ л=1 ^ л=1 п

4 4 -7  4 -7 -1 0  . А  1
г> ;д>Х-

00

2 2 -6  2 -6 -10  '  ~ 1 п ( я  + 1)

Р е ш  е н и е. а) П роверим выполнение необходимого призна­
ка  сходимости, найдя предел общего члена:

.. Ign Г=оlim  и„ = lim — =— -
Л—>оо Л—>с© 1п /I + 2

Д ля вы числения предела отнош ения двух бесконечно больших 
ф ункций натурального аргумента правило Лопиталя непосредст­
венно применять нельзя, ибо для таких ф ункций не определено 
понятие производной. Поэтому прим еняя теорему о “погруже­
нии” дискретного аргумента (п) в непрерывный (х)1, получим

1

lim и„ = lim = lim ^ Х\  = lim * = —-— *■ О,
л->сс *->«>1пх + 2 дс_»со (in л: -н 2)' л->°° 1  1п 10

х
следовательно, ряд расходится.

б) Очевидно, что задан ряд с положительными членами, так

как sin-^j- > О, ибо аргумент синуса 0 с ^  при любом п. Так 

как члены данного ряда меньше членов сходящ егося геометриче­

ского ряда со знаменателем q = — < 1, т.е. sin —  < — - (ибо при
2 2 2

О < х  < у  s in x  < х  ), то данный ряд сходится.

1 Согласно этой теореме, если lim f ( x )  существует и равен А (А может р а в­

няться нулю или бесконечности), то lim f ( n )  также существует и равен А.
П->«>
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в) Представим общ ий член ряда в виде
V« +1 -  4п  1

ип = -----------------= — .= .=  j=~. П рименим предельный
п п{ып +1 + ып)

признак сравнения, сравнив данный ряд со сходящимся “эталоЯ ^ 

н ы м ” рядом (13.12) при а  = ^  > 1. Так как  предел отнош ения 

общих членов двух рядов

lim  —  = lim
П—>ос у  Л —> со я(л/я + 1 + 4п ) п^2 ) п->х л/я + 1 + л/я

= lim п
1/2

1 1= lim  , .—  = — есть конечное число, не равное нулю, то
л->°° I 1 2

J 1  + -  + 1
V я

данны й ряд, так же как и “эталонны й” , сходится.
г) П рименим  признак Даламбера, заметив, что общ ий член 

4 ■ 7 • 10...(Зя +1)ряда ип имеет вид и„ =

Тогда ип+х =

2 • 6 ■ 10... (4я -  2) 
4 -7  • Ю ...(3я + 1)(3я + 4 )
2 • 6 • 10... (4я -  2)(4я + 2)

.. ии+1 .. Зя + 4 Ъи lim ■- = l i m  = — <1, т. е. данный ряд сходится.
о ип Л-»°о 4я + 2 4

д) П рименим  признак Даламбера:

lim  ^  = lim [" -————— - — ~ ——1 = lim -! Ф -±А  = 1.
. 1п(я +  2) In(n + l)J Л —>«5 In (я ~Ь 2)

т.е. вопрос о сходимости ряда остается открытым. П роверим вы ­
полнение необходимого признака (с этого можно было начать

исследование): lim и„ = lim —~ — - = 0, т.е. необходимый при- 
л-»со л->«> 1п(я + 1)

знак вы полнен, но  вопрос о сходимости ряда по-прежнему не 
решен.

П рименим  признак сравнения в более простой предельной 
форме. Сравним данный ряд, например, с гармоническим.

lim —  = lim f   -: — I = lim — ----------- = оо, т.е. ответа о сходи-
л-»°о V„ л-»«>\ ш (я + 1) п) л^со 1п(я + 1)

мости рада нет. Аналогичная картина ( lim —  = 0 или lim —  = оо )
Л —>С0 У л  л -^ о о  Vn
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наблюдается и при использовании других “эталонных” рядов (см. 
§13.3)1. П рименим, наконец, признак сравнения в обычной ф ор­
ме. С равним данны й ряд с тем же гармоническим рядом, у кото­

рого отброшен первый член: — + — + ...+ —-— +... . Так как члены
2 3 п +1

рассматриваемого ряда больше членов расходящегося гармониче-
, 1 1 1 1  .  1 1ского ряда ( ------ > —, -----> -  и в о о б щ е --------------> --------- , что

In 2 2 1пЗ 3 1п(я + 1) (л + 1)
вытекает из очевидного неравенства 1пх < х ), то данный ряд
расходится. ►

О Пример 13.15. Исследовать сходимость ряда.
/ 1 \f j  Т1П

а , у Н  Г ^ .  6) у №  в) у  Н ^ у
п̂ \ 7й + 3 £  2п -  1 £  п2 + 1

Р е ш е н и е .  А) Предел общего члена ряда
(-1  )ли7 (-1)"hm и„ = lim -— ----- = lim ~ — г- =  х , так как знаменатель дроби

со 7// + 3 / 3I у 
И П

стремится к нулю, а числитель колеблется, принимая значения 1 
(при четном п) и -1 (при нечетном п). Следовательно, необходи­
мый признак сходимости не выполнен, и ряд расходится.

б) Так как члены знакочередующегося ряда, начиная со второ­
го, убывают по  абсолютной величине —

In 2 In 3 In п >  >... >  >...
3 5 2л -1

и предел общего члена lim П̂П = 0 (это можно установить,
2п -  1

например, с помощ ью  правила Лопиталя), то по признаку Л ейб­

ница ряд сходится. Ряд V  П- , составленный из абсолютных
71 2 « -1

* Следует отметить, что для исследования сходимости данного ряда неприме­
ним и интегральны й признак сходимости, так как исследование сходимости несоб- 

р» d x
ственного интеграла -------------  затруднительно из-за того, что первообразная

1п(х + 1)
подынтегральной ф ункции не является элементарной ф ункцией (т.е. соответст­
вующий неопределенный интеграл является “неберущимся” ).
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величин членов данного ряда, расходится, так как его члены 
больше членов расходящегося гармонического ряда, умноженного

1 In л 1 1 „на —: -------- > ---------- > — . Следовательно, данный ряд условно
2 2л -  1 2п -  1 2п

сходящ ийся.
в) Ряд, составленный из абсолютных величин членов данного 

ряда, сходится, так как его члены меньше членов сходящегося

ряда (13.12) при а  = 2 > 1
л2 +1 л2

тельно, данны й ряд сходится и притом абсолю тно .^

(-1 )"  COS
т

Т
л 2 + 1

1 1

УПРАЖНЕНИЯ
Написать в простейш ей форме общий член ряда:
„  4 1 10 13 3 8 15 2413.16. — + — + . 13.17. -  + —г + — + —  +... .

3 4 5 6 5 10 17 26
Найти сумму ряда, доказав, что он сходится:

1 1 1  “ 1
13.18. -rL  + - L - +...+ - _ 1_ +... . 13.19. -----ГГ'

1-3 2 -4  п(п + 2) (Зл -  2)(3л +1)

Исследовать сходимость ряда, применив необходимый п р и ­
знак сходимости:

13.20. 1321
—  100л -  1 7 ? \4 п +  50

Исследовать сходимость ряда с помощью признака сравнения: 

13.22. У  ■; 1- . - .  13.23. У ^ .
п= 1 yjn( 1 + Л2) л= 1 V /?

13.24. у  t g ^ - .  13.25. - L  + —L  + —L  + —L -+ ... . 
п  я + 2 I ' 2 3 ■ 2 5 • 2 7 -2

Зл2 + 2л ^ , Г, 1
+ .213.26. У  -  -  -  --  . 13.27. У  In 1

“ j л +  5л -  5 £  I
Исследовать сходимость ряда с помощью признака Даламбера:
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13.28. 13.29. X  — .
71 3й 10"

00
13-30- Е т - ^ т т -  13.31. У ^ - .

71 (« + !)! 71  « !
Исследовать сходимость ряда с помощью признака Лейбница:

(-1 )"«2 ^  ("ЗУ13.32. У 1 ^ - -  13.33. У
7 1  «  + 2  7 1 ( 4 «  + 1 )"

Н айти (с точностью  до 0,01) сумму рада:

- Н Г 1 « «  ^ ( - l r 113.34. У ^ -—Ц ~ - 13.35. У -
7 1  ( З я )  7 1  п\

Исследовать сходимость ряда (для сходящегося ряда с членами 
произвольного знака установить, сходится он абсолютно или 
условно):

.3 .36 . ± < £ 1 .  , 3 . 3 ,  I -  4
f t "  + *  Я < 2 » -1 > 2

,3.38. 13.39. У — !— .
f~{n -  п + 3 —( In л + 5

2п~1 '

»■*>• • *3-41- S i t :

13.42. j

/ 1 \Л • ytfl(-1)" sin —

3 + 1

(In -  l ) ( - l ) n+1

„=1 4"

13.43. t g |  + 2 t g |  + 3 t g ^  + 4 t g ^ +... .

,3 .4 4 . ± " Л .  ,3 .45 . f f f l
n= 1 0 и= \ П +  A



Глава 14. СТЕПЕННЫЕ РЯДЫ

Д о сих пор мы рассматривали ряды, членами которых были 
числа, т.е. числовые ряды. Теперь перейдем к  рассмотрению  ря­
дов, членами которых являю тся функции, в частности, степенные 
ф ункции

с0 + схх  + с2х 2 +.. .+с„х (14.1)

Такие ряды называю тся степенными, а числа cq, q ,  сп — ко­
эффициентами степенного ряда.

14.1. Область сходимости степенного ряда
С овокупность тех значений х, при которых степенной ряд (14.1) 

сходится, называется областью сходимости степенного ряда.
^П рим ер 14.1. Н айти область сходимости степенного ряда

1+ Х +  х 2 + . . .+хп + . .. .

Р е ш е н и е .  Д анны й ряд мож но рассматривать как геометри­
ческий ряд со знаменателем q =  х, который сходится при \q \  =  
= !х !< 1 , Отсюда —1<х<1, т.е. областью сходимости является и н ­
тервал ( -1 ;  1). ►

Структура области сходимости степенного ряда устанавливает­
ся с помощ ью  теоремы Абеля.

Теорема Абеля. 1) Если степенной ряд сходится при значении 
х = х 0*0 (отличном от нуля), то он сходится и, притом абсолютно, 
при всех значениях х  таких, что I х  | < I х 0 | . 2) Если степенной ряд  
расходится при x = x t , то он расходится при всех значениях х  таких, 
что I х ! >1 х, | .

□  1) П о условию  ряд (14.1) сходится при х  =  х 0 *  0, следова­

тельно, выполняется необходимый признак сходимости lim и„ =
Л —>оо
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= lim c„Xq = 0 .  Отсюда следует, что последовательность \Спхо
П—> <х> ' I

ограничена, т.е. существует такое число М >  0, что для всех п 
выполняется неравенство

\ с Х \ < м - <14-2>
Рассмотрим ряд, составленный из абсолютных величин членов

ряда (14.1) У  |с п:Гд|, который представим в виде
ч=0

с0 +  с,х0 + ...+  С’пХ0 (14.3)

Члены ряда (14.3) согласно неравенству (14.2) меньш е соот­
ветствующих членов ряда

П
+ . . .  ,м + м

X
+.. , + М

X

*0 *0

< 1, т.е. I х \ < I х 0 | , следовательно, на ос-

представляю щ его геометрическии ряд, который сходится, когда 
л:

его знаменатель q =  —

новании признака сравнения ряд ( 1 4 . 1 )  сходится.
2) П о условию ряд ( 1 4 . 1 )  расходится при х = х х. Покажем, что 

он расходится для всех х, удовлетворяющих условию I х I > I xY !. 
Предположим противное, т.е. при |х |> |  х х |ряд  ( 1 4 . 1 )  сходится. 
Тогда по  доказанному выше он должен сходиться и в точке х х 
(ибо | л-] ! < I х !), что противоречит условию. Таким образом, для 

всех *  таких, что I х | > I х 1 | , ряд ( 1 4 . 1 )  расходится. ■
И з теоремы Абеля (см. рис. 1 4 . 1 )  следует, что существует такое 

число R>0, что при Ы < Д  ряд сходится, а при I x i >R  — расхо­
дится.

Ч исло R полу­
чило название 
радиуса сходимо­
сти, а интервал 
(—R, R) — интер­
вала сходимости 

Рис. 14.1 степенного ряда.
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Н а концах интервала сходимости, т.е. при x = —R и x =  R, ряд 
может как  сходиться, так и расходиться (см. рис. 14.1).

Н айдем выражение радиуса сходимости степенного ряда (14.1) 
через его коэф фициенты . Рассмотрим ряд, составленный из абсо­
лютных величин его членов

|с0| + |с ,х | +  |с2х  + . . .+ |с „ х " + . . . , (14.4)

в котором все коэфф ициенты  сп , по крайней мере начиная с 
некоторого номера л, отличны от нуля. По признаку Даламбера 
ряд (14.4) сходится, если

„л+1lim
Л—> оо

Л + 1 lim
Я—»оО

сп+\*
С „ х

= Ы lim
Л—>оо

'Л + 1

будет меньш е 1, т.е.

Ы lim
Л—> <Х>

' Л +1 < 1 или \х\ < lim
Л-><*> 'Л + 1

Если этот предел существует, то он и является радиусом схо­
димости ряда (14.1), т.е.

R=  lim
Л—><Х> 'Л + 1

(14.5)

З а м е ч а н и е .  Следует отметить, что у некоторых рядов и н ­
тервал сходимости вырождается в точку (R =0), у других охваты­
вает всю ось Ox (R = о о ) .

|>  Пример 14.2. Найти область сходимости степенного ряда

2я х"■ + ...+ ------------—  +....
2х 4х 

1 + — +
3 2V3 5 2V P " ’ ’’ (2п + 1)2у1у

Р е ш е н и е .  Найдем радиус сходимости ряда по формуле
(14.5)

2"+1с
lim Л = lim
Л—>оОсп+1

2"

(2п +1 )24 у  [2(л +1) + i f y f r 71

; V ^ Iim (2л + З)2 _ -s/3'
2 И-»°о

т.е. интервал сходимости ряда

(2л +1)

V 3.V 3 
2 ’  2

2 "  2 ’
Л

J
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Теперь вы ясним поведение ряда на концах интервала сходи-

ямости. Н а левом конце при х =  данны й степенной ряд при-

, 1 1 ( -О ”нимает вид 1 — -  + т  + ...; этот ряд сходится по
З2 5 (2 п + I)2

Sпризнаку Лейбница. Н а правом конце, при х = -у -  получаем ряд 

1 1 1
1 + -г- + —г- + ...+ ------------ + ..., представляю щ ий обобщ енный гар-

З2 5 (2л + 1)2
монический ряд (13.12) при а = 2 , у которого все члены с четными 
номерами равны нулю. Так как  а= 2> 1 , то этот ряд сходится. 

Следует отметить, что сходимость ряда н а левом конце интер-

вала сходимости при х=  -  —  могла быть установлена с помощью

достаточного признака сходимости знакопеременного ряда (см. 
§ 13.4), так как ряд, составленный из абсолютных величин его

00 1членов, т.е. ряд У ----------   сходится.
h  е »  + ') 2

Итак, область сходимости данного ряда
2  '  2

З а м е ч а н и е .  При исследовании сходимости на концах и н ­
тервала сходимости для получающегося ряда с положительными 
членами применять признак Даламбера не имеет смысла, так как

в этом случае всегда будем получать lim = / = 1 с нереш ен­

ным вопросом о сходимости ряда; в этом случае рекомендуется 
рассматривать другие признаки сходимости (например, признак 
сравнения, необходимый признак и т.д.).

D Пример 14.3. Найти области сходимости степенных рядов:

а) 1 + д :+ б) 1 + х + 22х 2+...+ппх п +... .
2! 3! п\

Р е ш е н и е ,  а) Радиус сходимости ряда по (14.5)
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R = lim
Л  — > 0 0

= lim
n—*°О

(л + 1)!
n\

= lim (n + 1) = 0 0 , т.е. область сходимо-
Л - >  оо’ с я+1

сти ряда (—оо; + оо).
б) Задачу можно решать аналогично предыдущим. Решение 

упрощается, если заметить, что при х * 0  lim и„ -  lim п пх п ф 0 ,
Л — Л —»оо

т.е. необходимый признак сходимости не выполняется, и ряд 
расходится.

Итак, область сходимости ряда состоит из одной точки х = 0 .^

О  Пример 14.4. Найти область сходимости ряда
00

У  (Зх)”2 = 1 + Зх + 34 х 4 + 39 х 9+ ... . 
п=о

Р е ш е н и е .  Найти радиус сходимости по формуле (14.5) в 
данном случае не представляется возможным, так как коэф ф и ци ­
енты ряда ci, с3, С5, Сб, 07, с8, сю и т.д. равны нулю. Поэтому непо­
средственно прим еним  признак Даламбера. Д анный ряд будет

> 1.сходиться, если lim ип+ 1 < 1 , и расходиться, если lim ип+1
Я —»  с© ип Л - »  00 ип

Поэтому найдем

lim
о

и п+1
= lim

=о

(Зх)(”+1)2

(Зх ) " 2
= lim  |3x|2 ” +1 =

00, если |3х|>1; 
О, если |3х| < 1.

Следовательно, ряд сходится при - | < х < |  или на интервале

1_. 1
' з ’ з
Исследуем сходимость на концах интервала сходимости: при

I  _  
3

1 “ 2 1
х = _ _  рдд принимает вид ^ ] ( - 1 ) л =1 — 1 +  1 - ! + . . . ,  а при х = -

п=0

вид ^ ( - 1)" = 1  +  1 +  1 + ... ,  т.е. оба ряда расходятся, так как не вы-
л=0

полняется необходимый признак сходимости. 

Итак, область сходимости ряда '- j  • ►
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Свойства степенных рядов. Пусть ф ункция Дх) является сум-
00

мой степенного ряда, т.е. Дх) =  ^  спх п . В подобных курсах ма-
л=0

тематического анализа доказывается, что степенные ряды по сво­
им свойствам напоминаю т конечные суммы (многочлены): на 
любом отрезке [а, Ь], целиком принадлежащем интервалу сходимо­
сти (-R ; R), функция Д х) является непрерывной, а следовательно, 
степенной ряд можно почленно интегрировать на этом отрезке:

ь ь ь ь
|  f ( x )d x  =  | с 0 dx +  JCjXfifcc+... +  J спх п dx+... .
а а а а

Кроме того, в интервале сходимости степенной ряд можно по­
членно дифференцировать:

f'(x )= C i + 2с2х + Зс3х 2+...+пс„хп 1 +... .

П ри этом после интегрирования или диф ф еренцирования п о ­
лученные ряды имею т тот же радиус сходимости R.

14.2. Ряд Маклорена
Предположим, что ф ункция Дх), определенная и п раз диф ф е­

ренцируемая в окрестности точки х=0, может быть представлена 
в виде суммы степенного ряда или, другими словами, может быть 
разложена в степенной ряд

Дх) =  с0 + с {х +  с2х 2 + с 3х 3 + с4х 4+...+спх п+... .

Выразим коэф ф ициенты  ряда через Дх). Найдем производные 
ф ункции Дх), почленно дифференцируя ряд п раз:

f ' ( x )  =  ci + 2с2х + Зс3х 2 + 4  с4х 3+...+«спх л_1+ .. . , 

f" (x )  - 2 с гх  + 3 • 2сгх  + 4 ■ 3 • с4х 2 +...+п(п -  1 )спх п~2+ .. . ,

/  '"(х) =  3 • 2с3 + 4 • 3 • 2с4х + .. .+п(п -  1 )(п -  2)спх п~3 + ...,

/ ( ”)(х) = и (я -1 )(я -2 )  •... - 3 • 2 • 2сп + ... .
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Полагая в полученных равенствах х=0, получим ДО)-  с0 ,

f ' (0)=c)  , /" (0 )=  2 1  - с2 = 2!с2 ,/" '(0 )=  3 -2сэ = З!с3  / (я)(0) = п\с„ ,
откуда

 с . . £ & .

Подставляя значения коэффициентов с0 , с , , с2 , с3 , с л , 
получим ряд

Д х )  = /(0 ) + /'(0 )х  + в  х2 + х3 +.. хй +..., (14.6)
2! 3! п\

называемый рядом Маклорена.
Следует отметить, что не все функции могут быть разложены в 

ряд Маклорена. Может оказаться, что ряд Маклорена, составлен­
ный формально для функции Дх), является расходящимся либо 
сходящимся не к функции Дх).

Так же как и для числовых рядов, сумму Дх) ряда Маклорена 
можно представить в виде (13.9)

Д х)= Sn(x) + гп(х ) ,

где S„ (х) — п-я частичная сумма ряда; г„(х) — п-й остаток ряда.
Тогда на основании свойства 4 сходящихся рядов (см. §13.1) 

можно сформулировать теорему.
Теорема. Для того чтобы ряд Маклорена сходился к функции 

Дх), необходимо и достаточно, чтобы при и-»оо остаток ряда 
стремился к нулю, т.е.

lim r„(x) =  0 (14.7)
Я—>00

для всех значений х  из интервала сходимости ряда.
М ожно доказать, что если функция Дх) разложима в ряд Макло­

рена, то это разложение единственное.
З а м е ч а н и е .  Ряд Маклорена является частным случаем ря ­

да Тейлора.

Ах) = Дх,) + Пх0)(х-х0) + Ц&(х-х0)К...+̂ ^{х-х<)Г+---
V. п\

при Xq^O.
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Ряд Тейлора тесно связан с формулой Тейлора.

Д х ) = / ( х 0) + f ’(x0)(x  - х 0) + ~ ~ ( х  -  х0)2+...+

+ / ^ 0 ) ( * _ * ) » + Л (д.),
п\

где R„(x) — остаточный член формулы Тейлора:
/■(Я \

( * - * о Г ! ,(л  +  1)

^е( х0 ; х), записанный в форме Лагранжа.
Очевидно, что при выполнении условия (14.7) остаток гп( х ) 

ряда Тейлора равен остаточному члену Rn(x) формулы Тейлора. 
Разложение в ряд Маклорена некоторых функций
1. у = е х .
Имеем Д х )= / '(* )= /" (х )= ...=  / <л>(х) = ех ;

Д 0 )= / '(0 )= /" (0 )= .. .=  / (ЯЧ 0) = е° =1.
По формуле (13.6)

х 2 х 3 Xяех = I + х  + —-  + —  + ...+—- + . . . .  (14.8)
2! 3 \ п\

Область сходимости ряда (-оо; оо) (см. пример 14.3а).
2. у  -  sin х.
Имеем X x)=sin х, / '(x )= co s  х, / " ( х )= —sin х; / " '( x j ^ - c o s  х,

/ (4>(*) = sin x , откуда Д0) =  0; / '( 0 )  =  1; /" (0 )= 0 ; / ' ”(0 )= -1 , 
/ (4'(0) = 0 и т.д.

Очевидно, что производные четного порядка / <2я>(0) = 0 ,  а 

нечетного порядка / <2л' ,)(0) = (-1)я_1, л=1, 2, ... . По формуле
(14.6)

х 3 X3 (-1)я~,х г" ' 1 . . .  пчsin х = х ------ + —  +...+ -— -------------+... . (14.9)
3! 5! (2 л -1 ) !  1

Область сходимости ряда (—оо; +оо).
3. y=cos х. Рассматривая аналогично, получим

х 2 х 4 (-1 )ях 2л . . .  . . .
c o s x = l  + ------...+ -—  -------+... . (14.10>

2! 4! (2л)!
Область сходимости ряда (-оо; +<х>).
4. у - ( \  + х )т , где т — любое действительное число.
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Имеем Д х)=  (1 + x )m ,/'(x )= m (l + x )m~1 ,/''(x)=7n(m—l) ( l+ x ) m“2 , 
f" (x)=m (m -l)(m -2)(l+x)nt-2, f {n)(x) = m (m -l)...(m -n + l)  (1+x)"-»

При x=0 Д 0)=1, f ' (0)=m,  f" (0 )= m (m —l), f " ( 0 ) = m ( m - l ) ( m - 2 ) ,  
..., / <л)(0) По формуле (14.6)

Интервал сходимости ряда ( -1 ;  1) (на концах интервала при 
х=±1 сходимость ряда зависит от конкретных значений т).

Ряд (14.11) называется биномиальным. Если т — целое поло­
жительное число, то биномиальный ряд представляет формулу 
бинома Ньютона, так как при п = т + 1 т ~ п + 1=0, п -й член ряда и 
все последующие равны нулю, т.е. ряд обрывается, и вместо бес­
конечного разложения получается конечная сумма.

5. у  =1п(1+х).
Получить разложение для этой функции можно проще, не вы­

числяя непосредственно коэффициенты ряда (14.6) с помощью  
производных.

Рассмотрим геометрический ряд

Интегрируя почленно равенство (14.12) в интервале (0; х), где

Область сходимости ряда (после выяснения сходимости на 
концах интервала сходимости) есть (—1; 1].

Можно доказать, что ряды, приведенные в формулах (14.8) —
(14.13), сходятся к функциям, для которых они составлены.

(1 + х )т = 1 + тх + х + ... +
2!

т(т - 1  )(т  -  п + 1) 
+ и!

3!

(14.11)

1 + х
= 1 - х  + х 2 - х 3+...+(-1)лх л+... (14.12)

со знаменателем q -~ x ,  который сходится при \ q \ = \ — х |< 1 , т.е.

при -1  < х  < 1, к функции f ix)= °  = ---------.
1 - q  1 + х

fix х
I х  | < 1, с учетом того, что f  = In |1 + xj = In (1 + х ) , получим

} 1 + х  1 '0

(14.13)
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При разложении более сложных функций используют непо­
средственно формулу (14.6) либо таблицу простейших разложе­
ний (14.8) -  (14.13).

1 - е  *2
i> Пример 14.5. Разложить в ряд функции: а) у  =

х 2

. 1 + X
б )  у  = In  ---------.

1 -  X
х^ х п

Р е ш е н и е. а) Так как по (14.8) ех = 1 + х  + —  + ...+ —  + ...,
2! и !

то, заменяя х  на ( - Х 2), получим

-ж2 , 2 Л4 (-1 )"* 2"С = 1 -  х + — +...+ -—  -------+... ,
2! л!

, Н ) " * 1* 2"l - е  = х ------- +...+ -—  ----------- +...
2! я!

и, наконец,

i - е - * 2 , х 2 а г ' х 2'’-2----- г---  = 1 --------- +...+ —---------- +... .
х 2 2! я!

Область сходимости ряда (~ х ; +оо).
х 2 х 3 (—1 ^хwб) В разложении 1п(1+х)= х  + ------ ...+ -------------- +... замс-
2 3 п

ним х  на ( -х ) ;  получим
X 2  X 3 X я

1 п ( 1 - х ) = - х -  —  —... .
2 3 л

Теперь
1 + х  х 2 х 3 х 2 х 3In = 1п(1 + х) _ 1п(1 _ х) = (jc _ *  + (-Х - . . . )  =
1 - х  2 3  2 3

г 3 5 Y 2 n - l
- 2 ( *  + i -  + i - + . . . + f — +. . . ) .  (14.14)

3 5 2я -1
Область сходимости ряда ( -1 ;  1). ►

14.3. Применение рядов в приближенных 
вычислениях

Степенные ряды имеют самые разнообразные приложения. С 
их помощью вычисляют с заданной степенью точности значения 
функций, определенных интегралов, которые являются “небе-
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рущ имися” или слиш ком сложными для вычислений, интегри­
руются дифференциальные уравнения.

О  Пример 14.6. Вычислить приближ енно с точностью до 

0 ,0001:
, 1

а) -= =  ; б) In 0,8; в) ^36 ; г) sin 20°; д) f V* e~xdx .
5 / 3  Jу е  о

Р е ш е н и е. а) Для вычисления =  е  * запиш ем ряд
№

3
(14.8) при х = -  - , принадлежащем области сходимости (—ос; +сс):

3 З2 З3 (-1)Л3И
е  =  1 — — I— :----------=----- +...+ -—  ------ +■•• =

3
=  > - -  т^5—  -Г...Т - -

5 5 -2! 5 •3! 5 " -и!

= 1 ~ 0 ,6 + 0 ,18-0 ,036+ 0,0054-0,000648+0,0000648-... .

Взяв первые шесть членов разложения, на основании следст­
вия из теоремы Лейбница (см. §13.4) для сходящегося знакочере­
дующегося ряда мы допустим погреш ность I гп !, не превыш аю ­
щую первого отброшенного члена (по абсолютной величине), т.е.
I г„ \ < 0,0000648<0,0001.

Итак, - I * * 1 -0 ,6+ 0 ,18-0 ,036+ 0 ,0054-0 ,000648  =  0,548752 *
V ?

я 0,5488.
б) Для вы числения In 0,8 запиш ем ряд (14.13) при х = —0,2, 

входящем в область сходимости ряда (—1; 1]:

0 22 0 23 0 2"
In 0 ,8= -0,2 -  —  -  — — ...-  —  - . . .  =  -(0 ,2 + 0 ,0 2 +  0,00266+

2 3 п

+0,0004+ ...).
Если в качестве In 0,8 взять первые четыре члена, мы допустим 

погреш ность
, I 0,25 0,2й 0,2" 0,25 0,26 0,2”

5 6 п 5 5 5

=  (l + 0,2+.. ,+0,2”~5 +...) =  — -------1------ =0,00008<0,0001.
5 '  / 5  (1 -0 ,2 )
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(М ы учли, что сумма сходящегося геометрического ряда в

скобках равна °  = — -— ). Итак, In 0 ,8 * -(0 ,2+0,02+0,00266+
1 -  q 1 -0 ,2

+ 0,0004) = -0 ,2 2 3 0 6  » -0 ,2231 .
Следует отметить, что для вычисления логарифмов более удоб­

ным является ряд (14.14), который сходится быстрее ряда (14.13).
1 + X 1Действительно, пусть I n  =  In 0,8, тогда х  = —  и согласно
1 - х  9

(14.14) In 0,8 =  2
( j 1 ( - I )2" '1

+.
9 93 • 3 ■” 92n l(2n -  1)

=  -(0 ,22222 + 0,00091 + 0,000007 + ...) , т.е. для вычисления In 0,8 с 
точностью до 0,0001 потребуется всего два члена. С помощью 
ряда (14.14) мож но вычислять логарифмы любых чисел, в то вре­
мя как с помощ ью  ряда (14.13) — лиш ь логарифмы чисел, распо­
ложенных на промежутке (0; 2].

1

в) Представим л[36 в виде ч/Зб =  ^32 + 4 =  2\ l + 5 .

Так как х = — входит в область сходимости степенного ряда 
8

(“ 1; 1), то при х = ~  , т = ~  , учитывая (14,11), получим

^36 =2(1 1 1 515 J  1 5v5 /  v5 J IH   H------------- - —г- -
5 8 2! 82 n\ 8”

=  2+0,05—0,0025+0,000188—0,000016+...» 2,0477.
(Для обеспечения данной точности расчета необходимо взять 4 

члена, так как по следствию из признака Лейбница для сходящегося 
знакочередующегося ряда погрешность I г„ |<  0,000016 <0,0001).

71 7t
г) Д ля вы числения sin 20°=sin— запишем ряд (14.9) при х = — , 

принадлежащ ем области сходимости (-оо ; +оо);

Я  Я  ^ f  i f 71! 5 ( “ 1 ) ” _1  f  я 4 , 2 ” - 1

SU1 9 9 3 '.U J  + 5 'Л 9/ + (2я-1)! v9;
=  0 ,34907-0,00709+0,00004-..
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(Необходимо взять два члена, так как при этом погреш ность 
I rn | < 0,00004<0,0001). Итак, sin 20°=0,34907—0,00709*0,3420.

д) “Точное” интегрирование здесь невозможно, так как  инте­
грал “неберущ ийся”. Заменив х  на (—х) в разложении (14.8), по-

-х , * 2 ( -1 )лх"лучим е = 1 -  х  + ------ ...+ -----------+... .
2 !  п \

Умножая полученный ряд на л/х

I I I
4 х е  х = х ге 'х = х 2 -  х 2 +...+ Н Г *

я!
и почленно интегрируя в интервале (0; 1), принадлежащ ем и н ­
тервалу сходимости ряда ( - о о ;  + о о ) ,  получим

1
1 ] 1 з 1 п п~2

|  -Jxe~xdx =  |  x^dx -  J  x 2dx+.. ,+J  ̂ ^  *-----dx+.
о 0  0  о n -

2 I= - X 1 1 2 I-------X 1
0  5 n + n\

2 2 (-1)" ■ 2 
~K.. —-------- К. .H-------------- -K.. —

3 5 (2n + 3)n!

= 0,66667-0 ,40000+ 0,14286-0 ,03704+0,00758-0 ,00128+ 0,00018-...*  
*0,37897*0,3790. О ценка погреш ности вычисления производится
так же, как в примерах а), в) и г ) . ^

14.4. Решение задач
!> Пример 14.7. Исследовать сходимость ряда

У  3" + < - 2>" ( „ ■ ) - .' И (14.15)
п = 1

Р е ш е н и е .  Радиус сходимости ряда (14.15), заданного по 
степеням (х—а )= (х —(—1)), находится по той же формуле (14.5);

R = lim сп = lim
Л->сс Сп +1 Л—>оо

3я + ( -2 )л . Зл+1 + (-2 ) 
п п + 1

\ Л  + 1
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=  lim
Л~><*

3" + (-2 )” n + 1
3 • 3" -  2 (-2)л

1 + (-2  /  3)” л + 1 
l im   — -— —  • lim

1 + 0 1
3 -  2 ■ 0 ' 3 ’3 -  2(-2 /  3)” "->«■ n 

т.е. R= 1/3. И нтервал сходимости ряда (14.15) определяется из 
условия -R < x -a < R  или a~R<x<a+R. В данном примере интерват 
сходимости ряда есть —1 — 1/3<лК—1 + 1/3 или (—4/3; —2/3).

Исследуем сходимость ряда (14.15) на концах этого интервала. 
При х = —4/3  ряд принимает вид

^ 3 " + ( - 2 ) V  lY  
^  п  I з;п = 1

. у  (-1)” у  U 2 Y
£-> и —̂1 п\
п - 1 . /А З

г.е. представляет 

( - 1)"сумму двух рядов. Первый, знакочередующ ийся ряд У
п = 1

сходится (условно) (см. §13.4), а второй ряд У  —| -  | исследуем
‘1 11 \

П = 1
] (1 ) '  
п Ы

на сходимость с помощ ью  признака Даламбера
г . . - а, I . , . , * 1

lim
Л-><Х Ц

^  = lim
Л—>00

1Г2У
« V Зу

т.е. ряд сходится, а следовательно, сходится и ряд (14.15) при 
х = —4/3,

При х = -2 /Ъ  ряд (14.15) имеет вид

у  3я + (-2 )” f n l , _ y  1 , ^ l f  2 ]
п 'ч З у , я — /А Зу/7 = 1 п - l  п = 1

Первый из полученных рядов — гармонический — расходится, 
а второй — сходится на основании признака абсолютной сходи­
мости, так как выше было показано, что ряд из абсолютных ве­
личин его членов сходится. Следовательно, ряд (14.15) при 
Х - - 2 / 3  расходится. (Установить расходимость этого ряда с поло-

4- (~2,)п 1
жительными членами ------ — --------- >0 при любом n e N  можно

п Зп
было и с помощью признака сравнения, так как его члены при
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п> 1 превосходят члены расходящегося гармонического ряда, ум­
ноженные на 1/3:

3" + (-2)" Г П " _ 1 + ( " з )  > J _  J
п \Ъ) п Ъп

Итак, область сходимости степенного ряда (14.15) [—4/3;
-2 /3 ) .  ►

Пример 14.8. Разложить в ряд М аклорена функцию

у  -  sin 2 А' .
Р е ш е н и  е. Первый способ. П рименим метод непосредствен­

ного разложения по формуле (14.6).
Вначале найдем производные до «-го порядка и вычислим их 

значения при х=0:
Д х)=  s in 2 х ; / ' (х)= 2 sin х  cos х = sin 2 х ; /"(x)=2cos2x;

/ '" ( х ) =  -2 2 sin 2х ; / (4>(х) = -2 3 cos2x ; / (5,(х) = 24 sin2x и т.д.
При х=0 значения функции Дх) и ее производных: Д 0)=0; 

/ ( 0 )= 0 ; / ' ' ( 0 )= 2 ; / ' " ( 0 )= 0 ; /<4>(0) = - 2 3 ; / (5)( 0 ) - 0  и т.д.
Теперь по формуле (14.6) запиш ем ряд

sin 2 х = 0+ 0+  — х 2 + 0 -  — х 4 +  0+ ^ - х 6 + ...
2! 4! 6!

или
1  2 1 4 2  5 ( ~ ~ Ц П  * • 2 Я * 2 п  / 1 А

Sin" X =  Х - -  X + —  Х Q~)\-----Х ' (14.16)

Второй способ. Учитывая, что sin2 х =  — -  — cos2x . используем < 2 2
готовое разложение (14.10) для ф ункции cos х  (в котором вместо 

х  берем 2х), умножаем обе части полученного равенства на ,

а затем прибавляем к ним . Получим

1 _ 1 (\ (2х)2 (2х)4 (-1)"(2х)2и |
- - c o s 2 x  ■= I 1 -  ——  + -— --------— -— +... и

2 21. 2! 4! (2 и)!

. 2 1 1  .  1 1  (2х)2 (2х)4 (-1)я- 1(2х)2яsin х    cos 2х = -------- + -— -—  -— — +...+ -— -— -— -—  +...
2 2 2 2 2 -2 ! 2 -4! 2 -(2л)!

или
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. 2  2 1 4 (-1)" 122" '1JC2"sin x = x  *  +...+ -  -----------------+ ...,
3 (2л)!

т.е. то же разложение (14.16).
Третий способ. Разложение функции у  = sin2 х может быть 

осуществлено с помощ ью  правила перемножения рядов. Если в 
некоторой окрестности точки х=0 имеют место разложения

f ( x )  = а0 + ахх  + а2х 2+...+а„хп+ .. . , 

ф(х) = bQ + bxx  + Ьгх 2+...+Ьпх П+ .. . ,

то произведение функций разлагается в той же окрестности в 
степенной ряд

f  (х )  ср(х) = а0Ь0 + ( а ^  + ахЬ0)х + ( а ^  + ахЬх + a2bQ )х2 +...+

+(aQbn + a xbnA+...+a„b())x ,'+... .

В частности, при Дх)=ф(х) получаем следующее правило возве­
дения в квадрат степенного ряда:

f 2(х ) = al + 2aQaxx  + (2а$аг + а 2)х2 +

+(2а0а3 + 2аха2)х3 + (2 а0а4 + 2 аха3 + a j ) x 4+... . (14.17)

Для ф ункции Д х)=  sin х  , имеющей разложение в ряд (14.9), т.е.

sinx=0+xH -0— — х 1 + 0 + - х 5+ 0 -  — х 1 + ...,
3! 5 7

находим по формуле (14.17)

sin2 х : 2 - О2 + 2 - 0 • 1х + (2 • 0 • 0 + 12)х2 + (2 • 0^- j j j  + 2 ■ 1 • 0)х3 +

+(2 ■ 0 • 0 + 2 • i f -  — ) + О2)х4+... = х 2 -  -  х 4 +...+ J— 2 -  1x2,1 +,,,, 
ч ЗУ 3 (2/*)!

т.е. получили  то же разложение (14.16)
Область сходимости ряда, как нетрудно убедиться, есть 

(—оо; +ос). ►

[> Пример 14.9. Вычислить с точностью до 0,0001 f -Jxexdx .
Jo

Р е ш е н и е .  Выражение данного интеграла в виде числового 
ряда находится аналогично примеру 14.6д:
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г  x j  2 2 2 2 2 /1А ю \■sjxe dx = — + -  + ------ + - ------+•••+ —------—— +... . (14.18)
Jo 3 5 7-2 ! 9-3! (2л + 3)л!

Но в отличие от примера 14.6д, вычисление интеграла свелось 
не к нахождению суммы сходящегося знакочередующегося ряда, при 
вычислении которой погрешность оценивается с помощью следст­
вия из теоремы Лейбница, а к  определению суммы ряда с положи­
тельными членами с неизвестной оценкой погрешности.

Поступим следующим образом. Предположим, что для оценки 
суммы ряда мы взяли п членов (вместе с первым при я=0). Тогда 
погреш ность вычисления суммы ряда будет определяться остат­
ком ряда

2 2 2
гп = --------------+ -----------------------н-----------------------+ ...

(2я + 3)я! (2и + 5)(л + 1)! (2я + 7)(я + 2)!

Так как 2я+5>2л+3, 2я+ 7> 2я+ 3,... и

(л+1 )!=«!(«+1 )>п\п, (/г+2)!=л!(я+1)(я+2)>я! я 2 , ..., то 

2 2 2 2
г„ <

(2 я + 3)я! (2я + 3) я! я (2я + 3) я! я 2 (2я + 3)я!

1 1 ^ 2 1  2X 1 Н 1------+.  . .
я /12 ) (2я + 3)я! _ 1 'j (2« + 3)(я -  1)!(я -  1) ’

ибо выражение в круглых скобках представляет сумму сходящ е­

гося геометрического ряда (13.5) при <г= 1, q= — .
п

При я=7
2

гп < ------------------------------ *0,00003<0,0001.
17(1 -2 - 3 - 4  -5 -6) -6

(Легко вычислить, что при любых я<7 гп >0,0001).
Итак, для обеспечения данной в условии точности вы числе­

ния интеграла необходимо взять первые 7 членов:
1
j  yfxexdx ^0,66667+0,40000+0,14286+0,03704+0,00758+0,00128
о

+0,00018=1,2 5 5 6 Ы ,2556. ►
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У П Р А Ж Н Е Н И Я
Найти область сходимости степенных рядов:

14.10. х  + —  + —  + —  +... . 14.11. У ( - 2 ) пх 2п .
2 3 4 П̂ = 1

°° г п
14.12. t + 2 !х  + 3 !х 2 + 4 !х 3+... . 14.13.

,4 .14 . у  14.15. У ^ х " .
Й  *1.-1

Разложить в степенной ряд по степеням х функции:

14.16. = 14.17. y  = x l n ( l  + x 2).
х

14.18. ĵ  = cos2 x .  14.19. у  = Х~  П̂- у— —

Вычислить приближ енно с точностью до 0,0001:

14.20. —i =  . 14.21. In 1,1.6̂ 7

х 2

14.22. sin 0,4. 1 4 .2 3 .^ 1 3 0 .
i

14.24. 1пЗ. 14.25. J  cos 4*dx .
о

Вычислить приближенно, взяв первые два члена разложения в 
ряд подынтегральной функции, и оценить допущ енные при этом 
погрешности:

VI , 1/2
14.26. 14.27. Г e x2dx

1 Л 7 7  1



Раздел VI. ФУНКЦИИ 
НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Глава 15. ФУНКЦИИ НЕСКОЛЬКИХ 
ПЕРЕМЕННЫХ

В предыдущ их главах мы изучали ф ункции  одной п ер ем ен ­
ной. О днако многим  явлениям , в том числе эконом ическим , 
присущ а м ногоф акторная зависим ость. И сследование таких 
зависим остей  потребовало соверш енствования м атем атическо­
го аппарата, в частности , введения понятия ф ункции н еск о л ь ­
ких перем енны х.

15.1. Основные понятия
Определение. Пусть имеется п переменных величин, и каждому 

набору их значений (х, . х2 , ..., хп ) из некоторого множества X  
соответствует одно вполне определенное значение переменной вели­
чины z. Тогда говорят, что задана функция нескольких переменных 
2=ЛХ, ,...,Х „ ).

Н апример, формула т~ лх,2х2 задает объем цилиндра г как 
функцию  двух переменных: X] (радиуса основания) и х2
(высоты).

П ерем енны е х ,   х п назы ваю тся независимыми переменными
или аргументами, z  — зависимой переменной, а символ /  о зн ач а­
ет закон соответствия. М нож ество X  назы вается областью оп­
ределения функции. О чевидно, это подм нож ество я-м ерного  
пространства.
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а) 2 = J \  -  х \ -  x j ; б) z=  — — .
* 1*2

Р е ш е н и е ,  а) Область определения задается условием: 
1 -  х,2 -  х |  >0 или jfj2 +  Xj < 1, т.е. представляет собой единичный 
круг с центром в начале координат.

б) Имеем х ,^ 0 . х 2 *0, т.е. область определения — это плос­

кость 0Х]Х2 за исклю чением координатных прямых Ох\ и Ох?.►
Рассмотрим некоторые примеры функций нескольких пере­

менных.
1. Ф ункция z —axx  1 + а2х 2+...+апхп + Ь, где щ , ..., а„ , Ь — п о ­

стоянные числа, называется линейной. Ее можно рассматривать 
как сумму п линейных функций от переменных х, ,...,х „  .

1 "
2. Ф ункция z = — ' ^ h IJ х, х . ( by — постоянные числа) называется

2 !
квадратической. В отличие от предыдущего примера квадратиче­
ская функция не является сепарабельной, т.е. не раскладывается 
в сумму функций одной переменной.

3. В § 5.6. была определена функция полезности — одно из ба­
зовых понятий экономической теории. М ногомерный ее аналог 
— это ф ункция z = f [ x x х„ ), выражающая полезность от п п р и ­
обретенных товаров. Чаще всего встречаются следующие ее виды:

П
а) at In (.Xj -  ct ) , где aL X ),  x, > с, >0 — логарифмическая

i  --!

функция;
п а ■

б) z = Y ^ — — (х,- - ci ) {b i  ■ Здесь at > 0, 0 < bt <1: x, > с, >0. Такая
/=11 -  Ь

функция называется функцией постоянной эластичности.
4. Также на случай п переменных обобщается понятие произ­

водственной функции (см. § 5.6), выражающей результат произ­
водственной деятельности от обусловивших его факторов Xj, х2 ,
 х„. Приведем здесь наиболее часто встречающ иеся виды

производственных функций (г — величина общественного про­

[> Пример 15.1. Найти область определения функции:
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дукта, л'| — затраты труда, х2 -
дов), полагая для простоты п=2:

а) функция Кобба—Дугласа

объем производственных ф он-

z= b 0x ^ x 22 ;

б) функция с постоянной эластичностью замещения:
h

z =  eojej-xf13 + е2х2р J Р .

В настоящ ей главе мы будем вести изложение в основном для 
функций двух переменных (п =2), при этом практически все п о ­
нятия и теоремы, сформулированные для п =2, легко переносятся 
и на случай п >2. Однако рассмотрение случая двух переменных 
позволяет использовать наглядную геометрическую иллю страцию  
основных понятий настоящей главы.

Ф ункцию  двух переменных будем обозначать в дальнейшем 
z=fix, у). Тогда ее область определения X  есть подмножество к о ­
ординатной плоскости Оху.

Окрестностью точки М{]{х{), у {]) е Х  называется крут, содержа­
щ ий точку М 0 (см. рис. 15.1).

О ч е в и д н о ,  круг на плоскости есть двумерный аналог интерва­
ла на прямой.

При изучении функций нескольких переменных во многом 
используется уже разработанный в предыдущих главах математи­
ческий аппарат. А именно: любой ф ункции z=fix, у) можно п о ­
ставить в соответствие пару
функций одной переменной: 
при ф иксированном  значении 
Л ::= Л и ф ункцию  Z ~ f i  Л '(, , у)  и при 
ф иксированном значении 
функцию  z —f i x , >’0 ).

Следует иметь в виду, что 
Х О Т Я  ф ункции 2 —fix, у Q ) и

z~fi,X(), у)  имею т одно и то же 
“происхож дение” , вид их м о ­
жет сущ ественно различаться. 
Рассмотрим, например, функ-

У ч

Рис. 15.1
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, выражающую величину вклада через у  лет

при ставке х%. Очевидно, что это функция степенная по л: и п о ­
казательная по у.

Графиком функции двух переменных z=fix, у) называется множе­
ство точек трехмерного пространства (х, у , г), аппликата z кото­
рых связана с абсциссой х  и ординатой у  функциональным соот­
нош ением z=fix, у).

График функции двух переменных z=f(x, у), вообще говоря, пред­
ставляет собой некоторую поверхность в трехчерном пространстве^-.

Д ля построения графика функции z —Дх, у) полезно рассмат­
ривать ф ункции одной переменной z=f (x,y0 ) и г= Д х 0 . у),  пред­
ставляющие с е ч е н и я  графика z=J(x, у) плоскостями, парал­
лельными координатным плоскостям Oxz и Oyz. т.е, плоскостями 
у = у 0 и х = х 0 .

D Пример 15.2. Построить график функции z = x 2 + у 2 -  2 у .

Р е ш е н и е .  Сечения поверхности z = x 2 + у 2 -  2у =  х 2 ч- 
+(у —1)2 — 1 плоскостями, параллельными координатным плос-

1 Ф ормально график можно определить и для п>2. В этом случае он называется
гиперповерхностью в (п+1)-мерном пространстве. О таком графике можно говорить 
ю лько  абстрактно — изобразить его на рисунке не представляется возможным

костям Oyz и Oxz, пред­
ставляют параболы (н а­
пример, при х = 0  
z  =  (у -  I)2 -  1, при у =  1

Рис. 15.2

z=x^-y--2v2

чении поверхности к о ­
ординатной п л о ск о ­
стью  Оху, т.е. п л о ско ­
стью  2 = 0 , получается 
окружность х2 4- (у — 1 )2 
=  1. График ф ункции 
представляет поверх­
ность, называемую па­
раболоидом (см. рис. 
1 5 . 2 »
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Как видно, график функции двух переменных — значительно 
более сложный объект, чем график функции одной переменной. 
Как правило, построение поверхности оказывается довольно 
трудной задачей. В то же время поверхность в пространстве обла­
дает гораздо меньшей наглядностью, чем линия на плоскости. 
Поэтому в случае двух переменных для изучения поведения 
функции желательно использовать другие, более наглядные инст­
рументы. Важнейшим из них являются линии уровня.

Определение. Линией уровня функции двух переменных z~j{x, у) 
называется множество точек на плоскости, таких, что во всех 
этих точках значение функции одно и то же и равно С.

Число С в этом случае называется уровнем.
На рис. 15.3. изображены 

линии уровня, соответствую­
щие значениям С = 1 и С=2. Как 
видно, линия уровня Ц состо­
ит из двух непересекаю щ ихся 
кривых Л иния 17 — самопере- 
секаю ш аяся кривая.

М ногие примеры линий 
уровня хорошо известны и 
привычны. Например, парачле- 
л и  и  меридианы на глобусе — 
это линии уровня функций 
широты и долготы. С иноптики 
публикуют карты с изображе­
нием изотерм — линий уровня 
температуры В §15.10 мы рас­
смотрим примеры использова­
ния линий уровня функций 
нескольких переменных в эко­
номическом анализе. Построе­
ние- л и н и й ' уровня оказывается 
сущ ественно более легкой зада­
чей. чем построение графиков 
самих .функций.

Пример 15.3. Построить 
линии уровня функции 
-• V + у  1 у .
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Р е ш е н и е .  Л иния уровня z= C  это кривая на плоскости Оху, 
задаваемая уравнением х 2 + у 2 -  2у =  С или х 2 + (у  -  I)2 =  С + 1. 
Это уравнение окружности с центром в точке (0; 1) и радиусом 
л/С + 1 (рис. 15.4).

Т очка (0; 1) — это вы рож денная л и н и я  уровня, соответст­
вую щ ая м иним альном у значению  ф ун кц ии  z = —1 и достигаю ­
щ емуся в точке (0; 1). Л инии уровня — кон ц ен трически е о к ­
руж ности, радиус которы х увеличивается с ростом z =C,  п р и ­
чем расстоян и я между л ин и ям и  с одинаковы м  ш агом уровня 
уменьш аю тся по  мере удаления от центра. Л инии  уровня п о ­
зволяю т представить граф ик данной ф ун кц и и , которы й был 
ранее п остроен  на рис. 15.2. ►

15.2. Предел и непрерывность
Больш ая часть понятий анализа, определенных ранее для 

функций одной переменной, может быть перенесена на случай 
двух переменных.

Определение. Число А называется пределом функции z=f(x, v) 
при х~>х0 и (или в точке ( х0 , ,у0 )) , если для любого, даже
сколь угодно малого положительного числа е>0, найдется положи­
тельное число 5>0 (зависящее от в, 8=8(е)), такое, что для всех 
точек (х, у), отстоящих от точки ( лг0 , ,у0 ) на расстояние р мень­
шее, чем 51 (т.е. при 0<р<8), выполняется неравенство

I Дх; у ) - А I <е.
Обозначается предел так:

lim f ( x , y )  —А.
ЛГ~>ДГ0
>’->У0

Пример 15.4. Найти предел

1п(1- X2 -  V2) 
u rn  -Г— _  .1.—  .
щ  4 * 2 + у 2

1 Напомним, что по формуле (3.5) расстояние между точками ( х 0 , v0 ) и  (х, у) 

на плоскости имеет вид р = J ( x  -  х 0)2 + (у  -  у ())2 .
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Р е ш е н и е .  Обозначим ^ х 2 + у 2 =р. Условие х -»0, )■ >0 равно­
сильно тому, что р—>0. Запишем предел в виде

0 р >о п'

= lim -----------= 0 >
р - > 0  1

К ак правило, вычисление пределов функций двух переменных 
оказывается сущ ественно более трудной задачей по сравнению  со 
случаем одной переменной. П ричина заключается в том, что на 
прямой существуют всего два направления, по которым аргумент 
может стремиться к предельной точке — а именно, справа и сле­
ва (см. § 6.2). На плоскости же таких направлений — бесконеч­
ное множество, и пределы ф ункции по разным направлениям 
могут не совпадать.

2 х у
С - Пример 15.5. Доказать, что lim не существует.

X + Vу—У 0
Р е ш е н и е .  Будем приближаться к точке (0; 0) по прямым 

у -к х .
„  , .. 2ху 2х(кх) 2 кЕсли у=кх, то lim  т  = hm  - v  =  т .

*->0х2 + у 2 *>Ох2 +(кх)2 1 + к 2
у  -»0

П олучили, что значение предела зависит от углового коэф ф и ­
циента прямой. Н о так как предел функции не должен зависеть 
от способа приближения точки (х; у) к  точке (0; 0) (например, по 
прямой у= 2х  или _у=5л'), то рассматриваемый предел не сущ еству­
ет. ►

Определение. Функция г=Дх, у) называется непрерывной в точ­
ке ( х 0 , ^0 ), ест  она: 1) определена в точке ( х „ , _>’0 ); 2) имеет 
конечный предел при х~->х0 и у - > у {) \ 3) этот предел равен значению
функции в точке ( х 0 , v0 ), т.е. lim f { x , y )  - Д х , , , г ,,).

*->*о
V -»■ о

Геометрический смысл непрерывности очевиден: график в 
точке ( х 0 , Уо) представляет собой сплошную, нерасслаиваю - 
щуюся поверхность.
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15.3. Частные производные
Дадим аргументу х  приращ ение Дх, аргументу у  — приращ ение 

4у. Тогда функция z  получит наращенное значение f ix + A x , у+ А у). 
Величина A z—fix + A x , y + A y )—f i x ,  у )  называется полны м  приращ ени­
ем ф ун к ц и и  в точке (х; у ). Если задать только приращ ение аргу­
мента х  или только приращ ение аргумента у , то полученные п р и ­
ращ ения ф ункции соответственно Д х z= fixr\-А х ,у )~ f ix ,y )  и A y z=

f i x ,  y + A y —f i x ,  у )  называются частными.
Полное приращ ение функции, вообще говоря, не равно сумме 

частных, т.е.
A z*  Дд. z + A y z.

[П рим ер 15.6. Найти частные и полное приращ ения ф ункции
z—xy.

Р е ш е н и е .  =(х+  А х )у —ху= уА х\ Ayz  = х (у  + А у)~ ху= хА у.

A z =(х+ Дх) 0 ' +Ау) ~ х у = х А у  + уАх  +ДхДу.

Получили, что

A z*  A xz +  A vz  .►

Определение. Частной 
производной функции несколь­
ких переменных по одной  из  
эт и х перем енны х назы вает ся  
предел от нош ения соот вет ст ­
вую щ его  част ного приращ ения  
ф ункции  к  приращ ению  р а с ­
см ат риваем ой независим ой  
перем енной при  ст рем лении  
поагеднего к  нулю  ( если эт от  
предел сущ ест вует ).

Обозначается частная про-
dz

изводная так: z ' , z ' или — ,



Таким образом, для функции z=J[xy у) по определению

Г' =  lim b L =  lim / ( * • * > , (15.1)
Дх—>0 Ах д*->о Д х

*' -  Пт V  =  |im М _Т . ,15 .2 ,
у Ау-У0 Ду Ау->0 Ду

Геометрический смысл частных производных функции
7=Дх, у) з  точке ( х 0, у0 ) показан на рис. 15.5.

Пусть граф ик функции г=Дх, у) представляет некоторую по­
верхность Р. Тогда при ,у=.Уо мы получаем кривую  - сечение 
этой поверхности соответствующей плоскостью.

В этом случае производная z'x выражает угловой коэф ф ициент 
касательной к кривой Гх , в заданной точке ( х0, у 0 ), т.е. 
г ’ (х 0, у  о )=cos сх, где а  угол наклона касательной к оси Ох. Ана­

логично z \. ( х 0, >'0 )=cosp.

Из определения частных производных (15.1), (15.2) следует, 
что для нахождения производной z'x (х, у) надо считать постоянной

переменную у, а для нахождения z' (х, у) — переменную х. При

этом сохраняю тся известные из гл. 7 правила дифф еренцирова­
ния.

[>Пример 15.7. Найти частные производные функций:

a) z= x  In у +  — ; б) z = x y . 
х

Р е ш е н и е. а) Чтобы найти частную производную по х, счи ­

таем у  постоянной величиной. Таким  образом, z '= ln

V
=1п у— А г  . Аналогично, дифф еренцируя по у,  считаем х  постоян-

X
1 X 1

ной величиной, т.е. z ' = х  (In у)'+  — = — + — .
у X у  X

6) П ри фиксированном  у  имеем степенную функцию  от х. Та­
ким  образом, z'x =  у х у~] . При фиксированном  х  ф ункция являет­

ся показательной относительно у  и z'v =  х^ In х . ►
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х 2
z = — , где х  — число жителем, у  — расстояние между городами.

Найти частные производные и пояснить их смысл.

Р е ш е н и е .  Производная z '  = — показывает, что при одном
У

и том же расстоянии между городами увеличение потока пасса­
жиров пропорционально удвоенному числу жителей. Произвол -

х 2
ная z'  —— г- показывает, что при одной и той же численности 

У
жителей увеличение потока пассажиров обратно пропорциональ­
но квадрату расстояния между городами.►

15.4. Дифференциал функции
В § 9.1. дифф еренциал ф ункции у —Дх)  определялся как глав­

ная, линейная относительно Дх, часть приращ ения функции, 
равная произведению  f ' ( x ) Дх.

Обобщая определение дифференциала функции на случай 
двух независимых переменных, приходим к  следующему опреде­
лению.

Определение. Дифференциалом функции называется сумма про­
изведений частных производных этой функции на приращения соот­
ветствующих независимых переменных, т.е.

d z -  z'x Дх+ г', Ду. (15.3)

Учитывая, что для функций Дх, у)=х, g(x, у)—у  согласно (15.3) 
d f-d x = Дх; dg=dy-t±y  формулу дифференциала (15.3) можно зап и ­
сать в виде

dz~ z'x dx+ z\. dy (15.4)
или

. dz dz 
a Z ——  a x  +  —  a y .

Зс ф
Определение. Функция г=Дх, у) называется дифференцируемой в

точке (х, у ), если ее полное приращение может быть представлено 
в виде

Г Пример 15.8. Поток пассажиров z выражается функцией
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Дz  =dz +аДх+(3 Д^, (15.5)

где dz — диф ф еренциал ф ункции, а=а(Д х, Ау), (3=|3(Дх, А у) — беск о ­
нечно  м а лы е  при  Дл—>0, Ду->0.

Таким образом, диф ф е­
р ен ц и а л  ф ун к ц и и  нескольких  
перем енны х, как и в случае 
одной переменной, пред­
ст авляет  гла вн ую , линейную  
от носит ельно приращ ений  
А х  и Ау, част ь полного  п р и ­
р а щ ен и я  ф ункции.

М ожно показать, что 
если полное приращение 
ф ункции Az  представляет 
геометрически приращ ение 
аппликаты  поверхности 
z = fix ,  у), то диф ф еренциал  
ф ун к ц и и  d z  ест ь приращ ение
а п п ли к а т ы  касат ельной  плоскост и  к  поверхност и z=J[x, у )  в  оанной  
т очке , ко гд а  перем енны е х н у  п олучаю т  приращ ения А х  и А у  (см. 
рис. 15.6).

Следует отметить, что для ф ункции  одной переменной у~Ах) 
сущ ествование конечной производной /  '(х) и представление 
приращ ения ф ункции в виде (9.1), т.е. Ду=с/у-Ьа(Дх)Дх, являются 
равнозначны ми утверждениями, и любое из них могло быть взято 
за определение дифф еренцируемости ф ункции1 .

Д ля ф ункции нескольких переменных дело обстоит иначе: с у ­
щ ест вование част ны х производны х явля ет с я  ли ш ь  необходим ы м , но  
недост ат очны м  усло ви ем  диф ф еренцируем ост и ф ункции.

Следующая теорема выражает дост ат очное  условие диф ф ерен­
цируемости ф ункции двух переменных.

Теорема. Е сли част ны е производны е ф ун к ц и и  z '  (х, у )  сущ ест ву­

ю т  в  окрест н ост и  т очки  (х, у) и  непреры вны  в  сам ой  т о ч ке  (х, у )  
т о ф ун к ц и я  2=Дх, у) диф ф еренцируем а в  эт о й  т очке.

1 Напомним, что в гл. 7 за определение дифференцируемости функции у=Цх) 
было взято первое утверждение — существование производной.
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15.5. Производная по направлению. Градиент
Пусть функция z - j{x . у) опре­

делена в некоторой окрестности 
точки М(х, у), I — некоторое на­
правление, задаваемое единич­

ным вектором 
—»

„2

е = (cosa ; cos |i),
,2 ,где |е|= c o s“ a  + cos" (3 = l ,  ибо a+p=

=  п/2 (или Зя/2); cos a , cos p — 
косинусы углов, образуемых век-

Рис. 15.7

тором е с осями координат и 
называемые направляющими коси­
нусами.

При перемещении в данном  
направлении / точки М(х, у)  в 
точку Mi ( х + Д х ,  у+Ау)  функция z  
получит приращение At z=J{x+&x, 
y+ b y)—flx , у), называемое прира­

щением функции г  в  данном направлении I (рис. 15.7).
Если ММ\ =  Л / , то, очевидно, что Дх= A /cos a; Ay=A/cosp, 

следовательно, Д; z = f ( x  + A l co sa ;y  + Д /cos $)- f (x, y) .
Определение. Производной z', no направлению l функции двух пе­

ременных z=j{x, у ) называется предел отношения приращения функ­
ции в этом направлении к величине перемещения А/ при стремлении 
последней к нулю, т.е.

г\ -  lim . (15.6)
1 Ы~,й д/

Производная г \  характеризует скорость изменения функции в  
направлении I.

Очевидно, что рассмотренные ранее частные производные z'x 

и z'y представляют производные по направлениям, параллельным

соответственно осям О хи  Оу.
Нетрудно показать, что

г} ~z'x cos a+ z '  cos p. 
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Определение. Градиентом Vr функции z= j(x , у) называется
вектор с координатами ( z'x , z [ . ).

Рассмотрим екгьчярное произведение (см. § 3.1) векторов Vz=

---( :[ , z[. ) и единичного вектора е = (c o sa ; cos (3). Получим

(Vr. е )— cos a t  z[. cos p. (15.8)

Сравнивая равенства ( 1 5 . 7 )  и (15.8), получим, что г/ -(V z, е ),
i.e . производная по направлению есть сксиярнос произведение гради­
ента Vz и единичного вектора, задающего направление I.

Известно (см. § 3.1), что скалярное произведение двух векто­
ров макси мат ьно. если они одинаково направлены. Следователь­
но, градиат  ф ункции  Vz в данной точке .характеризует направле­
ние максимальной скорости изменения функции в этой точке.

Зная градиент функции в каждой точке, можно по крайней 
мерс локально слпоить линии уровня функции. А именно, имеет 
место теорема.

Теорема. Пусть задана дифференцируемая функция z = f ( x , у) и 
пусть в точке Л/( vfl. г0 ), величина градиента опытна от нуля. 
Тогда градиент перпендикулярен линии уровня, проходящей через 
данную точку.

Л и н и я  у р о в н я  L, задается уравнением f [x,y)=C.  (где 
С - y i v )). Предположим, ч т о  это уравнение можно разрешить 
относительно у. т.е r-?(.v) на /„ (если это невозможно, то следу­
е т  р а з р е ш и т ь ,  уравнение относительно д- и повторит' зее рассуж­
дения с т о ч н о с т ь ю  до обозначений).

Таким образом, касательный вектор имеет координаты (1. £'(*))• 
Умножив его компоненты на dx. получим, что вектор (dx, g'(x)dx), 
т.е. (dx, dy). касателен к линии уровня Lc (см. рис. 15.8).

Между т>. м на линии уровня f(x, _)■) -const, т.е. < ^ |д = 0 , откуда 

г ' d \ +  г;. dy-Л) н а / ,  . Но г ' йбе+ z[. dy — скалярное произведение 

вектора градиента ( г ' , z \.) и вектора (dx, dy), касательного к Lc , 

т.е. рассматриваемые векторы перпендикулярны. ■

Рассмотрим понятие градиента функции z=J(x, у).
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Таким образом, линии уровня можно построить следующим 
образом (см. рис. 15.9). Предположим, мы начинаем с точки 
( х 0,у 0 ). Построим градиент в этой точке. Задаем направление,
перпендикулярное градиенту. Оно позволяет построить малую 
часть линии уровня. Далее рассмотрим близкую точку ( x lt у {,)  и 
построим градиент в ней.

Продолжая этот процесс, можно (с определенной погреш но­
стью) построить линии уровня.

15.6. Экстремум функции нескольких переменных
Как и в случае одной переменной, ф ункция z=f(x, у) имеет уз­

ловые, определяющие структуру графика точки. В первую оче­
редь это точки экстремума.

Определение. Точка Л/(х0,_у0 ) называется точкой максимума
{минимума) функции z=f{x, у), если существует окрестность точки 
М, такая, что для всех точек (х, у) из этой окрестности выполня­
ется неравенство

/(*0<Д| )^Д * . J)>

(Дх0,.)’0 ) <Дх, }•)).

На рис. 15.1 0  точка ^ ( x ^ j ' j )  — есть точка минимума, а точка 
В( х 2, у 2 ) — точка максимума.
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Обращ аем внимание на ло- 
ксыышй характер экстремума 
(максимума и минимума) 
ф ункции, так как речь идет о 
максимальном и минималь­
ном значении лиш ь в доста­
точно малой окрестности точ­
ки ( х 0,у 0 ).

С ф орм улируем  необходи­
мое условие экстрем ум а — 
м ногом ерны й аналог теоре­
мы Ф ерма.

Теорема. Пусть точка 
( х(), у  о ) — есть точка экстре­
мума дифференцируемой функ­
ции z - j ( x , у). Тогда частные 
производные / Л! (л'0 , у ()) и
/ у (л'0 , у0 ) в этой точке равны 
нулю.

Пусть точка Л/( х0, >’0 ) — точка максимума. Зафиксируем од­

ну из переменных, например у , полагая у = у 0 ■ Тогда получим 

функцию  одной переменной z, =Дх, у0 ), которая, очевидно, будет 

иметь максимум при х=  х0. Согласно теореме Ф ерма z\  ( х 0 )= 

= /,' (х, vn ) -0. Аналогично можно доказать, что и f'y ( х0,>0 )=(). ■

Точки, в которых выполнены необходимые условия экстрему­
ма функции z —f(x, у ), т.е. частные производные г ' и z\. равны

нулю, называю тся критическими или стационарными.
Необходимое условие экстремума можно переформулировать 

также следующим образом: в точке минимума или максимума 
дифференцируемой функции градиент равен нулю. М ожно доказать 
и более общее утверждение — в точке экстремума обращаются в 
нуль производные функции по всем направлениям.

Равенство частных производных нулю выражает лишь необходи­
мое, но недостаточное условие экстремума функции нескольких 
переменных.

Z i \

'  В(х2 ,у2) 
Л(Xi,yx)

Рис. 15.10
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На рис. 15.11 изображена так 
называемая седловая точка 
M( x{], y t)). Частные производные

f'x (*о - Уо ) и Л  (х о - Уо ) равны ну­
лю, но, очевидно, никакого экс­
тремума в точке M( x 0, y Q ) нет.

Такие седловые точки явля­
ются двумерными аналогами 
точек перегиба функций одной 
переменной. Задача заключается 
в том, чтобы отделить их от то­
чек экстремума. Иными слова­
ми, требуется знать достаточное 
условие экстремума.

Прежде, чем это сделать, введем понятия частных производ­
ных второго порядка.

Если частные производные z ' =  /* (x , у) и z \ . — /,' (х. у)  сами

являю тся дифференцируемыми функциями, то можно найти так­
же и их частные производные, которые называются частными 
производными второго порядка.

Вычислив частные производные функции z ' =  / л: (л-, у), полу­

чим г  ". =  / Л" (.V. у) и z " x =  f y x ( x ,  у). Аналогично можно опреде­

лить две частные производные функции z' =  / 1!(х, у), которые 

обозначаются z "  =  (х, у) и z"y =  f yy (х, у).

М ожно доказать, что если частные производные второго порядка 
функции I =/f.v, у) непрерывны в точке ( х 0, у 0 ), то в этой точке

К у Л Ч ’ Уо ) =  f ух  ( . 4 ’ У о )•

Теперь мы можем сформулировать достаточное условие экс­
тремума.

Теорема (достаточное условие экстремума функции двух пере­
менных). Пусть функция z=f[x , у): а) определена в некоторой окре­
стности критической точки ( х 0,>>0 ), в которой /^ (x 0 ,v 0 )=0 и
№  о , у  о )=0;

б) ш кет  в этой точке непрерывные частные производные вто­
рого порядка ( х0, >’о )=А\ f;y ( х0, y Q )= f ’’x ( х 0 ,>>„)=В\
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/vv ( л'(|, y t] )~C. Тогда, если A=AC— В 2 >0, то в точке ( л'(), у () ) функ­

ция : =/(х, у) имеет экстремум, причем если А<0 — максимум, если 
А>0 — минимум. В случае А=АС~ В 2 <0, функция z=j{x, у) экстре­
мума не имеет. Если А =А С - В2 =  0, то вопрос о наличии экстрему­
ма остается открытым.

Исследование функции двух переменных на экстремум реко­
мендуется проводить по следующей схеме:

1°. Н айти частные производные ф ункции z'x и z [ . .

2°. Решить систему уравнений z'x =0, z [  =0 и найти критиче­

ские точки функции.
3°. Н айти частные производные второго порядка, вычислить 

их значения в каждой критической точке и с помощью достаточ­
ного условия сделать вывод о наличии экстремумов.

4°. Найти экстремумы (экстремальные значения) функции.
>  Пример 15.9. Найти экстремумы функции

 ̂ = 2 ( х  + у)(1 + ху) 
(1 + х 2)(1 + >-2) '

Р е ш е н и е .  1°. Находим частные производные

_ , _ 2 (1 - .х 2) ^, =  2(1_- У )
(l + x 2)2 ' ~ y (1 + у 2)2 ’

2°. Критические точки функции находим из системы уравнений:

2(1 - Х - )
(\ + х 2)2
2(1 >'2)
(1 + у 2)2

имеющей четыре реш ения (1; 1), (1; - 1 ) ,  (—1; 1) и (—1; — 1). 

3°. Находим частные производные второго порядка:
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4х(х2 -  з) 4у [ у 2 -  3
V / . _  -ГГ —А. — V9 , z " = z "  =  0; Z* = — -— вычисляем их 

(1 + X ) ”  w *  (1 + у  )
значения в каждой критической точке и проверяем в ней вы пол­
нение достаточного условия экстремума.

Например, в точке (1; 1) A — z "  ( 1; 1 )=— 1; В= 0; С=—1. Так как 
А=АС~ В 2 = ( - 1)2 —0=1 > 0  и А=— 1 < 0 , то точка (1; 1) есть точка 
максимума.

Аналогично устанавливаем, что (—1; —1) — точка минимума, а 
в точках (1; - 1 )  и (—1; 1), в которых А=АС— В 2<0, — экстремума 
нет. Эти точки являю тся седловыми.

4°. Находим экстремумы функции z max =  z (  1; 1 )=  2, z mjn =

= z ( - 1; - l ) = - 2 >

15.7. Наибольшее и наименьшее значения функции

При нахождении наибольшего и наименьшего значений (т.е. гло­
бального максимума и минимума) функции нескольких перемен­
ных, непреры вной на некотором замкнутом1 множестве, следует 
иметь в виду, что эти значения достигаются или в точках экстре­
мума, или на границе множества.

'  Пример 15.10. Найти наибольшее и наименьш ее значения

ф ункции z  = — —т на круге радиуса 1 с центром в начале
1 + X 1 + у

координат.
Р е ш е н и е .  1. Найдем частные производные функции

2*  . _  2 у
(1 + х 1 - У (1 + у 2 у

2. Найдем критические точки функции из системы z'x.—0, 

=0, откуда л=0, >’=0; т.е. имеется одна критическая точка (0; 0).

* М ножество называется замкнутым, если оно включает все свои граничные 
{предельные) точки, т.е. точки, окрестности которых содержат точки как принадле­
жащие множеству, гак и не принадлежащие ему.
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3. Н айдем критические точки ф ункции на границе области — 
окруж ности, задаваемой уравнением х 2 + у 2 =  1. Подставляя 
у 2 = l - х 2 в ф ункцию  z= z(x , у ) ,  получим функцию  одной пере-

3
меннои z-

1  1__
1 + х 2 2 - х 2 2 + х 2 -  х 4

, причем хе [-1 ; 1].

2х(2х2 — 1)Найдя производную  z '= —  -----—  и  приравнивая ее к ну-
(2 + х  -  х 1)

лю , получим критические точки на границе области: хх =0,

*  = + —± л -

4. Н айдем значения ф унк­
ции  z=fix, у) в критических 
точках внутри области
z =  (0; 0) =  2 и на ее границе

П  ( П  4
-т= =  z  — -== =  —, а также
>/2 ;  I V I ;  з

н а концах отрезка f— X; 1] на 
границе области z (— 1)=

3
=  z ( l ) = — и выбираем среди 

них наибольшее и наименьшее.

Итак, z Hmб =  z (0, 0)=2 и

J .  - L ] .  
Л  Л >

х — точка наибольшего значения, 
• — точка наименьшего значения 

Рис. 15.12
1 1 1 1

V 2 ’ 7 2 )  Ч Л ’ 42

15.12). ►

В заклю чение параграфа рассмотрим класс выпуклых ф унк­
ций , для которых задача нахождения экстремальных значений 
сущ ественно упрощается.

Определим сначала множества, на которых задается этот класс 
функций.
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Определение. Подмножество D п-мерного пространства назы­
вается выпуклым, если для любых двух точек А и В, принадлежа­
щих D, отрезок, соединяющий эти точки, также целиком принад­
лежит D.

Например, множества, изображенные на рис. 15.13а, — вы ­
пуклые, а множество на рис. 15.136, — невыпуклое.

Простыми и наиболее естественными примерами выпуклых 
множеств являю тся само пространство, а также его полож итель­
ный сектор, заданный условиями ХгО, >>>(), г>0.

Определение. Функция г=Дх, V). заданная на выпуклом множе­
стве D, называется выпуклой вниз, если для любых двух точек ( х( , 

) И ( х2 , у 2 )

а) б)
Рис. 15.13

| Л'| +  л~2 Л  + Уг I / ( х 1' Ур + / ( Х2>У2)
\  2 ’ 2 ) ^ 2

и выпуклой вверх, если

пуклой вниз, изображен на 
у  рис. 15.14.О

^  Очевидно, выпуклая
(-*2>>2) функция не может иметь

\ седловых точек, подобных
2 ' изображенной на рис.

15.11. Это значит, что для 
выпуклой функции равенстваРис. 15.14
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ее частных производных нулю является не только необходимым, но 
и достаточным условием экстремума. Более того, экстремум вы­
пуклой функции является глобальным, т.е. наименьшим значением в 
случае функции, выпуклой вниз, и наибольшим в случае функции, 
выпуклой вверх.

Задача нахождения максимумов и минимумов ф ункций м но­
гих переменных значительно сложнее аналогичной задачи для 
ф ункций одной переменной. Даже в самых простых случаях чис­
то технические проблемы могут вызвать значительные трудности. 
Задаче нахождения подобных экстремумов посвящ ен специаль­
ный раздел математики — вариационное исчисление. В последние 
десятилетия бурное развитие переживает комплексная научная 
дисциплина — исследование операций, посвящ енная поиску опти- 
мальных реш ений в различных, в том числе и экономических, 
задачах, в которых исследуемая (целевая) ф ункция нескольких 
переменных принимает наибольшее или наименьшее значение.

15.8. Условный экстремум.
Метод множителей Лагранжа

Рассмотрим задачу, специфическую для функций нескольких 
переменных, когда ее экстремум ищется не на всей области опреде­
ления, а на множестве, удовлетворяющем некоторому условию.

Пусть рассматривается ф ункция z — f{x, y) ,  аргументы л и у  
которой удовлетворяют условию g  (л\>’) =  С, называемому уравне­
нием связи.

Определение. Точка у0) называется точкой условного м ак­
симума (минимума), если существует такая окрестность этой 
точки, что для всех точек (х,у) из этой окрестности удовлетворя­
ющих условию g (х,у) =  С, выполняется неравенство

f ( x о, Уо) 2 / (х ,у )  (А), у0) < Дх,у).
На рис. 15.15 изображена точка условного максимума (хц, у0). 

Очевидно, что она не является точкой безусловного экстремума 
ф ункции г =  f ( x , y )  (на рис. 15.15 это точка (хь  у \ )).

Наиболее простым способом нахождения условного экстре­
мума ф ункции  двух переменных является сведение задачи к  оты ­
сканию  экстремума функции одной переменной. Допустим урав-
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о

z нение связи g (х,у) =  С 
удалось разрешить относи­
тельно одной из перемен­
ных, например, выразить у  
через х: у  =  ср(х). Подста­
вив полученное выражение 
в функцию  двух перемен­
ных, получим z  =  fix,у) =  
=  / (х, ф(х)), т.е. функцию

X/ ii i)~g(x.y
СЭГ>/. ,

(Xi>'|)| /  - V

g(x,y)—C экстремум и будет услов-
у  о д н о й  переменной. Ее

ным экстремумом ф унк­
ции z =  f(x,y) .

t>Пример 15.11. Найти 
точки максимума и мини-Рис. 15.15
мума функции z =  х2 +  2у2 
при условии Зх +2у  = 1 1 . 

Р е ш е н и е .  Выразим из уравнения Зх +2у  =  11 перем ен­
ную у  через переменную  х и подставим полученное выражение

ким образом, (3; 1) — точка условного экстремума (минимума).^
В рассмотренном примере уравнение связи g(x, у) =  С оказа­

лось линейны м, поэтому его легко удалось разрешить относи­
тельно одной из переменных. Однако в более сложных случаях 
сделать это не удается.

Для оты скания условного экстремума в общем случае исполь­
зуется метод множителей Лагранжа.

Рассмотрим функцию  трех переменных Z(x, у, /.) =  fix, у) +

Эта ф ункция называется функцией Лагранжа, а /. — множите­
лем Лагранжа. Верна следующая теорема.

Теорема. Если точка (хо, уо) является точкой условного экс­
тремума функции z — f i x , у) при условии g  {х,у) =  С, то существует

у  = -----------в функцию  z. Получим
2

1 1 , .
z = ~ [ x 2 -~6х+11). Эта функция имеет единственный .минимум при

+>.[g(x,3/) -  q .
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значение ?.0 такое, что точка (хо, >’(ь ).q) является точкой экстре­
мума функции L(x,y, /.)•

Таким образом, для нахождения условного экстремума ф унк­
ции г =  /  (xjO при условии glx,y) =  С требуется найти реш ение 
системы

L'x = fx ( x , y ) +Xg’x (x,y) = Q,

■ L'y = f y  (x,y) + Щ  (x,y) = 0,
Ц  = g ( x , y ) - C  = 0.

Последнее из этих уравнений совпадает с уравнением связи. 
Первые два уравнения системы можно переписать в виде

grad f =  — ). grad g, 
т.е. в точке условного экстремума градиенты функций /  (х,у) и 
g(x\y) коллинеарны.

На рис. 15.16. показан геометрический смысл условий Л а­
гранжа. Л иния g (х,у) =  С пунктирная, линия уровня g(x,y) =  Q 
ф ункции г =  /(.V.г) сплошные.

Из рис. 15.16 следует, что в 
точке условного экстремума линия 
уровня функции z — f  (х,>’) касает­
ся линии tg(x,>’) =  С.

^П ри м ер  15.12. Найти точки 
экстремума функции z =  х3 + у2 
при условии Зх + 2у  =  11, и с­
пользуя метод множителей Л а­
гранжа.

Р е ш е н и е .  Составляем 
функцию  Лагранжа L ~  х 2 +  2;,2 + 

+>.(3х + 2у — 11). Приравнивая к нулю ее частные производные, 
получим систему уравнений

' 2х + 3/. = 0,
< А у  + 2/. = 0,

Зх + 2у -  11 = 0.
Ее единственное решение (х=3, >—1, / ,=~2).  Таким образом, 

точкой условного экстремума может быть только точка (3; 1). Н е­
трудно убедиться в том, что в этой точке функция : = f ( x , y )  имеет
условный минимум. ►
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В случае, если число переменных более двух, может рассмат­
риваться и несколько уравнений связи. Соответственно в этом 
случае будет и несколько множителей Лагранжа.

Мы не рассматриваем здесь достаточные условия условного 
экстремума. Отметим только, что во многих задачах критическая 
точка функции Лагранжа оказывается единственной и соответст­
вует не только локальному, но и глобальному условному м ини­
муму или максимуму.

Задача нахождения условного экстремума итспользуется при 
решении таких экономических задач, как нахождение оптималь­
ного распределения ресурсов, выбор оптимального портфеля 
ценных бумаг и др. (подробнее см. § 15.11).

15.9. Понятие об эмпирических формулах. 
Метод наименьших квадратов

На практике мы часто сталкиваемся с задачей о сглаживании 
экспериментальных зависимостей.

Пусть зависимость между двумя переменными ,v и у  выражает­
ся в виде таблицы, полученной опытным путем. Это могут быть 
результаты опыта или наблюдений, статистической обработки 
материей а и т.п.

Л' х \ х 2 x i

У Уг Уп

Требуется наилучш им образом сгладить экспериментальную 
зависимость между переменными ,х и у , т.е. по возможности точ­
но отразить общую тенденцию  зависимости у  от л\ исклю чив при 
этом случайные отклонения, связанные с неизбежными погреш ­
ностями измерений или статистических наблюдений. Такую 
сглаженную зависимость стремятся представить в виде формулы 
у=Дх).

Формулы, служащие для аналитического представления опы т­
ных данных, получили название эмпирических формул.

Задача нахождения эмпирических формул разбивается на дв,г 
этапа. На первом этапе нужно установить вид лянт й м О о   ̂~ЛХ)< 
т.е. решить, является ли она линейной, квадрат;г-н«ой, логариф­
мической пли какой- либо другой.
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Предположим, например, что 
результаты экспериментальных У
исследований нанесены на плос­
кость (паре чисел (х, , у, ) соот­
ветствует точка с такими же ко ­
ординатами). Разумеется, сущ ест­
вует множество кривых, прохо­
дящих через эти точки (см. рис.
15.17). ___

Д ля продвижения к цели Q
обычно предполагают, что кривая 
истинной зависимости — это 
наиболее “гладкая” кривая, со ­
гласованная с эмпирическими данными. Так, в случае, изобра­
женном на рис. 15.17, исследователь несомненно предпочтет 
кривую I кривой II.

Для проверки правильности вывода проводятся дополнитель­
ные исследования, т.е. производится еще ряд одновременных 
измерений величин х и у. Дополнительные точки наносятся на 
плоскость. Если они оказываются достаточно близкими к вы ­
бранной кривой (на рис. 15.15 дополнительные точки изображе­
ны крестиками), то можно считать, что вид кривой установлен. В 
противном случае кривую надо скорректировать и вновь провес­
ти дополнительные измерения.

Кроме того, для выбора функции у=/{х)  привлекаются допол­
нительные соображения, как правило, не математического харак­
тера (теоретические предпосылки, опыт предшествующих иссле- 
доваш ш  и т.п).

Предположим, первый этап завершен — вид функции y=fix) 
установлен. Тогда переходят ко второму этапу — определению 
неизвестных параметров этой функции.

Согласно наиболее распространенному и теоретически обос­
нованному методу наименьших квадратов в качестве неизвестных 
параметров функции Д.х) выбирают такие значения, чтобы сумма 
квадратов невязок 6, , или отклонений “теоретических” значений 
Д х ,) ,  найденных по эмпирической формуле у=/[х), от соответст­

вующих опытных значений у, , т.е.

X
- ►
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■У = 1 ^ = Е ( / ( * , ) - Л ) 2 (15.9)
(=1 ; = 1

была миним&тьной (рис. 15.18).
Следует отметить, что в качестве величины отклонения S  эм ­

пирических точек y t ) от точек сглаживающей эксперимен-
тальную зависимость кривой у -fix )  в принципе можно было

П П
взять обычную сумму невязок ^ 5 ,  = (/Ос,-) -  у , ) или сумму их

t I г I
П П

абсолютных величин ^ |б ,- | = ^  |(/(.v ,) -  у, ) |. Но делать это неце-
i= i  /=--1

П
лесообразно, так как в первом случае ^ 8 ,  может быть малой

/=1

или даже равняться нулю при значительном разбросе эмпириче­
ских точек, так как положительные отклонения ком пенсиру­
ются отрицательными.

П
Во втором случае ф ункция ^ |б , |  лиш ена этого недостатка, но

1
имеет другой — она не является дифференцируемой, что сущ ест­
венно затрудняет реш ение задачи.

Пусть в качестве функции у -fix) взята линейная функция 
у=ах+Ь  и задача сводится к отысканию таких значений парамет­
ров a w  b, при которых функция (15.9)
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5  = X  iaXi + b -  у i f
/--■ l

принимает наименьш ее знамение. Заметим, что ф ункция 
S=S(a; b) есть ф ункция двух переменных а и b до тех пор, п ока мы 
не наш ли, а затем зафиксировали их “наилучш ие” (в смысле 
метода наименьш их квадратов) значения, a xt , y t — постоянные
числа, найденны е экспериментально.

Таким образом, для нахождения прямой, наилучшим образом 
согласованной с опытными данными, достаточно решить систему

S'a = О,
S'b =

или

X  2 (ox , +b - V ,  ).г; =  0 .
i = i

П
X  2 (ах, +b - V , ) = 0.
i=\

После алгебраических преобразований эта система принимает 
вид:

П П
< 2 > ,2)« + = И х> у ‘
i=1 /=1 /=1
п п

C ^ X j  ) и  +  n b  =  X  v , .

(15.10)

/=1
Система (15.10) называется системой нормсыъных уравнений.
Эта система имеет единственное решение, так как ее опреде­

литель
П

X
!= \

П

/ = ] 

П
,г-_1

i=i
(15.11)

=1

(а точнее Ы |> 0 ,  что можно доказать методом математической 
индукции при п>2).

Убедимся, что найденные из системы (15.10) значения дают 
минимум ф ункции S=S(a; b). Найдем частные производные

S" 2 ^ Л-,2 =  л  ; S''h = 2 £ X, =  В ; 2п = С.
/=1 /=1
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п  п

Выражение А=АВ~С2= 4 { n ^ x f  - ( ^ Г х , ) 2 )>0 в силу изложен-
/=1 1=1

П
ного выш е и А =2 ^  х} >0, следовательно, согласно достаточному

(=1
условию ф ункция имеет единственную точку минимума, опреде­
ляемую из системы нормальных уравнений (15,10). Заметим, что 
в этой точке функция S=S(a\ b) имеет не просто локальный м и ­
нимум, но наименьш ее значение (глобальный минимум).

Г Пример 15.13. Имеются следующие данные о цене на нефть

х (ден. ед.) и индексе акций нефтяных компаний у  (уел. ед.).

X 17,28 17,05 18,30 18,80 19,20 [ 18,50
У 537 534 550 555 560 | 552

Предполагая, что между переменными х и у  существует л и ­
нейная зависимость, найти эмпирическую формулу вида у~=ах+Ь, 
используя метод наименьших квадратов.

П

Р е ш е н и е .  Найдем необходимые для расчетов суммы ^  х, >
; = ]

п п п
X " .  Z « - Z  х2 . Промежуточные вычисления оформим в
/=1 i=i /~1

виде вспомогательной таблицы.

X, У, х, У, X'
17,28 537 9279,36 298,5984
17,05 534 9104,70 290,7025
18,30 550 10065,00 334,8900
18,80 555 10434,00 353,4400
19,20 560 10752,00 368,6400
18,50 552 10212,00 342,2500
I  109,13 3288 59847,06 1988,5209

Система нормальных уравнений (15.10) имеет вид
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(1988,5209а + 109, U b  = 59847,06, 
i 109,13a + 6 b = 3288.

Ее реш ение a~ 12,078, -328,32 дает искомую зависимость: у  -
-- 12,078л- + 328,32. Таким образом, с увеличением цены нефти на 
I ден.ед. индекс акций нефтяных компаний в среднем растет на

12.08 ед. ►

15.10. Понятие двойного интеграла

В настоящем параграфе мы затронем некоторые вопросы, свя­
занные с интегрированием ф ункций нескольких переменных. В 
огличие от случая одной переменной здесь не удается ввести 
простого понятия первообразной и неопределенного интеграла. В 
то же время определенный интеграл вводится аналогично: интег­
рирование рассматривается как ‘‘суммирование бесконечного 
числа бесконечно малых величин” .

Вначале определим двумерный аналог интегральной суммы 
(см. § I I . I ).

Пусть рассматривается множество D на плоскости Оху (для 
простоты будем считать его выпуклым). Построим покрывающую 
это множество решетку (см.рис. 15.19).

На рис. 15.19 штриховкой обозначена часть множества Д  не 
покрытая полными клетками решетки. Очевидно, площадь этой 
части уменьшается по 
мере того, как увеличи­
вается число клеток раз­
биения, т.е. уменьшаются 
размеры клеток (опять же 
для простоты будем с ч и ­
тать. что lice клетки 
имеют одинаковые раз 
меры). Занумеруем клет­
ки решетки индексами /,
/  ( /  1.  . .  п; i i . .т). г д е

/  -  н о м е р  к л е т к и  п о  г о ­

р и з о н т а л и  ( с ч и т а я  с л е в а  

н а п р а в о ) ,  а  /  - н о м е р

Aij

Лу, - Л :

х
-*■

\X j

Рис. 15.19
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клетки по вертикали (считая снизу вверх). Пусть Лх, и Ду .—

соответственно длина горизонтальной и вертикальной стороны 
клетки А у . Тогда при Ал-, >0 и Д у.-»0  площ адь заш трихованной

части множества D стремится к нулю и, несколько пренебрегая 
строгостью, можно сделать утверждение: DK;|eT-> Д  где DK:IC1 — это 
часть множества D, покрытая целыми клетками решетки.

В каждой клетке Л,у выберем произвольную точку ( ;  г|у ).

Интегральной суммой функции z  ~f\x, у) на множестве D называет-
п  т

ся сумма 5  = Y J h  f ^ i '  Лу)Л*/АУ,-.
- ! / i

Обозначим через d  — диаметр клетки, т.е. наибольш ий л и ­

нейны й размер ее (в данном случае d=^j~Ах} + Ay j  — длина диаго­

нали клетки).
Определение. Функция z  ~/(х, у) называется интегрируемой на 

множестве D, если существует конечный предел I  интегральной 
суммы этой функции на D при условии d~>0. Само значение предела 
I называется двойным интегралом функции z=f{x , у) на множест­
ве D.

Обозначается двойной интеграл следующим образом: 

I = ^ f ( x . y ) d x d y .
D

З а м е ч а н и е .  Указанный предел /  интегральной суммы не 
должен зависеть ни от способа разбиения множества D на эле­
ментарные ячейки (лиш ь для простоты в качестве таких ячеек мы 
использовали прямоугольные клетки), ни  от выбора точек 
( с , ; г|j ) в каждой ячейке.

Таким образом, по определению 
гг п тJ J  /  (-'••>’) dx dy =  lim £  £  f {%, л .) Лх. дУ] .
о  * ‘ '

Отметим г е о м е т р и ч е с к и й  с м ы с л  двойного инте­
грала. Если ф ункция Дх,  у) непрерывна и неотрицательна в об­

ласти Д  то двойной интеграл JJ' f ( x , y ) dxdy  представляет собой
Г)

объем прямого цилиндрического тела (цилиндроида), построенного 
на области D как на основании и ограниченного сверху поверхно-
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стъю z=fix, у). Если fix. >>)=! для всех (л, y)eD,  то JJ dx dv численно

равен площади области D.
И нтегрирование ф ункции  двух перем енны х значительно 

более трудная задача по  сравнению  с аналогичной  задачей для 
одной п ерем ен ной . О дна­
ко  в некоторы х случаях 
м ож но получить завер­
ш енны й результат. Р ас­
см отрим  один  из таких 
важ нейш их случаев.

М ножество D на плос­
кости Оху называется эле­
ментарным относительно 
оси Ох, если его граница 
состоит из графиков двух 
непрерывных ф ункций g(x) 
и hix). определенных на 
некотором отрезке [а, b] и 
таких, что g(x)<h{x), и из 
отрезков прямых х=а  и х=Ь 
(рис. 15.20).

Двойной интеграл может быть вычислен с помощью теоремы, 
представляющ ей двумерный аналог формулы Нью тона—Л ейб­
ница.

Теорема. Если функция z=fix. у) непрерывна на элементарном 
множестве Z), то

| |  f { x , y ) d x d y  =  ^
h ( x )

j  f ( x .  у)  dv

Z ( x )

dx . (15.12)

Интеграл, стоящ ий в правой части формулы (15.12), называет­
ся повторным интегралом и обычно записывается в виде

Ь Ых )

f = j d x  |  f ( x , y ) d y  .
u g ( x )

Пример 15.14. Вычислить интеграл | | (.v + y' )dxdy  , где D —

круговой сектор, изображенный на рис. 15.21.
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Р е ш е н и е .  М ножество D является элементарным. Здесь

д=0, b=  1, g(.xM) h(x)—+ \ l ~ x 2 . Таким образом, искомый инте­
грал принимает вид:

| |  (х + у 3) dxdy =  | dx J (х + y i )dy  =  J
4

о

i

dx =

I
2 \ 2

dx i - x 2) +

- J  (1 -  2x2 + x 4)dx =_  1(1 - o242 1 1 г
2 з х Ч+ — х  -- — X + —

0 4 \ 3 5 J

1 1 f, 2 1= -  + — 1 —  +  -  
3 4 \  3 5 15

Д войные и повторные инте­
гралы находят свое применение в 
теории вероятностей, вариаци­
онном исчислении и многих 
других разделах математики, им е­
ющих непосредственные эконо­
мические приложения.

15.11. Функции нескольких переменных 
в экономической теории

Рассмотрим некоторые приложения ф ункций нескольких п е ­
ременных в экономической теории.

Значительная часть экономических механизмов иллю стриру­
ется на рисунках, изображающих линии уровня ф ункции двух 
переменных z=f{x, у). Например, линии уровня производственной 
функции называются изоквантами.
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Пусть х н у  — два различных 
фактора производства, а функция 
z — Дх, у) характеризует выпуск 
продукции, который позволяют 
значения факторов х  и у. На рис.
15.22 линии уровня f(x ,y)= Q  и зо ­
бражены сплош ными линиями, а 
штриховкой выделена так назы ­
ваемая экономическая область, 
которая характеризуется тем, что 
высекаемые ею части изоквант 
представляю т собой графики 
убывающих ф ункций, т.е. увели­
чение количества одного фактора 
позволяет уменьшить количество другого, не меняя размера вы ­
пуска. Иными словами, экономическая область — это множество 
значений факторов, допускающих замещение одного из них другим. 
Очевидно, что все “разумные” значения х  и у  принадлежат эко­
номической области.

Изокванты  позволяю т геометрически иллюстрировать реш е­
ние задачи об оптимальном распределении ресурсов. Пусть 
z=g(x, у) — ф ункция издержек, характеризующая затраты, необ­
ходимые для обеспечения значений ресурсов х  и у  (часто можно 
считать, что ф ункция издержек линейная: #(.*, у)-- рхх  + p vy  , где
р х и p v — “цены ” факторов Л' и у). Линии уровня этой функции

также изображены на рис. 15.20. Комбинации линий уровня 
ф ункции Дх) и g(x) позволяю т делать вы вода о предпочтительно­
сти того или иного значения факторов х  и у. Очевидно, напри 
мер, что пара значений ( , у { ) более предпочтительна, чем пара
( х 2 , у2 )■ так как обеспечивает тот же выпуск, но с меньш ими
затратами. Оптимальными же значениями факторов будут значе­
ния ( хц , у 0 ) — координаты точки касания линии уровня ф унк­
ции  вы пуска и ф ункции издержек.

Л инии уровня функции полезности (они называются кривыми 
безразличия) (см. § 5.6) также позволяю т рассматривать вопросы 
замещ ения одного товара другим и иллюстрировать реш ение за­
дачи об оптимальном потреблении (потребительского выбора) 
(см. рис; 1^.23).
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Л иния уровня затрат на приобрете­
ние товаров х, у  изображены на рис.
15.23 пунктиром. Оптимальное по­
требление обеспечивается значением 
( л0 , jv.i) — координатами точки каса­
ния кривой безразличия и линии 
уровня затрат. В этой точке заданная 
полезность достигается наиболее эко­
номичным образом.

Другой пример кривых безразличия возникает в теории инве­
стиций.

Портфель ценных бумаг (под портфелем мы здесь будем п они ­
мать совокупность определенных денных бумаг в определенных 
количествах) характеризуется двумя основными параметрами — 
ожидаемой доходностью г  и риском а  (точное определение этих 
величин здесь не может быть приведено, так как оно использует 
понятия теории вероятностей и математической статистики) К а­
ждому портфелю  можно поставить в соответствие точку на коор­
динатной плоскости (а, г), и тогда множество всех возможных 
портфелей представляет некоторую область D (см. рис. 15.24).

Очевидно, что при равных доходно­
стях инвестор предпочтет портфель с 
меньшим риском. Таким образом, кр и ­
вые безразличия — линии уровня 
функции предпочтения U  ~ U  (гг, г) — 
выпуклы вниз. Точка Т, в которой 
линия безразличия касается области А  
соответствует наиболее предпочтитель­
ному для данного инвестора портфелю. 
Соответствующая теория была предло­
жена американским экономистом Хар­

ри М арковицем в 1952 г. и с тех пор получила широкое развитие 
в теории инвестиций.

Понятие частной производной также находит применение в 
экономической теории. В § 7.6. было введено понятие эластично­
сти функции одной переменной Ех {у). Аналогично можно ввести
понятие частной эластичности функции нескольких переменных 
z =  ( х х, х 2 . ..., х п ) относительно переменной х , :

О
ст

-►

Рис. 15.24
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E x (z)= lim
Д х , - - > 0

^Ar .z  Дх,-
 ‘ zr-
z x'A z  х, ;

Так, например, в производственной функции Кобба—Дугласа 
(см. § 15.1) z = b {)x hly h2 , как нетрудно убедиться, Ех (z)=b\ , Еу (z)= 
=  i>2 , т.е. показатели ^ и 1ъ приближ енно показывают, на сколь­
ко процентов изменится выпуск продукции при изменении толь­
ко затрат труда х  или только объема производственных фондов у  
на 1%.

Рассмотрим частные производные u'x , u'Y — функции полезно­

сти. Они называю тся предельными полезностями Мих , M u v . Если
измерять количество товара в стоимостном выражении, то п ре­
дельные полезности можно рассматривать как функции спроса 
на соответствующ ий товар. Найдем предельные полезности для 
ф ункции постоянной эластичности

и ( х , у ) = - \ х 1-Ь + - \ i b l -
1 0} \ — U2

Имеем Мих = а хх ~Ьх, Миу = а г * - *2 » т -е- функции спроса с
ростом стоимости каждого товара являю тся убывающими, а п а­
раметры ^  и 1>2 представляют частные эластичности спроса на 
эти товары.

Если рассматривать спрос q как функцию  нескольких пере­
менных, например двух -  цены товара р  и доходов потребителей 
л, т.е. q =  f ( p j ' ) .  то можно говорить о частных эластичностях

Р гспроса от цены Ер (q) =  ~q'p и спроса от доходов Er (q) =  —q'r .
Я q

Н апример, можно установить, что Ег (</)>() для качественных то­
варов и Ег (q)<() для низкосортных, так как с ростом доходов 
спрос на качественные товары увеличивается, а на низкосорт­
ные -  уменьшается.

Если при исследовании спроса на данный товар рассматривать 
влияние другого, альтернативного товара ценой р\, т.е. рассмат­
ривать спрос как функцию  трех переменных q =  f { p ,  р \ г), то 
мож но ввести перекрестный коэффициент эластичности спроса,

Р 1определяемый по формуле Е р (q) = — q'p и показываю щ ий при-

ближенно процентное изменение спроса на данный товар при
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изменении цены  альтернативного товара на 1%. Очевидно, что 
для в з а и м о з а м е н я е м ы х  товаров Ер (q) > 0, так как

увеличение цены  одного товара приводит к  увеличению спроса 
на другой. В то же время для в з а и м о д о п о л н я ю щ и х  
товаров Ep\{q)<0, ибо в этом случае рост цены любого товара 
приводит к сниж ению  спроса.

Рассмотрим еще один коэф ф ициент эластичности, характери­
зующий производственную  функцию  нескольких переменных и 
имею щ ий важное значение дня экономической теории.

Пусть z =  /  (х,у) производственная ф ункция и МР(х)  =
= f x ( x 'У), МР(у )  = f y ( x , y )  — предельные продукты, соответству­
ющие затратам ресурсов х и у. Коэффициентом эластичности за­
мещения называется величина

х  х
Д In — d  ln —

“ ~ М Щ )  = МР(х)  ■д in --------- a In ----------ду->о
МР(у) МР(у)

Так как при малых приращ ениях аргумента At имеет место

приближенное равенство Д In t = - у ,  приращ ение логарифма

переменной величины  можно рассматривать как относительное 
приращ ение самой величины . Таким  образом , вели чи на о б ­
ратная коэф ф и ц и ен ту  эластичности замещения, показывает  
приближенно, на сколько процентов изменится отношение пре­
дельных продуктов М Р(х)/М Р(у) при изменении отношения за ­
трат ресурсов (х /у) на 1%.

В § 15.1 приведена производственная ф ункция с постоянной 
эластичностью  замещения. В общем случае коэф ф ициент эла­
стичности замещ ения есть функция от двух переменных. Рас­
смотрим ее выражение в точках изокванты. Так как вдоль и зо­
кванты значение ф ункции г = f(x, у) постоянно, то полный д и ф ­
ференциал этой ф ункции dz = f  ycLx+ f'y dy вдоль изокванты равен

dy МР(х)
нулю, т. е. MP(x)dx+ M P(y)dy — 0. Отсюда имеем -  — = . .

dx МР(у)

т.е. при сохранении объема выпуска г величина назы вае­

мая предельной нормой замещения ресурса х  ресурсом у , равна от­
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нош ению  их предельных продуктов. С учетом последнего равен-
с1ул

ства мож но записать, что
t d  In -  
1 v dx

Уху d  In —-

Очевидно, что
dy
dx

изокванте в точке М{х,у),

тангенс угла а  наклона касательной к

У
х

тангенс угла наклона радиуса-

вектора О М  точки М  (х,у) (см. рис. 15.25).
Таким образом, величина

1
 характеризует относи-
а ху

тельное изменение угла на­
клона касательной к изо­
кванте при изменениии угла 
наклона ее радиуса вектора, 
т.е. кривизну изокванты. 

Если рассматривать tg а
1

как функцию  tg 0, то -----
а ху

есть коэфф ициент эластич­
ности в обычном смысле 
(см. § 7.6).

Понятие выпуклости функции также играет существенную роль 
в понимании важнейш их экономических законов. М ногомерные 
аналоги примеров, рассмотренных в § 8.10, позволяют математи­
чески сформулировать законы убывающей доходности и убы­
вающей предельной полезности.

15.12. Решение задач

Пример 15.15. Определить оптимальное распределение ре-
з

сурсов для ф ункции выпуска z= b 0x y 2 , если затраты на факторы х 
и у  — линейны  и 3" чаются ценами р { =1, р2 —2.
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Р е ш е н и е .  В точке (х 0 , v0 ), задающей оптимальное рас­
пределение ресурсов х и у, линия уровня ф ункции издержек

3
z= x+ 2y  касается изокванты  Ь0ху>2 = С  (см. § 15.11). На экономиче-

2
С

ской области изокванта есть часть графика функции у=
V box')

Л иния уровня ф ункции издержек — это прямые х+2у=А, угловой 

коэф ф ициент которых —.

Таким образом, условие касания имеет вид
/ 3 2

1 4 5 С 5
= —  , откуда х 0 =  -

2
С Л з

Ь̂ х

2 2

3 5С 5 
2 £

А 5  А54 uQ

х0

3 2

зЧ*
соответственно

Таким образом, факторы х, у  следует распределить в отнош е­
нии 4:3. ►

U Пример 15.16. Результаты десяти одновременных измере­
ний величин х и у  сведены в следующую таблицу:

X 1 2 3 4 5 6 7 8 9 10
У 1,61 3,05 5,50 8,96 13,42 19,00 25,20 33,78 41,96 51,62

Предполагая, что зависимость величины у  от величины х  им е­
ет вид у = а х 2 + b , найти значения параметров a w  b этой зависи­
мости, используя метод наименьших квадратов.

Р е ш е н и е .  Величина 5, определенная равенством (15.10), 
имеет вид

П
+ Ь ~У1)2 -

i=1
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Имеем л;; = X  2 (axf + b -  y t ) х } , S'h = 2(дх,2 + b -  y t ) .
1=1 /=1

П риравнивая частные производные ^  и S'h к нулю, критиче­
ские точки ф ункции S  определяем как реш ение системы н о р ­
мальных уравнений:

I и

V, = i

1/ я
X * /

Ч/ = 1 У

п \ п
а + \ ' Z 4  b = ' L x j y i ,

ч = 1 / / = 1
п

а + nb = Х-У/-
1=1

(15.13)

ю
В ы чи сли в  при  я =  10 н еобходи м ы е суммы  'У' х 2 =385,

/л
10 10

J i , 4 =25333, 2 3  >’/ =204,1. Х * 2^  =13183,65
1 I /-л 1 1

получим систему нормальных уравнений в виде: 
125333а + 385Ь = 13183,65, 

385а f  10А = 204,1,

откуда а — 0,5067, b =  0,905, т.е. у  =  0,5067х + 0,902.►

У П Р А Ж Н Е Н И Я

Найти уравнения и выполнить построение линий уровня 
функций:

15.17. z ~ —— л- — . 15.18. г = ^ - ^ .
У х  • -  У

15.19. z = - ^ ~ .  15.20. г =  -  +  1 п — ^
111 х х

15.21. z = x  -  еху  . 15.22. z = x 2 + In у  -  In х .
Найти частные производные функций:
15.23. z = x V  -  2 х /  . 15.24. z = 1п(х2 + 2 у ) .

15.25. z = (  1 + х 2 ) ‘ . 15.26. z = (x  -  - ) e ~ x2y .
У
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15.27. Z " ln 15.28. :: l11 ' 1
у  •+ V.X'2 + 1

Пайги критические точки функций и проверить в них выпол­
нение достаточного условия экстремума:

15.29. z = ( y - x ) 2 +(>’ + 2)2 .
( х  + 2у -  16)215.30. z - x 1 + у 2 + ■

ех у15.31. z = 2ху  -  4х -  2у .  15.32. z = x
15.33. Найти наибольшее и наименьш ее значения функции 

г л 2 + на полукруге единичного радиуса с центром в начале 
координат и расположенном в правой полуплоскости.

15.34. Найти наибольшее и наименьш ее значения функции
z :  - a "  f  yfy на треугольнике с вершинами в точках ( 0 ;  0 ) ,  ( 0 ;  1 )  и 
(1; 0).

15.35. В плоскости треугольника с верш инами А (0; 1), В 
(3; 4), С (5; 2) найти точку, сумма квадратов расстояний от кото­
рой до верш ин треугольника является наименьшей.

Исследовать функции на выпуклость:
1

15.36.
х 2 + Г 2 + 1

15.37. z — х 2 У

15.38. z - l n ( l  + А-2 -г / ) .

15.39. Методом наименьш их квадратов найти эмпирическую 
юрмулу -  ах +- b для функции, заданной следующей таблицей:

А ' 0,5 1,0 1,5 2,0 2,5 3,0
V 0,7 1,7 1,6 3,1 ,_ 3 ,6 | _  4 ’6

Изобразить на графике эмпирические значения и прямую.
15.40. Методом наименьш их квадратов найти эмпирическую 

формулу у -a x + b  для функции, заданной следующей таблицей:

V -0 ,2 0,2 0,4 0,6 | 0,8 1.0
.V 3,2 2,9 1,8 1,6 | 1,2 0,7
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Изобразить графически таблично заданную и соответствую­
щую линейную  функции. П о формуле у=ах+Ь  вычислить значе­
ние переменной у  при  а'И), 1.

15.41. Ф ункция полезности для инвестора задается квадра­
тичной зависимостью  и (г, о) =  г —ка -yio2 (где г  — ожидаемая до­
ходность портфеля, а о — риск), а граница области D (см. рис. 
15.23) есть прямая г = а + Ь а .  Определить наиболее предпочти­
тельный для данного инвестора уровень риска.

15.42. Курс ценной бумаги изменялся два раза: на г х процен ­
тов и на г 2 процентов. Выразить общ ий рост курса ценной бума-

изменения курса. Имеются ли у полученной функции критиче­
ские точки? Расш ирить область определения функции на всю 
координатную  плоскость (г, а). Н айти критические точки в этом

случае и определить их характер.
15.43, Н айти коэф ф ициент эластичности замещения для п ро­

изводственной ф ункции Кобба — Дугласа.

_ П + г2ги через две характеристики: г = --------- — среднюю доходность и

характеризующую разброс значений



Приложение 

Глава 16. КОМПЛЕКСНЫЕ ЧИСЛА
Комплексны е числа возникаю т в связи с задачей реш ения 

квадратных уравнений. Так, оставаясь в множестве действитель­
ных чисел, невозможно реш ить квадратное уравнение, дискри ­
минант которого меньше нуля.

Комплексны е числа необходимы в различных приложениях 
математики. В частности, теория ф ункций комплексной пере­
менной является действенным инструментом при использовании 
математических методов в различных областях науки.

16.1. Арифметические операции над комплексными 
числами. Комплексная плоскость

Комплексным числом называется выражение вида г =  х  +  iy, где 
х  и у  — действительные числа, i — мнимая единица.

Число л: называется действительной частью числа z и обозна­
чается Re(z) (от франц. reele — “действительны й” ), а число у  — 
мнимой частью числа z и обозначается Im(z) (от франц. imaginai- 
ге — “м н и м ы й ” ), т.е. A=Re(z), y - l m ( z ) .

Действительное число х  является частным случаем ком плекс­
ного г =  х + iy при у  — 0. Комплексные числа вида z =  х + iy, не 
являю щ иеся действительными, т.е. при у =  0, называются мнимы­
ми, а при х =  0 у *  0, т.е. числа вида z = iy — чисто мнимыми.

Ч исла z =  x + i y  и z = x - i y  называются сопряженными.
Д ва комплексных числа z \ = x j + iy\ и zj — х2 + iy2 называются 

равными, если равны их действительные и мнимые части, т.е. 
z ] =72, если Re(zj) =  R efo ), Im(zi) =  Im(z2). В частности z =  0, если 
Re(z) =  0 и Im(z) =  0.

А р и ф м е т и ч е с к и е  о п е р а ц и и  на множестве 
комплексных чисел определяются следующим образом.

1. С у м м а (ра з н о с т ь) комплексных чисел
Z\ ±22 = Х\ ±Х2+ i(y\ ±у2). (16-1)
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2. П р о и з в е д е н и е  комплексных чисел

Z\Z2 =  (*1*2 -У1У2) +  ‘(Х1У2 +  Х2У1 )■ (16.2)

В частности

/2 =  (0 +  /1 )(0 +  Я ) =  (0 - 1) + /(0 +  0) =  - 1 , 
т.е. мнимая единица есть число, квадрат которого равен —1.

3 . Д е л е н и е  двух комплексных чисел

Z x (Х 1Х2 + У 1У2 ) +  /(Х 2>'1 - Х 1У2 ) ,
—  = -----------------j------2----------------(*2*°)- (16.3)22 Х22 +у2

Нетрудно убедиться в том, что все арифметические операции 
(16.1) — (16.3) над комплексными числами определяются естест­
венным образом из правил сложения и умножения многочленов 
X] +  iy\ и Х2 +  iy2 , если считать / 2 =  -1 . Н апример, произведение 
комплексных чисел (16.2) есть

2 ^ 2  =  (X! + iyx) (х2 + iy2) =  (Х1Х2 + 12У\Уг) + К*\У2 + т ’\)=

=  (XjXi -  У 1 У 2 )  +  /(Х1У2 +  Х 2 У 1 ) .

Пример 16.1. Даны комплексные числа z\ — 12 + 5/, z2 — 3 — 4/. 
Н айти 2 ] ± Z 2 ,  2 ]22, 2 j/z2.

Р е ш е н и е .  2 ]+ z2 =  (12 + 5/) +  (3 — 4/) =  15 +  /  

z\ z2 = (12 + 5/) - ( 3  -  40  =  9 + 9/. 

z {z2 =  (12 +  5/) (3 - 4 0  =  36 + 15/ - 4 8 /  - 2 0 / 2 =  56 -  33/
(учли, что / 2 =  -1 ) .  

zj 12+5/
—  ■ Умножая числитель и знаменатель на сопряж ен­

ное делителю  комплексное число 3 + 4 / ,  получим

2j (12+5/)(3+4/) 36 + 15/+48/+20,7̂=73-47)(3+4/7 = 9-Тб/
16 + 63/

= -------------- 0,64 4  2.52/. ►
25
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Если для геометрическою  
изображения дей ствительных 
чисел используются точки чи­
словой прямой, то для изображ е­
ния комплексных чисел служат 
т о ч к и  к  о о р д и н  а т н  о и 
п л о с к о с т и  Оху.

Плоскость называется ком 
плексной, если каждому ком 
плексному числу г -  .v i iy ставит­
ся в соответствие точка плоско 
сти z(xy), причем это соответст 
вис взаимно однозначное (рис. 
J6 . 1 ).

Оси Ох и Оу, на которых расположены действительные числа 
z =  x + 0 i = x u  чисто мнимые числа z -  0 -t- iy — iy, называются со о т ­
ветственно действительной и мшшой осями.

Рис. 16.1

16.2. Тригонометрическая и показательная формы 
комплексного числа

С каждой точкой z (,v,j’) комплексной плоскости связан ради­

ус-вектор этой точки (h  , длина которого г называется модулем 
комплексного числа z и обозначается Ы  (см. рис i6 .li:

г -\z\  -> у ~ .  (16.4)

Угол ф, образованный радиусом-вектором Or с осью Ох. н а­
зывается аргументом комплексного чис-ш г и обозначается Лги-г. Из 
значений cp =  A r g 2 выделяется г л а в  н  о е значение arg 2 , удовле­
творяющее условию - -  я  < arg /  & и. Например. aig5 -  0, aig ( -3 /)  -  
=  —л/2 , arg (1 — /) =  -л /4 .

Очевидно (см. рис. 16.1), что

х — г c o s  ф , > > ~ r s i n < p .  ( 1 6 . 5 )

Следовательно, комплексное число г -- х *- /> можно предс та­
вить как

2 “ Г(С0Ьф1 /Н1Пф). (16.6)
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z,+z,
Представление комплексного 

числа в виде (16.6), где 
г  =  \z | > 0, ф =  Arg z, называется 
тригонометрической формой комп­
лексного числа.

Сформулируем некоторые 
с в о й с т в а  арифметических 
операций над комплексными ч и с­
лами.

1. При сложении (вычитании) 
комплексных чисел их радиусы - 
векторы складываются (вычита- Рис. 16.2
ются) по правилу параллелограмма.

На рис. 16.2 показаны радиусы-векторы комплексных чисел 
Z] и z2, их суммы z\ + z2 и разности z\ ~  z2.

2. Модуль произведения (частного) двух комплексных чисел равен 
произведению (частному) модулей этих чисел, а его аргумент — 
сумме (разности) аргументов этих чисел, т.е.

если z =  zjz2, то \z\ =  Г\Г2 =  \г\

Arg 2 =  ф! + Ф2 =  Arg Zi +  Arg z2; (16.7)

если z = —  (z2 * 0 ), то 
z2

n
r2 |z2| 

Arg z =  ф ,-  ф2 =  Arg Z]

(r: M ) ,

Arg z2. (16.8)

Геом етрически умнож ение числа z\ н а  z2 означает и зм ен е­
ние длины  радиуса-вектора (или г2) в г2 (или г\) раз и его 
поворот вокруг точки О против часовой стрелки на угол ф2
(ИЛИ ф ] ) .

Г: Пример 16.2. К ом плексны е числа z\ — —1+/, z2 =>/3 +/ 
представить в тригоном етрической  форме и найти  ziz2 и z\ /zj .

Р е ш е н и е .  П о формуле (16.4) найдем  модуль к о м п л ек с ­

ного числа z\. Г\ = Ы  = 7 ( - ! ) 2 + 12 = ^ 2 , а из соотнош ений  (16.5) 

COS ф = -  1/V2, вШф = l/V2 получим аргумент числа z\ (берем его

г-{  Зл Зл'
главное значение): ф[ =  argzj =  Зл /4 , т.е. zj =V 2^cos— + i s in -
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Аналогично r2 = |z21 = Ш 2 + 1= 2, cosq>2 = > /з/2 , sin ф2 1/2,

т.е. ф2 =  argZ 2 =  7г/6 и z 2 = 2|^cos^-+/sin 

Теперь по  формулам (16.7) и (16.8)

ZiZ2 = у[2-2
3 я  я^| f  Зя 71

C0S|T + 6 J +/S4 T + 6

Г-( 11я 11я
= 2V2I cos— +/sin  —

z\ -Д
z2 2

Зя Я^ f  Зя 71
cosit - 6 J + /s4 t ^

V2  Г 7я 7я^
= —  cos —  + / sin —  .

2 I  12 127

Так как в соответствии с формулами (16.7) и (16.8) при ум­
ножении комплексных чисел их модули перемножаю тся, а аргу­
менты складываю тся, легко получить формулу в о з в е д е н и я  
комплексного числа в н а т у р а л ь н у ю  с т е п е н ь  п, и з­
вестную как формула Муавра:

[/•(coscp +  /sincp)]'' =  /-/,(cos«(p +  /smrt(p). (16-9)

[>Пример 16.3. Найти ( - 1 + /)20.
Р е ш е н и е .  В примере 16.2 мы получили, что -1  + / =

. Поэтому по формуле М уавра (16.9)
1—1 Зя 71

= V2 cos —  + / sin —

/ * .\20 
( - 1 + О 4 2

г Зя Зя^ 
cos —  + / sin —

4

20

- { S f cos
Зя

2 0 ------- 1 +  1 s in
4

20-
Зя

= 1024 (cos 15я + / sin 15я) = 1024 ( -  1 + 0/) = -1024. ►

Обратимся к и з в л е ч е н и ю  к о р н я  из комплексного 
числа.
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tfz = p(cos \|/+■i sin у).
Тогда, используя определение корня и формулу М уавра 

(16.9), получим

z = [p(cosv| /+i  sin vj/)]” = p« (cos«i|/ + / sin n\\>)

или

r  (cos ф + / sin ф) = pn (cos n\\> + / sin щ ).

Отсюда следует, что
р” =  /• и я у = ф  +  2 пк, где к е  Z.

I— ф “t" 2>Ttk
Итак, р = \ г  и ц) = ------------, к  е Z ,

Пусть

т.е.

tfz =^jr[coS(p+isin(p) = ̂ c o s ~ - — + /s in -^ -^— j ,  (16.10)

где к  =  0, 1 ,2 , ..., и —1.
При Л =  и, п + 1, ... значения корня уже будут повторяться. 
Таким образом, корень п-ой степени из комплексного числа (не 

равного нулю) имеет п различных значений.

О Пример 16.4. Н айти y j - l  +  / .
Р е ш е н и е .  В примере 16.2 было получено

z = - l + /  = V 2 ^ c o s - ^ + /s in ^ j .  П о формуле (16.10)

VTT7 = ^ V f ( c o s 37l/43+ 2- - -  + / Sm ^ ^ ] ,  *  = 0 ,1 ,2 ,

откуда получаем три значения корня

zx =(^1+7)1 = ^ 2 [ c o s ^ + /s in ^ ) ,

22 =(Vi+7)2 =^cos-^-+/sin^
— \ f - f - f  19л  19л23 =(>/l+7)3 = v2[̂ cos— +/'sin“
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Н а комплексной плоскости н ай ­
денные значения корня представляют 
равноотстоящие друг от друга точки z\, 
z2, расположенные на окружности
радиуса л[2 (рис. 1 6 .3 )>

Связь между тригонометрическими 
и показательными функциями вы ра­
жается формулой Эйлера*.

Е® =  cos ф +  /sin  ф. (16.11)

Отсюда следует показательная фор­
ма комплексного числа:

z =  re ‘\  (16.12)
где г -  \г\, ф =  Arg z.

В заклю чение отметим, что в показательной форме, так же 
как и в тригонометрической, легко проводить операции умноже­
ния, деления, возведения в степень, извлечение корня из ком ­
плексны х чисел.

У П Р А Ж Н Е Н И Я

16.5. Даны комплексны е числа z t = 5  —12/, z2 ~ ~ 6 +  8/. Найти
Z j + Z 2 , Z X~ Z 2, Z \Zl , z xj z 2.

16.6. Комплексны е числа z x — 1 -  /, z2 -  —л/3 — / представить в 
тригонометрической форме и найти i \ z 2, и z \ / z 2 .

(1+/)100
16.7. Найти z = - г?рг.

(V J - /)

16.8. Найти все значения

1 В приводимом здесь частном случае формулы Эйлера ц> — действительное 
число.
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ОТВЕТЫ К УПРАЖНЕНИЯМ

ГЛАВА 1

1.14. 28000. 1.15. I 9. 13) . 1.16. Г2 °1 . 1.17.
\22  9J {0 У

1.18.

1.22 .

'7  0 0л
0 7 0
О 0 1)

1̂
13

. 1.19. 40. 1.20. 160. 1.21. 0.

'-1 2 17 -43^ f 5 2 0N
-1 11 -2 4 . 1.23. -  6 8 2

V-1 -4 4 v 4 0 5/

1 0 10'
6 -3  15

34 0 82J

1.24. {-8;1}. 1.25. 2.

1.26. 2. 1.27. 3. 1.28. 4. 1.29. 2.

ГЛАВА 2

2.11. (1; 2; 3). 2.12. (1; - 2 ;  0). 2.13. ( -2 ;  1; -1 ) .  2.14. (3; 0; ~2).  
2.15. (1; 1; 1). 2.16. (1; -1 ;  2; 0). 2.17. (I; I; 1). 2.18. Несовместна.

2.19. (14с; 21с; с; с), где с — любое число. 2.20. ( - с ( + 1
2 ’

-7  -1 5

. 2.23. Х =\ ^ 9°  ' 56°  433J  . 2.24. ( - 3 /5 ;  14/5; 0),

q  -  2 с2 + 2; q ; c 2 ), где q ; c 2 —любые числа. 2.21. ЛГ=

"-6 26^
2.22. ЛГ= 0 1

V 1 -4)

(19; 0; 14), (0; 19/7; 3/7). 2.25. ( -5 /2 ;  7/2; 0; 0), ( -5 /2 ;  0; -7 /2 ;  0), 
( -3 /4 ;  0; 0; 7/8), (0; - 3 /2 ;  0; 5/4), (0; 0; 3/2; 5/4). 2.26. (1; - 1 ;  2; 
0), (1; 0; 2;—1). 2.27. (4; - 4 ;  1; 0), (4; 0; 1; 2). 2.28. 25%, 20%, 15%.
2.29. .¥=(945, 6; 691, 2)'.

446



ГЛАВА 3

\AB\ = 3-s/2 . 3.16. cp=arccos(l 9 /2 1 )»25°. 3.17. 90°. 3.18. Да. 3.19.

Нет. 3.21. d = (2; -2 ;  1). 3.22. (x, y ) = - 4 , \ x \  =  S ; M  =  Vl5 . 3.23.

0 0 ' f -3  H'j
1 0 0 .  3.24. 6ex - l 9 e 2■ 3.25. -4 ex + le 2 + 7e3 . 3.26. .

\ - o  о у
lo  1 0J
3.27. (4c; - с ) , Л х =  1; ( q  ; - c t ), Л2 =~2 ,  где c*0, q  * 0 . 3.28. ( -2c;  c; 
c), Ax=\ ;  (O icjic ,), A2 =3; (6c2 ; - 7  c2 ; 5c2 ), A3 = - 3 ,  где Ы ),

С | , 0 , с2 , 0 . 3 . 2 9 . Р  5° ) . 3 . 3 0 . f J  °

3.14. 40. 3.15. OC = ( l ;  ~2;  1), A B = ( ~ U  “ 4; D; \OC\ = S ,

3.31. Z = (X], x 2, x 3)
2 2 -3'
2 3 5

-3  5 - l J U 3J
х , . 3.32.

-1  1 2,5"
1 4 0,5

2,5 0,5 - L

3.33. L = ( y x, y 2) =  \ 9yx - 2 y l  -  \ b y xy 2 . 3.34. Положительно опреде­
ленная. 3.35. О трицательно определенная. 3.36. 15:10:6.

ГЛАВА 4

4.14. у 2 = 8(х -  2 ). 4.15. а) >'=3; б) х=2; в) у = х + 1. 4.16. а) Зх^-2>^- 
-7 = 0 ; б) х=3; в) у=1. 4.17. А (2; -1 ) , В (-1 ; 3), С (2; 4). 4.18. х-^=0; 

х+у— 2=0. 4 .19. VlO ; Зх+>’— 11 =0. 4.20. х/2~у/Ъ=\  или  -  

х/4+2у/Ъ=\ .  4.21. АЕ: 2^-5у+4=0; AD. х-2>+2=0; ^29 . 4.22. АС: 
2л^у+6—0; ВС: х~4у—4-^ ; СМ—2х-Ъу^~2—0. 4.23. х -у +  +2=0; х~  

5>>—6=0; х+у=0, х—2^=0. 4.24. 2х-у=0; л[5/б.  4.25.

х 2/36 + у 2/4  = 1. 4.26. а=6, А=4; Fx(2y[5;0), F2( - 2^5;0); е -  Л /З  .

4.27. д=2, *= >/3 ; Fx( - j 7 ; 0 ) ,  F2(y[7;0); e = V 7/2; y = ± ( f i / 2)x .

4.28. x 2/ \ 6 - у 2 / 9 —\. 4.29. (1; -5 ) ,  (0; - 4 )  и (2; - 6 ) ,  x = l,  y = -5 .

4.30. y 2 = - 9x; x 2 = - j .  4.31. /  =x, x = - l / 4 .  4.32. l/>/5 .
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ГЛАВА 5

5.8. *= (2 ,5 ; + о о ). 5.9. Х=(-*>-, 0 )и (0; 1). 5.10. Х = [ - \ \  0,5].
5.11. У =[-2; 2]. 5.12. К =[-0 ,5 ; 0,5]. 5.13. Четная. 5.14. Нечетная.
5.15. Нечетная. 5.16. Общего вида. 5-17. 7=71. 5.18. Т=2п.

ГЛАВА 6

6.18. оо. 6.19. 0. 6.20. 1,5. 6.21. 4. 6.22. 3. 6.23. -1 .  6.24. -1 .
6.25. -1 .  6.26. 0,5.6.27. 0. 6.28. 8. 6.29. 1. 6.30. 2. 6.31. 8. 6.32. -2 .

6.33. е2 . 6.34. 1. 6.35. оо. 6.36. 1 / 4 ё . 6.37. V e . 6.38. х=\  — точка 
устранимого разрыва первого рода. 6.39. Непрерывна. 6.40. х=1 — 
точка разрыва первого рода. 6.41. х=1 — точка разрыва второго рода.
6.42. а) 9,663 млн.руб.; б) 9,832 млн.руб.; в) 9,892 млн.руб.

ГЛАВА 7

7.20. 7.21. З2л-3 In2 а . 7.22. +
(х + 1) 3 V ?

А х

1.23. 7.24.
9х2 - ]

7.25. 2х -  За-2 -  1 
х ( х 4 - 1)

7.26. 3 

7.28.

1п(1 - х 2) - 2х
i - х 2;

.7 .2 7 . a  In а  (3 In а + 2).

1 Щ] ^ е 4х)2е4'7
. 7.29. 5с2х(а^2х + 3)4(2х + I ) .

7.30. a  In
1 -  А 

1 + А
+ 1. 7.31. (2 а  + 2х In 2) c o s  (x l  + 2 х ) . 7.32. -  2 c

7 33 sin cos х  ~ !) 7  3 4  1 -  sin а  • sin 2х 7 ^ 1
c o s 2 А

7.36. < r x ( c t £ \ '  + In sin а )  . 7.37.

sin х VI + ел
1

7.38.
Sill А
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/

7.44. gcos* ( c o s x - s in 2 x ) ;  - 1 .  7.45. г - Ц г - ; 0,5. 7.46. a) x + 2 y -
2 cos 2x

-4 = 0 ; 6) y=  2. 7.47. a) jH -l=0, 6x+>H-4=0; 6) 12x+4.y+l=0, 1 2 x - 
—3 6 ^ 4 9 = 0 ; в) 4 x - y - 9=0, 4xH-y+l=0. 7.48. 4;r-y -4= 0 , 12x+9y+4=0.

7.52. n\ 7.53. a*(ln a)n . 7.54. 43 ед./ч. 7.55. 9 ден.ед.; 7 ден.ед.
7.56. a) 3 ден.ед.; 6) Ep( q ) =—0,75; -ЕДлО =1; в) +1,25%.

ГЛАВА 8

8.19. 1. 8.20. - 4 .  8.21. 4/7. 8.22. 3. 8.23. 0. 8.24. 1/2. 8.25. оо.
8.26. >'max( - l )  =  12, >’min(7/3) = 304/27. 8.27. Экстремумов нет.

8.28. у тах (е 2) = 4 / е2 , j min(l)= 0 . 8.29. Экстремумов нет.

8.30. у тах[(2Л + 1)л]=1пЗ, ,ymin(2foi)=0. 8.31. ^ min(l)= e .

8.32. >’„аиб.(3)=9, >'наим.(1)=-3. 8.33. у „аиб. не существует; 

У найм. =  Vl +<? • 8.34. 16 м и 32 м. 8.35. r=h=p/ (4+n),  где г — ради­
ус полукруга, h — высота прямоугольника. 8.36. Точка перегиба 
(1/2; 29/2); кривая выпукла вверх на ( —ос; 1/2), выпукла вниз на 
(1/2; +ос). 8.37. Точка перегиба (1/2; 1 /2 —1п2); кривая выпукла 
вверх на (0; 1/2), выпукла вниз на (1/2; +ос). 8.38. Точка перегиба 
(2; -1 6 ) ; кривая выпукла вверх на (-оо ; 2), выпукла вниз на (2; 

+ос). 8.39. Точка перегиба (—2; —2е 2 ); кривая выпукла вверх на 
(-о с ; - 2 ) ,  выпукла вниз на (—2; + х ) .  8.40. Точки перегиба (—

1/V2 ; е 1/2) и (1 /V 2 ; е 1/2) ; кривая выпукла вверх на ( -1 /V 2  ; 

1/л/2 ) и выпукла вниз на (—о о ;-1 /^ 2  ) и (1/V2 ; +оо). 8.41. х = — 
2/5; у =  = —4/5. 8.42. у = — 1. 8.43. х=1, х = —1, у = —1. 8.44. ^=3х.
8.45. А симптот нет. 8.46. >’mjn( - l  / 2 )  = - 1 /4 ,  ф ункция убывает на

7.49. 0,13 м/с; -0,026 м /с2 . 7.50. -  2-  У
х + 2у

7 5 1  gx sin у + g -v sin x 
e* cos у + e~y cos x
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(-оо; - 1 /2 ) ,  возрастает на ( -1 /2 ;  +оо), выпукла вниз на (-оо; +оо). 
8.47. Асимптота х=0; УпиП(-1 )= 2 , ymin(l)= 2 , ф ункция убывает на 

(-оо; —1) и на (0; 1), возрастает на (—1; 0) и на (1; +оо). Выпукла 
вниз н а  (—оо; 0) и (0; +оо). Точек перегиба нет. 8.48. Асимптоты 
л = —1, >’= х -5 ; _vmax (—5) = -2 7 /2 ,  ф ункция возрастает на (-оо; - 5 )  

и  на (—1; +оо), убывает на ( -5 ;  —1). Выпукла вверх на (—оо; - 1 )  и 
на (—1; 1), выпукла вниз на (1; foo). Точка перегиба (1; 0).
8.49. утах (2)=32, (6)=0, функция возрастает на (—оо; 2) и на

(6; +оо), убывает на (2; 6). Выпукла вверх на (—оо; 4), выпукла 
вниз на (4; +оо). Точка перегиба (4; 16). 8.50. Асимптоты jc=0, 
У^  Утш (3)=4, у тах ( - 3 ) =  = - 4 ,  ф ункция возрастает на (-оо ; - 3 )  

и на (3; +оо), убывает на ( -3 ;  0) и (0; 3). Выпукла вверх на (—оо; 
0), выпукла вниз на (0; +оо). Точек перегиба нет. 8.51. П равосто­
ронняя асимптота у=0; у тах(~ 1)—е, ф ункция возрастает на (—оо; 

— 1), убывает н а  (—1; +оо). Выпукла вверх на (—ос; 0), выпукла 
вниз на (0; +оо). Точка перегиба (0; 2). 8.52. ymjn (0 )= l, ф ункция 

убывает на (—оо; 0), возрастает на (0; +оо). Выпукла вниз на (—оо;— 

V 2 /4 )  и на (л /2 /4 ; +оо), выпукла вверх на ( - л /2 /4 ;  - V 2 / 4 )  . 

Точки перегиба ( -  V2 /4 ; л[е ) и ( л/2 /4 ; л[е ). 8.53. Асимптота 
Х=1; Угтп(е) ~ е> ф ункция убывает на (0; 1) и (1; <?), возрастает на 

(е, +оо). Выпукла вверх на (0; 1) и выпукла вниз на (1; +оо). Точка 

перегиба (е2, е/2).  8.54. R >27. 8.55. g = л[б/4 * 0,61.

ГЛАВА 9

9.6. Ау=Дх[з(х2 + (х -  1)Дх -  (2х  -  1)) + Дх2] ; dy= 3 (х -1 )2 Дх; при

^ 2 ,  Дх=0,01 Ду=0,030301, л^=0,03. 9.7. Дy = J l  + (x + Ax)2 - V l + x 2;

dy=x  Д х /Vl + х 2 ; при х=0, Дх= = -0 ,0 1  Д.у=0,00005, dy=0. 9.8.
2,02. 9.9. 3.03. 9.10. 1,03е*2,8. 9.11. 1 + 0 ,2 7 2 /^ 1 ,1 . 9.12. 0,1. 9.13. 
л /4 - 0 ,005*0,78. 9.14. 5%. 9.15. 15,5%.
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ГЛАВА 10

10.29. ± х ^ - Ц х У 7  + ± 1 1 х * + С.

1 0 .3 0 .--^ = ! 1 + - х - | х 2 + 4 * 3 | + С .  10.31. | е 2х - е х + Х  +  С .

10.32. х+2  In

1

+ С . 1 0 .3 3 .- | л / 2 - 5i x + c .

10.34.

10.36.

х  +1

( 2 x + 5 ) lz 5(2jc + 5)

1
8>/2

In

11
+ С . 1 0 .3 5 . | ln ( l  + x 2) + C .

4 -  Л

x U S

l .
6

+ C .  10.37. ^ e 2x +1+ C .

10.38. ln(2 + ex ) + C . 10.39. | ( - 2  + l n x}J \ + \ n x + C .

10.40. In (sin л + Vl + sin2 x)  + С . 10.41. x ln  2 +1 
2X In2 2

+ C .

ln x  1 „Зх
10.42. + С. 10.43. ^ - ( 9 x 2 - 6 x  + 2) + C.

2x 4x 27
1   Y  1 4 - V

10.44. x ln  x -  2 x ln x  + 2x + С . 10.45. x  — In
1 — x

- + C.

10.46. x  sin x fc o s  jc+C. 10.47. —In
3

x -1

10.48.
2л/35

In
y f l - S x

x + 2 

+ С . 10.49. In

+ C .

x l  - 4 3 . 
~ 4 1П

10.50. ~ ln
4

x -1
x + 3 

2

>/7 + V5x 

+ C . 10.51. In Ix—2 1 +ln Ix+5 | + C.

2 -  x
2 + x

+ C.

10.52. l l n (* + 3* + 2H * t i>  + c .  10.53. x+31nlх^Ъ | —3 InIл.'—2 I +

1
(x + lX 

x + 2
+ C. 10.54. -^ a rc tg

V5 V5
+ C . 10.55. - - ^ ( 3 2 +  8 x  + 3 x 2 ) V 2 - x  +  C .

10.56. 2 < J x - l n ( l + J x )  + C.  10.57.
(1 + 1 +

+ C .
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10.58.

10.59.

10.60.

10.62.

х 2 х у х 2 - 1  1
+ 2 ,П

X + + С.
2 2 

2-Jx -  Зл/х + 6§[х -  6 In (§[х + 1) + С .

2 -  2arctg
1 -  х  V 1 -  х

+ С . 10.61. х -2 > [ х +  In (yfx + 1)2 + С .

arcsin x— Vl -  x 2 + С . 10.63. —  x + ln |3 + 2x\ + С .
П
4

10.64. 2 л / х
In х

10. 66 .

10.6 8 .

10.69.

10.70.

+ С .  10.65. In

2 sin Vx + С . 10.67. (x -  sin x) + С .

4 e x + \  -  1

yjex +1 +1
+ C

— x 3 -  2x -  — ln 
3 2

x -1 + C .
x  +1

x + 4Vx +1 + 4 ln jVx +1 -  lj + С .

2 2^ x 2 x
- - -  ln (3 x  + 2 ) -  —  + -  + C . 
1 9 ,  4 3

ГЛАВА 11

11.25. 33 j .  11.26. 7/4. 11.27. -2 /3 .  11.28. ln 2. 11.29. -1 2 ,5 .

11.30. ln3/2. 11.31. 1/3. 11.32. 6 -3 n /2 + 6 a ic tg 2 . 11.33. 1/2.
11.34. (4 - ln 5 )/5 . 11.35. (8/3) ln 2 -7 /9 . 11.36. n. 11.37. ln(9/8).

11.38. In (4/3). 11.39. 21n2—1. 11.40. л /6 + 1 - V 3 / 2  .11.41. 2 -ln  2.
11.42. 17/6. 11.43. 7/6 (ед.2). 11.44. 3 /2 -ln 2  (ед.2). 11.45. 9/2 (ед.2).
11.46. 8/3 (ед.2). 11.47. (15 -16  ln 2)/4(ед.2). 11.48. 5/3 (ед.2). 11.49. 
(6е—5)/3 (ед.2). 11.50. 3/2 (ед.2). 11.51. 8/9 (ед.2). 11.52. 1 (ед.2).
11.53. 256л/15; 8я (ед.3). 11.54. л( е 2 - 1 ) / 2 ;  2л (ед.3). 11.55. 
17 8 л /15; 21 л /2  (ед.3). 11.56. 6л/7; Зл/5(ед.3). 11.57 1/2. 11.58- 

1/1п2. 11.59. 1/2. 11.60. 3/2. 11.61. Расходится. 11.62, 6 ^ 2 .

11.63. ^4,53 ден. ед. 11.64. 23,98 ден. ед.
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12.28. у " -  у '~ 2 у= 0 . 12.29. х = —~ = .  12.30. у = 1 +  - ^ - .
V T v  1+х

12.31. х 2 + у 2 = 1п(Сх2). 12.32. > = С ( х + 1 ) ^ .

12.33. 1 п |х |= С + - ^ 2 +1 ,х = 0 . 12.34. у 2 - 2  = Се1/Х .

12.35. у 2 + х 2 -  2х = С . 12.36. y = - lg  (С -10*  ).
12.37. 2х+у-1  =  Се * .  12.38. 5 x + 1 0 y + 0 3 1 n  I 10х-5у+61.

12.39. у=х  In -  . 12.40. х=Се*/У; у=0; 12.41. (х -  С)2 -  у 2 = С2 . 
х

12.42. т]х/у + In |у| = С, у=  0. 12.43. х = (у—х) In С (у~х),  у=х. 12.44.

е~у/х+ In Сх 12.45. у=Сх+ х 2 . 12.46. у = \ х 4 + С /  х 2 .
6

12.47. х=  Су2 -  1 / у . 12.48. y = (* + Q  е* .

12.49. у = е 2х!8 + Q x 2 + С2х + С3 . 12.50. у = С х In |х| -  —  + С2 .

12.51. у  — -^Tn|y| = х  + 1. 12.52. у 3 -  у  = Зх .

12.53. у =  Схе2х + С2е 3х . 12.54. у=  (С, + С2х)е х .

12.55. у = е х/6(Сх c o s ^ ^ -x  + С2 s in ^ ^ -x ) .
6 6

12.56. у =  е~2х (С, cos Зх + С2 sin З х ) .

12.57. у =  (Сх + С2х)е2х + -  (2х2 + 4х + 3).
8

12.58. у =  (Сх + С2х)е х + Х- е 2х . 12.59. у=  Схех + С2е 1х + 2 .

12.60. у = С хех + С 2е~х + ^ х е х . 12.61. у = { 7 - З х ) е ^ 2 .

12.62. y=2cos A^5sin х + 2 е х . 12.63. у = е 2хЛ -  2ех + е -  1.
12.64. у - е ~х(х -  s in x ) . 12.65. Оставшееся количество вещества

х(/)=х(0)*Г^20 ; х(/)=0,01х(0) при t= 60/lg 2*200 дней. 12.66. 
у = 3el-2t/ ( l + 2 e 1’2f); J<2)*1,43.

ГЛАВА 12

12.25. х у ' -2 у = 0 .  12.26. у -2 х у '= 0 .  12.27. Ъу2 -  х 2 = l x y y '.
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13.16. и„ = — - .  13Л7. и. = (Я + 1), . 13Л8. 0,75. 13Л9. 1/3.
" п + 2 (« + 1)2 +1

13.20. Расходится. 13.21. Расходится. 13.22. Сходится. 13.23. Рас­
ходится. 13.24. Расходится. 13.25. Сходится. 13.26. Расходится.
13.27. Сходится. 13.28. Сходится. 13.29. Расходится. 13.30. Схо­
дится. 13.31. Расходится. 13.32. Сходится условно. 13.33. Схо­
дится абсолютно. 13.34. 0,09. 13.35. 0,63. 13.36. Сходится абсо­
лютно. 13.37. Сходится. 13.38. Расходится. 13.39. Расходится.
13.40. Сходится. 13.41. Сходится абсолютно. 13.42. Сходится
абсолютно. 13.43. Сходится. 13.44. Расходится. 13.45. Сходится
абсолютно.

ГЛАВА 13

ГЛАВА 14

14.10. [ -1 ; 1). 14.11. (-1 /V 2 ; 1/\/2 ). 14.12. {0}.
со

14.13. ( -  л/2/ 3 ; >/2 /3). 14.14. [3; 5]. 14.15. (-4 ; 4). 14.16. /« •'
И = 1

ГГ СО

14.17. £ ( - 1  )"-1х 2п+1/ п .  14.18. 1 + Х (-1)«2^-1л-2«/(2я)!
п \ п =  1

ОС

14.19. 14.20. 0,8899. 14.21. 0,0953. 14.22. 0,3894.
п=1

14.23. 5,0658. 14.24. 1,0986. 14.25. 0,7635. 14.26. 0,5031;
5=0,00008. 14.27. 0,24479; 8=0,000005.

ГЛАВА 15

15Л7. у =  2 х / ( х 2 +О с + 1). 15.18. у = ( С  -  х 2) / ( С  + х 2) .

15.19. _у=С(1п х)/х. 15.20. у= Сх / { \ Мп  л;). 15.21. у = ( х ~ С ) е х .
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15.22. у  = хес ~х2. 15.23. z'x = 3х 2у 2 -  2у г , z'y = 2х гу  -  6ху2 .

15.24. г'х = 2 х /  {х2 + 2у3) , z'y = 6у 2/ ( х 2 + 2у 3).

15.25. z'x = 2 х у { \ + х 2)у /(1  + х 2), z'y = (1 + х 2)у In (1 + х 2).

15.26. z'x = е~л'2>,(1 -  2х2у  + 2 х ) , z'y = е~х2у ( х 2/ у  -  х 3 + 1/у2).

y*Jx2 + 1  -  x J y 2 + 1  +1
15.27. z ;  = т  , х ------------- ,

(х + \ У 2 +1)  (W * 2 + 1 + X2 + 1)

У \х ^ ~ Т -  Хд/у2 + 1 -  1
Z

z'y = x l n хЛ у / у .  15.29. ( -2 ;  - 2 )  — точка минимума. 15.30. (8/5;

16/5) — точка минимума. 15.31. Критическая точка (1; 2), доста­
точное условие экстремума не выполняется. 15.32. Критических 

точек нет. 15.33. z HaHб. =1 в точках (0; 1) и (1; 0), z H£UIM. = — 1 в 

точке (0; —1). 15.34. z Hail6 = 5 /4  в точке (3/4; 1/4), г „ аим =0 в точ­

ке (0; 0). 15.35. (8/3; 7/3). 15.36. Ф ункция выпукла вверх.
15.37. Ф ункция невыпукла. 15.38. Ф ункция выпукла вниз.

15.39. у=1,525х—0,12. 15.40. у= -2 ,1 8 6 л +  2,92; j<0,1)=2,7014.

15.41. п=(Ь~к)/2\х.  15.42. z  - 2 г  + 2 г 2 -  ( 2̂/2.  К ритическая точка 

(—I; 0) — седловая. 15.43. 1.

ГЛАВА 16

16.5. -1 -4 /;  11-20/; 66+112/; -1,26+0,32/. 16.6. (2>/2](cos(l 1л/12) + 

+/sin(ll7i/12)); |l/-s/2j(cos(7п/12 )+ /sin(7л /12)). 16.7. -  1/2 + (а/з Д )/.

16.8. (l/V 2)(l + /); 1 + /); [ х / Щ -  1 -  /); [ \ / Щ \  -  /).

 т= -, —— -------------------. 15.28. z'x = (In у)  In In у ,
(у + V x2 + 1 ) ( x J y 2 + 1 + у 2 + 1)



Алфавитно-предметный 
указатель

Абсолютная величина 124, 125 
Аксиома 6
Аксиоматический метод 6 
Алгебраическое дополнение 20 
Антье 165 
Аргумент 125, 397
— комплексного числа 440 
Асимптота 229-232
— вертикальная 229-231
— горизонтальная 229-231
— наклонная 229, 231, 232 
Асимптоты гиперболы 110 
Ассоциативный закон умножения 
матриц 16

Базис 72, 73
Базисное решение 49—51 
Базисные строки 34 
Базисный минор 34 
Балансовый анализ 56—60
 , вектор валового выпуска 58
 ,— конечного продукта 58, 60
 , коэффициенты прямых затрат 57
 , матрица полных затрат 58, 60
 , — прямых затрат 58, 59
 , основная задача 58
 , продуктивная модель 59
 , соотношения баланса 57
 , стоимостный межотраслевой

баланс 57
Бесконечно большая величина 150, 153
 при х -» лф, х  -> ос 150, 151
Бесконечно большие величины, 

свойства 151, 152
-----------. связь с бесконечно малыми

152, 153
Бесконечно малая величина 147, 148
---------- более высокого порядка 150
  низкого порядка 150
 одного порядка 150
 при х  -» ду, х  -> х  147, 148

Бесконечно малые величины, свойства 
148-150
 , связь с бесконечно большими

152, 153
----------- эквивалентные 150
Беспорядок 18, 19 
Биномиальный ряд 386, 387 
Бином Ньютона 387

Вариационное исчисление 417 
Вектор 63
— нулевой 63, 69, 71
— л-мерный 68
— противоположный 64
— столбец 10
— строка 10
Векторное пространство 69 
Величина постоянная 125
— переменная 125 
Вершина параболы 113 
Вершины гиперболы 109
— эллипса 107
Вклад ученых в развитие математики 8 
Вогнутая функция 226 
Возведение в степень комплексного 
числа 442
----------- матрицы 14, 15
— ряда в квадрат 394 
Возрастание функций, достаточное 
условие 216, 217
 , необходимое условие 217
Возрастающая функция 127
Вторая производная 194
Второй дифференциал 249
Второй замечательный предел 157—158
Выпуклая функция 226
— вниз функция 226, 227, 416
— вверх функция 226, 227, 416 
Выпуклое множество 416 
Выпуклость функции, достаточное 
условие 227
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 , необходимое условие 227
 , схема исследования 228

Геометрия Евклида 5
— Лобачевского 6 
Гипербола 109—113
—, каноническое уравнение 109, 118
— равносторонняя 111
— сопряженная 110
—, характеристическое свойство 109 
Гиперповерхность 400 
Глобальный максимум 226, 414, 417
— минимум 226, 414, 417 
Градиент 409, 410
Граф ик ф ункц ии  одной перем енной 

126
 двух переменных 400, 401

Д во й н о й  интеграл 425-428
 , геометрический смысл 426, 427
Дедукция 7
Деление двух комплексных чисел 439 
Диагональ матрицы главная 11, 18
  побочная 18
Диаметр клетки 426 
Директриса параболы 114 
Дисконтирование 317 
Дифференциал 244-246
— второго порядка 249
—, геометрический смысл 245 
—, инвариантность формы 246
— и го порядка 249, 250
— независимой переменной 245 
—, оценка погрешности 248
—, применение в приближенных 

вычислениях 246-249 
—, свойства 246
— функции двух переменных 406, 407
-------------- , геометрический смысл 407
Дифференциальное исчисление 176— 
250. 397-425
Дифференциальное уравнение 325-355
 автономное 330
 второго порядка 340-350
-------------- допускающее понижение

порядка 340, 341
-------------- линейное 341-350
-------------------неоднородное 342, 345-350
-------------------однородное 342-345

 в частных производных 325
 неполное 334, 335
 первого порядка 328—340
---------------, геометрический смысл 329
-------------- линейное 339, 340
-------------- однородное 331, 332, 337, 338
-------------- с разделяющимися

переменными 335, 336
 , общее решение 326, 327
 обыкновенное 325
 разрешенное относительно

старшей производной 326
 , решение 326, 327
Дифференцирование 179 
—, основные правила 183 
—, таблица производных 192, 193 
Дифференцируемая функция 179—181 
Длина вектора 63, 66, 67, 77
 , свойства 77
Дополнение множества 124 
Достаточное условие 7, 8

Евклидово пространство 76—78 
в-окресгносгь точки 125

Зависимость между координатами 
вектора в разных базисах 75,76 
 непрерывностью и дифференци­

руемостью функции 180, 181 
Задача интегрирования дифференциаль­
ного уравнения 326
— сглаживания экспериментальных 

зависимостей 420-425
Задача о касательной 176—177
 непрерывном начислении

процентов 159—161
 скорости движения 177
 площади криволинейной трапеции

283, 284
 производительности труда 177,178
— об изменении численности населения 

327, 328
 оптимальном распределении

ресурсов 429 
 потреблении 429, 430
— потребительского выбора 429, 430

Извлечение корня из комплексного 
числа 442-444
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Изокванта 428, 429, 432, 433 
Инверсия 18, 19 
Индукция 7
Интеграл. См. соот. названия 
Интегральная кривая 326 
Интегральная сумма 284
 , геометрический смысл 284
Интегральное исчисление 283—324, 425— 
428
Интегрирование 253
— методом разложения 257, 258 
 введения переменных под знак

дифференциала 259
 замены переменной 258-262, 266,

272-276, 278, 279, 297, 298
— некоторых видов иррациональностей 

271-273
— по частям 263-267, 276, 277, 298, 299, 

319
— простейших рациональных дробей 

267-271
— тригонометрических функций 2 7 4 - 

275
Ингегрируемосгь функции, достаточное 
условие 287
Интегрируемая функция 285 
Интервал 124
— бесконечный 124
— сходимости 380-382 
Интерполирование 136—137
— квадратичное 137
— линейное 136—137
— обратное 137
И нтерполяционная формула 137 
Интерполяционные поправки 137 
Исследование операций 417 
Исследование функций и построение 
графиков, схема 232-235, 237-240

Касательная 176. 177 
Квадратичная форма 86—88
 , канонический вид 88
 . матричный вид 87
 положительно определенная 89
---------------, необходимое и достаточное

условие 90
 отрицательно определенная 89
---------------. необходимое и достаточное

условие 90

Квадратный трехчлен 114, 115 
Квантор общности 142
— существования 142 
Коллинеарные векторы 63 
Комплексная плоскость 440
 , действительная ось 440
 , мнимая ось 440
Комплексные числа 438-444
 , алгебраическая форма 438
 , показательная форма 444
 , свойства арифметических

операций 441
 сопряженные 438
 , тригонометрическая форма 440,

441
К омпозиция функций 132 
Координаты вектора 65, 73
— текущие 95
— точки 95
Коэффициент Джини 316 
Коэффициенты степенного ряда 379 
Кривая Гаусса 310
— Лоренца 316
Кривые безразличия 136, 429
— второго порядка 104
Критерий продуктивности матрицы 59
— Сильвестра 90, 91 
Критическая точка 219. 411

Л инейная модель обмена 
(международной торговли) 9 1 -93  
Линейная комбинация векторов 70
 строк матрицы 33
 функций 342
Линейное отображение 78 
—преобразование 78
— пространство 69, 70 
Линейно зависимые векторы 70, 72 
 строки 33, 34
 функции 342
Линейно независимые векторы 70
  строки 34
 функции 342
Линейный оператор 78-80  
Линия бюджетного ограничения 136 
Л иния уровня 401, 402, 428 
Логические рассуждения 6 
Логистическая кривая 353 
Локальный экстремум 214, 411
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М аксим альное число базисных 
реш ений 49
М аксимум функции 217, 410 
М аржинальная величина 195 
М атематика 5 
—, периоды развития 5, 6 
Математическая индукция 7
— интуиция 6
— модель 7
 демографического процесса 327,

328
Математические доказательства 6 
М атрица 9
— взаимная 27
— единичная 11
— диагональная 11, 22
— квадратная 10

— квадратичной формы 86
— невырожденная (неособенная) 26
— нулевая 11
— обратная 26
 , алгоритм вычисления 27—29
 . необходимое и достаточное

условие существования 26, 27
— оператора 80
— перехода к новому базису 74
— присоединенная 27
— продуктивная 59
— симметрическая 86
— системы 39
 расш иренная 46
— согласованная 12
— союзная 27
— столбец 10
 переменных 39
 свободных членов 39
— ступенчатая 31
— строка 10
— транспонированная 15
— треугольная 21 
Матричная алгебра 9 
Метод
— вариации произвольных постоянных 

345, 346
— Гаусса 44—47, 49
 , условие несовместимости системы

45
 . преимущества 49
— координат Декарта 6

— математики 6
— множителей Лагранжа 418—420
— наименьших квадратов 420—425, 434. 

435
— обратной матрицы 40, 41—43, 53, 54 
М инимум функции 217, 410
М инор элемента матрицы 19,20
— к-то порядка 29 
М нимая единица 439 
М нимые числа 438 
Многочлен 132 
Множество 123
— действительных тисе ! 124
— замкнутое 414
— иррациональных чисел 124
— натуральных чисел 124
— открытое 329
— пустое 123
— целых чисел 124
— числовое 124
— элементарное 427 
Множитель Лагранжа 418 
Модель
— естественного роста 351
— Леонтьева 56—59
— обмена (международной торговли)

9 1 -9 3
 , структурная матрица торговли 91
 , уравнение сбалансированной

торговли 92
— роста в условиях конкурентного 

рынка 351, 352
— экономической динамики 350—354 
Модуль вектора 63
— комплексного числа 440
— числа 124
М онотонная функция 127

Наибольш ее значение 224, 414 
Наименьшее значение 224, 414 
Наибольшее и наименьшее значения 
224-226
-------------- , схема нахождения 224
-------------- на интервале 225
-------------- отрезке 224, 225
-------------- ф ункции двух  переменных

414, 415 
Направленный отрезок 63 
Направляющие конусы 408
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Направляющий вектор прямой 121 
Натуральные логарифмы 159 
п-я частичная сумма ряда 357 
Невозрастающая функция 127 
Невязка 421
Н езависимость характеристического 
м ногочлена оператора от выбора 
базиса 83
Необходимое условие 7, 8 
- -  и достаточное условие 7, 8 
Неограниченная функция 151, 310 
Неопределенный интеграл 251-282
 , "неберущиеся" интегралы 280
 . свойства 253, 254
 , таблица основных интегралов 254,

255
См. также Интегрирование 
Неперово число 159 
Непрерывность функции в точке 161-
165
 , свойства 163—164
 на отрезке 165—166
 на промежутке 164
 двух переменных 403
Неравенство К ош и—Бунявскош 77
— треугольника 77 
Несобственный интеграл 307-312 
 , геометрический смысл 308
 от неограниченной функции 310—

312
 с бесконечными пределами 307-

310
 сходящийся 307
 расходящийся 307
Неубывающая функция 127 
«-мерное линейное пространство 72 
«-мерный вектор 68
 . компоненты 68
Нечетная функция 126, 137 
Неалементарная функция 132, 294, 295 
Норма вектора 77 
Нормальный вектор плоскости 119 
л-й остаток ряда 359, 371
— член последовательности 141 

член ряда 356

О&ластъ значений функции 126, 138,
139
-определения функции 126, 138

Образ вектора 79 
Обратная пропорциональная 
зависимость 111
— функция 131, 139
Общее уравнение прямой 100, 101
 , исследование 100, 101
Общий член последовательности 141
 ряда 356
Объединение множеств 123 
Однородная функция 337 
Окрестность точки 125, 385 
Окружность, нормальное уравнение 105, 
106, 119
Ограниченная функция 127 
Относительная скорость изменения 
функции 190 
Оператор 78
— линейный 78
— нулевой 81
— тождественный 81 
Определенный интеграл 284—286 
 , верхний предел 285
 , вычисление площадей плоских

фигур 299-304, 319-321
 , объемов тел вращения 304-306,

321, 322
 в экономике 315-318
-------------- , вычисление дисконтируемой

суммы 317
 , вычисление коэффициента

Дж ини 316
 объема продукции 315
 среднего времени 317, 318
 , геометрический смысл 286
 , достаточное условие

существования 287
 как функция верхнего предела

292-295
 , нижний предел 285
 приближенное вычисление по

формуле трапеций 312-315
 , приближенное вычисление с

помощью рядов 391, 394-395
 , свойства 288-292
 , экономический смысл 286, 287
Определитель матрицы 16-26
 диагональной 21, 22
 второго порядка 17
 л-го порядка 19
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 , свойства 22—26
 первого порядка 17
 третьего порядка 17, 18
 треугольной 21, 22
— произведения двух квадратных 

матриц 25
— системы 40 
Ортогональные векторы 77 
Ортонормированный базис 77,78 
Отрезок 124

П араметр 125
— параболы 113
Парабола, каноническое уравнение 113 
—, характеристическое свойство 114 
Параболоид 400 
Паутинообразная модель 136 
Первый замечательный предел 156,157 
Первообразная 251, 252 
Переменная зависимая 125
— независимая 125 
Переменные базисные 49
— неосновные 49
— основные 49
— свободные 49 
Пересечение множеств 123 
Перестановка 18
Переход к  новому базису 74—76 
Период 127
Периодическая функция 127 
Период математики переменных 
величин 5
— современной математики 6
— элементарной математики 5 
Повторный интеграл 427 
Показательный закон роста 160 
Подматрица 29 
Подмножество 123 
Подобные матрицы 81 
Подынтегральная функция 252, 285 
Подынтегральное выражение 252, 285 
Поле направлений 329 
Полуинтервал 124
— бесконечный 124 
Полином 132
Полуось гиперболы действительная 109 
 мнимая  109
— эллипса 107
Правило Лопиталя 212—215

— многоугольника 64
— параллелепипеда 64
— параллелограмма 64
— Сарруса 17, 18
— треугольника 64 
—треугольников 17, 18
Предел 141-147, 153-159, 166-174
— функции в бесконечности 143—145
 , геометрический смысл 144
 при х -> —со, при х -у  +=о 145
 в точке 145—147
-------------- , геометрический смысл 145,

146
 двух переменных 402, 403
 односторонний слева при х  -> хо

146, 147
------------справа при х  -» хо +0 146, 147
— числовой последовательности 141— 

143
 , геометрический смысл 143
Пределы, раскрытие неопределенностей 
167-174, 235-236  
Предельная величина 195
— производительность 195
— норма замещения ресурса 432, 433
— выручка 194
— полезность 195, 431 
Предельные издержки 194, 240, 241 
Предельный анализ 195
— доход 194, 195, 240, 241
— продукт 194, 195 
Преобразование 78
— графиков 132—134
Признаки существования предела 155, 
156
П ризнак сходимости 360
 Даламбера 365-367, 375
 знакопеременного ряда 371, 372
 интегральный 367-369
 Лейбница 369-371, 376
 , оценка остатка знакочередую­

щегося ряда 371
 необходимый 360, 361, 374, 376
 и  достаточный 360
 сравнения 362-364, 374, 376
 предельный 364, 365, 375
Произведение вектора на число 63, 68
— комплексных чисел 439
— линейного оператора на число 80
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— линейных операторов 80
— матриц 12—14
— матрицы на число 11, 12 
Производная 178—208
— второго порядка 194 
 , механический смысл 194
— в экономике 194-199, 204-206 
 , закон убывающей доходности

241
 ,  полезности 242
 , условие оптимальности

выпуска продукции 241
------------, — наиболее экономичного

производства 241
— третьего, п-го порядка 194 
—, геометрический смысл 178
— логарифмическая 190
— логарифмической функции 188,189 
—, механический смысл 179
— неявной функции 193
— обратной функции 187
— по направлению 408, 409
— показательной функции 189
— сложной функции 185-187
— степенной функции 181, 182, 189, 190
— степенно-показательной функции 190 
—, схема вычисления 181
— тригонометрических функций 192 
—, экономический смысл 194, 195 
См. также Дифференцирование 
Производственная функция 135, 398, 
428, 429
Промежуток 124 
Прообраз вектора 79 
Проценты простые 159
— сложные 159, 160

Равенство векторов 68
— комплексных чисел 438
— матриц 10
— множеств 123
— столбцов (строк) 33 
Равновесная цена 136, 205, 206 
Равносильные системы уравнений 39 
Радиус — вектор 433
 комплексного числа 440, 411
Разность векторов 65
— комплексных чисел 438
— множеств 123

Размер матрицы 9 
Размерность пространства 72—74 
Разложение вектора по базису 73
— в ряд М аклорена функций 386-388, 

393, 394
Ранг матрицы 29—32, 34
— квадратичной формы 89
— оператора 80
Расстояние между двумя точками 
плоскости 67, 95, 117, 402
— отточки  до прямой 103, 104, 117, 118 
Ряд Маклорена 384-388
 для функции е* 386
-------------- sin х  386
-------------- cos х  386
-------------- l n ( l+ x )  387
— Тейлора 385
Ряды  — см. соотв. названия

Свойства векторов линейного 
пространства 69, 71
— л и н ей н ы х  о п ер ац и й  над  м ат р и ­

цам и 13
-------------- векторами 69
Сегмент 124 
Седловая точка 412 
Символ равносильности 7,142 
Система двух линейных уравнений 38 
-------------- , исследование 40, 41
— линейных уравнений 38, 39, 40, 48
 в матричной форме 39, 41—43
 , запись с помощью знаков

суммирования 38
 , исследование 48, 49
 , коэффициенты при перемен­

ных 38
 неопределенная 39
 несовместная 39
 определенная 39
 , решение 38
 , свободные чтены 38
 совместная 39
 , структура общего решения 53
Система линейных однородных 
уравнений 51—53
-------------- , исследование 52
-------------- , общее решение 53
-------------- , свойства решений 52
— нормальных уравнений 423, 435
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Скалярное произведение векторов 66, 76
 , свойства 76, 77
---------- , экономический смысл 76
Скалярный квадрат вектора 67 
Сложение векторов 64
— матриц 12
Сложная функция 131. 132 
Собственный вектор линейного 
оператора (матрицы) 82, 83 
Собственное значение линейного 
оператора (матрицы) 82, 83 
Сочетания, число сочетаний из п но т  49 
Способы задания функции 126 
Средние издержки 206, 241 
Средний доход 195 
Стационарная точка 215, 411 
Степенной ряд 379—396
 биномиальный 386, 387
 , интерват сходимости 380
 , необходимое и достаточное

условие сходимости 385
 , область сходимости 379—383
 , применение в приближенных

вычислениях 388-391, 394, 395
 . радиус сходимости 380—383
 , свойства 384
Строго монотонная функция 127 
Сумма векторов 64, 68
— комплексных чисел 438
— линейных операторов 80
— матриц 12
— ряда 357, 358, 373, 374 
Суперпозиция функций 131 
Сходимость ряда 357
 , свойства 359, 360

Т ем п изменения функции 190 
Теорема Абеля 379, 380
— Больцано-К ош и 166
— Вейерштрасса 165
— Крамера 41, 42
— К ронекера-К апелли 48
— Лагранжа 211, 212
— Лапласа 21
— Римана 373
— Ролля 210, 211
— Ф ерма 209, 210
 , экономический смысл 241
— о единственности представления вектора

линейного пространства 72, 73
 зависимости между матрицами

оператора в разных базисах 81
 законе инерции квадратичных

форм 89
 матрице оператора в базисе,

состоящем из его собственных 
векторов 84, 85

 множестве первообразных 252
 неизменности ранга матрицы при

элементарных преобразованиях 31
 перпендикулярности градиента

линии уровня 409
 погружении дискретного аргумента

в непрерывный 374
 приведении квадратичной формы к

каноническому виду 88
---------- производной интеграла по

верхнему пределу 292, 293 
обратной функции 187, 188
 сложной функции 185—186
 размерности и базисе

пространства 73, 74
 ранге матрицы 34
 связи бесконечно малых с

пределами функций 148
 среднем 291, 292. 303
 существовании в я-мерном

пространстве ортонормиро- 
ванного базиса 78 

 числе решений любой фундамен­
тальной системы решений 52

— существования и единственности 
решения 329, 330

Теоремы об общем решении 
дифференциального уравнения второго 
порядка 346, 347
— о пределах 153-155 
Точка граничная 414
— максимума 217
— минимума 217
— множества 123
— перегиба 227-229
 , достаточное условие 228
 , необходимое условие 227
— пересечения прямых 103
— предельная 414
— разрыва 163
 второго рода 163
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 первого рода 163
— устранимого разрыва 163 
Транспонирование матриц 15

Убывание функций, достаточное 
условие 216
 , необходимое условие 217
Убывающая функция 127 
Угловой коэффициент 96 
Угол между векторами 67, 68
 двумя прямыми 101
Умножение матриц 12 
 , его особенности 13, 14
— матрицы на число 11, 12
— рядов 394
Уравнение касательной 179—182
— линии 95
— плоскости общее 120
 проходящей через данную точку

перпендикулярно данному вектору 
119

— прямой в отрезках 99, 100
 проходящей через данную точку

в данном направлении 98—116
--------------- две данные точки 99
 с угловым коэффициентом 97
— пучка прямых 98, 99
— связи 417
Уравнения прямой в пространстве 120, 

121
--------------- канонические 121
Условие параллельности плоскостей 120 
 прямых 101, 102
— перпендикулярности прямых 101, 102 
 плоскостей 120
Условный максимум 417
— минимум 417
— экстремум 417—420

Ф азовая прямая 331 
Ф азовый портрет 333 
Фокус параболы 114 
Фокусы гиперболы 109
— эллипса 107
Фундаментальная система решений 52 
Формула Муавра 442
— Ньютона — Лейбница 295
— сложных процентов 160
— - Тейлора 386

 , остаточный член в форме
Лагранжа 386

— трапеций 313
— Эйлера 444
Формулы Крамера 40, 41, 43 
Функция 125, 126
— алгебраическая 132
—, аналитический способ задания 126
— аддитивная 135
— выпуска 135
— гладкая 181
—, графический способ задания 126
— двух переменных 399-420
 полное приращение 404
 , частное приращение 404
— Дирихле 126
— дробно-линейная 111,112
— издержек 135, 136
— иррациональная 132
— Кобба — Дугласа 399, 431
— кусочно-гладкая 181
— Лагранжа 418
— логарифмическая 129, 398
— мультипликативная 137
— нескольких переменных 135, 397-437 
 квадратическая 398
 линейная 398
 постоянной эластичности 398
 с постоянной эластичностью

замещения 399
— неявная 131
— нечетная, четная 126, 139
— показательная 129
— полезности 135, 384, 411
— полных затрат 136
— потребления 135
— предпочтений 135
— производственная 135, 398, 399, 428, 

429
— предложения 135
— рациональная 132
— сепарабельная 135
—, словесный способ задания 126
— спроса 135
— степенная 128
—, табличный способ задания 126
— трансцендентная 132
— целая рациональная 132
— явная 131
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Ф ункции Торнквиста 135
— обратные тригонометрические 130
— тригонометрические 129, 130

Характеристический многочлен 
линейного оператора (матрицы) 83 
Характеристическое уравнение 
дифференциального уравнения 
второго порядка 343—345 
 оператора (матрицы) 83

Ц елая часть числа 165

Частная производная 404, 405
 второго порядка 412
 , геометрический смысл 404, 405
Четная функция 126, 139 
Численный метод вычисления 
определенного интеграла 312 
Числовая ось (прямая) 124
— последовательность 141
 сходящаяся 142
 расходящаяся 142
Число е 158, 159 
Число Эйлера 159 
Числовой ряд 356-378
 абсолютно сходящийся 372, 377
 гармонический 361, 362
 геометрический 357, 358
 знакопеременный 371-373
 знакочередующийся 369-371
 обобщенный гармонический 364
 расходящийся 357
 , свойства сходящихся рядов 359

 сходящийся 357
 с положительными членами 362-

369
 условно сходящийся 372, 373
Чисто мнимые числа 438

Эквивалентные системы уравнен ий 39 
Экономическая область 429 
Экспонента 189
Экспоненциальный закон роста 160 
Экстремум функции 217-224
 , второе достаточное условие 222, 223
 двух переменных 410-414
---------------, достаточное условие 412, 413
--------------, необходимое условие 411, 412
 , схема исследования 413
 , необходимое условие 218-220
 первое достаточное условие 220,

221
 , схема исследования 221
 условный 417-420
Эксцентриситет ш перболы 109
— эллипса 107
Эластичности коэффициент замещения 
432, 433
 перекрестный 431, 432
Эластичность функции 196—199
 , свойства 197
 частная 430, 431
Элементарная функция 132 
Эллипс 107, 108
— каноническое уравнение 107
— характеристическое свойство 108 
Эмпирическая формула 420
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